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Abstract

We identify in this paper a general framework for the development of continuum damage models
in their fully coupled plastic damage form. The focus of this first part is directed to the general
formulation of infinitesimal models defined by yield and damage surfaces in stress space. The main
feature of the proposed formulation is the direct and independent consideration of the damage
mechanisms (isotropic damage, cracking,...) degrading the stiffness of the material, thus allowing
for a complete physical characterization of these effects. This modular structure is accomplished
by a kinematic decomposition of the strains in an elastic, plastic and multiple damage parts, as
belonging to each activated damage mechanism. An additive decomposition in the infinitesimal
range of interest is considered. Based on this decomposition, the constitutive characterization
alluded to above for each damage mechanism is carried out in a complete thermodynamically
consistent framework. One of the virtues of the considered framework is the fact that it includes
many of the diverse damage models existing in the literature as particular cases. In this way,
the developments presented herein furnish a unified framework for the formulation of contin-
uum damage models, including isotropic damage, compliance based formulations, effective stress
anisotropic models, smeared crack models and the related formulations of cracking and damage
based on strong discontinuities. Besides the clear physical significance added to these existing
formulations, the proposed framework defines also a very convenient context for the efficient nu-
merical integration of the resulting models. This aspect is explored in Part II of this work, as it is
the application of the framework proposed herein to the numerical simulation of porous metals.

KEYWORDS: continuum damage models, plasticity and damage.
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1. Introduction

Damage in solids usually refers to the degradation of their elastic response upon
unloading. In this way, the elastic moduli of the material decrease as further damage
loading occurs. Added to these effects we can find the presence of plasticity characterized
by the permanent strains in the material after full unloading. This observation has made
very popular (almost universal) the formulation of plasticity models based on the kinematic
decomposition of the strains in an elastic and a plastic or permanent parts. In contrast,
the formulation of damage models has been based on much more diverse, and usually
unrelated, frameworks.

For example, the concepts of effective stress and/or strain can be found in the literature
in the development of damage models. These ideas can be traced back to the pioneering
work of KACHANOV [1986] in the context of isotropic damage models. The resulting
models consider a scalar variable measuring the ratio between damage and intact surfaces
on which the stresses act, thus defining naturally the concept of effective stress as the
equivalent stress acting on the intact material. More recent references, considering also
plasticity effects thus leading to a coupled damage-plastic model, include SiMO & JuU
(1987], Ju [1989], LUBLINER ET AL [1989] and LUCCIONI ET AL [1996], among many
others. Extensions of these ideas to the anisotropic case leads to the consideration of rank
four tensors, defined in terms of generically called “damage tensors”, relating the total
and effective stresses; see e.g. CORDEBOIS & SIDOROFF [1982] and MURAKAMI [1983],
involving rank two damage tensors. The characterization of the evolution of these damage
tensors is usually very complex mathematically and difficult (if not impossible) to motivate
physically.

In contrast, we can find more physically motivated approaches in the modeling of
damage in concrete. Following the characterization of damage as the degradation of the
elastic moduli, we can find in the literature a number of models considering the fourth
order secant compliance of the material as fundamental internal variable in the formula-
tion. The evolution of this compliance is then usually obtained in a thermodynamically
consistent framework. Examples of this class of damage models can be found in ORTIZ
[1985], SiMO & Ju [1987], Ju [1989], HANSEN & SCHREYER [1994] and GOVINDJEE, KAY
& SiMo [1995], among others. Yet to incorporate more directly the physical mechanisms
causing the damage in the material, namely the cracking of the concrete, we find models
considering directly reduced stress-strain relations across the cracks. A classical example
is furnished by the so-called smeared cracks models, as developed in the works of RASHID
[1968], BAZANT & CEDOLIN [1979], BAZANT & OH [1983] and ROTS et al [1985), among
other early references. Related to these ideas, we can also quote the so-called microplane
approach of BAZANT & OH [1985], where the damage is introduced not through a partic-
ular crack direction but through a collection of predefined planes. Smeared crack models,
however, have not been linked in the literature to the above developments in continuum
damage theories. We have recently presented a formulation of these models in a completely
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thermodynamic framework in the context of strong discontinuities; see ARMERO [1997a,b],
and ARMERO & L1 [1998] for preliminary results of its extension to the finite deformation
range. This context provides, in addition, the proper multi-scale treatment for the regu-
larization of the localized failure of the material in the large-scale models of interest; see
ARMERO [1999].

We identify in the current paper a general framework for the formulation of continuum
damage models that, in particular, unifies these different treatments found in the litera-
ture, including the smeared crack models. Our attention is directed to the formulation of
infinitesimal plastic damage models defined by yield and damage surfaces in stress space.
The fundamental observation in the proposed framework is to base all the developments
on the kinematic decomposition of the strains in an elastic, plastic and damage parts,
following ideas common to elastoplastic models. With the damage strain at hand, the
dissipative mechanisms causing the damage in the material can readily be modeled, inde-
pendent of the elastic and other responses in the material. This allows a complete physical
interpretation of the resulting equations. For example, we consider an energy potential
modeling the damage stress/strain relations associated to a damage mechanism (e.g. crack
stress/displacement relations), including inelastic effects like hardening/softening cohesive
laws. The presence of this damage potential identifies the recoverable nature of the dam-
age strains. Special care is given to the identification of the different components of the
stress and strain causing the damage in the material: volumetric, deviatoric, stress/strains
associated to a given direction (crack), etc.

We show the extent of the proposed framework with the consideration of the particular
simple case of a quadratic damage potential, involving the evolution of a set of reduced
compliances associated only to the damage mechanism. We recover then as particular
case the formulation presented in the seminal work of ORTIZ [1985] for the purely elastic-
damage case. As shown in detail herein, the framework of smeared crack models is also
recovered when the identified general framework is considered in its reduced form. It is
interesting to observe that even though the consideration of damage strains (or in the
form of “crack strains” as it is more common) can be found in these early references, their
use in the formulation of continuum damage models has essentially disappeared in more
recent literature. Instead, emphasis is given to the so-called “degrading strains”, while
maintaining the total strains decomposed only in elastic and plastic parts; representative
references of these considerations are the works DOUGILL [1976], HUECKEL & MAIER
[1977], ORTIZ [1987] and YAZADANI & SCHREYER [1988], among others. The “degrading
strains” are associated to the compliance degradation of the material (i.e. Do for the rate
of the compliance tensor D and the stress tensor o). Therefore, they do not correspond
to an actual “strain”, in particular a recoverable strain like the damage strains, since they
are only defined through a rate when damage is active. As shown in the more recent work
of CAROL et al [1994], the consideration of these “degrading strains” leads to a partial
unification of several of the aforementioned approaches in damage modeling, leading to a
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formal structure similar to elastoplastic models. We refer to this attempt as partial because
models like the smeared crack approaches were not considered. In contrast, we show in
this paper that the fundamental unifying assumption (in the theoretical developments and
more especially at the level of the numerical integration of the resulting models, since
the standard structure of return mapping algorithms common in elastoplastic models is
recorevered) is to be traced back to the elastic-plastic-damage decomposition of the total
strains. Furthermore, it is the direct consideration of the damage strains and not the
“degrading strains” that allows the physical characterization of the damage mechanisms.

We focus the developments in this first part on the consideration of plastic damage
models in the infinitesimal case, with the threshold of damage characterized by surfaces
in stress space. The general framework is developed in detail as it is the identification of
existing models, giving the unifying character described above. We present in Part II the
application of these ideas to the formulation of a simple plastic damage model of ductile
failure in porous metals, including the effects of closing/opening of voids, an effect usually
referred to as unilateral damage (see e.g. CHABOCHE [1995]). Numerical algorithms for
the integration of the plastic damage framework investigated herein can also be find in
Part II.

An outline of the rest of this paper is as follows. Section 2 develops the general frame-
work proposed in this work. Emphasis is given to the incorporation of multiple damage
mechanisms in the inelastic response of the material, hence illustrating the ability of the
proposed formulation to handle the physical characterization of each of them indepen-
dently. A completely consistent thermodynamic framework is considered for a particular
damage mechanism. Section 3 particularizes the preceding developments to a quadratic
damage potential. We show in the different subsections of Section 3.1 that this case in-
cludes as particular cases existing damage models, from isotropic damage to smeared crack
models. Finally, Section 4 concludes with some final remarks.

2. General Formulation

We develop in this section the general framework for the formulation of damage the-
ories proposed in this work. The fundamental kinematic assumptions underlying the pro-
posed framework are presented in Section 2.1, with the resulting evolution equations of
the considered internal variables described in Section 2.3 after deriving the dissipation
expression in Section 2.2. The tangent rate equations are derived in Section 2.4.

2.1. Fundamental kinematic assumptions

With the assumption of infinitesimal deformations considered herein, the kinematics of
the deformation at a given point x of a solid {2 (identified with its reference placement with
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the above assumption) is characterized, under the classical assumption of local response,
by the infinitesimal strain tensor

e:=sym[Vu] €S, (2.1)

for the displacement field u : 2 — R™™ (ngim = 1,2 or 3) and spatial gradient V(-).
We denote by S the linear space of symmetric ngim X ngim tensors. In this context, we
introduce the fundamental decomposition of the total strain tensor € in

e=¢e®+eP e, (2.2)

that is, in elastic °, plastic €? and damage ¢ parts. The latter is assumed decomposed
additively as

Ndam
et= ) e¥, (2.3)
dr=1

that is, as the sum of ng,,, similar terms.

Additive kinematic decompositions of the form (2.2) and (2.3) are commonly used in
the context of elastoplastic theories, but are rarely considered in the context of damage
models. It is the main goal of this paper to explore this decomposition in this latter case,
and to show the convenience of their use from the point of view of the modeling of the
damage response of the material and its subsequent numerical integration. In particular,
the assumed decomposition (2.3) characterizes a part of the strain given by ng,,, “damage
mechanisms”. More specifically, it corresponds to a decomposition of the deformation at
a given point of the solid in elastic and damage mechanisms in series, referring to the
usual convention in a generalized standard solid. In contrast with the plastic part P, the
damage strain €2 is thought as a recoverable strain as it will be apparent by its role in the
stored free energy of the material.

As illustrated in Section 3 below, the damage mechanisms characteristic of the re-
sponse of many materials lead to particular constrained forms of the associated damage
strains €%; typical examples involve volumetric damage strains, rank-one strains asso-
ciated to cracks in brittle materials, etc. In general, and for each damage mechanism
(dr = 1,n4am), we have 41 € V¥ for the linear subspace

nd,
yar — {5‘“ = Z]P’Z’ edr for e €eR and P¥ e S} cS, (2.4)
a=1

where the set of symmetric tensors {P%}"%! is assumed to define a basis of V¢, with

dimension ng, < (Ndim + 1)ndim/2. Without loss of generality, we consider an orthonormal

basis in the usual inner product of symmetric tensors S (that is, double contraction A :
A := A;;A;j, summation implied). In this way, we have the orthogonality relations

P% : P! =8, (Kroenecker delta) , (2.5)
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and the component relations
el =PI gt for a=1,ng,, (2.6)

for each damage mechanism dy = 1,n44n, independently. To avoid the use of double
indices when referring to the damage mechanism and damage strain component, we write
the component relation in (2.4) in the compact form

dr
€1
. for e = [e¥] = | : ) (2.7)
ei{i ;
and PY = [PZZij)] for a = 1,n4, and ¢,5 = 1,n4im, with ph’ = [P?i’j)a]. We write
symbolically
Pér
1
P =1 : |, (2.8)
d
Pnfi,

in the developments that follow.

Remarks 2.1.

1. In the numerical implementation, we write the strains € and stresses o in the standard
vector notation

- - - -

€11 011
€29 022
€ — £33 and o — 733 , (2.9)
2e12 012
2e13 013
| 2e32 | [ 032

in general three-dimensional problems. In this notation, P corresponds to a 6 ng,
vector (4 ng, in plane problems).

2. We have assumed, for simplicity, that the projection matrices {P%}"2! are constant.

A general definition of V¢ as a nonlinear manifold in S can be considered, with the
space of variations given by the linear basis {P3r}"1 at a given point e?. To avoid the
added complexity introduced by this general treatment, we consider only the simple
case furnished by a linear space of damage strains. The case of a nonlinear definition
of the damage space is treated separately by imposing explicitly the constraints. This
is done in Part II of this work (ARMERO & OLLER [1999]) for the imposition of
unilateral damage associated to the closing/opening of voids in a particular coupled
plastic damage model of porous metals. O
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2.2. Elastic energy and plastic-damage dissipation

The considerations described in the previous section identified the kinematics of the
problem of interest. In particular, we considered the existence of n44,, mechanisms leading
to the damage of the solid. In accordance, we introduce the decomposition of the stored

energy function
Ndam

W =We(e) + HP(IP) + > W (ed;1%), (2.10)
dr=1

for a stored energy function W¢(-) characterizing the elastic response of the solid in terms of
the elastic strains €°, a potential #?(-) modeling the hardening plastic response in terms of
a general set of plastic internal variables Z? (not including €P), and a set of stored energy
functions W (-) characterizing the internal energy stored in each of the ng,,, damage
mechanisms. The latter are given in terms of the corresponding damage strain €%/ and a
general set of internal variables 7% (not including %) characterizing the inelastic response
associated to the damage mechanisms. For simplicity, we assume a full decoupling of the
different damage mechanisms, leading to an independent set of internal variables for each
of them. We note from the start that the presence of the damage strains % explicitly
in the expression of the stored energy function, in contrast with the plastic strains e,
leads to their recoverable character, as discussed below. Uncoupled thermomechanical
conditions have been assumed, with the identification of the stored energy function W
with the Helmholtz free energy of the material in the case of isothermal deformations as
it is customary.

Given the expression (2.10) of the stored energy of the material, the local dissipa-
tion rate (see e.g. SIMO & HUGHES [1998]) can be written, after using the kinematic
decomposition (2.2), as

D=cg:6-W
nam
- (0'— g?:) :ée+§a:ép—ﬂpl+;1ga:éd' —Wdf)lzo, (2.11)
> =t

for the stress tensor o. After imposing the physically motivated constraints

D >0 and DU >0 dr=1,n40m, (2.12)
for the plastic and damage dissipations, the imposition of the physical inequality D > 0
for all elastic strain rates €° leads to the constitutive equation

_owe
© Oee
The procedure outlined here follows the classical arguments known as Coleman’s method
(see e.g. TRUESDELL & NoOLL [1965] and LUBLINER [1990]).

o

(2.13)
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The plastic dissipation in (2.11) can be written as

oHP

P—g:éP POIP >0 fi P.— _
DPP=0g:éP4+ QPO IP > or Q 577

(2.14)

the conjugate plastic hardening variable. The symbol © in this last expression denotes a
general tensor contraction depending on the character of the internal variables ZP. The
specific case of a scalar variable 7P = P, with scalar conjugate variable QP = ¢P and
standard scalar multiplication between them, is considered in the particular model example
of Section 3.

The damage dissipation D% in (2.11) can be expressed in the same way by

oW oW .
DY = (a— e ) Y — =2 I 20, (2.15)

where © denotes again a general contraction depending on the character of the internal
variables Z%. Following the same arguments as before, that is, imposing the non-negative
character of the dissipation (2.15) for independent variations of the damage strains e
and internal variables ¢, leads after noting the constrained character of (2.15) (since
gl € Vi) to

. oW
dr _ Ad d dr .
DU =Q%0oI% 20 for Q¥:=-—7-, (2.16)
and the general relation
_ow# L
o= ot (2.17)
for a component ot € V¥ * defined by
Vit ={oes: oiel=0 Vet eV}, (2.18)

that is, the orthogonal complement of the original space of damage strains V% . The
explicit absence of the damage strains €% in the expression of the damage dissipation
(2.16); emphasizes once more the recoverable character of these strains, in contrast with
eP.

If 0% denotes the projection of the a general stress tensor o € S onto the space V%,
we can write the general relation

‘n.dl
dr _ dr .d dr ._ pdr .
ol = ZIP’a sg! for syt =Py 10, (2.19)
a=1
or, simply, i
1
T .
o =P s for sth=| ! | =P¥:0, (2.20)
sdr



A General Framework for Continuum Damage Models 9

in the compact notation introduced in (2.7). We note that with this notation at hand the
following equality holds

T T
g gl = g . gl Voir =P¥ gt gl = pdi gdr ¢ pir (2.21)

given the orthogonality relation (2.5). Projecting the relation (2.17) on V%, we have

oW
dr _
ol = gl (2.22)
or, simply,
oW oW
dr _ : d
s = el or, in components, si! = 9edi (a=1,ng,), (2.23)
where
— T
W (eh; 7)) = W (e¥;74)  for e¥ =PU el ¢ Y (2.24)
after using the compact notation introduced in (2.7). We also note the trivial relation
owe oW
d _ — P —
" = ~5a = “azE (2.25)

for future use.

2.3. The plastic damage evolution equations

The above thermodynamic framework leads directly to the evolution equations of the
damage internal variables Z% and plastic variables {e?,Z?}. In particular, we note from
the expression (2.11) of the dissipation the conjugate character of the internal variables Q%
and Z% for the damage part and {eP,ZP} with {o, QP} for the plastic part. In this context,
we introduce a set of damage surfaces ¢4/ (Q%) for each damage mechanism dy = 1, ndgam
and a plastic yield surface ¢P(o, q) by the relations

¢%(Q%4) <0 and #*(o,q9) <0, (2.26)

defining the elastic domain of the materials response.

A classical argument based on the stationarity of the dissipation functionals (2.14)
and (2.16); leads to the associated damage evolution equations for the damage and plastic
internal variables; and convexity requirements for the damage and yield criteria; see e.g.
LUBLINER [1990] and SiMO & HUGHES [1998] for similar arguments in the context of
elastoplasticity. In particular, the damage evolution equations read

, 09

+d; _ . d
II-—’)’ anla

(2.27)
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for the damage multiplier v’ satisfying the complementary Kuhn-Tucker loading/unloading
conditions

dr dy dr 4dr _

¥4 >0, ¢% <0 and yUgl =0, (2.28)

as well as the damage consistency condition
7dl$dl ::O , (2.29)

during persistent damage. Similarly, the associated plastic evolution equations read

EP = AP %’i , P = 71’% , (2.30)

for the plastic multiplier v satisfying
Y>>0, ¢P<0 and ~P¢P =0, (2.31)

and the plastic consistency condition
VPP =0 . (2.32)

The above relations define completely the damage model. A summary of these equations
can be found in Box 2.1.

Remarks 2.2.

1. Additional extensions can be easily accommodated in the above framework. For ex-
ample, the case of multi-surface damage mechanisms can be easily considered through
a damage evolution equation of the Koiter type (see e.g. SIMO & HUGHES [1998]) as

dr
i'dl _ns“’f dr 8¢;il
= Zl Vi odr (2.33)
J:

dr
surf surf

nd’
W20, g<0, Y afel=0 ad Y afd=0, (3
j=1 J=1

ds

sur f damage surfaces associated to the damage mechanism d; = 1, nggm.

fory=1,n

2. Similarly, the formulation of viscous damage models is easily accomplished by the
viscous regularization of the Perzyna type, namely, replacing the Kuhn-Tucker loading
and unloading conditions (2.28) and consistency condition (2.29) by the evolution
equation

y = < fr(¢#) >

i : (2.35)
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for a damage viscosity n%!, general scalar function f%I(-), and Macaulay brackets

0 ifz<0,
<a:>.—{z ifr>0. (2.36)

while retaining the evolution equations (2.27). Similar considerations apply to the
viscoplastic case. O

2.3.1. Damage models in stress space

The above arguments led to the consideration of damage surfaces defined in terms of
the internal variables Q% . These variables are defined by (2.16), and, thus, they can be

written as =
ower —_—
QU =~ = 24 (e T") (2:37)

that is, as functions of the damage strains e?! (or, equivalently, £%/) and conjugate internal
variables Z¢!. However, and as noted in the introduction, our interest in this paper is the
consideration of stress-based damage models, that is, with the damage surfaces ¢?/ in
terms of the stresses or. To this purpose, the internal variables Q% can be alternatively
defined as follows.

We introduce the damage complementary energy function, denoted for the mechanism
d[ = 1, Ndam by

XU (04 T) = R4 (s¥;T4)  for ol =PU s¥ e YU, (2.38)

and obtained by the Legendre transform of tl%e stored energy function W% in the damage
strains. That is, for a given stress o = P sdr € Vi1 we define the function

sdidr.gdry . di . od1 _Ti7dr (pd1. Td1
X (s’,I’).—nc}ix{s e’ W (e";T )} (2.39)
odr:gdr
— b1 ; edi(sh, 7Y — W (edi (5%, 1), 70 (2.40)

for the function é‘i\' (st ,Z91) obtained by inverting the constitutive relation

4 OW

= S (edr; 7). (2.41)

A simple argument based on the chain rule applied to (2.40) shows that

o deds oW dedr
axd] = ed’ + Sdl . asdl - —3—6‘1_1 : W (242)
ST | zdr Tdr Td; Td1

8dr
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S0
p aAd, ) 4 aSC\dI
! alyer or, in components, ei’ = 5edi (a=1,nq4,), (2.43)
a

where the arguments of the function ¥% (s4/;Z4) are implied. Equivalently, we write

el = %Z—j : (2.44)
for x21 (od1; 741) defined in (2.38).
A calculation similar to (2.42) leads easily to the relation
axe oW
974 ” ~ a7ar . , (2.45)
thus defining the internal variables
QU = Qi (s, T%) = (™5 1) (2.46)

T
in terms of the stresses s% (or, equivalently, 0% = P%  s%) associated to the damage

mechanism dy. The damage surfaces (2.26) can then be expressed as
$(s%;T) = ¢ (Q (s¥; 7)) (2.47)

in terms of the damage stresses s% and the conjugate internal variables Z¢/. Box 2.1 sum-
marizes the equation of the final plastic damage model.

Remarks 2.3.

1. A sufficient condition for the invertibility of the relation (2.41) is the convexity of
the damage potentials W9 (e%;T¢1) in the damage strain argument e®! (that is, for
fixed Z9), Wthh also implies the convexity of the complementary functions xdf in
the stresses s . This convexity applies for the cases of interest described in Section
3 below, and it is assumed hereafter, once the damage mechanism is activated.

2. The construction of the damage linear subspace V¥ is, in fact, motivated by the final
relation (2.47) defining the damage surfaces in terms of the specific damage stress
components s, O
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BOX 2.1. Summary of the constitutive relations for a general damage
model

1. Elastic stress-strain relation

_ owe
7T Bee
for an elastic potential We(e®).
2. Damage stress-strain relations
d d o A
ol = oW or e¥ = O ( s = ow or e¥ = 8Xdl)
Oeds dodr Oedr T 9sdr )’

for the conjugate damage potentials W41 (e%1;T4) and x% (0% ;Z%) (or, equiva-
lently, W41 (edr; Td1) and ¥4 (s%;I%)), for each damage mechanism d; = 1, ngam.

The damage stresses 0%’ are given in terms of the (total) stresses o by the projection
relation (equilibrium)

ndl
dr _ dr odr ; d; _ pdr .
o —_;_ Il with s/ =P, : o,

a=1
between the two sets of stresses.

3. The (associated) damage evolution equations

d
Fdr _ fydl ¢! )
0Qdr ’
v 20, ¢f <0, yugi=0, |
Yo =0, |
where Q% = —%";jll = %Z—i , for each damage mechanism d;y = 1, ngom.

4. The (associated) damage evolution equations

. o¢P . O¢P

P — P 27 Y i

E 7 ao_’ Ip ’Y BQP’
YwY>0, <0, PP =0,
Y =0.

p_ _OHP
where QF = — %7 .
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2.4. The rate equations

To identify better the damage response introduced by the considerations presented
in the previous sections by the total stress-strain relations, we derive in this section the
tangent rate equations associated to the general models developed above. As noted in the
introduction, one of the main advantages of the proposed formulation is the modularity
in the treatment of simultaneous damage mechanisms. We can exploit this modularity by
first deriving the tangent rate form of the equations for each of the damage mechanisms to
account for their combined action together with the elastoplastic response of the material
afterwards. In this way, we consider a given damage mechanism d;y = 1, ng4.,,, and derive
the rate equation

ndl

d;y __ ~d; pgdp : sdr _ dr «d _
$ =cl é or, in components, 3§35’ = E u,, €& (a=1,n4,), (2.48)
b=1

for a tangent matrix cZﬁ € R™41*™r to be found, accounting for the active damage loading
or inactive damage unloading state of the damage mechanism dy. We note the use in (2.48)
of the reduced arrays in V%, thus avoiding in the following developments the singularities
associated with the components of the strain and stress not involved in the damage of the
material.

2.4.1. The tangent damage rate relations

The rate form of equation (2.43) reads

3255(1, a25€d1 .
odr __ od d
e = * T astigza O
azid, 8¢d1
9st197d © 5Qdr

= d¥ 541 4 41 (2.49)

where we have used the evolution equation (2.27) and introduced the damage compliance
d?% through the definition

a25€dl
 9sdi?

d¥ (2.50)

The symmetry of the compliance d?’ follows. As noted in Remark 2.3.1, we assume the
convexity of the damage potential x(s%;Z41) in the stress component, hence resulting in
the positive definiteness of the compliance d¥ in (2.50) (and thus invertible), once the
damage mechanism dy is activated. We introduce the notation

¢ =d¥ | (2.51)
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for the damage tangent. Similarly, the rate form of the equation (2.46) leads to the relation

. azydl a25€d1 .
dr _ -d d
= zmass ° ez O
= O gy DR 09 (2.52)
0Td19s% 9Td:i? = HQdr :
25dy
- 615')"1)233‘1! chet
o [ 9Px* er o?x4 9%y o Dt (2.53)
0T419sd1 0841 9T grd,? 0Qdr’ '

after using (2.49) and (2.51). The damage multiplier v% is obtained by imposing damage
consistency during persistent damage, as follows.

i. Damaged unloading. No further damage of the material occurs in this case, with
P <0 =  4¥ =0, (2.54)

by the Kuhn-Tucker condition (2.28)3. Therefore, equation (2.49) leads to

dr

§Ur=ch ¢t — cﬁj =c for (damaged) unloading, (2.55)

with no further evolution of the compliance associated to the damage mechanism in this
case.

ii. Damage loading. The imposition of the consistency condition (2.29)

g%

= 5oz Q% =0 (2.56)

o
leads in combination with (2.53) to

a _ 1 Dot x4 dr 5d
7= a4 \ogw ©azagsn ) ¢ ¢ (2:57)

where

dr 25dy 2=dy 2dy dy
Adi . 9¢ @[ U X ] 99 (2.58)

=904 | 9T4osd © Fshiold  prat| © 5od
which is assumed to be positive A% > 0; see Remark 2.4.1 below. The introduction of
this expression of ¥4/ in equation (2.49) leads to the tangent rate equation (2.48) with

dr _ .d 1 d 92xY D4 d 9%xU ot
ClJ—C]—E c BsdlaI‘“@anI (02 c 88d]61.d1®an1 . (259)
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The symmetry of this tangent is to be noted.

Remark 2.4. The constitutive assumption A% > 0 in (2.58) is to be verified on a case
by case basis in the model examples described in the next section. With this assumption,
equation (2.57) leads to the equivalent condition for persistent damage loading

a dr 2=dy
( P o X )cd’éd’>0, (2.60)

0Qdr ~ 9Td19sd

for the damage mechanism dj, after noting the constraint ¥ > 0 in (2.28);. O

2.4.2. The global elasto-plastic-damage tangent

The above considerations focused on a given damage mechanism d;. Global relations
between the rates of total strain € and stress & can be obtained as follows. The rate form
of the elastic relation (2.13) leads to

o2we

. . . .d .

U:Ceezce(E—E —€p), for C63=—8€7 (261)
the symmetric elastic tangent (not necessarily constant). The plastic strain rates e? in
this last expression are eliminated in the usual way. Indeed, the imposition of the plas-
tic consistency (2.32) in combination with (2.61) leads to the expression of the plastic

multiplier

AP = £;n¢p :C(e—g) (2.62)

where we have introduced the notation

o¢?

Fra

2
and AP = Ngp © Cen¢p + (g—g;) K? y (263)

n¢p =

for the hardening modulus K? := 92HP/ daP” in terms of the plastic hardeing potential
‘HP. Combining (2.30)1, (2.61) and (2.62), we arrive at the tangent relation

o =C®P(—-¢?, (2.64)
for the elastoplastic tangent C?
1
C®? =C° - —A—pcen,,sp ® Cen¢P 5 (265)

a symmetric tangent in the assumed associated case.
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The combination of equations (2.20); and (2.64) leads to
Ndam T
4 =P¥ .6 =P¥.C? (é - > P¥ édJ) for dy =1,n44m , (2.66)
dy=1
which with (2.48); leads to
Ndam T
> [c;i; Saya, + P4 CPPY ¢ ] ¢4 =P¥ :CP¢  for dr=1,n4em. (2.67)
dy=1
Following the notation introduced in (2.8), we consider the matrix
A= [l S0, + P CTRUT | @ RN (2.68)
blOCk Ad]dJ ERndI Xnd;
where
Ndam
nft =" ny,, (2.69)
dr=1

the total number of damage variables. The symmetry of the matrix A is to be noted.
From (2.67), we conclude that

Ndam

et =3 (A7), , P¥:Cepé, (2.70)
dy=1

where (A"l) drds € R™¥1*™; denotes the block of the inverse of matrix A associated to
the mechanisms d; and dj.

The final tangent rate equation is obtained as

&=C® (é - f ]P’d'Téd’>

(2.71)
dr=1
Ndam T
=|CP— > CP:PU (ATY),, PY:CP| g, (2.72)
dr,dyj=1
identifying the final rate equation
Ndam T
6 =C%% where CP/=C?- 3 CP:P¥ (A7), . P¥:CP.| (2.73)
dr,d;=1
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We note the symmetry of the final tangent. The damage incorporated in the tangent
response of the material is apparent in the final relation (2.73) through the evolution of
the tangent stiffness of the material from its elastoplastic value C®”. The degradation
of this tangent response is accomplished in the proposed formulation through a direct
modeling of the physical damage mechanisms. To observe better the added compliance
added to the global tangent response of the material by these mechanisms, we present next
an alternative derivation of the tangent in terms of the damage compliances.

2.4.3. Alternative form of the damage tangent

An alternative form of the tangent (2.73) can be obtained by deriving first the cor-
responding compliance, when possible. We first note that the compliance dﬁ: = c;i;—l
associated to the tangent cﬁj in (2.59) for the damage mechanism d; can be obtained us-
ing the Sherman-Morrison formula (see e.g. GOLUB & VAN LOAN [1989], page 51), leading

to the expression

di _ ad 1 9% D Oy OpU
& =d" + 22, (asd:a:rdz ©a0% ) ®\gstiozs Caga ) BT

where

Adl = A4 _ ag x4 1 X } © 0¢%

ag@ © [BIdlasdl < asuioze | © 5w
L 3¢d’ 5 8252(11 8¢dl
- 0Qd T gran® T 9Qd

(2.75)

assuming A% # 0; see Remark 2.5 below. Expression (2.74) can be obtained alternatively
by combining (2.52) (instead of (2.53)) and the consistency condition (2.56). For the case of
no further damage (i.e. damaged unloading) characterized by the tangent relation (2.55),
the corresponding compliance is simply obtained as

d¥r = d% | (2.76)

given by (2.50).

The global rate equation is then easily obtained from the inverse of the elastic rate
equation (2.71) in combination with the inverse of the rate equation (2.48), that is,

Ndam  7df Nd;
DPG=¢— Y (§ :]P"i’ég’) and & =3 d¥ P¥.g, (2.77)
ab | ,
di=1 a=1 b=1 .§§1

€dr
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for the elastoplastic compliance D := C®P _1, thus leading to the elasto-plastic-damage
compliance

Ndam
€ = D6 where D¢ =D + Z DY | (2.78)
dr=1
with the damage compliance contribution
nd,
d d d d
D= > dil PU@PY, (2.79)
a,b=1

for the damage mechanism d;. The final expression (2.78) identifies clearly the added
compliance to the tangent material response

Remark 2.5. The compliance (2.74) is only well-defined when the elastoplastic tangent
C® is invertible and A% # 0 in (2.75) (otherwise the tangent c in (2.59) is singular).
After observing the nature of A% in (2.75), we note that this 51tuat10n may occur in the
case of perfect damage (no hardening/softening response of the material), as it is shown
in the model examples considered in the next section. The same considerations apply to
the invertibility of the elastoplastic tangent (2.65). For these reasons, the form of the
tangent (2.73), not requiring this inversion before adding the elastic contributions, is to be
preferred in the numerical implementation. |

3. Model Examples

We consider in this section a generic elasto-plastic-damage model involving a quadratic
damage potential, and thus introducing a secant damage compliance. Secant damage com-
pliance have been considered in ORTIZ [1985], leading to similar developments to the ones
presented herein for the purely elastic-damage case only. After describing this generic
quadratic damage model in Section 3.1 in the general elasto-plastic-damage framework
developed in the previous section, we consider in Section 3.2 several existing models, de-
veloping their formulation within the proposed framework. A single damage mechanism
(i.e. Mgem = 1) is considered in this section.

3.1. A generic quadratic damage model

We consider a damage mechanism characterized by the generic quadratic potential

Wd(e ;T = % : c?e? + H(a?) (3.1)
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with the internal variables
7¢ = {dd,ad} for d?:=¢c?" | (3.2)

and for the scalar variable a®. The generic function He(a?) accounts for an isotropic
hardening/softening law of the material. The damage space V¢ defined in terms of the
projection matrices P¢ by (2.4), so the damage strains are €% = pe’ e?, is to be specified

for a particular damage surface; see examples below. We also write the global compliance

nd
D= )" di, PioPf, (3.3)
a,b=1
and the global tangent
ndl
ci= Z cd, P¢ @ P¢ for c4,:=P%:ClpE. (3.4)
a,b=1
leading to the equality
ed: Cled = e . cle? (3.5)

for the quadratic term in (3.1). We write c¥' =D%n V4, that is, the generalized inverse.

The complementary energy associated to Wd in (3.1) is given by
S(\d(sd; dd, ad) — %sd . ddsd _ er(ad)
= 3(s?® %) : d? — H4(a?) (3.6)

= 1(e?® o) : D* - H(a?) (3.7)

for od = P4 s?, as a calculation based on (2.39) shows. The constitutive relations (2.44)
and (2.46) read in this case

<d
et = (Z—;{E =d? s?, (or, equivalently, e¢ = D%? = D), (3.8)
a_ X' 14 4
Qf = 57 — 3" @Y, (39
ox? oH?
d _ — =: g%
%= 508 = "ot T (3.10)

leading to the expression (2.16) of the damage dissipation

Dl=1(s?®sd):d" +¢q? 4 >0. (3.11)
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Appropriate damage surfaces are defined then in this case as
¢'(3(s’®s%),q%) <0, (3.12)

leading to the associated damage evolution equations

.d 3¢d
d =+ N for Nya:=
7" Nga or $d 3(%(8‘1@3‘1)) , (3.13)
. d¢?
d _ .d
a” =7 9g% (3.14)

with the Kuhn-Tucker loading/unloading conditions (2.28) and the consistency conditions
(2.29).

Remark 3.1. The constraint (3.11) on the damage dissipation D¢ is automatically
satisfied assuming a damage surface of the form

(252 ® 5% q) = g% (35?2 ® s%) — (v - ¢*(a?)) <0 (3.15)
o¢ y4(ad)>0

for a material parameter y%(0) = y¢ > 0 (i.e. ¢%(0) = 0) and a function g%(-) positively
homogeneous of degree 1. We recall that a positively homogeneous function of degree
m > 1 is defined by

?(AQY) =Amg4(Qf) YAeRY = = :0f{=mg?, (3.16)

the Euler’s theorem of homogeneous functions. In the case of interest (m = 1), we obtain
after some straightforward algebraic manipulations

-d
D = %(sd ®s%):d +q¢lat =44 y¢>0 (3.17)

given the Kuhn-Tucker condition (2.28). O

3.1.1. An alternative characterization of the damage

The damage evolution equations (3.13)-(3.14) have been obtained, following the gen-
eral framework presented in Section 2, in terms of the damage surface (3.12) function of the
fourth order tensor Qf = 1(s% ® s?). It is common, however, to characterize the damage
of the material in terms of a damage surface of the form

$(s%q%) <0 (3.18)
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in terms of the stress tensor s%. The damage evolution equations for this case can still be
obtained using the principle of maximum damage dissipation as follows.

Consider the Lagrangian associated to the dissipation functional (3.11) and the con-
straint introduced by the damage surface (3.18), that is,

.d - +4 . Td/ =
‘Cd(sda qda 7d; ed, ad) = %sd -d Sd + qdad - 7d ¢d(3d7 qd) ) (319)

for a Lagrange multiplier v¢ > 0 imposing the unilateral constraint #? < 0. The maxi-

-d
mization of the Lagrangian (3.19) for fixed rates d and &2 of the damage variables leads
to the evolution equations

“d
d s¢ =~ N34 and &% =+" — (3.20)

with the Kuhn-Tucker complementary conditions (2.28), where we have introduced the
notation -
o4

Clearly, the only component of the compliance rate affecting the dissipation functional
(3.19) is the compliance along the direction defined by the current damage stress sc.
Hence, the relation (3.20) shows that the principle of maximum dissipation in combination
of a damage surface in terms of the stress s? alone determines only this component of the
compliance, leaving arbitrary the component in the direction orthogonal (in stress space)
to the current stress. A particular evolution equation for the compliance d* satisfying the

relation (3.20); is given by
gt = e B Mg

=1 ; (3:22)

n(Z)d . sd
as long as ngq - s # 0; see Remark 3.2.2 below. Evolution equations of the form given
by (3.22) can be found in the works of SIMO et al [1993] and GOVINDJEE, KAY & SiMO
[1995] in the context of damage models based on the evolution of the a total compliance.

The two different expressions (3.13) and (3.22) can be reconciled by noting that the
consideration of the function

#*(s%, %) = p(L(s? ® 5%),¢%), (3.23)
for a given function ¢(-), leads to the differential relation
- dgs
d¢? = Nga -ds? + a—qddqd
n;adn ad
e s 1%[dsd®8d+sd®dsd]+-a—¢-gdqd
Nga 8% < -— ~ Oq

d(354089)
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d¢° d¢?

=d d — - d 1.d d d
¢ d(3s¢ ® s9) (35°@s )+8qddq
d¢* a 5.4, 99 4
= 9P ity 90 g ,
9(35?® sd)® * agd "1 > (3.24)

implying ; .,
_ 09 i_ 4 09
"o T glsigsd)” T ° 9(dsi®sd)

and 9¢?/8q = 0$?/q. Hence, the evolution formulas (3.13) and (3.22) define the same
(maximum) damage dissipation along the direction of the current stress s¢. For future use
and in general, we write the damage evolution equation

(3.25)

od
d =~ N{, (3.26)

with Nya given by (3.13) or (3.22). The general relation
Nga = N¢d3d = Sde,d (3.27)

is also satisfied in both cases by (3.25). Given this relation, we can express the rate of the
damage strains as

-d
el =d¥s? +d st =d%s? + */d'n.q;d (3.28)

or, equivalently,
d

8 = (& —vng), (3.29)
-1

involving the current secant damage tensor c? = d®”". We note that the “degrading

strains” (rates), referred to in the introduction, correspond to the last term in (3.28). We

conclude then that it is the first term on the right-hand side of (3.28), which is also active

in unloading, which gives the recoverable character of the damage strains e?.

The damage tangent associated to this generic quadratic damage mechanism is also
obtained using the equations (2.55) and (2.59), leading to the expressions

i. Damaged unloading:

cp, =c?, (3.30)
ii. Loading (persistent damage):
1
Cfiu =c?- Ad Cd’nq‘;d ® Cdnq;d s (3.31)
for N2
0¢ d*
Al = Nga cdn(z,d + K¢ (W) where K% .= Tad (3.32)
N ———
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the hardening/softening tangent modulus. We note the nature of A? as discussed in
Section 3.1.1.

The final global tangent is obtained using the general formula (2.73). We note again that
the damage space basis P? is to be defined below for the cases of interest.

Remarks 3.2.

1. Similarly to the arguments presented in Remark 3.1, the constraint on the damage
dissipation D¢ > 0 is automatically enforced by starting directly from a damage
surface of the form

$%(s,¢%) = §(s%) — (v — ¢*(a*)) <0 (3.33)

§4(a)20

for a positively homogeneous function §¢(-) of degree m, so

03% 4 d ~d( d
9gd 5 =Mga S =m §%(s?) . (3.34)
Combining (3.11) with (3.22), we obtain after some straightforward algebraic manip-
ulations )
m
Dd — ad|,d 1- = d .
S - -2y (3.35)

Therefore, we conclude D? > 0 for a homogeneous function of degree m = 2. For
the case of a homogeneous function of degree m = 1, a positive dissipation is also
concluded if ¢¢ > —y4; in particular, for the case of a softening law g% > 0.

2. Regarding the formula (3.22) for the evolution of the damage compliance d%, we note
that the denominator is non-zero; in fact

N34 s3>0 for ¢%s%¢?) =0 and s¢ #0, (3.36)

i ¢~Sd defines a convez elastic damage domain in the space of damage stresses s¢ (q% =
constant) including the origin s% = 0, as it is usually the case. In fact, for the common
case (3.33) with §¢(-) homogeneous of degree m > 0, we have

N4 s¢ =m §%(s%) =m §%?) >0 (3.37)

as long as 0 < §%(a®) # 0, that is, when the elastic domain does not reduce to s¢ =
(or, in other words, when it has not shrunk to the origin due to a softening of the
material). In this situation, the relation (3.22) reflects the physical fact d* — oo for
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a fully damaged material; note that ¢ — 0 as needed in the expressions (2.55) and
(2.59) of the tangent. 0

3.2. Some existing models

The generic quadratic model developed in the previous section is fully defined once
the damage surfaces (3.23), defining in the process the damage space (2.4) and the nature
of the damage compliance (3.2), are defined. With specific particular definitions of these
surfaces, the considered general formulation encompasses the models developed in ORTIZ
[1985] and SimMO & Ju [1987], and later considered in HANSEN & SCHREYER [1994],
SIMO et al [1993] and GOVINDJEE, KAy & SiMO [1995] in the modeling of the damage
in brittle materials, concrete in particular. We show in the next sections that other existing
stress-based damage models can be obtained in this way. We consider for simplicity the
case of a linear elastic material, that is, a quadratic stored energy function

We(e®) = % g®:C%"°, (3.38)
for a constant C°, leading to the quadratic complementary energy function

xé(o)=1%o: D =

2 3(c®0): D°, (3.39)

for D¢ = C¢ .

3.2.1. An effective stress anisotropic damage model

The formulation of anisotropic damage models can be often found in the literature
developed after the introduction of the so-called damage tensors defining an effective stress
tensor. Early examples are the works of CORDEBOIS & SIDOROFF [1982] and MURAKAMI
[1983]. In the context developed in the previous section, we first note the secant relation

e—eP=e’+e= [De-l—Dd]a
- De[ll+ cp’) o, (3.40)
for the four order identity tensor I. Hence, we can write
§:=C(e—-eP)=M'o for M:= [IH— CeDd] - , (3.41)

and the effective stresses &. Numerous anisotropic damage models has been formulated
through the consideration of a general effective stress tensor M; we refer to LEMAITRE
& CHABOCHE [1978,85], CORDEBOIS & SIDOROFF [1982] and MURAKAMI [1983], among
others.
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The framework developed in the previous section identifies an evolution for this effec-
tive damage tensor M. Namely, using the evolution equation (3.26), we obtain

M = —y% MC® NyuM , (3.42)

for Nga given by (3.13) or (3.22) for a general damage function ¢%(3(oc ® o),¢%) < 0
or &Ed(a,qd) < 0, respectively. More importantly, this evolution equation is obtained
in the thermodynamic framework developed in the previous sections and, in particular,
through the direct physical modeling of the damage mechanism through the stress/damage
strain relations characterizing it. This situation is to be contrasted with usual ad-hoc
characterizations of the evolution of the effective stress tensor commonly found in the
literature.

Remark 3.3. Having defined the effective stresses & in terms of the damage tensor M
in (3.41), one may consider the yield criterion (2.26)3 in the effective stress space, that is,

P (F,q°) <0, (3.43)

as it is commonly found in the literature; see e.g. HANSEN & SCHREYER [1994] and Ju
[1989]. This option, however, leads to a non-symmetric tangent. O

3.2.2. An isotropic damage model

Damage models in the form of a scalar damage variable characterizing the isotropic
damage of the material can be traced to the pioneering work of KACHANOV [1958]. Isotropic
damage can be characterized by the consideration damage surface

¢4(0.4") =x(0) = (¥5 - ¢) <0, (3.44)

in terms of the elastic complementary energy function (3.39). An equivalent expression
(using twice the square root of x°) can be found in SiIMO & JuU [1987]. The threshold value
to activate the damage is denoted by y¢ and evolves with the scalar hardening/softening
variable g, given in terms of the conjugate strain-like variable a? € [0, 00) by (3.17) for the
hardening/softening potential #%(a?). The appearance of all the components of the stress
o (not specific components o = Pe 54 only) in the damage surface (3.44) identifies the
associated damage space with the full space of symmetric tensors, that is,

Vi=S§. (3.45)

d — d

In this situation, we can choose e? = €? (and s¢ = 0% = ), with no need to introduce
the projections {P¢}™2, in (2.6) (or, in other words, they are the identity). Similarly, we

work with the global damage compliance D¢ = d? in this case.
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The damage evolution equations (3.13) read in this case

D" = v D%, (3.46)
at =44, (3.47)
for the elastic compliance D®. For the particular case (3.39) involving a constant D¢,

the damage evolution equations (3.46)-(3.47) can be easily integrated to arrive at the
expression

Dd=/ﬁdt=/dddtDe:adDe. (3.48)

The damage strains are easily obtained using (2.44) with the complementary function (3.6),
leading to

e?=D% =a? D% =a e, (3.49)
thus resulting in the relations
€€ = 1 (e—€P)=(1-d) (e —€P) (3.50)
(1+ a%) ’
d a? p P
& =1 (e—€P)=d (e —€P), (3.51)
after introducing the definition
a? d
d:= 0,1}. .
Tl € [0,1] (3.52)
In this notation, we can write
d
D= " p¢ )
T4 (3.53)

for the damage secant compliance D?. The stress is given by
oc=C*=(1-d)Ce—¢€?)=(1-d)7 for &:=C%e—¢gP), (3.54)

with C® = D . Relations (3.50) and (3.54) define the classical concepts of effective
strains and stresses, respectively, in the isotropic case, as it can be found in the classical
literature on the subject (see the complete account in KACHANOV [1986]). Equation (3.54)
is a particular case of the general anisotropic relation (3.41), with M = (1 — d)L.

The damage tangent moduli C{, given by (3.30)-(3.31) reads in this case

i. Damaged unloading:
d (1 _ d) e
Cl'u, = d C ) (355)




F. Armero & S. Oller 28

ii. Damage loading:

1—-d 1
( ) Cc - cTRF|, (3.56)

Ci, =
“ d &:Dec‘r+(—{<"—d3’§

Finally, the total tangent moduli
& =CePd g, (3.57)

given by the general formula (2.73), reads in this case of a single isotropic damage mecha-
nism

i. Damaged unloading:

C% = (1—-d) C®, (3.58)
ii. Damage loading:
1
C*=(1-d) |C? - FRF| , 3.59
U | o gg 7o (3:59)

for the isotropic hardening/softening modulus K¢ defined in (3.32),. The case of elastic
damage is recovered when C®? = C°®.

3.2.3. Smeared crack models

The modeling of cracking in concrete has been often formulated in the framework of
the so-called smeared crack models, especially in the context of finite element analyses.
Representative early applications of this approach can be found in RASHID [1968], BAZANT
& CEDOLIN [1979] and ROTS et al [1985], among many others. Despite its popularity, the
lack of a sound thermodynamic framework as opposed to continuum damage models has,
perhaps, made this approach less attractive from the theoretical point of view. We show
in this section that smeared crack models fit perfectly in the thermodynamic framework of
continuum damage models encompassed by the simple generic quadratic model presented
above.

For a given a nucleation criterion (say Rankine’s maximum stress criterion for brittle
materials), a single crack can be characterized by its normal direction, the unit vector
n. The cohesive opening/closing of the crack is then assumed controlled by the traction
vector associate to n, that is,

T=0on. (3.60)

Let {m; = n,...,m,,_} denote an orthonormal Cartesian system in a general ngim
dimensional setting (so m; - m; = &;; for 4,5 = 1,n4im). Denoting the corresponding
components of the traction vector T by

s8=T,:=my-T for a=1,ngim, (3.61)
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the general damage surface (3.23) in terms of the reduced damage stresses s corresponds
in this case to a damage surface in terms of the traction vector on the crack. These
considerations identify the damage space V¢ for the damage mechanism associated to a
single crack. Namely, the projection matrices into this space are given by

Pi=3 (Ma®n+n®m,) for a=1,ngm, (3.62)

(so P4 = n®mn, in particular). The orthogonality relation (2.5) can be easily verified. The
damage strains are then constructed by (2.4) in terms of the so-called crack strains e<,
with ng = ngim in this case.

The damage evolution equation (3.26) reads in this case

-d
d =7vNya, (3.63)

for the reduced crack compliance d* € R™¢im>"dim 4 rank two (not four) tensor in this case,
with Ny given by (3.13) or (3.22), in terms of a damage surface involving the components
of the traction vector T. We refer to KROPLIN & WEIHE [1997], among many others, for
the determination of such damage surfaces for the modeling of cracking in concrete.

Remark 3.4. The inviscid smeared crack models considered in this section in combi-
nation of strain softening are known to lead to fundamental difficulties, the well-known
pathological mesh dependence of the resulting finite element solutions in particular. To
avoid these inconsistencies, we have presented in ARMERO [1997a,b] an alternative for-
mulation of this type of anisotropic damage models in the context of the so-called strong
discontinuities. This approach considers the limit solutions with a discontinuous displace-
ment field; see e.g. SIMO et al [1993], and ARMERO & GARIKIPATI [1996]. More recently,
we have presented in ARMERO [1997a,99] a multi-scale framework for the introduction of
these solutions, or better the corresponding localized dissipative mechanisms, in the large
scale problem of the local continuum. The corresponding strains in the small scale (a local
neighborhood of a point x) are given

en=E,+(®n)° or, , (3.64)

for the Dirac delta function ér, associated to the discontinuity surface I';, with unit normal
n, with a regular part of the local strain €, (determining the stress o) and a jump displace-
ment field £ across I'y. The decomposition (3.64) fits along the developments presented in
this section with €® = £, and €% = P e with P2 defined as in (3.63) and e = &, 6r,
(a = 1,n4im). The damage potential W4(-) is given in this case by

Wwi(eh 1% = We(¢; %) or, , (3.65)
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for a set of localized internal variables Z¢ = ¢ §. . Taking the differential of (3.65) we
obtain

owd
d
- 7d r7d - s = )
it = oy + o aFen) — % (3.66)
8& T d T
N~ oL SN——" d 8Wd
ed zd Q ==,
o714

being both regular distributions. For the quadratic model (3.1), the relation (3.65) leads

~d ~ . . s .
tod? =d 6&p, and o = & o, with the secant relation (3.8) and the constitutive relation
(3.10) reading in this case

OH?
d d
E=ds and g = ~ 554 (3.67)

for a localized softening potential H%(&%). The dissipation (3.11) is then given by

2d .
D= [L(s?®s?):d +q? ] or, (3.68)

~~

D
reflecting its localized nature. The damage evolution equations (3.26) read now

d =5 N a Gtz
=7 Ngd an at =7 el (3.69)

for Nya defined as in (3.13) or (3.22), and a localized damage consistency parameter local-
ized on I, (with y? = 5% 8 ), satisfying similarly the Kuhn-Tucker loading-unloading con-
ditions (2.28) and consistency conditions (2.29). The damage surfaces ¢¢ are defined as con-
sidered above for smeared crack models, but now resulting directly the stress-displacement

~d
(3.67); relations, with associated compliance d . These relations are directly introduced
in the finite element solutions through a local enhancement of the finite elements; we refer
to the aforementioned references for complete details. O

4. Concluding Remarks

We have presented in this first paper a general framework for the formulation of contin-
uum damage models in the infinitesimal range. This framework is based on the kinematic
assumption of the strains decomposed in elastic, plastic and damage parts, similar to the
elastoplastic decompositions of the strains in plasticity models. The inclusion in this as-
sumption of a general thermodynamic framework describing the response of the material
leads then to a complete characterization of the damage in the material. Most notably,
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these considerations allow for a complete and independent characterization of the damage
mechanisms, in contrast with more traditional approaches found in the literature based
on the effective stress concept through the evolution of the so-called “damage tensors”.
The resulting formulation leads then to a very modular treatment of the damage effects
in solids, requiring only the physically motivated modeling of the strain/stress response
associated to the damage mechanism independently of the overall response of the solid.
In addition, we have also shown that classical models, from isotropic damage models to
smeared crack models, fit in the proposed formulation, thus giving a must needed unified
framework to these existing approaches.

In conclusion, this work has identified a framework leading to a physically motivated
modeling of plastic damage in materials with an efficient numerical treatment. Even though
the concept of damage strain as used herein can be found in the literature as noted in the
introduction, most notably through the so-called “crack strains” in the modeling of damage
in concrete, their use in the formulation of continuum damage models seem not to be widely
spread. We believe that the highly modular structure of the proposed formulation clearly
justifies its consideration, even in the case when the formulation reduces to existing models.
This is especially the case when developing numerical schemes for the integration of the
resulting constitutive models, as we present in Part II of this work in combination with a
simple plastic damage model of porous metals. It is our intend to continue this work with
the consideration of additional couplings between the different inelastic mechanisms (see
Remark 3.3), as well as the extension of these ideas to the finite deformation range.
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