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1 Abstract

Nanoscale Reactive Ion Etching of Silicon Nitride Thin Films for Embedded

Nanomagnetic Device Fabrication

David Luke Hibbard-Lubow

The demands of digital memory have increased exponentially in recent history, requir-

ing faster, smaller and more accurate storage methods. Two promising solutions to

this ever-present problem are Bit Patterned Media (BPM) and Spin-Transfer Torque

Magnetic Random Access Memory (STT-MRAM). Producing these technologies re-

quires difficult and expensive fabrication techniques. Thus, the production processes

must be optimized to allow these storage methods to compete commercially while

continuing to increase their information storage density and reliability. I developed

a process for the production of nanomagnetic devices (which can take the form of

several types of digital memory) embedded in thin silicon nitride films. My focus

was on optimizing the reactive ion etching recipe required to embed the device in

the film. Ultimately, I found that recipe 37 (Power: 250W, CF4 nominal/actual flow

rate: 25/25.4 sccm, O2 nominal/actual flow rate: 3.1/5.2 sccm, which gave a maxi-

mum pressure around 400 mTorr) gave the most repeatable and anisotropic results.

I successfully used processes described in this thesis to make embedded nanomag-

nets, which could be used as bit patterned media. Another promising application of

this work is to make embedded magnetic tunneling junctions, which are the storage

medium used in MRAM. Doing so will require still some tweaks to the fabrication

methods. Techniques for making these changes and their potential effects are dis-

cussed.
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3 Introduction

3.1 Novel Storage Technologies

BPM stores bits of information on isolated nanomagnetic dots rather than the arbi-

trarily arranged magnetic grains of current hard disc drives. This could allow BPM

to solve many of the problems faced by conventional magnetic grain-based storage.

However, the large-scale fabrication of BPM requires several novel and difficult pro-

cesses, hindering commercialization [1]. The research presented in this thesis focuses

in part on optimizing the processes involved in the production of nanomagnetic arrays

that are candidates for commercial BPM.

Bit patterned media consists of arrays of nanomagnetic dots, each storing a digital

bit of information, with the value determined by the direction of its magnetization.

This differs from a magnetic grain-based method, where multiple adjacent grains are

magnetized in the same direction to form one bit, which leads to somewhat random

variation in the size, shape and number of grains representing one bit. This limits

the minimum size of bits, determined by their potential for increasing the error rate

and thermal instability [1].
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Figure 1: A comparison of traditional magnetic grain-based storage (left) to BPM
(right) [1]. The red outline represents one bit and the scale bar is the same for both
images.

As can be seen in figure 1, a BPM bit is significantly smaller in at least one

direction than the multi-grain bit, allowing more information to be stored in a smaller

space. However, BPM could only ever replace hard disk drives (HDDs), because BPM

is simply too slow to function as the other types of memory used by computers.

STT-MRAM, on the other hand, has the potential to replace the four standard

types of memory currently used by computers (DRAM, SRAM, flash, and HDD) [2].

This could reduce the communication needed between different types of memory,

potentially improving speed and reducing power consumption. Thus, STT-MRAM

is a much more widely applicable and promising technology and its production (in

an information dense and low cost manner) is the long-term goal of the research
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discussed in this thesis.

The principle behind STT-MRAM revolves around magnetic tunneling junctions

(MTJs), which are used to store the digital information. Thus, a comprehension of

MTJs is necessary before STT-MRAM can be understood. In addition, MTJs are

the focus of much of the research discussed in this thesis. Thus, an explanation of

the physics behind MTJs is presented here, followed by a discussion of their potential

applications (including STT-MRAM).

Magnetic Tunneling Junctions (MTJs), in their simplest form, are made of two

magnetic layers separated by a thin insulating layer. Typically, the top film is referred

to as the free layer. As the name implies, its magnetic orientation is free to change,

relative to that of the bottom layer. The magnetization of the bottom layer is fixed,

so it is appropriately called the fixed or reference layer.

When an MTJ is used as part of a storage technology, a bit of digital information

(a 1 or a 0) is stored as the orientation of the free layer’s magnetization, relative to

that of the fixed layer. Such a device has two basic magnetic states: parallel and

antiparallel, which refers to the relative alignment of the magnetizations of the free

and reference layers and corresponds to a 1 or 0, in terms of digital information. A

depiction of these states and their effects on the energy bands can be seen in figure

2.
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Figure 2: The basic structure of an MTJ in its parallel and antiparallel states, along
with the resulting bands [3]. RL: reference layer; TB: tunnel barrier; FL: free layer.

In a well designed MTJ, the insulating barrier is thin enough that electrons can

tunnel from one side to the other. However, the ease with which they can do so is

greatly influenced by the relative orientation of the magnetizations of the free and

reference layers. As one might expect, if the magnetizations are antiparallel, it is

several times more difficult for electrons to tunnel from one layer to another compared

to the parallel state. This difficulty is manifested as tunnelling magnetoresistance

(TMR), and can be measured, allowing the bit to be read.
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Conventionally, the value of the bit was changed by applying a current-generated

magnetic field to the free layer, thus changing it from a parallel to an antiparallel

state, or vice versa. This method was adapted from traditional hard disk drive

(HDD) writing techniques and was not as effective as the spin transfer torque (STT)

writing method, which has since become the norm.

STT works by creating a current of electrons whose spins are all aligned in a spe-

cific direction. This current then flows through the MTJ and the electrons transfer

their spin angular momentum to the free layer, providing it with the angular mo-

mentum necessary to flip its magnetic orientation and thus changing the value of the

bit of information it stores [4]. The position of an MTJ within the basic structure of

STT-MRAM can be seen in figure 3.

Figure 3: A schematic of an MTJ used in STT-MRAM [3].

Thus, MTJs are an integral part of MRAM, but they have a myriad of potential

other applications, including acting as nanoscale spintronic oscillators, potentially
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as a substitute for neural networks in emerging computational fields like speech

recognition [5].

3.2 Embedded vs. On-Surface Devices

Embedded memory technologies are a novel solution to the many problems that

arise from the fabrication of traditional types of on-surface memory. Specifically,

on-surface STT-MRAM is expensive to fabricate, and the current methods used to

do so can often lead to a relatively high MTJ failure rate [6]. Embedding the MTJ

in the substrate via etching offers a potential solution to these problems [7] and

provides increased scalability and versatility [8]. In addition, embedding MTJs in

the substrate could allow for easier integration of STT-MRAM with other elements

of a standard computer [9], allowing for increased performance.

Thus, much of the work presented in this thesis involves embedding MTJs and

other nanomagnetic devices in substrates.

3.3 Reactive Ion Etching

Reactive ion etchers (RIE) are commonly used for etching silicon or silicon-based

compounds, such as silicon nitride (Si3N4). Typically, these etches are done to depths

of microns. On such a scale, RIEs provide predictable depths and highly anisotropic

(vertical) etches.

A diagram of the basic components of an RIE can be seen in figure 4.
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Figure 4: A schematic of the essential parts of a reactive ion etcher [10].

To etch a sample, it is loaded into the chamber, which is then pumped down to

a few hundred mTorr. The etchant gas(es) then flow in through the gas inlet until

the pressure stabilizes. An AC field with a frequency of 13.56 MHz is applied to the

bottom electrode, typically with a few hundred watts of power.

This AC field causes the gas molecules to oscillate. Since the nuclei of the atoms

are positively charged and the electrons are negatively charged, they are pulled in

opposite directions. Additionally, their differences in mass cause them to oscillate
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with different amplitudes. The net result is that the molecules are stripped of their

electrons, creating a plasma of positive ions and free electrons.

As the free electrons are oscillate, some stick to the bottom electrode, and some

to the top electrode. Since the top electrode is grounded, the electrons that hit

it are quickly removed. However, the bottom electrode is electrically isolated, so

the electrons that come in contact with it deposit a net negative charge, creating a

potential difference between the top and bottom electrodes.

This voltage causes the positive ions to accelerate toward the bottom electrode.

Some of them hit the sample (which is resting on the bottom electrode). The ions

form bonds with the sample’s molecules, causing them to separate from the sample.

They are then removed by the vacuum pump. Ions can also remove parts of the

sample via physical sputtering, using purely kinetic energy to break some of the

bonds holding the sample’s atoms in place. [11] [12].

In order to control the type and rate of the etch, the user can vary the gas content,

pressure and power, though changing one of these often changes the others.

3.4 Scanning Electron Microscopy

Electronic and computational technologies are getting smaller at an exponential rate.

To produce and examine these devices, we must go beyond the physical size limits

of traditional confocal microscopy. A key tool in this push for miniaturization is

the scanning electron microscope (SEM). As the name implies, SEMs use electrons,

rather than photons, to examine samples.

The decision to use electrons comes from the fundamental resolution limit set
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forward by the Rayleigh criteria, which ultimately gives the lateral resolution as pro-

portional to the wavelength. Due to their mass, electrons can have lower wavelengths

than photons. Thus, they allow the SEM user to resolve smaller features than would

photons [13].

In addition, SEMs can be used to do lithography on a nanometer scale, called

electron beam lithography (EBL). This process is detailed later in the Targeted

Etching via Electron Beam Lithography section, but it replaces the light used for

traditional lithography with a highly focused electron beam. This beam exposes the

photoresist in the desired pattern, so that material can be adhered to the substrate

only in the requisite locations. This process is essential to the method of embedded

nanomagnet fabrication used to make the devices examined in this thesis.

4 Experimental Methods

4.1 Targeted Etching via Electron Beam Lithography

As mentioned in the previous section, electron beam lithography is essential to the

fabrication of nanodevices. However, to embed them in the substrate, an etch is

also needed. A depiction of this process can be seen in the figure 5. I start with a

bare silicon substrate (which is doped when I am attempting to make a real MTJ).

Through a collaboration with Brigham Young University, these substrates are then

coated with a ∼50nm Si3N4 film using chemical vapor deposition (CVD). I then spin

coat the sample with a ∼200nm thick layer of PMMA 950, which is a photoresist

that responds to electrons. Next, I selectively expose the PMMA, using an electron
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beam. I remove the exposed PMMA with a development step and etch into the Si3N4

film (and a bit into the doped Si to ensure electrical contact) using an RIE. Note

that the etching process does not significantly affect the remaining PMMA or etch

the material below it, by design. I deposit metal with an electron beam evaporator,

or send the sample off to have an MTJ stack deposited on it via sputtering. Lastly,

I use a liftoff step to remove any metal that is on top of the PMMA (not in the area

exposed by the electron beam), leaving only the embedded devices. To evaluate the

results, I take images of the sample with the SEM and/or an atomic force microscope

(AFM), which precisely measures the topology.
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(a) Bare doped silicon substrate. (b) Si3N4 film grown via chemical va-
por deposition (CVD).

(c) PMMA applied via spin coat. (d) Electron beam exposure.

(e) Development. (f) Etching.

(g) Metal Deposition (or PMMA re-
moval and measurement) .

(h) Liftoff, leaving embedded ele-
ments.

Figure 5: Our basic embedded nanomagnet or MTJ fabrication process.
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A summary of each of the processes needed to make most of the different types

of samples studied in this thesis is given in the figure 6. The text that follows the

figure describes each of these processes in detail. A summarized version of both is

given in the appendix, for convenient reference.

Note that the actual embedded MTJ samples will be made in accordance with

the “Patterned Sample (for Etching and Deposition)” method, but using a sputtered

MTJ stack instead of metal deposited via electron beam evaporation and likely with

a few other tweaks (discussed in sections 5.2.4, 5.4 and 6). A “PMMA Drop Sample”

is used only for measuring the etch depth, roughness and sometimes anisotropy of

a given RIE recipe. The “Patterned Sample (for Etching and Measurement)” is a

sacrificial sample, used to determine the size, shape and depth of the holes on a

“Patterned Sample (for Etching and Deposition)” after the two samples are etched

simultaneously. These hole characteristics are nearly identical for two samples that

are prepared and etched together using the same method (based on several experi-

ments I ran to confirm this correlation). Thus, by taking measurements of the holes

on the “Patterned Sample (for Etching and Measurement)”, I can determine the

depth, shape and size of the holes on the “Patterned Sample (for Etching and Depo-

sition)” without removing its PMMA (which would ruin it). Lastly, the “Patterned

Sample (for deposition)” fabrication procedure is the traditional nanolithography

method used in our lab. I made a few nanodots this way to compare the shapes

of nanodots made with sputtering vs. electron beam evaporation (our traditional

nanolithography method). In addition, nanodots provide a somewhat simple way to

test bilayer resist recipes (discussed in sections 5.2.4, 5.4 and 6).
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Figure 6: An overview of many of the fabrication processes used to produce the
samples examined in this thesis. Descriptions of the individual steps are given below.

Prepare Sample:

1. Set hot plate to 180oC

2. Cut samples with diamond scratch.

3. Sonicate for 3 minutes in acetone.

4. Repeat step 3 with new acetone, then with IPA.

5. Rinse with deionized H2O, dry with N2.
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6. Dry on hotplate at 180oC for 1 minute.

Apply PMMA Drop:

1. Put PMMA drop on part of sample (use clean tweezers to minimize drop size).

2. Let cure for at least 1 hour (check that PMMA is dry).

3. Put samples on hotplate at 180oC for 1 minute.

4. Let samples cool for at least 1 hour.

Etch:

1. Warm up/clean RIE using warm up recipe for the desired etching gas.

2. Check plasma (presence and consistency), reflected power, gas flows and pres-

sure (though this may differ from the value when a sample is in the RIE).

3. Etch samples.

4. For each new gas, do O2 clean, repeat previous etch steps.

Remove PMMA:

1. Acetone soak for at least 30 minutes, sonicate for 3 minutes in same acetone.

2. Repeat step 1 with new acetone.

3. Sonicate for 3 minutes in IPA.

4. Rinse with deionized H2O, dry with N2.
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Spin Coat:

1. Set hot plate to 180oC

2. Line bed of spin coater with paper towel.

3. Select Recipe 8.

4. Put sample on vacuum chuck, test vacuum by starting recipe and letting it

reach maximum speed. Secure larger samples to vacuum chuck with double

sided tape.

5. Discard first PMMA drop, then apply PMMA to sample until surface is almost

covered.

6. Run recipe.

7. Bake on hotplate at 180oC for 1 minute.

8. Scratch sample (start in center), add a cross scratch and corner scratches.

Develop:

1. Swirl in 3:7 H2O: IPA for 1 minute.

2. Rinse with deionized H2O, dry with N2.

Liftoff:

1. Sonicate for 3 minutes in acetone.

2. Soak in new acetone for several hours (or overnight)
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3. Sonicate for 3 minutes in new acetone.

4. Sonicate for 3 minutes in IPA.

5. Rinse with deionized H2O, dry with N2.

4.2 Reactive Ion Etching for Embedded Nanomagnet Fabri-

cation

Reactive ion etchers, like the Technics 800 Series Micro-RIE I worked with, are

typically used for etching to depths of over a micron. However, I had to make

holes that were on the order of 50nm deep (roughly equal to the thickness of the

Si3N4 film). In addition, I needed the etch depth to be predictable and repeatable.

Lastly, the hole had to have high anistropy (cylindrical, not conical), in order to

make good electrical contact with the doped substrate below the Si3N4. Since this is

not commonly done, I experimented with new etching recipes to find one that would

satisfy all of my requirements as best as possible.

Ideally, the bottom of the holes would be relatively smooth, in order to allow the

deposited MTJ stack to perform as intended. However, there were potential solutions

to high roughness (discussed in section 5.4), so this was of lesser concern initially.

In fact, I determined the anisotropy would also not be a top priority, as long as the

hole was not completely closed at the bottom. Thus, the most important goal was

to find an etch that could give a predictable depth on the order of 50nm in Si3N4.
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5 Results and Analysis

5.1 SF6 Etching

I started my search for a suitable etching recipe with low power (30-70W) and using

only SF6 (with a 15 sccm flow rate). Most of these recipes produced decently linear

depth vs. time results, on a given day. However, the depths for the same power

and time varied quite significantly (often more than 100% difference) from day to

day. Accurately predicting the depth of an etch is crucial to embedded nanodevice

fabrication, so I concluded that none of these recipes would work for my purposes.

I hypothesized that the low power was creating an unstable plasma, which could

sometimes be observed as flickering. This could cause somewhat random variations

in the number and energy of ions hitting the sample, thus changing the etch rate,

potentially accounting for the unrepeatable results. A potential solution to this

problem is to raise the power.

I found that higher power (100-250W) SF6 recipes produced surfaces with rough-

nesses up to 5 nm. Although there are methods for reducing roughness after etching,

the roughness in this case was so significant that it often changed the depth (as

measured by the AFM) somewhat randomly, again producing unpredictable results.

I looked for a “Goldilocks” zone between the roughness that came with higher

powers and the flickering plasma that came with lower powers, but one did not exist.

Thus, I had to find an alternative solution.

From other groups who were attempting to do somewhat similar things (though

most of them were still etching to larger depths), I found that potential solutions to
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my problem were to add oxygen [14] and/or substitute CF4 for SF6 [15], change the

pressure, or add argon [16].

I could not add argon because our RIE did not have enough mass flow regulators.

In addition, many of the lower pressures suggested by other groups for pure SF6

etching were difficult to achieve or gave inconsistent (or no) plasmas in our RIE.

Thus, the only potentially viable solutions were to try switching gasses and/or flow

rates and their accompanying pressures.

5.2 SF6 and O2 Etching

5.2.1 Preliminary Recipes

For etching with SF6 and O2, I tried many combinations of power, flow rates (which

determine the pressure) and gas ratio (O2 flow rate/SF6 flow rate). A summary of

the different recipes I tried, along with a preliminary assessment of their potential

viability based on the appearance of the plasma, is given in figures 7 and 8. Figure

7 is an overview of all the recipes, and the figure 8 is a zoomed in version, to better

show some of the more successful recipes. Note that these figures also include the

SF6 only recipes discussed in the previous section, which have a gas ratio of 0.
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Figure 7: An overview of all the different recipes I tried for combinations of SF6 and
O2.
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Figure 8: A closer look at some of the different recipes I tried for combinations of
SF6 and O2 (zoomed in version of Fig. 7).
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Even with the addition of O2, lower power recipes still tended to produce flick-

ering/inconsistent plasmas or unrepeatable results. Thus, I focused on higher power

recipes, leading to the development of recipes 15, 18 and 21 (numbered in reverse

order of creation for somewhat historical reasons).

Recipe 21 had a power of 200W, an SF6 nominal/actual flow rate of 8/8.6 sccm

and an O2 nominal/actual flow rate of 1.5/3.6 sccm. Preliminary results for recipe

21 can be seen in figure 9. Note that in figure 9 and the other depth vs. time plots,

the uncertainties on the depths are generally in the range of 1-2nm (unless otherwise

stated) and are thus too small to be depicted visibly in these graphs.
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Figure 9: Depth vs. time for etches of PMMA drop samples done on different days
with recipe 21. The horizontal dashed red line shows the depth of the Si3N4 film (54
nm here). The black line is a fit of the data points whose depths do not exceed that
of the Si3N4 film. From this line, I calculated a Si3N4 etch rate of 2.1 nm/s.

The anistropy of the recipe 21’s etch profile was low, which severely limited

the minimum feature size that it would be able to produce on a patterned sample.

In addition, the etch depth was not very repeatable, especially at higher depths.

Thus, I determined recipe 21 was not a viable candidate for embedded nanomagnet

fabrication.

Many of the aforementioned sources (particularly [14] and [16]) seemed to indicate
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that changing the power could lead to better anisotropy for SF6 and O2 recipes. Since

reducing the power seemed to give inconsistent plasmas, I raised the power to our

RIE’s maximum, 250W, leading to the development of recipes 18 and 15.

Recipe 18 had a power 250W, an SF6 nominal/actual flow rate of 16/16.4 sccm

and an O2 nominal/actual flow rate of 2/3.6 sccm. The preliminary etch depth

results can be seen in figure 10.

Figure 10: Depth vs. Time for etches of PMMA drop samples done on different days
with recipe 18. The horizontal dashed red line shows the depth of the Si3N4 film (54
nm here). The black line is a fit of the data points whose depths do not exceed that
of the Si3N4 film. From this line, I calculated a Si3N4 etch rate of 2.0 nm/s.
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The anisotropy improved significantly from recipe 21 to recipe 18, but the etch

depth was again not very repeatable, as seen in figure 10.

5.2.2 Recipe 15

Unfortunately, very few papers that discuss etch depth repeatability on the nanome-

ter scale have been published. However, many papers on Si3N4 etching (to greater

depths, generally), such as [14], suggest increasing oxygen flow to create a passiviza-

tion layer in an attempt to increase anisotropy. I hypothesized that this might also

have a positive effect on the repeatability of the etch depth by preventing the etchant

ions from making contact with the sidewall and thus reducing unpredictable changes

in etch rate due to horizontal etching.

With this theory in mind, I increased the oxygen flow in recipe 18, leading to

recipe 15 which had a power of 250W, an SF6 nominal/actual flow rate of 16/16.4

sccm and an O2 nominal/actual flow rate of 4/6 sccm. Etch depth vs. time data for

recipe 15 from several different dates can be seen in figure 11.
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Figure 11: Depth vs. time for etches of PMMA drop samples done with recipe 15
on different days. The horizontal dashed red line shows the depth of the Si3N4 film
(54 nm here)

Generally, the depth of etches done with recipe 15 for 17.5-20 seconds was fairly

repeatable. It tended to reach depths slightly greater than the thickness of the

Si3N4 (54 nm: shown by horizontal red line in figure 11), as desired for embedded
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MTJ/nanomagnet fabrication. However, the trend was occasionally interrupted by

unexpectedly low pressures during etching. These seemed to occur randomly and

lasted for the duration of an etch. When they did occur, the etch rate increased

significantly, thus producing a greater depth for the same etch time.

The correlation between low pressure and high etch rate is consistent with Bernoulli’s

principle. A lower pressure leads to higher average particle velocities, which causes

them to impact the substrate with higher kinetic energies, thus increasing the prob-

ability of material removal via sputtering and ultimately increasing the etch rate.

This theory can be further confirmed by examining the anisotropy. Generally, an

increase in the amount of material removed by sputtering leads to a steeper slope

along the etched/unetched interface, because sputtering is a more anisotropic process

than other RIE material removal mechanisms. Comparing the slopes of the samples

that experienced low pressures during etching to those that did not (but were etched

for longer times to achieve somewhat comparable depths), I found a correlation

between low pressure and high anisotropy. For example, sample 70 was etched for

17.5 s on May 19th using recipe 15, with an average pressure of 275 mTorr. I found

that it had an etch depth of 105 nm and an interface slope of 0.11. For comparison,

sample 55 is fairly representative of the “normal pressure” samples. It was etched

for 30 seconds on May 3rd using recipe 15, with an average pressure of 300 mTorr.

This led to an etch depth of 164 nm and an interface slope of 0.078. Thus, it is

quite likely that low pressure leads to an increase in particle velocity via Bernoulli’s

principle, allowing for an increase in sputtering and thus a greater etch depth and

higher anisotropy.
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While the seemingly randomly occurring higher etch rates in recipe 15 are de-

tectable (via the pressure readout), I could not find a reliable way of preventing

them. However, an etch depth that was greater than intended could potentially be

corrected by backfilling with metal, as long as the depth was known. Thus, I pro-

ceeded to use recipe 15 to etch a nanopatterned sample, since recipe 15 gave the most

repeatable and anisotropic etching results of any SF6 and O2 recipe. An example of

one of the holes etched this way can bee seen in figure 12.
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Figure 12: An inverted 3D AFM image (top) and an AFM cross section (bottom) of
a hole etched in a patterned sample using recipe 15. The hole has an approximate
diameter and depth of ∼300 nm and ∼95 nm, respectively.
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The anisotropy and roughness of the hole shown in figure 12 are similar to those

of the holes of other diameters from the same sample. However, the depth decreases

slightly from the nominal (PMMA drop) depth with diameter, as seen in figure 13.

Figure 13: Etch depth vs. feature diameter for a patterned sample etched with
recipe 15. The red line represents the full etch depth, determined from a PMMA
drop sample that was etched with the patterned sample.

Seemingly by coincidence, the pressure during this particular etch was low. As

expected from Figure 11, this led to an increased etch depth (∼100 nm instead of ∼50

nm for a 17.5 s etch.). Additionally, it likely led to a slightly increased anisotropy,

as explained earlier in this section. However, when the anisotropy of these holes was

measured, it was found to be much higher than the comparable etches performed
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on PMMA drop samples (interface slopes in the range of 0.5 to 0.9 instead of 0.05

to 0.1). This change can be attributed in part to the inability of the AFM tip to

accurately record the profile of the hole, because its diameter is relatively small,

compared to its depth. However, it is also likely that there is a significant difference

between the anisotropy created by an etch performed at the edge of a PMMA drop

and a comparable etch done in the center of a spin coat-applied PMMA film that

has been patterned. Another manifestation of this difference can been seen in the

“dip” samples created with recipe 37 that are discussed in section 5.3.2.

5.2.3 Incremental Etching

As mentioned previously, etching to a depth beyond the thickness of the Si3N4 film

could potentially be corrected by backfilling. However, too much backfilling would

likely lead to an undesirable profile. Thus, I began to use “incremental etching” in

an attempt to achieve a depth closer to the film thickness.

Incremental etching is essentially just a series of shallow etches. After each etch,

the total depth of the real sample is determined by measuring the depth of sacrificial

samples that are etched with the real one. This has the potential to give a final

depth closer to the desired depth, but it comes at the price of a large uncertainty on

the total depth, profile and roughness.

5.2.4 First Etched MTJ Sample

Using the incremental etching method and recipe 15, I made my first etched MTJ

sample. It required two etches because the first etch was only ∼31 nm, giving a total
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depth of 66 +/- 15 nm. The relatively large uncertainty on the final depth is due to

the nature of the incremental etching method, as discussed in the previous section.

After I had etched it, BYU sputtered an MTJ stack onto the sample with a

composition of Substrate/Ta(40)/CoFeBe(1.25)/MgO(0.9)/CoFeB(1.4)/Ta(4), for a

total thickness of approximately 48 nm. Thus, the net result should have been a flat

MTJ stack embedded in the etched hole extending to a height of somewhere between

3 and 33 nm (based on the uncertainty on the total etch depth) below the substrate

surface. However, the actual result was much less uniform than expected.

Images of a 500nm diameter hole that is fairly representative of all the holes

(300nm, 400nm, 500nm) on this sample after the etching and MTJ deposition can

be seen in figure 14.
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Figure 14: An SEM image (top left), 3D AFM image (top right) and an AFM cross
sectional image (bottom) of a 500nm diameter hole from the the first etched MTJ
sample, after it was etched and then filled with an MTJ stack.

All of the holes on this sample after MTJ deposition had the undesirable ring

shape seen in figure 14. For the 500nm diameter hole, the center is ∼33 nm below

the substrate and the outer ring is ∼60 nm above the substrate. Measurements were

similar for the other holes.

For comparison purposes, the first etched MTJ sample also included nanodots

that were fabricated without etching, using the standard Patterned Sample (for
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deposition) EBL process. Figure 15 shows images of a 400nm diameter nanodot

that was made on the same chip and of the same MTJ stack as the features shown

in figure 14. Its shape is fairly representative of the other nanodots of varying size

on this sample.
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Figure 15: A 3D AFM image (top) and an AFM cross sectional image (bot-
tom) of a 400nm nanodot (no etching) from the first MTJ sample. Note the
deviation from a standard cylindrical profile.
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Similar nanodots are commonly fabricated in our group and have a consis-

tently cylindrical or slightly conical shape. However, the shape of the nanodots

on this sample is clearly much worse.

The fact that both the embedded MTJ and the nanodot MTJ had un-

expected shapes seems to indicate that the change in shape came from the

deposition of the MTJ stack via sputtering, rather than from another step in

the fabrication process. An explanation of why this might occur can be seen

in figure 16.
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(a) Bare doped silicon substrate. (b) Si3N4 film grown via chemical
vapor deposition (CVD).

(c) PMMA applied via spin coat. (d) Electron beam exposure.

(e) Development. (f) Etching.

(g) MTJ stack deposited via sput-
tering. Notice that some of the
metal now sticks to the sides of
the holes, preventing some of it
from landing below the surface of
the Si3N4 and instead creating an
outer ring.

(h) Liftoff, leaving ring-shaped
MTJ elements, which are unlikely
to work for their intended pur-
pose.

Figure 16: Our basic embedded MTJ fabrication process when sputtering is
used to deposit the metal.
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As seen in figure 16, it is likely that our standard nanopatterning proce-

dure would produce ring-shaped nanodots on embedded MTJs when the MTJ

material is deposited with sputtering (which is necessary to preserve the sto-

ichiometry of the materials used). To test this theory, I used the single-layer

resist etching process illustrated in figure 5 to make two samples, but I did the

metal deposition with our e-beam evaporator, rather than a sputterer. They

both showed nearly ideal profiles after metal deposition (no ring shape). More

details on these samples can be found in section 5.3.3. This result indicates

that sputtering was likely the primary cause of the odd shape seen in the

first etched MTJ sample. However, the etch itself contributed to the depth

uncertainty and possibly also the ring-shaped profile and high roughness.

A possible solution to the undesirable ring shape is to use a bilayer resist.

The lower resist layer consists of something like MMA-MAA Copolymer or

PMMA 495 (what I have been referring to as “PMMA” is PMMA 950). The

important characteristic of the underlying resist layer is that it is more sensitive

to the electron beam than is the upper layer, which consists of PMMA 950.

The net result is that, after patterning and development, resist is removed

from a larger area of the lower resist layer than from the upper layer. This

should create an overhang of PMMA 950, making it harder for deposited metal

to stick to the sidewalls and thus allowing it to fill the hole, as desired, while

eliminating the undesirable ring shape that we observed on the first etched

MTJ sample. This process is illustrated and detailed in figure 17.
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(a) Bare doped silicon substrate. (b) Si3N4 film grown via chemical
vapor deposition (CVD).

(c) Photoresists applied via spin
coat. The MMA-MAA copoly-
mer (or similar resist) is more
sensitive to electron beam expo-
sure than is the PMMA.

(d) Electron beam exposure.

(e) Development. (f) Etching.

(g) MTJ stack deposited via sput-
tering.

(h) Liftoff, leaving cylindrical em-
bedded elements, as required for
them to function as intended.

Figure 17: Our embedded MTJ fabrication process when sputtering is used to
deposit the metal and a bilayer resist is applied.
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Notice in Figure 17 (e) the increased photosensitivity of the copolymer causes the

electron beam exposure/development steps to remove more of it than the PMMA,

leaving a PMMA “overhang”. Additionally, notice in Figure 17 (g) that less of the

metal sticks to the sides, allowing more to fill the hole. The small amount of metal

that does stick to the sides is not connected to the metal in the hole and can thus

be removed easily during liftoff.

To fully develop and test the bilayer resist method may require a comprehensive

study of more sensitive resists to act as the bottom layer. In addition, it is likely that

we would need to experiment with different spin coating and drying methods, times

and speeds to optimize the thicknesses of each layer and then change the electron

beam doses to create features of the desired shape and size. This work is currently in

progress, but it is difficult to test it thoroughly without regular access to a sputterer.

5.3 CF4 and O2 Etching

Recipe 15 gave the most repeatable results for SF6 and O2 etching. However, it

still somewhat randomly gave significantly increased etch depths (correlated with

low pressures). Even with incremental etching, recipe 15 still gave somewhat unpre-

dictable depths with large uncertainties. It simply wouldn’t produce the predictable

depth needed for successful fabrication of embedded MTJs. Thus, I switched my

etching gases to CF4 and O2, in an attempt to develop an etching recipe that gave

more repeatable results.
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5.3.1 Preliminary Recipes

I tried several combinations of parameters for CF4 and O2 etching, eliminating some

recipes based on the visual appearance of the plasma, and others based on repeated

studies of the etch depth and profile. Note that significantly fewer trial recipes were

required for CF4 than for SF6 because many of general trends of the SF6 recipes

about what parameter combinations are likely to give desirable results transferred

well to CF4 recipes. An overview of the parameter space I covered for CF4 and O2

etching is given in figures 18 and 19.
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Figure 18: An overview of all the different recipes I tried for combinations of CF4

and O2.
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Figure 19: A closer look at some of the different recipes I tried for combinations of
CF4 and O2 (zoomed in version of Fig. 18).

From these preliminary studies, I determined that recipes with a CF4 nomi-

nal/actual flow rate of 25/25.4 sccm and an O2 nominal/actual flow rate of 3.1/5.2
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sccm produced the most promising results in terms of plasma consistency, which is

almost certainly correlated with etch profile and repeatability. These flow rates are

similar to those used by BYU [15].

Next, I studied the effect of power on the etch rate with the gas flow rates set to

the values given above and the time fixed at 30 seconds. The results of this study

are shown in figure 20.

Figure 20: Depth vs. power for a 30 second etch with a CF4 nominal/actual flow rate
of 25/25.4 sccm and an O2 nominal/actual flow rate of 3.1/5.2 sccm. The horizontal
dashed red line shows the depth of the Si3N4 film (50 nm here).
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As with SF6 and O2 etching, I found that lower powers give unrepeatable results.

Specifically, most of the powers under 150W gave depths that differed from day to

day by as much as 60nm for the same etch time. Thus, I focused on 150, 200, 250W.

Ultimately, I again found that the highest power gave the most repeatable results.

5.3.2 Recipe 37

In general, recipe 37 (Power: 250W, CF4 nominal/actual flow rate: 25/25.4 sccm,

O2 nominal/actual flow rate: 3.1/5.2 sccm) was the best recipe I developed in terms

of repeatability and anisotropy. However, some samples had an unexpected profile,

which included a significant dip at the edge between the etched and unetched surfaces.

An example of such a sample can be seen in figure 21.
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Figure 21: An example of a PMMA drop sample etched with recipe 37 that has the
aforementioned dip.

This dip was not observed regularly in other recipes and its cause is not under-

stood at this time. Samples that had this dip did not fit with the general trend of

the rest of the depth vs. time data, as shown in figure 22.
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Figure 22: Depth vs. time for etches of PMMA drop samples done using recipe 37.
Samples with the standard step-like profile are shown in blue, while those with a
“dip profile”, as described previously, are shown in red. The horizontal dashed red
line shows the depth of the Si3N4 film (50 nm here).

Atypical PMMA drying may be a partial cause of the dips, but this alone would

not explain the fact that I consistently observed these dips only on PMMA drop

samples etched with recipe 37. However these dips should not be an issue on pat-

terned samples because the holes are so small that they will likely be within the

lateral range of the dips, allowing them to reach the full desired etch depth. Thus,

I experimented with excluding the samples that had the dip profile from my depth

vs. time data, the results of which can be seen in figure 23.

46



Figure 23: Left: Depth vs. time for etches of PMMA drop samples using recipe 37,
with the “dip” samples removed. Right: Same as the left, except only etches that
reached to or beyond the Si3N4/Si interface are shown. This material boundary is
at a depth of 50 nm, as shown by the the horizontal dashed red line in both plots.
The etch rate in Si, as determined from the fit of the data shown in the right plot,
is 4.9 nm/s.

Once the samples with a dip are removed, the data becomes much more linear

and the depths for a given time are much more consistent, particularly beyond 50

nm. If a patterned sample (rather than a PMMA drop) were etched with recipe 37,

it is likely that the etched holes would have a depth similar to the bottom of the

dip (which is difficult to measure on PMMA drop sample), because their diameter

is typically smaller than the width of the dip. This indicates that recipe 37 would

probably give consistent depth results when producing a real embedded MTJ sample.

The results of tests of this theory are presented in the next section.
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5.3.3 Embedded Nickel Nanomagnets

I patterned several samples to test my theory about the dips that appeared in the

profiles of some PMMA drop samples etched with recipe 37. I then etched all of these

samples at once; one for measurement (sample A57), one for backfilling (sample A58)

and an extra two just in case I needed to implement the incremental etching method

(if the etch was not deep enough). Some of the holes of different sizes that I measured

on sample A57 can be seen in figure 24.
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(a) A 2 um wide trench. The measured depth
was 68 ± 2 nm.

(b) A ∼250 nm wide hole, with a mea-
sured depth of 61 ± 4 nm.

(c) A ∼200 nm wide hole, with a measured depth of 58 ± 4 nm.

Figure 24: AFM images of sample A57, which was patterned using EBL and
then etched using recipe 37 for 12.5 seconds.

The depth of the 2 um wide trench on sample A57 agrees quite well with
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the depths measured on PMMA drop samples (see figure 23). The hole depth

and anisotropy on sample A57 begin to decrease somewhat with diameter, but

they stayed in the acceptable range down to a diameter of ∼100 nm.

I used the depth measurements from sample A57 to determine an appropri-

ate amount of Ni to deposit (using our electron beam evaporator) onto sample

A58, which was patterned and then etched with sample A57 and should thus

have very similar hole profiles and depths. The results of this deposition can

be seen in figure 25.
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(a) A ∼420 nm diameter hole after backfilling with Ni.

(b) A ∼200 nm diameter hole after backfilling with Ni.

Figure 25: Sample A58, which was etched with sample A57 (see figure 24)
using recipe 37 for 12.5s, and then backfilled with 55 nm of Ni. Note that the
vertical scale is significantly smaller than in figure 24.
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The ∼420 nm diameter hole shown on the left in figure 25 was etched to an

estimated depth of ∼59 nm (as measured on sample A57) and then backfilled with

55nm of Ni. The average depth of the resulting hole on sample A58 was measured

to be 3 ± 1 nm, which is consistent with the expected depth (59nm - 55 nm = 4nm).

Similarly, the ∼200 nm diameter hole shown on the right in figure 25 was etched to

an estimated depth of ∼58 nm (again measured on sample A57) and backfilled with

55nm of Ni. The average depth of the resulting hole was measured to be 3.5 ± 1 nm,

which is consistent with the expected depth (58nm - 55 nm = 3nm). This indicates

that recipe 37 etched as expected, and the backfill (via electron beam evaporation)

also deposited the metal fairly uniformly within the hole, as desired. A comparison

of a ∼200 nm diameter hole before and after backfilling can be seen in figure 26.
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Figure 26: A comparison of ∼200 nm diameter holes before and after backfill-
ing. Left: Before backfilling. Center: After backfilling with 55 nm of Ni (same
axis scale as left image). Right: After backfilling with 55 nm of Ni (smaller
axis scale than left and center images for increased visibility of small features).
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I repeated this entire experiment (etching, measuring, backfilling, measuring),

and the hole depths were very similar (within a nm or two of the expected depth,

down to a hole diameter of ∼100nm), indicating good repeatability. Similarly, the

backfill of Ni again resulted in the expected shape and depth. The average depths

of the holes and the PMMA drop samples etched with recipe 37 (non dip samples

only) can be seen in figure 27.

Figure 27: Depth vs. time for PMMA drop and patterned samples etched with recipe
37. The horizontal dashed red line shows the depth of the Si3N4 film (50 nm here).

From figure 27, it is clear that recipe 37 produces repeatable depth results on

patterned samples. This indicates that I was correct that the dips would not appear
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on patterned samples and provides further evidence that recipe 37 is the best can-

didate (or nearly so) for embedded nanomagnet/MTJ fabrication, out of all of the

etching recipes possible with our RIE. In addition, this demonstrates that the sput-

tering, rather than the etching or another part of the fabrication process, was very

likely the cause of the ring shape of the first etched MTJ sample, since I was able

to achieve the desired (relatively) flat profile when backfilling with Ni via electron

beam evaporation.

5.4 Embedded MTJ Fabrication Issues

MTJ stacks almost always involve layers with thicknesses of a nanometer or less.

Thus, the roughness of the surfaces upon which they are deposited can prevent the

MTJ from performing well or at all. Most etching roughens the surface significantly,

so this poses a potential threat to the performance of any MTJ that is deposited

in an etched hole. In fact, I have yet to see any recipes that consistently produced

etched surfaces with RMS roughnesses less than a nm. A comparison of the RMS

roughnesses of a few relevant surfaces is given in figure 28.
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Figure 28: A comparison of the RMS roughnesses of various samples and substrates.

Looking at the top few entries in the table, roughness oddly appears to decrease

with hole diameter. The cause of this is somewhat unknown, though it may be

attributable to the limits of the AFM. It is conceivable that the AFM tip would

have a difficult time reaching down into a small hole to accurately measure the

roughness. This would place a larger uncertainty on the roughnesses of the smaller

holes, despite the fact that they were measured with a Super Sharp Silicon AFM tip.

In addition, the roughnesses of the smaller features are not necessarily the same as

those of the larger features, so I cannot empirically determine the roughnesses of the

smaller features just by measuring the larger ones (though they are likely somewhat

similar).
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However, assuming all the RMS roughness measurements are not larger than the

true values (which is a reasonable assumption, given the nature of AFM measure-

ments), all of the etched holes have RMS roughnesses greater than 1 nm, which would

likely prevent them from acting as the substrates for growth of functional MTJs, as

indicated by [17], where it is shown that TMR decreases quickly to unacceptable

levels with above roughnesses of 0.4 nm.

In addition, the Si3N4 surface itself is too rough for fabrication of working MTJs.

For comparison, a functional MTJ stack that was grown on a bare Si substrate had

a final roughness of 0.2 nm. For comparison, the Si3N4 substrates that are grown

for me on bare Si via CVD have roughnesses up to 0.7 nm. When an MTJ stack is

grown on top of such a substrate, it has a roughness of 0.9 nm (which, as a sanity

check, agrees with sum of the roughnesses of the Si3N4 substrate and the MTJ stack

on bare Si).

Lastly, the roughness within the holes of the first etched MTJ sample after back-

filling with a sputtered MTJ stack was ∼2.25 ± 1 nm, ignoring the outer ring area,

which is probably too high to allow the material to function as an MTJ. This clearly

demonstrates that the current production method will not work for making functional

MTJs.

However, the roughness of the holes that were backfilled with Ni via electron

beam evaporation was ∼0.3 nm, which is relatively low, giving rise to a potential

solution to the roughness problem. Instead of depositing the MTJ stack directly

in the etched hole and using Ta to backfill as necessary, a layer of a nonmagnetic

conductive material, such as Al or Ti, could first be deposited via electron beam
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evaporation. This would serve three purposes. First, it would change the depth of

the hole as needed, such that the finished MTJ stack would be flush with the top

surface of the Si3N4. Second, it would smooth out the surface upon which the MTJ

stack would be deposited, potentially solving the problem of the roughness generated

by etching. Third, it would reduce or eliminate the need for additional Ta backfill.

Decreasing the thickness of the Ta layer is known to decrease the roughness [18], so

this could potentially create an even smoother MTJ stack.

6 Future Work

As is, the fabrication process described in figure 5 is unlikely to produce a functional

MTJ, even if recipe 37 is used. Several changes could be made to this process that

would increase its chances of successfully producing a working embedded MTJ.

The first of the changes is to develop and optimize the bilayer resist EBL and

etching method, using recipe 37. A thorough study of the effects of different bilayer

resist recipes on the EBL patterning and etching results may be necessary. This

study may require several depositions via sputtering, which could be difficult, since

our group does not have a sputterer.

Once the bilayer resist process is optimized, the next change would be to try

adding a layer of nonmagnetic metal (Al, Ti etc) using electron beam evaporation,

before the MTJ stack is sputtered onto the sample. As mentioned in the previous

section, this could help smooth out the profile, adjust the hole depth and reduce the

amount of Ta needed, thus potentially further reducing the roughness. The thickness
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of this layer (and thus the depth of the hole needed to keep the top of the MTJ stack

flush with the top of the Si3N4 film) would need to be adjusted to give the smoothest

surface for MTJ deposition and/or the best MTJ performance.

Once the aforementioned changes to the fabrication process have been imple-

mented successfully, another embedded MTJ sample should be produced. If the

roughness and profile of MTJ’s top surface are significantly better, an attempt should

be made to bias this sample and measure the current, thus proving its functionality.

In addition, it may be possible to use nano etched holes filled with other metals

(Ni, etc) for other applications like as BPM, etc. The process for making these

samples has already been successfully demonstrated with promising results in the

form of samples A58 and A62 (which was made the same way as A58, with similar

results, thus proving the repeatability of this process).

7 Conclusion

I worked to establish production processes for silicon nitride-embedded MRAM and

BPM. This required the development of a suitable etching recipe to create the holes

in which the nanomagnetic devices could be deposited. I experimented with etching

recipes that involved many combinations of SF6 + O2 and CF4 + O2 flow rates (and

their implied pressures), while varying the applied power, with the goal of finding

a recipe that produced repeatable depth results while maintaining a high anistropy.

Though I did not try every possible recipe, I studied the parameter space effectively

enough to know which combinations of parameters were likely to produce desirable
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etching results. I found that recipe 37 (Power: 250W, CF4 nominal/actual flow rate:

25/25.4 sccm, O2 nominal/actual flow rate: 3.1/5.2 sccm, which gave a maximum

pressure around 400 mTorr) was the best candidate for this role, or nearly so. I

used recipe 37 as part of the production method to successfully fabricate embedded

nanomagnets, which have the potential to function as embedded BPM. With a few

changes to this process, embedded MTJs (and thus MRAM) could be produced.
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8 Appendix A: Summary of Processes

 
PMMA Drop 

Sample 
Patterned Sample 
(for etching and 
Measurement) 

Patterned Sample 
(for etching and 

Deposition) 
 

Patterned Sample 
(for deposition) 

Prepare substrate Prepare substrate Prepare substrate Prepare substrate 
O2 Clean, Descum O2 Clean, Descum O2 Clean, Descum O2 Clean, Descum 

Apply PMMA Drop Spin Coat Spin Coat Spin Coat 
 Pattern Pattern Pattern 
 Develop Develop Develop 

Immediately before 
etch: O2 Clean, 

Descum, O2 Clean 

Immediately before etch: 
O2 Clean, Descum, O2 

Clean 

Immediately before 
etch: O2 Clean, 

Descum, O2 Clean 

Descum 

Etch Etch Etch  
Remove PMMA Remove PMMA Deposit Metal Deposit Metal 

  Liftoff Liftoff 
AFM AFM, repeat process for 

multi-material arrays 
AFM, repeat process for 

multi-material arrays 
AFM, repeat process for 

multi-material arrays 
 
Prepare Sample:  

1. Set hot plate to 180oC 
2. Cut samples with diamond scratch. 
3. Sonicate for 3 minutes in acetone. 
4. Repeat step 3 with new acetone, then with IPA. 
5. Rinse with deionized H2O, dry with N2. 
6. Dry on hotplate at 180oC for 1 minute. 

 
Apply PMMA Drop 

1. Put PMMA drop on part of sample (use clean 
tweezers to minimize drop size). 

2. Let cure for at least 1 hour (check that PMMA 
is dry). 

3. Put samples on hotplate at 180oC for 1 minute. 
4. Let samples cool for at least 1 hour. 

 
Etch 

1. Warm up/clean RIE using warm up recipe for 
the desired etching gas. 

2. Check plasma (presence and consistency), reflected 
power, gas flows and pressure (though this may 
differ from the value when a sample is in the RIE). 

3. Etch samples. 
4. For each new gas, do O2 clean, repeat previous 

etch steps. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Remove PMMA 

1. Acetone soak for at least 30 minutes, sonicate 
for 3 minutes in same acetone. 

2. Repeat step 1 with new acetone. 
3. Sonicate for 3 minutes in IPA. 
4. Rinse with deionized H2O, dry with N2. 

 
Spin Coat 

1. Set hot plate to 180oC 
2. Line bed of spin coater with paper towel. 
3. Select Recipe 8. 
4. Put sample on vacuum chuck, test vacuum by 

starting recipe and letting it reach maximum 
speed. Secure larger samples to vacuum chuck 
with double sided tape. 

5. Discard first PMMA drop, then apply PMMA to 
sample until surface is almost covered. 

6. Run recipe. 
7. Bake on hotplate at 180oC for 1 minute.  
8. Scratch sample (start in center), add a cross 

scratch and corner scratches.  
 
Develop 

1. Swirl in 3:7 H2O: IPA for 1 minute. 
2. Rinse with deionized H2O, dry with N2. 

 
Liftoff 

1. Sonicate for 3 minutes in acetone. 
2. Soak in new acetone for several hours (or 

overnight) 
3. Sonicate for 3 minutes in new acetone. 
4. Sonicate for 3 minutes in IPA. 
5. Rinse with deionized H2O, dry with N2. 

Figure 29: An overview of the etching processes for fabrication of nanomagnetic devices,
combined with a compact summary of the processes, for quick reference.

61



9 References

[1] T. R. Albrecht et al., “Bit-patterned magnetic recording: theory, media fabrica-
tion, and recording performance” IEEE Trans. Magn., vol. 51, no. 5, 2015

[2] Y. Shi, “Investigation of island geometry variations in bit patterned media storage
systems”, thesis, 2011, https://www.research.manchester.ac.uk/portal/files/54508266/
FULL TEXT.PDF

[3] D. Apalkov, B. Dieny, and J. M. Slaughter, “Magnetoresistive Random Access
Memory”, Proceedings of the IEEE, vol. 104, no. 10, pp. 17961830, 2016.

[4] A. V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R. S. Beach, A. Ong, X.
Tang, A. Driskill-Smith, W. H. Butler, P. B. Visscher, D. Lottis, E. Chen, V. Nikitin,
and M. Krounbi, “Erratum: Basic principles of STT-MRAM cell operation in mem-
ory arrays”, Journal of Physics D: Applied Physics, vol. 46, no. 13, p. 139601, 2013.

[5] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bor-
tolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. D. Stiles,
and J. Grollier, “Neuromorphic computing with nanoscale spintronic oscillators”,
Nature, vol. 547, no. 7664, pp. 428431, 2017, https://www.nature.com/nature/
journal/v547/n7664/pdf/nature23011.pdf

[6] “New Embedded Memories Ahead”, Semiconductor Engineering. [Online]. Avail-
able: https://semiengineering.com/new-embedded-memories-ahead/. [Accessed: 03-
Oct-2017].

[7] D. Shum, “CMOS-embedded STT-MRAM Arrays in 2x nm Nodes for GPMCU
applications”, https://www.globalfoundries.com/sites/default/files/articles/tp-cmos-
embedded stt-mram arrays in 2x nm nodes for gp-mcu applications.pdf

[8] “Everspin Embedded MRAM”, Everspin Embedded MRAM — Everspin. [On-
line]. Available: https://www.everspin.com/everspin-embedded-mram. [Accessed:
03-Oct-2017].

[9] S. H. Kang, “Non-Volatile Memories Workshop, UCSD, April 11-13, 2010”,
http://nvmw.ucsd.edu/2010/documents/Kang Seung.pdf

[10] “Reactive Ion Etching (RIE)”, Oxford Instruments. [Online]. Available: https:

62

https://www.research.manchester.ac.uk/portal/files/54508266/FULL_TEXT.PDF
https://www.research.manchester.ac.uk/portal/files/54508266/FULL_TEXT.PDF
https://www.nature.com/nature/journal/v547/n7664/pdf/nature23011.pdf
https://www.nature.com/nature/journal/v547/n7664/pdf/nature23011.pdf
https://semiengineering.com/new-embedded-memories-ahead/
https://www.globalfoundries.com/sites/default/files/articles/tp-cmos-embedded_stt-mram_arrays_in_2x_nm_nodes_for_gp-mcu_applications.pdf
https://www.globalfoundries.com/sites/default/files/articles/tp-cmos-embedded_stt-mram_arrays_in_2x_nm_nodes_for_gp-mcu_applications.pdf
https://www.everspin.com/everspin-embedded-mram
http://nvmw.ucsd.edu/2010/documents/Kang_Seung.pdf
https://www.oxford-instruments.com/products/etching-deposition-and-growth/plasma-etch-deposition/rie
https://www.oxford-instruments.com/products/etching-deposition-and-growth/plasma-etch-deposition/rie
https://www.oxford-instruments.com/products/etching-deposition-and-growth/plasma-etch-deposition/rie


//www.oxford-instruments.com/products/etching-deposition-and-growth/plasma-etch-
deposition/rie. [Accessed: 03-Oct-2017].

[11] C. Wang and T. Suga, “Investigation of fluorine containing plasma activation
for room-temperature bonding of Si-based materials”, Microelectronics Reliability,
vol. 52, no. 2, pp. 347351, 2012.

[12] “Reactive-ion etching”, Wikipedia, 28-Apr-2017. [Online]. Available: https:
//en.wikipedia.org/wiki/Reactive-ion etching. [Accessed: 03-Oct-2017].

[13] Silfes, J., Schwartz, S. (2016). “The diffraction barrier in optical microscopy”
Retrieved Oct 3, 2017, from Nikon Microscopy U, http://www.microscopyu.com/
techniques/super-resolution/the-diffraction-barrier-in-optical-microscopy

[14] Legtenberg, Rob and Jansen, Henri and Boer, Meint de and Elwenspoek, Miko
(1995) Anisotropic reactive ion etching of silicon using SF6/O2/CHF3 gas mixtures.
Journal of the Electrochemical Society, 142 (6). pp. 2020-2028. ISSN 0013-4651

[15] “BYU Cleanroom”, Silicon Nitride BYU Cleanroom. [Online]. Available: http:
//cleanroom.byu.edu/node/199/. [Accessed: 03-Oct-2017].

[16] H. K. Lee, K. S. Chung, and J. S. Yu, “Selective Etching of Thick Si3N4, SiO2
and Si by Using CF4/O2 and C2F6 Gases with or without O2 or Ar Addition”,
Journal of the Korean Physical Society, vol. 54, no. 51, p. 1816, 2009.

[17] W. Shen, D. Mazumdar, X. Zou, X. Liu, B. D. Schrag, and G. Xiao, “Effect of
film roughness in MgO-based magnetic tunnel junctions”, Applied Physics Letters,
vol. 88, no. 18, p. 182508, 2006.

[18] M. Cecot, . Karwacki, W. Skowroski, J. Kanak, J. Wrona, A. ywczak, L. Yao,
S. Dijken, J. Barna, and T. Stobiecki, “Influence of intermixing at the Ta/CoFeB
interface on spin Hall angle in Ta/CoFeB/MgO heterostructures”, Scientific Reports,
vol. 7, no. 1, 2017. https://www.nature.com/articles/s41598-017-00994-z

63

https://www.oxford-instruments.com/products/etching-deposition-and-growth/plasma-etch-deposition/rie
https://www.oxford-instruments.com/products/etching-deposition-and-growth/plasma-etch-deposition/rie
https://www.oxford-instruments.com/products/etching-deposition-and-growth/plasma-etch-deposition/rie
https://www.oxford-instruments.com/products/etching-deposition-and-growth/plasma-etch-deposition/rie
https://en.wikipedia.org/wiki/Reactive-ion_etching
https://en.wikipedia.org/wiki/Reactive-ion_etching
http://www.microscopyu.com/techniques/super-resolution/the-diffraction-barrier-in-optical-microscopy
http://www.microscopyu.com/techniques/super-resolution/the-diffraction-barrier-in-optical-microscopy
http://cleanroom.byu.edu/node/199/
http://cleanroom.byu.edu/node/199/
https://www.nature.com/articles/s41598-017-00994-z

	Abstract
	Acknowledgments
	Introduction
	Novel Storage Technologies
	Embedded vs. On-Surface Devices
	Reactive Ion Etching
	Scanning Electron Microscopy

	Experimental Methods
	Targeted Etching via Electron Beam Lithography
	Reactive Ion Etching for Embedded Nanomagnet Fabrication

	Results and Analysis
	SF6 Etching
	SF6 and O2 Etching
	Preliminary Recipes
	Recipe 15
	Incremental Etching
	First Etched MTJ Sample

	CF4 and O2 Etching 
	Preliminary Recipes
	Recipe 37
	Embedded Nickel Nanomagnets

	Embedded MTJ Fabrication Issues

	Future Work
	Conclusion
	Appendix A: Summary of Processes
	References



