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Abstract 

The investigation of variability in reasoning tasks can provide 

valuable insights into key issues in the study of cognitive 

development. These include mechanisms that underlie 

developmental transitions, individual differences and 

developmental disorders. We explored potential sources of 

variability in the development of knowledge of conservation – 

a classic Piagetian task. Taking the task structure and problem 

encoding of Shultz (1998) as the normative case, we 

examined the computational parameters, problem encodings, 

and training environments that contribute to variability in 

development, both across groups and within individual cases. 

Introduction 

Conservation refers to the understanding or belief in the 

continued equivalence of two physical sets, following a 

transformation that appears to alter one and not the other. A 

given transformation may alter a quantity, by adding or 

subtracting, or preserve it through elongation or 

compression. The acquisition of conservation knowledge 

involves learning to distinguish between transformations 

that preserve and those that alter quantity. For example, in a 

typical number conservation task, as shown in Figure 1, a 

child is initially presented with two rows of counters (pre-

transformation). The child is then asked whether these rows 

have the same number of counters or whether one has more 

than the other. A transformation is then applied to one row, 

and the child is asked again whether the two rows are the 

same, or whether one now has more counters than the other 

(post-transformation).  

Piaget (1965) found that young children below 6-7 years 

are non-conservers, in that when presented with a 

transformation that preserves number (such as elongation or 

compression) they answer that one row has more counters 

than the other. In contrast children older than 6-7 years are 

conservers, having learnt that transformations of this type 

do not alter number. This finding has been corroborated 

across a range of conservation tasks, such as mass (using 

modeling clay), liquid quantity (using beakers), and number 

(using counters) (Brainerd & Brainerd, 1972; Halford & 

Boyle, 1985; Klah, 1984; Miller & Heldmeyer, 1975; 

Siegler, 1995; Siegler & Robinson, 1982; Wallach, Wall & 

Anderson, 1967; Winer, 1974). The rich literature on 

conservation has also established a series of biases that 

occur as young children learn to conserve, relating to 

problem size, length, and mode of presentation. These 

effects are summarized in Figure 1.   

       

 

A range of classic Piagetian tasks such as conservation, 

seriation and the balance scale, have been subject to 

computational investigation. Models have sought to specify 

the mechanisms that generate the behavioral profile of 

development (Mareschal & Shultz, 1999; McClelland, 1989, 

1995; Shultz, 1998; Schultz, Mareschal & Schmidt, 1994). 

Recent connectionist implementations use an algorithm 

called cascade-correlation (Falham & Lebiere, 1990). 

During training, network connections are altered but if 

learning stagnates, the size of the hidden layer is increased. 

The success of this generative connectionist approach has 

been attributed to the change in the network architecture 

(Mareschal & Shultz, 1999; Shultz, 1998; Schultz, 

Mareschal & Schmidt, 1994). Thus Shultz (1998) ascribes 
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Figure 1: The number conservation task using counters 
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    Figure 2: The input encoding 

the ability of his model to capture the abrupt shift from non-

conservation (NC) to conservation (C) to the addition of 

hidden units and an attendant increase in representational 

power. However, it is possible that other computational 

parameters have a similar impact upon a model’s behavioral 

profile over the course of development. The influence of 

diverse learning parameters on development and their 

relation to cognitive variability is a question under active 

exploration (Richardson, Baughman, Forrester & Thomas, 

2006).  

The study of variability is important for three reasons. 

First, it permits us to explore the conditions under which 

certain behavioral transitions in development may or may 

not occur. Second, variability across individuals of the same 

age gives a window onto general or specific intelligence. 

Third, variations in development from the normal pathway 

are found in disorders, sometimes exhibiting delay, failure 

to reach more complex levels of reasoning, or qualitatively 

atypical patterns. Implemented models have generally 

focused on the normative (average) pathway, yet each type 

of variability must ultimately be explained at a mechanistic 

level (Thomas & Karmiloff-Smith, 2003). 

In the following sections, we report an initial series of 

simulations that investigated potential sources of variability 

in the conservation task. First we introduce our normal 

model of development based on Shultz (1998). Second, we 

explore how manipulating the model’s computational 

parameters, input encoding, and training environment alter 

its developmental behavioral profile. Third, we examine 

within-individual variability by carrying out a case study 

comparison, contrasting two individual model runs. 

The Normal Model 

The normal model was defined as a 3-layer feedforward 
connectionist network consisting of an input layer of 13 
units, a hidden layer of 4 units, and an output layer of 2 
units. The problem encoding used by this network was 
based on Shultz (1998) and is shown in Figure 2. Each row 
of counters was represented over 2 units, encoding row 
length (ranging from 2 to 6.33) and density (ranging from 2 
to 6) respectively, as real numbers. Both rows are shown 
represented in their pre- and post-transformation states. The 
row transformed (either row 1 or row 2) was indicated by 
the activation (-1 or +1) of a single unit. The transformation 
type was encoded arbitrarily over 4 units, with the activation 
of a single unit indicating the type as follows: addition (1 -1 
-1 -1), subtraction (-1 1 -1 -1), elongation (-1 -1 1 -1), or 
compression (-1 -1 -1 1). The three possible response 
options were encoded over 2 binary output units as follows: 
(i) row 1 longer (1 0), (ii) row 2 longer (0 1), (iii) both rows 
equal (0 0). We differed from Shultz in using a more 
standard feedforward architecture with a sigmoid rather than 
hyper-tangent activation function. 

Our model was trained using back-propagation for 1500 
epochs, with a learning rate of 0.025. Ten network runs 
were conducted per manipulation, with initial weights 
randomized between ±0.5. The standard error across runs is 
depicted in all figures. The composition of the training and 

test sets was again based on that of Shultz, with patterns 
having five levels of row length and five levels of density. A 
total of 400 training patterns were selected from a full set of 
600 possible conservation problems (based upon 25 initial 
rows, 3 possible start states, and 4 possible transformations 
for each of the 2 rows). Performance was assessed using 100 
novel test patterns at 5, 25, 50, 100, and 200 epochs, and 
then at every subsequent 100-epoch interval until the end of 
training at 1500 epochs. 

 

 

In order to assess the behavior of the model, the test set 

was used in conjunction with 4 metrics, each reflecting a 

target behavioral phenomenon described in Figure 1: (i) 

Acquisition, (ii) the Problem Size Effect, (iii) Length Bias 

Effect, and the (iv) Screening Effect. Metric 1 plotted the 

development of knowledge of conservation, and calculated 

the percentage of test patterns correct. Metric 2 calculated 

the proportion of small vs. large problem types correct. In 

this case, the test set consisted of 40 patterns, 20 small 

problem types (<12 items), and 20 large (>24 items). Metric 

3 used elongation and compression problems from the test 

set (a total of 18 patterns, 8 and 10 of each type 

respectively) to calculate the proportion of patterns where 

the longer row was selected as having more items than the 

shorter row. Metric 4 calculated the proportion of 

unscreened vs. screened problems correct for the complete 

test set. Test patterns presented to the network were 

represented as “screened” by replacing post-transformation 

activation values with zeros. 

The normal network learned the training set to an accuracy 

of 99.5% (SE 0.4%). Training performance exhibited an 

early shift from NC=>C between 100 and 200 epochs (from 

44.58 to 70.35% training patterns correct). This shift was 

preceded by an initial decline in training performance over 

the first 50 epochs and followed by small incremental 

improvements in performance as training progressed. The 

behavioral profile of the model can be seen in Figure 3, 

where the shift from NC=>C (Acquisition) on novel patterns 

occurs between 100-200 epochs and performance leaps from 

36.2% (SE 1.75%) to 61.7% (SE 4.75%). Normality is 

defined as the non-linear shift to conserving. The model also 

exhibited a minor performance advantage for small problem 

sizes (problem size effect) between 100-700 epochs, the time 

during which the model was doing the bulk of its learning. 

Normality is defined as an advantage for small problems 

(+ve values on the chart) during earlier phases of training. 

The model’s bias for selecting longer rows as having more 

items (length bias effect) was also found to reduce after this 

point in learning. Normality is defined as an early positive 

spike on the length bias chart, which shows proportional 

advantage of long problems over short. Unlike Shultz 
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(1998), our model did not show any preference for 

“screened” problems early in learning (screening-effect), 

which would appear as an early negative spike on the chart. 

This shortcoming may relate to our use of sigmoid 

processing units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3:  Developmental phases of the normal model. The 
arrow shows shift from NC=>C for the acquisition metric 

   

Exploring Variability 

With our base model in hand, we then sought to assess the 

influence of several factors on development. Variability was 

explored by systematic changes to (1) the base model’s 

computational parameters, (2) its problem encoding, or (3) 

the training environment. 

Variability and Computational Parameters 

The computational parameters that were varied included: (i) 

the number of hidden layers, (ii) the number of hidden units 

in a single layer, (iii) the learning rate, and (iv) the slope of 

the sigmoid transfer function for hidden layer units. 

Increasing the number of hidden layers 

The performance of the model was tested over learning with 

2 and 3 hidden layers (HL), with 4 units per layer. 

Additional hidden layers tend to increase the computational 

complexity of the mappings that can be learned by a 

network while slowing down learning, since the error signal 

must filter back through more levels. Learning rate (lr) was 

held constant (at 0.025) in this condition (this was the case 

for all subsequent architectures unless stated otherwise). 

These networks achieved mean accuracy levels on the 

training set of 99.5, 99.7, and 92.9% (SE 0.4, 0.02, and 

6.64%), respectively. The developmental trajectories of the 

networks are shown in Figure 4. The profiles of networks 

with 1HL and 2HL were very similar. Both 1HL and 2HL 

networks showed a shift from NC => C between 100-300 

epochs, which was slightly larger for networks with 2HL 

than those with 1HL (25.5 and 39.2% respectively). 

Networks with 3HL showed an incremental improvement in 

performance with no obvious shift, attaining knowledge of 

conservation at 700 epochs. There was a sustained negative 

bias for problem size in networks with 3HL, as well as an 

increase in variability. The variability for the length bias 

effect was very high, particularly for 2HL and 3HL 

networks. As for screening, there was no bias in early 

learning for screened problems. However, the developing 

bias for “unscreened” problems increased over learning.  
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Figure 4:  Profile for models with 1 (normal), 2 and 3 HL. 

Arrows show shifts from NC=>C 
 

Increasing the number of hidden units in a single layer 

Adding extra units to a given hidden layer allows a network 

to learn more patterns of a given complexity, and to solve a 

given problem with smaller weight values, thereby requiring 

less training. We assessed networks with 4, 10, and 20 units 

in the hidden layer (HU) for the normal 1HL model. At the 

end of training networks with 4HU had a mean accuracy of 

99.48%; 10HU and 20HU networks had reached 100%. 

10HU and 20HU networks showed earlier acquisition of 

conservation knowledge (between 50 and 100 epochs). This 

shift was also larger than networks with 4HU (30-30.3% in 

comparison to 25.5%). The behavioral profile across metrics 

can be seen in Figure 5. All networks showed a similar 

profile across testing metrics, with variability being 

uniformly low.  Interestingly, networks with 4HU did show 

a slightly larger length bias effect of an extended duration, 

in comparison to 10HU and 20HU networks. It is likely that 

this is related to the initial learning of the 4HU network 

being lower than that of 10HU and 20 HU networks. 

Therefore, increasing the number of hidden units improved 

training performance, resulting in an earlier shift for those 

networks with more hidden units, but showed a similar 

trajectory in comparison to the normal case. Extending this 

manipulation to 2HL and 3HL networks yielded the same 

results.  Thus, expanding the capacity of the system in terms 

of parallel processing resources alters the onset of learning, 

but not the overall developmental profile. In conjunction 

with the findings from the hidden layer condition, this result 

suggests that the structure of any additional processing 

resources can have a marked impact upon developmental 

process. 

Reducing the learning rate 

The term delay is sometimes used to describe individual 

differences, as well as the trajectories of developmental 
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disorders. An obvious means of slowing learning would be 

to decrease the learning rate. Though this method would not 

provide an explanation of why different cognitive abilities 

are often differentially delayed in disorders it does 

nevertheless  

allow us to explore how learning rate affects the transitions 

the system exhibits during learning. Learning rate was 

reduced in the normal network in four decrements from 

0.025 to 0.02, 0.015, 0.01, and 0.005. After 1500 epochs, 

these networks achieved mean accuracies 99.8, 98.5, 96.6, 

and 86.3% respectively. Figure 6 depicts their 

developmental phases, with the four steps labeled from LR4 

to LR1 as the learning rate decreases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  Profile for models with 4 (normal), 10 and 20 HU 

in a single layer. Arrow shows shift from NC=>C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  The 1HL model with reducing learning rates. 

Arrows show shift from NC=>C 

 

Predictably learning rates slowed development down. As a 

result, improvements in performance behavior were more 

incremental. Extending this manipulation to networks with 

2HL and 3HL, displayed a similar pattern of results. Though 

networks with a lower learning rate had a lower level of 

performance at end of training (at 1500 epochs), the overall 

performance was high, but could have improved further 

through extended training time. In contrast, for 

developmental disorders, performance typically asymptotes 

at a less complex level in comparison to the normal case. In 

terms of individual differences, it is also doubtful whether 

everyone eventually ‘catches up’ to a fixed final cognitive 

level. From this perspective, a reduced learning rate does 

not seem a good (sole) candidate to explain the type of 

developmental delay found in disorders. 

Decreasing the sigmoid slope  
Changing the slope of a transfer function has the effect of 

altering the type of category distinctions a model can make. 

For example, a steep sigmoid slope results in sharp category 

boundaries and is good for tasks where the model is 

required to make rule-like distinctions. Whereas a shallow 

slope is better suited to fine-grained distinctions and tasks 

with broad category boundaries. Altering the level of 

processing unit discriminability has been shown to produce 

patterns of deficits consistent with those seen in 

developmental disorders (Thomas & Karmiloff-Smith, 

2003). This condition explores the impact of changing the 

general properties of processing resources of hidden units, 

through decreasing the slope of the sigmoid transfer 

function for the entire hidden layer. The slope of the 

sigmoid was reduced (from a value of 1) in the normal 

model, by four levels of decreasing discriminability as 

follows: 0.8, 0.6, and 0.25, to 0.125. 

The profiles across metrics are shown in Figure 7, where 

sigmoid slope is labeled as four steps from S4 to S1 as the 

sigmoid slope decreases. Changing the slope of the sigmoid 

produced a profile that at the surface level appears similar to 

that found for the learning rate condition, with development 

slowing down as the slope decreases. However, in contrast, 

with the exception of the problem size metric, there appears 

to be more convergence across the different slope levels in 

the later stages of learning. This difference on this metric 

appears to be for the shallowest two slope decrements, and 

may be related to the later and more incremental trajectory 

shown during task acquisition. Overall, this result shows 

how two different parameters may produce a similar 

developmental trajectory, but also subtle differences, as in 

the persisting problem size bias for the shallowest slope. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7:  The 1HL model with declining sigmoid slope 

Variability and the Problem Encoding 

We explored a variation in problem encoding where the 

salience of transition type was increased. The number of 
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units encoding transition information (as shown in Figure 2) 

was doubled from 4 to 8, resulting in an input layer 

consisting of 17 units, with 8 units encoding pre- and post-

transformation information, and 8 units encoding 

transformation type. This manipulation was carried out for 

networks with 1HL, 2HL and 3HL. The final performance 

of the models was found to be similar to that shown for 

equivalent models trained without increased transition 

information. The overall profile of development and 

Acquisition of conservation knowledge was also the same as 

the equivalent models. Therefore, for these simulations, 

changing the salience of a dimension of information did not 

have any notable impact upon the developmental trajectory 

of the model. 

Variability and the Engaged Environment 

Since development in the conservation task corresponds to 
the child’s active exploration of the domain, we refer to the 
training set as the engaged environment. We created a 
training set with a limited coverage of the problem space. It 
consisted of 400 problems with a small quantity of items 
only (<12 items). The normal architecture and problem 
encoding was used. Networks with 1HL, 2HL and 3HL 
were trained on this environment to explore any interaction 
between representational power and the engaged 
environment. Interestingly, this environment did not appear 
to have notable impact upon the overall performance, 
irrespective of the number of hidden layers in the model. At 
the end of training 1HL, 2HL and 3HL networks reached the 
mean accuracies of 99.75, 99.78, and 91.53%, respectively. 
The profile of 1HL and 2HL networks over metrics was 
similar to that shown for equivalent models trained on a 
normal engaged environment. Limiting the engaged 
environment to problems with a small number of items did 
not impact upon the developmental trajectory of the model. 

Individual Variability: A Case Comparison 

Variability also occurs during the development of individual 
children. The risk of averaging across individuals is that the 
resulting trajectory may not actually be found in any one, 
and this possibility also exists for simulation data. In this 
section we conduct an in-depth comparison of two 
individual cases: (i) a single normal model with 1HL 
(henceforth normal case), and (ii) a 1HL model with a 
reduced learning rate (lr=0.005, henceforth lr case). Both 
models were trained using the normal input encoding and 
engaged environment using the same randomly initialized 
starting weights. The behavioral profile of each model was 
assessed using our 4 metrics. In addition, a detailed analysis 
of the development of conservation according to (i) 
transformation type, and (ii) problem size was conducted for 
test items. The training performance of both models can be 
seen in Figure 8, where the lr case shows a slower 
developing, more incremental trajectory, in comparison to 
the normal case. The shift from NC=>C is also clearly later 
(by approximately 500 epochs) than that of the normal case, 
and subsequent improvements in training performance are 
also smaller. This pattern in training performance can also 
be seen in the behavioral profile for metric acquisition 

(calculated on novel test items) shown in Figure 9. For 
problem size and length bias metrics, the lr case shows an 
extended problem size and length bias effect. These effects 
are in parallel with the protracted learning window of this 
model. For the screening metric, the trajectory of the lr case 
deviates from that of the normal case, showing a minor 
preference for “screened” problems at the onset of 
acquisition of conservation knowledge.  
 
 
 
 
 
 
 
 
Figure 8:  Training performance for the normal and reduced 
learning rate models. Arrows show the shift from NC=>C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Profile for the normal and reduced learning rate 
models. Arrows show the shift from NC=>C 
 

Exploring the development of conservation knowledge in 
the normal case across problem types (as shown in Figure 
10) revealed a difference in the initial profile for problems 
that alter number (addition and subtraction), in comparison 
to those that preserve number (elongation and compression). 
Addition and subtraction problems showed a static level of 
performance early in learning, whereas elongation and 
compression problems showed an initial dip in performance. 
As a consequence, performance over learning on 
transformations that preserve number was poorer than those 
that alter it. This dip was seen on all problem types in the lr 
case. 

 
 
 
 
 
 
 
 
 
 

Figure 10: Profile of performance across problem types 
during learning for reduced lr and normal cases 
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An initial dip in performance can also be seen for 
problems of differing sizes (as shown in Figure 11). In the 
normal case, this dip was exaggerated for large problem 
sizes, resulting in poorer performance on large problems 
during learning. For the lr case, the converse pattern is seen, 
where the performance for larger problem types is better.  
 

 
 
 
 
 
 

 
 
 

Figure 11: Profile of performance across problem types 
during learning for reduced lr and normal cases 

Discussion 

These simulations fall within a wider program of 
considering the effects of computational parameters on 
cognitive and language development. The exploration of 
mechanisms underlying variability in cognitive development 
may enhance our understanding of the origins of individual 
differences and developmental disorders, as well as 
transitions in the normal development of individual 
children. In this case simulations of the conservation task 
indicated that changes to the internal computational 
parameters of the model had a marked impact upon the 
acquisition of conservation knowledge. Notably, changes to 
the internal discriminability of processing units through 
reducing the slope of the sigmoid transfer function, as well 
as decreasing the learning rate delayed acquisition of 
conservation knowledge. The profile of performance from 
these two manipulations illustrates how different parameters 
can have a similar impact upon the trajectory of 
development. By contrast, changes to the problem encoding 
at input or the engaged environment had little impact on the 
model’s developmental trajectory. These results contrast 
with a similar series of computational simulations of 
variability on the balance scale task, where changes to the 
model’s engaged environment produced marked alterations 
in the developmental profile (Richardson et al, 2006). In 
tandem, these results paint a picture where the effect of 
alterations to the constraints that shape development 
depends on the nature of the cognitive task. The same 
parameter may not exert a uniform influence across 
cognitive domains. 
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