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ABSTRACT OF THE DISSERTATION

Localization for the Random XXZ Spin-J Chain
and

Embedded Eigenvalues in Defective Periodic Quantum Graphs

By

Lee Fisher

Doctor of Philosophy in Mathematics

University of California, Irvine, 2023

Professor Abel Klein, Co-Chair
Professor Stephen Shipman, Co-Chair

This thesis is composed of two distinct projects. Although both projects are devoted to

studying situations in which the eigenfunctions of certain Schrödinger operators exhibit in-

teresting or exceptional behavior, the nature of the results as well as the tools used in each of

the parts are drastically different. The first portion is dedicated to a particular spin-system

model in which a type of many body localization is proved. We use the Multiscale Analysis

to show that localization in higher spin systems occurs within a certain interval near the bot-

tom of the spectrum. The second project demonstrates that a carefully constructed defect in

specific kinds of periodic media, most notably multilayer quantum-graph graphene, can cre-

ate an eigenvalue embedded in the continuous spectrum with a corresponding eigenfunction

that has exceptional properties.
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Chapter 1

Localization for the Higher Spin

Random XXZ Chain

1.1 Introduction

The phenomenon of Anderson Localization for a single particle is well studied, see, e.g.,

[2, 3, 4, 5, 19, 24, 30, 31, 40, 44, 45, 46, 47, 50, 80]. The situation is different in the case

where the number of particles is large, even growing in conjunction with the infinite volume

limit. Due to a lack of spatial degrees of freedom, spin systems are a relatively simple

setting to study many body localization phenomena. In particular, the random Heisenberg

XXZ spin-1/2 model has been the subject of rigorous mathematical analysis. For this model

localization in the droplet spectrum (the lowest spectral band above the vacuum energy) is

proven in [14, 35] and consequences are studied in [36, 34]. Very recently, localization has

been proven in any given energy interval at the bottom of the spectrum [32]. All these proofs

of localization are based on the fractional moment method (FMM).

Here we prove localization for the random Heisenberg XXZ model for the general spin-J case.
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Our proof is based on a multiscale analysis (MSA), extending the method developed in [33]

for the spin-1/2 model.

There are differences between the spin-J case for J ≥ 1 and the spin-1/2 case. A crucial

difference between the spin-1/2 and the spin-J cases is that the interaction potential for

the spin-J case is more complex. Unlike in the spin-1/2 case, the interaction potential does

not simply count the number of clusters (connected components) of a spin configuration.

However the notion of a droplet band still makes sense: if the particle number is sufficiently

large (N ≥ 4J), then states corresponding to energies in the droplet band are supported

around single cluster configurations. This feature makes it amenable to techniques similar

to ones developed in [33] to prove localization in the spin-1/2 case.

On the other hand, the situation is different for small particle numbers, which adds an

additional technical difficulty. In this case, even for energies in the droplet band, states can

be supported around multi-cluster configurations. Although the lower and higher particle

number regimes have different features, it is possible to treat them separately. For the lower

particle number case, the localization results follow from methods developed for many-

particles Schrödinger operators in [23, 6, 51]. These publications treat the case of a fixed

number of particles, and their methods apply to our lower particle number setting. The

fixed particle number results can be used to cover the finitely many cases where N < 4J –

however they cannot be extended to prove localization that holds for all particle numbers N .

The parameters have to be chosen large enough depending on N , where how large diverges

with N .

We will proceed as follows: In Sections 1.2, 1.3, and 1.4 we cover prerequisite material for

stating the main results. In Section 1.2 we introduce the XXZ Quantum spin-J model, as well

as fundamental objects such as particle number, subintervals of Z, and projection operators.

In Section 1.3 we show that the XXZ-Hamiltonian is unitarily equivalent to a direct sum

of Schrödinger operators on a particular graph; this equivalence enables us to apply some

2



well known tools to study the XXZ model. In Section 1.4 we cover some essential operator

bounds and their consequences for the spectral properties of the XXZ model, and describe

the properties of energy minimizing configurations.

In Section 1.5 we outline the main results in the case where N ≥ 4J . Our two main results

are Theorem 1.5.2 and Theorem 1.5.4, which respectively prove eigenfunction and resolvent

localization with exponentially high probabilty. These can be viewed as an extension of

results from [36, 33] for the spin-1/2 model to the spin-J case. From Sections 1.6 to 1.9 we

build up towards a proof of Theorem 1.5.4, which is presented in Section 1.10. In Section

1.11 we apply the already developed tools to give a proof of Theorem 1.5.2 as well.

In Sections 1.6 and 1.7 we detail how some common tools for the Multiscale Analysis can be

adapted to the XXZ setting. In Section 1.6 we give a proof of the Combes-Thomas estimate

that proceeds along an argument similar to the one found in [35]. We use the Combes-

Thomas to prove Lemma 1.6.6, which is crucial for the Multiscale Analysis. In Section 1.7

we cover Wegner and Large Deviation estimates, these results allow us to easily handle the

cases where N is large enough compared to the size of the subsystem.

We dedicate Sections 1.8 through 1.10 directly to the Multiscale Analysis. In Section 1.8

we prove the starting condition, that is, that there is a base case for which the hypothesis

of Theorem 1.5.4 is satisfied. In Section 1.9 we cover buffered intervals, one more essential

concept for the induction process of the MSA. Finally the proof of Theorem 1.5.4 is given in

Section 1.10, using the MSA.

The case of low particle numbers (N < 4J) is treated in Section 1.12. Theorem 1.12.22 is

the analog to Theorem 1.5.4 for low particle numbers.
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1.2 The XXZ Quantum Spin-J model

Let J ∈ 1
2
N = {1/2, 1, 3/2, . . . } and let Λ be a finite subgraph of Z. We let HΛ be the

Hilbert space
⊗

x∈Λ C2J+1. Now we introduce the matrix

S3 = diag(J, J − 1, . . . ,−J + 1,−J) (1.2.1)

Let ei be a basis for C2J+1, where i = {0, . . . , 2J}. Then we have that S3ei = (J − i)ei. The

spin raising and spin lowering operators are defined by their action on the basis vectors ei.

S+ei :=


√
i(2J + 1)− i2 ei−1 if i > 0

0 if i = 0

(1.2.2)

S−ei :=


√

2J + i(2J − 1)− i2 ei+1 if i < 2J

0 if i = 2J

(1.2.3)

Here, J is the highest spin and −J is the lowest spin. In what follows, we will however inter-

pret e0 as the vacuum and e2J as a slot being occupied by 2J particles. Other foundational

objects are the matrices:

S1 := 1
2

(
S+ + S−) , (1.2.4)

S2 := 1
2i

(
S+ − S−) . (1.2.5)

Let Λ′ ⊂ Λ. Then, if A is an operator acting on the tensor product HΛ′ , we extend A to

an operator on HΛ, AΛ′ , where AΛ′ acts as the identity on the factors in the tensor product

corresponding to the elements of Λ \ Λ′. Next, suppose that {x, x + 1} ⊂ Λ and introduce

4



the two-site Hamiltonian

hx,x+1 = J2 − 1

∆

(
S1
xS

1
x+1 + S2

xS
2
x+1

)
− S3

xS
3
x+1 (1.2.6)

= J2 − 1

2∆

(
S+
x S

−
x+1 + S−

x S
+
x+1

)
− S3

xS
3
x+1.

Here, ∆ is called the anisotropy parameter and in what follows, we will assume ∆ > 2J .

Another important object is the particle number operator

N = J − S3 = diag(0, 1, . . . , 2J). (1.2.7)

Observe that {ei}2Ji=0 is an eigenbasis for N with N ei = i · ei. If x is a vertex in Λ, then we

say that the particle number operator at x, Nx, is the operator which acts as N on the site

x and as the identity at all other factors in the tensor product.

Remark 1.2.1. When speaking about any subgraph of Z, say Λ, we will use #(Λ) to mean

the cardinality of Λ and we will use |Λ| to mean the length of Λ as measured on the real line.

If Λ is a finite subgraph of Z, we then define the total particle number operator NΛ as

NΛ :=
∑

x∈V(Λ)

Nx , (1.2.8)

Here V(Λ) denotes the vertex set of Λ. The eigenvalues σ(NΛ) = {0, 1, . . . , 2J#(Λ)} of NΛ

are consequently interpreted as the total number of particles occupying the vertices of Λ.

We introduce the operator

h̃x,x+1 := hx,x+1 − J(Nx +Nx+1) = −NxNx+1 −
1

2∆

(
S+
x S

−
x+1 + S−

x S
+
x+1

)
. (1.2.9)

The second equality can be directly verified by checking it on the basis elements of the tensor

product C2J+1 ⊗C2J+1. Now, let EΛ = {{x, x+ 1} ⊂ Λ} be the set of edges when viewing Λ

5



as a graph. We introduce the XXZ Hamiltonian HΛ on the graph Λ,

HΛ = H̃Λ + 2JNΛ + λVΛ,ω (1.2.10)

H̃Λ =
∑

{x,x+1}∈EΛ

h̃x,x+1 (1.2.11)

VΛ,ω =
∑
x∈Λ

ωxNx . (1.2.12)

Here, ωx are independently and identically distributed random variables, whose common

probability distribution µ has {0, 1} ⊂ suppµ ⊂ [0, 1] and is Hölder continuous of order

α ∈ (0, 1]:

sup
a∈R

µ{[a, a+ t]} ≤ Ktα for all t ∈ [0, 1], (1.2.13)

where K is a constant.

Definition 1.2.2. Let i ∈ Z and let p ∈ {0, 1, 2, . . . }. We then define the interval with

radius p centered at i, Λp(i) = {j ∈ Z : |i− j| ≤ p}.

1.2.1 Projections and Identities

Given the subset Λ, we define orthogonal projections P±
Λ on HΛ as follows:

P+
Λ :=

⊗
x∈Λ

πe0(x) , (1.2.14)

where πe0(x) is the orthogonal projection onto ker(Nx). We interpret P+
Λ as the orthogonal

projection onto the state where no particles are present in Λ (vacuum). We also define

P−
Λ := 1− P+

Λ (1.2.15)

6



This is a projection onto the space of configurations where there is at least one particle in

Λ. Next, we summarize some useful identities involving these projections.

Proposition 1.2.3. Suppose {k, k + 1} ∈ EΛ:

h̃k,k+1P
+
{k,k+1} = P+

{k,k+1}h̃k,k+1 = 0 (1.2.16)

h̃k,k+1P
−
{k,k+1} = P−

{k,k+1}h̃k,k+1 = h̃k,k+1 (1.2.17)

P+
{k}h̃k,k+1P

+
{k} = P+

{k+1}h̃k,k+1P
+
{k+1} = 0 (1.2.18)

These identities rest on the observation that P+
{k,k+1} is a projection onto the space of config-

urations where there are no particles at sites k and k+1, and likewise P−
{k,k+1} is a projection

onto the space of configurations where there is at least one particle at site k or site k + 1.

For any i ∈ Λ, we also have the following useful identity for projections:

P−
Λ =

∞∑
p=−1

P+
Λp(i)∩ΛP

−
{i+p+1,i−p−1}∩Λ. (1.2.19)

Given q ∈ N, multiplying both sides by P+
Λq(i)∩Λ we get

P+
Λq(i)∩ΛP

−
Λ =

∞∑
p=q

P+
Λp(i)∩ΛP

−
{i+p+1,i−p−1}∩Λ. (1.2.20)

In order to read the above equations, we define that Λ−1(p) = ∅ and P+
∅ = I.
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1.3 Equivalence to a Schrödinger operator.

1.3.1 Operators on Subintervals

Suppose that Λ and K are subintervals of Z and that K ⊊ Λ. We define the edge boundary

of K relative to Λ by

∂ΛK = {{u, v} ∈ Z2, u ∈ Λ \K, v ∈ K, |u− v| = 1}. (1.3.1)

We also define a few more related objects:

∂ΛK =
⋃

{u,v}∈∂ΛK

{u, v}, the vertex set of ∂ΛK. (1.3.2)

∂ZK = ∂K (1.3.3)

∂inK = ∂ΛK ∩K (1.3.4)

Λ \ ∂K = G ⊂ Z a graph where V(G) = V(Λ), and EG = EΛ \ E∂ΛK (1.3.5)

Λ \K = G ⊂ Z a graph where V(G) = V(Λ) \ V(K), and EG = EΛ \ EK . (1.3.6)

Notice that #(∂ΛK) = 2 if Λ and K share an endpoint and #(∂ΛK) = 4 if they do not. We

define the edge connecting operator:

ΓΛ\∂K =
∑

{x,x+1}∈∂ΛK

h̃x,x+1. (1.3.7)

Notice in particular the identity,

HΛ\∂K = HΛ − ΓΛ\∂K = HK +HΛ\K which acts on HΛ = HK ⊗HΛ\K . (1.3.8)
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We define a few more essential spaces and operators,

H′
Λ = P−

Λ HΛ = Ω⊥
Λ (1.3.9)

H ′
Λ = P−

ΛH = HP−
Λ which acts on H′

Λ (1.3.10)

H ′
Λ\∂K = H ′

K +HΛ\K which acts on P−
KHΛ = H′

K ⊗HΛ\K . (1.3.11)

1.3.2 Spaces of Configurations

Fix Λ a finite subinterval of Z. It can be verified that the XXZ Hamiltonian HΛ preserves

the total particle number, i.e. [HΛ,NΛ] = 0. We thus decompose HΛ =
⊕2J#(Λ)

N=0 H(N)
Λ , where

H(N)
Λ denotes the eigenspace of NΛ corresponding to the eigenvalue N – the space of all

N -particle configurations in Λ with the restriction that no site can be occupied by more

than 2J particles. We also define H
(N)
Λ := HΛ ↾H(N)

Λ
. Let,

M
(N)
Λ :=

{
m : Λ → {0, 1, . . . , 2J} :

∑
x∈Λ

m(x) = N

}
, (1.3.12)

be the set of all functions from Λ to {0, 1, . . . , 2J} whose values add up toN . For convenience,

we also define MΛ :=
⋃2J#(Λ)
N=0 M

(N)
Λ – the set of all functions from Λ to {0, 1, . . . , 2J}.

Furthermore we define the support of m ∈ MΛ,

suppm = {xi ∈ Λ such that m(xi) ≥ 1}. (1.3.13)

If we can write m = m1 + · · · + mn where for each i ̸= j, suppmi is connected and

dist(suppmi, suppmj) ≥ 2, then m is an n cluster configuration with the mi being the

clusters of m.
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There are other important subsets of M
(N)
Λ . Suppose that Φ ⊂ Λ ⊂ Z then we define,

S
(N)
Φ = {m ∈ M

(N)
Λ such that m(xi) ≥ 1 for some xi ∈ Φ}. (1.3.14)

Notice in particular that,

m ∈ S
(N)
Φ ⇐⇒ Φ ∩ suppm ̸= ∅. (1.3.15)

For any m ∈ MΛ, we then define

ψm :=
⊗
x∈Λ

em(x) . (1.3.16)

This means that for any x ∈ Λ we get Nxψm = m(x)ψm. In other words, ψm describes a

configuration of particles, where at each site x ∈ Λ, there are exactly m(x) particles. Since

NΛψm =

(∑
x∈Λ

m(x)

)
ψm , (1.3.17)

it immediately follows that

H(N)
Λ = span

{
ψm : m ∈ M

(N)
Λ

}
. (1.3.18)

Now, consider the Hilbert space ℓ2(M
(N)
Λ ) =

{
f : M

(N)
Λ → C

}
equipped with inner product

⟨f, g⟩ =
∑

m∈M(N)
Λ
f(m)g(m) and let {ϕm}

m∈M(N)
Λ

denote the canonical basis of ℓ2(M
(N)
Λ ),

i.e.

ϕm(n) =


1 if m = n

0 else.

(1.3.19)
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The Hilbert spaces H(N)
Λ and ℓ2(M

(N)
Λ ) are unitarily equivalent via

U
(N)
Λ : H(N)

Λ → ℓ2(M
(N)
Λ ), U

(N)
Λ ψm = ϕm . (1.3.20)

One also naturally identifies ℓ2(MΛ) =
⊕2J#(Λ)

N=0 ℓ2(M
(N)
Λ ). For any f ∈ ℓ2(M

(N)
Λ ), let us now

define the adjacency operator A
(N)
Λ , given by

(A
(N)
Λ f)(m) =

∑
n:n∼m

w(m,n)f(n) , (1.3.21)

where for two configurations m,n ∈ M
(N)
Λ to be adjacent (denoted by m ∼ n) is defined as

follows:

∃{x0, x1} ∈ EΛ such that m(x0) = n(x0) + 1,

m(x1) = n(x1)− 1,

and m(x) = n(x) when x ∈ Λ \ {x0, x1}.

This definition should be interpreted in the following way: two configurations m,n of N

particles distributed over L sites (with the requirement that no site be occupied by more

than 2J particles) are adjacent if one configuration can be obtained by moving a single

particle along an edge to the other configuration.

For m ∼ n, the weight function w(m,n) = w(n,m) in (1.3.21) is given by

w(m,n) =
∏

x:m(x)̸=n(x)

(J(m(x) + n(x) + 1)−m(x)n(x))1/2 , (1.3.22)

Moreover, for any m,n ∈ M
(N)
Λ , we define their distance d

(N)
Λ (m,n) to be the length of

the shortest path connecting m and n, which we will refer to as graph distance. If there is

no path connecting the configurations m and n, we adapt the convention d
(N)
Λ (m,n) = ∞.
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Likewise we use dΛ(m,n) for configurations on MΛ. Also notice that if m and n have

different particle numbers then dΛ(m,n) = ∞, and otherwise d
(N)
Λ (m,n) = dΛ(m,n). Hence

we will omit the superscript and simply use, dΛ(m,n) as the distance between configurations

going forward.

Next, we define the interaction potential W(N)
Λ , a multiplication operator on ℓ2(M

(N)
Λ ), to be

given by

(W(N)
Λ f)(m) = W(N)

Λ (m)f(m) =

2JN −
∑

{i,i+1}∈EΛ

m(i)m(i+ 1)

 f(m) . (1.3.23)

By a slight abuse of notation, we also use the symbol V
(N)
Λ,ω to denote the random potential

acting as a multiplication operator on ℓ2(M
(N)
Λ ), i.e.

(V
(N)
Λ,ω f)(m) = V

(N)
Λ,ω (m)f(m) =

(∑
x∈Λ

m(x)ωx

)
f(m) . (1.3.24)

In [42, Prop. 2.1], it was shown that the Hamiltonian H
(N)
Λ is unitarily equivalent to a

many–body Schrödinger-type operator Ĥ
(N)
Λ :

Proposition 1.3.1. We have the following unitary equivalence:

U
(N)
Λ H

(N)
Λ

(
U

(N)
Λ

)∗
= − 1

2∆
A

(N)
Λ +W(N)

Λ + λV
(N)
Λ,ω =: Ĥ

(N)
Λ . (1.3.25)

Remark 1.3.2. While in the statement of the proposition, we introduced the symbol Ĥ
(N)
Λ for

the Schrödinger-type operator acting on ℓ2(M
(N)
Λ ), in what follows, we will abuse notation

and just use the symbol H
(N)
Λ instead.

Definition 1.3.3. We define

M≥4J
Λ :=

{
m : Λ → {0, 1, . . . , 2J} :

∑
x∈Λ

m(x) ≥ 4J

}
. (1.3.26)
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This is the set of all mass functions with at least 4J particles. Likewise define H≥4J
Λ to be

the restriction of HΛ onto ℓ2(M≥4J
Λ ).

Remark 1.3.4. For the special cases N = 0 and N = 2J#(Λ), note that

dim(ℓ2(M
(0)
Λ )) = dim(ℓ2(M

(2J#(Λ))
Λ )) = 1 .

On these one-dimensional spaces, the operators H
(0)
Λ and H

(2J#(Λ))
Λ are just given by H

(0)
Λ = 0

and H
(2J#(Λ))
Λ = 4J2 + 2J

∑
x∈Λ ωx.

1.4 Bounds and Minimizers

Let us also introduce the operators

AΛ :=

2J#(Λ)⊕
N=0

A
(N)
Λ (1.4.1)

with WΛ and VΛ,ω being defined analogously.

Definition 1.4.1. The Hamiltonian without random potential is given by

H0,Λ = − 1
2∆
AΛ +WΛ.

Lemma 1.4.2. We have the bound:

−4JWΛ ≤ AΛ ≤ 4JWΛ (1.4.2)

and consequently, we get

(
1− 2J

∆

)
WΛ ≤ H0,Λ ≤

(
1 + 2J

∆

)
WΛ . (1.4.3)
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Proof. In [67], the following bound was shown

−4J(J2 − S3
i S

3
i+1) ≤ S+

i S
−
i+1 + S−

i S
+
i+1 ≤ 4J(J2 − S3

i S
3
i+1) (1.4.4)

Summing over the edges in Λ yields the desired result.

Lemma 1.4.3. For every i ∈ Z,

∥h̃i,i+1∥ = 4J2. (1.4.5)

Proof. First we will prove that ∥h̃i,i+1∥ ≤ 4J2. Starting with the definition of h̃i,i+1 we have,

h̃i,i+1 = −NiNi+1 − 1
2∆

(S+
i S

−
i+1 + S−

i S
+
i+1) (1.4.6)

From the relative bound in Lemma 1.4.2.

−NiNi+1 − 1
2∆

4J(J2 − S3
i S

3
i+1) ≤ h̃i,i+1 ≤ −NiNi+1 +

1
2∆

4J(J2 − S3
i S

3
i+1) (1.4.7)

We will use the fact that Ni = J − S3
i to proceed. First we prove the lower bound:

h̃i,i+1 ≥ −NiNi+1 − 2J
∆
(J2 − (J −Ni)(J −Ni+1)) (1.4.8)

= −
(
1− 2J

∆

)
NiNi+1 − 2J2

∆
(Ni +Ni+1)

≥ −
(
1− 2J

∆

)
4J2 − 2J

∆
(4J) = −4J2.

Then the upper bound,

h̃i,i+1 ≤ −NiNi+1 +
2J
∆
(JNi + JNi+1 −NiNi+1)) (1.4.9)

= −
(
1 + 2J

∆

)
NiNi+1 +

2J2

∆
(Ni +Ni+1)

≤ 0 + 2J2

∆
(4J) = 8J3

∆
< 4J2.
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Consider the unit vector v = e2J,i⊗e2J,i+1, it is straightforward to show that h̃i,i+1v = −4J2v,

so we see the bound is attained.

For brevity, we introduce

Qk = 4J2 + 2Jk. (1.4.10)

For any k ∈ N we define M
(N)
Λ,k to be the set of configurations for which the potential W(N)

Λ

is bounded by Qk − 1, i.e.

M
(N)
Λ,k := {m ∈ M

(N)
Λ : W(N)

Λ (m) ≤ Qk − 1}. (1.4.11)

Moreover, we define MΛ,k =
⋃
N M

(N)
Λ,k as well as PΛ,k and P

(N)
Λ,k to be the orthogonal projec-

tions onto ℓ2(MΛ,k) and ℓ
2(M

(N)
Λ,k ), respectively. Let PΛ,k := I − PΛ,k and P

(N)

Λ,k := I − P
(N)
Λ,k .

Finally, if Φ ⊂ M
(N)
Λ then χΦ is the characteristic function of Φ, it is also the orthogonal

projection onto ℓ2(Φ). Using Lemma 1.4.2, we also note that

P
(N)

Λ,kH
(N)
Λ P

(N)

Λ,k = P
(N)

Λ,k

(
− 1

2∆
A

(N)
Λ +W(N)

Λ + λV
(N)
Λ,ω

)
P

(N)

Λ,k ≥
(
1− 2J

∆

)
W(N)

Λ P
(N)

Λ,k . (1.4.12)

Proposition 1.4.4. Let N ∈ N and let ΛL be a finite interval with 2L + 1 ≥ ⌈ N
2J
⌉. We

define W(N)
Λ,0 := min{W(N)

Λ (m) : m ∈ M
(N)
Λ }. Then

W(N)
0 := W(N)

Λ,0 =


2JN − ⌊N2

4
⌋ N < 4J

4J2 N ≥ 4J

. (1.4.13)

Moreover, if N ≥ 4J then, – up to overall translations – the minimizers of W(N)
Λ are given
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by

m
(N)
j (x) =


j if x = 1

2J if x = 2, . . . , r

2J − j if x = r + 1

(1.4.14)

for N = 2Jr, 2 ≤ r ≤ 2L, j = 0, . . . , 2J − 1 and

m
(N)
j (x) =


j if x = 1

2J if x = 2, . . . , 1 + ⌊ N
2J
⌋

N(mod 2J)− j if x = 2 + ⌊ N
2J
⌋

(1.4.15)

if N is not a multiple of 2J , j = 0, . . . , N(mod 2J)− 1.

Proposition 1.4.4, for the case where N ≥ 4J , is proved in [43, Prop. 2.5]. The proof for the

case where N < 4J is below.

Proof. We will prove that the minimizer has the desired form in steps. First we will show

that the minimizer has one cluster. Consider a mass function m with two or more clusters.

Since W has a translation symmetry, then without loss of generality we will take the m(x)

to be supported so that the left most point in the left most gap is at the site x = 1 (so m(x)

is supported at 0). We define n to be the smallest positive number for m(x) > 0. Let m′ be

the function where the portion of m that lies to the right of 0 is translated to remove the

first gap. In particular this means that for x ≥ 1, m′(x) = m(x+ n− 1). Then

W(m) = 2JN −
∑
i<0

m(i)m(i+ 1)−
∑
i≥n

m(i)m(i+ 1) (1.4.16)

> 2JN −
∑
i<0

m(i)m(i+ 1)−m(0)m(n)−
∑
i≥n

m(i)m(i+ 1) = W(m′).
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We have shown that, for any N , configurations with two or more clusters are not minimal.

Now let supp (m) = [0, . . . , n], we will show that there is a minimal configuration with n = 2,

and that minimal configurations never have n ≥ 4. Suppose n ≥ 3, since N < 4J we can

construct a configuration with tighter support m′ by redistributing the mass of m(0) onto

m(1) and m(2) ; notice that again since N < 4J , and m(x) ≤ 2J we will never need to

redistribute onto m(3). Let m′(x) be a such modified configuration. We have that:

W(m)−W(m′) = −m(3)m(2)−m(2)m(1)−m(1)m(0) +m(3)m′(2) +m′(2)m′(1)

= m(3)(m′(2)−m(2)) +m′(2)(m′(1)−m(1))−m(1)(m′(1)−m(1))

= (I) + (II)− (III) (1.4.17)

We used the fact that m(0) = m′(2)−m(2) +m′(1)−m(1). Now we want to show that as

long as m(2),m(1),m(0) > 0 we can choose m′ such that (I) + (II) − (III) ≥ 0. We will

redistribute so that m′(2) is as large as possible. There are three possibilities:

� 2J ≥ m′(2) > m(2) and m′(1) = m(1). Here we have, (II) = (III) = 0. If m(3) > 0

then (I) > 0 and we have shown that if m is supported on at least 4 points then m′ is

supported a set one point smaller and has strictly smaller potential. If m(3) = 0 then

m is supported on 3 points and m′ is supported on 2 points with no change in W .

� 2J = m′(2) >m(2) and m′(1) >m(1). In this case, we have:

W(m)−W(m′) = m(3)(2J −m(2)) + (2J −m(1))(m′(1)−m(1)) (1.4.18)

= (A) + (B)

It is clear that since the maximum occupation number is 2J , and N ≤ 4J , (A) and

(B) are both nonnegative.
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� 2J = m′(2) = m(2) and m′(1) >m(1). In this case we have (I) = 0 and then

W(m)−W(m′) = (2J −m(1))(m′(1)−m(1))

Since m(1) < 2J both factors are positive which yields the desired conclusion.

We have shown that minimal configurations can be taken to be supported on two points.

Applying some simple quadratic optimization we get,

W(m) = 2JN −m(0)m(1) ≥ 2JN −
⌊
N

2

⌋⌈
N

2

⌉
= 2JN −

⌊
N2

4

⌋
. (1.4.19)

Proposition 1.4.4 with (1.4.12) shows that for every N ≥ 4J , we have

H
(N)
Λ,ω ≥ 4J2

(
1− 2J

∆

)
. (1.4.20)

Theorem 1.4.5. (Minimal configurations with two or more clusters) Suppose that N ≥

4J and assume that m has two clusters, that is m = m1 + m2, and m1,m2 ̸= 0, and

dist(suppm1, suppm2) ≥ 2. Then, we have the following lower bound:

W(N)
Λ (m) ≥ inf

k,ℓ≥1
k+ℓ=N

(
W(k)

0 +W(ℓ)
0

)
≥ 4J2 + 2J = Q1. (1.4.21)

Proof. Let N ≥ 4J . If J = 1
2
the inequality (1.4.21) is trivially true. Therefore for the

rest of the proof we assume that J ≥ 1. Let m = m1 + m2 with with m1,m2 ̸= 0 and

dist(suppm1, suppm2) ≥ 2, and let N1 and N2 be the particle numbers of m1 and m2

respectively, and note that N1 +N2 = N .

Consider m1. It follows from (1.4.13) that W(m1) ≥ 2J for all N1 ∈ N and W(m1) = 4J2
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for N1 ≥ 4J − 1. The same is true for m2. If either N1 ≥ 4J − 1 or N2 ≥ 4J − 1 we have

W(m) = W(m1) +W(m2) ≥ 4J2 + 2J. (1.4.22)

If N1 ≤ 4J − 2 and N2 ≤ 4J − 2, using (1.4.13) and N = N1 +N2 ≥ 4J , we get

W(m) = W(m1) +W(m2) ≥ 2JN − N2
1

4
− N2

2

4
≥ JN +

2∑
i=1

(JNi − N2
i

4
) (1.4.23)

≥ 4J2 +
2∑
i=1

Ni(J − Ni

4
) ≥ 4J2 +

2∑
i=1

Ni(J − 4J−2
4

) = 4J2 +
2∑
i=1

Ni

2

= 4J2 + N
2
≥ 4J2 + 2J.

Remark 1.4.6. Note that the converse is not true when J ≥ 1. In fact, there are one-cluster

configurations with arbitrary large potential W(N)
Λ . Indeed, fix a value k ∈ N, let #(Λ) > k

and choose N = #(Λ). Defining the one cluster configuration m(i) = 1 for all i ∈ Λ, one

immediately sees that W(N)
Λ (m) = 2J#(Λ)−#(Λ) + 1 = (2J − 1)#(Λ) + 1 ≥ k.

Remark 1.4.7. Note that if N < 4J , then there are configurations m with two or more

clusters such that W(N)
Λ (m) ≤ 4J2 + 2J − 1. As a simple example, take any two-cluster

configuration with N = 2, for which we get W(N)
Λ (m) = 4J < 4J2+2J − 1 as long as J ≥ 1.

For any K ∈ {1, 2, . . . } and any δ ∈ (0, 1), this motivates the definition of k-cluster energy

bands Ik and Ik,δ:

Ik :=
[
4J2

(
1− 2J

∆

)
, (4J2 + 2Jk)

(
1− 2J

∆

))
(1.4.24)

Ik,δ :=
[
4J2

(
1− 2J

∆

)
, (4J2 + 2Jk − δ)

(
1− 2J

∆

)]
. (1.4.25)
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When considering other energy intervals we define,

I(E, θ) := [E − θ, E + θ]. (1.4.26)

Remark 1.4.8. From this point forward, if it is necessary to distinguish between different

particle numbers and different subintervals we will use the full decoration of W as W(N)
Λℓ

; but

otherwise we will always use the convention that W := W(N)
Λ .

Remark 1.4.9. We will occasionally use the following notation for the resolvent,

R(E) = (H − E)−1. (1.4.27)

Decorations may be added or omitted depending on the context, and in all cases decorations

on R(E) will correspond directly to decorations on H, for example R
(N)
Λ (E) = (H

(N)
Λ −E)−1.

1.5 Main Results

We introduce several fixed constants that will be used throughout the paper, ξ, ζ, β, τ, τ̃, κ ∈

(0, 1), and γ > 1. These constants satisfy the inequalities:

0 < ξ < ζ < β < 1
γ
< 1 < γ <

√
ζ
ξ
and max

{
γβ,

(γ − 1)β + 1

γ

}
< τ < τ̃ < 1. (1.5.1)

Note that,

0 < ξ < ξ2γ < ζ < β < τ
γ
< 1

γ
< τ < 1 < 1−β

τ−β < γ < τ
β
. (1.5.2)

We also say that ζ ′′, ζ ′ and, ζ1 are chosen and fixed constants such that ζ < ζ1 < ζ ′ < ζ ′′ < β.
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Notice that,

γ > 1−β
τ−β >

1−ζ
τ−ζ =⇒ ζ <

γτ − 1

γ − 1
, (1.5.3)

therefore we can select ζ∗ such that

ζ < ζ∗ <
γτ−1
τ−1

< 1. (1.5.4)

We will fix ∆0 > 2J , λ0 > 0 and δ ∈ (0, 1), and repeatedly invoke the hypothesis that the

parameters are such that the following equations are satisfied.

max

{
4J(4J2 + 2J)

µ̄

(
1− 2J

∆0

)
L−ζ′
0 , e−

1
6
Lβ
0

}
≤ λ0 (1.5.5)

e−L
β
0 <

δ

2

(
1− 2J

∆0

)
(1.5.6)

L−κ
0 <

1

3
log

(
1 +

δ(∆0 − 2J)

4J(4J2 + 2J)

)
(1.5.7)

Notice that ∆ ≥ ∆0, λ ≥ λ0, δ and L ≥ L0 also satisfy (1.5.5) through (1.5.7). The following

equation will also be required for the starting condition.

eL
ζ′′
0 ≤ ∆λ. (1.5.8)

Definition 1.5.1. For a given energy interval I ⊂ I1,δ andm > 0 we will say that an interval

ΛL ⊂ Z is (m, I)-localizing for H≥4J if an eigensystem {(φν , ν)}ν∈σ(H≥4J
ΛL

)
is (m, I)-localized,

that is, for all ν ∈ σ(H≥4J
ΛL

) ∩ I there is jν ∈ ΛL such that φν is (jν ,m)-localized:

∥P−
i φν∥ ≤ e−m|i−jν | for all i ∈ ΛL with |i− jν | ≥ Lτ . (1.5.9)
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We also define the following event,

Q(m,L, I, u) = {ΛL(u) is (m, I)− localizing for H≥4J}. (1.5.10)

Theorem 1.5.2. Fix ∆0 > 2J , λ0 > 0, and δ ∈ (0, 1). Let m0 satisfy,

L−κ
0 < m0 ≤ log

(
1 +

δ(∆0 − 2J)

4J(4J2 + 2J)

)
. (1.5.11)

Suppose ∆0, λ0, δ, and the scale L0 satisy (1.5.5)- (1.5.7).Further suppose that L0 is suf-

ficiently large, depending on λ0 and ∆0. Moreover, suppose that ∆ ≥ ∆0, and λ ≥ λ0 are

chosen satisfying (1.5.8). Then there exists a scale L = L(∆, δ, L0) such that for all L ≥ L

we have

P{Q(m0/4, L, I1,δ, u)} ≥ 1− e−L
ξ2 for all u ∈ Z. (1.5.12)

Moreover if ω ∈ Q(m0/4, L, I1,δ, u) and {φν , ν}ν∈σ(H≥4J
ΛL(u)

)
is an eigensystem for H≥4J

ΛL(u)
, then

∑
ν∈σ(HΛL(u))∩I1,δ

∥P−
i φν∥∥P−

j φν∥ ≤ e−
m0

8
|i−j| for all i, j ∈ ΛL(u) with |i− j| ≥ Lτ̃ . (1.5.13)

Definition 1.5.3. Given E ∈ R and m > 0, an interval ΛL is said to be (m,E)-regular if

m > L−κ (1.5.14)

dist(E, σ(H≥4J
ΛL

)) > e−L
β

(1.5.15)

∥P−
i (H

≥4J
ΛL

− E)−1P+
ΛR(i)∩ΛL

∥ ≤ e−m(R+1) for all i ∈ ΛL and R > Lτ . (1.5.16)
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We also introduce the event

R(m,L, I, u, v) = {E ∈ I =⇒ ΛL(u) or ΛL(v) is (m,E)− regular.} (1.5.17)

Theorem 1.5.4. Fix ∆0 > 2J , λ0 > 0, and δ ∈ (0, 1). Suppose that ∆0, λ0, δ, and the

scale L0 satisy (1.5.5)- (1.5.7); that L0 is sufficiently large, depending on λ0 and ∆0; and

that ∆ ≥ ∆0, and λ ≥ λ0 are chosen satisfying (1.5.8). Then for all E ∈ I1,δ and L ≥ Lγ0

we have

P{R(m0/4, L, I(E, θ)∩ I1,δ, u, v)} ≥ 1− e−L
ξ

for all u, v ∈ Z with |u− v| > 2L. (1.5.18)

Here m0 is as in (1.5.11), and θ = e−3L0. It follows that there exists a scale L = L(∆, δ, L0)

such that for all L ≥ L we have

P{R(m0

4
, L, I1,δ, u, v)} ≥ 1− e−L

ξ1 for all u, v ∈ Z with |u− v| > 2L. (1.5.19)

Notice that Theorem 1.5.2 and Theorem 1.5.4 are both statements about the operator H≥4J .

From looking at (1.4.13) and (1.4.2) we can see that the properties and, in particular the

spectra, of H≥4J and H<4J are not the same. For everything until Section 1.12, unless it is

explicitly stated otherwise, it is assumed that N ≥ 4J and that HΛ is shorthand for H≥4J
Λ .

However, by replacing H≥4J with H<4J in Definition 1.5.3, a theorem similar to 1.5.4 can

be proven for H<4J ; this will be discussed in Section 1.12.

23



1.6 Combes–Thomas estimate and projection bounds

For any N ≥ 1 we define the lifted operator

H
(N)
Λ,k := H

(N)
Λ + (Qk − 1)

(
1− 2J

∆

)
P

(N)
Λ,k . (1.6.1)

Lemma 1.6.1. We have

H
(N)
Λ,k ≥ Qk

(
1− 2J

∆

)
. (1.6.2)

Proof. Applying the bound from Lemma 1.4.2 yields

H
(N)
Λ,k ≥

(
1− 2J

∆

)
W + (Qk − 1)

(
1− 2J

∆

)
P

(N)
Λ,k (1.6.3)

=
(
1− 2J

∆

) ((
W + (Qk − 1)P

(N)
Λ,k

)
P

(N)
Λ,k +

(
W + (Qk − 1)P

(N)
Λ,k

)
P

(N)

Λ,k

)
≥
(
1− 2J

∆

) (
QkP

(N)
Λ,k +WP

(N)

Λ,k

)
≥
(
1− 2J

∆

)
Qk.

Remark 1.6.2. Since P
(N)
Λ,k is an operator of rank |MN

Λ,k|, note that this implies that H
(N)
Λ has

at most |MN
Λ,k| eigenvalues inside Ik.

Corollary 1.6.3. If E ∈ Ik,δ then

H
(N)
Λ,k − E ≥ δ

Qk

(
1− 2J

∆

)
W (1.6.4)

and in particular

∥∥∥∥W 1
2 (H

(N)
Λ,k − E)−1W

1
2

∥∥∥∥ ≤ Qk

δ
(
1− 2J

∆

) . (1.6.5)
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Proof.

H
(N)
Λ,k − E ≥ (P

(N)
Λ,k + P

(N)

Λ,k )
((

1− 2J
∆

)
W + (Qk − 1)

(
1− 2J

∆

)
P

(N)
Λ,k − E

)
(1.6.6)

= P
(N)
Λ,k

((
1− 2J

∆

)
W + (Qk − 1)

(
1− 2J

∆

)
P

(N)
Λ,k − E

)
(1.6.7)

+ P
(N)

Λ,k

((
1− 2J

∆

)
W + (Qk − 1)

(
1− 2J

∆

)
P

(N)
Λ,k − E

)
= (I) + (II) , (1.6.8)

where we used Lemma 1.4.2 and the fact that the projections P
(N)
Λ,k and P

(N)

Λ,k commute with

W . Now we estimate both terms,

(I) ≥
(
1− 2J

∆

)
P

(N)
Λ,k (W + (Qk − 1)− (Qk − δ)) (1.6.9)

=
(
1− 2J

∆

)
P

(N)
Λ,k (W − (1− δ))

≥
(
1− 2J

∆

)
P

(N)
Λ,k (W − (1− δ)W) =

(
1− 2J

∆

)
δWP

(N)
Λ,k

≥ δ
Qk

(
1− 2J

∆

)
WP

(N)
Λ,k

and

(II) ≥ P
(N)

Λ,k (
(
1− 2J

∆

)
W −

(
1− 2J

∆

)
(Qk − δ)W

Qk
) (1.6.10)

=
(
1− 2J

∆

)
W
(
1− Qk−δ

Qk

)
P

(N)

Λ,k = δ
Qk

(
1− 2J

∆

)
WP

(N)

Λ,k .

Adding the separate inequalites gives the desired result.

Proposition 1.6.4. Let Λ be a finite subgraph of Z. For any N ∈ {1, 2, . . . , 2J#(Λ)}, let

Y
(N)
Λ be an arbitrary multiplication operator on ℓ2(M

(N)
Λ ) and z /∈ σ(H

(N)
Λ + Y

(N)
Λ ) such that

there exists κz > 0 for which

∥∥∥∥W 1
2 (H

(N)
Λ + Y

(N)
Λ − z)−1W

1
2

∥∥∥∥ ≤ 1

κz
<∞ . (1.6.11)
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Then for all subsets Φ,Ψ ⊆ M
(N)
Λ , we have

∥∥∥∥χΦ

(
H

(N)
Λ + Y

(N)
Λ − z

)−1
χΨ

∥∥∥∥ ≤ 1

W(N)
0

∥∥∥∥χΦW
1
2

(
H

(N)
Λ + Y

(N)
Λ − z

)−1

W
1
2χΨ

∥∥∥∥
≤ 2

W(N)
0 κz

e−ηzdΛ(Φ,Ψ) , (1.6.12)

where

ηz = log

(
1 +

∆κz
4J

)
. (1.6.13)

Proof. Consider θ : M
(N)
Λ → R such that

θ∞ := sup
y∈M(N)

Λ
x∼y

|θ(x)− θ(y)| <∞ (1.6.14)

Let A
(N)
Λ , Y

(N)
Λ , H

(N)
Λ , and V

(N)
Λ be A, Y , H, and V respectively. Let

Hθ = eθHe−θ = − 1

2∆
Aθ + V (1.6.15)

We have that if ψ ∈ ℓ2(M
(N)
Λ ) then

Aθψ(x) =
∑
y∼x

eθ(x)−θ(y)A(x, y)ψ(y). (1.6.16)

Define

Bθ = −Aθ + A. (1.6.17)

Then we have that

|(Bθψ)(x)| =

∣∣∣∣∣−∑
y∼x

(
eθ(x)−θ(y) − 1

)
A(x, y)ψ(y)

∣∣∣∣∣ ≤ (eθ∞ − 1
)
(A|ψ|)(x) (1.6.18)
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From this and Lemma 1.4.2 we have that

∥W−1
2BθW−1

2ψ∥2 =
∑
x

∣∣∣∣∣∑
y∼x

W−1
2 (x)W−1

2 (y)(eθ(x)−θ(y) − 1)A(x, y)ψ(y)

∣∣∣∣∣
2

(1.6.19)

≤
(
eθ∞ − 1

)2∑
x

(∑
y∼x

W−1
2 (x)W−1

2 (y)A(x, y)|ψ(y)|

)2

≤
(
eθ∞ − 1

)2 ∥W−1
2AW−1

2∥2 · ∥ψ∥2 ≤ (4J)2(eθ∞ − 1)2 · ∥ψ∥2.

This implies

∥W−1
2BθW−1

2∥ ≤ 4J(eθ∞ − 1). (1.6.20)

as well,

∥W−1
2 (Hθ − Y − z)W−1

2 −W−1
2 (H − Y − z)W−1

2∥ =
1

2∆
∥W−1

2BθW−1
2∥. (1.6.21)

Let κz be as in Equation (1.6.11). Then suppose we select θ such that θ∞ satisfies the

following

4J

2∆
(eθ∞ − 1)κ−1

z ≤ 1

2
i.e. θ∞ ≤ log

(
1 +

∆κz
4J

)
= ηz. (1.6.22)

Using Neumann Series we get,

∥W
1
2 (Hθ − Y − z)−1W

1
2∥ = ∥(I)(II)∥ ≤ 2

κz
, (1.6.23)

where

(I) = W
1
2 (H − Y − z)−1W

1
2 (1.6.24)

(II) =

(
1− 1

2∆
(W−1

2BθW−1
2 )(W

1
2 (H − Y − z)−1W

1
2 )

)−1

. (1.6.25)
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Suppose Φ and Ψ are subsets of M
(N)
Λ and R > 1. Let θR : M

(N)
Λ → R be given by

θR(x) = − log

(
1 +

∆κz
4J

)
(dΛ(x,Φ) ∧R). (1.6.26)

Notice that θR satisfies (1.6.14) and also that χΦθR = 0. This implies

∥χΦW
1
2 (H + Y − z)−1W

1
2χΨ∥ = ∥χΦW

1
2 (HθR + Y − z)−1W

1
2 eθRχΨ∥ (1.6.27)

≤ ∥W
1
2 (HθR + Y − z)−1W

1
2∥ · ∥eθRχΨ∥

≤ 2

κz
e− log(1+∆κz

4J )(dΛ(Φ,Ψ)∧R)

This estimate holds for all R. So taking R → ∞ completes the proof.

Corollary 1.6.5. Suppose E ∈ Ik,δ and that Φ and Ψ are subsets of M
(N)
Λ . We have that

∥∥∥∥χΦW
1
2 (H

(N)
Λ,k − E)−1W

1
2χΨ

∥∥∥∥ ≤ 2Qk

δ
(
1− 2J

∆

)
W(N)

0

e
− log

(
1+

δ(∆−2J)
4JQk

)
dΛ(Φ,Ψ)

. (1.6.28)

Proof. In light of Corollary 1.6.3 we can apply Proposition 1.6.4 with κz = δ
(
1− 2J

∆

)
/Qk

.

Lemma 1.6.6. Let N ≥ 1 and let k ≤ N be a natural number, let Λ = ΛL(i), let E ∈

Ik,δ \ σ(H(N)
Λ ), let Θ ⊂ M

(N)
Λ , and let 0 ≤ q ≤ s ≤ L, so Λq(i) ⊂ Λs(i). Further suppose that

SΛq(i) ∩Θ ⊂ M
(N)
Λ,k , and that

q < s ≤ dΛ(SΛq(i) ∩Θ,M
(N)
Λ,k ) + q. (1.6.29)
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Then for all Ψ ⊂ M
(N)
Λ we have

∥P−
Λq(i)

χΘ(H
(N)
Λ − E)−1χΨ∥ ≤ 2

√
Qk

δ
(
1− 2J

∆

)
W(N)

0

e
− log

(
1+

δ(∆−2J)
4JQk

)
dΛ(SΛq(i)∩Θ,Ψ)

+
2(Qk − 1)

√
Qk

δW(N)
0

∑
r∈Λ

e
− log

(
1+

δ(∆−2J)
4JQk

)(
1− q

s

)
max{|r−i|,s}

∥∥∥∥P−
r

(
H

(N)
Λ − E

)−1
χΨ

∥∥∥∥ (1.6.30)

Proof. We introduce the shorthand Λq = Λq(i)∩Λ and likewise for Λs, we also use R
(N)
Λ (E) =

(H
(N)
Λ − E)−1 and R

(N)
Λ,k (E) = (H

(N)
Λ,k − E)−1. From the resolvent identity, we get

R
(N)
Λ (E) = R

(N)
Λ,k (E)− (Qk − 1)

(
1− 2J

∆

)
R

(N)
Λ,k (E)P

(N)
Λ,k R

(N)
Λ (E) (1.6.31)

It follows that

P−
Λq
χΘW

1
2R

(N)
Λ (E)χΨ = P−

Λq
χΘW

1
2R

(N)
Λ,k (E)χΨ

− (Qk − 1)
(
1− 2J

∆

)
P−
Λq
χΘW

1
2R

(N)
Λ,k (E)P

(N)
Λ,k R

(N)
Λ (E)χΨ (1.6.32)

We will focus on a portion of the second term.

W
1
2R

(N)
Λ,k (E)P

(N)
Λ,k R

(N)
Λ (E) = W

1
2R

(N)
Λ,k (E)W

1
2P+

Λs
P

(N)
Λ,k W

−1
2R

(N)
Λ (E)

+W
1
2R

(N)
Λ,k (E)W

1
2P−

Λs
P

(N)
Λ,k W

−1
2R

(N)
Λ (E) (1.6.33)

Observe that

WP−
Λq
χΘ ≥ QkP

−
Λq
χΘ since we assumed that SΛq ∩Θ ⊂ M

(N)
Λ,k . (1.6.34)
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Therefore, we get

√
Qk

∥∥∥P−
Λq
χΘR

(N)
Λ (E)χΨ

∥∥∥ ≤
∥∥∥∥P−

Λq
χΘW

1
2R

(N)
Λ (E)χΨ

∥∥∥∥ (1.6.35)

≤
∥∥∥∥P−

Λq
χΘW

1
2R

(N)
Λ,k (E)χΨ

∥∥∥∥
+ (Qk − 1)

(
1− 2J

∆

) ∥∥∥∥P−
Λq
χΘW

1
2R

(N)
Λ,k (E)W

1
2P

(N)
Λ,k

∥∥∥∥∥∥∥∥P (N)
Λ,k P

−
Λs
W−1

2R(N)
Λ (E)χΨ

∥∥∥∥
+ (Qk − 1)

(
1− 2J

∆

) ∥∥∥∥P−
Λs
χΘW

1
2R

(N)
Λ,k (E)W

1
2P

(N)
Λ,k P

+
Λs
W−1

2R
(N)
Λ (E)χΨ

∥∥∥∥
= (I) + (II) + (III) .

Using Corollary 1.6.5, we have

(I) ≤ 2Qk

δ
(
1− 2J

∆

)
W(N)

0

e
− log

(
1+

δ(∆−2J)
4JQk

)
distΛ(SΛq∩Θ,Ψ)

(1.6.36)

Also,

(II) ≤ 2(Qk − 1)Qk

δW(N)
0

e
− log

(
1+

δ(∆−2J)
4JQk

)
distΛ(SΛq∩Θ,M

(N)
Λ,k )
∥∥∥P−

Λs
R

(N)
Λ (E)χΨ

∥∥∥ . (1.6.37)

To estimate (III), we use (1.2.20) in order to get
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(III)

(Qk − 1)
(
1− 2J

∆

) ≤ (1.6.38)∥∥∥∥∥P−
Λq
W

1
2R

(N)
Λ,k (E)W

1
2P

(N)
Λ,k

(
∞∑
t=0

P+
Λt+s

P−
{i+t+s+1,i−t−s−1}

)
W−1

2R
(N)
Λ (E)χΨ

∥∥∥∥∥
≤

∞∑
t=0

∥∥∥∥P−
Λq
W

1
2R

(N)
Λ,k (E)W

1
2P+

Λs+t

∥∥∥∥∥∥∥P−
{i+t+s+1,i−t−s−1}R

(N)
Λ (E)χΨ

∥∥∥
≤ 2Qkδ

−1(
1− 2J

∆

)
W(N)

0

∞∑
t=0

e
− log

(
1+

δ(∆−2J)
4JQk

)
distΛ(SΛq ,M

(N)
Λ\Λs+t

)

×
(∥∥∥P−

i+s+t+1R
(N)
Λ (E)χΨ

∥∥∥+ ∥∥∥P−
i−s−t−1R

(N)
Λ (E)χΨ

∥∥∥)
≤ 2Qk

δ
(
1− 2J

∆

)
W(N)

0

∞∑
t=0

e
− log

(
1+

δ(∆−2J)
4JQk

)
(s+t+1−q)

×
(∥∥∥P−

i+s+t+1R
(N)
Λ (E)χΨ

∥∥∥+ ∥∥∥P−
i−s−t−1R

(N)
Λ (E)χΨ

∥∥∥)
≤ 2Qk

δ
(
1− 2J

∆

)
W(N)

0

∑
r∈Λ\Λs

e
− log

(
1+

δ(∆−2J)
4JQk

)
(|r−i|−q)

∥∥∥P−
r R

(N)
Λ (E)χΨ

∥∥∥

Combining our bounds for (I), (II), and (III) we get that

∥P−
Λq
χΘR

(N)
Λ (E)χΨ∥ ≤ 2

√
Qk

δ
(
1− 2J

∆

)
W(N)

0

e
− log

(
1+

δ(∆−2J)
4JQk

)
distΛ(SΛq(i)∩Θ,Ψ)

(1.6.39)

+
2(Qk − 1)

√
Qk

δW(N)
0

e
− log

(
1+

δ(∆−2J)
4JQk

)
distΛ(SΛq∩Θ,M

(N)
Λ,k )
∥∥∥P−

Λs
R

(N)
Λ (E)χΨ

∥∥∥
+

2(Qk − 1)
√
Qk

δW(N)
0

∑
r∈Λ\Λs

e
− log

(
1+

δ(∆−2J)
4JQk

)
(|r−i|−q)

∥∥∥P−
r R

(N)
Λ (E)χΨ

∥∥∥
≤ 2

√
Qk

δ
(
1− 2J

∆

)
W(N)

0

e
− log

(
1+

δ(∆−2J)
4JQk

)
distΛ(SΛq∩Θ,Ψ)

+
2(Qk − 1)

√
Qk

δW(N)
0

∑
r∈Λ

e
− log

(
1+

δ(∆−2J)
4JQk

)(
1− q

s

)
max{|r−i|,s}

∥∥∥P−
r R

(N)
Λ (E)χΨ

∥∥∥
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Corollary 1.6.7. Assume the hypotheses of Lemma 1.6.6 and suppose that (ψ,E) is an

eigenpair for H
(N)
Λ . Then

∥P−
Λq(i)

χθψ∥ ≤ 2(Qk − 1)
√
Qk

δW(N)
0

∑
r∈Λ

e
− log

(
1+

δ(∆−2J)
4JQk

)
(1− q

s
)max{|r−i|,s}∥P−

r ψ∥. (1.6.40)

Proof. Recalling (1.6.1) we have that

(
H

(N)
Λ,k − E

)
ψ = (Qk − 1)

(
1− 2J

∆

)
P

(N)
Λ,k ψ (1.6.41)

Since E ∈ Ik,δ we have (1.6.4), so

ψ = (Qk − 1)
(
1− 2J

∆

)
R

(N)
Λ,k (E)P

(N)
Λ,k ψ. (1.6.42)

It follows that

P−
Λq
χθW

1
2ψE = (Qk − 1)

(
1− 2J

∆

)
P−
Λq
χθW

1
2R

(N)
Λ,k (E)W

1
2W−1

2P
(N)
Λ,k ψ (1.6.43)

= (Qk − 1)
(
1− 2J

∆

)
P−
Λq
χθW

1
2R

(N)
Λ,k (E)W

1
2W−1

2P
(N)
Λ,k (P

−
Λs

+ P+
Λs
)ψ.

Compare (1.6.43) to (1.6.32); they are identical except that the first term of (1.6.32) is not

present in (1.6.43), and ψ has been substituted for (H
(N)
Λ − E)−1χψ. In order to estimate

(1.6.43) we will proceed in the same way as for (1.6.32) and arrive at a version of (1.6.39)

∥P−
Λq
χθψ∥ ≤ 2(Qk − 1)

√
Qk

δW(N)
0

e
− log

(
1+

δ(∆−2J)
4JQk

)
distΛ(SΛq∩Θ,M

(N)
Λ,k )
∥∥P−

Λs
ψ
∥∥ (1.6.44)

+
2(Qk − 1)

√
Qk

δW(N)
0

∑
r∈Λ\Λs

e
− log

(
1+

δ(∆−2J)
4JQk

)
(|r−i|−q) ∥∥P−

r ψ
∥∥ .
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1.7 Large Deviation and Wegner Estimates

1.7.1 Large deviation

Let N ∈ {4J, 4J + 1, . . . , 2J#(Λ)}, k ∈ {1, 2, . . . , N}, and Λ = Λℓ. Let µ̄ = E {ω0}, assume

⌈N/2J⌉λµ̄ ≥ 2Qk

(
1− 2J

∆

)
. (1.7.1)

Let Nk be defined as,

Nk =
4JQk

(
1− 2J

∆

)
λµ̄

(1.7.2)

Notice that if N ≥ Nk then (1.7.1) holds, which can be seen from a calculation. For any

m ∈ M
(N)
Λ note that Vω(m) =

∑
i∈Λ ω(i)m(i) ≥

∑
i:m(i)̸=0 ω(i) =: Ṽω(m). Now, since

m ∈ M
(N)
Λ , which implies that

∑
i∈Λm(i) = N and since 0 ≤ m(i) ≤ 2J , this implies that

| supp(m)| ≥ ⌈N/2J⌉ and thus Vω(m) can be bounded from below by a sum of at least

⌈N/2J⌉ i.i.d. random variables. From (1.7.1), the standard large deviation estimate gives

P
{
λVω(m) < Qk

(
1− 2J

∆

)}
≤ P

{
λṼω(m) < Qk

(
1− 2J

∆

)}
(1.7.3)

≤ P
{
Ṽω(m) < ⌈N/2J⌉ µ̄

2

}
≤ e−cµN for all m ∈ M

(N)
Λ ,

where cµ is a constant depending only on the probability distribution µ and J . It implies

that we have

P{λVω(m) < Qk

(
1− 2J

∆

)
} ≤ ecµNke−cµN for all N ∈ N. (1.7.4)
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Consequently,

P
{
λVω(m) < Qk

(
1− 2J

∆

)
for some m ∈ M

(N)
Λ,k

}
≤
∣∣∣M(N)

Λ,k

∣∣∣ ecµNke−cµN . (1.7.5)

In order to estimate |M(N)
Λ,k |, we use an upper bound that is implied from following several

results in [43]. From Equations (2.1.2), (3.29), and (3.37) in [43] we get the following bound:

|M(N)
Λ,k | ≤ (4Je)

Qk

J
−2(2ℓ+ 1)

2Qk

J
−3 ≤ ℓ6Qk . (1.7.6)

Where Λ = Λℓ and the last inequality holds for ℓ large enough. We therefore conclude

P
{
λVω(m) < Qk

(
1− 2J

∆

)
for some m ∈ M

(N)
Λ,k

}
(1.7.7)

≤ ecµNkℓ6Qke−cµN .

This implies that with probability greater than 1− ecµN0ℓ6Qke−cµN , we have

λVωP
(N)
Λ,k ≥ Qk

(
1− 2J

∆

)
P

(N)
Λ,k , (1.7.8)

which implies

H
(N)
Λ ≥

(
1− 2J

∆

)
W + λVω (1.7.9)

=
[(
1− 2J

∆

)
W + λVω

]
P

(N)
Λ,k +

[(
1− 2J

∆

)
W + λVω

]
P̄

(N)
Λ,k

≥
(
1− 2J

∆

) (
4J2 +Qk

)
P

(N)
Λ,k +

(
1− 2J

∆

)
QkP̄

(N)
Λ,k

≥ Qk

(
1− 2J

∆

)
,
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where we used the fact that for N ≥ 4J , one has by Proposition 1.4.4 that W ≥ 4J2. In

addition, for any E ∈ Ik,δ, it was shown in [43, Eqns. 2.34-2.36] that

W−1
2

(
H

(N)
Λ + λVω − E

)
W−1

2 ≥
δ
(
1− 2J

∆

)
Qk

. (1.7.10)

Definition 1.7.1. We say that an interval Λ is (k,N)-reduced if (1.7.8) holds. That is,

λVωP
(N)
Λ,k ≥ Qk

(
1− 2J

∆

)
P

(N)
Λ,k . (1.7.11)

Note that being (k,N)-reduced is an event, which we will call Y(N)
Λ,k from here on. Also if Λ

is (k,N)-reduced for all N > ℓζ
′
then we say that Λ is (k,N ) reduced; this event is YΛ,k.

Notice that in particular we have

YΛ,k ⊂ {Ik ∩ σ(H(N)
Λ ) = ∅ for all N > ℓζ

′}. (1.7.12)

Lemma 1.7.2. Suppose that Λ is (1,N )-reduced. Then for any N > ℓζ
′
, any energy E ∈ I1,δ

and any two sets of configurations Φ,Ψ ∈ M
(N)
Λ , we have that the Combes-Thomas Estimate,

Proposition 1.6.4, holds:

∥∥∥∥χΦ

(
H

(N)
Λ + λVω − E

)−1
χΨ

∥∥∥∥ ≤ 2Q1

4J2δ
(
1− 2J

∆

)e− log
(
1+

δ(∆−2J)
4JQ1

)
dist1(Φ,Ψ)

. (1.7.13)

Notice that the bound is uniform for E ∈ I1,δ. We also have the following probability estimate

P {Λ is (1,N )-reduced} = P{YΛ,1} ≥ 1− e−
cµ
4
ℓζ

′

. (1.7.14)

Proof. Equation (1.7.13) follows from Proposition 1.6.4 using (1.7.10) and noting that for

N > 4J , we have by Proposition 1.4.4 that W(N)
0 = 4J2.
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When we consider (1.7.7) we can estimate the probability that Λ is (1,N )-reduced. The

equation is rephrased

P {Λ is not (1, N)− reduced} ≤ ecµN1ℓ6Q1e−cµN < e−
cµ
2
N . (1.7.15)

Which is true assuming that (1.7.1) holds, N > ℓζ
′
, and that,

ℓζ
′
>

2

cµ

(
4JQ1

(
1− 2J

∆

)
λµ̄

+ 6Q1 log(ℓ)

)
= 2

cµ
(N1 + 6Q1 log(ℓ)) . (1.7.16)

This immediately yields the estimate

P
{
Yc

1,Λ

}
≤
∑
N≥ℓζ′

P {Λ is not (1, N)− reduced} ≤ e−
cµ
2
ℓζ

′

1− e−
cµ
2
ℓζ′

< e−
cµ
4
ℓζ

′

. (1.7.17)

This finishes the proof.

1.7.2 Wegner estimates

Let µ be a probability measure on R with concentration, Sµ(t) := supa∈R µ {[a, a+ t]}, t ≥ 0.

Note that in our application Sµ(t) ≤ Ktα for some α ∈ (0, 1]. Given a finite index set A,

then denote by µA the A-fold product measure of µ on RA.

Lemma 1.7.3. [81] Given a finite index set A, consider a function Φ on RA which satisfies

Φ(q + te) − Φ(q) ≥ t for e = (1, 1, . . . , 1) ∈ RA and all t > 0. Then, for any open interval

I ⊂ R, we have

µA{q : Φ(q) ∈ I} ≤ |A|Sµ(|I|). (1.7.18)

Given an operator A and an interval I, we set σI(A) = σ(A) ∩ I.
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Lemma 1.7.4. Consider an open interval I ⊂ Ik. Then

P
{
σI(H

(N)
Λ ) ̸= ∅

}
≤ K |I|α (Nλ)−α(2ℓ+ 1)

∣∣∣M(N)
Λ,k

∣∣∣ (1.7.19)

Proof. Let E1 ≤ E2 ≤ . . . be the eigenvalues of H
(N)
Λ in I, counted with multiplicity, which

we consider as functions of ωΛ. By Remark 1.6.2, there are at most
∣∣∣M(N)

Λ,k

∣∣∣ of them. Each

En(ωΛ) is a monotone function on R#(Λ). Let e = (1, 1, . . . , 1) as in Lemma 1.7.3 with A = Λ.

We have En(ω̃ + te) − En(ω̃) = Nλt for all t > 0 and all n by the min-max principle and

can apply Lemma 1.7.3 with Φ = (Nλ)−1 En, to get – using that Sµ(|I|) ≤ K|I|α –

P{ωΛ : En(ωΛ) ∈ I} ≤ K |I|α (Nλ)−α(2ℓ+ 1). (1.7.20)

Using (1.7.20) for each one of the eigenvalues En yields (1.7.19).

In particular, we have the following Wegner estimates for H
(N)
Λ .

Lemma 1.7.5. Consider an open interval I ⊂ Ik. Then

P
{
σI(H

(N)
Λ ) ̸= ∅

}
≤ K |I|α λ−αℓ8Qk . (1.7.21)

Proof. Lemma 1.7.4 and Equation (1.7.6) give

P
{
σI(H

(N)
Λ ) ̸= ∅

}
≤ K |I|α (Nλ)−α(2ℓ+ 1)

∣∣∣M(N)
Λ,k

∣∣∣ (1.7.22)

≤ K|I|α(Nλ)−α(2ℓ+ 1)ℓ6Qk ≤ K|I|αλ−αℓ8Qk

This holds as long as ℓ is larger than N−α/6Qk .

This result, with (1.7.12) and (1.7.16), yields the following lemma.
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Lemma 1.7.6. Let I be an open interval such that I ⊂ I1. Then

P
{
σI(H

(N)
Λ ) ̸= ∅ for some N ≤ ℓζ

′
}
≤ K |I|α λ−αℓ8Q1+1 (1.7.23)

In addition, if (1.7.16) holds we have

P {σI(HΛ) ̸= ∅} ≤ K |I|α λ−αℓ8Q1+1 + e−
cµ
4
ℓζ

′

. (1.7.24)

Proof. It follows from Lemma 1.7.5 that

P
{
σI(H

(N)
Λ ) ̸= ∅ for some N ≤ ℓζ

′
}
≤ ℓζ

′
K |I|α λ−αℓ8Q1 (1.7.25)

≤ K |I|α λ−αℓ8Q1+1.

Using also (1.7.14) we get

P {σI(HΛ) ̸= ∅} ≤ P
{
σI(H

(N)
Λ ) ̸= ∅ for some N ≤ ℓζ

′
}

(1.7.26)

+ P {Λ is not (1,N )− reduced}

≤ K |I|α λ−αℓ8Q1+1 + e−
cµ
4
ℓζ

′

.

Lemma 1.7.7. Consider two disjoint intervals Λ1 and Λ2, and let

0 < η < δ
(
1− 2J

∆

)
. (1.7.27)

Then (recall (1.7.12))

P
{{

dist(σI1,δ(HΛ1), σI1,δ(HΛ2)) ≤ η
}
∩ YΛ1,1 ∩ YΛ2,1

}
≤ K (2η)α λ−α(ℓ1ℓ2)

8Q1+1.
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Proof. Since the two intervals are disjoint, the random variables ωΛ1 and ωΛ2 are independent.

Thus, given ν ∈ σI1,δ(HΛ1), as a random variable ν is independent of ωΛ2 , so it follows from

(1.7.23) in Lemma 1.7.6 that

P {{dist(ν, σ(HΛ2) ≤ η} ∩ YΛ2,1} = P {{[ν − η, ν + η] ∩ σ(HΛ2) ̸= ∅} ∩ YΛ2,1} (1.7.28)

≤ P
{
σ[ν−η,ν+η](H

(N)
Λ2

) ̸= ∅ for some N ≤ ℓζ
′
}

≤ K (2η)α λ−αℓ8Q1+1
2 .

Therefore we can estimate the desired event

P
{{

dist(σI1,δ(HΛ1), σI1,δ(HΛ2)) ≤ η
}
∩ YΛ1,1 ∩ YΛ2,1

}
(1.7.29)

≤ P

{⋃
ν

{{[ν − η, ν + η] ∩ σ(HΛ2) ̸= ∅} ∩ YΛ2,1}

}

≤
∑

N≤2Jℓ1

∣∣∣M(N)
Λ1,1

∣∣∣K (2η)α λ−αℓ8Q1+1
2 ≤ 2Jℓ1ℓ

6Q1

1 K (2η)α λ−αℓ8Q1+1
2

≤ K(2η)αλ−α(ℓ1ℓ2)
8Q1+1. (1.7.30)

Assuming that both ℓ1 and ℓ2 are large enough.

Remark 1.7.8. We will need (1.7.27) with η = 2e−L
β
, that is,

e−L
β

< δ
2

(
1− 2J

∆

)
. (1.7.31)
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1.8 The Starting Condition

Definition 1.8.1. Given E ∈ R and m > 0, an interval ΛL is said to be (m,E)-regular2 if

m > 2L−κ (1.8.1)

dist(E, σ(HΛL
)) > 2e−L

β

(1.8.2)

∥P−
i (HΛL

− E)−1P+
ΛR(i)∩ΛL

∥ ≤ e−m(R+1) for all i ∈ ΛL and R > Lτ . (1.8.3)

Theorem 1.8.2. Fix ∆0 > 2J , λ0 > 0, and δ ∈ (0, 1). Suppose ∆0, λ0, δ, and the scale L

satisy (1.5.5)- (1.5.7). Further suppose that L is sufficiently large, depending on λ0, δ, and

∆0. Moreover, suppose that ∆ ≥ ∆0, and λ ≥ λ0 are chosen satisfying (1.5.8) for L. Let

m = 1
4
min

{
1, log

(
1 +

δ(∆0 − 2J)

4JQ1

)}
. (1.8.4)

Then setting θL = e−3L, we have for all E ∈ I1,δ that

P{R(m,L, I(E, θL), u, v)} ≥ 1− e−L
ζ

for all u, v ∈ Z with |u− v| > 2L. (1.8.5)

Lemma 1.8.3. Fix ∆0 > 2J , λ0 > 0, and δ ∈ (0, 1). Suppose ∆0, λ0, δ, and the scale L

satisy (1.5.5)- (1.5.7). Further suppose that L is sufficiently large, depending on λ0, δ, and

∆0. Moreover, suppose that ∆ ≥ ∆0, and λ ≥ λ0 are chosen satisfying (1.5.8) for L. Let

Λ = ΛL be a subinterval of Z of length 2L, and for E /∈ σ(HΛ), let RΛ(E) = (HΛ − E)−1.

Then for all E ∈ I1,δ, we have

P
{
Λ is

(
1

2
min

{
1, log

(
1 +

δ(∆0 − 2J)

4JQ1

)}
, E

)
− regular2

}
≥ 1− e−L

ζ1 (1.8.6)

Proof. Let YΛ,1, be the event that ΛL is (1,N )-reduced. In view of (1.5.5) and the choice of
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ζ < ζ1 < ζ ′, Equation (1.7.14) holds with ζ1 substituted for ζ so for sufficiently large L,

P {YΛ,1} ≥ 1− e−
cµLζ′

4 ≥ 1− 1
10
e−L

ζ1 . (1.8.7)

Let E ∈ I1,δ and ω ∈ YΛ,1, it follows from Proposition 1.6.4 that for all N > Lζ
′
, i ∈ Λ and

R > Lτ we have

∥∥∥P−
i R

(N)
Λ (E)P+

i,R

∥∥∥ ≤ Q1

2J2δ
(
1− 2J

∆

)e− log
(
1+

δ(∆0−2J)
4JQ1

)
(R+1)

. (1.8.8)

≤ e

− log
(
1+

δ(∆0−2J)
4JQ1

)1−
log

Q1

δ(1− 2J
∆ )2J2

3L−κLτ

(R+1)

≤ e
− log

(
1+

δ(∆0−2J)
4JQ1

)(
1−Lβ+log(Q1/4J

2)

3Lτ−κ

)
(R+1)

≤ e
− log

(
1+

δ(∆0−2J)
4JQ1

)
(1− 1

Lτ−κ−β )(R+1)

≤ e
−1
2
log
(
1+

δ(∆0−2J)
4JQ1

)
(R+1)

,

for sufficiently large L, where we used (1.5.7).

We now consider the operators H
(N)
Λ , W(N)

Λ , etc. If N ≤ Lζ
′
, given η > 0, it follows from the

Holder Continuity of µ, that for all m ∈ M
(N)
Λ we have

P {|W(m) + λVω(m)− E| ≤ η} ≤ K
(
2η
λ

)α
, (1.8.9)

For a particular configuration inside of Λ, let m1 = m(x1) be the number of particles of the

first nonzero entry from the left.

|W(m) + λVω(m)− E| ≤ η

=⇒ λω1m1 ∈ [W + λVω(m(x2, x3 . . . ))− E − η,W + λVω(m(x2, x3 . . . ))− E + η]

P {|W(m) + λVω(m)− E| ≤ η} ≤ K

(
2η

m1λ

)α
≤ K

(
2η
λ

)α
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Consider the event Q:

Q =
{∥∥(W + λVω − E)−1

∥∥ ≥ 1
η

}
. (1.8.10)

Which we estimate by

P {Q} ≤ K
(
2η
λ

)α
(2L+ 2)N ≤ 1

10
e−L

ζ1 , (1.8.11)

which holds if

η ≤ λ

2

(
(2L+ 2)−N

10K
e−L

ζ1

)1/α

. (1.8.12)

We choose

η = λe−
1
2
Lζ′′

(recall ζ1 < ζ ′ < ζ ′′ < β), (1.8.13)

so (1.8.11) holds for L sufficiently large. For every ω ∈ Qc, we have,

R
(N)
Λ (E) =

(
H

(N)
Λ − E

)−1

=
(
− 1

2∆
A

(N)
Λ +W + λV − E

)−1

(1.8.14)

= (W + λV − E)−1
(
1− 1

2∆
A

(N)
Λ (W + λV − E)−1

)−1

= (W + λV − E)−1

(
1 +

∞∑
n=1

(
1
2∆
A

(N)
Λ (W + λV − E)−1

)n)
,

where the series converges absolutely in operator norm if we have

∥∥∥ 1
2∆
A

(N)
Λ (W + λV − E)−1

∥∥∥ ≤ 1
2η∆

∥∥∥A(N)
Λ

∥∥∥ ≤ 2J
η∆

∥W∥ ≤ 4J2

η∆
Lζ

′
(1.8.15)

= 4J2

∆λ
Lζ

′
e

1
2
Lζ′′ ≤ 1

2
,
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which we obtain by requiring (1.5.8) with L sufficiently large. Then

P−
i (W + λV − E)−1

(
1
2∆
A

(N)
Λ (W + λV − E)−1

)n
P+
i,R = 0 (1.8.16)

if n < R. Hence

∥∥∥P−
i R

(N)
Λ (E)P+

i,R

∥∥∥ (1.8.17)

≤
∑
n≥R

∥∥∥P−
i (W + λV − E)−1

(
1
2∆
A

(N)
Λ (W + λV − E)−1

)n
P+
i,R

∥∥∥
≤
∑
n≥R

1
η

1
2n

= 1
λ
e

1
2
Lζ′′ 2

2R
≤ e

1
6
Lβ

e
1
2
Lζ′′

2e−(log 2)R

≤ e
−(log 2)R

(
1−

1
6Lβ+1

2Lζ′′+log 2

(log 2)Lτ

)

≤ e−(log 2)(1−3L−τ+β)R ≤ e−
1
2
R,

for L sufficiently large, where we used (1.5.5). Combining (1.8.8) and (1.8.17), and our

assumptions, we conclude that for ω ∈ YΛ,1 ∩Qc we have

∥∥∥P−
i R

(N)
Λ (E)P+

i,R

∥∥∥ ≤ e
− 1

2
min

{
1,log

(
1+

δ(∆0−2J)
4JQ1

)}
R

(1.8.18)

with probability

P {YΛ,1 ∩Qc} ≥ 1− 1
10
e−L

ζ1 − 1
10
e−L

ζ1 ≥ 1− 3
4
e−L

ζ1 . (1.8.19)

In addition, it follows from (1.7.24) in Lemma 1.7.6

P
{
dist(E, σ(HΛ)) < 2e−L

β
}
≤ K

(
4e−Lβ

λ

)α
L8Q1+1 + e−

cµ
4
Lζ′ ≤ 1

10
e−L

ζ1 , (1.8.20)

for sufficiently large L, using (1.5.5).

Thus, if (1.5.8), (1.5.5), and (1.5.7) hold and L is sufficiently large (in particular, L−κ ≤ 1
4
),
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we proved that

P
{
ΛL is

(
1
2
min

{
1, log

(
1 +

δ(∆0 − 2J)

4JQ1

)}
, E

)
-regular2

}
≥ 1− e−L

ζ1 . (1.8.21)

Lemma 1.8.4. Fix ∆0 > 2J , λ0 > 0, and δ ∈ (0, 1). Suppose ∆0, λ0, δ, and the scale L

satisy (1.5.5)- (1.5.7). Further suppose that L is sufficiently large, depending on λ0, δ, and

∆0. Moreover, suppose that ∆ ≥ ∆0, and λ ≥ λ0 are chosen satisfying (1.5.8) for L. If the

interval ΛL is (m,E)-regular2 for some E ∈ I1,δ and some m > L−κ, then the interval ΛL is

(m/2, E ′)-regular for all E ′ ∈ I(E, θ), where θ = e−3L.

Proof. Assume Λ = ΛL is (m,E)-regular2 for some E ∈ I1,δ. Let E ′ ∈ I(E, θ). By the

resolvent identity we have that

RΛ(E
′) = RΛ(E) + (E ′ − E)RΛ(E

′)RΛ(E) (1.8.22)

Therefore

∥RΛ(E
′)∥ ≤ 1

2
eL

β

+
1

2
θeL

β∥RΛ(E
′)∥ (1.8.23)

So taking θ ≤ e−L
β
, we get

∥RΛ(E
′)∥ ≤ eL

β

(1.8.24)

Now, given that L−κ < m
2
< m, then if i ∈ ΛL and R > Lτ we get the following

∥P−
i RΛ(E

′)P+
ΛR(i)∥ ≤ ∥P−

i RΛ(E)P
+
ΛR(i)∥+

1

2
θe2L

β ≤ e−m(R+1)+
1

2
θe2L

β ≤ e−
m
2
(R+1). (1.8.25)
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The final inequality must hold for all R, with Lτ < R ≤ 2L− 1. In this case we need

θ ≤ inf
Lτ<R≤2L−1

2e−m(R+1)−2Lβ
(
e
m
2
(R+1) − 1

)
(1.8.26)

Notice that since ex − 1 ≥ x we have,

2e−m(R+1)−2Lβ
(
e
m
2
(R+1) − 1

)
≥ m(R + 1)e−m(R+1)−2Lβ ≥ mLτe−2mL−2Lβ

(1.8.27)

The inequality will be satisfied if we choose

θ = e−3L < min{mLτe−2mL−2Lβ

, e−L
β}. (1.8.28)

Proof of Theorem 1.8.2. From Lemma 1.8.3 and Lemma 1.8.4 we have that for all y ∈ Z,

P{A(y)} := P {ΛL(y) is (m,E ′)− regular for all E ′ ∈ I(E, θL)} ≥ 1− e−L
ζ1 (1.8.29)

Therefore

P{R(m,L, I(E, θL), u, v)} ≥ P{A(u) ∩ A(v)} ≥
(
1− e−L

ζ1
)2

≥ 1− e−L
ζ

. (1.8.30)
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1.9 Preliminaries for the Multiscale Analysis

1.9.1 Subintervals

Lemma 1.9.1. Let K ⊊ Λ be finite intervals in Z. Let (ψ, θ) be an an eigenpair for HΛ

with θ ≥ 2J
(
1− 2J

∆

)
, and let 0 < η < δ

(
1− 2J

∆

)
. Suppose

dist
(
θ, σ

(
HΛ\∂K

))
≥ η. (1.9.1)

Then for all x ∈ K we have

∥∥P−
x ψ
∥∥ ≤

∥∥P−
Kψ
∥∥ ≤ 1

η

∑
b∈∂ΛK

∥∥P−
b ψ
∥∥ ≤ 8J2

η

∥∥P−
r ψ
∥∥ for some r ∈ ∂ΛK. (1.9.2)

Proof. Note that for θ ≥ 2J
(
1− 2J

∆

)
and 0 < η < δ

(
1− 2J

∆

)
we have

dist
(
θ, σ

(
HΛ\∂K

))
≥ η ⇐⇒ dist

(
θ, σ

(
H ′

Λ\∂K
))

≥ η. (1.9.3)

Let {φν , ν}ν∈σ(HK) be an eigensystem for HK and {ηκ, κ}κ∈σ(HΛ\∂K) be an eigensystem for

HΛ\∂K , so {φν ⊗ ηκ, ν + κ}ν∈σ(HK),κ∈σ(HΛ\K) is an eigensystem forHΛ\∂K . Then, since P
−
K = 0

on CΩK ⊗HΛ\K ,
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P−
Kψ = P−

K

∑
ν∈σ(H′

K),κ∈σ(HΛ\K)

⟨φν ⊗ ηκ, ψ⟩φν ⊗ ηκ (1.9.4)

= P−
K

∑
ν∈σ(H′

K),κ∈σ(HΛ\K)

(θ − (ν + κ))−1 〈φν ⊗ ηκ,
(
HΛ −HΛ\∂K

)
ψ
〉
φν ⊗ ηκ

= P−
K

∑
ν∈σ(H′

K),κ∈σ(HΛ\K)

(θ − (ν + κ))−1 〈φν ⊗ ηκ,ΓΛ\∂Kψ
〉
φν ⊗ ηκ.

= P−
K

(
θ −H ′

Λ\∂K
)−1

∑
ν∈σ(H′

K),κ∈σ(HΛ\K)

〈
φν ⊗ ηκ,ΓΛ\∂Kψ

〉
φν ⊗ ηκ

=
(
θ −H ′

Λ\∂K
)−1

P−
K

∑
ν∈σ(H′

K),κ∈σ(HΛ\K)

〈
φν ⊗ ηκ,ΓΛ\∂Kψ

〉
φν ⊗ ηκ

=
(
θ −H ′

Λ\∂K
)−1

P−
K

∑
ν∈σ(HK),κ∈σ(HΛ\K)

〈
φν ⊗ ηκ,ΓΛ\∂Kψ

〉
φν ⊗ ηκ

=
(
θ −H ′

Λ\∂K
)−1

P−
KΓΛ\∂Kψ =

(
θ −H ′

Λ\∂K
)−1

P−
K

∑
b∈∂ΛK

h̃bP
−
b ψ,

Thus, using (1.9.1) and (1.9.3) we get

∥∥P−
Kψ
∥∥ ≤ 1

η

∑
b∈∂ΛK

∥h̃b∥
∥∥P−

b ψ
∥∥ ≤ 8J2

η
∥P−

r ψ∥. (1.9.5)

Where we used from Lemma 1.4.3 that ∥h̃b∥ = 4J2.

We now want to look at the Hamiltonian restricted to subspaces of sufficiently high particle

number. To this end, let H
[N0,N1]
Λ := χ[N0,N1](NΛ)HΛ and moreover H

[N0]
Λ := χ[N0,∞)(NΛ)HΛ.
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Lemma 1.9.2. Let K ⊊ Λ be finite intervals in Z and assume that N0 ≥ 4J . Let θ ∈ I1,δ

and 0 < η < δ
(
1− 2J

∆

)
. Then

dist
(
θ, σ

(
H

[N0]
K

))
≥ η ⇐⇒ dist

(
θ, σ

(
H

[N0]
Λ\∂K

))
≥ η. (1.9.6)

Proof. Note first that for θ ≥ 2J
(
1− 2J

∆

)
and 0 < η < δ

(
1− 2J

∆

)
,

dist
(
θ, σ

(
H

[N0]
K

))
≥ η ⇐⇒ dist

(
θ, σ

(
H

′[N0]
K

))
≥ η. (1.9.7)

In view of (1.9.3), we only need to show

dist
(
θ, σ

(
H

[N0]
K

))
< η ⇐⇒ dist

(
θ, σ

(
H

[N0]′

Λ\∂K

))
< η. (1.9.8)

Note that

H
[N0]′

Λ\∂K =
⊕

k,l:l≥1,k+l≥N0

[
H

(k)
Λ\K ⊗ IK + IΛ\K ⊗H

(l)
K

]
(1.9.9)

=
(
IΛ\K ⊗H

[N0]
K

)
⊕

( ⊕
k≥1,l≥1:k+l≥N0

[
H

(k)
Λ\K ⊗ IK + IΛ\K ⊗H

(l)
K

])
(1.9.10)

It follows that σ
(
H

[N0]
K

)
⊂ σ

(
H

[N0]′

Λ\∂K

)
, and hence

dist
(
θ, σ

(
H

[N0]
K

))
< η =⇒ dist

(
θ, σ

(
H

[N0]′

Λ\∂K

))
< η. (1.9.11)

Conversely, since θ ∈ I1,δ, if dist
(
θ, σ

(
H

′[N0]
Λ\∂K

))
< η there exist l ≥ 1 and k ≥ 0, satisfying

l + k ≥ N0, such that for some ν ∈ σ(H
(l)
K ), and κ ∈ σ

(
H

(k)
Λ\K

)
we have |θ − (ν + κ)| < η.
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Moreover we have that

H
(k)
Λ\K ⊗ IK + IΛ\K ⊗H

(l)
K ≥

(
1− 2J

∆

) (
W(k)

0 +W(l)
0

)
. (1.9.12)

Now if k ≥ 1 then we get by Theorem 1.4.5, the bound

ν + κ ≥ inf σ(H
(k)
Λ\K ⊗ IK + IΛ\K ⊗H

(l)
K ) ≥ Q1

(
1− 2J

∆

)
. (1.9.13)

This implies a contradiction. We would have that ν + κ ≥ Q1

(
1− 2J

∆

)
and consequently

θ > (Q1 − δ)
(
1− 2J

∆

)
, but we assumed that θ ∈ I1,δ. Hence, κ = 0, which is only possible

for k = 0. Therefore |θ − ν| < η, thus implying dist(θ, σ(H
[N0]
K )) < η.

Corollary 1.9.3. Let K ⊊ Λ be finite intervals in Z and assume that N0 ≥ 4J . Let θ ∈ I1,δ

and suppose that ψ is an eigenfunction of H ′[N0]
Λ\∂K with eigenvalue θ. Then ψ = ΩΛ\K ⊗ ψK,

where ψK ∈ H[N0]
K .

Proof. This follows from the proof of Lemma 1.9.2. Let A be the set of all tuples {(α1, α2) :

α1 ≥ 0, α2 ≥ 1, α1 + α2 ≥ N0}. Since ψ is an eigenfunction of H
[N0]′

Λ\∂K , it can be written as a

linear combination of eigenpairs (ξα, κα) for H
(α1)
Λ\K and (ϕα, να) for H

(α2)
K where for each α,

κα + να = θ. From (1.9.10) we can write

ψ =
∑
α∈A

ξα ⊗ ϕα =

(
ΩΛ\K ⊗

∑
α2≥N0

ϕ(0,α2)

)
+

∑
α∈A:α1≥1

ξα ⊗ ϕα = (I) + (II). (1.9.14)

Suppose for some α that να ̸= 0, by an analogous argument we could show that θ is too

large to be in I1,δ. Therefore κα is identically 0, which implies that ξα = ΩΛ\K .
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Lemma 1.9.4. Assume the interval ΛL is (1,N )-reduced and suppose that N ≥ 4J . Suppose

the interval Λℓ := Λℓ(j) ⊂ ΛL is (m,E)-regular, where E ∈ I1,δ and

ℓ−κ < m ≤ log

(
1 +

δ(∆− 2J)

4JQ1

)
. (1.9.15)

Then, for sufficiently large ℓ, we have

dist
(
E, σ(H ′

ΛL\∂Λℓ
)
)
> e−ℓ

β

, (1.9.16)

and

∥∥∥P−
i R

(N)
ΛL\∂Λℓ

(E)P+
ΛR(i)

∥∥∥ ≤ e−m
′(R+1) for all i ∈ Λ and R > ℓτ , (1.9.17)

where

m′ ≥ m
(
1− CJ

ℓτ−κ−γβ

)
. (1.9.18)

Proof. The estimate (1.9.16) follows from (1.5.3) and Lemma 1.9.2. Our proof is divided

into two cases the first is when N > Lζ
′
, and the second is when N ∈ [4J, Lζ

′
].

Case 1: Since ΛL is (1,N )-reduced and N > Lζ
′
we have Lemma 1.7.2 for H

(N)
ΛL\∂Λℓ

. So for

all N > Lζ
′
and i ∈ Λ we have

∥∥∥P−
i R

(N)
ΛL\∂Λℓ

(E)P+
ΛR(i)

∥∥∥ ≤ 2Q1

4J2δ
(
1− 2J

∆

) exp(− log

(
1 +

δ(∆− 2J)

4JQ1

)
(R + 1)

)
(1.9.19)

≤ Q1

2J2δ
(
1− 2J

∆

)e−m(R+1) ≤ e−m
′(R+1),
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for all R ≥ ℓτ . Here, we used (1.9.15), and

m′ ≥ m

(
1−

log
1

2J2ξ
ℓτ ℓ−κ

)
= m

(
1−

∣∣∣∣log δ(1−2J
∆

)∣∣∣∣+log(2+
1
J
)

ℓτ−κ

)
(1.9.20)

≥ m

(
1− ℓβ+log(2+

1
J
)

ℓτ−κ

)
≥ m

(
1− C1,J

ℓτ−κ−β

)
,

where we used (1.5.6). This finishes Case 1.

Case 2: Let {φν , ν}ν∈σ(H(N)
Λℓ(j)

)
be an eigensystem for HΛℓ

and {ηκ, κ}κ∈σ(HΛL\Λℓ
) be an eigen-

system for HK\Λ, so {φν ⊗ ηκ, ν + κ}ν∈σ(HΛ),κ∈σ(HK\Λ)
is an eigensystem for HK\∂Λ.

For ϕ, a unit vector, let πϕ = ⟨ϕ, ·⟩ϕ denotes the orthogonal projection onto Cϕ. Since

there are N particles in ΛL in total, we will need to consider all possibilities for how the N

particles can be divided between ΛL and ΛL \ Λℓ. Let N1 be the number of particles in Λℓ

and N2 be the number of particles in ΛL \ Λℓ. Then,

R
(N)′

ΛL\∂Λ(E) =
∑

N1+N2=N
N1≥1,N2≥0

∑
ν∈σ(H(N1)

Λℓ
),

κ∈σ(H(N2)

ΛL\Λℓ
)

(ν + κ− E)−1 πφν ⊗ πηκ (1.9.21)

=
∑

N1+N2=N
N1≥1,N2≥0

∑
κ∈σ(H(N2)

ΛL\Λℓ
)

(
H

(N1)
Λℓ

+ κ− E
)−1

⊗ πηκ ,

so, for i ∈ Λℓ(j),

P−
i R

(N)
ΛL\∂Λℓ

(E)P+
ΛR(i) = P−

i R
(N)′

ΛL\∂Λℓ
(E)P+

ΛR(i) (1.9.22)

=

 ∑
N1+N2=N
N1≥1,N2≥0

∑
κ∈σ(H(N2)

ΛL\Λℓ
)

(
P−
i

(
H

(N1)
Λℓ

+ κ− E
)−1

P+
ΛR(i)∩Λℓ(j)

)
⊗ πηκ

P+
ΛR(i),
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and hence

∥∥∥P−
i R

(N)
ΛL\∂Λℓ

(E)P+
Λi(R)

∥∥∥ =
∥∥∥P−

i P
−
Λℓ
R

(N)′

ΛL\∂Λℓ
(E)P+

Λi(R)

∥∥∥ (1.9.23)

≤
∑

N1+N2=N
N1≥1,N2≥0

∑
κ∈σ(H(N2)

ΛL\Λℓ
)

∥∥∥∥((P−
i

(
H

(N1)
Λℓ

+ κ− E
)−1

P+
ΛR(i)∩Λℓ(j)

)
⊗ πηκ

)
P+
ΛR(i)

∥∥∥∥
≤

∑
N1+N2=N
N1≥1,N2≥0

∑
κ∈σ(H(N2)

ΛL\Λℓ
)

∥∥∥∥P−
i

(
H

(N1)
Λℓ

+ κ− E
)−1

P+
ΛR(i)∩Λℓ(j)

∥∥∥∥
≤
∥∥∥∥P−

i

(
H

(N)
Λℓ

− E
)−1

P+
ΛR(i)∩Λℓ(j)

∥∥∥∥
+

∑
N1+N2=N
N1≥1,N2≥1

∑
κ∈σ(H(N2)

ΛL\Λℓ
)

∥∥∥∥P−
i

(
H

(N1)
Λℓ

+ κ− E
)−1

P+
ΛR(i)∩Λℓ(j)

∥∥∥∥
≤ e−m(R+1) +

∑
N1+N2=N
N1≥1,N2≥1

∑
κ∈(H(N2)

ΛL\Λℓ
)

∥∥∥∥P−
i

(
H

(N1)
Λℓ

+ κ− E
)−1

P+
ΛR(i)∩Λℓ(j)

∥∥∥∥ ,
where we used the hypothesis that the interval Λ = Λℓ(j) is (m,E)-regular to get the last

inequality. We have the estimate:

H
(N1)
Λℓ(j)

− E + κ ≥
(
1− 2J

∆

)
W(N1)

0 − E +
(
1− 2J

∆

)
W(N2)

0 (1.9.24)

≥
(
1− 2J

∆

) (
W(N1)

0 +W(N2)
0

)
− (4J2 + 2J − δ)

(
1− 2J

∆

)
≥
(
1− 2J

∆

)
Q1 − (4J2 + 2J − δ)

(
1− 2J

∆

)
= δ

(
1− 2J

∆

)
(1.9.25)

Inequality (1.9.24) follows from the fact that κ ∈ σ(H
(N2)
ΛL\Λℓ

), so that κ ≥
(
1− 2J

∆

)
W(N1)

0 ,

and Inequality (1.9.25) follows from Theorem 1.4.5. We have two subcases: first suppose

that N1 < 4J ; this implies that WΛℓ
≤ 8J2. In this case we have

H
(N1)
Λℓ

− E + κ ≥ δ
(
1− 2J

∆

)
≥ δ

8J2

(
1− 2J

∆

)
WΛℓ

. (1.9.26)

52



Now if N1 ≥ 4J , then WΛ ≥ 4J2 and we have that

H
(N1)
Λℓ

− E + κ ≥
(
1− 2J

∆

)
WΛℓ

− E + κ ≥
(
1− 2J

∆

)
WΛℓ

− (4J2 − δ)
(
1− 2J

∆

)
(1.9.27)

≥
(
1− 2J

∆

)
WΛℓ

− (4J2 − δ)
(
1− 2J

∆

)WΛℓ

4J2
≥ δ

4J2

(
1− 2J

∆

)
WΛℓ

.

In either case Inequality (1.9.26) holds. Then we have the following

H
(N1)
Λℓ

− (E − κ) ≥ δ

8J2

(
1− 2J

∆

)
WΛℓ

(1.9.28)

=⇒
∥∥∥∥W 1

2
Λℓ

(
H

(N1)
Λℓ

+ κ− E
)−1

W
1
2
Λℓ

∥∥∥∥ ≤ 8J2

δ
(
1− 2J

∆

) .
Moreover, using L ≥ 1,

∣∣∣σ[4J,Lζ′ ](HΛL\Λℓ(j))
∣∣∣ =

∣∣∣∣∣∣
Lζ′⋃
N=4J

σ(H
(N)
ΛL\Λℓ(j)

)

∣∣∣∣∣∣ ≤
Lζ′∑
N=1

(
(2L+ 1− (2ℓ+ 1))2J

N

)
(1.9.29)

≤ ((1 + 2(L− ℓ))2J)L
ζ′

− 1 ≤ (4JL)L
ζ′

.

Thus it follows from Proposition 1.6.4 (as in (1.6.13)) that

∑
N1+N2=N
N1≥1,N2≥1

∑
κ∈σ(H(N2)

ΛL\Λ)

∥∥∥∥P−
i

(
H

(N1)
Λℓ

+ κ− E
)−1

P+
ΛR(i)∩Λℓ(j)

∥∥∥∥ (1.9.30)

≤ Q1

2J2δ
(
1− 2J

∆

) exp(− log

(
1 +

δ(∆− 2J)

4JQ1

)
(R + 1)

)
(4JL)L

ζ′

≤ e−m
′′(R+1),
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for all R ≥ ℓτ . In the previous equation we used (1.9.15), and

m′′ ≥ m

(
1−

log
1

2J2ξ
+Lζ′ log(2L)

ℓτ ℓ−κ

)

= m

(
1− |log δ(1− 2J

∆ )|+log(2+ 1
J
)+ℓγζ

′
log(2ℓγ)

ℓτ−κ

)
≥ m

(
1− ℓβ+log(2+ 1

J
)+ℓγζ

′
log(2ℓγ)

ℓτ−κ

)
≥ m

(
1− 3

ℓτ−κ−γβ

)
, (1.9.31)

which holds because of (1.5.6), τ > κ+ γβ, ζ ′ < β, and because L is taken to be sufficiently

large. Combining (1.9.19) and (1.9.23)-(1.9.30) we get

∥∥∥P−
i R

[4J ]
ΛL\∂Λℓ

(E)P+
ΛR(i)

∥∥∥ = sup
N≥4J

∥∥∥P−
i R

(N)
ΛL\∂Λℓ

(E)P+
ΛR(i)

∥∥∥ ≤ 2e−m
′′(R+1) ≤ e−m

′′′(R+1), (1.9.32)

for R > ℓτ , where m′′′ is as in (1.9.18).

Remark 1.9.5. In what follows, we will occasionally substitute i∗ for i. Given two box sizes

ℓ < L, and the center j of ΛL, we define i∗ as a function of i,

i∗ =


i if |j − i| < L− 2ℓ

j − L+ ℓ if j − i > L− 2ℓ

j + L− ℓ if i− j > L− 2ℓ

(1.9.33)

This guarantees that Λℓ(i∗) ⊂ ΛL(j) for all i ∈ ΛL(j).
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Lemma 1.9.6. Let E ∈ I1,δ. Assume that the interval ΛL is (1,N )-reduced. Let m satisfy

(1.9.15). Let i, j ∈ ΛL with |j − i| < R − 2ℓ so that Λℓ(i∗) ⊂ ΛR(j), and suppose that the

interval Λℓ(i∗) is (m,E)-regular. Then

∥P−
i RΛL

(E)P+
ΛR(j)∥ (1.9.34)

≤ max

{
e−m̃(R+1−|j−i|),max

r∈ΛL

e−m̃max{|r−i|,ℓτ}
∥∥∥P−

r RΛL
(E)P+

ΛR(j)

∥∥∥}

where

m̃ ≥ m(1− Cℓκ+β−τ ) (1.9.35)

for sufficiently large L.

Proof. Let E ∈ I1,δ. Let i, j ∈ ΛL with |j − i| < R − 2ℓ so that Λℓ := Λℓ(i∗) ⊂ ΛR(j).

Consider when N > Lζ
′
. We apply Proposition 1.6.4,

∥P−
i R

(N)
ΛL

(E)P+
ΛR(j)∥ ≤ Q1

2J2δ
(
1− 2J

∆

) (1.9.36)

× exp

(
− log

(
1 +

δ(∆− 2J)

4JQ1

)
(R + 1− |j − i|

)
≤ Q1

2J2δ
(
1− 2J

∆

)e−m(R+1−|j−i|) ≤ e−m
′(R+1−|j−i|)

since R > ℓ and (1.9.15). Also

m′ ≥ m

(
1−

log
1

2J2ξ
ℓℓ−κ

)
= m

(
1−

∣∣∣∣log δ(1−2J
∆

)∣∣∣∣+log(2+
1
J
)

ℓτ−κ

)
(1.9.37)

≥ m

(
1− ℓβ+log(2+

1
J
)

ℓτ−κ

)
≥ m

(
1− C1,J

ℓτ−κ−β

)
,

The nontrivial case is when 4J ≤ N ≤ Lζ
′
. We will consider the Hilbert space H(N)

ΛL
. It
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follows from the resolvent identity that

P−
i R

(N)
ΛL
P+
ΛR(j) = P−

i R
(N)
ΛL\∂Λℓ

P+
ΛR(j) − P−

i R
(N)
ΛL\∂Λℓ

ΓΛL\∂Λℓ
R

(N)
ΛL

(E)P+
ΛR(j) (1.9.38)

=P−
i R

(N)
ΛL\∂Λℓ

P+
Λℓ
P+
ΛR(j) − P−

i R
(N)
ΛL\∂Λℓ

ΓΛL\∂Λℓ
R

(N)
ΛL

(E)P+
ΛR(j)

=0− P−
i R

(N)
ΛL\∂Λℓ

ΓΛL\∂Λℓ
R

(N)
ΛL

(E)P+
ΛR(j)

=− P−
i R

(N)
ΛL\∂Λℓ

P+
Λℓτ (i∗)

ΓΛL\∂Λℓ
R

(N)
ΛL

(E)P+
ΛR(j)

− P−
i R

(N)
ΛL\∂Λℓ

P−
Λℓτ (i∗)

ΓΛL\∂Λℓ
R

(N)
ΛL

(E)P+
ΛR(j)

=− A−B

To estimate A, first consider the case where i = i∗. Then we use (1.2.20) to rewrite

A =
ℓ−1∑
p=ℓτ

P−
i R

(N)
ΛL\∂Λℓ

P+
Λp(i)

P−
{i+p+1,i−p−1}ΓΛL\∂Λℓ

R
(N)
ΛL

(E)P+
ΛR(j). (1.9.39)

From here we apply the fact that Λℓ(i) is (m,E)-regular to get that

∥A∥ ≤
ℓ−1∑
p=ℓτ

∥P−
i R

(N)
ΛL\∂Λℓ

P+
Λp(i)

∥∥P−
{i+p+1,i−p−1}ΓΛL\∂Λℓ

R
(N)
ΛL

(E)P+
ΛR(j)∥ (1.9.40)

≤
ℓ−1∑
p=ℓτ

e−m
′(p+1)∥P−

{i+p+1,i−p−1}ΓΛL\∂Λℓ
R

(N)
ΛL

(E)P+
ΛR(j)∥

≤ e−m
′ℓ∥P−

{i+ℓ,i−ℓ}ΓΛL\∂Λℓ
R

(N)
ΛL

(E)P+
ΛR(j)∥ (1.9.41)

+ 4J2

ℓ−2∑
p=ℓτ

e−m
′(p+1)∥P−

{i+p+1,i−p−1}R
(N)
K (E)P+

ΛR(j)∥.
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We proceed by focusing on the first term of (1.9.41).

∥P−
{i+ℓ,i−ℓ}ΓΛL\∂Λℓ

(· · · )∥ ≤ ∥ΓΛL\∂Λℓ
(· · · )∥ (1.9.42)

≤ ∥h̃i+ℓ,i+ℓ+1P
−
{i+ℓ,i+ℓ+1}(· · · )∥+ ∥h̃i−ℓ,i−ℓ−1P

−
{i−ℓ,i−ℓ−1}(· · · )∥

≤ 4J2∥P−
{i+ℓ,i+ℓ+1}(· · · )∥+ 4J2∥P−

{i−ℓ,i−ℓ−1}(· · · )∥

= 4J2∥(P−
i+ℓ + P+

i+ℓP
−
i+ℓ+1)(· · · )∥+ 4J2∥(P−

i−ℓ + P+
i−ℓP

−
i−ℓ−1)(· · · )∥

≤ 4J2
∑

s∈∂ΛLΛℓ

∥P−
s (· · · )∥

Returning to (1.9.41), we see that:

∥A∥ ≤ e−m
′ℓ4J2

∑
s∈∂ΛLΛℓ

∥P−
s R

(N)
ΛL

(E)P+
ΛR(j)∥ (1.9.43)

+ 4J2

ℓ−2∑
p=ℓτ

e−m
′(p+1)∥P−

{i+p+1,i−p−1}R
(N)
ΛL

(E)P+
ΛR(j)∥

≤
∑

r∈Λℓ+1(i)\Λℓτ (i)

e−m
′′|r−i|∥P−

r R
(N)
ΛL

(E)P+
ΛR(j)∥ (1.9.44)

Where we used m′′ ≥ m′(1 − Cℓκ−1) and ∥h̃n,n+1∥ = 4J2. If i ̸= i∗ then a similar estimate

holds. In either case we get

∥A∥ ≤
∑

r∈Λℓ+1(i∗)\Λℓτ (i)

e−m
′′|r−i|∥P−

r R
(N)
ΛL

(E)P+
ΛR(j)∥. (1.9.45)
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Now we estimate B.

∥B∥ = ∥P−
i R

(N)
ΛL\∂Λℓ

P−
Λℓτ (i∗)

ΓΛL\∂Λℓ
R

(N)
ΛL

(E)P+
ΛR(j)∥ (1.9.46)

≤ ∥P−
i R

(N)
ΛL\∂Λℓ

P−
Λℓτ (i∗)

∥∥P−
Λℓτ (i∗)

ΓΛL\∂Λℓ
R

(N)
ΛL

(E)P+
ΛR(j)∥

= ∥P−
i R

′(N)
ΛL\∂Λℓ

P−
Λℓτ (i∗)∥∥ΓΛL\∂Λℓ

P−
Λℓτ (i∗)

R
(N)
ΛL

(E)P+
ΛR(j)∥

≤ 4J2eℓ
β
∑

s∈∂ΛLλℓ

∥P−
Λℓτ (i∗)

P−
s R

(N)
ΛL

(E)P+
ΛR(j)∥

Next we estimate ∥P−
Λℓτ (i∗)

P−
s R

(N)
ΛL

(E)P+
ΛR(j)∥, which we will do by using Lemma 1.6.6.

dist
(
SΛℓτ (i) ∩ S∂ΛLΛℓ

,M
(N)
Λℓ

\ SΛR(j)

)
≥ dist

(
SΛℓτ (i),M

(N)
Λℓ

\ SΛR(j)

)
(1.9.47)

≥ R + 1− |j − i| − ℓτ

dist
(
Λℓτ (i), ∂

ΛLΛℓ(i)
)
≥ ℓ− ℓτ

dist
(
SΛℓτ (i) ∩ S∂ΛLΛℓ

,M
(N)
Λℓ,1

)
≥ ℓ− ℓτ − (N − 2) ≥ ℓ− ℓτ − Lζ

′
. (1.9.48)

The inequality (1.9.48) is not immediately obvious. Consider m∗, a configuration in SΛℓτ (i)∩

S∂ΛLΛℓ
⊂ M

(N)
Λℓ

. Suppose m∗ is as close as possible to M
(N)
Λℓ,1

. It must be the case that m∗

consists of a single particle in ∂Λℓ(i), as well as a single particle in ∂inΛℓτ , the remaining

N−2 particles are arranged in a connected configuration somewhere inside Λℓ \Λℓτ and that

component is connected to either one of the boundary particles. In this case it is clear that

the distance to move the disconnected particle at the boundary to the connected component

in the interior is at least the desired inequality. Continuing where we left off, if we let s from

Lemma 1.6.6 be 3ℓ/4, then ℓτ ≤ s ≤ (ℓ− ℓτ − Lζ
′
) + ℓτ = ℓ− Lζ

′
.

∥P−
Λℓτ (i∗)

P−
s R

(N)
ΛL

(E)P+
ΛR(j)∥ ≤

√
2

J2δ
(
1− 2J

∆

)e− log(1+ δ(∆−2J)
32J )(R+1−|j−i|−ℓτ ) (1.9.49)

+

√
2

J2δ
(
1− 2J

∆

) ∑
r∈ΛL

e− log(1+ δ(∆−2J)
32J )(1− 4

3
ℓτ−1)max{|r−i|,3ℓ/4}

∥∥∥P−
r R

(N)
ΛL

(E)P+
ΛR(j)

∥∥∥
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Combining all the previous estimates,

∥P−
i R

(N)
ΛL

(E)P+
ΛR(j)∥ ≤

∑
r∈Λℓ+1(i∗)\Λℓτ (i)

e−m
′′|r−i|∥P−

r R
(N)
ΛL

(E)P+
ΛR(j)∥ (1.9.50)

+
4
√
2eℓ

β

J2δ
(
1− 2J

∆

)e− log(1+ δ(∆−2J)
32J )(R+1−|j−i|−ℓτ )

+
4
√
2eℓ

β

J2δ
(
1− 2J

∆

) ∑
r∈ΛL

e− log(1+ δ(∆−2J)
32J )(1− 4

3
ℓτ−1)max{|r−i|,3ℓ/4}

∥∥∥P−
r R

(N)
ΛL

(E)P+
ΛR(j)

∥∥∥
≤

∑
r∈Λℓ+1(i∗)\Λℓτ (i)

e−m
′′|r−i|∥P−

r R
(N)
ΛL

(E)P+
ΛR(j)∥

+ e2ℓ
β

e− log(1+ δ(∆−2J)
32J )(R+1−|j−i|−ℓτ )

+ e2ℓ
β
∑
r∈ΛL

e− log(1+ δ(∆−2J)
32J )(1− 4

3
ℓτ−1)max{|r−i|,3ℓ/4}

∥∥∥P−
r R

(N)
ΛL

(E)P+
ΛR(j)

∥∥∥ .

This holds assuming ℓ is large enough. We use the hypothesis on m, (1.9.15) and obtain

∥P−
i R

(N)
ΛL

(E)P+
ΛR(j)∥ ≤ e−m

′′′(R+1−|j−i|) (1.9.51)

+
∑
r∈ΛL

e−m
′′′ max{|r−i|,ℓτ}

∥∥∥P−
r R

(N)
K (E)P+

ΛR(j)

∥∥∥
≤ e−m

′′′(R+1−|j−i|−ℓτ ) + (2L+ 1)max
r∈ΛL

e−m
′′′ max{|r−i|,ℓτ}

∥∥∥P−
r R

(N)
ΛL

(E)P+
ΛR(j)

∥∥∥
≤ max

{
e−m

′′′′(R+1−|j−i|),max
r∈ΛL

e−m
′′′′ max{|r−i|,ℓτ}

∥∥∥P−
r R

(N)
ΛL

(E)P+
ΛR(j)

∥∥∥}

When we incorporate (1.9.36), we arrive at the desired result.

∥P−
i RΛL

(E)P+
ΛR(j)∥ = sup

N
∥P−

i R
(N)
ΛL

(E)P+
ΛR(j)∥ (1.9.52)

≤ max

{
e−m

(v)(R+1−|j−i|),max
r∈ΛL

e−m
(v) max{|r−i|,ℓτ}

∥∥∥P−
r R

(N)
ΛL

(E)P+
ΛR(j)

∥∥∥} .
It is not too difficult to show that only a small amount of mass is lost: m(v) ≥ m(1−Cℓκ+β−τ ).
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1.9.2 Buffer Intervals

Definition 1.9.7. An interval Υ ⊂ ΛL is called an (m,E)-buffer if for all s ∈ ∂ΛLΥ we have

that s∗ = s and Λℓ(s) is an (m,E)-regular interval. In this case we set Υ′ = Υ \ ∂ΛLΥ.

Definition 1.9.8. Given an interval Υ ⊂ ΛL, we set Υ̂ = Υ ∪ (∪s∈∂ΛLΥΛℓ(s))

Lemma 1.9.9. Let E ∈ I1,δ, and let m̃ be as in (1.9.35). Assume that ΛL is (1,N )-reduced.

Let Υ ⊂ ΛL be an (m,E)-buffer, where m satisfies (1.9.15), j ∈ ΛL and Υ̂ ⊂ ΛR(j). Assume

that dist
(
E, σ(H ′

ΛL\∂Υ)
)
> e−L

β
. There exist sΥ ∈ ∂ΛL

Υ such that for all q ∈ Υ′ we have

∥P−
q RL(E)P

+
ΛR(j)∥ (1.9.53)

≤ 16J2eL
β

max

{
e−m̃(R+1−|sΥ−j|),max

r∈ΛL

e−m̃max{|r−sΥ|,ℓτ}∥P−
r RL(E)P

+
ΛR(j)∥

}
.

Proof. Let Υ ⊂ ΛL be an (m,E)-buffer, where E ∈ I1,δ, and let j ∈ ΛL, Υ̂ ⊂ ΛR(j), and

q ∈ Υ′. It follows from the resolvent identity that,

P−
q RL(E)P

+
ΛR(j) = −P−

q RΛL\∂Υ(E)ΓΛL\∂ΥRL(E)P
+
ΛR(j), (1.9.54)

Hence,

∥P−
q RL(E)P

+
ΛR(j)∥ ≤ ∥R′

ΛL\∂Υ(E)∥∥Γ∂ΥRL(E)P
+
ΛR(j)∥ (1.9.55)

≤ 4J2eL
β
∑

s∈∂ΛLΥ

∥P−
s RL(E)P

+
ΛR(j)∥ ≤ 16J2eL

β∥P−
sΥ
RL(E)P

+
ΛR(j)∥,

where s = sΥ is selected from ∂ΛLΥ so that ∥P−
s RL(E)P

+
ΛR(j)∥ is at a maximum. For

s ∈ ∂ΛL(Υ) we have, since Υ is a buffer, that Λℓ(s) is an (m,E)-regular interval. Since ΛL is

(1,N )-reduced, E ∈ I1,δ and (1.9.15) holds, it follows from Lemma 1.9.6 that (1.9.34) holds

with i = sΥ. The conclusion follows from (1.9.55) and (1.9.34).
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1.10 The Multiscale Analysis

Theorem 1.10.1. Fix ∆0 > 2J , λ0 > 0, and δ ∈ (0, 1). Suppose ∆0, λ0, δ, and the scale L0

satisy (1.5.5)- (1.5.7) Let ∆ ≥ ∆0, and λ ≥ λ0, consider an interval I ⊂ I1,δ, and suppose

that with the parameters ∆ and λ we have

P{R(m0, L0, I, u, v)} ≥ 1− e−L
ζ
0 for all u, v ∈ Z with |u− v| > 2L0, (1.10.1)

where m0 satisfy (1.5.11).

Then, if L0 is sufficiently large, depending on λ0 and ∆0, setting Lk+1 = Lγk, we have

P{R(mk, Lk, I, u, v)} ≥ 1− e−L
ζ
k for all u, v ∈ Z with |u− v| > 2Lk, (1.10.2)

for all k = 0, 1, . . . Also mk is a decreasing sequence with mk ≥ m0/2.

Proof. The theorem is proven by induction. We start with a scale ℓ ≥ L0 and move to scale

L = ℓγ. Let ℓ−κ < m ≤ m0, so that m satisfies (1.9.15) with ∆0 and λ0 at scale ℓ, and

suppose we have

P{R(m, ℓ, I, u, v)} ≥ 1− e−ℓ
ζ

for all u, v ∈ Z with |u− v| > 2ℓ. (1.10.3)

We will show that, if ℓ is sufficiently large, the same statement holds at scale L with a new

mass m1 with

L−κ ≤ m(1− Cℓ−q) ≤ m1 ≤ log

(
1 +

δ(∆0 − 2J)

4JQ1

)
(1.10.4)

Here C > 0 and q > 0, in particular this means that m1 satisfies (1.9.15) at scale L. Select

u ∈ Z and consider and interval ΛL = ΛL(u). Let Y be the event that ΛL is (1,N )-reduced.
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We know from Lemma 1.7.2 that

P{Y} ≥ 1− e−
cµ
4
Lζ′

> 1− 1
10
e−L

ζ

(1.10.5)

Let Ξ = ΞL,ℓ(u) be the collection of intervals Λℓ ⊂ ΛL, that is

Ξ = {Λℓ(y) : y ∈ ΛL−ℓ(u)} so |Ξ| ≤ 2L. (1.10.6)

We set (recall (1.5.4))

Sℓ = 2⌊ℓ(γ−1)ζ∗⌋ − 1. (1.10.7)

For each n ∈ N we consider the event B(n), that for some E ∈ I there exist at least n

(m,E)-nonregular disjoint intervals in Ξ. Note that

B(2) =
⋃

v,v′∈Ξ
|v−v′|>2ℓ

(R(m, ℓ, I, v, v′))c (1.10.8)

It follows from (1.10.3) that

P(B2) ≤ (2L)2e−ℓ
ζ

(1.10.9)

Observe that Sℓ + 1 is an even integer and that events based on disjoint intervals are inde-

pendent. From this, we have

P{B(Sℓ + 1)} ≤ (P{B(2)})
Sℓ+1

2 ≤
(
4ℓ2γe−ℓ

ζ
)⌊ℓ(γ−1)ζ∗⌋

≤ 1
10
e−L

ζ

. (1.10.10)

Let ω ∈ (B(Sℓ + 1))c and E ∈ I. Then there exists Aω(E) = {a1, a2, . . . , aS} ⊂ Ξ, where

S ≤ Sℓ, |as − as′| > 2ℓ for s ̸= s′ and Λℓ(b) is (m,E)-regular for all Λℓ(b) ∈ Ξ \
⋃
s Λ2ℓ(as).
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We will construct a collection of disjoint (m,E)-buffer intervals, {Υt}t=1,...,T , where T ≤ S,

which contain the S disjoint (m,E)-nonregular intervals. From this we know that if b ∈ Y =

ΛL \ ∪tΥ′
t then Λℓ(b) is (m,E)-regular.

We need to estimate the size of Υ =
⋃T
t=1Υt from above. Notice that the worst case is when

T = S, this means that the disjoint nonregular intervals are far enough away from each

other such that when each one is covered with an interval of length 2(2ℓ + 1), and there is

no overlap between the buffers. Also suppose that one nonregular interval, say B, is close

enough to (say) the left end point of ΛL that when B is covered by an interval, ΥB, with

2ℓ+1 points on each side there is not enough space for an interval of size ℓ to fit on the left

hand side; in this case we expand ΥB all the way to the left endpoint of ΛL. Here we have

that |ΥB| ≤ 2(2ℓ+ 1) + ℓ+ 1. In total we have

|Υ| =
T∑
t=1

|Υt| ≤ 2(2ℓ+ 1)S + 2(ℓ+ 1) ≤ 6ℓ(Sℓ + 1) (1.10.11)

≤ 12ℓ(γ−1)ζ∗−1 < ℓγ∗ < ℓγτ = Lτ .

Where, using (1.5.1), γ∗ is chosen to satisfy

(γ − 1)ζ∗ + 1 < γ∗ < γτ. (1.10.12)

For E ∈ I we consider the event

Gu,L(E) = {dist(E, σ(H ′
ΛL(u),K

)) > e−L
β

for all intervals K ∈ Ku,L}, (1.10.13)

where Ku,L denotes the collection of all intervals K ⊂ ΛL(u) such that either ℓ ≤ |K| ≤ ℓγ∗

or K = ΛL (note HΛL,ΛL
= HΛL

). Then for all ω ∈ (B(Sℓ + 1))c ∩ Gu,L(E) the disjoint

(m,E)-buffers {Υt}t=1,...,T satisfy the hypothesis of Lemma 1.9.9.
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Let E ∈ I and ω ∈ Y ∩ (B(Sℓ + 1))c ∩ Gu,L(E) and set

G(r) = ∥P−
r (HL − E)−1P+

ΛR(i)∥ for r ∈ ΛL (1.10.14)

So, for all r ∈ ΛL we have the estimate G(r) ≤ ∥(HL − E)−1∥ ≤ eL
β
. For R > Lτ , we will

use previous lemmas to obtain the estimate G(i) ≤ e−m1(R+1). The following two estimates

are essential:

1. Let j ∈ ΛL with Λℓ(j∗) ⊂ ΛR(i) and Λℓ(j∗) is (m,E)-regular. Then from Lemma 1.9.6

we have that

G(j) ≤ max

{
e−m

(1)(R+1−|j−i|),max
r∈ΛL

e−m
(1) max{|r−j|,ℓτ}G(r)

}
. (1.10.15)

2. Suppose for some t, that q ∈ Υ′
t such that d(i,Υt)+|Υt|+1+ℓ ≤ R, so that Υ̂t ⊂ ΛR(i).

Then it follows from Lemma 1.9.9 that there exists st = sΥt ∈ ∂ΛLΥt such that for all

q ∈ Υ′
t we have

G(q) ≤ 8J2eL
β

max

{
e−m

(1)(R+1−|st−j|),max
r∈ΛL

e−m
(1) max{|r−st|,ℓτ}G(r)

}
(1.10.16)

≤ max

{
e−m

(2)(R+1−|st−j|),max
r∈ΛL

e−m
(2) max{|r−st|,ℓτ}G(r)

}

where

m(2) ≥ m(1)(1− Cℓγβ+κ−τ ) ≥ m(1− C ′ℓγβ+κ−τ ). (1.10.17)

We notice that the right hand of the estimate does not depend on q, therefore we can say

G(Υ′
t) = max

t∈Υ′
t

G(q) ≤ max

{
e−m

(2)(R+1−|st−j|),max
r∈ΛL

e−m
(2) max{|r−st|,ℓτ}G(r)

}
. (1.10.18)
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We will frequently change m, the rate of decay, throughout the proof. Each time the rate

of decay changes we will increase the number in the superscript. It can be shown that the

following inequality holds at each step

m(n) ≥ m(n−1)
(
1− Cnℓ

−qn
)
, (1.10.19)

where for every n, Cn and qn are positive constants which can be calculated explicitly. We

will adjust the mass finitely many times in the following procedure. The goal of the following

portion of the proof is to attain an estimate of the form

G(i) ≤ e−m
(n)(R+1) (1.10.20)

for any choice of i. If G(i) = 0 we have the estimate and we stop immediately; henceforth

assume G(i) ̸= 0. Suppose first that i ∈ Y , then it follows from (1.10.15) that

G(i) ≤ max

{
e−m

(1)(R+1),max
r∈ΛL

e−m
(1) max{|r−i|,ℓτ}G(r)

}
. (1.10.21)

If the first argument of the max is larger then we have the desired estimate and we stop.

Suppose not, then we have that

G(i) ≤ e−m
(1) max{|r1−i|,ℓτ}G(r1) for some r1 ∈ ΛL. (1.10.22)

If |r1 − i| > R− 2ℓ, then

G(i) ≤ e−m
(1)(R−2ℓ)eL

β ≤ e−m
(2)(R+1), (1.10.23)

and again we are done. If |r1 − i| ≤ R − 2ℓ and r1 ∈ Y , we can apply (1.10.15) again, this
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time we have

G(i) ≤ e−m
(1) max{|r1−i|,ℓτ}max

{
e−m

(1)(R+1−|r1−i|),max
r∈ΛL

e−m
(1) max{|r−r1|,ℓτ}G(r)

}
(1.10.24)

≤ max

{
e−m

(1)(R+1),max
r∈ΛL

e−m
(1) max{|r−i|,2ℓτ}G(r)

}

Proceeding as above, if either (1.10.22) or (1.10.23) hold then we stop. Or we have

G(i) ≤ e−m
(1) max{|r2−i|,2ℓτ}G(r2) for some r2 ∈ ΛL with |r2 − i| ≤ R− 2ℓ. (1.10.25)

If r2 ∈ Y we can repeat the procedure. In fact we can continue to repeat the procedure as

long as rn is in Y . Eventually we will either have, for some n∗ the estimate,

max{|rn∗ − i|, n∗ℓ
τ} ≥ R− 2ℓγ∗ (1.10.26)

in which case we arrive at

G(i) ≤ e−m
(1) max{|rn∗−i|,n∗ℓτ}G(rn∗) ≤ e−m

(1)(R−2ℓγ∗ )eL
β ≤ e−m

(2)(R+1) (1.10.27)

and we are done, or rn ̸∈ Y and (1.10.26) does not hold. In the second case we must have

rn = rn1 ∈ Υ′
t1
for some t1, and

G(i) ≤ e−m
(1)|rn1−i|G(rn1) ≤ e−m

(1)d(i,Υ′
t1
)G(Υ′

t1
). (1.10.28)

Notice that since (1.10.26) is false we have that

d(i,Υt1) + |Υt1|+ 1 + ℓ ≤ |rn1 − i|+ 2ℓγ∗ ≤ R. (1.10.29)
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In order to cover all possibilities we take the convention that n1 ≥ 0 and r0 = i. To handle

the future situations where {rn} leaves Y we say that {rnj
} is the subsequence of {rn} which

contains only the points which lie inside ∪iΥ′
ti
(without satisfying (1.10.26)). To continue

we will apply (1.10.18) and obtain

G(i) ≤ e−m
(1)d(i,Υ′

t1
)max

{
e−m

(2)(R+1−|st−j|),max
r∈ΛL

e−m
(2) max{|r−st|,ℓτ}G(r)

}
. (1.10.30)

If the first argument is maximal then we have

G(i) ≤ e−m
(2)(d(i,Υ′

t1
)+(R+1−|st−j|)) ≤ e−m

(2)(R+1−|Υt1 |) (1.10.31)

≤ e−m
(2)(R+1−ℓγ∗ ) ≤ e−m

(3)(R+1)

and we are done. If the second portion is maximal then we move to another step

G(i) ≤ e−m
(1)d(i,Υ′

t1
)e−m

(2) max{|rn1+1−st|,ℓτ}G(rn1+1) ≤ e−m
(2)(|rn1+1−i|−|Υt1 |)G(rn1+1). (1.10.32)

If |rn1+1 − i| ≥ R− 2ℓγ∗ , then we can obtain the estimate G(i) ≤ e−m
(3)(R+1). If |rn1+1 − i| <

R − 2ℓγ∗ , then we will apply the same strategy again. Notice however that if rn1+1 ∈ Υ′
t1

then from the first inequality in (1.10.32) we get that

G(i) ≤ e−m
(2)ℓτ e−m

(1)d(i,Υ′
t1
)G(Υ′

t1
). (1.10.33)

If this is the case then the preceding argument can be summarized by the following implica-

tion:

G(i) ≤ e−m
(1)d(i,Υ′

t1
)G(Υ′

t1
) =⇒ G(i) ≤ e−m

(2)ℓτ e−m
(1)d(i,Υ′

t1
)G(Υ′

t1
). (1.10.34)

The chain of implications can iterate indefinitely, so G(i) = 0. This possibility was already

ruled out from the beginning; therefore rn1+1 ̸∈ Υ′
t1
. From this point on we continue the
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iterating process as long as necessary, we move along some sequence of points in ΛL:

{rn} = {r0, r1, . . . , rn1 , rn1+1, . . . rn2 , rn2+1 . . . rnb
, . . . rnb+k}. (1.10.35)

Notice that if rni
, rnj

∈ Υ′
ti
and nj > ni then an argument along the same lines as in (1.10.34)

will imply that G(i) = 0. This means that the stepping process visits each buffer interval at

most once before terminating. Either the process terminates (as in (1.10.21), (1.10.23), or,

(1.10.31) ) or we attain an estimate of this form:

G(i) ≤ e−m
(2)d(i,Υ′

t1
)e−m

(2) max{d(st1 ,Υ
′
t2
),ℓτ} · · · e−m

(2) max{d(stb−1
,Υ′

tb
),ℓτ}e−m

(2)|rnb+k−stb ,|G(rnb+k)

with, |rnb+k − i| > R− 2ℓγ∗ . (1.10.36)

This is still satisfactory though:

G(i) ≤ e−m
(2)d(i,Υ′

t1
)e−m

(2) max{d(st1 ,Υ
′
t2
),ℓτ} · · · e−m

(2) max{d(stb−1
,Υ′

tb
),ℓτ}e−m

(2)|rnb+k−stb |eL
β

≤ e
−m(2)

(
d(i,Υt′1

)+
(
d(Υ′

t1
,Υt′2

)−|Υt1 |−ℓ
)
+···+

(
d(Υ′

tb−1
,Υt′

b
)−|Υtb−1

|−ℓ
))
e−m

(2)|rnb+k−stb |eL
β

≤ e−m
(2)(|rnb+k−i|−2ℓγ∗ )eL

β ≤ e−m
(2)(R−4ℓγ∗ )eL

β ≤ e−m
(3)(R+1). (1.10.37)

We have shown that for E ∈ I and ω ∈ Y ∩ (B(Sℓ + 1))c ∩ G(E) that

G(i) = ∥P−
i (HL − E)−1P+

ΛR(i)∥ ≤ e−m
(3)(R+1) for all i ∈ ΛL and R > Lτ . (1.10.38)

In this case we see that ΛL(u) is (m
(3), E)-regular.

Now let u, v ∈ Z with |u− v| > 2L, and set Yu,v,L = Yu,L ∩Yv,L. If K ∈ Ku,L and K ′ ∈ Kv,L

then from Lemma 1.7.7 we have

P{{d(σI1(HK), σI1(HK′)) ≤ 2e−L
β} ∩ Yu,v,L} ≤ C4αe−αL

β

λ−α0 (2L+ 1)16Q1+2 < e−
2
3
αLβ

.
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(1.10.39)

Define the event

Gu,v,L =
{
d(σI1(HK), σI1(HK′)) > 2e−L

β

for all K ∈ Ku,L, K
′ ∈ Kv,L

}
. (1.10.40)

It follows that

P{Gcu,v,L ∩ Yu,v,L} ≤ (2Lℓγ∗)2e−
2
3
αLβ

< e−
1
2
αLβ

, (1.10.41)

for sufficiently large L. Also,

Gu,v,L ⊂ Gu,L(E) ∪ Gv,L(E) for all E ∈ I. (1.10.42)

This holds for the following reason: if ω ∈ Gu,v,L ∩ Gu,L(E)c we must have ω ∈ Gv,L(E),

and similarly for the same statement with u and v interchanged. We now define the event

Eu,v,L = (B(Sℓ + 1))c ∩ Gu,v,L ∩ Yu,v,L. From (1.10.41), (1.10.10), and (1.10.5) we get

P{Ecu,v,L} ≤ P{B(Sℓ + 1)}+ P{Gcu,v,L ∩ Yu,v,L}+ P{Yc
u,v,L} (1.10.43)

≤ 1
10
e−L

ζ

+ e−
1
2
αLβ

+ 1
10
e−L

ζ ≤ e−L
ζ

, (1.10.44)

for a sufficiently large L. Moreover from (1.10.38) and (1.10.42),

Eu,v,L ⊂ R(m(3), L, I, u, v). (1.10.45)
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Therefore we conclude that

P{R(m(3), L, I, u, v)} ≥ 1− e−L
ζ

. (1.10.46)

We can finish the proof by induction. Let Lk+1 = Lγk for k = 0, 1, 2 . . . . For k = 0 the

conclusion holds with mass m0 by the hypothesis. If it holds for k with mass mk then it

holds for k + 1 with mass mk+1 = m
(3)
k , that is

mk+1 ≥ mk(1− C1L
−q1
k )(1− C2L

−q2
k )(1− C3L

−q3
k ) ≥ mk(1− C∗L

−q∗
k ) (1.10.47)

It is apparent that as long as C∗ and q∗ are greater than 0, and L0 is large enough then the

product of terms (1 − C∗L
−q∗
k ) will converge to a positive number. Simply taking L0 large

enough can guarantee the inequality mk > m0/2 for all k.

Corollary 1.10.2. Assume the hypotheses of Theorem 1.10.1. Then, if L0 is sufficiently

large, for all L ≥ Lγ0 we have

P{R(m0

4
, L, I, u, v)} ≥ 1− e−L

ξ

for all u, v ∈ Z with |u− v| > 2L. (1.10.48)

The proof follows from the next lemma.

Lemma 1.10.3. Given ∆0 > 1, λ0 > 0 and δ ∈ (0, 1), let the scale ℓ satisfy (1.5.6). Let

E ∈ I ⊂ I1,δ and let L = ℓγ
′
, where γ ≤ γ′ < γ2. Consider a (1,N )-reduced interval ΛL(u)

and suppose every interval Λℓ(u
′) is (m,E)-regular for all u′ ∈ ΞL,Lk−1

(u), and m satisfies

(1.9.15). Then for sufficiently large ℓ,

∥(HΛL(u) − E)−1∥ ≤ eL
β

. (1.10.49)

Proof. Let Λ = ΛL(u), HΛ = HΛL(u), and RΛ(E) = (HΛ−E)−1. Suppose Λ is (1,N )-reduced
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and every interval Λℓ(u
′) is (m,E)-regular for all u′ ∈ ΞL,Lk−1

(u). Since Λ is (1,N )-reduced

it follows from Lemma 1.7.2 that for N > Lζ
′
,

∥(H(N)
Λ − E)−1∥ ≤ 2Q1

4J2δ
(
1− 2J

∆0

) ≤ eL
β

. (1.10.50)

We now fix 4J ≤ N ≤ Lζ
′
, and omit N from the notation. Let i ∈ ΛL. With some basic

computations we have:

P−
i RΛ(E) = P−

i RΛ/∂Λℓ
(E)(HΛ/∂Λℓ

− E)RΛ(E) (1.10.51)

= P−
i RΛ/∂Λℓ

(E)(HΛ − E − ΓΛ\∂Λℓ
)RΛ(E)

= P−
i RΛ/∂Λℓ

(E)− P−
i RΛ/∂Λℓ

(E)ΓΛ\∂Λℓ
RΛ(E).

Since Λℓ(i∗) is (m,E)-regular, we have from Lemma 1.9.4

∥P−
i RΛ(E)∥ ≤ ∥R′

Λ/∂Λℓ
(E)∥+ ∥P−

i RΛ/∂Λℓ
(E)ΓΛ\∂Λℓ

RΛ(E)∥ (1.10.52)

≤ eℓ
β

+ ∥P−
i RΛ/∂Λℓ

(E)ΓΛ\∂Λℓ
RΛ(E)∥.

We estimate the second term,

∥P−
i RΛ/∂Λℓ

(E)ΓΛ\∂Λℓ
RΛ(E)∥ (1.10.53)

≤ ∥P−
i RΛ/∂Λℓ

(E)P+
Λℓτ (i)

ΓΛ\∂Λℓ
RΛ(E)∥+ ∥P−

i RΛ/∂Λℓ
(E)P−

Λℓτ (i)
ΓΛ\∂Λℓ

RΛ(E)∥

≤ ∥P−
i RΛ/∂Λℓ

(E)P+
Λℓτ (i)

∥∥ΓΛ\∂Λℓ
∥∥RΛ(E)∥+ ∥P−

i RΛ/∂Λℓ
(E)∥∥P−

Λℓτ (i)
ΓΛ\∂Λℓ

RΛ(E)∥

≤ 8J2e−mℓ
τ∥RΛ(E)∥+ eℓ

β∥P−
Λℓτ (i)

ΓΛ\∂Λℓ
RΛ(E)∥,

Next we use that R
(N)
Λ,1 (E) = (H

(N)
Λ,1 − E)−1, recalling (1.6.1),

H
(N)
Λ,1 = H

(N)
Λ + (Q1 − 1)

(
1− 2J

∆0

)
P

(N)
Λ,1 . (1.10.54)
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We continue our calculation with the resolvent identity, the dependence on E is suppressed

for brevity.

∥P−
Λℓτ (i)

ΓΛ\∂Λℓ
RΛ∥ ≤ ∥P−

Λℓτ (i)
ΓΛ\∂Λℓ

R
(N)
Λ,1 ∥+Q1

(
1− 2J

∆0

)
∥P−

Λℓτ (i)
ΓΛ\∂Λℓ

R
(N)
Λ,1 P

(N)
Λ,1 RΛ∥

≤ 8J2∥P−
Λℓτ (i)

R
(N)
Λ,1 ∥+Q1

(
1− 2J

∆0

)
∥P−

Λℓτ (i)
ΓΛ\∂Λℓ

R
(N)
Λ,1 P

(N)
Λ,1 ∥∥RΛ∥

≤ 8J2Q1

δ
(
1− 2J

∆0

) + 4J2Q1

(
1− 2J

∆0

)
∥RΛ∥

∑
b∈∂Λℓ(i∗)

∥P−
b P

−
Λℓτ (i)

R
(N)
Λ,1 P

(N)
Λ,1 ∥

≤ 8J2Q1

δ
(
1− 2J

∆0

) +
8J2Q2

1

δ
∥RΛ∥

∑
b∈∂Λℓ(i∗)

e
− log

(
1+

δ(∆0−2J)
4JQ1

)
dist(SΛℓτ (i)∩Sb,M

(N)
Λ,1 )

≤ 8J2Q1

δ
(
1− 2J

∆0

) + ∥RΛ∥
16J2Q2

1

δ
e
− log

(
1+

δ(∆0−2J)
4JQ1

)
ℓ(1−2ℓ−q)

. (1.10.55)

In the preceding argument, Corollary 1.6.5 was applied twice. Notice that for each b ∈

∂Λℓ(i∗) we have that

dist(SΛℓτ (i)∩Sb,M
(N)
Λ,1 ) ≥ ℓ−ℓτ−(N−2) ≥ ℓ−ℓτ−Lζ′ ≥ ℓ−ℓτ−ℓζ′γ2 ≥ ℓ(1−2ℓ−q). (1.10.56)

With q = 1−max{τ, ζ ′, γ2} > 0. Putting it all together, along with (1.9.15) we have that

∥P−
i RΛ(E)∥ ≤ eℓ

β

+ 8J2e−mℓ
τ∥RΛ(E)∥ (1.10.57)

+ eℓ
β

 8J2Q1

δ
(
1− 2J

∆0

) +
16J2Q2

1

δ
e
− log

(
1+

δ(∆0−2J)
4JQ1

)
ℓ(1−2ℓ−q)∥RΛ(E)∥


≤

1 +
8J2Q1

δ
(
1− 2J

∆0

)
 eℓ

β

+

(
8J2e−ℓ

−κℓτ +
16J2Q2

1

δ
eℓ

β−ℓ−κℓ(1−2ℓ−q)

)
∥RΛ(E)∥

≤ e2ℓ
β

+ Ce−ℓ
τ−κ∥RΛ(E)∥.
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This holds for sufficiently large ℓ. Therefore

∥RΛ(E)∥ ≤
∑
i∈ΛL

∥P−
i RΛ(E)∥ ≤ (2L+ 1)

(
e2ℓ

β

+ Ce−ℓ
τ−κ∥RΛ(E)∥

)
(1.10.58)

≤ e3ℓ
β

+ 1
2
∥RΛ(E)∥ =⇒ ∥RΛ(E)∥ ≤ 2e3ℓ

β ≤ eL
β

.

We have now proved the bound holds when N ≤ Lζ
′
and when N > Lζ

′
.

Proof of Corollary 1.10.2 We assume the conclusions of Theorem 1.10.1. Given a scale

L ≥ Lγ0 = L1, let k = k(L) be a natural number, chosen so that Lk ≤ L < Lk+1. We have

that Lk = Lγk−1 ≤ L < Lγ
2

k−1. So L = Lγ
′

k−1 for some γ′ ∈ [γ, γ2). Now, given u, v ∈ Z with

|u− v| > 2L, consider the event

Fu,v,L =
⋂

u′∈ΞL,Lk−1(u)

v′∈ΞL,Lk−1(v)

R(m0

2
, Lk−1, I, u

′, v′). (1.10.59)

From the conclusion of Theorem 1.10.1 and (1.7.14), and the fact that ξγ′ < ξγ2 < ζ,

P{Fu,v,L∩Yu,v,L} ≥ 1−(2L)2e−L
ζ
k−1− 1

4
e−L

ζ

= 1−(2L)2e−L
ζ/γ′− 1

4
e−L

ζ

> 1−e−Lξ

. (1.10.60)

Let ω ∈ Fu,v,L ∩ Yu,v,L. Then ΛL(u) and ΛL(v) are (1,N )-reduced, and given E ∈ I then

either ΛLk−1
(u′) is (m0/2, E)-regular for all u

′ ∈ ΞL,Lk−1
(u), or ΛLk−1

(v′) is (m0/2, E)-regular

for all v′ ∈ ΞL,Lk−1
(v). Suppose the former, the other case is similar. Notice that the

conclusion of Lemma 1.10.3 holds for ΛL, and that given i ∈ ΛL(u), (1.10.15) holds for all

j ∈ ΛL(u) with Λℓ(j∗) ⊂ ΛR(i), and where ℓ = Lk−1 and m(1) = m0/2. We proceed as in

(1.10.21) - (1.10.27) to conclude that ΛL(u) is (m0/4, E)-regular.

Proof of Theorem 1.5.4 for H≥4J . It follows immediately from Theorem 1.8.2 and Corollary

1.10.2.
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1.11 Eigenfunction localization

The proof of the main theorem in this section will depend on a series lemmas that we will

prove in advance. Also we continue to use the convention that if m is a decay rate then

m(1) ≥ m(1−Cℓ−q) for some positive explicit constants C and q, and furthermore that m(2),

m(3) and so on will denote further modifications of the mass in the same manner, but with

possibly different constants.

Lemma 1.11.1. Suppose ΛL is (m, I) localizing for HΛL
where I ⊂ I1,δ and m > L−κ, let

{(φν , ν)}ν∈σ(HΛL
) be an eigensystem for HΛL

. Then for all ν ∈ σI(HΛL
) we have

∥P−
i φν∥∥P−

j φν∥ ≤ e−m
(1)|i−j| for all i, j ∈ ΛL with |i− j| ≥ Lτ̃ . (1.11.1)

It follows that

∑
ν∈σ(HΛL

)∩I

∥P−
i φν∥∥P−

j φν∥ ≤ e−m
(2)|i−j| for all i, j ∈ ΛL with |i− j| ≥ Lτ̃ . (1.11.2)

Proof. Let ν ∈ σ(HΛL
) ∩ I. It follows from Definition 1.5.1 that for all i ∈ ΛL,

∥P−
i φν∥ ≤ emL

τ

e−m|i−jν |. (1.11.3)

Now if i, j ∈ ΛL with |i− j| ≥ Lτ̃ , then

∥P−
i φν∥∥P−

j φν∥ ≤ e2mL
τ

e−m|i−jν |−m|j−jν | ≤ e−m
′|i−j|. (1.11.4)

This is exactly (1.11.1). Also (1.11.2) follows from (1.11.1) and (1.7.6).
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Lemma 1.11.2. Let the interval Λ = ΛL be (1,N )-reduced and let (ψ,E) be an eigenpair

for HΛ with E ∈ I1,δ. Let i ∈ ΛL and assume the interval Λℓ = Λℓ(i∗) is (m,E)-regular,

where m satisfies (1.9.15). Then for sufficiently large L,

∥P−
i ψ∥ ≤ e−m

(1) max |r1−i|,ℓτ∥P−
r1
ψ∥ for some r1 ∈ ΛL. (1.11.5)

Proof. Since Λ is (1,N )-reduced and E ∈ I1,δ, we must have NΛψ = Nψ for some N ≤ Lζ
′
.

We have

P−
i ψ = P−

i RΛ\∂Λℓ
(E)(HΛ\∂Λℓ

− E)ψ = −P−
i RΛ\∂Λℓ

(E)Γ∂Λℓ
ψ (1.11.6)

= −P−
i RΛ\∂Λℓ

(E)P+
Λℓ
ΓΛ\∂Λℓ

ψ − P−
i RΛ\∂Λℓ

(E)P−
Λℓ
Γ∂Λℓ

ψ = A+B

To estimate A, we will focus on the case where i∗ = i and use (1.2.20), getting

A = −
ℓ−1∑
p=ℓτ

P−
i RΛ\∂Λℓ

(E)P+
Λp(i)

P−
{i+p+1,i−p−1}ΓΛ\∂Λℓ

ψ (1.11.7)

this calculation is similar to the one in (1.9.38). We proceed by using the fact that Λℓ(i) is

(m,E)-regular, analogous to the derivation of (1.9.45)

∥A∥ ≤
ℓ−1∑
p=ℓτ

∥P−
i RΛ\∂Λℓ

(E)P+
Λp(i)

∥∥P−
{i+p+1,i−p−1}ΓΛ\∂Λℓ

ψ∥ (1.11.8)

≤
ℓ−1∑
p=ℓτ

e−m
(1)(p+1)∥P−

{i+p+1,i−p−1}ΓΛ\∂Λℓ
ψ∥

≤ 8J2

ℓ−2∑
p=ℓτ

e−m
(1)(p+1)∥P−

{i+p+1,i−p−1}ψ∥+ e−m
(1)ℓ

∑
s∈∂Λℓ(i)

∥P−
s ψ∥

≤
∑

r∈Λℓ+1\Λℓτ

e−m
(2)|r−i|∥P−

r ψ∥.
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If i ̸= i∗, the estimate holds and the same proof will work with some minor adjustments.

∥B∥ = P−
i RΛ\∂Λℓ

(E)P−
Λℓ
ΓΛ\∂Λℓ

ψ∥ ≤ ∥P−
i RΛ\∂Λℓ

(E)∥∥P−
Λℓ
ΓΛ\∂Λℓ

ψ∥ (1.11.9)

≤ ∥R′
Λ\∂Λℓ

(E)∥∥P−
Λℓ
ΓΛ\∂Λℓ

ψ∥ ≤ eℓ
β
∑
s∈∂Λℓ

∥P−
Λℓ
P−
s ψ∥

We now estimate ∥P−
Λℓ
P−
s ψ∥ by Corollary 1.6.7. For the value of s in Corollary 1.6.7 we use

3
4
ℓ and we use (1.9.48).

∑
s∈∂Λℓ

∥P−
Λℓ
P−
s ψ∥ ≤ 8(Q1 − 1)

√
Q1

δW(N)
0

∑
r∈Λ

e
− log

(
1+

δ(∆0−2J)
4JQ1

)(
1−4

3
ℓτ−1

)
max{|r−i|,3

4
ℓ}∥P−

r ψ∥ (1.11.10)

We now combine all of the preceding estimates to get the following

∥P−
i ψ∥ ≤

∑
r∈Λℓ+1\Λℓτ

e−m
(2)|r−i|∥P−

r ψ∥+ eℓ
β

C(δ, J,N)
∑
r∈Λ

e−M max{|r−i|,3
4
ℓ}∥P−

r ψ∥

≤
∑
r∈Λ

e−m
(3) max{|r−i|,ℓτ} ≤ (2L+ 1)e−m

(3) max{|r∗−i|,ℓτ}∥P−
r∗ψ∥

≤ e−m
(4) max{|r∗−i|,ℓτ}∥P−

r∗ψ∥ for some r∗ ∈ Λ. (1.11.11)

This holds for sufficiently large L and we used the fact that m > L−κ.

Proof of Theorem 1.5.2. Assume L is large enough that (1.5.19) holds at scale ℓ = Lγ
−1
.

Let ΛL = ΛL(j) for some j ∈ Z. Let YL = YΛL(j),1 be the event that ΛL is (1,N )-reduced.

Consider the event

FL =
⋂

u,v∈ΞL,ℓ(j), |u−v|>2ℓ

R(m, ℓ, I1,δ, u, v). (1.11.12)

It follows from (1.5.19) that

P{FL} ≥ 1− 4L2e−ℓ
ξ1 = 1− 4L2e−L

ξ1γ
−1

> 1− 1
2
e−L

ξ2 . (1.11.13)
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Hence, using (1.7.14) and 0 < ζ2 < ζ we have that

P{FL ∩ YL} > 1− e−L
ξ2 . (1.11.14)

To finish the proof we need to show that FL ∩ YL ⊂ Q(m
2
, L, I1,δ, j). Fix ω ∈ FL ∩ YL, and

let (ψ,E) be an eigenpair for HΛL
with E ∈ I. Since ω ∈ YL, we have that NΛL

ψ = Nψ

for some N ≤ Lζ
′
. Notice that there must exist a q ∈ ΞL,ℓ(j) such that the interval Λℓ(q) is

not (m, ℓ)-localizing. Otherwise, from Lemma 1.11.2 we have that ∥P−
i ψ∥ ≤ e−m

(1)ℓτ for all

i ∈ ΛL, and hence

1 = ∥ψ∥ ≤
∑
i∈ΛL

∥P−
i ψ∥ ≤ (2L+ 1)e−m

(1)ℓτ < 1, (1.11.15)

a contradiction. Now since ω ∈ FL, it follows that Λℓ(u) is (m, ℓ)-localizing for all u ∈ ΞL,ℓ

with |u− q| > 2ℓ. So let i ∈ ΛL with |i− q| > Lτ . Since Λℓ(i∗) is (m, ℓ)-localizing, it follows

from Lemma 1.11.2 that

∥P−
i ψ∥ ≤ e−m

(1) max{|r1−i|,ℓτ}∥P−
r1
ψ∥ for some r1 ∈ ΛL. (1.11.16)

If |r1 − q| ≤ 3ℓ, we have

∥P−
i ψ∥ ≤ e−m

(1)|r1−i| ≤ e−m
(1)(|i−q|−|r1−q|) ≤ e−m

(1)(|i−q|−3ℓ) ≤ e−m
(2)|i−q|, (1.11.17)

since |i − q| > Lτ . Now if |r1 − q| > 3ℓ, then |(r1)∗ − q| > 2ℓ and another application of

Lemma 1.11.2 yields

∥P−
i ψ∥ ≤ e−m

(1) max{|r1−i|,ℓτ}e−m
(1) max{|r2−r1|,ℓτ}∥Pr2ψ∥ (1.11.18)

≤ e−m
(1) max{|r2−i|,2ℓτ} for some r2 ∈ ΛL (1.11.19)
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If |r2 − q| ≤ 3ℓ we have (1.11.17) and we are done, otherwise we have that |(r2)∗ − q| > 2ℓ

and we can apply Lemma 1.11.2 again in the same way. We repeat this argument n times,

stopping when either |rn − q| ≤ 3ℓ or nℓτ ≥ |i− q|, obtaining the desired estimate

∥P−
i ψ∥ ≤ e−m

(2)|i−q|. (1.11.20)

We have shown that ψ is (q,m(2)) localized. Now if we pick L sufficiently large we will have

that m(2) ≥ m/2. Thus ω ∈ Q(m/2, L, I1,δ, j). Given L sufficiently large, the estimates

(1.5.12) and (1.5.13) follow from (1.11.14) and Lemma 1.11.1 respectively.

1.12 Fixed Particle Numbers

The results up to this point suffice to prove Theorem 1.5.4 and Theorem 1.5.2 for the case

where N ≥ 4J . In multiple places we relied on the bound from Theorem 1.4.5 and the fact

that for N ≥ 4J , W ≥ 4J2. We will show that an analog of Theorem 1.5.4 will hold for the

operator H<4J . In the low particle number situation we have to take a different approach.

In this section we will show that H<4J is, with small modification, unitarily equivalent to

the one studied in [51].

From this equivalence we will state the main theorem of this section, show that the hypothesis

of the theorem is satisfied, and then finally give a proof of the main theorem.

1.12.1 Configurations in ZN

Definition 1.12.1. The space of allowed configurations:

ZN,J = {x ∈ ZN : x1 ≤ · · · ≤ xN and at most 2J consecutive coordinates equal.} (1.12.1)
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See [43]. We will treat ZN,J as a graph by considering it as an induced subgraph of ZN ,

in particular this means that two vertices x, y ∈ ZN,J are adjacent, denoted by x ∼ y, if

|x− y|1 = 1 in ZN .

Definition 1.12.2.

ℓ2(ZN,J) =

{
f : ZN,J → C s.t. ∥f∥2 =

∑
x∈ZN,J

|f(x)|2 <∞.

}
(1.12.2)

with the obvious inner product. We denote the canonical basis,

ψx(y) = δx,y. (1.12.3)

Lemma 1.12.3. There is a graph isomorphism φ : M(N) → ZN,J .

Proof. We write the support of m as a finite set of integers

supp(m) = {x1, x2, x3, . . . xn} where xi are increasing and n ≤ N . (1.12.4)

Then mapping is given as,

φ : M(N) → ZN,J as φ(m) = (

m(x1)︷ ︸︸ ︷
x1, x1, . . .,

m(x2)︷ ︸︸ ︷
x2, x2, . . ., . . . ,

m(xn)︷ ︸︸ ︷
xn, xn, . . .). (1.12.5)

Since
∑

Zm(xi) = N , we see that φ(m) ∈ ZN , and since m : Z → {0, 1, . . . 2J} we have

furthermore that φ(m) ∈ ZN,J as desired. The inverse mapping is

[φ−1(x)](j) = |{k ∈ Z : xk = j}|. (1.12.6)

See [43] for the proof that φ and φ−1 are adjacency preserving.
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Now we associate to φ a unitary operator from ℓ2(ZN,J) to ℓ2(M(N)), Uφ, by extending

linearly from the basis vectors, that is

Uφ(ψm) = ψφ(m). (1.12.7)

Fix N ∈ N. We define a random Schrodinger operator on ℓ2(ZN,J) that is unitarily equiva-

lent to H(N) by using φ.

H̃(N) : ℓ2(ZN,J) → ℓ2(ZN,J) as H̃(N) = UφH
(N)U−1

φ (1.12.8)

Similarly, with conjugation by Uφ we also define:

H̃(N) = − 1

2∆
Ã(N) + W̃(N) + λṼ (N)

ω . (1.12.9)

Observation 1.12.4. Since φ is a graph isomorphism, Ã(N) is a weighted N -dimensional

adjacency operator on ℓ2(ZN,J). Furthermore we extend Ã(N) to a weighted adjacency

operator, A, on ℓ2(ZN) by assigning weight zero to any edge in ZN which connects to a point

in ZN \ ZN,J .

Observation 1.12.5. Consider a random multiplication operator on ℓ2(ZN) given by

Ṽ (N)
ω f(x) =

(
N∑
i=1

ωxi

)
f(x). (1.12.10)

It is straightforward to show that for any f ∈ ℓ2(ZN,J) we have that

Ṽ (N)
ω f = U∗

φV
(N)
ω Uφ(f). (1.12.11)

Therefore the restriction of Ṽ
(N)
ω to ℓ2(ZN,J) is unitarily equivalent to V

(N)
ω .
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Lemma 1.12.6. We have

W̃(N)(x)f(x) =

(
2JN −

∑
1≤i<j≤n

δ|xj−xi|,1

)
f(x). (1.12.12)

Proof. Recalling(1.3.23), we have

W̃(N)(x) = W(N)(φ−1x) = 2JN −
∑
i∈Z

[φ−1x](i)[φ−1x](i+ 1)

∑
i∈Z

[φ−1x](i)[φ−1x](i+ 1) =
∑
i∈Z

(
N∑
j=1

δxj ,i

)(
N∑
k=1

δxk,i+1

)
=
∑
i∈Z

∑
j,k∈{1,...N}

δxj ,iδxk,i+1

=
N∑
j=1

N∑
k=1

δxj ,xk−1 =
∑

1≤j≤k≤N

δxk−xj ,1

=
∑

1≤j<k≤N

δxk−xj ,1 =
∑

1≤j<k≤N

δ|xk−xj |,1 (1.12.13)

The last few steps follow because the points in ZN,J are ordered.

Now we need to extend the Hamiltonian, H̃ to an operator, K, that acts on all of ℓ2(ZN)

and is of the form treated in [51]. First we will define a potential on all of ℓ2(ZN).

Definition 1.12.7.

U(x) =
∑

1≤i<j≤N

Ũ(xj − xi). (1.12.14)

Where

Ũ(x) = −δ|x|,1. (1.12.15)
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Note that if x ∈ ZN,J then

U(x) = W̃(N)(x)− 2JN. (1.12.16)

Definition 1.12.8. We define the main operator on ℓ2(Zn)

K(N)
ω = − 1

2∆
A+ U + λṼ (N)

ω = H̃(N)
ω − 2JN, (1.12.17)

where A is the weighted adjacency operator on ZN in Observation 1.12.4, and U is the range

1 interaction, namely W̃−2JN , given in Lemma 1.12.6. Lastly Ṽ
(N)
ω is the natural extension

of the identity in Observation 1.12.5 to a random potential on all of ZN .

Except for the fact that A is a weighted Laplacian, K
(N)
ω is of the form of operators considered

in [51]. However since the weights are non-negative and uniformly bounded, (see (1.3.21)

and (1.3.22)), the conclusions from that paper will follow from the same proofs. In particular

we obtain all the localization results for K
(N)
ω proved in [51].

Definition 1.12.9. Let x = (x1, x2, . . . xN) and y = (y1, y2, . . . , yN) be two points in ZN ,

the Hausdorff distance dH(x,y) is given by

dH(x,y) = max{max
i

min
j

|xi − yj|,max
j

min
i

|xi − yj|}. (1.12.18)

Definition 1.12.10. Let x ∈ RN and let L > 0. Define the box of radius L centered at x,

BL(x) = {y ∈ ZN : ∥y − x∥∞ ≤ L}. (1.12.19)
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Definition 1.12.11. For fixed N , given E ∈ R and m > 0, a box B = BL(a) is said to be

(m,E)-good if

m > L−κ (1.12.20)

dist(E, σ(K
(N)
B )) > e−L

β

(1.12.21)

|⟨δx, (K(N)
B − E)−1δy⟩| ≤ e−m∥x−y∥∞ for all x and y with ∥x− y∥∞ > Lτ . (1.12.22)

Definition 1.12.12.

Ã(m,L, I,x) = {E ∈ I =⇒ BL(x) is (m,E)− good}. (1.12.23)

R̃(m,L, I,x,y) = {E ∈ I =⇒ BL(y) or BL(x) is (m,E)− good.} (1.12.24)

Now observe in particular that,

P{R̃(m,L, I,x,y)} ≥ P{Ã(m,L, I,x)} for all x,y. (1.12.25)

Below is the main theorem from [51] but adapted to our setting. We will prove that the

hypothesis of this theorem is satisfied.

Theorem 1.12.13. Fix N ≥ 1 and 0 < ζ < ζ ′ < 1. There exists L = L(N), such that if for

some L0 ≥ L,

sup
x∈RN

P{BL0(x) is (1
4
, E)− nongood } ≤ e−L

ζ′
0 for all E ∈ R, (1.12.26)

then there exists Lζ = Lζ(N,L0) and δζ = δζ(N,L0) > 0 with the following property: Let

E1 ∈ R with I(E1) = [E1−δζ , E1+δζ ], then for every L ≥ Lζ and a,b ∈ Rn with dH(a,b) ≥

2L, we have

P{R̃(1
8
, L, I(E1), a,b)} ≥ 1− e−L

ζ

. (1.12.27)
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Remark 1.12.14. We can get results uniform in N ∈ {1, 2, . . . 4J − 1} .

Definition 1.12.15. Given E ∈ R and m > 0, a box BL(a) is said to be (m,E)-good2 if

m > 2L−κ (1.12.28)

dist(E, σ(K
(N)
BL(a)

)) > 2e−L
β

(1.12.29)

|⟨δx, (K(N)
BL(a)

− E)−1δy⟩| ≤ e−m∥x−y∥∞ . for all x and y with ∥x− y∥∞ > Lτ . (1.12.30)

Theorem 1.12.16. Let m = 1
4
, fix λ0 > 0, and let the scale L satisfy

e−
1
6
Lβ ≤ λ0. (1.12.31)

Then, if L is sufficiently large, given λ > λ0 and ∆ > 2J such that

eL
ζ′′ ≤ ∆λ, (1.12.32)

we have

P{R̃(1
4
, L, I(E, e−3L),x,y)} ≥ 1− e−L

ζ

, (1.12.33)

for all E ∈ R and for all x,y ∈ ZN .

Lemma 1.12.17. Fix N ∈ N and fix λ0 > 0. Then choose λ > λ0 and ∆ > 2J so that

(1.12.32) and (1.12.31) are both satisfied for a sufficiently large L (depending on N). Let

B = BL be a box of size L, E /∈ σ(K
(N)
B ), let R

(N)
B (E) = (K

(N)
B −E)−1. Then for all E ∈ R,

we have

P
{
B is

(
1
2
, E
)
− good2

}
≥ 1− e−L

ζ1 .

Proof. This proof is similar to the proof of Lemma 1.8.3. Given η > 0, it follows from the
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Hölder Continuity of µ, that for all x ∈ ZN we have

P {|U(x) + λVω(x)− E| ≤ η} ≤ C
(
2η
λ

)α
, (1.12.34)

Consider the event Q:

Q =
{∥∥(U + λVω − E)−1

∥∥ ≥ 1
η

}
, (1.12.35)

so that

P {Q} ≤ C
(
2η
λ

)α
(2L+ 2)N ≤ e−L

ζ1 , (1.12.36)

which holds if

η ≤ λ

2

(
(2L+ 2)−N

C
e−L

ζ1

)1/α

. (1.12.37)

We take

η = λe−
1
2
Lζ′′

(recall ζ1 < ζ ′ < ζ ′′ < β), (1.12.38)

so (1.12.36) holds for L sufficiently large. When taking ω ∈ Qc, we have,

R
(N)
B (E) =

(
K

(N)
B − E

)−1

=
(
− 1

2∆
A

(N)
B + U + λV − E

)−1

(1.12.39)

= (U + λV − E)−1
(
1− 1

2∆
A

(N)
B (U + λV − E)−1

)−1

= (U + λV − E)−1

(
1 +

∞∑
n=1

(
1
2∆
A

(N)
B (U + λV − E)−1

)n)
,
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∥∥∥ 1
2∆
A

(N)
B (U + λV − E)−1

∥∥∥ ≤ 1
2η∆

∥∥∥A(N)
B

∥∥∥ ≤ 2J
η∆

∥W∥ ≤ 4J2N
η∆

≤ 1
2

which we obtain by requiring (1.12.32) with L sufficiently large, depending on N .

⟨δx, (U + λV − E)−1
(

1
2∆
A

(N)
B (U + λV − E)−1

)n
δy⟩ = 0 (1.12.40)

if R = ∥x− y∥1 > n. Hence

∣∣∣⟨δx, (K(N)
B − E)−1δy⟩

∣∣∣ (1.12.41)

≤
∑
n≥R

∣∣∣⟨δx, (U + λV − E)−1
(

1
2∆
A

(N)
B (U + λV − E)−1

)n
δy⟩
∣∣∣

≤
∑
n≥R

1
η

1
2n

= 1
λ
e

1
2
Lζ′′ 2

2R
≤ e

1
6
Lβ

e
1
2
Lζ′′

2e−(log 2)R

≤ e
−(log 2)R

(
1−

1
6Lβ+1

2Lζ′′+log 2

(log 2)Lτ

)
≤ e−(log 2)(1−3L−τ+β)R ≤ e−

1
2
∥x−y∥1 ,

for L sufficiently large, R > Lτ , and by using (1.12.31) to estimate 1/λ. We conclude that

for ω ∈ Qc and ∥x− y∥1 > Lτ we have

|⟨δx, (K(N)
B − E)−1δy⟩| ≤ e−

1
2
∥x−y∥1 ≤ e−

1
2
∥x−y∥∞ . (1.12.42)

We get from (1.12.39) and (1.12.31) that in the event where ω ∈ Qc,

∥∥∥R(N)
B (E)

∥∥∥ ≤ 2 1
η
≤ 2

λ
e

1
2
Lζ′′ ≤ 2

λ
e

1
2
Lβ ≤ eL

β

2
. (1.12.43)

Thus, we have proved that P
{
BL is

(
1
2
, E
)
-good2

}
≥ 1− e−L

ζ1 .
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Lemma 1.12.18. Fix N ∈ N and fix λ0 > 0. Then choose λ > λ0 and ∆ > 2J so

that (1.12.32) and (1.12.31) are both satisfied with some sufficiently large L (depending on

N). If the box BL is (1
2
, E)-good2 for some E, then the interval BL is (1

4
, E ′)-good for all

E ′ ∈ I(E, θ), where

θ < min{1
2
Lτe−L−2Lβ

, e−L
β} < e−3L. (1.12.44)

Proof. The proof is identical to the proof of Lemma 1.8.4.

Proof of Theorem 1.12.16. By Lemma 1.12.18, Lemma 1.12.17 and equation (1.12.25) we

have that if L is sufficiently large (depending on N), and our starting parameters satisfy

(1.12.31) and (1.12.32) then

P{R̃(1
4
, L, I(E, e−3L),x,y)} ≥ P{Ã(1

4
, L, I(E, e−3L),x)} ≥ 1− e−L

ζ1 .

In particular notice that this guarantees the existence of an L0 which satisfies the hypothesis

of Theorem 1.12.13.

1.12.2 Main theorems for fixed particle numbers

Observation 1.12.19. Let Λ = ΛL(x0) be an interval, then φ(M
(N)
Λ ) = BL(x)∩ZN,J where

x = (x0, . . . x0). This follows immediately from the definition of φ.

Definition 1.12.20. Notice that in Definition 1.5.3, whether an interval is (m,E)-regular or

not depended on the properties ofH≥4J . We replaceH≥4J withHN in definition 1.5.3 to give

a new definition of (m,E)-regular that is suitable for HN The definition of R(m,L, I, u, v)

for HN follows analogously.
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Lemma 1.12.21. Fix N ∈ N. Let x = (x0, · · · x0) ∈ ZN and suppose that B = BL(x) is

(m,E)-good, then ΛL(x0) = φ−1(BL(x) ∩ ZN,J) is (m
2
, E + 2JN)-regular if L is sufficiently

large.

Proof. We need to show that (1.5.15) and (1.5.16) hold for ΛL(x0). Notice that since ZN,J

is a reducing subspace Ã(N) we have that

σ(K
(N)
B ) = σ(K

(N)

B∩ZN,J ⊕K
(N)

B∩(ZN,J )c
) = σ(K

(N)

B∩ZN,J ) ∪ σ(K(N)

B∩(ZN,J )c
) (1.12.45)

= σ(H
(N)
Λ − 2JN) ∪ σ(K(N)

B∩(ZN,J )c
) ⊃ σ(H

(N)
Λ − 2JN).

Therefore, if dist(σ(K
(N)
B ), E) > e−L

β
, then dist(σ(H

(N)
Λ ), E+2JN) > e−L

β
, so (1.5.15) holds

for Λ.

Now consider the left hand side of (1.5.16), suppose i ∈ Λ and R > Lτ , then

∥P−
i (H

(N)
ΛL

− E − 2JN)−1P+
ΛR(i)∩Λ∥ ≤

∑
m,n∈M(N)

ΛL

d
(N)
Λ (m,n)>R

|⟨δm, (H(N)
ΛL

− E − 2JN)−1δn⟩|

≤
∑

m,n∈M(N)
ΛL

d
(N)
Λ (m,n)>R

|⟨δφ(m), (K
(N)
B − E)−1δφ(n)⟩| ≤

(
(2L+ 1)2J

N

)2

e−m(R+1)

≤
(
e(2L+ 1)2J

N

)2N

e−m(R+1) ≤ e−
m
2
(R+1). (1.12.46)

The last inequality holds for L large enough, depending on N .
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Theorem 1.12.22. (compare with Theorem 1.5.4) Fix λ ≥ λ0 > 0, ∆ > 2J , δ ∈ (0, 1), and

L0 > 0 such that (1.12.26) holds for all N ∈ {1, . . . , 4J − 1}. Then there exists Lζ = Lζ(L0)

and δζ = δζ(L0) > 0 with the following property: Let E1 ∈ R with I(E1) = [E1 − δζ , E1 + δζ ],

then for every L ≥ Lζ and a, b ∈ Z with |a− b| ≥ 2L, we have

P{R( 1
16
, L, I(E1), a, b)} ≥ 1− e−L

ζ

for all N ∈ {1, . . . , 4J − 1}. (1.12.47)

Proof. Let N ∈ {1, . . . , 4J − 1}. If a = (a, a, . . . a) and b = (b, b, . . . b) ∈ RN then clearly

|a− b| = dH(a,b) > 2L. From Lemma 1.12.21 and Theorem 1.12.13 we have that

P{R( 1
16
, L, I(E1), a, b)} ≥ P{R̃(1

8
, L, I(E1 − 2JN), a,b)} ≥ 1− e−L

ζ

. (1.12.48)
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Chapter 2

Embedded Eigenvalues in Defective

Periodic Quantum Graphs

2.1 Introduction

Quantum graphs are a common object of interest in the field of mathematical physics.

They are a simple model to study solutions of the Schrödinger equation in an molecule like

structure. This portion of the thesis is dedicated to a study of periodic quantum graphs and

in particular the phenomenon of Fermi-surface reducibility and how reducibility can allow

for the construction of defective graphs with embedded eigenvalues in the continuum.

For any d-periodic self-adjoint operator there is an associated function D : C× (C∗)d → R,

called the dispersion function. In the case of periodic graph operations, the dispersion func-

tion is a Laurent polynomial in the variables z = (z1, . . . , zd) ∈ (C∗)d and it has coefficients

that are meromorphic functions of λ ∈ C. Since this work is devoted to the study periodic

graphs, especially quantum graphs, we will use the terms dispersion polynomial and disper-

sion function interchangeably. For each λ ∈ C, the set of z ∈ (C∗)d such that D(λ, z) = 0
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is called the Fermi Surface at energy λ; when |z1| = · · · = |zd| = 1 the point on the Fermi

Surface describes a set of wave vectors that are admissible by the operator at that energy.

When the dispersion polynomial can be factored, for each fixed energy, as a product of two

or more polynomials in z, each irreducible component contributes a sequence of spectral

bands and gaps. For periodic quantum graphs the only eigenvalues are ones corresponding

to eigenfunctions with compact support. However, when a quantum graph has a reducible

Fermi Surface, it is possible that a local defect creates an embedded eigenvalue with a non-

compactly supported eigenfunction [57, 58].

Irreducibility seems to be the default situation because a polynomial in several variables is

only factorable into nonconstant polynomials of lower degree when its coefficients lie on a

specific algebraic variety. For this reason proofs reducibility rely on constructions that are

tailored to result in the desired type of dispersion polynomial. This work describes two such

constructions. On the other hand, proofs of irreducibility utilize a wide variety of methods.

We will briefly outline some known results on reducibility and irreducibility.

Irreducibility of the Fermi surface is known to occur for the discrete Laplace operator plus a

periodic potential in any dimension. This was proved in two and three dimensions in [11],[48,

Ch. 4],[12, Theorem 2] for all but finitely many energies, and in [64] for all energies in

dimension higher than two. Proofs rely on the algebraic structure arising from the relative

simplicity of the discrete Laplacian on a square graph. Recently, by applying techniques from

algebraic geometry, irreducibility has been proven for a large class of finite range periodic

Schrödinger operators [41]. Irreducibility is also known for the continuous Laplacian in three

dimensions plus a periodic potential of the form q1(x1)+ q2(x2, x3) [13, Sec. 2]. Irreducibility

for all but finitely many energies is established for discrete graph Laplacians with positive

weights and more general graph operators, where the underlying graph is planar with two

vertices per period [62].

All constructions so far of graph operators with reducible Fermi surface involve multiple
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coupled layers [77, 78]. The simplest are constructed by coupling several identical copies

of a discrete graph operator, using Hermitian coupling constants [77, §2]; or by coupling

two identical layers of a quantum graph by edges between corresponding vertices, where the

potential qe(x) of the Schrödinger operator −d2/dx2 + qe(x) on each coupling edge e is sym-

metric about the center of the edge [77, §3]. When the layers are not coupled symmetrically,

a compatibility condition for the potentials on the coupling edges, which is sufficient for

reducibility, was proved in [78, Theorem 4].

Here is a summary of properties of the two types of multi-layer quantum graphs, introduced

in this thesis, that have reducible Fermi surface. All potentials are electric; we will not cover

magnetic potentials. We include in this summary the bilayer quantum graphs studied in [78],

which we call type 0.

Type-0 bilayer graphs. ([78])

1. The two layers are identical, and otherwise there is no restriction on the individual layers.

2. The layers are coupled by single edges connecting corresponding vertices.

3. The potentials on all connecting edges lie in the same “asymmetry class”.

Type-1 multilayer graphs. (Fig. 2.3.2 left; and section 2.3.3)

1. Each layer breaks into a collection of finite pieces when a vertex and its shifts are removed

(Fig. 2.3.1).

2. Several layers are connected by a finite graph, at the vertices of separation.

Type-2 multilayer graphs. (Fig. 2.3.2 right; and section 2.3.4)

1. Each layer has the same graph, which is bipartite with one vertex of each color per period.
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2. The potentials on corresponding edges in different layers are Dirichlet-isospectral.

3. Several layers are connected along vertices of the same color by finite graphs.

Multi-layer graphene models. (Section 2.4)

An important application of the theory we develop is to two-dimensional periodic graphs

with hexagonal, or honeycomb, structure. Graphene is the most familiar of these structures.

We will use the word “graphene” to include any periodic quantum graph with the hexagonal

structure of graphene, shown in Fig. 2.4.1.

Quantum graphs offer an intermediate model between full partial differential equation models

and tight-binding ones, and they have been used to model graphene and other honeycomb

structures in single-layer form [25, 56, 9] and multi-layer form [26, 27, 28]. The model is also

called a quantum or free-electron network model [25]; see [61, AppendixA] for a historical

discussion.

The quantum-graph model of single-layer graphene satisfies the properties of the individual

layers of both type 1 and type 2 By applying the techniques of both types, one finds that

very generally stacked multi-layer graphene has reducible Fermi surface. This includes AA-,

AB-, ABC-, and mixed stacking, as illustrated in the figures of Section 2.4.

The differences between single- and multiple-layer graphene are covered in [68, 1], which

offers much physical context. The most important feature of two or more layers, which

occurs typically but not always, is a transition from conical singularities of the dispersion

relation (linear band structure at Dirac points) for a single layer to nonconical singularities

(quadratic band structure) for multiple layers, accompanied by spectral gaps; see [70, 65, 21],

for example. Refs. [49, 73, 75] present some interesting work on opening gaps by twisting

two layers relative to one another. The work [72] provides a review of physical phenomena

of stacked bi-layer graphene.
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This thesis contributes to the spectral properties of graph models of multi-layer graphene

with electric potentials in two ways: (1) The reducibility of the Fermi surface allows the

construction of local defects in multi-layer graphene that would allow bound states within

the radiation continuum (cf. [58]); and (2) The theorems demonstrate the range of allowed

potentials on the layers and the connecting edges in order to obtain a reducible Fermi surface.

Quantum graphs have been used as models for a variety of physical systems, such as single-

and multi-layer graphene, as mentioned above, tubes of graphene or other planar materi-

als [52, 53, 56, 69, 79], and related band-gap structures [74, 61, 8, 29, 15]. We also refer the

reader to the works [7, 54], the collection [37], and the monograph [18].

The multi-layer graphs types 0, 1, and 2, described above allow general vertex conditions of

Robin type, defined below (see 2.2.2). The condition stipulates that the value of a function

at a vertex v is proportional to a flux from the vertex into the adjacent edges, and the

proportionality constant is called the Robin parameter αv. Different values of α can model

different types of atoms at the vertices. A quantum graph with the Robin vertex condition

emerges as the limit of a Schrödinger operator on a thickened graph, as the thickness tends

to zero [39, §2–3]. Taking the limit in different ways results in other types of self-adjoint

vertex conditions; see also [38, 22] for discussions of these limits and their physical relevance.

The Robin condition also allows different coupling strengths imparted by the edges (denoted

by εe in (2.2.2) below). This accommodates, for example, adjusting interlayer couplings,

which can be much weaker than the intralayer bonds [60, 66, 63, 10], and quite complex

variations of atom interactions [20, 70]. This strength parameter has been implemented in

the quantum-graph models of multi-layer graphene in [26, 27, 28].

Bound states in the continuum are impossible for locally defective periodic Schrödinger par-

tial differential operators in Rd [57, 55], and this makes the prospect of creating multi-layer

structures where local defects admit embedded eigenvalues intriguing. In Section 2.5, we
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show how to construct a local defect in a periodic quantum graph with reducible Fermi sur-

face, that creates a bound state at an energy embedded in the continuous spectrum. We do

this for AA- and AB-stacked bilayer graphene. The associated eigenstates are not those of

compact support that are peculiar to graph operators, but rather, they decay exponentially

with unbounded support. Bound states in the continuum are associated with interesting and

useful resonance phenomena. A motivation for the present work is to understand the mech-

anisms underlying the creation of embedded eigenvalues and resonances in diverse material

structures.

2.2 Periodic graphs and the Fermi surface

2.2.1 Quantum graphs and notation

We begin with an overview of the fundamentals of periodic quantum graphs. The notation

specific to periodic graphs essentially follows [78, §3.1-3.2]; and the standard text [18] gives

a more general exposition of quantum graphs.

Definition 2.2.1. A weighted metric graph is a graph Γ, with a vertex set V(Γ), an edge set

E(Γ), a metric which assigns a length Le to each edge, and a set of weights ϵe ∈ R associated

to each edge. When referring to an edge e connecting vertices v and w, we write e{v, w}

when the edge is unoriented and e(v, w) when the edge is oriented from v to w.

A simple example of a metric graph is the unit interval, this graph has two vertices and one

edge of length 1. A periodic metric graph is a metric graph that is imbued with a shift action

from Zd, denoted by x→ g + x for each x ∈ Γ and g = (g1, . . . gd) ∈ Zd. A good example of

a periodic metric graph is constructed by considering the way that Z is a subset of R. For

this graph we say that the elements of Z are the vertices and that all other elements of R
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belong to some edge of length 1; the Z1 action on this graph is simply the map x→ g + x.

Definition 2.2.2. For a weighted metric graph Γ we define the Hilbert space, L2(Γ, ε) by

imposing that the following norm be finite.

∥f∥2L2(Γ,ε) =
∑
e∈E(Γ)

∫
e

εe|f(x)|2dx . (2.2.1)

The weights εe for each edge e{v, w}, control the strengths of a connections between adjacent

vertices. In multi-layer graphene, the inter-layer coupling is considered to be much weaker

than the intra-layer bonds, and this is modeled by small values of εe on those edges that

connect vertices in different layers.

Definition 2.2.3. A quantum graph is a pair (Γ, A) where Γ is a weighted metric graph,

and A is a self adjoint operator on the space L2(Γ, ε).

Our analysis is dedicated to the case where A is a Schrödinger operator with vertex condi-

tions. For each edge e of the metric graph, we associate to it the operator

− d2

dx2
+ qe(x) (0 < x < Le).

We create a global operator on Γ by coupling these edge operators with conditions at each

vertex v. There are two different kinds of vertex conditions that we will consider, Robin and

Dirichlet Vertex conditions.

Definition 2.2.4. A Robin vertex condition at v is satisfied by f in L2(Γ, A) if

∑
e∈E(v)

εe f
′
e(v) = αvf(v), (2.2.2)

and f is continuous at v.
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This condition is called the Kirchoff or Neumann condition when αv=0. The sum is over all

edges incident to v, and the prime denotes the inward derivative, in the direction from the

vertex into the edge. Thus, if an edge e{v, w} is parameterized by x∈ [0, Le] running from

v to w, then f ′
e(v) = dfe/dx(0) and f ′

e(w) = −dfe/dx(Le). The weight αv, called a Robin

coefficient, can be considered as a singular δ-potential of strength αv at the vertex (see [39,

Eq. 2.6] for example), and thus the condition can also be called a δ vertex condition.

Definition 2.2.5. A (homogeneous) Dirichlet vertex condition at v is satisfied by f in

L2(Γ, A) if f(v) = 0 and f is continuous at v.

Remark 2.2.6. One important thing to consider is the situation where some number edges

meet at a vertex with Dirichlet condition. Suppose u solves Au = λu on each one of those

edges and satisfies the vertex condition. If the graph is modified so that vertex is removed

and each one of the dangling edges gets its own separate vertex with a Dirichlet condition,

then u will still solve Au = λu on each dangling edge and it will still satisfy the Dirichlet

condition at each one of the new terminal vertices. From this observation we see that

imposing Dirichlet vertex conditions has a decoupling effect on the dynamics of a quantum

graph.

This is sufficient to determine a self-adjoint operator A in the Hilbert space L2(Γ, ε). The

operatorA, being unbounded, has domainD(A) that is not all of L2(Γ, ε) but consists of those

functions in L2(Γ, ε) whose restriction to each edge e is in the Sobolev space H2(e) and that

are continuous on Γ and satisfy the Robin condition at each vertex. Aside from Dirichlet and

Robin there are other vertex conditions that correspond to self-adjoint operators in L2(Γ, ε).

They are described in [18, Theorem 1.4.4], but we will not cover them in this thesis.

The quantum graph pair (Γ, A) is periodic provided that the edges, potentials qe, vertex

conditions, and edge weights εe, are all invariant under the shift group Zd. The operator

A can in fact be applied to any continuous function on Γ that is in H2 of each edge and

satisfies the vertex conditions – they do not necessarily lie in L2(Γ, ε). The extended domain
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consisting of these functions will be called D̄(A).

Definition 2.2.7. We say that u ∈ D̄(A) is a simultaneous eigenfunction of A and the Zd

action if the following equations are satisfied:

Au = λu (2.2.3)

u(gx) = zgu(x). (2.2.4)

We used the notation that zg =
∏d

i=1 z
gi
i for each g = (g1, . . . , gd) ∈ Zd. We say that λ is the

energy and that z = (z1, . . . , zd) = (eik1 , . . . , eikd) is the vector of Floquet multipliers. Such

u is called a Floquet (or Floquet-Bloch) mode of A. If the wavevector, or quasi-momentum,

k = (k1, . . . , kd) is real, then u is a Bloch wave and the kj are phase shifts of u across the d

period vectors of the structure.

The pair (2.2.3, 2.2.4) is used to obtain a “spectral matrix” Â(z, λ) for A, from which is

derived the dispersion function and the Fermi surface. We now describe the elements of its

derivation, which is described in more detail, including its relation to the Floquet (Fourier)

transform, in [78, §3.1-3.2].

2.2.2 The Combinatorial Reduction

Let us first consider the eigenvalue problem Au= λu, this means that u satisfies the ODE

−u′′+ qe(x)u = λu on each edge. If we consider ue(x) the solution on a single edge, we know

that ue can be written as a linear combination of two fundamental solutions to the ODE.
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Definition 2.2.8. The generalized sine and generalized cosine are the fundamental solutions

on an edge.

−c′′e(x;λ) + qe(x)ce(x;λ) = λc(x;λ), where ce(0;λ) = 1 and c′e(0;λ) = 0 (2.2.5)

−s′′e(x;λ) + qe(x)se(x;λ) = λs(x;λ), where se(0;λ) = 0 and s′e(0;λ) = 1 (2.2.6)

Observe that if Au = λu then for each edge, we can write u(x) as a linear combination

of the c and s functions: ue(x) = u(0)ce(x;λ) + u′(0)se(x;λ). We will use the notation

ce(Le;λ) = ce(λ) and se(Le;λ) = se(λ) for simplicity. From these observations we construct

the transfer matrix :

Te(λ) =

 ce(λ) se(λ)

c′e(λ) s′e(λ)

 , notice Te(λ)
ue(0)
u′e(0)

 =

ue(L)
u′e(L)

 . (2.2.7)

By rearranging the information in the transfer matrix, we derive the Dirichlet-to-Neumann

(DtN) map for this ODE on each edge. By definition, the DtN map N(λ) takes the values

of u at the vertices of the edge to the inward derivatives of u at the vertices. The DtN map

is formed from the entries of Te(λ) by,

Ne(λ) =
1

se(λ)

 −ce(λ) 1

1 −s′e(λ)

 , here Ne(λ)

u(v)
u(w)

 =

u′(v)
u′(w)

 . (2.2.8)

By applying the DtN map, the vertex condition (2.2.2) for u can then be written in terms of

the values of u at the vertices. This results in a discrete, or combinatorial, reduction of the

graph operator. Let ū be the restriction of u to V(Γ), then we can define the combinatorial
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reduction of the operator A− λI:

(Aλū)(v) :=
∑

{v,w}∈E(v)

ū(w)

se(λ)
− ū(v)

αv + ∑
{v,w}∈E(v)

ce(λ)

se(λ)

 (2.2.9)

(Aλū)(v) = 0 for all v ∈ V ⇐⇒ Au = λu for all x ∈ Γ and se(λ) ̸= 0. (2.2.10)

The combinatorial operator Aλ will be used to derive more essential machinery and we will

make use of Aλ also in section 2.5, where we construct embedded eigenvalues. Notice of

course, that Aλ is undefined if λ is a root of the function se(λ) for some edge e. This set of

all such λ is denoted by

σD(Γ, A) = {λ : ∃ e ∈ E(Γ), se(λ) = 0} . (2.2.11)

Observe that with the construction of Aλ as described, (2.2.9) is only valid for λ ̸∈ σD(Γ, A).

However, these poles of the DtN map are not an “essential” feature of the model: by following

a technique introduced in [59, §IV] we can create a quantum graph that is almost identical

but where σD(Γ, A) is altered to include or exclude particular values of λ as we see fit. The

Dirichlet spectrum can be moved by adding “dummy vertices” – the original and modified

quantum graphs are unitarily equivalent.

Proposition 2.1. Let (Γ, A) be a quantum graph, let e{v1, v2} be an edge of Γ, and suppose

that se(λ) = 0, say that e has length L and v1 is identified with 0 and v2 with L. Let (Γ̇, Ȧ)

be the quantum graph obtained by placing an additional vertex v, with Neumann vertex

condition (αv = 0), in the interior of e, say at point ℓ ∈ [0, L]. This divides e into two edges

e1{v1, v} and e2{v, v2}, with the potentials on e1 and e2 being inherited from qe on e. Let

s(x;λ), s1(x;λ), and s2(x;λ) be the generalized sine functions for the edges e, e1, and e2.

We have that quantum graphs are unitarily equivalent and also that it is always possible to

choose ℓ such that s1(ℓ;λ) ̸= 0 and s2(L;λ) ̸= 0.
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Proof. First we show that A and Ȧ are unitarily equivalent. We will define the map ψ :

D̄(A) → D̄(Ȧ). We let ψ(u(x)) = u(x) whenever x is outside of the modified edge, when

x ∈ e and x < ℓ let ψ(u(x)) = u(x)χ[0,ℓ](x), and when x ≥ ℓ let ψ(u(x)) = u(x+ℓ)χ[0,L−ℓ](x).

Since u ∈ D̄(A) the restriction of u to e is in H2(e). Thus the restriction of u to e1 and

e2 are each in H2 as well, and since u is also continuous and differentiable at x = ℓ, ψ(u)

will satisfy the Neumann vertex condition at v. Therefore ψ(u) ∈ D̄(Ȧ), the inverse is also

another inclusion map – we have the unitary equivalence.

Now to show that it is possible to select ℓ such that s1(λ) ̸= 0 and s2(λ) ̸= 0. We have

that s1(λ) = se1(ℓ;λ) = se(ℓ;λ). We know that sinc se(x) is the generalized sine function

for the operator −d2/dx2 + q(x)− λ on the interval [0, L], se(x) cannot be identically zero.

Therefore there is some ℓ such that se(L) ̸= 0. Now we need to show that s2(L) is also not

zero. Notice that s2 can be extended from a function on [ℓ, L] to a function on [0, L], we say

that s2 solves the following initial value problem.

−s′′2(x;λ) + qe(x)s2(x;λ) = λs2(x;λ) where s2(ℓ;λ) = 0 and s′2(ℓ;λ) = 1 (2.2.12)

We proceed by considering the transfer matrix, and we use the fact that the Wronskian of s

and c is identically 1.

c(ℓ;λ) s(ℓ;λ)

c′(ℓ;λ) s′(ℓ;λ)


s2(0;λ)
s′2(0;λ)

 =

0
1

 =⇒

s2(0;λ)
s′2(0;λ)

 =

 s′(ℓ;λ) −s(ℓ;λ)

−c′(ℓ;λ) c(ℓ;λ)


0
1

 (2.2.13)

Therefore we can write s2(x;λ) in terms of s(x;λ) and c(x;λ).

s2(x;λ) = −s(ℓ;λ)c(x;λ) + c(ℓ;λ)s(x : λ) (2.2.14)

=⇒ s2(L;λ) = −s(ℓ;λ)c(L;λ) + c(ℓ;λ)s(L;λ) = −s(ℓ;λ)c(L;λ) (2.2.15)

This is because we assumed that s(L;λ) = 0. We have that s2(L;λ) ̸= 0 because s(ℓ;λ) ̸= 0
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by choice of ℓ and c(L;λ) ̸= 0 because c and s are linearly independent.

2.2.3 The Floquet Transform and Spectral Matrix

Another crucial tool for our analysis of periodic quantum graphs is the Floquet transform.

This is closely related to the Fourier transform but it is used to study objects defined on

a periodic structure with a Zd (as oppposed to Rd) symmetry. We will step away from

quantum graphs for a moment to discuss the Floquet Transform as it acts generally on a

periodic measure space.

Definition 2.2.9. Suppose that (Γ, µ) is a measure space that is periodic with a Zd action,

g : x → g + x. We say that W ⊂ Γ is a fundamental domain if for every x ∈ Γ there is a

unique g ∈ Zd and w ∈ W such that x = g + w.

Figure 2.2.1: A ladder quantum graph with fundamental domain in red.

Fundamental domains are not unique; for example a translation of a fundamental domain is

also a fundamental domain. Some of our tools require us to select a fundamental domain,

although the choice of W is arbitrary and it does not have any impact on the essential

properties of a periodic measure space.

Definition 2.2.10. Suppose that u ∈ L2(Γ, µ) and that Γ is Zd periodic with fundamental

domain W . Let Td be the unit torus in Cd and let ν be the unique symmetry respecting

measure with ν(Td) = 1. Then, the Floquet transform of u, is an element of L2(W×Td, µ×ν)
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given by:

[Fu](w; k⃗) =
∑

(g1,...gn)∈Zn

u(g + w)e−i(k1g1+k2g2···+kngn)

:=
∑
g

u(g + w)z−g11 · · · z−gnn =
∑
g

u(g + w)z−g = û(w, z).

Definition 2.2.11. The inverse Floquet transform is given by an integral over the complex

unit torus. Let x = g + w uniquely, then we have that

u(x) = [F−1û](g + w) =

∫
Tn

û(w, ζ)ζgdν(ζ). (2.2.16)

Notice that the Floquet transform will work on both quantum and discrete graphs, and that

the measure µ could be a counting measure, Lebesgue measure, or it could be a measure that

is scaled by some aforementioned ε coupling constants. As long as the measure is compatible

with the Zd action the Floquet transform machinery will work smoothly. Now we consider

the situation in which u ∈ L∞(Γ, µ) is an eigenfunction of the Zd action. We have that, for

some z ∈ Td, u(g + x) = zgu(x). Although the Floquet transform of u is not classically

defined, we can interpret û as a distribution:

û(w, z) = u|W (w)δz(ζ). (2.2.17)

When we interpret the Floquet transform of a quasiperiodic function in this way, it should be

clear that the inverse Floquet transform yields exactly the desired result. Suppose that u is

a quasi-periodic function on a periodic quantum graph. We use both the Floquet transform

and the combinatorial reduction to write,

ˆ̄u(w, z) = u|V(W )δz(ζ). (2.2.18)
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Since we assumed that a periodic quantum graph has fundamental domains with finitely

many vertices, we can interpret ˆ̄u simply as an element of C|V(W )| × Td. We will define a

linear map from C|V(W )| → C|V(W )| that incorporates all of the elements of our discussion so

far:

Definition 2.2.12. The “spectral matrix”, Â is a |V(W )|× |V(W )| matrix with entries that

depend on z and λ. Let u ∈ C|V(W )| then,

Â(z, λ)u := FAλF−1(uδz). (2.2.19)

Notice that if u is a simultaneous eigenfunction, then the pair (2.2.3, 2.2.4) become equivalent

to a homogeneous system of linear equations. The coefficients depend on λ and z and the

variables are values of u on the finite set of vertices in a fundamental domain. The spectral

matrix for this system, Â(z, λ), necessarily has the following property:

Â(z, λ)ˆ̄u = 0 ⇐⇒ u satisfies (2.2.3, 2.2.4). (2.2.20)

This suffices to derive the matrix Â(z, λ) abstractly, as well as to demonstrate its essential

properties. However we will also detail an algorithmic construction. Let V0 and E0 denote

the vertices and edges of a fixed fundamental domain W for (Γ, A). The matrix Â(z, λ) is

indexed by the vertices V0 minus those that have the Dirichlet condition. Given an edge

e ∈ E0, there are vertices v, w ∈ V0 and g ∈ Zd such that e connects v and g + w. If both v

and w have Robin conditions (including Neumann when the Robin parameter is 0) and v ̸=w,

then the following modified DtN matrix goes into the 2×2 submatrix of Â(z, λ) indexed by

v and w:

Ñe(g, z, λ) =
εe

se(λ)

 −ce(λ) zg

z−g −s′e(λ)

 , (2.2.21)
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in which the off-diagonal entries come from the Floquet eigenvalue condition (2.2.4). If v=w,

then εe(z
g + z−g − ce(λ) − s′e(λ)) goes into the diagonal entry indexed by v. If w has the

Dirichlet condition, then −εece(λ)/se(λ) goes in the diagonal entry for v. Then a diagonal

matrix with entries −αv is added.

The dispersion function for (Γ, A) is defined by

D(Γ,A)(z, λ) := det Â(z, λ), (2.2.22)

and its zero set is the set of all (z, λ) pairs at which (Γ, A) admits a Floquet mode.

The spectral matrix does depend on the choice of fundamental domain, but of course the

Floquet modes of (Γ, A) corresponding to null vectors of Â(z, λ) are independent of this

choice. More importantly, the entries of Â(z, λ) and D(Γ,A)(z, λ) have poles in λ. All of them

are Laurent polynomials in z with coefficients that are meromorphic functions of λ. This

can be remedied by considering Proposition 2.1. If we periodically add dummy variables

in the prescribed way then we can consider Â(z, λ) and D(Γ,A)(z, λ) to be defined up to

meromorphic factors.

Proposition 2.2. Let (Γ, A) be a periodic quantum graph, and let (Γ̇, Ȧ) be the quantum

graph obtained by applying Proposition 2.1 periodically. We have that,

s1(λ)s2(λ)D(Γ̇,Ȧ)(z, λ) = ±s(λ)D(Γ,A)(z, λ). (2.2.23)

Proof. The proof is follows by proceeding along the strategy outlined in the proof of Propo-

sition 2.1. First consider the simple case of a quantum graph where the underlying graph

E consists of two vertices and the edge e{v1, v2} between them, identified with the interval

[0, L]. Let Ė be the graph obtained by applying Proposition 2.1. We place a dummy vertex,

v, at the point of e corresponding to x = ℓ ∈ (0, L), and ℓ is chosen so that s1(λ) ̸= 0 and

s2(λ) ̸= 0. Denote the transfer matrices for −d2/dx2 + q(x) on [0, L], on [0, ℓ], and on [ℓ, L]
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by

T (λ) =

 c(λ) s(λ)

c′(λ) s′(λ)

 , T1(λ) =

 c1(λ) s1(λ)

c′1(λ) s′1(λ)

 , T2(λ) =

 c2(λ) s2(λ)

c′2(λ) s′2(λ)

 . (2.2.24)

Considering (Ė, Ȧ) as one period of a d-periodic disconnected graph, its dispersion function

is a meromorphic function of λ alone, as its spectral matrix ˆ̇A(z, λ) cannot depend on z.

When Robin conditions are imposed at both endpoints, denote this function by ḣRR(λ) =

det ˆ̇A(z, λ),

ḣRR(λ) = det



− c1(λ)
s1(λ)

− α1
1

s1(λ)
0

1
s1(λ)

− s′1(λ)

s1(λ)
− c2(λ)

s2(λ)
1

s2(λ)

0 1
s2(λ)

− s′2(λ)

s2(λ)
− α2


. (2.2.25)

When the Dirichlet condition is imposed at one end and a Robin condition is imposed at the

other, we have

ḣDR(λ) = det

 − s′1(λ)

s1(λ)
− c2(λ)

s2(λ)
1

s2(λ)

1
s2(λ)

− s′2(λ)

s2(λ)
− α2

 , (2.2.26)

ḣRD(λ) = det

 − c1(λ)
s1(λ)

− α1
1

s1(λ)

1
s1(λ)

− s′1(λ)

s1(λ)
− c2(λ)

s2(λ)

 , (2.2.27)

and ḣDD(λ) = − s′1(λ)

s1(λ)
− c2(λ)
s2(λ)

is the dispersion function when the Dirichlet condition is imposed
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at both ends. By using the relation T = T2T1, we find that

ḣRR = −c
′ + α1s

′ + α2c+ α1α2s

s1s2
, ḣDR =

s′ + α2s

s1s2
, (2.2.28)

ḣRD =
c+ α1s

s1s2
, ḣDD = − s

s1s2
.

For the un-dotted quantum graph (E,A), one obtains these same expressions except with

the denominator s1(λ)s2(λ) replaced by s(λ),

hRR = −c
′ + α1s

′ + α2c+ α1α2s

s
, hDR =

s′ + α2s

s
, (2.2.29)

hRD =
c+ α1s

s
, hDD = −s

s
.

Now we consider what happens for a general periodic quantum graph. The first case is where

v1 and v2 are not in the same Zd orbit. We can assume that they both are in the vertex set

V0 of the fundamental domain chosen for constructing Â(z, λ), since D(z, λ) is independent

of that choice. Denote by Â(z, λ) and ˆ̇A(z, λ) the discrete reductions at energy λ of the

quantum graphs (Γ, A) and (Γ̇, Ȧ). Index the rows and columns of Â(z, λ) so that the first

two correspond to v1 and v2; then augment it with a 0th column and a 0th row consisting of

a 1 in the leading entry and zeroes elsewhere. Call this matrix ˆ̃A(z, λ).

The matrix ˆ̃A(z, λ) has the block form

 Σ + A B

C D

 , (2.2.30)
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in which

Σ =


1 0 0

0 −cs−1 s−1

0 s−1 −s′s−1

 , (2.2.31)

A and B have all zeroes in the first row, and A and C have all zeroes in the first column.

The variable z does not appear in Σ because v1 and v2 are both in the chosen fundamental

domain. The matrix ˆ̇A(z, λ) is obtained by replacing Σ by a matrix Σ̇, where Σ̇ is obtained

from hRR(λ) (2.2.25) with α1 = α2 = 0 by switching the first two rows and the first two

columns (that is, switching the order of the vertices from (v1, v, v2) to (v, v1, v2)), to obtain

Σ̇ =


−s s−1

1 s−1
2 s−1

1 s−1
2

s−1
1 −c1s−1

1 0

s−1
2 0 −s′2s−1

2

 , (2.2.32)

where the relation s = s1c2 + s′1s2 is used in the upper left entry.

The 3× 3 matrix K = A − BD−1C has all zeroes in its first row and first column. A

computation using the relation T = T2T1 yields the key relation

s1(λ)s2(λ) det(Σ̇ +K) = s(λ) det(Σ +K), (2.2.33)

which holds for any matrix K whose first column and and first row vanish. Using this

together with

det ˆ̇A = detD det(Σ̇ +K), det Â = det ˆ̃A = detD det(Σ +K) (2.2.34)

yields the statement of the theorem.
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If v2 = gv1 for some g ∈ Zd, the process above remains the same, except that

Σ =
1

s

 1 0

0 −c− s′ + zg + z−g

 , Σ̇ =
1

s1s2

 −s s2 + zgs1

s2 + z−gs1 −c1s2 − s′2s1

 , (2.2.35)
and K is a 2×2 matrix with its only nonzero entry being the lower right. In this case, one

obtains (2.2.33) with an extra minus sign on one side.

2.2.4 The Fermi surface

As described above, the zero-set of the dispersion function D(Γ,A)(z, λ) for (Γ, A) is the set

of all (z, λ) pairs at which (Γ, A) admits a Floquet mode. This relation D(Γ,A)(z, λ) = 0 in

(C∗)d × C is called the dispersion relation or the Bloch variety of the periodic operator A.

By fixing an energy λ ∈ C, one obtains the Floquet surface, or Floquet variety, of (Γ, A):

Φλ = Φ(Γ,A),λ =
{
z ∈ (C∗)d : D(Γ,A)(z, λ) = 0

}
. (2.2.36)

When considered as a set of wavevectors (k1, . . . , kd) ∈ C (with zj = eikj), it is the Fermi

surface of (Γ, A). We will just call Φλ the “Fermi surface.” The spectrum of (Γ, A) consists

of all energies λ such that the Fermi surface intersects the d-torus Td = {z ∈ Cd : |z1| =

· · · = |zd| = 1},

σ(Γ,A) =
{
λ ∈ C : Φ(Γ,A),λ ∩ Td ̸= ∅

}
. (2.2.37)

Importantly, when Γ is disconnected, with each connected component being a compact graph,

a fundamental domain can be chosen to be one component Γ0, and thus Â(z, λ) and D(z, λ)

are independent of z. All of the matrices (2.2.21) have g = 0 and reduce to the Dirichlet-

to-Neumann maps for the edges. In this case, the spectral matrix, which can be denoted
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by Â(λ), is the spectral matrix of A confined to the finite graph Γ0, and the roots of its

determinant D(λ) are the eigenvalues of this finite quantum graph.

The Fermi surface is an algebraic set in (C∗)d, and it is reducible at λ whenever Φλ is the

union of two algebraic sets. This occurs whenever D(z, λ) is factorable into two polynomials,

neither of which is a monomial. There is also the situation when a Laurent polynomial

D1(z, λ)
m divides D(z, λ), with m> 1, particularly when D(z, λ) = D1(z, λ)

m. This makes

Φλ reducible on account of having a component of multiplicity greater than 1.

2.3 Reducible Fermi Surfaces

2.3.1 A calculus for joining two periodic graphs

In this section we will prove an essential lemma: it is the building block for the analysis of the

Fermi surfaces for multi-layer quantum graph operators of type 1. The lemma is similar to the

surgery principles for finite quantum graphs in [17], but for periodic quantum graphs. Those

surgery procedures describe how the spectrum of a new graph is related to the spectra of old

graphs under various modifications and joinings. When writing and manipulating formulas

dealing with joining multiple quantum graphs together, it is convenient to use the following

abbreviated notation for the dispersion function of a periodic quantum graph:

[Γ] := D(Γ,A)(z, λ). (2.3.1)

This notation emphasizes the dependence on Γ; it will be used only in the rest of section 2.3,

here A, z, and λ will fall into the background and the ways in which the dispersion polynomial

depends on the structure of Γ will be studied.

Definition 2.3.1. Let Γ be a d-periodic graph, and let v be a vertex of Γ of degree r. We
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define Γv to be the periodic graph obtained by replacing, for each g ∈Zd, the vertex g + v

by r terminal vertices incident to the r edges that are incident to g + v in Γ.

Definition 2.3.2. Let (Γ, A) be a d-periodic quantum graph containing vertex v ∈ V(Γ).

Denote by (Γv, Av) the quantum graph obtained by replacing the vertex condition at each

vertex in the orbit {g + v : g ∈ Zd} in Γ with the Dirichlet condition. Defining Av as an

operator on Γv is valid because of Remark 2.2.6.

Definition 2.1 (Single-vertex join Γ1(v1 v2)Γ2). Let Γ1 and Γ2 be d-periodic quantum graphs

with Robin parameter α1 at v1 ∈ V(Γ1) and α2 at v2 ∈ V(Γ2). The single-vertex join of

Γ1 and Γ2 at the pair (v1, v2), denoted by Γ1(v1 v2)Γ2, is a quantum graph with vertex set

V(Γ1)∪V(Γ2)/≡, in which g+v1 ≡ g+v2 for all g ∈ Zd and edge set E(Γ1)∪E(Γ2). A Robin

vertex condition with parameter α1 + α2 is imposed at the joined vertices g + v1 ≡ g + v2,

and all other vertex conditions are inherited from Γ1 and Γ2. If the Robin parameter at the

joined vertex v1 ≡ v2 is changed to α, the resulting graph is denoted by Γ1(v1 v2)αΓ2.

Lemma 2.3.3. Let Γ1 and Γ2 be d-periodic quantum graphs with v1 ∈ V(Γ1) and v2 ∈ V(Γ2).

Then the dispersion function for Γ1(v1, v2)Γ2 is

[Γ1(v1, v2)Γ2] = [Γ1] [Γ
v2
2 ] + [Γv11 ] [Γ2] , (2.3.2)

and the dispersion function for Γ1(v1 v2)αΓ2 is

[Γ1(v1 v2)αΓ2] = [Γ1] [Γ
v2
2 ] + [Γv11 ] [Γ2] + (α− α1 − α2) [Γ

v1
1 ] [Γv22 ] . (2.3.3)

Proof. Let A1 and A2 be the operators associated with the quantum graphs Γ1 and Γ2,

and let Â1(z, λ) and Â2(z, λ) be the spectral matrices of these operators. Let Â0
1(z, λ) and

Â0
2(z, E) be the spectral matrices of the operators associated with Γv11 and Γv22 . By ordering

the vertices of a fundamental domain of Γ1 such that v1 is listed last, and ordering the

vertices of a fundamental domain of Γ2 such that v2 is listed first, one obtains the block
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decomposition

Â1 =

 Â0
1 a1

a∗1 a01

 , Â2 =

 a02 a∗2

a2 Â0
2

 , (2.3.4)

in which a1 and a2 are column vectors and a01 and a02 are scalars.

The matrix Â of the operator associated with Γ1(v1 v2)Γ2 is

Â =


Â0

1 a1 0

a∗1 a01 + a02 a∗2

0 a2 Â0
2

 . (2.3.5)

Notice that the entry a01+a
0
2 incorporates the Robin parameter α1+α2. The first statement

of the theorem can be derived by using properties of block matrix determinants.

det(Â) = det(Â1) det(Â
0
2) + det(Â0

1) det(Â2).

The matrix Floquet transform for Γ1(v1 v2)αΓ2 is obtained by adding α−α1−α2 to the term

a01 + a02 in (2.3.5), and the second statement of the theorem follows.

2.3.2 Separable periodic graphs

The class of multi-layer graphs that we call type 1 are built from layers that are separable.

Each layer has the property that, when a certain vertex is removed periodically, the graph

separates into a d-dimensional array of identical finite graphs, as illustrated in Fig. 2.3.1.

Definition 2.3.4. A d-periodic graph Γ is separable at v ∈ V(Γ) if Γv is the union of the Zd

translates of a finite graph, or, equivalently, if Γv has compact connected components.
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Figure 2.3.1: A periodic graph that is separable at a vertex v; and the corresponding graph Γv.

Type 1 Type 2

Figure 2.3.2: 1-periodic examples of multi-layer graphs with reducible Fermi surface. Type 1
(left): Each layer is a separable periodic graph whose dispersion function is a polynomial in a fixed
Laurent polynomial ζ(z, λ). The layers are connected at corresponding vertices of separation by
the periodic translates of a finite (blue) graph. Type 2 (right): Each layer has the same underlying
bipartite periodic graph with two vertices per period, and the potentials on corresponding (vertically
displaced) edges have the same Dirichlet spectrum. Vertically displaced green vertices are connected
by periodic translates of a finite (green) graph; and similarly for the red vertices.

2.3.3 Type 1: Multi-layer graphs with separable layers

This section develops a class of multi-layer graphs whose individual layers are separable and

whose Fermi surface is reducible. A 1-periodic illustration is in Fig. 2.3.2(left). An example

is AB-stacked graphene, which is discussed in Section 2.4.4.

Definition 2.3.5. A type-1 quantum graph is built from layers (black in Fig. 2.3.2(left))

and connector graph (blue in Fig. 2.3.2(left)). Let ζ(z, λ) be a Laurent polynomial in z =

(z1, . . . , zd) with coefficients that are meromorphic in λ. The j-th layer (j = 1, . . . , n) is a d-

periodic quantum graph (Λj, Aj), with a distinguished vertex vj and such that the dispersion

function of (Λj, Aj) and the dispersion function of (Λ
vj
j , A

vj
j ) are each polynomial functions

of the same composite variable ζ(z, λ) with coefficients that are meromorphic in λ.
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The connector graph is a finite quantum graph (Σ, B), together with a list of distinct vertices

wj ∈ V(Σ) (j = 1, . . . , n). An n-layer quantum graph (Γ, A) is formed as follows: For each j

the vertex vj is merged, or identified, with wj. In like manner, for each g ∈ Zd, the translated

vertices g + v1, . . . , g + vn are coupled by another copy of Σ, called g + Σ. The resulting

periodic graph Γ is called a type-1 multi-layer graph.

The edge set of a type-1 graph consists of the edges of each layer Λj and the edges of each

translate g + Σ of Σ. By denoting the identification of merged vertices by the equivalence

relation ≡, the vertex and edge sets of Γ are

V(Γ) =

 n⋃
j=1

V(Λj) ∪
⋃
g∈Zd

V(g + Σ)

 / ≡ (2.3.6)

E(Γ) =
n⋃
j=1

E(Λj) ∪
⋃
g∈Zd

E(g + Σ). (2.3.7)

The Schrödinger operator A on Γ has the same differential-operator expression as the opera-

tors Aj and B on the elemental graphs Λj and Σ, and the Robin parameter of an equivalence

class of merged vertices (now a single vertex of Γ) is assigned the sum of the Robin parameters

of all the vertices that were merged.

When we form a type-1 graph we have in mind specifically the situation in which each layer

Λj is separable at vj. This is because, in this case, Λ
vj
j is a disjoint union of compact graphs,

and thus its dispersion function is a meromorphic function fj(λ) and therefore a degree-0

polyomial in ζ(z, λ). However when we form multilayer structures we can allow the layers

themselves to be type-1 graphs, in this case the dispersion function of a layer will be a more

general polynomial. This is applied to analyze ABC-stacked graphene in Section 2.4.

Observe that it is possible to allow several of the vertices wj to be equal. In this case,

one might as well merge all the layers that are attached to that vertex into a single layer
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according to the single-vertex join in Definition 2.1, applied several times. According to the

calculus of Lemma 2.3.3, the degree of the polynomial pj for this new layer is the maximum

of the degrees of the polynomials of the joined components.

Theorem 2.3. Let (Γ, A) be an n-layer d-periodic quantum graph of type 1. Its dispersion

function D(z, λ) is a polynomial in ζ(z, λ) with coefficients that are meromorphic functions

of λ,

D(z, λ) = P (ζ(z, λ), λ). (2.3.8)

Let pj(ζ, λ) be the dispersion function for the layer (Λj, Aj). The degree of P as a polynomial

in ζ is

degP =
n∑
j=1

deg pj. (2.3.9)

Proof. When the number of layers is zero, (Γ, A) is the union ∪g∈Zdg + Σ of disconnected

finite components with the operator B acting on each component. The dispersion function is

a meromorphic function of λ, independent of z, and is thus trivially a polynomial in ζ(z, λ)

of degree 0, with coefficients that are meromorphic in λ. We proceed by induction. Let the

theorem hold with n replaced by n−1, with n ≥ 1.

Let (Γ, A) be the type-1 n-layer quantum graph supposed in the theorem, with layers (Λj, Aj)

separable at vj (1 ≤ j ≤ n) and connector graph (Σ, B) with distinct joining vertices {wj}nj=1.

If any of the polynomials pj has degree 0, then Λj is a disjoint union of Zd translates of a finite

graph, and this finite graph might as well be joined with the connector graph Σ. Therefore,

we assume that each deg pj ≥ 1 for all j : 1 ≤ j ≤ n.

Denote by (Γ̃, Ã) the type-1 (n−1)-layer quantum graph built from the layers {(Λj, Aj)}n−1
j=1

and the connector objects (Σ, B) and {wj}n−1
j=1 . Note that (Γ̃

wn , Ãwn) is the type-1 (n−1)-layer

quantum graph built from the layers {(Λj, Aj)}n−1
j=1 and the connector objects (Σwn , Bwn) and
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{wj}n−1
j=1 . Denote by D̃(z, λ) and D̃0(z, λ) the dispersion functions of (Γ̃, Ã) and (Γ̃wn , Ãwn).

By the induction hypothesis, they are polynomials in ζ(z, λ) with coefficients that are mero-

morphic in λ, and both are of degree
∑n−1

j=1 deg pj.

The graph (Γ, A) is the single-vertex join of (Γ̃, Ã) and Λn,

Γ = Γ̃(wn, vn)Λn (2.3.10)

and the calculus of Lemma 2.3.3 yields

[Γ] = [Γ̃][Λvnn ] + [Γ̃wn ][Λn]. (2.3.11)

Since Λn is separable at vn, [Λ
vn
n ] is independent of z, so the degree of the first term on the

right-hand side of (2.3.11), as a polynomial in ζ, is m =
∑n−1

j=1 deg pj. The degree of the

second term as a polynomial in ζ is m+ deg pn. This completes the induction.

Corollary 2.4. The Fermi surface of a type-1 n-layer d-periodic quantum graph is reducible

into m =
∑n

j=1 deg pj components (with possible multiplicities). Each component is of the

form

ζ(z, λ) = µ(λ). (2.3.12)

For each λ, the m (not necessarily distinct) values of µ(λ) are the roots of P (ζ, λ).

Proof. The polynomial P (ζ, λ) in Theorem 2.3 factors into m =
∑n

j=1 deg pj linear factors as

a function of ζ, and each factor corresponds to a component of the Fermi surface of (Γ, A).

A special case of Theorem 2.3 occurs when there is only one layer. The connector graph Σ

is then viewed as a periodic “decoration” of Λ1. The result is the following corollary. Much
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more is known about decorated periodic graphs, particularly with regard to opening spectral

gaps [76].

Corollary 2.5 (Decorated graphs). Let (Γ, A) be a d-periodic quantum graph that is separable

at vertex v, and let (Σ, B) be a finite decorator graph with distinguished vertex w ∈ V(Σ).

Let ℓ(λ) denote the spectral function of (Γv, Av), and let h(λ) and h0(λ) denote the spectral

functions of (Σ, B) and (Σw, Bw).

Denote by (Γ̄, Ā) the “decorated graph” obtained by the single-vertex join of (Γ, A) and

∆ = ∪g∈ZdgΣ at the vertices v and w. If the Fermi surface of (Γ, A) at energy λ is given by

D(z, λ) = 0, (2.3.13)

then the Fermi surface of (Γ̄, Ā) at λ is given by

D(z, λ) = −ℓ(λ)h(λ)
h0(λ)

. (2.3.14)

Proof. The theorem says that [Γ̄] is a function of D(λ, z) that is linear in D(z, λ) (take

ζ(z, λ) = D(z, λ)), and we can find the coefficients by applying Lemma 2.3.3. [Γ̄] =

[Γ][∆w] + [Γv][∆], or

[Γ̄] = D(z, λ)h0(λ) + ℓ(λ)h(λ). (2.3.15)

The Fermi surface of (Γ̄, Ā) is [Γ̄] = 0, from which follows the result.

2.3.4 Type 2: Multi-layer graphs with bipartite layers

This section generalizes the construction in [78, §6] from bi-layer to n-layer quantum graphs

and from single-edge coupling to coupling by general graphs, as illustrated on the right in
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Fig. 2.3.2.

Definition 2.3.6. A type-2 multilayer quantum graph is built from layers with the same

graph and two connector graphs, (Σ1, B1) and (Σ2, B2). Each layer is bipartite with exactly

one “red” and one “green” vertex in a fundamental domain. The operators associated to

each layer must have the same s(λ)-function on corresponding edges, or, equivalently, parallel

potentials must have the same Dirichlet spectrum. The Robin parameters may be different

across layers. The connector graphs are both finite graphs with at least n-vertices. The

layers are stacked by periodically connecting them copies of the connector graphs. In each

fundamental domain the n red vertices are joined by a copy of Σ1 and the n green vertices

are joined by a copy of Σ2. The Robin vertex parameters are added at each joining vertex.

An example is AA-stacked graphene, which is discussed in Section 2.4.3.

Theorem 2.6 (bipartite layers). Let (Γ, A) be a multi-layer type-2 periodic quantum graph

obtained by coupling n quantum graphs (Λ, Ak), k = 1, . . . , n. The dispersion function is a

polynomial, p, of degree n in a composite variable ζ(z, λ) with coefficients that holomorphic

in λ. Thus, for each energy λ, the Fermi surface of (Γ, A) has (counting multiplicity) n

components. The components are of the form

ζ(z, λ) = ρ(λ), (2.3.16)

in which ρ(λ) is a root of the polynomial p.

Proof. Given that the quantum graph (Λ, Å), for a given layer, has underlying graph Λ which

is bipartite with one red and one green vertex per period, the spectral matrix is a 2×2 matrix

ˆ̊
A(z, λ) =

 b1(λ) w(z, λ)

w(z−1, λ) b2(λ)

 , (2.3.17)
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in which bi(λ) are meromorphic functions of λ and w(z, λ) is a Laurent polynomial in z with

coefficients that are meromorphic in λ. Specifically, w(z, λ) is a sum over some finite subset

Z ⊂ Zd,

w(z, λ) =
∑
ℓ∈Z

εℓ z
ℓ

sℓ(λ)
, (2.3.18)

in which sℓ(λ) is the s-function for the potential q(x) on the edge connecting a green vertex

in a given fundamental domain with a red vertex in the domain shifted by ℓ ∈ Zd, and

zℓ = zℓ11 · · · zℓnn and εℓ is the weight for that edge.

Since (Γ, A) is type-2 we have that w(z, λ) are identical over all the layers, however the

functions b1(λ) and b2(λ) may vary from layer to layer. The spectral matrix for (Γ, A) is

Â(z, λ) =

 b1(λ) w(z, λ)Q

w(z−1, λ)QT b2(λ)

+

 B1(λ) 0

0 B2(λ)



=

 B̃1(λ) w(z, λ)Q

w(z−1, λ)QT B̃2(λ)

 ,
(2.3.19)

in which Q is the m1 ×m2 matrix with the n× n identity matrix in its upper left, all other

entries being zero; b1(λ) (resp. b2(λ)) is a square diagonal matrix of size n+m1 (resp.
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n+m2),

b1(λ) = diag
j=1...n

bj1(λ)⊕ 0m1 =



b11(λ)

. . .

bn1 (λ)

0

. . .

0


; (2.3.20)

B1(λ) is the m1 × m1 spectral matrix of the coupling graph for the red vertices and the

m2 ×m2 matrix B2(λ) is for the green vertices; and B̃j(λ)=bj(λ) +Bj(λ).

The dispersion function of (Γ, A) is

D(z, λ) = det Â(z, λ) = det
(
B̃1(λ)

)
det
(
B̃2(λ)− w(z, λ)w(z−1, λ)QT B̃1(λ)

−1Q
)

= P
(
w(z, λ)w(z−1, λ), λ

)
, (2.3.21)

in which P (·, λ) is a polynomial of degree n with coefficients that are meromorphic functions

of λ. For a single layer, this polynomial is just a linear function of the composite Floquet

variable ζ(z, λ) := w(z, λ)w(z−1, λ).

Remark 2.3.7. An important simplification occurs when the connector graphs are linear

graphs. The n successive layers are connected by edges and the matrix Q in expression

(2.3.21) becomes the n×n identity matrix In. The dispersion function simplifies to

D(z, λ) = det
(
B̃1(λ)B̃2(λ)− ζ(z, λ)In

)
, (2.3.22)

120



and therefore the components of the Fermi surface are

ζ(z, λ) = ρj(λ), j = 1, . . . , n, (2.3.23)

where ρj are the eigenvalues of the matrix B̃1(λ)B̃2(λ). As the connector graphs are linear

graphs, their spectral matrices Bi(λ) are tridiagonal, with DtN matrices for the connector

edges along the principal 2×2 submatrices.

Remark on decorated edges. For the sake of completeness, we mention that the edges

in any of the quantum graphs we consider may as well be “decorated edges”, as illustrated

in Fig. 2.3.3 for a single-layer graphene structure. A decorated edge is a finite graph that

has two distinguished terminal vertices that act as the two vertices of the decorated edge.

Particularly, in a type-2 multi-layer graph, the single layers, even when decorated, can essen-

tially still be considered as being bipartite. Allowing decorations on an edge can be thought

of loosely as allowing a broader class of potentials on the edge. A decorated edge admits a

Dirichlet-to-Neumann map that straightforwardly generalizes that of an edge. When forming

the spectral matrix Â(z, λ), this DtN map is used, as described in section 2.2.2, and only

the two terminal endpoints of the decorated edge enter into the vertex set that indexes the

matrix.
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v2 v1

Figure 2.3.3: Quantum-graph graphene model with decorated edges.
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2.4 Multilayer Graphene

We apply the theory developed in this work to quantum-graph models of multi-layer graphene

structures. By using the theorems for Type-1 and Type-2 quantum graphs, we can show

that very general stacking of graphene, where the layers are shifted or rotated, results in a

reducible Fermi surface. We also include some brief discussion on the conical singularities at

wavevectors (k1, k2) = ±(2π/3,−2π/3) for single-layer graphene and how stacking multiple

layers destroys them.

2.4.1 The single layer

A graph model of graphene is hexagonal and bipartite, having two vertices and three edges

of length 1 per fundamental domain. Since Graphene is bipartite, it is also separable at any

vertex (see, for example, [56]).

The most general quantum-graph model (Λ̊, Å) for which the differential operator on the

edges is of the form −d2/dx2 + q(x) features three potentials, one for each edge in a period,

and two Robin parameters αi, one for each vertex vi (i = 1, 2) in a period. The potentials

will be denoted by qi(x) (i = 0, 1, 2) as in Fig. 2.4.1 and the corresponding transfer matrices

by

Ti(λ) =

 ci(λ) si(λ)

c′i(λ) s′i(λ)

 (i = 0, 1, 2). (2.4.1)

Let ξ1 and ξ2, as illustrated in Fig. 2.4.1, be generators of the periodicity in the sense that

the action of (n1, n2) ∈ Z2 on Γ̊ shifts the graph along the vector n1ξ1 + n2ξ2 in the plane so

that it falls exactly into itself. The components of the vector (z1, z2), the Floquet multipliers,
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Figure 2.4.1: Single-layer graphene Γ̊ and its fundamental domain. The arrows on the edges
indicate the direction of the x-interval [0, 1] in the parameterization of the edges. The vectors ξ1
and ξ2 generate the periodic shifts.

are the eigenvalues of the shifts by ξ1 and ξ2 corresponding to a Floquet mode. The spectral

matrix (2.3.19) of this quantum graph at energy λ is

ˆ̊
A(z1, z2, λ) =


b1(λ) w(z, λ)

w(z−1, λ) b2(λ)

 , (2.4.2)

Where the entries are the following functions:

b1(λ) = −c0(λ)
s0(λ)

− c1(λ)

s1(λ)
− c2(λ)

s2(λ)
− α1 (2.4.3)

b2(λ) = −s
′
0(λ)

s0(λ)
− s′1(λ)

s1(λ)
− s′2(λ)

s2(λ)
− α2 (2.4.4)

w(z, λ) =
1

s0(λ)
+

z1
s1(λ)

+
z2

s2(λ)
. (2.4.5)

This is the function w(z, λ) in (2.3.18). Notice that w(z, λ) depends only on the potentials

qi(x) through their Dirichlet spectrum since only the functions si(λ) appear in the definition

of w(z, λ). The dispersion function for (̊Γ, Å) is

D(z1, z2, λ) = det
ˆ̊
A(z1, z2, λ) = b1(λ)b2(λ)− w(z, λ)w(z−1, λ). (2.4.6)

We will use the shorthand w(z, λ)w(z−1, λ) = ζ(z, λ). This notation is chosen intention-
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ally, we will have that w(z, λ)w(z−1, λ) is the composite variable for a variety of multilayer

graphene structures. Notice that the dispersion functions of two different single-layer sheets

of graphene have the same ζ(z, λ) exactly when corresponding edges are isospectral, because

knowing the Dirichlet spectrum of a potential is equivalent to knowing its s(λ) function [71,

Ch. 2 Theorem 5].

All three edges in a period of a single layer are isospectral exactly when s0(λ) = s1(λ) = s2(λ),

and in this case ζ(z, λ) separates as

ζ(z, λ) = s0(λ)
−2G(z1, z2), (2.4.7)

in which

G(z1, z2) = (1 + z1 + z2)(1 + z−1
1 + z−1

2 ). (2.4.8)

The Fermi surface of a single layer at energy λ is given by D(z1, z2, λ) = 0, which reduces to

s0(λ)
2 b1(λ)b2(λ) = G(z1, z2). (2.4.9)

We will use the symbol ∆(λ) to refer to the left hand side of (2.4.9). Also we call ∆(λ) as

the “characteristic function” for this single-layer graphene model.

For (z1, z2) = (eik1 , eik2) on the torus T2,

G̃(k1, k2) := G(eik1 , eik2) =
∣∣1 + eik1 + eik2

∣∣2
= 1 + 8 cos

k2 − k1
2

cos
k1
2
cos

k2
2
,

(2.4.10)

and this has range [0, 9] as a function of real k1 and k2, with its minima occuring at

±(2π/3,−2π/3) [56, Lemma 3.3]. Thus the bands of this graphene model are the real
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λ-intervals over which ∆(λ) lies in [0, 9].

Single-layer quantum-graph graphene sheets and tubes, with a common symmetric potential

q0(x) on all edges, are treated in detail in [56]. In this case, b1(λ) = b2(λ) and the spectrum

of the sheet is identical to that of the periodic Hill operator with potential q0(x) on a period.

In contrast to the Hill operator, the dispersion relation exhibits conical singularities, one for

each energy λ where ∆(λ)=0. Fig. 2.4.3 shows a graph of ∆(λ).

Notice that ∆(λ) is a non-negative function of real λ that has a minimum value of 0

(Fig. 2.4.3). The quadratic nature of the function at the minima is responsible for the

Dirac cones, as explained in [56]. There is a close connection between the dispersion func-

tions of discrete (tight-binding) models and quantum-graph models [56, Remark 3.2]. In the

discrete graph model of single-layer graphene with a common interaction strength between

atoms, the characteristic function reduces to ∆(λ) = 9λ2, and thus there is a Dirac cone

at λ= 0. For multi-layer graphene in the discrete and quantum versions, ∆(λ) becomes a

more complicated function of λ. Our analysis treats very general potentials on the three

edges of a fundamental domain, and this leads to a more general dispersion function that is

not separable into λ-dependent and z-dependent terms because the edges do not in general

possess a common s(λ) function (see (2.4.6) and (2.4.7)).

2.4.2 Shifting and rotating

We adopt terminology on shifted layers of graphene that is used in the literature. The

hexagonal graphene structure is invariant under translation by the sum ξ1 + ξ2 of the two

elementary shift vectors, as illustrated in Fig. 2.4.2. The shift by (ξ1 + ξ2)/3 (dashed blue)

places vertex v2 onto vertex v1 and places vertex v1 onto the center of the hexagon; this will

be called the B-shift. The shift by 2(ξ1 + ξ2)/3 (or −(ξ1 + ξ2)/3, dotted orange) places v1

onto v2 and v2 onto the center of the hexagon; this will be called the C-shift. The unshifted
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graph is called the A-shift.

By rotating the graphene structure by π about the center of an edge, the potentials reverse

direction. This is illustrated on the right of Fig. 2.4.2, in which rotation is about the edge

labeled 0. Each labeled oriented edge corresponds to a potential qi(x), with the parameter x

increasing in the direction of the arrow. The labels 0, 1, 2 are preserved under rotation, but

their orientations are reversed. Equivalently, rotation effects the change qi(x) 7→ qi(1 − x)

of the potentials. The rotation also switches the Robin conditions on the two vertices of a

period.

Denote a single layer by (Λ̊, Å) and its 180◦ rotation by (Λ̊, Åπ). The potentials qi(x)

and qi(1 − x) have the same Dirichlet spectrum, which coincides with the roots of the

function si(λ). Therefore the function w(z, λ) in (2.4.5) is the same for both quantum

graphs and their dispersion functions are polynomials in the same composite Floquet vari-

able ζ(z, λ) = w(z, λ)w(z−1, λ).
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Figure 2.4.2: Left: A- B- and C-shifts of graphene are illustrated in solid black, dashed blue, and
dotted orange, as described in the text. Right: Rotating graphene by 180◦ reverses the orientation
of the potentials but preserves their Dirichlet spectra.

2.4.3 AA-stacking and rotation

In AA-stacked graphene, each layer is stacked directly over the previous and each pair of

vertically successive vertices is connected by an edge, as in Fig. 2.4.4. As a type-2 n-layer

graph, the red vertices in a given period, together with the n−1 edges connecting them,

form the connector graph (Σ1, B1), and the green vertices and the edges connecting them
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Figure 2.4.3: Graph of the characteristic function ∆(λ) of single-layer graphene, showing the first
three spectral bands and the first three gaps. The bands are the λ-intervals for which ∆(λ) ∈ [0, 9],
which is the range of the function G̃(k1, k2). The points where ∆(λ) = 0 correspond to conical
singularities of the dispersion relationD(eik1 , eik2 , λ) = 0, which occur inside the bands, as discussed
in [56].

form (Σ2, B2). The hypotheses of Theorem 2.6 allow the potentials q(x) on any pair of

vertically aligned edges on two different layers to differ as long as the operators −d2/dx2 +

qe(x) possess the same Dirichlet spectrum. The theorem then guarantees that the Fermi

surface of the layered structure is reducible with n components.

A particular instance of AA-stacked graphene satisfying the hypotheses of the theorem is

constructed from copies of a given single layer and its rotations about the center of an

edge. Let a single layer (Λ, A0) with arbitrary potentials on the three edges of a period

and arbitrary Robin parameters on the two vertices be given. Rotation of this graph by

180◦ about the center of an edge, as described in the previous section and illustrated in

Figs. 2.4.2,2.4.4 (right), results in a new layer of graphene (Λ, Aπ) with the same underlying

graph Λ but with the potentials oriented in the opposite direction and the Robin parameters

at the two vertices switched.

Thus Theorem 2.6 applies to an n-layer stack, with each layer being either (Λ̊, Å) or (Λ̊, Åπ),

in any order, stacked in the AA sense. The Fermi surface of this n-layer graphene has n

components. According to section 2.3.4, equation (2.3.22), the relation D(z, λ) = 0 reduces

to n components

µi(λ) = G(z1, z2) i = 1, . . . , n, (2.4.11)
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in which µi are the eigenvalues of the “characteristic matrix”

∆(λ) = s0(λ)
2 B̃1(λ)B̃2(λ), (2.4.12)

which generalizes the characteristic function (2.4.9) by the same name for the single layer.
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10
21

2

Figure 2.4.4: AA-stacked graphene in three layers and a fundamental domain thereof. If the
potentials on corresponding edges on different layers have the same Dirichlet spectrum, then the
Fermi surface for the multi-layer graph is reducible. This occurs, in particular, when a layer is
rotated by π about the center of an edge.

Examples. (Fig. 2.4.5 and 2.4.6) Let the layers be identical with identical potential q0(x)

on all three edges of a period. We take q0(x) to be symmetric about x = 1/2 so that the

DtN map for the edge is independent of the direction. We choose

q0(x) = −16χ[1/3,2/3](x) (2.4.13)

(χY (x) is the characteristic function of the set Y ⊂ R) so that the DtN map is explicitly

computable and so that the spectrum of the single layer does have gaps (because q0(x) is

not constant; see [56]).

On all of the connector edges, which are all of length 1, we take the potential qc(x) to be

either 0 or q0(x) or

qc(x) = −10χ[1/2,1](x), (2.4.14)

which is not symmetric about the center. Fig. 2.4.5 and 2.4.6 show graphs of µi(µ) for
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bi-layer and tri-layer graphene. Each eigenvalue contributes a sequence of bands and gaps

to the spectrum of the multi-layer graph—the bands for the ith sequence are the λ-intervals

for which µi(λ) ∈ [0, 9]. When the Dirichlet spectral function s(λ) on the connecting edges

is different from that of the layers, new thin bands are introduced. Conical singularities,

or Dirac cones, are characteristic features of single-layer graphene, and in special cases of

AA-stacking, they persist. The recent article [28] also observes by computation that a finite

number of AA-stacked graphene layers with the same symmetric potential on all edges within

each layer and with symmetric connecting potentials, always exhibits Dirac cones. These

Dirac cones can also be deduced from the full hexagonal symmetry group, as proved in [16].
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Figure 2.4.5: For double-layer AA-stacked graphene, the two eigenvalues µi(λ) (i = 1, 2) of the
characteristic matrix ∆(λ) give two sets of spectral bands and gaps. The bands are the λ-intervals
for which µi(λ) ∈ [0, 9]. a. The connecting edges have the same potential as those of the lay-
ers (2.4.13). b. The potentials (2.4.14) of the two connecting edges are equal to each other but
different from that of the layers (2.4.13). This creates additional thin bands (within each of the
sets of spectral bands), which have conical singularities of their own. c. The potentials of the
two connecting edges are different from each other (q(x) = 0 and 2.4.13). This destroys conical
singularities and introduces additional thin gaps in their place. Additionally, new thin bands are
introduced just below the vertical asymptotes. d. The potentials of the two connecting edges are
different from each other (q(x) = 0 and 2.4.14).
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Figure 2.4.6: The three eigenvalues µi(λ) (i = 1, 2, 3) of the characteristic matrix ∆(λ) for triple-
layer AAA-stacked graphene, giving three sets of spectral bands and gaps. The bands are the
λ-intervals for which µi(λ) ∈ [0, 9]. a. The connecting edges have the same potential as those of
the layers. b. The connecting edges have potential (2.4.13) at vertex v1 and potential (2.4.14)
at vertex v2; this creates additional thin gaps and destroys Dirac cones (the minima are slightly
below 0).

2.4.4 AB-stacking

In AB-stacked graphene, also called Bernal stacking, the layers are in the A-shift or the

B-shift and are coupled by a single edge per period. We allow any number of layers with

the A- and B-shifts arranged in arbitrary order (such as ABABA, ABBA, etc.). Fig. 2.4.7

illustrates three layers with alternating shifts.

In each layer, we allow both (Λ̊, Å) and (Λ̊, Åπ) or any potentials qi(x) (i = 1, 2, 3) as long as,

for each i, the Dirichlet spectra are invariant across layers. As noted above, this guarantees

that the function ζ(z, λ) is independent of the layer since it depends only on the Dirichlet

spectral functions si(λ), which are equivalent to the Dirichlet spectra of the potentials qi(x).

Note that isospectrality (which is explicitly required for type 2) arises for graphene in type-1

stacking. Thus the dispersion function of each layer is of the form (2.4.6) with different

bi(λ) but the same ζ(z, λ). In any period of this layered structure, n vertices, one per layer,

are aligned along a vertical line, and these are connected by edges. These vertices serve

as vertices of separation of the individual layers. Thus Theorem 2.3 on type-1 multi-layer

graphs applies.

Computations of AB-stacking in [27], with a common symmetric potential on all edges of
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each layer, show that three layers result in a Dirac cone (linear point), whereas two layers

result in two bands touching quadratically (parabolic point). This raises the question as to

whether the parity of the number of layers determines whether the touching point is linear

or parabolic and whether symmetry arguments can be used to illuminate this question.

Figure 2.4.7: AB-stacked graphene in three layers (ABA) and a fundamental domain thereof.
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Figure 2.4.8: For double-layer AB-stacked graphene, these are graphs of s(λ)2µi(λ) (i = 1, 2),
where µi(λ) are the two roots of P (ζ(z, λ), λ), as in Theorem 2.6. Each root gives a set of spectral
bands and gaps. The bands are the λ-intervals for which µi(λ) ∈ [0, 9]. a. The connecting edge
has the same potential as those of the layers. b. A close view near λ = 20 shows that the graphs
of µi(λ) cross the horizontal axis, and thus Dirac cones are not present.

2.4.5 ABC-stacking

In ABC-stacked graphene, all three shifts are stacked, as illustrated in Fig. 2.4.9. The number

of components of the Fermi surface of the ABC-stacked structure is equal to the number of

layers. We leave the details of how to use Theorems 2.3 and 2.6 to prove this to the reader.

The arguments are similar to those described for the more general mixed stacking below.
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Figure 2.4.9: ABC-stacked graphene in four layers and a fundamental domain thereof.

2.4.6 Mixed stacking

Several graphene sheets can be stacked with arbitrary shifts (A,B,C) to obtain a mixed-

stacking multi-layer sheet of graphene with reducible Fermi surface, as long as all the in-

dividual layers have dispersion function that is a polynomial in the same composite Flo-

quet variable ζ(z, λ). As discussed above, this occurs when all vertically aligned edges are

Dirichlet-isospectral. Fig. 2.4.10 depicts five layers stacked with mixed shifts. The dispersion

function is a polynomial in ζ(z, λ) whose degree is the number of single sheets of graphene in

the stack. The proof of this uses iterated application of the theorems on type-1 and type-2

multi-layer constructions from section 2.3.

Let Σ1 and Σ2 be n-layer and m-layer AA-stacked graphene quantum graphs (type 2). Let

the individual layers of both have dispersion functions that are polynomials in a common

ζ(z, λ). Let u1 and un be corresponding (vertically aligned) vertices in the first and n-th

layers of Σ1, and let v1 and vm be corresponding vertices in the first and m-th layers of Σ2.

Observe that Σun
1 has dispersion function that is also a function of the same ζ(z, λ). This

is because a single graphene layer is separable at any vertex, and thus Σun
1 can be viewed

as a type-2 (n−1)-layer graph with connectors that consist of the edges between the n−1

layers plus decorations. The same is true of Σv0
2 . Therefore Σ1 and Σ2 can be coupled by an

edge between un and v0 according to a two-layer type-1 construction, resulting in a quantum

graph Γ with dispersion function that is a polynomial in ζ(z, λ).
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This construction could just as well be carried out using Σvm
2 in place of Σ2, resulting in

Γvm , whose dispersion function is a polynomial in ζ(z, λ). Now yet another AA-stacked

multi-layer graphene construction Σ3 with the same ζ(z, λ) can be attached to Γ, and so on.

These arguments need to modified somewhat if any of the AA-stacked sections Σi consists

of only one layer, as in ABC-stacked graphene.
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Figure 2.4.10: Five layers of graphene in mixed stacking with a fundamental domain.

2.5 Defects and Embedded eigenvalues

In this section, we show how the reducibility of the Fermi surface can be exploited to build a

defective quantum graph with an embedded eigenvalue. We will show the explicit construc-

tion for AA stacked graphene, but it would not be difficult to adapt outlined strategy to

build an eigenvalue embedding defect for other quantum graph with reducible Fermi surface.

The local defect of the periodic quantum graph operator will admit a bound (L2) state at an

energy within the continuous spectrum, and this state will have unbounded support. Such

an energy is an embedded eigenvalue of the operator. The condition of unbounded support

distinguishes these eigenvalues from the energies of the flat bands, which are peculiar to

graph operators, both discrete and quantum. See more discussion of this interesting issue

in [58].
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A result in [58] gives guidance on how to construct embedded eigenvalues when one does

have reducibility. The key is in the inverse Floquet transform, where the dispersion func-

tion D(z, λ) = D1(z, λ)D2(z, λ) appears in the denominator. This process of construction

proceeds in stages and we will show explicitly how the embedding defect is constructed for

AA-stacked Graphene.

1. The first step is to choose an energy λ such that exactly one of the factors, say D1(z, λ)

but not D2(z, λ), vanishes at some z values on the torus T2⊂C2.

2. Then we will study an auxiliary forcing problem on the combinatorial graph: A(λ)ū =

ϕ. The ϕ is of the form D1(z, λ)c⃗ for some non-zero vector of constants c⃗. When we

use the inverse Floquet transform to solve for u, the factor D1(z, λ) is canceled in the

denominator, so u will be a function with the desired properties.

3. Finally we will to modify the potentials on a finite number of edges so that the same

u which solves A(λ)ū = ϕ will also solve the eigenvalue problem with the modified

operator, i.e. AV (λ)u = λu.

Consider a single layer of graphene, let the potentials on all of the edges be qe(x) = 0, and

let the Robin parameters be identically 0. The spectral matrix for the single layer is

ˆ̊
A(z, λ) =

1

s(λ)

−3c(λ) w(z)

w(z−1) −3c(λ)

 , (2.5.1)

in which s(λ) = sin
√
λ and c(λ) = cos

√
λ and w(z) = 1 + z1 + z2 . The spectral matrix

(2.3.19) for AA-stacked graphene ΓAA becomes

Â(z, λ) =
1

s(λ)

s(λ)
ˆ̊
A(z, λ)− c(λ)I2 I2

I2 s(λ)
ˆ̊
A(z, λ)− c(λ)I2

 , (2.5.2)
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in which I2 is the 2×2 identity matrix. The dispersion function D(z, λ) is the determinant

of this matrix, and since we will choose a λ that is not a root of s(λ), we work with

D̃(z, λ) = det
(
s(λ)Â(z, λ)

)
= D̃1(z, λ)D̃2(z, λ)

=
(
16c(λ)2 − 8c(λ) + 1− ζ(z)

)(
16c(λ)2 + 8c(λ) + 1− ζ(z)

)
, (2.5.3)

in which ζ(z) = w(z)w(z−1). The dispersion relations for the two components of the Fermi

surface, as displayed in (2.4.11), are

ζ(z1, z2) = µ±(λ) := 16c(λ)2 ± 8c(λ) + 1. (2.5.4)

These two components contribute different sets of bands, say σ±(A), to the spectrum of the

AA-stacked graphene model; σ− corresponds to the factor D̃1(z, λ), and σ+ to the factor

D̃2(z, λ). As described in Section 2.4.3, since the range of ζ(eik1 , eik2) is the interval [0, 9],

the bands are the inverse images of this interval by the functions µ±(λ), whose graphs are

shown in Fig. 2.5.1. Precisely, σ±(A) = {λ : 16c(λ)2 ± 8c(λ) + 1 ∈ [0, 9]}.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15
16c(λ)2 + 8c(λ) + 1

16c(λ)2 − 8c(λ) + 1

Figure 2.5.1: Two sets of spectral bands for AA stacked, bi-layer graphene. They come from the
two components of the Fermi surface, and are the inverse images of the interval [0, 9] under the two
graphed dispersion functions. The vertical line shows that the energy λ=1 lies within a band of
the relation ζ(eik1 , eik2) = µ−(λ) but in a gap of the relation ζ(eik1 , eik2) = µ+(λ).

Notice that λ=1, for example, lies in σ−(A)\σ+(A). This shows that step of our procedure
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can be satisfied with λ = 1, although it is not hard to find other values that would work.

Next we need to construct the combinatorial forcing that cancels the desired factor in the

inverse Floquet transform. Consider the discrete-graph reduction (sec. 2.2.2) of the full

quantum-graph operator on ΓAA,

A(λ)u = ϕ, (2.5.5)

where ϕ is a forcing function defined on the vertices of ΓAA that is nonzero at only finitely

many vertices. Its Floquet transform ϕ̂(z) is therefore a Laurent polynomial in z=(z1, z2),

and its coefficients can be considered to be vectors in C4 since a fundamental domain W of

ΓAA contains four vertices. The solution u is the response (also defined on the vertices of

ΓAA) to the forcing function ϕ at energy λ. We obtain û(z) algebraically,

û(z) = Â(z, λ)−1ϕ̂(z) =
Adj(Â(z, λ))ϕ̂(z)

D(z, λ)
, (2.5.6)

here, Adj(Â(z, λ)) is the adjunct of Â(z, λ). Now we fixing λ=1, and we choose the forcing

function in the Fourier domain as:

ϕ̂(z) = D̃1(z, 1)c⃗ :=
(
16c(1)2 − 8c(1) + 1− ζ(z1, z2)

)
[1, 0, 0, 0]t . (2.5.7)

Any choice of c⃗ ̸= 0 would suffice but we choose [1, 0, 0, 0]t because it will simplify many

calculations. Since ϕ̂(z) is a Laurent polynomial in z = (z1, z2), the forcing function ϕ on

ΓAA has compact support. We can see exactly what kind of vertex forcing it is by multiplying

out the function ζ(z1, z2), we have that

ϕ̂(z) = (16c(1)2 − 8c(1) + 1 + (1 + z1 + z2)(1 + z−1
1 + z−1

2 ))[1, 0, 0, 0]t

= (16c(1)2 − 8c(1) + 4 + z1 + z2 + z−1
1 + z−1

2 ++z1z
−1
2 + z−1

1 z2)[1, 0, 0, 0]
t (2.5.8)
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We see that ϕ is a vertex forcing at seven vertices, the same vertex in each of seven adjacent

fundamental domains. Say v1 is the first vertex in the ordering that is determined when

we compute the spectral matrix – because of the many symmetries of this version of AA

stacked graphene (all potentials and vertex conditions are 0), it does not matter which vertex

is chosen to be v1. We can read from the Floquet transform the exact values of ϕ:

ϕ(v1) = 16c(1)2 − 8c(1) + 4

ϕ((0, 1) + v1) = ϕ((1, 0) + v1) = ϕ((0,−1) + v1) = ϕ((−1, 0) + v1) = 1

ϕ((−1, 1) + v1) = ϕ((1,−1) + v1) = 1

For simplicity say that ϕ(v) is supported only on the red vertices in the top layer, and only

in seven adjacent fundamental domains. Now we continue from (2.5.6) and we obtain

û(z) =
Adj(Â(z, 1)) c⃗

16c(1)2 + 8c(1) + 1− ζ(z)
. (2.5.9)

The response u has a value at each of the four vertices in each shift of W by any element

of g ∈ Zd, and so u can be considered to be a function of g ∈ Zd with values in C4. It is

obtained by the inverse Floquet transform,

u(g) =
1

(2π)2

∫
T2

zg û(z) dz, (2.5.10)

in which T2 = {z ∈ C2 : |z1|= |z2|=1} is the two-dimensional torus in C2.

Since λ=1 is not in σ2(A), the denominator does not vanish on the two-dimensional torus

T2 = {z ∈ C2 : |z1|= |z2|=1} in C2. Therefore û(z) is analytic on T2, and it follows that

u ∈ L2(V(ΓAA)) (u is in fact exponentially decaying). As long as the denominator D̃2(z, 1) is

not cancelled identically by any of the four components of the vector in the numerator, û(z)

will not be a Laurent polynomial in z. This means that u has unbounded support, that is,
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it is nonzero on infinitely many vertices. We compute the values at the four vertices of each

shift of W explicitly (since c⃗ = [1, 0, 0, 0]t):

u1(g) =
s(1)

(2π)2

∫
T2

zg
−64c(1)3 + 4c(1)ζ(z)

16c(1)2 + 8c(1) + 1− ζ(z)
dz (2.5.11)

u2(g) =
s(1)

(2π)2

∫
T2

zg
(1 + z1 + z2)(16c(1)

2 − 1− ζ(z))

16c(1)2 + 8c(1) + 1− ζ(z)
dz (2.5.12)

u3(g) =
s(1)

(2π)2

∫
T2

zg
1− ζ(z)− 16c(1)2

16c(1)2 + 8c(1) + 1− ζ(z)
dz (2.5.13)

u4(g) =
s(1)

(2π)2

∫
T2

zg
8c(1)(1 + z1 + z2)

16c(1)2 + 8c(1) + 1− ζ(z)
dz, (2.5.14)

and confirm that the denominator is not simultaneously a factor of all four of the numerators.

This so far suffices for conclude step 2 of the procedure that was outlined in the beginning

of the section. For the final step, we need to demonstrate how we can use the combinatorial

forcing to build the desired embedding potential. The following lemma is essential for this

step.

Lemma 2.5.1. Given real numbers α, β, γ, and λ with αβ ̸= 0, there exists a real-valued

potential q(x) on [0, 1] for which c(λ)=α, s(λ)=β, and s′(λ)=γ.

Proof. Let c(x;λ) be the solution to −u′′+ q(x)u = λu such that c(0;λ)=1 and c′(0;λ)=0;

and let s(x;λ) be the solution such that s(0;λ) = 0 and s′(0;λ) = 1. Then, by definition,

c(λ)=c(1;λ), s(λ)=s(1;λ), and s′(λ)=s′(1;λ), with the prime referring to d/dx. The ODE

implies

q(x)− λ =
c′′(x;λ)

c(x;λ)
. (2.5.15)

We prescribe additionally that c(x;λ) is an analytic function of x such that

1. c(1;λ) = α and c′(1;λ) = αγ−1
β

,
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2. c(x;λ) has finitely many roots in (0, 1), and at each root the first derivative is nonzero

and the second derivative is zero,

3.
∫ 1

0
c(x;λ)−2dx = β

α
.

Let us show that the potential q(x) obtained from this function c(x;λ) is well defined and

has the three desired properties.

Because of the second property, c′′(x;λ)/c(x;λ) is analytic at each zero of c(x;λ). By con-

struction c(1;λ) = α. From the Wronskian identity c(x;λ)s′(x;λ)− s(x;λ)c′(x;λ) = 1, one

obtains

s(x;λ) = c(x;λ)

∫ x

0

1

c(x;λ)2
dx, (2.5.16)

which, together with properties (1) and (3), yields s(1;λ)=β. The Wronskian identity also

gives

αs′ −
(
αγ − 1

β

)
β = 1, (2.5.17)

from which we obtain s′(1;λ) = γ.

We now show how the solution u to A(1)ū=ϕ can be used to create an L2 eigenstate of a

local perturbation of the quantum graph A. Our embedding potential will be supported on

seven edges, these edges are all vertical edges which connect two red vertices, and they are in

domains (0, 0), (1, 0), (0, 1), (0,−1), (−1, 0), (1,−1) and (−1, 1). Call these edges e1, . . . e7

and say that their terminal vertices are (v1, w1) . . . (v7, w7) we know that ϕ(v1), . . . ϕ(v7) ̸= 0

and that ϕ(w1), . . . ϕ(w7) = 0. We will construct a perturbation of A by adding potentials

Vi(x) the each of the seven edges, ei. This is equivalent to choosing V so that

A(1)ū=ϕ ⇐⇒ AV (1)ū = 0. (2.5.18)
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To do this, we must look at how the matrices A(1) and AV (1) are constructed. They are

indexed by V(ΓAA). The 2×2 submatrix of A(1) corresponding to the vertices {v, w} of

one of the edges e1, . . . e7 has a contribution from the DtN map (2.2.21) with g = 0 and

sei(1) = s(1) (similarly for c and s′); and the corresponding 2×2 submatrix of AV (1) has a

similar contribution, but with sei(1)=sVi(1) (similarly for c and s′) coming from the spectral

functions for the operator −d2/dx2 + V (x). The edges ei have no vertices in common, so

A(1) and AV (1) are identical aside from these 7 sub matrices.

Given that A(λ)u= ϕ, the task is to find V (x) such that AV (λ)u=A(λ)u − ϕ. ϕ vanishes

except at the vertices vi, and this equation holds automatically elsewhere. Thus for each i

we must solve:

1

sVi(1)

−cVi(1) 1

1 −s′Vi(1)


u(vi)
u(wi)

 =

 u′(vi)− ϕ(vi)

u′(wi)− ϕ(wi)

 =

u′(vi)− ϕ(vi)

u′(wi)

 . (2.5.19)

We know that u′(vi), u
′(wi) can be written in terms of u(vi), u(wi) by using the DtN map

for an unperturbed edge. We will also invoke Lemma 2.5.1 and choose each Vi such that

sVi(1) = s(1) for each edge i. From this we have that

1

s(1)

−cVi(1) + c(1) 0

0 −s′Vi(1) + s′(1)


u(vi)
u(wi)

 =

ϕ(vi)
0

 (2.5.20)

This system of equations is satisfied by choosing s′Vi(1) = s′(1) and cVi = c(1) − s(1)ϕ(vi)
u(vi)

. If

it happens that u(vi) = 0 when vi is any of the vertices in question then alternate choices of

sV , cV and s′V are possible since (2.5.19) is an equation in two variables and three unknowns.

Alternatively (2.5.11) can be checked with a computer for all seven choices for g. We know

that u(vi) and u(wi) cannot both be zero since we chose λ outside of the Dirichlet spectrum.
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