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Abstract

Analyses of Neandertal genomes have revealed that Neandertals have contributed genetic variants 

to modern humans1–2. The antiquity of Neandertal gene flow into modern humans means that 

regions that derive from Neandertals in any one human today are usually less than a hundred 

kilobases in size. However, Neandertal haplotypes are also distinctive enough that several studies 

have been able to detect Neandertal ancestry at specific loci1,3–8. Here, we have systematically 

inferred Neandertal haplotypes in the genomes of 1,004 present-day humans12. Regions that 

harbor a high frequency of Neandertal alleles in modern humans are enriched for genes affecting 

keratin filaments suggesting that Neandertal alleles may have helped modern humans adapt to 

non-African environments. Neandertal alleles also continue to shape human biology, as we 

identify multiple Neandertal-derived alleles that confer risk for disease. We also identify regions 

of millions of base pairs that are nearly devoid of Neandertal ancestry and enriched in genes, 

implying selection to remove genetic material derived from Neandertals. Neandertal ancestry is 

significantly reduced in genes specifically expressed in testis, and there is an approximately 5-fold 

reduction of Neandertal ancestry on chromosome X, which is known to harbor a disproportionate 

fraction of male hybrid sterility genes20–22. These results suggest that part of the reduction in 

Neandertal ancestry near genes is due to Neandertal alleles that reduced fertility in males when 

moved to a modern human genetic background.

To search systematically for Neandertal haplotypes, we developed a method based on a 

Conditional Random Field9 (CRF) that combines information from three features of genetic 

variation that are signatures of Neandertal ancestry (SI 1; Extended Data Fig. 1). The first is 
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the allelic pattern at a single nucleotide polymorphism (SNP): if a non-African carries a 

derived allele seen in Neandertals but absent from the West African Yoruba (YRI), it likely 

originates from Neandertals. The second is high sequence divergence to all YRI haplotypes 

but low divergence to Neandertal. The third is a length consistent with interbreeding 37–86 

thousand years ago10. We trained the CRF using simulations11, and established its 

robustness to deviations from the assumed demography (SI 2).

We screened for Neandertal haplotypes in the 1000 Genomes Project Phase 1 data 12 (1KG) 

using the Altai Neandertal genome of 52-fold average coverage to determine alleles present 

in Neandertals2, a 6-primate consensus to determine ancestral alleles13, and 176 YRI 

genomes as a reference panel assumed to harbor no Neandertal ancestry (Fig. 1a). Table 1 

reports the mean and standard deviation across individuals of the fraction of their ancestry 

confidently inferred to be Neandertal (probability >90%). Fig. 1b and Extended Data Fig. 2 

plot the fraction of European (n=758) and East Asian (n=572) haplotypes that descend from 

Neandertals at each genomic location (SI 3). We created a tiling path of inferred Neandertal 

haplotypes that spans 1.1 Gigabases (Gb) over 4,437 contigs (SI 4), thus filling in gaps in 

the Neandertal sequence over a number of repetitive regions that cannot be reconstructed 

from short ancient DNA fragments (Extended Data Fig. 3).

Four features of the Neandertal introgression map suggest that it is producing reasonable 

results. First, when we infer Neandertal ancestry using low-coverage data from Croatian 

Neandertals1 we obtain correlated inferences (Spearman rank correlation ρSpearman=0.88 in 

Europeans; SI 3). Second, in the African Luhya (LWK), the proportion of the genome 

inferred to be Neandertal is 0.08%, an order of magnitude smaller than in non-Africans 

(Table 1). Third, the proportion of confidently inferred Neandertal ancestry has a mean of 

1.38% in East Asians and 1.15% in Europeans (Table 1), consistent with previous reports of 

more Neandertal ancestry in East Asians than in Europeans 7,14. Fourth, the standard 

deviation in Neandertal ancestry within populations is 0.06–0.10%, in line with theoretical 

expectation (SI 3) and showing that Neandertal ancestry calculators that estimate differences 

on the order of a percent 15 are largely inferring noise.

The Neandertal introgression map reveals locations where Neandertal ancestry is inferred to 

be as high as 62% in East Asians and 64% in Europeans (Fig. 1b and Extended Data Fig. 2). 

Several of these regions provide evidence of positive selection if we assume a model in 

which the distribution of Neandertal ancestry has been governed by neutral drift; however, 

this assumption is problematic in light of the evidence for widespread negative selection 

against Neandertal ancestry reported below (SI 5). As an alternative test for whether 

Neandertal alleles have been affected by positive selection, we examined the 5% of genes 

with the highest inferred Neandertal ancestry. We do not detect tissue-specific expression 

patterns; however genes involved in keratin filament formation and some other biological 

pathways are significantly enriched in Neandertal ancestry in Europeans, East Asians, or 

both (Extended Data Table 1, SI 6). Thus, Neandertal alleles that affect skin and hair may 

have been used by modern humans to adapt to non-African environments. We also directly 

established the relevance of Neandertal alleles to present-day human biology by identifying 

alleles of Neandertal origin (SI 7), and overlapping this list with alleles that have been 

associated with phenotype16. We identify alleles of Neandertal origin that affect lupus, 
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biliary cirrhosis, Crohn’s disease, optic disk size, smoking behavior, IL-18 levels and type 2 

diabetes 17 (Extended Data Table 2).

The most striking feature of the introgression map is its large “deserts” of Neandertal 

ancestry: on a 10 Megabase (Mb) scale on the autosomes, there are 4 windows in Europeans 

and 14 in East Asians with Neandertal ancestry <0.1% (Extended Data Fig. 2, SI 8). Two 

analyses show that these deserts are not artifacts of reduced power to detect ancestry. First, 

when we lower the probability threshold for calling a segment as Neandertal from 90% to 

25% our qualitative findings are unchanged (SI 8). Second, when we estimate Neandertal 

ancestry in regions of low recombination rate where Neandertal haplotypes are longer so 

that we have more power to detect them, we see a decreased Neandertal ancestry proportion, 

opposite to the expectation from increased power (ρSpearman=0.221, P=4.4 × 10−4 in 

Europeans; ρSpearman=0.226, P=1.9 × 10−4 in East Asians) (SI 8). Part of the explanation for 

the ancestry deserts is likely to be small population sizes shortly after interbreeding, as this 

could explain why we also observe multi-megabase rises and not just falls in Neandertal 

ancestry (SI 8). However, selection too appears to have contributed to Neandertal ancestry 

deserts, as we also detect a correlation to functionally important regions (below).

To explore whether selection provides part of the explanation for regions of reduced 

Neandertal ancestry, we tested for a correlation of Neandertal ancestry to a previously 

defined “B-statistic”, in which low B implies a high density of functionally important 

elements18. We find that low B is significantly correlated to low Neandertal ancestry: 

ρSpearman=0.32 in Europeans (P= 4.9 × 10−87) and ρSpearman=0.31 in East Asians (P=3.88 × 

10−68) (Fig. 2, SI 8). The inference of low Neandertal ancestry in these regions is not an 

artifact of reduced power, as there is expected to be reduced genetic variation in regions of 

low B which should make introgressed Neandertal haplotypes stand out more clearly 

(Extended Data Table 3). We also estimated Neandertal ancestry in quintiles of B-statistic 

using an approach that is not biased by varying mutation rates, recombination rates, or 

genealogical tree depth19, and confirmed that the quintile with the highest B has 

significantly higher Neandertal ancestry than the other quintiles (P=7×10−4) (Extended Data 

Table 4, SI 9).

The largest deserts of Neandertal ancestry are on chromosome X, where the mean 

Neandertal ancestry is about a fifth of the autosomes (Table 1). The power of our CRF to 

detect Neandertal ancestry is higher on chromosome X than on the autosomes (Extended 

Data Table 3), implying that this observation cannot be an artifact of reduced power. At least 

some of the reduction in Neandertal ancestry that we observe on chromosome X must be due 

to selection, since just as on the autosomes, we observe that Neandertal ancestry is 

positively correlated with B-statistic (ρSpearman=0.276, P = 3.1 × 10−4 for Europeans; 

ρSpearman=0.176, P = 0.02 for East Asians) (Fig. 2, SI 8). Studies in many species have 

shown that genes responsible for reduced male fertility disproportionally map to 

chromosome X20–22. We hypothesized that this “Large X Effect” 23 could explain why 

chromosome X was more resistant to introgression of Neandertal ancestry than the 

autosomes.
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If male hybrid sterility is contributing to our observations, a prediction is that the responsible 

genes will be disproportionally expressed in testis24. To test this hypothesis, we analyzed 

gene transcripts from 16 human tissues25 and defined “tissue-specific” genes as those with a 

significantly higher expression level in that tissue than any other. We found that only genes 

specifically expressed in testis were enriched in regions of low Neandertal ancestry, an 

effect that remained significant after permuting gene annotations while preserving the 

correlation structure between Neandertal ancestry and gene expression (P = 0.0095 in 

Europeans; P = 0.018 in East Asians) (Table 2, SI 6). However, hybrid sterility is not the 

only factor responsible for selection against Neandertal material, as Neandertal ancestry is 

also depleted in conserved pathways such as RNA processing (P<0.05; Extended Data Table 

2; SI 6).

We have shown that interbreeding of Neandertals and modern humans introduced alleles 

onto the modern human genetic background that were not tolerated and were swept away, in 

part because they contributed to male hybrid sterility. The resulting reduction in Neandertal 

ancestry was quantitatively large: in the fifth of the genome with highest B, Neandertal 

ancestry is 1.54 ± 0.15 times the genome-wide average (Extended Data Table 4; SI 9)19. If 

we assume that this subset of the genome was unaffected by selection, this implies that the 

proportion of Neandertal ancestry shortly after introgression must have been >3% rather 

than the present-day ~2%. In passing, we note that the large effect of negative selection on 

present-day levels of Neandertal ancestry may explain why the proportion of Neandertal 

ancestry is significantly higher in present-day East Asians than in Europeans (Table 1) 7,14; 

population sizes appear to have been smaller in East Asians than Europeans for some of the 

time since their separation26, and this would result in less efficient selection to remove 

Neandertal-derived deleterious alleles. The evidence for male hybrid sterility is particularly 

remarkable when compared with mixed populations of present-day humans in which no 

convincing signals of selection against alleles inherited from one of the mixing populations 

have been found despite high power to detect such effects27. Thus, while the time of 

separation between Neandertals and modern humans was about 5 times larger than that 

between present-day Europeans and West Africans2, the biological incompatibility was far 

greater. A potential explanation is the “snowball effect”, whereby hybrid sterility genes are 

expected to accumulate in proportion to the square of the substitutions between two taxa 

because two interacting loci need to change to produce an incompatibility (“Dobzhansky-

Muller incompatibilities”)28. An important direction for future work is to explore whether 

similar phenomena have affected other interbreeding events between diverged humans.

Online Methods

Conditional Random Field for inferring Neandertal local ancestry

Consider a haploid genome in a test population that carries Neandertal ancestry, for example 

Europeans. Given the allelic states of a sequence of SNPs along this haplotype, we would 

like to infer the ancestral state of the allele at each SNP, specifically, whether it has entered 

modern humans through Neandertal gene flow. In addition to the test haplotype, the data we 

analyze consist of a panel of haplotypes from the sub-Saharan African Yoruba (YRI) who 

we assume harbor no Neandertal ancestry 1. To determine the allelic state of the 
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Neandertals, we use a high-coverage Neandertal genome 2. We determine the ancestral and 

derived allele at each SNP using a 6-primate consensus sequence 13. To estimate the genetic 

distance between adjacent SNPs, we use the Oxford combined linkage disequilibrium (LD) 

map 29. We specify the distribution of the unobserved Neandertal ancestry states at each 

SNP given the observed genetic data as a Conditional Random Field (CRF) 9. Intuitively, we 

specify feature functions that relate the observed data and the unobserved ancestral state at 

each SNP (“emission functions”) as well as feature functions that relate the unobserved 

ancestral states at adjacent SNPs (“transition functions”). Thus, the model is a linear-chain 

CRF. The feature functions and their associated parameters fully specify the distribution of 

the unobserved ancestral states given the observed data. Given the parameters and the 

observed data, we are able to infer the marginal probability of Neandertal ancestry at each 

SNP of the haploid genome. We compute the marginal probabilities efficiently using the 

forward-backward algorithm 9,30. SI 1 presents the mathematical details.

Feature functions

The emission functions couple the unobserved ancestral state at a SNP to the observed 

features. We use two classes of emission functions.

The first class of emission function captures information from the joint patterns observed at 

a single SNP across Europeans, Africans and Neandertals. These features are indicator 

functions that assume the value “1” when a specific pattern is observed at a SNP and “0” 

otherwise. We use feature functions that pick out two classes of allelic patterns. One of these 

features is 1 if at a given SNP, the test haplotype carries the derived allele, all the YRI 

haplotypes carry the ancestral allele, and either of the two Neandertal alleles is derived. 

SNPs with this joint configuration have an increased likelihood of Neandertal ancestry. In 

the CRF, an increased likelihood associated with this feature is reflected in the fact that the 

parameter is positive with a magnitude determined by the informativeness of the feature. 

The second feature is 1 if at a given SNP, the test haplotype carries a derived allele that is 

polymorphic in the panel of Africans but absent in the Neandertal. SNPs with this joint 

configuration have a decreased likelihood of Neandertal ancestry.

The second class of emission functions uses multiple SNPs to capture the signal of 

Neandertal ancestry. Specifically, we compare the divergence of the test haplotype to the 

Neandertal sequence to the minimum divergence of the test haplotype to all African 

haplotypes over non-overlapping 100 kilobase (kb) windows (the size scale we expect for 

Neandertal haplotypes today based on the time of Neandertal gene flow into modern 

humans 10). In a region of the genome where the test haplotype carries Neandertal ancestry, 

we expect the test haplotype to be closer to the Neandertal sequence than to most modern 

human sequences (albeit with a large variance), and we expect the pattern to be reversed 

outside these regions. While computing distance to the Neandertal sequence, we build a 

Neandertal haplotype by choosing the derived allele at heterozygous sites so that this 

distance is effectively the minimum distance of the potentially introgressed test haplotype to 

one of the two Neandertal haplotypes.

The transition feature function modulates the correlation of the ancestral states at adjacent 

SNPs. We define this feature function as an approximation, at small genetic distance, to the 
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log of the transition probabilities of a standard Markov process of admixture between two 

populations. This approximation makes parameter estimation in the CRF efficient.

Parameter Estimation

To estimate the parameters of the CRF, we need haplotypes labeled with Neandertal 

ancestries; that is, training data. Since we do not in fact know the true Neandertal state in 

any individual, we estimated the CRF parameters on data simulated under a demographic 

model. We estimate parameters by maximizing the L2-regularized conditional log likelihood 

using a limited-memory version of LBFGS 31. We fixed the value of the parameter 

associated with the L2-penalty at 10 although a broad range of values appear to work in 

practice. We assumed a simple demographic model relating Africans, Europeans and 

Neandertals with Neandertal-modern human admixture occurring 1,900 generations ago 10 

and a fraction of Neandertal ancestry of 3% 1. The model parameters were broadly 

constrained by the observed allele frequency differentiation between the West African YRI 

and European American CEU populations and by the observed excess sharing of alleles 

between Europeans and Africans relative to Neandertals. The simulations incorporated 

hotspots of recombination 11 as well as the reduced power to detect low-frequency alleles 

from low-coverage sequencing data 12.

Validation of the CRF

We assessed the accuracy of the CRF to predict Neandertal ancestry using simulated data. 

Given the marginal probabilities estimated by the CRF, we estimated the precision (fraction 

of predictions that are truly Neandertal) and the recall (fraction of true Neandertal alleles 

that are predicted) as we vary the threshold on the marginal probability for an allele to be 

declared Neandertal. We also evaluated the accuracy when the haplotype phase needs to be 

inferred and when the genetic map has errors. Since the CRF parameter estimation assumes 

a specific demographic model, we were concerned about the possibility that the inferences 

might be sensitive to the model assumed. We therefore perturbed each demographic 

parameter in turn and applied the CRF to data simulated under these perturbed models, 

fixing the parameters of the CRF to the estimates obtained under the original model. For 

each of these perturbed models, we evaluated the false discovery rate (1-precision) when we 

restrict to sites at which the CRF assigns a marginal probability of at least 0.90. SI 2 presents 

the details.

Preparation of 1000 Genomes Data

We applied the CRF to the computationally phased haplotypes in each of the 13 populations 

in the 1000 Genomes project 12 (1KG), excluding the west African Yoruba (YRI). The CRF 

requires reference genomes from Africans and Neandertals. For the African population, we 

used 176 haplotypes from 88 YRI individuals. For the Neandertal genome, we used the 

genotypes called from the recently generated high-coverage Neandertal sequence 2. We 

restricted our analysis to sites passing the filters described in ref. 2 and for which the 

genotype quality score GQ ≥ 30. These filters discard sites that are identified as repeats by 

the Tandem Repeat Finder 32, that have Phred-scaled mapping quality scores of MQ < 30, or 

that map to regions where the alignment is ambiguous or which fall within the upper or 

lower 2.5th percentile of the sample-specific coverage distribution (applied within the 
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regions of unique mappability binned according to the GC-content of the reference genome). 

For the mappability filter, we used the liberal filter that requires that at least 50% of all 35-

mers that overlap a position do not map to any other position in the genome allowing up to 

one mismatch. We further restricted our analysis to sites that are biallelic across the 

Neandertal and the 1000 Genomes project samples. For each haplotype analyzed, we also 

restricted to the set of polymorphic sites in the population containing the haplotype. After 

filtering, we were able to analyze 26,493,206 SNPs on the autosomes and 817,447 SNPs on 

chromosome X. We obtained genetic distances from the Oxford combined LD map lifted 

over to hg19 coordinates 29. For the X chromosome, we obtained an appropriate sex-

averaged map by scaling the X chromosome LD-based map by 2/3.

Statistics for measuring Neandertal ancestry

We computed several statistics to summarize the Neandertal ancestry inferred by the CRF. 

We estimated the proportion of an individual diploid genome that is confidently inferred to 

be Neandertal as the fraction of sites for which the marginal probability is ≥ 90%. To assess 

variation in the proportion of Neandertal ancestry along the genome, we computed the 

fraction of alleles across individuals with marginal probability greater than a specified 

threshold. This statistic is likely to be affected by variation in power along the genome. 

Hence, we also consider an estimate of the ancestry proportion obtained by averaging the 

marginal probability across individuals. Depending on the analyses, these statistics are 

estimated at a single SNP or in non-overlapping windows of a specified size.

To assess whether the predictions made by the CRF are sensible, we inferred Neandertal 

ancestry using the low-coverage genome from the Vindija Neandertals 1. For this analysis, 

we restricted to sites at which there is at least one read with mapping quality score between 

60 and 90 and base quality of at least 40. As a second validation analysis, we applied the 

CRF to the sub-Saharan African Luhya (LWK), using the parameters optimized for non-

Africans. We empirically assessed the accuracy of the CRF on the 1000 Genomes project 

data by assuming that LWK has no Neandertal ancestry, that the false discovery rate in each 

non-African population is equal to the false discovery rate in LWK, and using the genome-

wide proportion of Neandertal ancestry estimated in ref. 2 (SI 3). We computed the 

theoretical standard deviation in the proportion of Neandertal ancestry 33 assuming a pulse 

model of admixture with 2% Neandertal ancestry followed by 2,000 generations of random 

mating, and 2.03 Gigabases as the number of bases of the high-coverage Neandertal genome 

that pass filters.

Tiling path of Neandertal haplotypes

We identified Neandertal haplotypes as runs of consecutive alleles along a test haplotype 

assigned a marginal probability of > 90%. We filtered haplotypes smaller than 0.02 cM. At 

each SNP that is covered by at least one such haplotype, we estimated the allelic state as the 

consensus allele across the spanning haplotypes. See SI 4.

Functional analysis of introgressed alleles

We defined two subsets of Consensus Coding Sequence (CCDS) genes 34. We define a gene 

with “low Neandertal ancestry” as one in which all alleles across all individuals have a 
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marginal probability ≤ 10%. We also require that the genes included in this analysis include 

at least ≥ 100 SNPs within a 100 kb window centered at its midpoint (this excluded genes 

with low power). We define a gene with “high Neandertal ancestry” as one that is in the top 

5% of CCDS genes ranked by the average marginal probability across individual haplotypes.

Functional enrichment analysis

We tested for enrichment of Gene Ontology (GO) 35 categories in genes with low or high 

Neandertal ancestry, using the hypergeometric test implemented in the FUNC package 36. 

We report multiple-testing corrected P-values estimated from 1000 permutations for the GO 

enrichment analysis (Family-Wise Error Rate – FWER). Given the observed correlation 

between Neandertal ancestry and B-statistic 18, a concern is that the functional categories 

may not be randomly distributed with respect to B-statistic. To control for this, we assigned 

a B-statistic to each gene (estimated as an average of the B-statistic over the length of the 

gene) as well as a uniform random number. This resulted in 17,249 autosomal genes. Genes 

were binned into 20-equal sized bins based on the gene-specific B-statistic. Within each bin, 

genes were sorted by Neandertal ancestry and then by the random number. Genes ranked 

within the top 5% within each bin were used for the analysis. See SI 6 for details.

Identifying alleles born in Neandertals and cross-correlation with association study data

To infer whether an allele segregating in a present-day human population was introduced by 

Neandertal gene flow, we defined a probable Neandertal allele as one with marginal 

probability of ≥ 90% and a non-Neandertal allele as having a marginal probability of ≤ 10%. 

A SNP at which all of the confident non-Neandertal alleles as well as all alleles in YRI are 

ancestral and all of the confident Neandertal alleles are derived is inferred to be of 

Neandertal origin. This allows for some false negatives in the prediction of the CRF. This 

procedure yields 97,365 Neandertal-derived SNPs when applied to the predictions in 

Europeans and East Asians. We downloaded the variants listed in the NHGRI GWAS 

catalog 16, retaining entries for which the reported association is a SNP with an assigned rs-

number, and where the nominal P-value is <5×10−8. This resulted in 5,022 associations, 

which we then intersected with the Neandertal-derived list. See SI 7 for details.

Identification of genomic regions deficient in Neandertal ancestry

We measured the fraction of alleles across individuals and SNPs that have less than a 

specified proportion of Neandertal ancestry measured within non-overlapping 10 Megabase 

(Mb) windows. We chose a threshold of marginal probability of >25% as this threshold was 

found to lead to high recall in our empirical assessment (SI 3). We reported windows for 

which this statistic is < 0.1%.

To understand the causes for variation in Neandertal ancestry, we tested for correlation to a 

B-statistic. Each SNP was annotated with the B-statistic lifted over to hg19 coordinates. We 

assessed correlation between B and estimates of Neandertal ancestry proportion at a 

nucleotide level as well as at different size scales, and separately on the autosomes and 

chromosome X (SI 8). We also used wavelet decomposition37 to analyze the correlation of 

the inferred Neandertal ancestry between Europeans and East Asians at multiple size scales 

(SI 10). Figure 2 reports the relation between the mean marginal probability of Neandertal 
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ancestry across individuals and quintiles of B-statistic at each SNP. To assess significance, 

we estimated Spearman’s correlation ρSpearman and standard errors using a block 

jackknife 38 with 10 Mb blocks (SI 8).

To understand the contribution of demography to variation in Neandertal ancestry along the 

genome, we measured the coefficient of variation, at a 10 Mb size scale, of the proportion of 

ancestry estimated as defined above. We then applied the CRF to data simulated under 

diverse demographic models and compared the coefficient of variation to the observed value 

(SI 8).

Power to infer Neandertal ancestry as a function of demography and genomic features

To assess the power of the CRF to infer Neandertal ancestry, we simulated data under 

diverse demographic models 39. In one simulation series, we varied effective population size 

to approximate the effect of background selection and measured recall at a precision of 90%. 

In a second series, we assessed power on chromosome X versus the autosomes by matching 

the effective population size, recombination rate and mutation rate to estimated values for 

chromosome X. See SI 2.

Unbiased estimate of the proportion of Neandertal ancestry as a function of B-statistic

To estimate the proportion of Neandertal ancestry in an unbiased way, we divided the 

genome into quintiles of B, and estimated the proportion of Neandertal ancestry using a 

statistic first published in ref. 19. This statistic measures how much closer a non-African 

individual is to Denisova than an African individual, divided by the same quantity replacing 

the non-African individual with Neandertal. We report the estimated proportion of 

Neandertal ancestry in each quintile as a fraction of the genome-wide mean and obtain 

standard errors using a block jackknife with 100 blocks.

We analyzed data from 27 deeply sequenced genomes: 25 present-day humans and the high-

coverage Neandertal and Denisova 14 genomes. For each, we required that sites pass the 

more stringent set of the two filters described in ref. 2, have a genotype quality of GQ ≥ 45, 

and have an ancestral allele that can be determined based on comparison to chimpanzee and 

at least one of gorilla or orangutan. We computed a Z-score for the difference in the ancestry 

across the bin of highest B-statistic versus the rest and used a Bonferroni correction for ten 

hypotheses (5 hypotheses based on which set of bins we merge and a 2-sided test in each). 

In our main analysis, we analyzed both transitions and transversions and pooled genomes for 

all non-African samples. We also analyzed other subsets of the data: transversions only in 

non-Africans, in Europeans and in eastern non-Africans. See SI 9 for details.

Tissue-specific expression

We defined tissue-specific expression levels using the Illumina BodyMap 2.0 RNA-seq 

data 25, which contains expression data from 16 human tissues. We identified genes that are 

expressed in a tissue-specific manner using the DESeq package 40 and used a P-value cutoff 

of 0.05. We tested enrichment of tissue-specific genes in regions of high or low Neandertal 

ancestry. A concern when testing for enrichment is that clustering of similarly expressed 

genes coupled with the large size of regions of low Neandertal ancestry might lead to 
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spurious signals of enrichment. Hence, we devised a permutation test that randomly rotated 

the annotations of genes (treating each chromosome as a circle) while maintaining the 

correlation within genes and within Neandertal ancestry as well as between Neandertal 

ancestry and genes. We tested enrichment on the whole genome, on the autosomes alone, 

and on chromosome X alone. We generated 1,000 random rotations for each test except for 

the X chromosome for which we generated all possible rotations. We computed the fraction 

of permutations for which the P-value of Fischer’s exact test is at least as low as the 

observed P-value (See SI 6).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Maps of Neandertal ancestry
(a) Individual maps: We show the marginal probability of Neandertal ancestry for 1 

European American, 1 East Asian and 1 sub-Saharan African phased genome across 

chromosome 9. (b) Population maps: We show the average of the inferred proportion of 

Neandertal ancestry in Europeans (above axis) and East Asians (below axis) in non-

overlapping 100 kb windows on chromosome 9.
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Figure 2. Functionally important regions are deficient in Neandertal ancestry
We plot the median of the proportion of Neandertal ancestry (the average over the marginal 

probability of Neandertal ancestry assigned to each individual allele at a SNP) within 

quintiles of a B-statistic that measures proximity to functionally important regions (1-low, 5-

high). We show results on the autosomes and chromosome X, and in Europeans and East 

Asians.
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Extended Data Figure 1. Three features used in the Conditional Random Field for predicting 
Neandertal ancestry
Feature 1: Patterns of variation at a single SNP. Sites where a panel of sub-Saharan Africans 

carries the ancestral allele and where the sequenced Neandertal and the test haplotype carry 

the derived allele are likely to be derived from Neandertal gene flow. Feature 2: Haplotype 

divergence patterns. Genomic segments where the divergence of the test haplotype to the 

sequenced Neandertal is low while the divergence to a panel of sub-Saharan Africans is high 

are likely to be introgressed. Feature 3: we search for segments that have a length consistent 

with what is expected from the Neandertal-into-modern human gene flow 2,000 generations 

ago, corresponding to a size of about 0.05cM = (100cM/Morgan)/(2000 generations).
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Extended Data Figure 2. Map of Neandertal ancestry in 1000 Genomes European and East 
Asian populations
For each chromosome, we plot the fraction of alleles confidently inferred to be of 

Neandertal origin (probability > 90%) in non-overlapping 1 Mb windows. We label 10 Mb 

scale windows that are deficient in Neandertal ancestry (e1–e9, a1–a17) (SI 8).
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Extended Data Figure 3. Tiling path from confidently inferred Neandertal haplotypes
a, Example tiling path at the BNC2 locus on chromosome 9 in Europeans. Red denotes 

confident Neandertal haplotypes. Blue denotes the resulting tiling path. We identified 

Neandertal haplotypes by scanning for runs of consecutive SNPs along a haplotype with a 

marginal probability > 90% and requiring the haplotypes to be at least 0.02 cM long. b, 

Distribution of contig lengths obtained by constructing a tiling path across confidently 

inferred Neandertal haplotypes. On merging Neandertal haplotypes in each of the 1000 

Genomes European and East Asian populations, we reconstructed 4,437 Neandertal contigs 

with median length 129 kb.
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Table 1

Genome-wide estimates of Neandertal ancestry

Population Individuals

Neandertal ancestry (%)

Autosomes X

Europeans CEU 85 1.17±0.08 0.21±0.17

FIN 93 1.20±0.07 0.19±0.14

GBR 89 1.15±0.08 0.20±0.15

IBS 14 1.07±0.06 0.23±0.18

TSI 98 1.11±0.07 0.25±0.20

East Asians CHB 97 1.40±0.08 0.30±0.21

CHS 100 1.37±0.08 0.27±0.21

JPT 89 1.38±0.10 0.26±0.21

Americans CLM 60 1.14±0.12 0.22±0.16

MXL 66 1.22±0.09 0.21±0.15

PUR 55 1.05±0.12 0.20±0.15

Africans LWK 97 0.08±0.02 0.04±0.07

ASW 61 0.34±0.22 0.07±0.11

Note: For each computationally phased genome in each population, we estimated the probability of Neandertal ancestry at each SNP and the 
fraction of autosomal and X-chromosome SNPs that are confidently Neandertal in each individual (marginal probability > 90%). The table reports 
the average and standard deviation of this measure across individuals within each population.
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Extended Data Table 1

Gene categories enriched or depleted in Neandertal ancestry. Enrichment of Gene Ontology categories in 

genes with depleted or elevated Neandertal ancestry was assessed using the hypergeometric test implemented 

in the FUNC package. We report Family-wise error rate P-values (FWER) associated with each GO category 

(P-values corrected for the testing of multiple categories).

Biological pathway (GO categorization) Neandertal ancestry Europe FWER East Asian FWER

nucleic acid binding (molecular_function, GO:0003676) Depleted 0.018 0.032

RNA processing (biological_process, GO:0006396) Depleted 0.004 0.049

ribonucleoprotein complex (cellular_component, GO:0030529) Depleted <0.001 0.027

organelle part (cellular_component, GO:0044422) Depleted <0.001 0.037

intracellular organelle part (cellular_component, GO:0044446) Depleted <0.001 0.025

mRNA metabolic process (biological_process, GO:0016071) Depleted <0.001 0.014

nuclear lumen (cellular_component, GO:0031981) Depleted 0.039 0.017

nuclear part (cellular_component, GO:0044428) Depleted 0.005 0.022

keratin filament (cellular_component, GO:0045095) Enriched <0.001 <0.001
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Extended Data Table 3

Power to infer Neandertal ancestry. a, Simulated power to infer Neandertal ancestry as a function of the 

effective population size. b, Power to infer Neandertal ancestry on chromosome X versus the autosomes. 

Recall is computed at a precision of 90%. Standard errors are estimated by a block jackknife with 100 blocks.

a

Effective population size Recall

2500 0.552 ± 0.009

5000 0.506 ± 0.009

7500 0.430 ± 0.006

10000 0.384 ± 0.006

b

Recall

Autosomes 0.384 ± 0.006

X 0.495 ± 0.009
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