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ABSTRACT OF THE DISSERTATION

Multihead Multitrack Detection for Next Generation Magnetic Recording
Systems

by

Bing Fan

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2017

Professor Paul H. Siegel, Chair

Two dimensional magnetic recording (TDMR) is one of the leading technologies proposed

to achieve ultra high storage density in the next generation hard disk drives. A typical read channel

of TDMR can be approximated by a multihead multitrack (MHMT) model which is characterized

by the intersymbol interference (ISI) in the downtrack direction and intertrack interference (ITI)

in the crosstrack direction. In this dissertation, we aim to address two challenging problems that

can potentially make the maximum likelihood (ML) detection for the MHMT channel impractical.

One problem associated with the conventional ML detector is the ITI dependency of the

ML trellis, which makes it inefficient to adapt to a time-varying ITI environment. We propose a

xiv



novel detection method, called the weighted sum-subtract joint detection (WSSJD), to solve this

issue. We show that the ITI interfering channels in MHMT system can be transformed to several

parallel subchannels, whose joint trellis is independent of ITI. For the case when the receiver

lacks the knowledge of ITI, we propose a gain loop structure which can be incorporated into

WSSJD to efficiently track the ITI estimates. We present the implementation of WSSJD and

simulation results for several widely-studied MHMT models including the 2H2T channel, the

3H3T channel, and the 3H2T channel.

Another challenging problem is the exponentially increased computational complexity of

the ML detector due to its multitrack processing scheme. We propose to use the reduced-state

sequence estimation (RSSE) to mitigate this issue. The underlying idea is to drop less likely paths

at early state during the detection by using a heavily reduced subset trellis. To apply RSSE to the

MHMT channel, we find that the channel transformation developed in WSSJD offers a natural set

partition principle on the input constellation that is necessary to successfully implement RSSE.

The theoretical error event analysis shows a good consistency with the simulation results.

Flash memory has faster access speed, lower power consumption, and better data integrity,

which make it more attractive than the magnetic recording in many applications. However, the

lifetime of flash memory is limited by the program/erase cycles. Write-once memory (WOM)

codes are proposed to extend the flash memory lifetime by constraining the unidirectional changes

of cell levels. In this work, we study the expected performance of WOM codes. Dynamic

programming based algorithm is proposed to construct the optimal WOM updating function of a

given labeling function.

xv



Chapter 1

Introduction

1.1 Magnetic Recording System

The first commercially available hard disk drive, the IBM 350 Disk Drive, was introduced

by IBM as a part of the random access method of accounting and control (RAMAC) system. This

huge storage device consisted of fifty disks, each of which was 24-inch in diameter. It weighted

over 500 lb, but could only store 5MB, with a data density of 2000 bits/in2 [50].The signal

processing on the first drive was very simple. Data bits were detected by an amplitude detector

which registered a bit-1 whenever the readback voltage exceeded a specified level. Neither

constrained codes nor error correction codes (ECCs) were used.

After sixty years of development, today’s hard disk drives (HDDs) have much higher

storage capacity but smaller volume. In 2016, Seagate Technology announced a 5TB consumer

drive at a record-high areal density of 1307 Gb/in2 [42], about 600 million times that of the first

drive. The growth in areal density has benefited from progress in head and media design, and

the adoption of more sophisticated signal processing techniques. One radical innovation is the

use of perpendicular recording. Compared to longitudinal recording, perpendicular recording

can significantly increase the linear density. Another improvement is the use of partial response

(PR) signaling and Viterbi detection. They can better combat the intersymbol interference (ISI).

Constrained codes and ECCs are also incorporated to better protect the user data.

1
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Figure 1.1: A typical magnetic recording channel model.

A typical write/read channel model for a magnetic recording system is depicted in

Fig. 1.1 [50]. The write channel consists of modulation/ECC encoder, modulator, and write

precompensation. User data bits are encoded by a modulation code and ECC before being written

to the disk. A commonly used modulation code is the maximum transition run (MTR) code [34].

Low density parity check (LDPC) codes are widely used in today’s drives as the ECC to protect

user data from channel noise. On early drives, user data bits are first encoded by ECC before being

passed to the modulation encoder. However, this scheme can lead to severe error propagation

when the modulation code rate is high. To solve this problem, a reverse concatenation (RC)

is proposed, where the ECC is implemented after the modulation encoder. The encoded bit

sequence is then fed into the modulator to generate a rectangular write current waveform. A write

precompensation block is incorporated to reduce the nonlinear transition shift effect.

The data is stored on the disk as binary digits. Controlled by the modulated write current,

a write head generates tiny areas of positive and negative magnetization on the rotating disk. Each

polarized area represents a “bit” of information. The recorded bits are organized into data tracks,

which are closely-spaced concentric bands on the disk surface. A data track is further divided into

many sectors, each of which contains one codeword. The storage capacity of a HDD depends on

two factors: the number of bits on each track, and the number of tracks on the disk.

In the read process, the read head can only sense magnetic transitions. For longitudinal

recording, the transition response is a bell-shaped waveform approximated by a Lorentzian
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function,

h(t) =
A

1 + (2t/PW50)2
, (1.1)

where A is the peak amplitude, and PW50 is the width of the pulse at half the peak amplitude.

For perpendicular recording, the transition response is approximated by

h(t) = A · erf
(

0.954t

T50

)
, (1.2)

where T50 is the width when h(t) changes from−A/2 toA/2. The error function erf(·) is defined

as

erf(t) =
2√
π

∫ t

0
e−x

2
dx. (1.3)

Let T be the time to read one channel bit. The ratios PW50/T and T50/T measure the linear

density: the larger the ratio is, the higher linear density will be. The read back signal is roughly a

linear combination of the shifted transition responses. The analog waveform is then sampled and

equalized to a PR target. The PR target characterizes the intersymbol interference (ISI) in the

downtrack direction. It is usually represented by a polynomial with a finite degree. For example,

a widely known PR target is the extended class-IV PR (EPR4) channel given by

h(D) = (1−D)(1 +D)n = 1 +D −D2 −D3. (1.4)

The output sequence of a PR channel is corrupted by electronic Gaussian noise. The bipolar

input sequence x(D), the discretized output sequence y(D), and the noise sequence n(D) are

mathematically related by

y(D) = x(D)h(D) + n(D). (1.5)

Given the noisy channel output, a sequence detector is used to estimate each input bit. Based
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on the type of outputs, the sequence detector can be classified into two categories. A hard

decision detector predicts an input bit to be either 1 or 0, while a soft decision detector generates

the likelihood of input bits. The likelihood is also called the soft information of the bit. In

high-performance drives, the soft-output detector is preferable since it provides more reliable

estimates to the ECC decoder. A turbo-equalization is implemented so that the soft-decision

detector and the ECC decoder can iteratively share soft information of input bits. After several

iterations (typically less than 3 iterations), the system outputs the estimated user bits, based on

their accumulated soft information.

1.2 Two Dimensional Magnetic Recording

With the development of information networks and data centers, the demand for ultra-

high capacity storage devices is continually increasing. For HDD storage, several promising

technologies have been proposed to increase the areal density. Among these options, bit-patterned

magnetic recording (BPMR), heat-assisted magnetic recording (HAMR), and microwave-assisted

magnetic recording (MAMR) are technologies that require radical modification of the recording

media and/or the read-write transducer to push beyond the superparamagnetic limit [44]. In

contrast, two dimensional magnetic recording (TDMR) combined with shingled writing, has

been proposed as an approach to advancing areal density using conventional media and recording

head technology, relying instead upon more sophisticated signal processing techniques to decode

data under severe noise and interference conditions. It is expected that TDMR on a conventional

recording medium with 20 Teragrains/in2 can achieve an areal density of 10 Tb/in2 [56].

1.2.1 Shingled Writing

TDMR increases the areal density by aggressively shrinking the tiny area storing one bit.

A specially designed “corner writer” is used to maintain high write fields. To increase the tracks

density, the write head sequentially writes data tracks, and each time overwrites a small portion

of the previous track. The resulting tracks are heavily squeezed and overlapped. This process is
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Figure 1.2: A comparison between traditional writing and shingled writing on HDD.

called shingled magnetic recording (SMR). Figs. 1.2 illustrate the difference between traditional

writing and shingled writing.

SMR introduces a challenge in the data updating process. Since the dimension of the

write head is larger than the width of one track, updating a portion of one track requires first

recovering the data on sequentially written tracks. After rewriting the target track, the recovered

data are rewritten back to the disk. This process could incur a huge amount of delay and a lot of

background work. Several data management methods are proposed to solve this issue [3] [21].

1.2.2 Detection Methods

One particular challenge faced by TDMR is how to deal with the cross-talk between

densely-packed data tracks. It is conceivable that in the near term, the width and separation of

recording tracks will be significantly reduced, with a relatively smaller reduction in read head

size [56] [24] [38]. Therefore, the read head will sense signals from neighboring tracks when

reading from a target track, causing substantial intertrack interference (ITI) [36]. The performance

of a single-head single-track (SHST) detector in such a scenario with ITI was studied in [40].

The results show that the additional signal distortion caused by ITI can severely degrade the

performance of disk drives using conventional SHST detection methods.

2D-ISI Channel

When the ITI is as severe as ISI, the magnetic recording channel can be well approximated

by a two-dimensional ISI (2D-ISI) model, in which the impulse response of the read head is
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Figure 1.3: A Turbo-like detector consisting of two component BCJR detectors. The
component detectors iteratively share soft information, represented by LintR , LextR , LintC ,
and LextC . Weights w1 and w2 are used to improve the reliability of the soft information.

represented by a matrix [22]. Assume H is an m× n 2D-ISI channel matrix whose main tap is

h0,0.

H =



h−DM ,−DN
· · · h−DM ,0 · · · h−DM ,N−DN−1

...
. . .

... . .
. ...

h0,−DN
· · · h0,0 · · · h0,N−DN−1

... . .
. ...

. . .
...

hM−DM−1,−DN
· · · hM−DM−1,0 · · · hM−DM−1,N−DN−1


(1.6)

Given a bipolar input matrix X = {xi,j}, xi,j ∈ +1,−1, the noiseless channel output is a matrix

R where

ri,j =
∑
m

∑
n

hm,nxi−m,j−n. (1.7)

It has been proved that maximum likelihood (ML) detection on a general 2D-ISI channel is

NP-hard [37]. Considerable effort has been spent on designing practical suboptimal detectors.

For example, the authors in [31] propose a one-dimensional (1D) multi-strip Bahl-Cocke-Jelinek-

Raviv (BCJR) detector for a 2× 2 channel matrix. Their algorithm, which passes soft information

from column to column, achieves performance that is approximately 2
3dB from ML. The detector

proposed in [10] adopts a turbo structure, where the soft information is iteratively shared between

a row-by-row BCJR detector and another column-by-column BCJR detector. An illustration of
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this type of detector is shown in Fig. 1.3. Simulation results show that the performance of the

proposed detector is near optimal. In [33], the performance of a similar turbo detector was then

examined on a more realistic magnetic recording channel derived from a Voronoi grain model.

Several other turbo-structured detectors have also been explored in [57], [11], [9]. Although the

row-column turbo detector achieves promising performance on the 2D-ISI channel, it generally

suffers from high computational complexity and long delay. In [26] the authors construct a factor

graph for the 2D-ISI channel and design a general belief propagation (GBP) detector to combat

both the 2D-ISI and the “overwriting” effect in TDMR. Although GBP has higher complexity, its

parallelized information processing can lead to shorter detection delay.

MHMT Channel

Another approach to approximating the magnetic recording channel is the multihead

multitrack (MHMT) model, where the ISI is generally more severe than ITI. In an MHMT system,

multiple read heads scan a group of data tracks simultaneously. Guard gaps are generally added

between neighboring groups to prevent cross-talk [2], [54].

Magnetic recording schemes that jointly process multiple tracks were recognized in the

early 1990s as a technique to potentially improve the areal density of HDDs [6]. Since then, they

have been extensively studied [46, 51–53]. In [6], Barbosa implemented a maximum likelihood

(ML) detector for an ideal 2H2T symmetric interfering magnetic recording system. Theoretical

bounds on achievable performance of an ML detector for several MHMT channels were derived

in [47]. Recently, MHMT detectors have been simulated on more complex channels which

better approximate real HDDs. In [24], the ML detector along with a joint-track equalizer was

simulated on a channel model for bit patterned media storage (BPMR). In [54], the authors derive

a symbol-based maximum a posteriori (MAP) detector for a BPMR channel consisting of three

heads and two tracks. A pattern-dependent Viterbi detector is given in [58] for an array-reader

system. In [61], the implementation cost for realizing the optimal MHMT detection is studied.

Many efforts have been devoted to finding low-cost suboptimal detection methods. In [13],

the readback signals from multiple heads are equalized to a 1D target to reduce the detection
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complexity. ITI cancellation [20, 27, 41] is another effective technique to combat ITI with low

implementation cost.

Compared to the 2D-ISI detector in Fig. 1.3, the MHMT detector has relatively lower

complexity and smaller delay that could allow its adoption in the first generation TDMR drives.

In this dissertation, we assume a rather simplified MHMT model, and address two fundamental

problems with the ML detector. First, it is generally inefficient to implement ML detection in

the conventional manner on MHMT models with varying ITI. Since the construction of ML

trellis depends on ITI, a change in ITI estimates requires to recalculate the output labels, which

could lead to intolerable delay. Second, as the number of tracks and channel memory increase,

the computational complexity of ML detection exponentially grows so that implementing ML

detector could be infeasible. Searching for suboptimal solutions that can significantly reduce the

complexity without degrading performance too much is pressing. To solve the first problem, we

propose an alternative way to implement the ML detection, called weighted sum subtract joint

detector (WSSJD). We show that by applying a simple channel transformation, the ITI interfering

channels in can be transformed to parallel subchannels, whose joint trellis is independent of

ITI. We also propose an architecture with gain loops to efficiently track the ITI estimates. To

mitigate the high complexity issue, we redefine the distance between input symbols, and apply

the reduced-state sequence estimation (RSSE) [14] to the MHMT channel. Simulation results

show that the reduced trellis with much fewer states could achieve near optimal performance.

We also develop tools to analyze the error event probability of the RSSE algorithm, based on the

work in [43].

1.3 Flash Memory

Although HDD has dominated the storage market for many decades, recent progress in

solid state drive (SSD) technology has offered many advantages that is attracting more and more

attention. An SSD is a non-volatile storage device that stores data by integrated circuits. Most

SSDs use NAND-based flash memory as the storage media. For flash memories, data is recorded
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by charging memory cells with different amounts of electrons. The electrons are trapped in the

memory cells even if power is interrupted. Data can be read back by thresholding the voltage

of a memory cell. For single-level cell (SLC) flash, the cell charge is two-level. If the readback

voltage is higher than the threshold, or “programmed”, for short, the input bit is said to be 1;

otherwise, it is output as 0. Thus, SLC stores a single bit in one cell. Recently, MLC (4-level)

and TLC (8-level) flash memories have been commercialized. They can store multiple bits in one

memory cell, thus offering higher storage densities.

Compared to the traditional HDD, flash memory has a lot of advantages, such as fast

read/write speed, low power consumption, and better data integrity. It is more durable and

quieter than HDD since there are no mechanical moving parts in flash memory. However, the

limited lifetime and the high cost per bit are two main properties of flash drives that are less

appealing than HDD. One of the most prominent features of flash memories is the asymmetry in

programming and erasing. Namely, the level of flash memory cells can be easily increased by

injecting electrons to their floating gates; however, to decrease the level of a single cell, the whole

block of cells (∼ 106 cells) has to be erased and reprogrammed. The block erasure operation is

not only time-consuming, but degrades the performance of flash memory cells as well. A typical

4-level flash cell can tolerate approximately 103 to 104 erasures before it no longer can be used

due to the heavy programming noise.

Write-once memory (WOM) codes have been extensively studied as a coding technique

for data storage with one-time programming properties, e.g., punch cards, optical disks, and

flash memories. Considerable progress has been made to construct binary and non-binary

WOM codes since the pioneering work in [39] and [55]. Different constructions based on

algebraic codes [25], [59], and with error correction capability [60] were studied. For multi-level

representation, WOM codes based on lattices were studied in [28], [7] and [8]. Some of the

above codes have very good rate (close to capacity in [55]) and low encoding and decoding

complexity. In all works mentioned, it is assumed that the WOM codes should guarantee t writes

(i.e. information updating cycles) in the worst case.

In this dissertation, we study an alternate performance criterion for WOM codes, that is,
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the average number of writes before an erasure is required. This criterion is reasonable because

the worst case does not represent a typical sequence of information stored. If we assume the

information message follows a distribution over a finite set Σ, then the average number of writes

would be linearly related to the expected lifetime of flash memory cells. Some initial results have

been presented in [12] on the average-case performance of floating codes. In our work, we focus

on developing tools to evaluate the average number of writes of different WOM codes.

1.4 Dissertation Overview

This dissertation is organized as follows.

In Chapter 2, we introduce the nHnT model and propose a modified ML detector,

called weighted sum-subtract joint detector (WSSJD). We show that, by taking the eigenvalue

decomposition of the channel interference matrix, and applying coordinate transformations in both

the input and the output spaces, the cross-interfering channels are transformed into n separate

sub-channels. The parameter that indicates the ITI level appears in the gain factor of each

resulting sub-channel, and thus can be estimated by gain loops. The trellis of the transformed

system remains the same under varying ITI levels, so adaptive estimates of ITI level can be easily

incorporated into the detection architecture. Simulation results on 2H2T and 3H3T systems

show that under time-varying ITI conditions, WSSJD with adaptively estimated ITI outperforms

the traditional ML detector for which practical considerations dictate the use of a static ITI

estimate. We also analyze the performance advantage of the nHnT detection system over ITI-free

single-track detection by examining the distance properties of each system.

In Chapter 3, we show that the use of reduced-state sequence estimation (RSSE) algorithm

can significantly reduce the complexity of the MHMT ML detector while achieving near optimal

performance. We briefly review the original RSSE algorithm as developed for QAM transmission

systems. Next, we show how to construct a reduced-state trellis for the symmetric 2H2T channel

by redefining the distance measure in the input constellation and designing proper set partitioning

trees. Performance simulation results for RSSE on 2H2T systems with different channel models
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and trellis configurations are provided. We define the early-merging condition and provide error

event analysis. The dominant error events for several reduced-state trellises on different channels

are also tabulated. The applicability of RSSE to an asymmetric 2H2T model is also considered.

Finally, set partition trees of the 3H3T system are proposed and their performance is analyzed

and simulated.

In Chapter 4, we generalize WSSJD to channels that satisfy an algebraic property called

the WSSJD property. We first consider a 3H2T system, and analyze the achievable performance of

the ML detector. Then, we derive the WSSJD algorithm for the 3H2T channel. We discuss three

techniques associated with WSSJD: channel decomposition, reduced-complexity implementation,

and ITI estimation. We define the WSSJD property, which is required for an MHMT system to be

amenable to the application of WSSJD. Several examples of MHMT channels that satisfy the

WSSJD property are given. We also discuss the application of WSSJD to other potential 3H2T

models based on the work in [49].

In Chapter 5, we study the expected performance of WOM codes. We model the code

rewriting process as a Markov process, and formally define the average number of writes of a

given WOM code. Recursive formulas are derived to calculate their average number of writes.

We propose a greedy algorithm to search for the optimal updating function for a given WOM

labeling. The “optimality” is in the sense of maximizing the expected number of successful writes.

We also prove the optimality of the tile-labeling construction [8] when the alphabet size is 3.



Chapter 2

Weighted Sum Subtract Joint Detection

with ITI Estimation

Multitrack detection with array-head reading is a promising technique proposed for next

generation magnetic storage systems. The multihead multitrack (MHMT) system is characterized

by intersymbol interference (ISI) in the downtrack direction and intertrack interference (ITI) in

the crosstrack direction. Constructing the trellis of a MHMT maximum likelihood (ML) detector

requires knowledge of the ITI, which is generally unknown at the receiver. Furthermore, in a

time-varying ITI environment, updating ML trellis labels using adaptively-generated ITI estimates

could incur significant delay. In this chapter, we propose one approach to solve these issues.

The proposed detector uses a different trellis structure whose output labels are independent of

the ITI level, with ITI-dependence appearing only in a scale factor used to suitably weight the

computed path metrics in order to retain ML optimality. The detector formulation facilitates

the design of a gain loop structure that can track the time-varying ITI and provide ITI estimates

to adaptively adjust the weights in the path metric evaluation. Simulation results show that the

proposed detector architecture with ITI estimation offers a substantial performance advantage

over ML detection using a static ITI estimate.

12
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2.1 Symmetric n-Head n-Track Channel Model

In next-generation magnetic recording using shingled magnetic recording, the data tracks

will be organized into bands, each consisting of a number of narrow, closely space tracks, with a

small gap between bands to prevent interference [2].

Consider a band of n tracks. Let xi(D) denote the bipolar data sequence recorded on

the i-th track, xi(D) = ΣN
k=0 x

i
kD

k, with xik ∈ {−1,+1}. We assume that xik is i.i.d. and

equiprobable, and xi(D), i ∈ {1, ..., n} are independent sequences. We also assume that there is

no phase offset during the writing, i.e., the data sequences are perfectly aligned.

During the readback process, n heads are evenly placed over n tracks, with one head

designated per track. The signal from each head is passed through a matched filter, a sampler, and

then equalized to the target dipulse response represented by a polynomial h(D) = h0 + h1D +

· · ·+ hνD
ν that reflects the intersymbol interference (ISI). The interference from neighboring

tracks is additive, and the interfering by a read head from a neighboring track is assumed to be a

scaled version of the read signal that would be sensed by the head directly over the neighboring

track in the absence of any intertrack interference. Let ri(D) denote the sampled readback

samples corresponding to the signal from the head corresponding to the i-th track, i = 1, ..., n.

The resulting n-head n-track (nHnT) system is described by

R(D) = AnX(D)h(D) + Ω(D), (2.1)

where

X(D) = [x1(D), · · · , xn(D)]> (2.2)

is the input vector, and

R(D) = [r1(D), · · · , rn(D)]> (2.3)
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is the output vector. The vector of electronic noise components is denoted by

Ω(D) = [ω1(D), · · · , ωn(D)]>. (2.4)

We assume that the noise samples are independent and Gaussian distributed, with zero mean and

variance σ2. The term X(D)h(D) = [x1(D)h(D), · · · , xn(D)h(D)]> denotes the vector of

noiseless ISI channel outputs, and An is an n× n interference matrix. In our model, we assume

that only adjacent tracks interfere. This assumption is reasonable since in most cases the ITI from

the adjacent tracks is the dominant one. Additionally, by assuming the physical uniformity and

symmetry of read heads, An can be modeled as a symmetric tridiagonal Toeplitz matrix

An =



1 ε

ε 1
. . . 0

. . .
. . .

. . .

0 . . . 1 ε

ε 1


, (2.5)

where ε ∈ [0, 0.5] represents the ITI level determined by the distance between the head and the

adjacent track.

Given the received sequences R(D), the ML detector chooses X∗(D) that satisfies

X∗(D) = arg max
X(D)

Pr(R(D)|X(D))

= arg min
X(D)

‖R(D)−AnX(D)h(D)‖2, (2.6)

where ‖ · ‖2 denotes the squared Euclidean norm. For instance, ‖X(D)‖2 is calculated by

‖X(D)‖2 =
∑
i

‖xi(D)‖2 =
∑
i,j

(xij)
2. (2.7)

The trellis constructed in the ML detector contains 2nν states, each of which is associated with 2n
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edges.

Let xi(D) and x̂i(D) be the correct and estimated input sequences corresponding to track

i, respectively. An error event occurs if for some track i, ei(D) = xi(D) − x̂i(D) is not zero.

For an error event

e(D) = [e1(D), · · · , en(D)]>, (2.8)

the distance parameter is calculated by

d2(e(D)) = ‖Ane(D)h(D)‖2 =
n∑
i=1

‖yi(D)‖2, (2.9)

where

y1(D) = [e1(D) + εe2(D)]h(D), (2.10)

yn(D) = [en(D) + εen−1(D)]h(D), (2.11)

yi(D) = [ei(D) + εei−1(D) + εei+1(D)]h(D), i ∈ [2, n− 1]. (2.12)

The minimum distance parameter of the channel is obtained by minimizing d2(e(D)) over

all possible e(D). In Fig. 2.1, we plot the minimum distances of the nHnT ML detector for

n = 2, 3, 4, 5, assuming h(D) = 1 +D. It can be observed that in a large region of ε, the nHnT

ML detectors have a greater minimum distance parameter than the ITI-free SHST ML detector.

The distance parameters associated with the other detectors plotted in Fig. 2.1 will be discussed

in Section 2.2.3.

It is well known that the error event probability of a trellis-based detector can be approxi-

mated as Pe ∝ Q(dmin
2σ ), where Q(·) is the tail probability of the standard Gaussian distribution,

dmin is the minimum distance, and σ is the standard deviation of the additive Gaussian noise. The

performance of the detector can be accurately predicted by analyzing its minimum distance.

We notice that the calculation of trellis output labels, Y(D) = AnX(D)h(D), requires

knowledge of the ITI level ε. This can introduce disadvantages in the hardware realization
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Figure 2.2: Schematic of a two-head two-track recording system.

of the conventional ML detector. With time-varying ITI levels, the detector in effect has to

recalculate and update the branch output labels whenever ε changes. If ε changes frequently, this

process could incur a substantial increase in hardware complexity and delay. Therefore, using a

conventional approach to implementation, MHMT ML detection is essentially limited to a static

value of ε. Indeed, in the prior literature, studies of MHMT ML detection have always assumed a

static ITI environment [46], [6], [30]. On a hard disk drive, however, ε generally varies spatially

due to mechanical effects such as head skew and flying height variation. Thus, adaptive estimation

of ε will be necessary, potentially introducing the complexity and delay issues just mentioned if

conventional ML detection is used.

In the following sections, we propose a novel detection architecture that is amenable

to incorporating adaptive ITI estimation while retaining the optimality of ML detection. The

proposed detector uses a different trellis diagram from the conventional ML detector. For

convenience, we refer to the latter as the “ML trellis” even though both detectors produce the

same ML output sequences.

2.2 WSSJD on 2H2T system

The weighted sum-subtract joint detection (WSSJD) algorithm differs from the conven-

tional ML detector in two respects. First, it has a “sum-subtract” preprocessor before the Viterbi

detector. Second, it uses weighted branch metrics in detection. In this section, we assume ε to be

known. This condition will be relaxed in Section 2.3 where we show that ε acts as a gain factor

that can be estimated by means of a first-order gain loop.

We begin the presentation of WSSJD by first analyzing the 2H2T case. A schematic of the
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2H2T system is shown in Fig. 2.2. Let xa(D) and xb(D) be the input sequences corresponding

to track a and track b, respectively. The outputs of the corresponding read heads are

ra(D) = ya(D) + ωa(D),

rb(D) = yb(D) + ωb(D), (2.13)

where

ya(D) = xa(D)h(D) + ε xb(D)h(D),

yb(D) = ε xa(D)h(D) + xb(D)h(D), (2.14)

are the noiseless outputs. As given in [46], the minimum distance parameter of the 2H2T ML

detector is

d2
min, ML =

 (1 + ε2)d2
0, if 0 ≤ ε ≤ 2−

√
3

2(1− ε)2d2
0, if 2−

√
3 ≤ ε ≤ 1/2

(2.15)

where d0 is the minimum distance of the single-track detector on channel h(D) when there is

no ITI. The single track error events are the dominant error patterns at low ITI, while the double

track error events are the dominant ones at high ITI. The operating point that gives the highest

minimum distance, or the best performance of the ML detector, is at ε = 2−
√

3.

2.2.1 Sum-subtract preprocessing

Instead of directly processing ra(D) and rb(D), the WSSJD method first calculates the

weighted sum and difference, r+(D) and r−(D), given by

r+(D) =
1

1 + ε
[ ra(D) + rb(D) ],

r−(D) =
1

1− ε [ ra(D)− rb(D) ], (2.16)
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respectively. Defining new input signals by

z+(D) = xa(D) + xb(D), z−(D) = xa(D)− xb(D), (2.17)

and the corresponding noiseless output signals by

y+(D) = z+(D)h(D), y−(D) = z−(D)h(D), (2.18)

we can rewrite (??) as

r+(D) = y+(D) + ω+(D), r−(D) = y−(D) + ω−(D). (2.19)

The new noise components,

ω+(D) =
1

1 + ε
(ωa(D) + ωb(D)), ω−(D) =

1

1− ε (ωa(D)− ωb(D)) (2.20)

satisfy ω+
k ∼ N (0, 2σ2

(1+ε)2
), ω−k ∼ N (0, 2σ2

(1−ε)2 ). Furthermore,

E[ω+
k ω
−
k ] =

1

1− ε2 (E[ ωak
2 ]− E[ ωbk

2
] ) = 0, (2.21)

which implies that ω+(D) and ω−(D) are uncorrelated and, therefore, independent.

We can think of r+(D) and r−(D) as the noisy outputs obtained by passing each of

z+(D) and z−(D) through a channel h(D), but with different noise powers. These two channels

are called the “sum channel” and the “subtract channel”, respectively. Notice that the new inputs

z+
k and z−k have a three-level alphabet, B = {−2, 0, 2}. There is a one-to-one mapping between

(z+
k , z

−
k ) and (xak, x

b
k), as shown in Table 2.1.

Since r+(D) and r−(D) are obtained from separate channels, one can independently

detect z+(D) and z−(D), and then map (z+
k , z

−
k ) to (xak, x

b
k) according to Table 2.1. This
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Table 2.1: Mapping between (xak, x
b
k) and (z+

k , z
−
k ).

xak xbk z+
k z−k

1 1 2 0
1 -1 0 2

-1 1 0 -2
-1 -1 -2 0

corresponds to solving for

ẑ+(D) = arg max
z+(D)

log Pr(r+(D) | z+(D)) = arg min
z+(D)

‖r+(D) − z+(D)‖2 ,

ẑ−(D) = arg max
z−(D)

log Pr(r−(D) | z−(D)) = arg min
z−(D)

‖r−(D) − z−(D)‖2. (2.22)

This computation has complexityO(2 ·3ν). However, it is suboptimal. From Table 2.1 we see that

z+(D) and z−(D) are not independent, e.g., z+
k = 2 forces z−k to be 0. Independent detection

ignores this correlation and produces some undecodable (ẑ+
k , ẑ

−
k ) pairs. Optimal detection must

jointly consider both the sum channel and the subtract channel, determining

ẑ+(D), ẑ−(D) = arg max
z+(D),z−(D)

log Pr(r+(D), r−(D) | z+(D), z−(D)). (2.23)

The Viterbi algorithm (VA) is applied to solve (2.23). The WSSJD trellis has the same

number of states as the ML trellis. Each branch connects an initial state

s(k) = [z+
k−ν . . . z

+
k−1, z

−
k−ν . . . z

−
k−1]

to a terminal state

s(k + 1) = [z+
k−ν+1 . . . z

+
k , z

−
k−ν+1 . . . z

−
k ]

with input label Lin = (z+
k , z

−
k ) and output label Lout = (y+

k , y
−
k ). Fig. 2.3 shows a WSSJD

trellis for the channel h(D) = 1+D. The text to the left of each state lists the branch labels in the

form of input/output. Notice that, unlike the ML trellis, the WSSJD trellis labels are independent
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( 0, 2)/(�2, 2)

(�2, 0)/(�4, 0)

Lin/Lout

Figure 2.3: WSSJD trellis for channel h(D) = 1 +D

of ε.

2.2.2 Weighted branch metric

Since the sum and the subtract channel have different noise powers, WSSJD computes a

weighted sum of their individual distance metrics, ‖r+(D)− y+(D)‖2 and ‖r−(D)− y−(D)‖2.

The optimal choice of the weights is found by evaluating (2.23),

ẑ+(D), ẑ−(D) = arg max
z+(D),z−(D)

log Pr(r+(D), r−(D)|z+(D), z−(D))

= arg max
z+(D),z−(D)

log Pr(r+(D)|z+(D)) + log Pr(r−(D)|z−(D))

= arg min
z+(D),z−(D)

‖r+(D)− y+(D)‖2
2σ2/(1 + ε)2

+
‖r−(D)− y−(D)‖2

2σ2/(1− ε)2

= arg min
z+(D),z−(D)

(1 + ε)2‖r+(D)− y+(D)‖2 + (1− ε)2‖r−(D)− y−(D)‖2.

(2.24)
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Let Mk(s) denote the survivor path metric for state s at time k. The path metric corresponding to

the extension along a branch from state s to s′ is

Mk+1(s′) = Mk(s) + (1 + ε)2(r+
k − y+

k )2 + (1− ε)2(r−k − y−k )2. (2.25)

The term mk(s, s
′) = (1 + ε)2(r+

k − y+
k )2 + (1− ε)2(r−k − y−k )2 is the weighted branch metric.

Since the sum-subtract transformation is bijective, we have

Pr(r+(D), r−(D)|z+(D), z−(D)) = Pr(ra(D), rb(D)|xa(D), xb(D)). (2.26)

Therefore, WSSJD gives the ML solution.

Assume (z+(D), z−(D)) are the correct input sequences. WSSJD outputs wrong esti-

mates (ẑ+(D), ẑ−(D)) if

Pr(r+(D), r−(D)|z+(D), z−(D)) < Pr(r+(D), r−(D)|ẑ+(D), ẑ−(D)). (2.27)

Let e+(D) = z+(D)− ẑ+(D) and e−(D) = z−(D)− ẑ−(D) be the error event. Notice that the

alphabet of e+
k and e−k is {±4,±2, 0}, and e+

k and e−k are not independent, e.g., e+
k = 4 implies

e− = 0. The probability of having (e+(D), e−(D)) is approximated by Q(dWSSJD(e+(D),e−(D))
2σ ),

where

d2
WSSJD(e+(D), e−(D))

=
(1 + ε)2‖e+(D)h(D)‖2 + (1− ε)2‖e−(D)h(D)‖2

2
(2.28)

is the effective distance parameter defined for WSSJD. Although the labels on the WSSJD

trellis are independent of ε, the distance metric used to estimate the WSSJD performance has

to incorporate the effect of the signal-to-noise ratio (SNR) differences in the sum and subtract

channels. Evaluating (2.28) for all possible error events shows that WSSJD has the same minimum

distance parameter as the ML detector.
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2.2.3 Performance loss from neglecting branch metric weighting factors

We refer to the detector that ignores the weighting factors, i.e., that uses

mk(s, s
′) = (r+

k − y+
k )2 + (r−k − y−k )2 (2.29)

as the branch metric, as the sum-subtract joint detector. The corresponding sum-subtract joint

detection (SSJD) method is suboptimal. The performance loss of SSJD is reflected in its minimum

distance parameter. Let (z+(D), z−(D)) and (ẑ+(D), ẑ−(D)) be the correct and estimated

sequences. The error event probability is

Pr(‖r+(D)− z+(D)h(D)‖2 + ‖r−(D)− z−(D)h(D)‖2

> ‖r+(D)− ẑ+(D)h(D)‖2 + ‖r−(D)− ẑ−(D)h(D)‖2)

= Q

(
dSSJD(e+(D), e−(D))

2σ

)
, (2.30)

where

dSSJD(e+(D), e−(D)) =
‖e+(D)h(D)‖2 + ‖e−(D)h(D)‖2√

2‖e+(D)h(D)‖2
(1+ε)2

+ 2‖e−(D)h(D)‖2
(1−ε)2

. (2.31)

Since e+(D) and e−(D) are not independent, we express them as e+(D) = ea(D) + eb(D) and

e−(D) = ea(D) − eb(D) to find d2
min, SSJD. To simplify the notation, let A(D) = ea(D)h(D)

and B(D) = eb(D)h(D). We have

d2
SSJD(ea(D), eb(D))

=
(1 + ε)2(1− ε)2(‖A(D)‖2 + ‖B(D)‖2)2

(1 + ε2)(‖A(D)‖2 + ‖B(D)‖2)− 4ε〈A(D), B(D)〉 . (2.32)
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Consider the case of a single-track error event, e.g., assume eb(D) = 0. Then

d2
SSJD(ea(D), 0) =

(1 + ε)2(1− ε)2

1 + ε2
‖A(D)‖2

≥ (1 + ε)2(1− ε)2

1 + ε2
d2

0 (2.33)

with equality achieved when ea(D) gives the minimum distance d2
0 on channel h(D).

For the case of a double-track error event we have

d2
SSJD(ea(D), eb(D)) ≥ (1− ε)2(‖A(D)‖2 + ‖B(D)‖2)

≥ 2(1− ε)2d2
0, (2.34)

where we have used the fact that

−〈A(D), B(D)〉 ≤ ‖A(D)‖ ‖B(D)‖ ≤ 1

2
(‖A(D)‖2 + ‖B(D)‖2). (2.35)

Equality is achieved in (2.34) when ea(D) = −eb(D) and both ea(D) and eb(D) lead to the

minimum distance d0 on channel h(D). Comparison between (2.33) and (2.34) shows that, in

contrast to WSSJD, the minimum distance of SSJD is always dominated by single-track error

events. Therefore

d2
min, SSJD =

(1 + ε)2(1− ε)2

1 + ε2
d2

0. (2.36)

In Fig. 2.1 we plot the squared minimum distance parameters for several detectors as a

function of ε. Recall that WSSJD on the 2H2T model has the same d2
min as the 2H2T ML detector.

Two SHST detectors [47] are included for comparison purposes.The optimal SHST detector

estimates the data on a track using the model for channel ISI and the interference induced by the

side track. Its minimum distance is dominated by double-track error events, leading to

d2
min, opt-SHST = (1− ε)2d2

0. (2.37)
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The conventional SHST detector considers only the channel ISI and treats the side track in-

terference as additional electronic noise, and is therefore suboptimal. For the channel with

h(D) = 1 +D, the minimum distance has a closed form expression given by

d2
min, con-SHST = (1− 2ε)2d2

0. (2.38)

Finally, the ITI-free SHST corresponds to the SHST channel model with no ITI. The performance

of the ITI-free SHST detector can be viewed as the performance of an ideal ITI cancellation

scheme in which the side track response is perfectly removed.

We summarize the proposed algorithms as follows. The branch labels of the trellis

constructed for WSSJD or SSJD are independent of the ITI level ε. This independence is the

key property underlying the proposed architecture for combining WSSJD or SSJD with adaptive

estimation of ε. In WSSJD, the ITI level ε is used to weight the branch metrics, thereby ensuring

that it achieves ML performance. The SSJD algorithm does not weight the branch metrics, thus

producing suboptimal decisions.

2.3 Adaptive ITI Level Estimation

2.3.1 ITI Sensitivity

To evaluate the sensitivity of the various detectors to a small change in the ITI level, we

introduce a small offset into our performance simulations. Suppose the nominal ITI level is ε0,

while the true ITI level is adjusted by an offset ∆ε. The new noiseless channel outputs become

ya(D) = xa(D)h(D) + (ε0 + ∆ε)xb(D)h(D),

yb(D) = xb(D)h(D) + (ε0 + ∆ε)xa(D)h(D). (2.39)

If the detectors use the nominal level ε0, rather than the true level ε = ε0 + ∆ε, mismatch will

lead to a degradation in performance.
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Figure 2.4: ITI sensitivity of different detectors on channel h(D) = 1 +D at ε0 = 0.1
(left) and ε0 = 0.3 (right). SNR=10dB.

Fig. 2.4 shows the simulated bit error rate (BER) as a function of the mismatch ∆ε for

WSSJD, SSJD, and the conventional ML detector on channel the channel with h(D) = 1 +D at

SNR = 10dB, with ε0 = 0.1 and ε0 = 0.3, respectively. We see that the minimum BER occurs at

∆ε ≈ 0 for ε0 = 0.1 and at ∆ε = −0.02 for ε0 = 0.3. However, the BER performance does not

vary significantly in the interval |∆ε| ≤ 0.02 in either case. It is evident that the BER curves are

not symmetric about ∆ε = 0. When ε0 = 0.1, the slope of the BER curve in the region ∆ε < 0 is

slightly higher than that in the region ∆ε > 0. On the other hand, when ε0 = 0.3, the asymmetry

is reversed, and the difference between the slopes is more significant.

Fig. 2.1 suggests that the observed behaviors are due to minimum distance properties of

the mismatched detectors. To see this, consider the ML detector as an example. The probability

of having an error event (ea(D), eb(D)) when the system has an offset ∆ε is

Pe = Q

(
1

2σ
d(ea, eb, xa, xb)

)
= Q

(
1

2σ
(dideal + dmism)

)
, (2.40)
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Figure 2.5: Minimum distance parameter of the ML detector at different levels of
mismatch for channel 1 +D.

where

dideal =
√
‖A(D)‖2 + ‖B(D)‖2, (2.41)

dmism = 2∆ε
〈A(D), xb(D)h(D)〉+ 〈B(D), xa(D)h(D)〉√

‖A(D)‖2 + ‖B(D)‖2
, (2.42)

A(D) = ea(D)h(D) + ε · eb(D)h(D), B(D) = eb(D)h(D) + ε · ea(D)h(D). (2.43)

Compared to the ideal case, dmism is the additional effect caused by the mismatch. Notice

that with the existence of mismatch, the distance parameter is now dependent on the input

sequence (xa(D), xb(D)). In addition, having mismatch does not always decrease the distance.

Some sequence combinations could lead to larger distance than the ideal case. The error event

probability is dominated by the sequence combination (ea, eb, xa, xb) that leads to the smallest
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value of dideal + dmism. Finding such a combination is not an easy task because (ea(D), eb(D))

and (xa(D), xb(D)) are not independent. For example, eak = 2 forces xak to be 1. Due to this

correlation, it is hard to obtain an explicit expression for the minimum distance of a general

channel polynomial. But for the channel with h(D) = 1 +D, we show in the Appendix that the

minimum distance of the single-track error events is

d2
s =


8(1+ε20−2∆ε)2

1+ε20
if ∆ε > 0

8[1+ε20+(2+2ε0)∆ε]2

1+ε20
if ∆ε < 0.

(2.44)

With the additional assistance of computer search, we also show that the minimum distance

produced by double-track error events is

d2
d =

 16[(1− ε0)− 2∆ε]2 if ∆ε > 0

16(1− ε0)2 if ∆ε < 0.
(2.45)

The distance values, d2
s and d2

d, are achieved by the single track error events and double track

error events that minimize dideal, respectively. Table 2.2 gives examples of sequence combinations

that achieve d2
s and d2

d. The overall minimum distance of the system is

d2
min = min {d2

s , d
2
d}. (2.46)

In summary, the asymmetry of the BER curve about ∆ε = 0 is due to the correlation

between (ea(D), eb(D)) and (xa(D), xb(D)). The reason that minimum BER points for ε0 = 0.1

and ε0 = 0.3 occur at different values of the mismatch ∆ε is because at ε0 = 0.1 the system

performance is largely dominated by the single track error events, while at ε0 = 0.3 the double

track error events are dominant. Fig. 2.5 shows the overall minimum distance d2
min as a function

of the mismatch |∆ε| ≤ 1 for several values of ε between 0.1 and 0.4. Comparing these results to

the BER curves in Fig. 2.4, we find that for ε0 = 0.1, a positive mismatch produces a higher d2
min

than a negative offset of the same magnitude. For ε0 = 0.3, this situation is reversed, and in a

small range of negative offsets, −0.02 ≤ ∆ε ≤ 0, the mismatch does not reduce the minimum
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Table 2.2: Sequences achieving dmin in (2.46) under positive/negative offsets for (a)
single-track error events, and (b) double-track error events.

(a) single track error events

∆ε < 0
ea = · · · , 0, 0, 2, 0, 0, · · ·
xa = · · · , xak−2,−1,+1,−1, xak+2, · · ·
xb = · · · , xbk−2,−1,−1,−1, xbk+2, · · ·

∆ε > 0
ea = · · · , 0, 0, 2, 0, 0, · · ·
xa = · · · , xak−2,+1,+1,+1, xak+2, · · ·
xb = · · · , xbk−2,+1,+1,+1, xbk+2, · · ·

(b) double track error events

∆ε < 0

ea = · · · , 0, 0, 2, 0, 0, · · ·
eb = · · · , 0, 0,−2, 0, 0, · · ·
xa = · · · , xak−2,−1,+1,−1, xak+2, · · ·
xb = · · · , xbk−2,+1,−1,+1, xbk+2, · · ·

∆ε > 0

ea = · · · , 0, 0, 2, 0, 0, · · ·
eb = · · · , 0, 0,−2, 0, 0, · · ·
xa = · · · , xak−2,+1,+1,+1, xak+2, · · ·
xb = · · · , xbk−2,−1,−1,−1, xbk+2, · · ·

distance of the system. In this case, the mismatch also reduces the probability of worst case error

events, leading to a shift of the minimum BER to the negative side.

2.3.2 Gain Loop

Recall that in the sum-subtract preprocessing, ε appears in the gain factors that normalize

r+(D) and r−(D). We rewrite (2.16) as

r+(D) = g+ [ ra(D) + rb(D) ], r−(D) = g− [ ra(D)− rb(D) ], (2.47)

where g+, g− are the gain factors with true values 1
1+ε and 1

1−ε , respectively. There are several

well-known ways to estimate g+ and g−[29]. In our work, we adopt the LMS adaptive algorithm
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Figure 2.6: WSSJD with gain loops to adaptively estimate the ITI level
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due to its simplicity and good convergence properties. For ĝ+, the updating rule is given by

r̂+
k = ĝ+

k−1 (rak + rbk), (2.48)

ek = ŷ+
k − r̂+

k , (2.49)

ĝ+
k = ĝ+

k−1 + β ŷ+
k ek. (2.50)

The step-size parameter β controls the convergence speed. Larger β leads to faster convergence,

but also results in larger error variance. Note that ŷ+
k represents the instantaneous hard decision

made by the Viterbi detector. The use of hard decisions can potentially lead to growing estimation

error at low SNR. To mitigate this, one can introduce a small delay m ≥ 1 to get more accurate

tentative decisions1. In this case, (2.49) and (2.50) become

ek−m = ŷ+
k−m − r̂+

k−m, (2.51)

ĝ+
k = ĝ+

k−1 + β ŷ+
k−m ek−m. (2.52)

Similarly, ĝ−k can be estimated in the same manner. The estimates ĝ+
k and ĝ−k will be fed back to

the Viterbi detector to evaluate path metrics, i.e.,

Mk+1(s′) = Mk(s) + ĝ+
k−1

2(r+
k − y+

k )2 + ĝ−k−1
2(r−k − y−k )2. (2.53)

Fig. 2.6 shows a complete block diagram for WSSJD with adaptive gain estimation. The

system contains two separate gain loops for ĝ+
k and ĝ−k . While a combined loop for estimating

ĝ+
k and ĝ−k can provide a better estimate for ε, using separate loops achieves similar performance

in a more efficient way.

In our simulations, ĝ+
0 and ĝ−0 are initially set to 1. At time k, rak + rbk and rak − rbk

are normalized by the previously estimated ĝ+
k−1 and ĝ−k−1, respectively. The resulting signals

r̂+
k and r̂−k are sent to the Viterbi detector. The path metric of each trellis state is calculated by

1The use of soft decisions would lead to even further improvement in the gain estimation, at the cost of increased
complexity.
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using weights ĝ+
k−1 and ĝ−k−1. The Viterbi detector picks the most likely path, and makes an

instantaneous decision on ŷ+
k−m and ŷ−k−m. The error signal is calculated to update ĝ+

k and ĝ−k .

Note that SSJD can also work with these gain loops, without feeding ĝ+
k and ĝ−k to the path metric

evaluation.

In Fig. 2.7, we track the values of g+
k and g−k estimated by gain loops in one sector of

N = 4096 bits on the channel with h(D) = 1 + D at high and low SNRs. The true values of

the gain factors, g+ = 1
1+ε and g− = 1

1−ε , are also plotted for comparison. The step-size β is

set to 0.005, and the delay unit m = 5. In Fig. 2.7(a), ε has the fixed value 0.1, while in Fig.

2.7(a) ε slowly varies around the value 0.1. We see that gain factors are well tracked by the gain

loops. The estimates at high SNR (10dB) show better convergence than those in a low SNR (7dB)

environment.

2.4 WSSJD on General ITI Channel

2.4.1 Decomposition of Interference Matrix

To generalize WSSJD to the nHnT model, consider the eigen-decomposition of An in

(2.5),

An = VnΛnV
>
n , (2.54)

where Vn is an n× n matrix whose columns are the eigenvectors of An, and Λn is a diagonal

matrix whose diagonal elements are the corresponding eigenvalues. The eigenvalues and eigen-

vectors of the symmetric tridiagonal Toeplitz matrix have a known closed form [45] [35]. If we
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Figure 2.7: Adaptive estimation of g+ and g− over one sector of N = 4096 bits for
the channel h(D) = 1 +D at different SNRs. In (a), ε = 0.1. In (b), ε is a sinusoidal
function of time.
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define

T̂n =



0 1 O

1 0
. . .

. . .
. . . 1

O 1 0


, (2.55)

then

An = In + εT̂n = Vn(In + εΛ̂n)V>n , (2.56)

where In is an n× n identity matrix, and Λ̂n is the diagonal matrix containing the eigenvalues of

T̂n. Therefore, the columns of Vn are also the eigenvectors of T̂n, and Λn = In + εΛ̂n. In fact,

both Λ̂n and Vn have closed forms: the kth eigenvalue of T̂n is

λ̂k = 2 cos

(
kπ

n+ 1

)
, (2.57)

and the jth element in the kth eigenvector vk is

vjk =

√
2

n+ 1
sin

(
kjπ

n+ 1

)
. (2.58)

Note that Vn is independent of ε.

Example1. For the case n = 2,

Λ2 =

 1 + ε 0

0 1− ε

 , V2 =


√

2
2

√
2

2
√

2
2 −

√
2

2

 .
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Example2. For the case n = 3,

Λ3 =


1 +
√

2ε 0 0

0 1 0

0 0 1−
√

2ε

 , V3 =


1
2

√
2

2
1
2

√
2

2 0 −
√

2
2

1
2 −

√
2

2
1
2

 .

2.4.2 Channel Decomposition and Generalized WSSJD

The nHnT model is given by (2.1). Using the decomposition of An in (2.54), we can

express the channel output as

R(D) = VnΛnV
>
n X(D)h(D) + Ω(D). (2.59)

Reorganizing (2.59) gives

Λ−1
n V>nR(D) = V>nX(D)h(D) + Λ−1

n V>nΩ(D). (2.60)

Let X̄(D) = V>nX(D), R̄(D) = Λ−1
n V>nR(D) and Ω̄(D) = Λ−1

n V>nΩ(D) be the vectors

of transformed input sequences, received sequences and noises, respectively. The new channel

model becomes

R̄(D) = X̄(D)h(D) + Ω̄(D), (2.61)

which is composed of n parallel channels. The jth channel is obtained by considering the jth row

of both sides of (2.61), which gives

r̄j(D) = x̄j(D)h(D) + ω̄j(D), (2.62)
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Algorithm 1 WSSJD with gain loop on nHnT

1: function X̂(D) =WSSJD(R(D), ε0)
2: Initialize:
3: M(0) = 0,
4: M(p) =∞ for p = 1, · · · , 2nν − 1 {path metric}
5: Ψ is a 2nν ×N zero matrix {path history}
6: G = (In + ε0Λ̂n)−1{gain factors}
7: Begin: k = 1 to N
8: r̄k = GV>n rk p = 0 to 2nν − 1
9: for each predecessor state qi of p

10: Mi = M(qi) + (r̄k − y(qi,p))>G−2(r̄k − y(qi,p))
11: update M(p) = min

i
Mi

12: Ψ(p, k) = qi {extend survivor path} k > m
13: p∗ = arg min

p
M(p) j = 1 to δ

14: p∗ = Ψ(p∗, k − j + 1); {trace back path history}
15: e = y(Ψ(p∗,k−δ),p∗) − r̄k−δ
16: G = G + βdiag(y(Ψ(p∗,k−δ),p∗))diag(e)
17: end

where

r̄j(D) =
1

1 + ελ̂j

n∑
i=1

vij r
i(D), (2.63)

x̄j(D) =

n∑
i=1

vij x
i(D), (2.64)

w̄j(D) =
1

1 + ελ̂i

n∑
i=1

vij ω
i(D). (2.65)

Several properties of the transformed channel model can be observed:

1. The noise components in Ω̄(D) are independent. Let ωk and ω̄k be length-n vectors of

the original and transformed noise samples at time k, i.e., the coefficients of Dk in the

sequences ω(D) and ω̄(D), respectively. Then

E[ω̄kω̄
>
k ] = E[Λ−1

n V>nωkω
>
k VnΛ

−1
n ] = (σΛ−1

n )2, (2.66)

which is a diagonal matrix. So the components of ω̄k are uncorrelated and Gaussian,

therefore independent. Furthermore, the noise power of the jth channel is σ2/λ2
j .
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2. After the transformation, the inputs of different component channels have different alpha-

bets. For the jth component channel, the alphabet Σj is

Σj =

{
n∑
i=1

vijxi|xi ∈ {+1,−1}
}
. (2.67)

3. The jth component channel corresponds to transmitting x̄j(D) through the ISI channel

h(D) and adding electronic noise of power σ2/λ2
j . Since the inputs to different channels

are correlated, a joint trellis is needed to search for the optimal decision. The new trellis

states can be found by applying the one-to-one mapping to the conventional ML states.

Therefore, the WSSJD trellis has 2nν states.

4. Since Vn is determined once n is given, the WSSJD trellis is well-defined, and the branch

labels are also independent of ε.

The optimal decision X̄∗(D) satisfies

X̄∗(D) = arg max
X̄(D)

log Pr(R̄(D)|X̄(D))

= arg min
X̄(D)

n∑
j=1

λ2
j ‖r̄j(D)− x̄j(D)h(D)‖2. (2.68)

It is easy to see that WSSJD gives the optimal ML solution.

For a given error event ē(D) = [ē1(D), ..., ēn(D)], where ēj(D) is the error sequence

on the jth component channel, the distance parameter is given by

d2(ē(D)) =
∑
j

λ2
j ‖ēj(D)h(D)‖2. (2.69)

2.4.3 Gain loops

As shown in (2.62)-(2.65), for each channel the ITI level ε appears in a gain factor

normalizing
∑n

i=1 vij r
i(D) such that its expectation is x̄(D)h(D). Gain loops can be used to

adaptively estimate these gain factors.
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Let gjk denote the gain factor estimated for the jth channel at time k. Then E[gjk] = 1
1+ελ̂j

.

Again, we use the LMS adaptive algorithm to update gjk, according to the equations

r̂jk = gjk−1

∑
i

vijr
i
k, (2.70)

êjk−m = ŷjk−m − r̂
j
k−m, (2.71)

gjk = gjk−1 + βŷjk−mê
j
k−m, (2.72)

where ŷjk−m is the instantaneous hard decision on the noiseless output of the jth ISI channel at

time k −m. To find ŷjk−m, we identify the trellis state which currently has the smallest path

metric, and trace back the path history form time slots to obtain the corresponding channel output.

The gain factors gjk are also used in weighting the path metric, to ensure the ML performance of

the detector.

Algorithm 1 summarizes the procedures to implement WSSJD with gain loops on the

nHnT channel. The algorithm makes use of the following notation:

1. N is the length of one frame; ε0 is the initial value of ε.

2. G is a diagonal matrix with gjk as the jth diagonal element.

3. rk is a column vector of the received signals from nHnT channel at time k; r̄k is the

vector of outputs from the transformed channel.

4. M(p) is the accumulated path metric at state p.

5. y(q,p) is a column vector of the trellis output label from state q to p.

6. diag(v) is a diagonal matrix with the elements of the vector v along the diagonal.

2.5 Simulation Results

In this section, we present BER performance simulation results for WSSJD and SSJD on

the nHnT channel model for several values of n. We plot the BER as a function of channel SNR,
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Figure 2.8: BER vs. SNR of different detectors with static ITI level (a) ε = 0.1 and (b)
ε = 0.3.

where we define SNR as

SNR(dB) = 10 log
‖h(D)‖2

2σ2
. (2.73)

Note that, in contrast to some studies such as [57], our definition of SNR does not take the energy

ε2‖h(D)‖2 in the cross-track signal into account. Since we use separate figures for the results

corresponding to different static ITI values, this definition should not lead to any confusion. It

is also better suited for presenting the results obtained when the ITI is characterized by a small

variation around a fixed nominal ITI level.

2.5.1 2H2T System

We simulate WSSJD and SSJD with gain loops on the 2H2T system with channel

polynomial h(D) = 1 +D. We set β = 0.008 and m = 5. The initial values of gain factors g+
0

and g−0 are obtained by passing training samples through the system.

We first test the proposed detectors and gain loop structure when ε is fixed. In Fig. 2.8,

we compare the BER performances of WSSJD, SSJD, and the conventional 2H2T ML detector,

for ε = 0.1 and ε = 0.3. The frame size is N = 4096 bits. In our setup, the ML detector

knows the value of ε, while WSSJD and SSJD adaptively estimate gain factors using the gain
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Figure 2.9: BER vs. SNR of different detectors with ε slowly varying about the mean
value (a) ε0 = 0.1 and (b) ε0 = 0.3.

loop structure shown in Fig. 2.6. Therefore, the static ML detector provides the optimal BER

performance. It is observed that the BER curve of WSSJD with a gain loop almost coincides with

that of the static ML detector. This indicates that the LMS adaptive algorithm provides sufficiently

accurate estimates of gain factors. The recursive least squares (RLS) algorithm can speed up

the convergence of the gain loop at the expense of higher complexity, but the BER performance

improvement would be negligible. As expected from the minimum distance plots in Fig. 2.1, the

performance loss suffered by SSJD relative to WSSJD is more severe at ε = 0.3 than at ε = 0.1.

Although not shown here, simulation results for the frame error rate vs. SNR correlate well with

the BER results.

Next, we test the performance of the detectors by assuming a dynamic ITI model in

which ε changes slowly with respect to the location k. Specifically, we set

ε(k) = ε0 + 0.1 sin(4πk/N), (2.74)

where N = 4096 and ε0 is the mean value. In this case, we compare the adaptive WSSJD

algorithm, in which gain loops are used to track the value of ε, with the ML detector which uses

the static value ε0. The simulation results, shown in Figs. 2.9, show that the adaptive WSSJD

outperforms the static ML detectiion by about 0.3-0.5dB at high SNR.
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loop on 2H2T EPR4 channel. ε is sinusoidally varying with mean value ε0 = 0.1

In both cases, the performance of the ITI-free SHST detector is plotted for comparison. It

is interpreted as the performance of the ideal ITI cancellation scheme, where the ITI is completely

removed from the readback signals of each track.

The trellis complexity of the MHMT ML detector can be prohibitively complex for

practical purposes. We address this problem in [15] and [16] by using a reduced-state trellis with

the RSSE detection algorithm. Moreover, the gain loop structure for ITI estimation in WSSJD can

be directly applied in the RSSE setting. Fig. 2.10 shows BER simulation results for WSSJD with

several RSSE implementations of various trellis-complexities on the extended class-IV partial

response (EPR4) channel, with channel polynomial h(D) = 1 + D −D2 −D3. We see that,

as expected, WSSJD with a 64-state trellis and adaptive ITI estimation outperforms the static

ML detector with the same number of states. Results are also shown for RSSE using 12, 16, and

32 trellis states, along with gain estimation loops. We can see that RSSE can achieve the same

performance as WSSJD using only one-half the number of trellis states (32 vs. 64).
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Figure 2.11: BER performance of WSSJD on 3H3T EPR4 channel (h(D) = 1 +D −
D2 −D3) under sinusoidally varying ITI with mean value ε0 = 0.1

2.5.2 3H3T System

In Fig. 2.11, we plot the BER performance of several detectors on the 3H3T channel.

We assume that each component channel is equalized to the EPR4 target. The WSSJD detector

therefore requires 512 trellis states. As the matrix decomposition described in Example 2 indicates,

the ITI estimation for the transformed 3H3T system requires only 2 gain loops, one for each

of the first and the third component channels. We observe in the figure that WSSJD with ITI

estimation outperforms the static ML algorithm by about 1dB when the BER is in the range

[10−5, 10−4]. The performance is further improved by averaging the two gain factors to get a

better estimate of ε. Finally, we see that an RSSE implementation of WSSJD with only 96 states

achieves performance comparable to that of the full 512-state WSSJD implementation.

2.6 Conclusion

We study MHMT detection as a potential candidate for next-generation magnetic record-

ing. We assume a simplified symmetric nHnT model in which only adjacent tracks interfere. The
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ITI is assumed to be linear and additive, and its amplitude is controlled by a scalar. In this chapter,

we consider how to estimate the ITI and how to efficiently use the new estimates to improve the

detector performance. By means of a channel transformation, we decompose the original nHnT

system into n separate subchannels, each of which has a channel gain factor that depends on the

ITI level. Based on this transformed system, we propose a novel detection method which we

call weighted sum-subtract joint detection (WSSJD). The new method achieves ML performance.

However, in contrast to the conventional MHMT ML detector trellis, the branch labels of the

WSSJD trellis do not depend on the ITI level. Instead, the value of ITI level is incorporated into

a weighting factor used to compute the path metrics. A simple gain loop structure is described,

permitting efficient adaptive estimation of the gain factors and their straightforward incorporation

into the WSSJD algorithm. Simulation results show that when ITI is time-varying, WSSJD

with adaptive ITI estimation outperforms the ML detection using static ITI estimates. Minimum

distance analysis is presented, providing a theoretical basis for the comparison of different MHMT

detectors. The WSSJD technique is also amenable to a reduced complexity implementation based

upon RSSE, which is the focus of Part II of this work.

2.7 Appendix

In this section we give the derivation of (2.44) and (2.45).

Single track error events

Assume eb(D) = 0. The distance components reduce to

dideal =
√

(1 + ε20)‖ea(D)h(D)‖2,

dmism = 2∆ε

〈
ea(D)h(D), xb(D)h(D)

〉
+ ε0 〈ea(D)h(D), xa(D)h(D)〉√

(1 + ε20)‖ea(D)h(D)‖2
.
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We bound dmism as follows:

〈
ea(D)h(D), xb(D)h(D)

〉
=
∑

n

(∑
m
xbn−mhm

)(∑
m
ean−mhm

)
≤
∣∣∣∑

n

(∑
m
xbn−mhm

)(∑
m
ean−mhm

)∣∣∣
≤
∑

n

∣∣∣∑
m
xbn−mhm

∣∣∣ · ∣∣∣∑
m
ean−mhm

∣∣∣
≤Mh

∑
n

∣∣∣∑
m
ean−mhm

∣∣∣
= 2Mh

∑
n

∣∣∣∣∑m

ean−m
2

hm

∣∣∣∣
≤ 2Mh

∑
n

(∑
m

ean−m
2

hm

)2

=
Mh

2
‖ea(D)h(D)‖2, (2.75)

where Mh =
∑

m |hm| = 2 for the channel h(D) = 1 +D. Using a similar derivation, we can

show

〈
ea(D)h(D), xb(D)h(D)

〉
≥ −Mh

2
‖ea(D)h(D)‖2. (2.76)

To find the bounds for 〈ea(D)h(D), xa(D)h(D)〉, note that

〈ea(D)h(D), xa(D)h(D)〉

=
∑

k
(eak−1 + eak)(x

a
k−1 + xak)

=

k2+1∑
k=k1

(eak−1x
a
k−1 + eak−1x

a
k + eakx

a
k−1 + eakx

a
k) (2.77)

≥
k2+1∑
k=k1

(
|eak−1| − |eak−1| − |eak|+ |eak|

)
(2.78)

= 0.

The inequality in (2.78) follows from the fact that xak always has the same sign as eak, so eakx
a
k =
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|eak|. Choosing xak to have the opposite sign to eak−1 leads to the lower bound eak−1x
a
k ≥ −|eak−1|.

The upper bound derived in (2.75) is also applicable to 〈ea(D)h(D), xa(D)h(D)〉.

Therefore,

0 ≤ 〈ea(D)h(D), xa(D)h(D)〉 ≤ ‖ea(D)h(D)‖2. (2.79)

Combining (2.75) and (2.79), and using ‖ea(D)h(D)‖2 ≥ 8 for the channel h(D) = 1 +D, we

can bound the single-track minimum distance in the two cases of ∆ε > 0 and ∆ε < 0 as follows:

ds = dideal + dmism

≥
(√

1 + ε20 −
2∆ε√
1 + ε20

)
‖ea(D)h(D)‖

≥ 2
√

2(1 + ε20 − 2∆ε)√
1 + ε20

, if ∆ε > 0,

and

ds = dideal + dmism

≥
(√

1 + ε20 +
2∆ε(1 + ε0)√

1 + ε20

)
‖ea(D)h(D)‖

≥ 2
√

2(1 + ε20 + 2(1 + ε0)∆ε)√
1 + ε20

, if ∆ε < 0.

Table 2.2(a) gives examples of error events that achieve these bounds.

Double track error events

In this case, both ea(D) and eb(D) are non-zero at some locations. To find an achievable

bound on dideal + dmism, we assume ∆ε� 1. Therefore the distance increment/decrement caused

by the mismatch will not be as significant as the distance in the ideal case. The minimum value of
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dideal given by (2.41) is 4(1− ε0), achieved by the error sequences of the form

ea = [0, · · · , 0, eak1 , · · · , eak2 , · · · , 0],

eb = [0, · · · , 0, ebk1 , · · · , ebk2 , · · · , 0],

with eak+1 = −eak for k1 ≤ k ≤ k2 − 1, and ebk = −eak for k1 ≤ k ≤ k2. The assumption on

∆ε suggests that we focus on these error events. We use d∗mism to denote the minimum distance

parameter attained by this subset of double track error events.

We can express 〈A(D), xb(D)h(D)〉 by

〈A(D), xb(D)h(D)〉

=

k2+1∑
k=k1

[eak + eak−1 + ε0(ebk + ebk−1)](xbk + xbk−1)

= (eak1 + ε0e
b
k1)(xbk1 + xbk1−1) + (eak2 + ε0e

b
k2)(xbk2+1 + xbk2)

= −|eak1 |+ ε0|ebk1 |+ (eak1 + ε0e
b
k1)xbk1−1

− |eak2 |+ ε0|ebk2 |+ (eak2 + ε0e
b
k2)xbk2+1. (2.80)

Upper and lower bounds for (2.80) can be found by carefully choosing values for xbk1−1 and

xbk2+1. If xbk1−1 and xbk2+1 have the same sign as eak1 and eak2 , respectively, (2.80) achieves the

maximum value 0. If xbk1−1 and xbk2+1 have the same sign as ebk1 and ebk2 , respectively, (2.80)

achieves the minimum value 8(ε0 − 1). Similarly, we have

8(ε0 − 1) ≤ 〈B(D), xa(D)h(D)〉 ≤ 0. (2.81)

We conclude that in the case of ∆ε > 0 and ∆ε < 0,

d∗d
def
= dideal + d∗mism ≥ 4(1− ε0) +

2∆ε

4(1− ε0)
· 16(ε0 − 1)

= 4(1− ε0 − 2∆ε), if ∆ε > 0,



47

and

d∗d
def
= dideal + d∗mism ≥ 4(1− ε0), if ∆ε < 0.

Notice that these bounds are derived for a subset of double track error events which

achieve min dideal, examples of which are given in Table 2.2(b).

We compared the values of d2
min = min{d2

s , d
2
d} obtained by exhaustive computer search

with min{(d∗s )2, (d∗d)2}, and they agreed at all points plotted in Fig. 2.5. This supports the

assumption that the simplification in our analysis of double track error events does not affect the

d2
min computation.
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Chapter 3

Reduced-State Sequence Estimation for

Multihead Multitrack Channel

To achieve large storage capacity on magnetic hard disk drives, very high track density is

required, causing severe intertrack interference (ITI). Multihead multitrack (MHMT) detection

has been proposed to better combat the effects of ITI. Such detection, however, has prohibitive

implementation complexity. Reduced-state sequence estimation (RSSE) is a promising technique

for significantly reducing the complexity, while retaining good performance. In this chapter,

several different MHMT models are considered, including symmetric and asymmetric 2H2T

systems, and a symmetric 3H3T system. By carefully evaluating the effective distance between

two input symbols, we propose optimized set partition trees for each channel model. Different

trellis configurations for RSSE are constructed based on the desired performance/complexity

tradeoff. Simulation results show that the reduced MHMT detector can achieve near maximum-

likelihood (ML) performance with a small fraction of the original number of trellis states. We

also use error event analysis to explain the behavior of RSSE. The proposed algorithm could

be potentially applied to next generation magnetic recording systems, especially when the ML

detector is infeasible due to the high computational complexity.

48
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3.1 Introduction

Intertrack interference (ITI), caused by aggressively shrinking the track pitch, is one of

the more severe impairments in next generation hard disk drives (HDDs) [56] [23]. The use of

an array reader to simultaneously read and process multiple tracks has recently drawn intensive

interest because of its capability to handle ITI as well as electronic noise [32] [58]. The associated

maximum likelihood (ML) detector complexity is, however, drastically increased.

Let xi = [x1
i , x

2
i , ..., x

n
i ]>, xji ∈ {−1,+1}, be a column vector of the input symbols

written on n adjacent tracks at time i. Let x(D) = [x1(D), x2(D), ..., xn(D)] denote the

collection of sequences recorded on n tracks, where D is the delay unit. Assume all the tracks are

equalized to the same channel polynomial h(D) = h0 + h1D+ · · ·+ hνD
ν . An n-head, n-track

(nHnT) system is generally modeled as

ri = Anyi + ωi, (3.1)

where ri = [r1
i , r

2
i , ..., r

n
i ]> is the vector of received signals from n heads, yi = [y1

i , y
2
i , ..., y

n
i ]>

is a vector of noiseless channel outputs, yji =
∑ν

k=0 hkx
j
i−k, and ωi = [ω1

i , ω
2
i , ..., ω

n
i ]>,

ωi ∼ N (0, σ2) is a vector of independent Gaussian electronic noise samples. We assume the

noise samples are uncorrelated across tracks, i.e. E[ωiω
>
i ] = σ2In, where In is the n×n identity

matrix. The ITI effect is characterized by an n× n matrix An. We will be primarily interested in

the situation when

An =



1 ε

ε 1
. . . 0

. . .
. . .

. . .

0 . . . 1 ε

ε 1


, (3.2)

where ε ∈ [0, 0.5] represents the ITI level. Such a system is symmetric, and the ITI only comes
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from the immediately adjacent tracks.

The ML detector decodes n tracks by simultaneously processing readback signals from

n heads [46] [6]. The resulting joint trellis is composed of 2nν states, each associated with 2n

incoming and outgoing edges. Constructing the trellis requires knowledge of ε, which is generally

time varying, and unknown to the receiver. This problem is resolved in Part I. More specifically, in

Part I we propose a novel ML-equivalent detection method - weighted sum subtract joint detector

(WSSJD) - along with a gain loop structure that can estimate the ITI as well as adapt itself to the

new estimates.

In Part II, we explore ways to reduce the complexity of MHMT detection, which is

another challenging problem that needs to be solved to make MHMT practical. Compared to

the traditional single-head single-track (SHST) detector with complexity O(2ν), the nHnT ML

detector has complexity O(2nν). For ν > 3, which is typical in practical recording channels,

direct implementation of the nHnT ML detector could become infeasible even for small n. On

the other hand, reduced-state sequence estimation (RSSE) [14], which was first proposed for

transmitting quadrature amplitude modulation (QAM) symbols through a partial response channel

with long memory, is a good candidate to mitigate the complexity issue of MHMT detector. The

RSSE trellis, originally constructed based on the Ungerboeck set partition tree, has fewer states.

We note that the M-Viterbi algorithm [5] offers similar performance and complexity to RSSE, but

it uses a larger trellis which complicates its analysis and hardware implementation.

Efforts have been made to develop similar algorithms for use in MHMT detection. In

particular, the authors of [29] presented a way to apply RSSE to MHMT system, but their

construction generally suffers from high performance loss.

We propose a different approach, which is based on our work in Part I. We find that the

channel transformation in WSSJD decomposes the system in (3.1) into n parallel sub-channels,

which naturally leads to a set partition rule on the MHMT input constellation. For the simplest

2H2T system, the channel after transformation becomes a QAM-type model, and the reduced-state

trellis can be constructed by redefining the distance measure on the transformed input constellation.

The resulting four-level set partition tree provides better flexibility in performance/complexity
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tradeoffs. Our simulation results show that, with fewer than half the number of the full ML

trellis states, RSSE can achieve near-ML performance on many channels. The concept of using

RSSE in 2H2T case was partially presented in [15] [16], and some of that discussion is briefly

restated in this paper for the sake of completeness and better understanding. Further details about

implementation issues and more thorough performance evaluations are also provided here.

We further show that the evaluation of RSSE performance is tractable through error

event analysis. In contrast to ML detection, some error events in RSSE merge early due to the

reduced-state trellis structure. We introduce an early-merging condition to identify these error

events, and a modified error state diagram is used to search for the dominant early-merged error

events. The search results for several reduced-state trellis configurations at different ITI levels

are presented. When the minimum distance parameter of the early-merged error events is larger

than that of the ML detector, the performance loss of the RSSE trellis is almost negligible. An

asymmetric 2H2T system is also considered because of its potential practical interest. The error

event analysis shows that the proposed set partitioning rule is also applicable in the asymmetric

case.

Finally, we investigate a more complex 3H3T model. The effective distance between

symbols shows different monotonicity behavior as the ITI level changes. Therefore, we propose

two types of set partition trees, one suitable for the low ITI environment, and the other better

suited for high ITI levels. Simulation results are provided for both cases, and they show that

RSSE can significantly reduce the computational complexity of 3H3T detection while retaining

acceptable performance.

3.2 Background

3.2.1 Review of RSSE

The traditional RSSE is designed for transmitting QAM symbols through an ISI channel

with channel memory ν. Recall that in the ML detector, the trellis state is represented as a length
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ν vector,

pn = [xn−1,xn−2, . . . ,xn−ν ], (3.3)

where each symbol xn−k is complex-valued, and selected from a two-dimensional signal set C

whose size is M . In RSSE, to reduce the number of trellis states, several ML states are grouped

into a subset state. To do this, for the kth element xn−k in pn, a set partition Ω(k) of C is defined,

and xn−k is represented by its subset index an−k(k) in Ω(k). Notice that Ω(k) can be different

for k = 1, · · · , ν. Let Jk = |Ω(k)| be the number of subsets in partition Ω(k), 1 ≤ Jk ≤ M .

Then the subset index an−k(k) can take its value from 0, 1, · · · , Jk−1. The corresponding subset

state of pn is denoted by

sn = [ an−1(1), an−2(2), . . . , an−ν(ν) ]. (3.4)

The trellis constructed from all possible sn is called the subset trellis. To obtain a well-defined

trellis structure, the partition Ω(k) is restricted to be a further partition of the subsets in Ω(k + 1),

for 1 ≤ k ≤ ν − 1. This condition guarantees that for a given state sn and current input xn, the

next subset state is uniquely determined and represented as

sn+1 = [ an(1), an−1(2), . . . , an−ν+1(ν) ], (3.5)

where an(1) is the subset index of xn in Ω(1), an−1(2) is the index of xn−1 in Ω(2), and so on.

The number of states in the subset trellis is
∏ν
k=1 Jk. The complexity of a RSSE trellis can be

controlled by specifying ν parameters, Jk for 1 ≤ k ≤ ν. We define the configuration of a subset

trellis to be a vector J = [J1, J2, . . . , Jν ]. A valid configuration satisfies J1 ≥ J2 ≥ · · · ≥ Jν .

To apply the Viterbi algorithm (VA) on a subset trellis, a decision feedback scheme is

introduced to calculate the branch metric, since the subset state sn does not uniquely specify the

most recent ν symbols. During the detection process, a modified path history is used to store the

surviving symbol x̂n−1 that leads to state sn. The actual surviving ML state p̂n is obtained by
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. . . . . .

pn = [xn−1, . . . ,xn−ν ]

p′n = [x′n−1, . . . ,x
′
n−ν ]

n n+ 1n− 1n− 2

(a) ML trellis

. . . . . .

sn = [an−1(1), . . . , an−ν(ν)]

n n+ 1n− 1n− 2

(b) Subset trellis

Figure 3.1: Comparison between the decoding paths on (a) ML trellis and (b) subset
trellis.

tracing back ν steps in the path history. Error propagation may occur in this process, but its effect

is negligible [14] [43].

The underlying idea of RSSE is to drop less likely paths early in the detection process.

Since each subset state contains multiple ML states, certain paths will merge earlier in the subset

trellis than in the ML trellis, as shown in Figs. 3.1. If at time n two paths ending at ML states

pn and p′n satisfy xn−k ∈ an−k(k) and x′n−k ∈ an−k(k) for all k = 1, . . . , ν, then they will

merge early at subset state sn in the subset trellis. If Jk = M for 1 ≤ k ≤ ν, RSSE becomes

MLSE. Otherwise it is suboptimal. To minimize the performance loss, proper set partitions Ω(k)

should be selected carefully to guarantee that enough distance differences have been accumulated

to reliably distinguish between merging paths. For the M -QAM system, it is suggested that

good performance can generally be obtained by maximizing the minimum intrasubset Euclidean

distance for each partition Ω(k), k = 1, · · · , ν [14]. The Ungerboeck set partition tree [48] is

shown to have this property and is adopted to make the selection of Ω(k). For more details about

the subset trellis construction for the M -QAM system, the reader is referred to [14].

The use of the Ungerboeck set partition tree is key to obtaining good performance of

the RSSE algorithm on the QAM system. However, such a set partition tree cannot be directly

applied to the 2H2T system because of the ITI. In the next subsection we will show that a simple

transformation can decompose the original 2H2T system into two independent channels, resulting
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in a QAM-like structure. Then, instead of using the Euclidean distance, we define a new distance

measure between the input symbols, based on which we construct a more suitable set partition

tree for the 2H2T system.

3.2.2 Weighted Sum Subtract Joint Detector (WSSJD)

WSSJD is proposed to resolve the problem of ITI estimation. It works on the transformed

model of (3.1), given by

Λ−1
n V >n ri = V >n yi + Λ−1

n V >n ωi, (3.6)

where Vn and Λn are the induced matrices from the eigen-decomposition of An, An = VnΛnV
>
n .

Since An is a symmetric tridiagonal Toeplitz matrix, it has the property that, Vn is a constant

matrix, and Λn is a diagonal matrix whose diagonal elements, λj , j = 1, ..., n, are functions of ε.

For example, the 2H2T system has A2 = V2Λ2V
>

2 , where

Λ2 =

 1 + ε 0

0 1− ε

 , V2 =


√

2
2

√
2

2
√

2
2 −

√
2

2

 . (3.7)

Let zi = V >n xi, r̄i = Λ−1
n V >n ri and ω̄i = Λ−1

n V >n ωi be the input, received sample

and noise of the transformed system given by (3.6). Then the system consists of n parallel

sub-channels, each of which has the input-output relationship

r̄ji =
ν∑
k=0

hkz
j
i−k + ω̄ji , j = 1, ..., n. (3.8)

In the joint trellis constructed for (3.6), a state (zi−ν , ...,zi−1) associated with the input zi will

have output ȳji =
ν∑
k=0

hkz
j
i−k. Notice that the trellis labels are independent of ε. Moreover, the

noise samples, ω̄ji , are independent and have different powers, E[ω̄iω̄
>
i ] = σ2(Λ−1

n )2.

The use of WSSJD is summarized as follows:

1. Calculate r̄i by r̄i = Λ−1
n V >n ri.
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2. To retain the ML property, the branch metrics are weighted when applying the Viterbi

algorithm (VA),

m(si−1, si) =

n∑
j=1

λ2
j (r̄

j
i − ȳ

j
i )

2. (3.9)

WSSJD can work with a gain loop structure which adaptively estimates ε. The new

estimate is then fed back to WSSJD to update the weights in calculating the branch metric. The

discussion of ITI estimation is beyond the scope of this paper; therefore, we assume that ε is

known. For more details on WSSJD, the reader is referred to Part I.

Throughout this paper, the complexity reduction techniques are developed based on

WSSJD. This is motivated by the fact that WSSJD has ML-equivalent performance. Moreover,

the coordinate transformations in WSSJD lead to a better measure of the distance between input

symbols, which plays an important role in designing the set partition tree. Further, as we will see,

the structure of parallel channels can provide additional complexity reduction in selecting survivor

paths. We emphasize, however, that the RSSE techniques described here are also applicable to

the standard MHMT ML detector trellis. Henceforth, with a slight abuse of terminology, when

we say the “ML trellis”, we refer to the WSSJD trellis.

3.3 Set Partition Tree for 2H2T System

We first consider the symmetric 2H2T system

 r1
i

r2
i

 =

 1 ε

ε 1


 y1

i

y2
i

+

 ω1
i

ω2
i

 . (3.10)

which is also studied in [46] [6]. After the WSSJD transformation, two parallel sub-channels are

formed, given by

r̄1
i =

ν∑
k=0

hkz
1
i−k + ω̄1

i , r̄2
i =

ν∑
k=0

hkz
2
i−k + ω̄2

i (3.11)
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where z1
i

z2
i

 =

1 1

1 −1


x1

i

x2
i

 (3.12)

r̄1
i

r̄2
i

 =

 1
1+ε 0

0 1
1−ε


1 1

1 −1


r1

i

r2
i

 (3.13)

ω̄1
i

ω̄2
i

 =

 1
1+ε 0

0 1
1−ε


1 1

1 −1


ω1

i

ω2
i

 . (3.14)

are the new input symbol, received symbol, and noise component of the transformed system

(3.11), respectively. The noise samples satisfy ω̄1
i ∼ N (0, 2σ2

(1+ε)2
), ω̄2

i ∼ N (0, 2σ2

(1−ε)2 ).

In this new system, z1(D) and z2(D) are transmitted separately through h(D). If we

treat z1
i and z2

i as the real and imaginary components of a complex symbol, the resulting system

is QAM-like, where the only difference is that the two subchannels have different signal-to-noise

ratios (SNRs). Considering this dimensional asymmetry, we define the effective symbol pair

distance (ESPD) between two input symbols zi and z̃i as

d2
e(zi, z̃i) =

(1 + ε)2

2
(z1
i − z̃1

i )2 +
(1− ε)2

2
(z2
i − z̃2

i )2. (3.15)

The ESPDs between different pairs of inputs are listed in Table 3.1, and plotted in 3.3.

Notice that the ESPDs, ∆2
1, ∆2

2, and ∆2
3, show different monotonicity behavior when ε changes.

For ε ∈ [0, 0.5], ∆2
1 and ∆2

3 are increasing functions, while ∆2
2 decreases. The changes in ESPDs

affect the performance of a reduced-state trellis. Therefore, even with the same subset trellis

configuration, the RSSE performs differently at various ITI levels.

Based on Table 3.1, we propose a set partition tree shown in Fig. 3.2. The horizontal

and vertical axes in the constellation correspond to z1
i and z2

i dimension, respectively. This tree

contains 4 levels, {L1, L2, L3, L4}, each of which is a set partition of the constellation. The

minimum ESPD on each level is specified on the right side. The number labeled on each branch

is the index of the subset in the corresponding set partition. Compared to the Ungerboeck set
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Figure 3.2: The set partition tree constructed for 2H2T system.
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Figure 3.3: ESPDs as functions of ε
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Table 3.1: The ESPDs between different input symbols.

(zi, z̃i) de(zi, z̃i)

( [+2, 0], [−2, 0] ) ∆2
1 = 8(1 + ε)2

( [0,+2], [0,−2] ) ∆2
2 = 8(1− ε)2

( [+2, 0], [0,+2] )
( [+2, 0], [0,−2] ) ∆2

3 = 4(1 + ε2)
( [−2, 0], [0,+2] )
( [−2, 0], [0,−2] )

[3, 1]

[3, 0]

[2, 1]

[2, 0]

[1, 1]

[1, 0]

[0, 1]

[0, 0]

snan(1)

{0, 1, 2, 3}

{0, 1, 2, 3}

{0, 1, 2, 3}

{0, 1, 2, 3}

{0, 1, 2, 3}

{0, 1, 2, 3}

{0, 1, 2, 3}

{0, 1, 2, 3} [3, 1]

[3, 0]

[2, 1]

[2, 0]

[1, 1]

[1, 0]

[0, 1]

[0, 0]

sn+1

Figure 3.4: Subset trellis with configuration [4,2] on memory-2 channel.

partition tree, the additional levelL3 comes from the asymmetric distance measure in the z1 and z2

dimensions, and it provides better flexibility in performance/complexity tradeoff. We emphasize

that, although the proposed set partition tree is motivated by the WSSJD transformation, it can be

implemented with the standard ML detectors.

The subset trellis is constructed by choosing Ω(k) from the levels of the set partition tree

for each k = 1, · · · , ν, and to guarantee a well-defined trellis structure, Ω(k) should always be

at the same level or at a higher level than Ω(k − 1). During the detection process, only one ML

state can survive inside each subset state at each time slot. Consider the example given in Fig.

3.5. The subset trellis is constructed for PR2 channel 1 + 2D +D2, has configuration [4, 2]. The

left columns list the subset states si and their associated survivor ML states pi. The label on each

branch is the channel input|output. All of the branches terminate at subset state si+1 = [0, 0].
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,
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[(−2
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[0, 0]

[0, 1]

[3, 0]

[3, 1]

si pi
( +2

0 ) | ( 0
0 )

( +2
0 ) | ( 4

4 )

( +2
0 ) | ( 4

0 )

( +2
0 ) | ( 0

4 )

[0, 0]

si+1

Figure 3.5: An illustration of detection on subset trellis.

si+1 = [0]si = [0]

p̂i = [
(

+2
0

)
]

(
+2
0

)
|
(

+4
0

)
(−2

0

)
|
(

0
0

)
(a) parallel branches from subset state 0 to 0

si+1 = [1]si = [0]

p̂i = [
(

+2
0

)
]

(
0

+2

)
|
(

+2
+2

)
(

0
−2

)
|
(

+2
−2

)
(b) parallel branches from subset state 0 to 1

Figure 3.6: Sample parallel branches for subset trellis with 2 states constructed for
channel 1 +D.

Assume ε = 0.1. Once the survivor state pi is decided, the output labels are also determined. A

look-up table can be stored to facilitate the process of finding the corresponding output labels

given the survivor ML states. Assume the transformed received signals are r̄ = (r̄1, r̄2) = (5, 3).

The metric comparison shows that the subset state [0, 1] with survivor ML state
[(

+2
0

)
,
(

0
+2

)]
gives the smallest path metric, so the survivor ML state of sn+1 = [0, 0] is updated to be[(

+2
0

)
,
(

+2
0

)]
, which will be used in the next time slot.

For a configuration with J1 < 4, the subset trellis contains parallel branches. A pre-

selection between the parallel branches is required during detection. Due to the symmetric

property of WSSJD trellis labels, this pre-selection can be done without explicitly calculating the
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branch metric, for J1 = 2 or 3. For instance, consider the two scenarios illustrated in Fig. 3.6. In

both cases, the survivor ML state at the starting stage is assumed to be p̂i = [(+2, 0)]. The input

and output labels are marked on the branches. In Fig. 3.6(a), both the input symbols (+2, 0) and

(−2, 0) lead the paths to subset state 0. Notice that the input symbols (+2, 0) and (−2, 0) have

the same value in the z2 dimension, producing the same output on the subtract channel. Instead

of calculating metrics from (3.9), the pre-selection performs a thresholding on the sum channel

output and makes the decision. In this example, the threshold is +2, obtained by averaging +4

and 0. If r̄1
i > +2, the strategy is to pick (+2, 0) as the survivor symbol, while for the case

r̄1
i < +2, (−2, 0) should be the survivor. Similarly for another case shown in Fig. 3.6(b), the

thresholding is conducted on the subtract channel output, since the two input symbols produce

the same output in the sum channel. By comparing r̄2
i with the threshold 0, the detector picks

(0,+2) if r̄1
i > 0, or (0,−2) if r̄2

i < 0. This symmetry property renders the WSSJD formulation

preferable over the traditional ML detector.

3.4 Performance of RSSE on 2H2T System

We examine the RSSE performance on various subset trellises constructed from the

proposed set partition tree. Several types of channels at different ITI levels are considered. The

SNR is defined as

SNR(dB) = 10 log
‖h(D)‖2

2σ2
(3.16)

where ‖h(D)‖2 =
∑

i h
2
i .

3.4.1 Dicode Channel

This simple example helps us understand how the pre-selection between parallel branches

affects the system. Although early-merging happens at every time step, it does not seriously

degrade the performance. From Fig. 3.7 we see that the performance loss of the 3-state subset

trellis is less than 0.1dB. Moreover, the 3-state RSSE has better performance at the higher ITI
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(b) ε = 0.3

Figure 3.7: Performance comparison between RSSE and ML detector on dicode channel
at different ITI levels. The legend shows the RSSE subset trellis configuration and the
corresponding number of trellis states.
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Figure 3.8: Performance comparison between RSSE and ML detector on PR2 channel
at different ITI levels. The legend shows the RSSE subset trellis configuration and the
corresponding number of trellis states.
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Figure 3.9: Performance comparison between RSSE and ML detector on EPR4 channel
at different ITI levels. The legend shows the RSSE subset trellis configuration and the
corresponding number of trellis states.

level (ε = 0.3), while the 2-state RSSE performs better at the lower ITI level (ε = 0.1). In Section

3.5.1, we explain this observation by analyzing the length-1 error events.

3.4.2 Channel with Higher Memory

Higher channel memory provides more flexibility in constructing the subset trellis. PR2

and EPR4 are two commonly used PR targets to approximate magnetic recording channels. For

the PR2 channel, h(D) = 1 + 2D +D2, the bit error rate (BER) performance as a function of

SNR at different ITI levels is plotted in Fig. 3.8. The comparison between Fig. 3.8(a) and Fig.

3.8(b) shows that even using the same subset trellis, RSSE performs differently at different ITI

levels, and its performance correlates with the minimum intrasubset ESPDs of the set partitions

configured in the subset trellis. At a low ITI level (ε = 0.1), the performance of RSSE on the

[4, 2] subset trellis coincides with that of the ML detector. The performance of trellis [4, 3] is

not plotted, but can be predicted to be close to the ML curve. The other two trellises, [4, 1]

and [3, 3], lose approximately 1.25dB. When the ITI level becomes higher (ε = 0.3), the subset

trellis [4, 2] cannot provide reliable early path merging because the minimum intrasubset ESPD

∆2
2 in Ω(3) = L2 is substantially reduced. However, [4, 3] can achieve near-ML performance.
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Table 3.2: The SNR loss of different subset trellis configurations to achieve BER=
10−4.

(a) PR2 channel

Trellises
ε

0.1 0.2 0.3 0.4

RSSE [4, 1] 1.25dB 1.3dB 1.35dB 1.2dB
RSSE [4, 2] � 0.1dB 0.15dB 0.6dB 1.1dB
RSSE [3, 3] 1.4dB 0.9dB 0.6dB 0.2dB
RSSE [4, 3] � 0.1dB

(b) EPR4 channel

Trellises
ε

0.1 0.2 0.3 0.4

RSSE [4, 3, 3] 0.1dB 0.1dB 0.05dB � 0.1dB
RSSE [4, 4, 2] � 0.1dB 0.15dB 0.7dB > 1dB
RSSE [4, 3, 2] 0.1dB 0.25dB 0.7dB > 1dB
RSSE [4, 2, 2] 0.3dB > 1dB
RSSE [3, 3, 3] > 1dB 0.7dB 0.4dB 0.05dB
RSSE [4, 3, 1] > 1dB

The trellis [4, 1] still has a 1.35dB loss, while the increase of ∆2
1 brings [3, 3] closer to the ML

performance.

The simulation results for the EPR4 channel h(D) = 1 +D −D2 −D3 are shown in

Figs. 3.9. The comparison between Figs. 3.9(a) and Figs. 3.9(b) shows that even using the

same subset trellis, RSSE performs differently under different ITI levels, and its performance

correlates with the minimum intrasubset ESPDs of the set partitions configured in the subset

trellis. At a low ITI level (ε = 0.1), the performance of RSSE on subset trellis [4, 4, 2] coincides

with that of the ML detector. The BER curves of [4, 3, 3] and [4, 3, 2] overlap, and are both within

0.1dB away from the ML curve. Subset trellis [4, 2, 2] further reduces the number of states to

16, but incurs a 0.3dB loss. When the ITI level becomes higher (ε = 0.3), the subset trellis

[4, 4, 2] cannot provide reliable early path merging because the minimum intrasubset ESPD ∆2
2 in

Ω(3) = L2 is substantially reduced. However, a less aggressive construction using configuration

[4, 4, 3] achieves near-ML performance. The decrease in ∆2
2 at this ITI level also degrades the

performance of RSSE[4, 2, 2] and [4, 3, 2]. Their BER curves overlap in Figs. 3.9(b). In contrast,

the increase of ∆2
1 brings [4, 3, 3] closer to the ML performance, compared to the case ε = 0.1.
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Tables 3.2 summarize the performance loss in dB for several subset trellis configurations

compared to an ML detector at BER= 10−4 on the PR2 and EPR4 channels, respectively.

Several conclusions can be drawn from these tables. First, a trellis with fewer states does not

necessarily have worse performance than one with more states. For example, in Table 3.2(b)

for the EPR4 channel, when ε = 0.1, the [4, 4, 2] configuration with 32 states outperforms

the[4, 3, 3] configuration with 36 states. Second, the performance of a configuration may change

drastically at different ITI levels. One example is the [4, 4, 2] trellis, which essentially achieves

ML performance at ε = 0.1, but loses over 1dB for ε = 0.4. Finally, not all configurations suffer

further performance losses at higher ITI. It is interesting to observe that the RSSE[3, 3, 3] tellis

with parallel branches can have near-optimal performance at ε = 0.4. Therefore, the pre-selection

between parallel branches at every stage is quite reliable. In Section 3.5 we give an explanation

of these observations from the point of view of error event analysis.

3.4.3 Minimum phase channels

Minimum phase channels can better model the real channel on a disk drive. As-

sume the transition response of a perpendicular magnetic recording (PMR) disk is s(t) =

Vmax tanh( 2t
0.579πδ ), where Vmax is the writing voltage and δ indicates the linear density on one

data track. Using the whitened matched filter structure in [19], we derive two minimum phase

channel polynomials: channel 1, h(D) = 1 + 1.6D + 1.1D2 + 0.4D3 for δ = 1.3, and channel

2, h(D) = 1 + 1.9D + 1.6D2 + 0.8D3 + 0.3D4 for δ = 1.5. These are two commonly used

densities in current commercial HDDs. Since the minimum phase condition implies that most of

the channel energy is distributed over the most recent samples, the early merge in RSSE can be

more reliable for these channels compared to linear phase channels, such as PR2 and EPR4. It is

interesting to compare channel 1 and EPR4, both of which have memory ν = 3. As shown in Fig.

3.10(a), ML, RSSE[4, 3, 2], and RSSE[4, 2, 2] have essentially identical performance. Therefore,

RSSE can achieve near-ML performance with only 16 states, if the [4, 2, 2] trellis is used, whereas

the ML detector requires 64 states. The performance of other, more aggressive configurations

is also plotted. As can be seen, RSSE with only 8 states can achieve performance that is within
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0.3dB of ML detection.

The simulation results for channel 2 are plotted in Fig. 3.10(b). They show that

RSSE[4, 2, 2, 2] with 32 states can achieve near-ML performance. In constrast, the ML trel-

lis requires 256 states. If 0.1dB loss is permissible, the RSSE [4, 2, 2, 1] trellis can be used,

reducing the number of states to only 16.

In summary, the simulation results on linear phase channels and minimum phase channels

show that RSSE can achieve near optimal performance with significantly reduced number of

states. It could potentially substitute the ML detector when the channel interference becomes

much more severe.

3.5 Error Event Analysis

We will use error event analysis to study the performance-complexity tradeoff among

different subset trellis configurations.

The detector makes errors if the survivor path diverges from the correct one. Let

e(D) = [e1(D), e2(D)] = [x1(D)− x̂1(D), x2(D)− x̂2(D)] (3.17)

denote an error event of the original 2H2T system, and let

¯vcte(D) = [ē1(D), ē2(D)] = [z1(D)− ẑ1(D), z2(D)− ẑ2(D)] (3.18)

be the transformed error event of the WSSJD system. We also use ei = [e1
i , e

2
i ]
> and ēi =

[ē1
i , ē

2
i ]
> to represent the original and transformed error symbols at time i, respectively. It is easy

to see that  ē1
i

ē2
i

 =

 1 1

1 −1


 e1

i

e2
i

 . (3.19)

It is well-known [19] that at high SNR, the error event probability of a trellis-based
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RSSE[4,3,2,1] (24 st)
RSSE[4,2,2,1] (16 st)
RSSE[4,3,1,1] (12 st)

(b) δ = 1.5

Figure 3.10: Performance comparison between RSSE and ML detector on minimum
phase channels at ε = 0.1. The polynomials are (a) h(D) = 1+1.6D+1.1D2 +0.4D3,
(b) h(D) = 1 + 1.9D + 1.6D2 + 0.8D3 + 0.3D4.
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detector can be approximated by Pe ≈ c · Q(dmin
2σ ), where Q(·) is the area under the tail of the

standard Gaussian distribution,

d2
min = min

e(D)
d2(e(D)) (3.20)

is the minimum distance parameter, and c is a coefficient indicating the average number of

error events at distance d2
min. Due to the exponential nature of the Q function, the performance

comparison between two detectors can be easily conducted by considering their minimum distance

parameter. The error events that lead to d2
min are the dominant error events.

For the WSSJD detector, an effective measure of the distance associated with ē(D) is

defined by

d2
W(ē(D)) =

(1 + ε)2

2
‖ē1(D)h(D)‖2 +

(1− ε)2

2
‖ē2(D)h(D)‖2. (3.21)

Comparing (3.15) to (3.21), we can see that ESPD is proportional to the distance associated with

a single error symbol ēi. Recall that the set partition tree is constructed based on ESPDs, and

∆2
1,∆

2
2, ∆2

3 are varying with respect to ε. Therefore, the minimum distance parameter of the

reduced-state trellis configuration also changes with ε, and its trend can be roughly predicted

by analyzing the change of minimum ESPD in each Ω(k). We will give more detailed insights

into this behavior in the following subsections. The minimum value of d2
W(ē(D)) is abbreviated

to d2
min, which is the minimum distance parameter of the 2H2T ML detector. It serves as a

benchmark for evaluating the performance of the RSSE algorithm.

3.5.1 Parallel Branches

For the subset trellis with parallel branches, early merge happens at every time instant.

Ignoring the error propagation effect, we assume that at time i, both the correct and the estimated

sequences are at state si, and zi−k = ẑi−k for all k = 1, ..., ν. At time i+1, if zi, ẑi ∈ ai(1), the

detector needs to decide a survivor symbol, and discard the other one. Once the correct symbol

is discarded, this wrong decision can not be reversed in the remaining steps. The probability
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of making a wrong decision in the parallel branch selection is Q(h0de(zi,ẑi)
2σ ), where d(zi, ẑi) is

the square-root of ESPD. Let E1 be the set of all such length-1 error events due to the parallel

branches. Then, ēi ∈ E1 if and only if there exist two inputs zi, ẑi ∈ ai(1) such that ēi = zi− ẑi.

It can be shown that

d2
min(E1) = min

ēi∈E1

(1 + ε)2

2
(h0ē

1
i )

2 +
(1− ε)2

2
(h0ē

2
i )

2

=

 8h2
0(1 + ε)2 = h2

0∆2
1 J1 = 3

8h2
0(1− ε)2 = h2

0∆2
2 J1 = 2.

(3.22)

The existence of parallel branches will not significantly degrade the performance if it

can achieve the same minimum distance as ML detection, i.e., d2
min(E1) ≥ d2

min. For the dicode

channel,

d2
min =

 8(1 + ε2) if 0 ≤ ε ≤ 2−
√

3

16(1− ε)2 if 2−
√

3 ≤ ε ≤ 1/2.
(3.23)

Therefore, for the 3-state subset trellis, d2
min(E1) ≥ d2

min for all ε, leading to performance close to

the ML detector, as shown in Fig. 3.7. Moreover, as ε increases, d2
min(E1) becomes much larger

than dmin, making the effect of these length-1 error events negligible. So we observe that the

BER curve of the 3-state RSSE trellis almost overlaps with that of the ML detector at ε = 0.3.

In contrast to the 3-state trellis, in the 2-state trellis d2
min(E1) < d2

min for all ε, resulting in worse

performance.

As for the PR2 and EPR4 channels, their d2
min is given by

d2
min =

 16(1 + ε2) if 0 ≤ ε ≤ 2−
√

3

32(1− ε)2 if 2−
√

3 ≤ ε ≤ 1/2.
(3.24)

Consider a subset trellis with J1 = 3. For ε > 1
3 , d2

min(E1) is strictly larger than d2
min. Therefore

the error events in E1 are not the dominant ones. As shown in Tables 3.2(a) and 3.2(b), at ε = 0.4,

the RSSE [3, 3] and RSSE [3, 3, 3] configurations perform very close to their corresponding ML
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Table 3.3: Error symbols by index.

index [ ē1
i , ē

2
i ] [ e1

i , e
2
i ]

0 [ 0, 0 ] [ 0, 0 ]
1 [ 4, 0 ] [ 2, 2 ]
2 [−4, 0 ] [−2,−2 ]
3 [ 0, 4 ] [ 2,−2 ]
4 [ 0,−4 ] [−2, 2 ]
5 [ 2, 2 ] [ 2, 0 ]
6 [−2,−2 ] [−2, 0 ]
7 [ 2,−2 ] [ 0, 2 ]
8 [−2, 2 ] [ 0,−2 ]

detectors, respectively.

3.5.2 Early Merging Condition

We next try to identify longer RSSE error events. Suppose the decoding paths of

[z1(D), z2(D)] and [ẑ1(D), ẑ2(D)] are merged at times i1 and i2 and unmerged in between. Let

E denote the set of all error events ending at time i2, where the starting position i1 is arbitrary.

According to [14], an error event ē(D) ∈ E if and only if the following hold.

1. ēi1 is non-zero.

2. The last ν elements, [ēi2−ν , · · · , ēi2−1], should satisfy the merging condition, i.e., ēi2−k =

zi2−k − ẑi2−k where zi2−k and ẑi2−k belong to the same subset in the partition Ω(k) for

all k = 1, ..., ν.

3. No earlier ν elements satisfy the merging condition.

In MLSE, the merging condition requires ēi2−k = 0 for k = 1, ..., ν. However, this is

not the case in RSSE. We call the error events ē(D) ∈ E whose last ν elements are not all zero

the early merged error events, denoted by Er. Clearly E1 ⊆ Er.

We now present a necessary and sufficient condition for an error event ē(D) to belong to

Er. We refer to this as the early merging condition. We first introduce some terminology.

For a partition Ω of the input constellation, the set of intrasubset errors, denoted by

Ea(Ω), is a collection of error symbols such that if there exist two input symbols z, ẑ satisfying
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the condition that ē = z − ẑ and z, ẑ belong to the same subset in Ω, then ē ∈ Ea(Ω). Similarly,

the set of intersubset errors, denoted by Eb(Ω), is a collection of error symbols such that if there

exist two inputs z, ẑ satisfying the condition that ē = z − ẑ and z, ẑ belong to two different

subsets in Ω, then ē ∈ Eb(Ω).

The following proposition gives the relationship between the intrasubset errors and

intersubset errors for the set partition tree in Fig. 3.2. For convenience, the error symbols are

indexed by the digits shown in Table 3.3.

Proposition1. For the proposed set partition tree in Fig. 3.2, Ea(Li) ∩ Eb(Li) = ∅ for i =

1, 2, 3, 4.

Proof. We prove the claim by enumeration.

1. If Ω = L1, all error symbols are intrasubset errors since there is only one subset.

2. If Ω = L2, Ea(L2) = {0, 1, 2, 3, 4}, Eb(L2) = {5, 6, 7, 8}.

3. If Ω = L3, Ea(L3) = {0, 1, 2}, Eb(L3) = {3, 4, 5, 6, 7, 8}.

4. If Ω = L4, all non-zero error symbols are intersubset errors, so Ea(L4) = {0}.

Proposition2. (Early merging condition)

An error event ē(D) ∈ Er if and only if the last ν elements are not all zero symbols, and satisfy

ēi2−k ∈ Ea(Ω(k)) for all k = 1, ..., ν, and no previous ν-tuple satisfies the condition.

Proof. Given ē(D) ∈ Er, it is straightforward from the definition of “merging condition” that

the last ν elements must be intrasubset error symbols in the corresponding patition Ω(k). On

the other hand, if ēi2−k ∈ Ea(Ω(k)) for all k = 1, ..., ν, by Proposition 1, the sequences that

produce ē(D) must satisfy that zi2−k and ẑi2−k belong to the same subset in Ω(k). Therefore

the decoding paths are merged at i2, and z̄(D) ∈ Er.

Remark1. Notice that Proposition 1 is also true for the QAM Ungerboeck set partition tree. So

Proposition 2 also applies to the original RSSE formulation.
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Remark2. The single track error events are not affected by the RSSE algorithm if Ji > 1 for all

i = 1, ..., ν.

Assume ē(D) ∈ Er and starts from k1. The distance parameter of ē(D) is given by

d2
r (ē(D)) =

(1 + ε)2

2

i2∑
i=i1

(
ν∑
k=0

hkē
1
i−k)

2

+
(1− ε)2

2

i2∑
i=i1

(

ν∑
k=0

hkē
2
i−k)

2. (3.25)

The distance parameter measured by (3.25) is always smaller than or equal to that measured by

(3.21) [14]. The possible reduction represents the price paid for using the reduced-state trellis.

An example is given to illustrate the difference.

Example3. Consider the PR2 channel. Assume that ε = 0.1. Assume a single error ēi = [4, 0]>

happens at time i. In ML detection, the paths remerge at time i+ 2, and the distance parameter

contributed by ēi is (1+0.1)2

2 · (42 + 82 + 42) = 58.08. However, if RSSE[4, 3] is used, the paths

will be early merged at time i+ 1, since ēi ∈ Ea(Ω(2)). Therefore the distance parameter of this

error event is reduced to (1+0.1)2

2 · (42 + 82) = 48.4 in RSSE[4, 3].

Let

d2
min(Er) = min

ē(D)∈Er
d2

r (ē(D)). (3.26)

The early merged error events ē∗(D) that achieve (3.26) are referred to as the dominant RSSE

error events. To obtain good performance, it is essential that d2
min(Er) ≥ d2

min.

3.5.3 Error state diagram

An error state diagram can be employed to search for the minimum distance and enumer-

ate the dominant error events. Consider a labeled directed graph G = [V,E]. The vertex set V is

the collection of all possible error states [ēi−1, · · · , ēi−ν ], so |V | = 9ν . A state that satisfies the
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Table 3.4: The dominant RSSE error events for channel [1, 1.6, 1.1, 0.4].

ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4
d2

min = 9.1304 d2
min = 9.4016 d2

min = 8.8592 d2
min = 6.5088

RSSE[3, 3, 3] (27 st) [1]/9.6800 [5 2 1 2]/10.7168 [5 2 1 2]/10.0028 [5 2 1 2]/9.5472

RSSE[3, 3, 2] (18 st) [1]/9.6800 [5 2 1 2]/10.7168 [3 4 0 0]/8.2320 [3 4 0 0]/6.0480

RSSE[4, 3, 2] (24 st) [3 4 0 0]/13.6080 [3 4 0 0]/10.7520 [3 4 0 0]/8.2320 [3 4 0 0]/6.0480

RSSE[4, 2, 2] (16 st) [3 4 0]/10.4328 [3 4 0]/8.2432 [3 4 0]/6.3112 [3 4 0]/4.6368

RSSE[3, 2, 2] (12 st) [1]/9.6800 [3 4 0]/8.2432 [3 4 0]/6.3112 [3 4 0]/4.6368

RSSE[4, 2, 1] (8 st) [3 4 0]/8.2432 [3 4 0]/6.3112 [3 4 0]/4.6368
[5 6 0 0]/8.4840 [5 6 0 0]/8.7360

Table 3.5: The dominant RSSE error events for PR2 channel.

ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4
d2

min = 16.16 d2
min = 16.64 d2

min = 15.68 d2
min = 11.52

RSSE[4, 3] (12 st) [5 (2 1)∞ 0]/24.24 [5 (2 1)∞ 0]/24.96 [5 (2 1)∞ 0]/26.16 [5 (2 1)∞ 0]/27.84
[5 (2 1)∞ 2 0]/24.24 [5 (2 1)∞ 2 0]/24.96 [5 (2 1)∞ 2 0]/26.16 [5 (2 1)∞ 2 0]/27.84

RSSE[4, 2] (8 st) [(3 4)∞ 0]/19.44 [(3 4)∞ 0]/15.36 [(3 4)∞ 0]/11.76 [(3 4)∞ 0]/8.64
[(3 4)∞ 3 0]/19.44 [(3 4)∞ 3 0]/15.36 [(3 4)∞ 3 0]/11.76 [(3 4)∞ 3 0]/8.64

RSSE[3, 3] (9 st) [1]/9.68 [1]/11.52 [1]/13.52
[5 2 1]/14.56 [5 2 1]/13.44 [5 2 1]/12.64 [5 2 1]/12.16
[(5 6)∞ 0 2]/16.16 [(5 6)∞ 0 2]/16.64
[(5 6)∞ 5 0 1]/16.16 [(5 6)∞ 5 0 1]/16.64
[(5 6)∞ 2 1]/16.16 [(5 6)∞ 2 1]/16.64
[(5 6)∞ 5 1 2]/16.16 [(5 6)∞ 5 1 2]/16.64

Table 3.6: The dominant RSSE error events for EPR4 channel.

ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4
d2

min = 16.16 d2
min = 16.64 d2

min = 15.68 d2
min = 11.52

RSSE[4, 3, 3] (36 st) [(5 0)∞ 1 0]/16.16 [(5 0)∞ 1 0]/16.64 [(5 0)∞ 1 0]/17.44 [(5 0)∞ 1 0]/18.56

RSSE[4, 3, 2] (24 st) [(3 0)∞ 0]/15.36 [(3 0)∞ 0]/11.76 [(3 0)∞ 0]/8.64
[(3 4)∞ 3 0 0]/15.36 [(3 4)∞ 3 0 0]/11.76 [(3 4)∞ 3 0 0]/8.64
[3 4 (3 4)∞ 0 0]/15.36 [3 4 (3 4)∞ 0 0]/11.76 [3 4 (3 4)∞ 0 0]/8.64

[(5 0)∞ 1 0]/16.16 [(5 0)∞ 1 0]/16.64

RSSE[3, 3, 3] (27 st) [1]/9.68 [1]/11.52 [1]/13.52
[5 6 1 2 1]/14.56 [5 6 1 2 1]/13.44 [5 6 1 2 1]/12.64 [5 6 1 2 1]/12.16
[5 2 1 2]/16.16 [5 2 1 2]/16.64
[(5 0)∞ 0 1]/16.16 [(5 0)∞ 0 1]/16.64
[(5 0)∞ 1 0]/16.16 [(5 0)∞ 1 0]/16.64
[(5 0)∞ 1 2]/16.16 [(5 0)∞ 1 2]/16.64
[5 6 (5 6)∞ 0 0 2]/16.16 [5 6 (5 6)∞ 0 0 2]/16.64
[5 (6 5)∞ 0 0 1]/16.16 [5 (6 5)∞ 0 0 1]/16.64
[5 6 (5 6)∞ 1 2 1]/16.16 [5 6 (5 6)∞ 1 2 1]/16.64
[5 (6 5)∞ 2 1 2]/16.16 [5 (6 5)∞ 2 1 2]/16.64
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merging condition is called a merging state. For ML detection, the all-zero state is the only merg-

ing state, while for RSSE, additional early merging states are those which satisfy the early merging

condition. If T denotes the set of merging states, then |T | = ∏ν
k=1 |Ea(Ω(k))|, which depends

on the trellis configuration. An edge (u, v) ∈ E starts from initial state u = [ēi−1, · · · , ēi−ν ] and

ends in terminal state v = [ēi, · · · , ēi−ν+1], with input/output label ēi/Lout. Here

Lout =
(1 + ε)2

2
(

ν∑
k=0

hkē
1
i−k)

2 +
(1− ε)2

2
(

ν∑
k=0

hkē
2
i−k)

2. (3.27)

Notice that all the merging states except the all-zero state are sink nodes, which have no outgoing

edges. A path starting from the all-zero state and terminating at the merging state defines a closed

error event, and the sum of the output labels of all edges in the path gives the distance parameter

of this error event. A closed error event that ends at a non-zero merging state is an early merged

error event. As proposed in [1], a depth-first algorithm can be used to find all the error events that

lead to a distance parameter smaller than a given threshold.

We are interested in the dominant RSSE error events, i.e., the error events that end at non-

zero merging states and produce the distance d2
min(Er). Table 3.4 summarizes the dominant RSSE

error events and their induced distances for several trellis configurations for the minimum phase

channel h(D) = 1+1.6D+1.1D2+0.4D3. We simplify the table as follows: if d2
min(Er) ≥ d2

min,

we only list the early merged error events that lead to d2
min(Er); if d2

min(Er) < d2
min, we list all

the early merged error events whose distance parameters are smaller than or equal to d2
min. The

table is also simplified by considering the symmetry of the error events, i.e., ±(e1(D), e2(D))

will produce the same distance parameter, and if the error events of track 1 and 2 are switched,

the distance remains the same. So we group them together and only list the one whose first error

symbol has a positive e1
i component. As shown in Table 3.4, the early merged error events in

the RSSE [3, 3, 3] trellis always have distance parameter greater than d2
min, under all ITI levels.

Specifically, when ε = 0.1, E1 are the dominant RSSE error events. As ε increases, d2
min(E1),

which is proportional to ∆2
1, also increases, and [5, 2, 1, 2] becomes the dominant one. For the

RSSE [4, 3, 2] trellis, the error event [3, 4, 0, 0] is dominant, and its distance parameter decreases
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as ε increases. In particular, for ε = 0.3 and 0.4, its distance is strictly less than d2
min, so it can

be predicted that RSSE [4, 3, 2] suffers greater performance loss compared to the ML detector

at high ITI levels. One way to avoid this performance loss is to sacrifice complexity reduction

and use RSSE[4, 3, 3] which prevents the error event [3, 4, 0, 0] from being early merged. RSSE

[4, 2, 2] has near-optimal performance at ε = 0.1 and performs much worse when ε ≥ 0.2. A

more aggressive configuration, RSSE[4, 2, 1], cannot guarantee near-optimal performance since

d2
min(Er) is always smaller than d2

min. Therefore, to retain near optimal performance as well as

reduce complexity, we may use RSSE[3, 2, 2] at ε = 0.1, RSSE[3, 3, 2] at ε = 0.2, RSSE[3, 3, 3]

at ε = 0.3 and 0.4.

For the PR2 and EPR4 channel, the error state diagrams contain zero cycles, leading to

infinite recursive loops in the error event search. A zero cycle is a path that starts and ends at

the same state, and accumulates zero path metric. The number of zero cycles depends on the

reduced-state trellis configuration. In Examples 4 and 5, we summarize the zero cycles for PR2

and EPR4 channels. We follow the notations in [1] and let (e1, · · · , ek)∞ represent an infinite

periodic sequence with repeated pattern e1, · · · , ek. Notice that a periodic sequence of the shifted

pattern (ei, · · · , ek, e1, · · · , ei−1)∞ is equivalent to (e1, · · · , ek)∞.

Example4. For PR2 channel, if the ML detector is used, the zero cycles are 0∞, (1, 2)∞, (3, 4)∞,

(5, 6)∞, (7, 8)∞. If RSSE[3, 3] is used, both [2, 1] and [1, 2] becomes merging states, therefore

(1, 2)∞ will not be a zero cycle, while other zero cycles still exist.

Example5. The zero cycles for the ML detector on EPR4 are (0)∞,±(0, 1)∞, ±(0, 3), ±(0, 5),

±(0, 7), ±(1)∞, ±(1, 2)∞, ±(1, 3)∞, ±(1, 4)∞, ±(1, 5)∞, ±(1, 6)∞, ±(1, 7)∞, ±(1, 8)∞,

±(3)∞, ±(3, 4)∞, ±(3, 5)∞, ±(3, 6)∞, ±(3, 7)∞, ±(3, 8)∞, ±(5)∞, ±(5, 6)∞, ±(5, 7)∞,

±(5, 8)∞, ±(7)∞, ±(7, 8)∞. Here −(·)∞ represents taking the additive inverse of all sym-

bols inside (·).

Remark3. The zero cycles do not intersect, so each state can only be visited by at most one zero

cycle. We use γ(s) to denote the zero cycle which starts and ends at state u, and γ(u, v) to be
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the fragment of the zero cycle from state u to v. By an abuse of notation, we also use γ(u, v) to

represent the sequence of input labels on the fragment. The meaning will be clear according to

the context.

Let Z denote the collection of all the states visited by zero-cycles, and let T be the set of

all merging states. A two-step algorithm introduced in [1] can be used to search for the dominant

error events, with a slight modification that considers the additional early merging states in the

RSSE trellis. The procedure is summarized below.

1. Given a threshold D, apply the depth-first search algorithm to search for all the error

fragments, whose path metric is no bigger than D, and that start from some state u ∈ Z

and end up at some state v ∈ Z ∪ T without having visited Z ∪ T in between. The path

metric of such an error fragment is denoted as d2 (ē(u, v)).

2. Construct a new graph F whose vertices are the states in Z ∪ T . The edges in F are found

as follows. If there is an error fragment ē(u, v) starting from state u and ending up at state

v, then for each state v′ ∈ γ(v), there is an edge from state u to v′. The input label of the

edge is ē(u, v) + γ(v, v′), and the output label is d2 (ē(u, v)), since the path metric from v

to v′ is zero. Parallel edges are allowed.

3. The same depth-first search on F can be used to search for and list all the closed error

events whose distance parameters are less than D.

Tables 3.5 and 3.6 list the dominant RSSE error events for several trellis configurations on the

PR2 and EPR4 channels, respectively. They are constructed in the same manner as Table 3.4. The

tables show a good match with the simulation results in Tables 3.2.
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3.6 Asymmetric 2H2T System

The asymmetric 2H2T system is worth consideration because of its practical relevance.

In this model, the ITI levels sensed by the two heads are different, i.e.,

 r1
i

r2
i

 =

 1 ε−∆ε

ε+ ∆ε 1


 y1

i

y2
i

+

 ω1
i

ω2
i

 . (3.28)

Without loss of generality, we assume 0 ≤ ∆ε ≤ ε.

As in the discussion of the symmetric system, we analyze RSSE on the asymmetric

channel by considering the transformed system. After the same coordinate transformation that

was used before, the asymmetric 2H2T channel becomes

 r̄1
i

r̄2
i

 =

 1 ∆ε
1+ε

∆ε
ε−1 1


 ȳ1

i

ȳ2
i

+

 ω̄1
i

ω̄2
i

 , (3.29)

where ȳ1
i =

∑ν
k=0 hkz

1
i−k and ȳ2

i =
∑ν

k=0 hkz
2
i−k, and r̄i, z̄i, and ω̄i are obtained from equation

(3.12), (3.13), and (3.14), respectively.

In the asymmetric system, the noiseless channel outputs become

f1
i = ȳ1

i +
∆ε

1 + ε
ȳ2
i , f2

i = ȳ2
i +

∆ε

ε− 1
ȳ1
i . (3.30)

A joint trellis can be constructed by using the new output formulas, and then WSSJD is applicable.

The same set partition tree shown in Fig. 3.2 is used to construct the subset trellis. We investigate

change in performance by means of both simulation and error event analysis.

We first consider the case of parallel branches. Assume J1 > 1. The effective squared
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distance between two parallel branches coming from the same state is

d2
r (ēi ∈ E1) =

(1 + ε)2

2
(h0ē

1
i +

∆ε

1 + ε
h0ē

2
i )

2

+
(1− ε)2

2
(

∆ε

ε− 1
h0ē

1
i + h0ē

2
i )

2 (3.31)

=
h2

0(1 + ε)2

2
[(ē1

i )
2 +

∆ε2

(1 + ε)2
(ē2
i )

2]

+
h2

0(1− ε)2

2
[

∆ε2

(ε− 1)2
(ē1
i )

2 + (ē2
i )

2]. (3.32)

Here ēi is defined as in (3.18). The second equality follows from the fact that when J1 = 2 or

J1 = 3, ēi always has a zero component, so ē1
i ē

2
i = 0.

d2
min,asy(E1) = min

ēi∈E1

d2
r (ēi ∈ E1)

=

 h2
0∆2

1 + 8∆ε2h2
0 J1 = 3

h2
0∆2

2 + 8∆ε2h2
0 J1 = 2.

(3.33)

Compared to the symmetric case, d2
min,asy(E1) is increased both for J1 = 2 and J1 = 3.

For a longer error event ē(D), the induced squared distance is

d2(ē(D)) =
(1 + ε)2

2
‖ē1(D)h(D) +

∆ε

1 + ε
ē2(D)h(D)‖2

+
(1− ε)2

2
‖ ∆ε

ε− 1
ē1(D)h(D) + ē2(D)h(D)‖2. (3.34)

Then the error state diagram and the error event search algorithm introduced in Section 3.5 can

be applied to the asymmetric case, with the only modification being that the edge labels are

calculated according to (3.34). Also notice that the zero cycles given in Example 4 and Example

5 remain the same in the asymmetric channel.

We search for d2
min(Er) at two extreme values of ε and various offsets ∆ε on the EPR4

channel. The results are listed in Tables 3.7. In each case, ∆ε could take values from {0, 0.05, 0.1}.

For comparison, we also give the minimum distance parameter of the ML detector, denoted as

d2
min, in each corresponding scenario. We find that d2

min(Er) does not change much from the
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Table 3.7: d2
min(Er) for asymmetric 2H2T EPR4 channel under various ∆ε where (a)

ε = 0.1, and (b) ε = 0.4.

(a) ε = 0.1

∆ε = 0 ∆ε = 0.05 ∆ε = 0.1
d2

min = 16.16 d2
min = 16.04 d2

min = 16

RSSE[4, 4, 3] 22.64 22.70 22.88
RSSE[4, 4, 2] 19.44 19.50 19.68
RSSE[4, 4, 1] 12.12 12.03 12.00
RSSE[4, 3, 3] 16.16 16.20 16.32
RSSE[4, 3, 2] 16.16 16.20 16.32
RSSE[3, 3, 3] 9.68 9.70 9.76

(b) ε = 0.4

∆ε = 0 ∆ε = 0.05 ∆ε = 0.1
d2

min = 11.52 d2
min = 11.60 d2

min = 11.84

RSSE[4, 4, 3] 21.44 21.50 21.68
RSSE[4, 4, 2] 8.64 8.7 8.88
RSSE[4, 4, 1] 8.64 8.7 8.88
RSSE[4, 3, 3] 18.56 18.60 18.72
RSSE[4, 3, 2] 8.64 8.7 8.88
RSSE[3, 3, 3] 12.16 12.20 12.32

symmetric case (∆ε = 0). In addition, some trellis configurations tend to have increased d2
min(Er)

under severe asymmetry, while some do not. We see that the performance of a configuration is

closely related to the distance parameters of the length-1 error events, which provides an approach

to design the set partition tree for other MHMT channel models. The conclusion is that the

proposed RSSE algorithm is applicable to the asymmetric channel.

3.7 3H3T System

The ITI interference matrix of the 3H3T system is given by

A3 =


1 ε 0

ε 1 ε

0 ε 1

 .

The WSSJD transformation decomposes the 3H3T system into 3 parallel channels. Recall
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track 1

track 2

track 3

( 1, 1, 1)

(1, 1,1)

( 1, 1, 1)

(1, 1, 1)

( 1, 1,1)

(1, 1, 1)

( 1, 1, 1)

(1, 1, 1)

Figure 3.11: The input constellation of 3H3T system. The transposed vector beside each
node represents the input symbol xi = [x1

i , x
2
i , x

3
i ]
>. The corresponding dimensions

are shown on the right.

that the eigen-decomposition of A3 is A3 = V3Λ3V
>

3 , where

Λ3 =


1 +
√

2ε 0 0

0 1 0

0 0 1−
√

2ε

 , V3 =


1
2

√
2

2
1
2

√
2

2 0 −
√

2
2

1
2 −

√
2

2
1
2

 .

The decomposed system is described by

r̄i = ȳi + ω̄i, (3.35)

where

r̄i = Λ−1
3 V >3 ri, ω̄i = Λ−1

3 V >3 ωi (3.36)

are the transformed channel outputs and noises. The components of vector ȳi are given by

ȳji =
∑ν

k=0 hkz
j
i−k, for j = 1, ..., 3, where zi is the transformed channel input vector zi = V >3 xi.

Since V3 is independent of ε, the joint trellis constructed according to the combination of zi is

deterministic. Let e(D) = [e1(D), e2(D), e3(D)]> be an error event of the system, where ej(D)

is the error event on track j, ej(D) = xj(D)− x̂j(D). An error symbol at time slot i is denoted

as ei = xi − x̂i. Then for the transformed 3H3T system,

ēi = V >3 ei = V >3 x̄i − V >3 x̂i, (3.37)
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and the distance associated with error event e(D) is

d2 (e(D)) =
3∑
j=1

λ2
j‖ēj(D)h(D)‖2, (3.38)

where λ1 = 1 +
√

2ε, λ2 = 1 and λ3 = 1−
√

2ε are the eigenvalues on the diagonal of Λ3.

To construct the reduced-state trellis, we first need to evaluate the distance between input

symbols. Recall that the ESPD is proportional to the distance associated with length-1 error

events, with the scaling factor h2
0. Therefore, for symbols xi and x̂i with difference ei = xi− x̂i,

their ESPD is calculated from

d(ei) =

3∑
j=1

(λj ē
j
i )

2. (3.39)

Table 3.8 lists the ESPDs for the symbol pair differences. The table is simplified by symmetry

considerations, i.e. −ei produces the same distance as ei. The distances are functions of ε. They

display different monotonicity behavior over the range ε ∈ [0, 0.5]. For instance, the error symbol

6 has the same distance for all the values of ε. The distances of error symbols with index 4 and

7 decrease as ε increases, while for other error symbols the distance functions are increasing

functions. Therefore, at different ITI levels, the dominant ESPD is different, which should be

taken into account when designing the set partition tree.

In Fig. 3.12 we propose two set partition trees optimized for low or high ITI levels. For

the low ITI case, the single track error symbols, corresponding to the error symbols 1 and 2 in

Table 3.8, have smaller ESPDs. They are first removed from the level 1 to level 2 partitions in the

type-1 construction, shown in Fig. 3.12(a). To further increase the intrasubset ESPD, the error

symbols 4 and 5 are also removed in the level 3 partition, and error symbol 6 is avoided on level

4. Following a similar design rule, the type-2 set partition tree in Fig. 3.12(b) is constructed to

handle the case of high ITI. It is necessary to first remove error symbols 4 and 7 from level 1

to level 2 since their induced distance is much smaller than others. Then the single track error

symbols and the error symbol 6 are also avoided on level 3 and level 4, respectively. Notice that
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Table 3.8: ESPDs of 3H3T system. min d2 is the minimum value of d2(ei) achieved at
ε∗.

index ei d2(ei) min d2 ε∗

1
[2, 0, 0]
[0, 0, 2]

4 + 4ε2 4 0

2 [0, 2, 0] 4 + 8ε2 4 0

3
[2, 2, 0]
[0, 2, 2]

8 + 16ε+ 12ε2 8 0

4
[2,−2, 0]
[0,−2, 2]

8− 16ε+ 12ε2 3 0.5

5 [2, 0, 2] 8 + 16ε2 8 0

6 [2, 0,−2] 8 8 [0, 0.5]

7 [2,−2, 2] 12− 32ε+ 24ε2 2 0.5

8
[2,−2,−2]
[−2,−2, 2]

12 + 8ε2 12 0

9 [2, 2, 2] 12 + 32ε+ 24ε2 12 0

the type-1 and type-2 set partition trees differ only on level 2. Therefore, the subset trellis with

Jk 6= 2 for all k = 1, ..., ν will yield the same performance, no matter which set partition tree is

used.

In Figs. 3.13 and Figs. 3.14 we plot the simulation results for RSSE on the EPR4 channel

and a minimum phase channel, respectively. Two extreme cases are considered, corresponding

to a relatively low ITI level, ε = 0.1, and a high ITI level, ε = 0.4. We construct several subset

trellises based on the type-1 set partition tree for ε = 0.1 and the type-2 tree for ε = 0.4. It can

be observed from Fig. 3.13(a) that the type-1 RSSE [8, 8, 2] configuration and the type- 1 RSSE

[8, 6, 2] configuration have near-ML performance. For comparison, we also plot the performance

curve for the type-2 RSSE[8, 6, 2] trellis, which is a subset trellis constructed using the type-2

set partition tree. This trellis suffers from significant performance loss although it has the same

configuration as type-1 RSSE [8, 6, 2]. In Fig. 3.13(b), we see that type-2 RSSE [8, 6, 4] can

essentially achieve ML performance; the results for type-2 RSSE[8, 6, 2] and type-1 RSSE[8, 6, 2]

are also plotted for comparison purposes.

For the minimum phase channel, whose performance results are shown in Fig. 3.14,
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level 1

2

3

4

(a) type 1. better performance at low ITI

level 1

2

3

4

(b) type 2. better performance at high ITI

Figure 3.12: Set partition trees designed for 3H3T system. Both of the trees have 5
level partitions. To save space, the level 5, where each symbol itself is a subset, is not
shown on the pictures.
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(b) ε = 0.4

Figure 3.13: Simulation results for 3H3T system with EPR4 channel polynomial. The
prefix “type1” and “type2” indicate if the subset trellis is based on the type 1 or type 2
set partition tree, respectively.

the required computational complexity is further reduced. From Fig. 3.14(a), we see that that

the type-1 RSSE [8, 2, 2] trellis with 32 states has performance nearly equal to that of the ML

detector., which requires 512 states. In Fig. 3.14(b), we see that the type-1 RSSE [8, 4, 2] trellis

with 64 states provides essentially ML performance.

3.8 Conclusion

Due to its capability of combating ITI, MHMT detection is expected to play an important

role in next generation magnetic recording. The conventional ML detector, however, suffers

from high computational complexity. In this work we address this problem by applying RSSE

techniques with properly designed set partition trees. In particular, we define an alternative

distance measure on the input constellation, based on which we propose a three-level set partition

tree for the 2H2T model. The BER comparison shows that RSSE can achieve near optimal

performance while significantly reducing the number of trellis states. Error event analysis is used

to explain the performance variations observed for different trellises under various conditions. We

also investigate the performance of RSSE on an asymmetric 2H2T system because of the practical
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(b) ε = 0.4

Figure 3.14: Simulation results for 3H3T system with minimum phase channel h(D) =
1 + 1.6D + 1.1D2 + 0.4D3.

relevance of the model. For the 3H3T model, since the effective distances between input symbols

show different monotonicity behavior as ε changes, we specifically design two set partition trees,

where one is good for low ITI and the other is suitable for high ITI. Our work shows that the set

partition tree plays a key role in applying RSSE to these channels. If the set partition tree can be

properly designed, then the RSSE algorithm has the potential to be effectively applied to more

general MHMT channels. This is a direction for future research.
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Chapter 4

Generalized Weighted Sum Subtract

Joint Detector

In this chapter we generalize WSSJD to MHMT systems whose interference matrices

satisfy the WSSJD property. The implementation details are given for a symmetric 3H2T system,

as an example. Other interference matrices where WSSJD is applicable are also presented. We

also propose a new set partitioning tree for the 3H2T system with high ITI, and compare its

performance with the set partitioning tree proposed in Chapter 3.

4.1 Notations

A length-L data sequence is represented by a polynomial x(D) =
∑L

k=0 xkD
k. The

inner product of two data sequences of length L is calculated by

〈x(D), y(D)〉 =

L∑
k=0

xkyk, (4.1)

85
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Figure 4.1: Three head/two track model with ISI and ITI.

and the norm of a data sequence is

‖x(D)‖ =
√
〈x(D), x(D)〉 =

√√√√ L∑
k=0

x2
k. (4.2)

We use a capitalized bold symbol to represent a column vector of data sequences, e.g.,

X(D) = [x(1)(D), · · · , x(n)(D)]>. The coefficients of X(D) at time k form a column vector

xk = [x
(1)
k , · · · , x(n)

k ]>. The multiplication of X(D) with a data sequence h(D) is equivalent to

element-wise convolutions, i.e., X(D)h(D) = [x(1)(D)h(D), · · · , x(n)(D)h(D)]>.

Matrices are denoted by boldface symbols, with subscripts indicating the matrix size.

For instance, Am,n is an m× n matrix. We use An for short when m = n. A matrix element is

referred by a lower-case symbol, e.g., aij on row i and column j in Am,n. The n × n identity

matrix is represented by In. The transpose of A is denoted by A>. The i-th power of A is written

as Ai, and A0 = I.

4.2 Three Head/Two Track Channel Model

We consider a 3H2T system with intersymbol interference (ISI) along the down-track

direction and ITI in the cross-track direction, as shown in Fig. 4.1. The channel inputs, X(D) =

[x(1)(D), x(2)(D)]>, are data sequences stored on track 1 and track 2. We assume that both x(1)
k

and x(2)
k are i.i.d and randomly chosen from {+1,−1} with equal probability. We also assume

there is no phase offset between x(1)(D) and x(2)(D).

Three heads are used to read back data simultaneously. Head 1 and head 3 are symmet-

rically placed around the boundary between two tracks, with an offset towards track 1 and 2,
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respectively. With this placement, head 1 senses a majority signal from track 1 (the target track)

and a small interference from track 2 (the side track), while the case is reversed for head 3. Head

2 is placed symmetrically over the boundary, and senses equal level signals from two tracks. We

use this head ordering since the resulting interference matrix shows a desired symmetric property.

Let R(D) = [r(1)(D), r(2)(D), r(3)(D)]> be the vector of discretized read back signals from

head 1, 2, and 3, respectively. The channel model can be compactly written as

R(D) = A3,2X(D)h(D) + Ω(D), (4.3)

where the electronic noise at the three heads, Ω(D) = [ω(1)(D), ω(2)(D), ω(3)(D)]>, is i.i.d

and follows the Gaussian distribution, ω(i)
k ∼ N (0, σ2), i = 1, 2, 3. In this model, we assume

that the data tracks are ideal partial response channels, with the same channel polynomial

h(D) =
∑ν

0 hkD
k. The interference matrix A3,2 characterizes the ITI sensed at the three heads.

Based on the head alignment, we assume A3,2 has the form

A3,2 =


1 ε

α α

ε 1

 , (4.4)

where ε and α are variables whose values may change for various reasons. For example, the values

of ε and α are expected to be very different at inner tracks and outer tracks, since the track pitch

changes. Moreover, in some cases the accurate values of these variables may be unknown at the

receiver that a parameter estimation process is needed. Due to these uncertainties in real drives,

we use variables ε and α to represent the ITI levels. In our work ε is restricted to the range of

[0, 0.5), and α > 0. A matrix whose elements do not contain variables is called a deterministic

matrix.

At the receiver, the ML estimates of the input sequences X(D) are obtained by passing

the outputs R(D) through a 2D joint Viterbi detector. Let X(D) and X̂(D) denote the correct

inputs and the estimated inputs, respectively. Their difference E(D) = X(D)− X̂(D), if not
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zero, is called an error event. It is well known that the error event probability of a Viterbi detector

can be approximated by K · Q(dmin/2σ), where K is a constant related to the frequency of

the dominant error events, σ2 is the noise variance, and the Q-function is the tail probability of

the standard Gaussian distribution. The parameter dmin is the minimum distance taken over all

possible error events. For the 3H2T channel given by (4.3) and (4.4), we find

d2
min,A3,2

=


(1 + α2 + ε2)d2

0, if α2 > 1− 4ε+ ε2

2(1− ε)2d2
0, otherwise

(4.5)

where d2
0 is the squared minimum distance of the ISI channel h(D). The derivation of (4.5) is

presented in Appendix. The case of α = 0 is equivalent to the 2H2T system with interference

matrix

A2 =

 1 ε

ε 1

 . (4.6)

The incorporation of ITI parameters presents a barrier to the realization of an ML

detector. To implement the 2D joint Viterbi detector, a trellis that simultaneously tracks x(1)(D)

and x(2)(D) is constructed and stored in memory. Notice that the output labels of trellis branches,

given by Lout = Y k, where

Y (D) = A3,2X(D)h(D), (4.7)

require the knowledge of α and ε. However, these two parameters are generally unknown to the

receiver, and subject to change. Storing trellises for different parameters would consume a large

memory, while recomputing output labels during the detection process could incur additional

delay. Using static estimates could avoid these issues, but results in performance loss due to

sub-optimality.
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4.3 WSSJD for 3H2T System

We generalize WSSJD to the 3H2T system, as an alternative way to implement the

ML detector. We show that by means of channel decomposition, the 3H2T system can be

transformed to two parallel subchannels, whose joint trellis is free from ITI parameters. Then,

a gain loop structure could be deployed to adaptively track the ITI parameters. Complexity

reduction techniques will also be discussed. For convenience, the conventional ML detector

directly designed for system (4.3) is referred to as “the ML detector”, however, we emphasize

that WSSJD also gives the ML solutions.

4.3.1 Channel Decomposition

The interference matrix A3,2 can be factored as

A3,2 = UΛV>, (4.8)

where

V =

 1 1

1 −1

 (4.9)

is a 2× 2 constant matrix. The 3× 2 matrix U has the form

U = [λ−1
1 u1, λ

−1
2 u2,u3], (4.10)

where

u1 =

[
1 + ε

2
, α,

1 + ε

2

]>
, u2 =

[
1− ε

2
, 0,

ε− 1

2

]>
, (4.11)

and λ1 = ‖u1‖, λ2 = ‖u2‖ are the normalization factors. The third column vector u3 has

the unit length, and is orthogonal to both u1 and u2. Therefore, U is a unitary matrix, i.e.,
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U>U = UU> = I3. Matrix Λ is a 3× 2 diagonal matrix whose diagonal elements are λ1 and

λ2,

Λ =


λ1 0

0 λ2

0 0

 . (4.12)

Notice that the factorization (4.8) is equivalent to the singular value decomposition (SVD) of

A3,2, up to a scaling factor. The pseudoinverse of Λ is denoted as

Λ† =

 λ−1
1 0 0

0 λ−1
2 0

 . (4.13)

To decompose the channel, we substitute (4.8) for the matrix A3,2,

R(D) = UΛV>X(D)h(D) + Ω(D), (4.14)

Since U is unitary and Λ†Λ = I2, we can multiply both sides by Λ†U> to obtain

Λ†U>R(D) = V>X(D)h(D) + Λ†U>Ω(D). (4.15)

Equation (4.15) is the transformed 3H2T channel. Define

Z(D) = V>X(D) = [x(1)(D) + x(2)(D), x(1)(D)− x(2)(D)]> = [z(1)(D), z(2)(D)]>

(4.16)

to be the new channel inputs. Notice that z(i)
k ∈ {−2, 0,+2} is ternary. The new channel outputs

are

R̄(D) = Λ†U>R(D) = [λ−2
1 u>1 R(D), λ−2

2 u>2 R(D)]> = [r̄(1)(D), r̄(2)(D)]>. (4.17)
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The transformed noise components

Ω̄(D) = Λ†U>Ω(D) (4.18)

satisfy a zero-mean multivariate Gaussian distribution, with covariance matrix

E[ω̄kω̄
>
k ] = E[Λ†U>ωkω

>
k U(Λ†)>] =

 σ2
1 0

0 σ2
2

 , (4.19)

where σ2
1 = σ2λ−2

1 and σ2
2 = σ2λ−2

2 .

4.3.2 WSSJD

After channel decomposition, the resulting system (4.15) consists of two parallel sub-

channels,

r̄(1)(D) = z(1)(D)h(D) + ω̄(1)(D), (4.20)

r̄(2)(D) = z(2)(D)h(D) + ω̄(2)(D). (4.21)

We call (4.20) the sum channel, and (4.21) the subtract channel, since z(1)(D) and z(2)(D) are

basically the sum and the difference of the original channel inputs x(1)(D) and x(2)(D).

WSSJD searches for the joint ML solution to (4.20) and (4.21),

Z∗(D) = arg max
Z(D)

log Pr(R̄(D)|Z(D)) (4.22)

= arg max
Z(D)

log Pr(r̄(1)(D)|z(1)(D)) + log Pr(r̄(2)(D)|z(2)(D)) (4.23)

= arg minλ2
1‖r̄(1)(D)− z(1)(D)h(D)‖2 + λ2

2‖r̄(2)(D)− z(2)(D)h(D)‖2. (4.24)

Here, (4.23) comes from the fact that the noises on the two subchannels are independent. The

scale factors in (4.24), λ2
1 and λ2

2, are the channel weights due to the effect of unequal noise

powers in two subchannels.
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The WSSJD trellis constructed to decode Z(D) has the same number of states as the ML

detector. In contrast to the ML detector whose trellis labels vary with ITI, the WSSJD trellis is

deterministic. Namely, the trellis does not require knowledge of α and ε, remaining the same even

though α and ε may change. This property would be preferable in hardware realization. Another

difference from the ML detector is that, during detection, the branch metrics must be scaled by

λ2
1 and λ2

2 to retain optimality. This additional step is easy to realize in practice.

Assume Ē(D) = [ē(1)(D), ē(2)(D)] are the error events on the sum and subtract channels,

respectively. The distance function is calculated by

d2
WSSJD(Ē(D)) = λ2

1‖ē(1)(D)h(D)‖2 + λ2
2‖ē(2)(D)h(D)‖2. (4.25)

The squared minimum distance

d2
min = min

Ē(D)
d2

WSSJD(Ē(D)) (4.26)

has the same closed form as (4.5).

4.3.3 Complexity Reduction

Reduced-state sequence estimation (RSSE), proposed in [14], allows one to make a

tradeoff between performance and complexity in trellis-based detection and decoding. Instead

of relying on the complete ML trellis, RSSE uses subset trellis, in which the subset states are

disjoint groups of the original ML states. Suppose J(k), k = 1, ..., ν, are set partitionings of the

input symbols. A subset state is represented by

si = [ai−1(1), ai−2(2), ..., ai−ν(ν)], (4.27)

where ai−k(k) is a subset index in J(k). The configuration of the resulting subset trellis is a

vector [|J1|, |J2|, ..., |Jν |], and the number of subset states is
∏ν
k=1 |Jk|.

To obtain a valid subset trellis, the sequence of set partitionings {Jk}νk=1 is restricted to
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the condition that Jk is a further partition of the subsets in Jk+1 for all k. A set partitioning tree

can be used to assist the set partitioning selection process. In Figs. 4.3, we present two examples

of the set partitioning tree. The set partitionings {Jk}νk=1 are chosen from four levels of the tree,

with the restriction that Jk+1 should not be a lower level than Jk.

A general design rule for a good set partitioning tree is to maximize the minimum intra-

subset distance at each level. For the transformed 3H2T system, Since the two subchannels

have different noise powers, we use effective symbol pair distance (ESPD), instead of Euclidean

distance, to evaluate distances between input symbols. The ESPD between two symbols z and ẑ

is defined by

d2
ESPD(z, ẑ) = λ2

1 · (z(1) − ẑ(1))2 + λ2
2 · (z(2) − ẑ(2))2. (4.28)

Table 4.1 summarizes ESPDs for all pairs of input symbols. Compared to the ESPDs in 2H2T

system (Table I in [18]), the additional head in 3H2T only affects ∆2
1 and ∆2

3. As shown in Fig.

4.2(a), for α = 0.5, the curves of ∆2
2 and ∆2

3 cross near ε = 0.2. For α = 1 in Fig. 4.2(b),

∆2
3 > ∆2

2 for all ε > 0. We also plot the squared minimum distance of the corresponding 3H2T

system (with h(D) = 1 +D −D2 −D3) for comparison.

Table 4.1: ESPDs between input symbols of decomposed 3H2T system.

(z, ẑ) d2
ESPD(z, ẑ)

( [+2, 0], [−2, 0] ) ∆2
1 = 8(1 + ε)2 + 16α2

( [0,+2], [0,−2] ) ∆2
2 = 8(1− ε)2

( [+2, 0], [0,+2] )
( [+2, 0], [0,−2] ) ∆2

3 = 4(1 + ε2) + 4α2

( [−2, 0], [0,+2] )
( [−2, 0], [0,−2] )

We want to construct a set partitioning tree where the minimum intra-subset ESPD

increases from the top level to the bottom. Since the ordering of ∆2
1, ∆2

2 and ∆2
3 is not fixed, we

propose two possible set partitioning trees that can be used in different ITI environments. The

constructions are shown in Figs. 4.3. Tree-A (Fig. 4.3(a)) was originally proposed in [18] for the

2H2T channel, which is equivalent to the 3H2T system with α = 0. Under the assumption that
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Figure 4.2: ESPDs for 3H2T system with (a) α = 0.5, and (b) α = 1.

Table 4.2: Error Event Analysis for different subset trellis configurations in Fig. 4.4(a).

min d2
r (ē(1), ē(2)) ē∗(1), ē∗(2)

ML 15.68 [0, 0, 0, 0], [4,−4, 0, 0]
RSSE-A[4, 2] 11.76 [0, 0, 0], [4,−4, 0]
RSSE-B[4, 2] 15.68 [0, 0, 0, 0], [4,−4, 0, 0]
RSSE-A[3, 2] 11.76 [0, 0, 0], [4,−4, 0]
RSSE-B[3, 2] 12.28 [−2, 4], [−2, 0]

∆2
2 ≥ ∆2

3, the minimum intra-subset ESPDs from the top to the bottom are ∆2
3, ∆2

2, ∆2
1 and∞ in

a sequential order. Tree-B (Fig. 4.3(b)) only differs from tree-A at level L2. It is designed for

the case when ∆2
2 < ∆2

3, so that the minimum ESPDs become ∆2
2 followed by ∆2

3, ∆2
1 and∞,

from the top to the bottom. The performance of RSSE based on tree-A has been simulated and

analyzed for the 2H2T system [18]. In this paper, we aim to show the performance improvement

of using tree-B rather than tree-A in a 3H2T system where α is large.

We construct subset trellises based on tree-A and tree-B, and simulate RSSE for the 3H2T

system where α = 1 and ε = 0.3. In Fig. 4.2(b) we see that ∆2
3 > ∆2

2 for all ε > 0, so we expect

the bit error rate (BER) performance of the trellises based on tree-B to be lower than that of the
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L1:

L2:

L3:

L4:

(a) tree-A (b) tree-B

Figure 4.3: Two set partitioning trees designed for 3H2T system. Each tree has four
levels, {Li}4i=1. Four input symbols form a diamond-shape constellation.
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Figure 4.4: Performance comparison of RSSE trellises with different configurations.
The 3H2T systems are set to α = 1, ε = 0.3, but with different channel targets.
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trellises constructed from tree-A. The simulation results on channels with two different length-3

channel polynomials are plotted in Figs. 4.4. The PR2 channel with h(D) = 1 + 2D + D2 is

linear phase, while the channel with target h(D) = 4 + 7D +D2 is a minimum phase channel

which is also considered in [49]. The set partitioning tree used to construct a subset trellis is

indicated by “A” or “B” in the legends. For example, the term RSSE-A[4, 2] represents the subset

trellis constructed from tree-A with configuration [4, 2]. Since tree-A and tree-B have the same

3-subset partitioning (level L3), they result in the same subset trellis with [3, 3]. We represent it

by RSSE[3, 3] for short. The signal-to-noise ratio (SNR) is defined by

SNR(dB) = 10 log
‖h(D)‖2

2σ2
. (4.29)

It is shown in Fig. 4.4(a) that RSSE[3, 3] with 9 states and RSSE-B[4, 2] with 8 states

perform very close to the ML detector which uses 16 states, especially when SNR is high. In

contrast to RSSE-B[4, 2], RSSE-A[4, 2], also with 8 states, suffers from large performance loss.

RSSE-A[3, 2] has a similar performance as RSSE-A[4, 2]. An interesting observation is that

RSSE-B[3, 2] is even worse than RSSE-A[3, 2], which is different from our expectation.

We explain the BER performances through error event analysis. Due to the use of subset

states, certain decoding paths will merge earlier in the subset trellis than in the ML trellis. These

“early merged” paths can result in early merged error events [18] that possibly decrease the

minimum distance of the system. In Table 4.2 we present the minimum distances for different

trellises, with the same system setup as in Fig. 4.4(a). For each trellis configuration, we also

give an example of the error events which achieve the minimum distance. Given ē(1) and ē(2),

which are error events in the vector form, the minimum squared distance of using subset trellis is

calculated by [18]

d2
r (ē(1), ē(2)) = λ2

1

l−1∑
i=0

(
ν∑
k=0

hkē
(1)
i−k

)2

+ λ2
2

l−1∑
i=0

(
ν∑
k=0

hkē
(2)
i−k

)2

, (4.30)

where l is the length of the error pattern.
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It is shown in Table 4.2 that RSSE-B[4, 2] does not produce additional early merged error

events whose distance is smaller than the minimum distance of the ML detector. In contrast, the

minimum distances of RSSE-A[4, 2] and RSSE-A[3, 2] are smaller than that of the ML detector.

Therefore, their BER performances are close and subject to be worse than the ML detector.

Different from RSSE-B[4, 2], the performance of RSSE-B[3, 2] is dominated by early merged

error events. Although it has a slightly larger min d2
r than RSSE-A[3, 2], the dominant early

merged error events for RSSE-B[3, 2] appear more frequently so that its BER performance is

worse than that of RSSE-A[3, 2].

Compared to the PR2 channel, RSSE algorithm generally performs better on channel

h(D) = 4 + 7D + D2, as indicated in Fig. 4.4(b). It is shown that RSSE[3, 3], RSSE-A[4, 2],

RSSE-B[4, 2], and RSSE-A[3, 2] essentially achieve the same performance as the ML detector.

RSSE-B[3, 2], however, has roughly 0.8dB loss at BER= 10−4. Our error event analysis shows

that RSSE-B[4, 2] is dominated by the same error events as in the PR2 channel, and has a much

smaller minimum distance than that of the ML detector.

We also present the performance of RSSE when h(D) = 1 +D −D2 −D3 in Figs. 4.5.

We consider the cases when ITI is low (ε = 0.1) and high (ε = 0.3). In Fig. 4.5(a) where ε = 0.1,

RSSE[4, 3, 3] with 36 states could nearly achieve the same performance as the ML detector. The

performance loss of RSSE[3, 3, 3] with 27 states is within 0.2dB at BER=10−5. We observe

that the performances of subset trellises constructed from tree-A and tree-B are very close. It is

reasonable since when ITI is low, the difference between ∆2
2 and ∆2

3 is small. In Fig. 4.5(b) where

ε = 0.3, the BER curves of the ML detector, RSSE[4, 3, 3], RSSE[3, 3, 3], and RSSE-B[4, 3, 2] are

essentially overlapped. RSSE-B[3, 3, 2] has approximately 0.2dB performance loss at BER=10−5.

RSSE-A[4, 3, 2] and RSSE-A[3, 3, 2] have the same performance. We can see that for the case of

high ITI, the trellises constructed from tree-B generally achieve better performance than those

constructed from tree-A.

In [18] we have presented how to use error event diagram to search for the dominant

error events for a given RSSE trellis on 2H2T channel. This technique can be easily extended

to the 3H2T system. Once we know the dominant error events that mostly degrade the RSSE
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Figure 4.5: Performance comparison of RSSE trellises on 3H2T systems with α = 1,
and h(D) = 1 +D −D2 −D3.

performance, it would be possible to design proper constrained codes to avoid such error events [4].

4.3.4 ITI Estimation

In general, the receiver may not have the information about α or ε. We show that gain

loops can be incorporated in WSSJD to adaptively estimate the ITI parameters. Once we know

the α and ε estimates, they are fed into WSSJD to evaluate the weighted branch metrics. First

notice that in the transformed system, the subtract channel (4.21) has the same form as the one

we obtained in the 2H2T system [17],

1

1− ε(r(1)(D)− r(3)(D)) = z(2)(D)h(D) + ω̄(2)(D). (4.31)

The parameter 1/(1− ε) is a normalization factor, which could be estimated by a gain loop. Let

g
(2)
k be the estimate of 1/(1 − ε) at time k. In [17] we have presented a gain loop for tracking

g
(2)
k , so the details are omitted here. We are more interested in the sum channel, which is different

from [17].
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For the sum channel, we again model it as a gain factor estimation problem,

1

(1 + ε)2 + 2α2

[
(1 + ε)[r(1)(D) + r(3)(D)] + 2αr(2)(D)

]
= z(1)(D)h(D) + ω̄(1)(D).

(4.32)

Let g(1)
k be the estimate of 1

(1+ε)2+2α2 at time k, and let f (1)
k and f (2)

k be estimators of (1 + ε) and

2α, respectively. Based on the Least Mean Squares (LMS) adaptive algorithm, we estimate g(1)
k

by the following steps:

r̄
(1)
k = g

(1)
k−1 [f

(1)
k−1(r

(1)
k + r

(3)
k ) + f

(2)
k−1r

(2)
k ], (4.33)

e
(1)
k−δ = ȳ

(1)
k−δ − r̄

(1)
k−δ, (4.34)

g
(1)
k = g

(1)
k−1 + β ȳ

(1)
k−δ e

(1)
k−δ. (4.35)

Here, parameter δ represents a small time delay, and ȳ(1)
k−δ is the instantaneous estimate of the

noiseless output of the sum channel. The step-size parameter β is used to control the convergence

speed. The estimates of f (1)
k and f (2)

k are updated once we obtain the value of g(1)
k . In some

applications, the value of α is fixed and known. For this case, f (2)
k is set to 2α, and f (1)

k is updated

by

f
(1)
k =

√
1

g
(1)
k

− 2α2. (4.36)

If α is unknown, we can use g(2)
k from the subtract channel, and set

f
(1)
k = 2− 1

g
(2)
k

, f
(2)
k =

√√√√2

(
1

g
(1)
k

−
(
f

(1)
k

)2
)
. (4.37)

The updated f (1)
k , f (2)

k and g(1)
k are used in the next iteration to calculate (4.33)-(4.35).

Recall that the path metric should be properly weighted in WSSJD. We replace λ2
1, λ2

2 by

their estimators (g
(1)
k )−1, (g

(2)
k )−2, and the branch metric of the trellis edge from state sk−1 to sk
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Figure 4.6: Performance comparison of WSSJD with gain loops on 3H2T channel.
h(D) = 4 + 7D +D2.

is calculated by

m(sk−1, sk) =
(
g

(1)
k−1

)−1
[
r̄

(1)
k −

ν∑
i=0

hiz
(1)
k−i

]2

+
(
g

(2)
k−1

)−2
[
r̄

(2)
k −

ν∑
i=0

hiz
(2)
k−i

]2

. (4.38)

Remark4. We estimate the gain factor instead of directly estimating the unknown coefficients of

r(1)(D), r(2)(D) and r(3)(D) because the latter optimization problem has many global minima.

In Fig. 4.6 we show some illustrative simulation results. The 3H2T system has channel

target h(D) = 4 + 7D + D2. Parameter α has a fixed value, α = 1, and ε is assumed to be

time-varying,

ε(k) = ε0 + 0.1 sin(4π(k/L)). (4.39)

In our simulation, ε0 is set to 0.1, and the sector length L = 4096. Hence, ε sinusoidly varies

within the range [0, 0.2]. The optimal performance is obtained by implementing WSSJD with

known α and ε(k). We then simulate the WSSJD algorithm incorporated with gain loop estimation.
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The initial values of g(1)
0 , g(2)

0 and f (1)
0 ,f (2)

0 are obtained by training the algorithm with one sample

sector. For the case when α is known at the receiver, we simulate the gain loop structure with

different values of step size β. We observe that both β = 5 × 10−5 and β = 1 × 10−4 could

bring the performance of WSSJD close to the optimal one. WSSJD with gain loops when both

α and ε are unknown is also simulated. It is surprising to see that lacking knowledge of α does

not essentially degrade the performance. For comparison, we also show simulation results for a

conventional ML detector with static α = 1 and ε = 0.1. The reason why we use static value is

because of the ITI dependency of the ML trellis. We can see that WSSJD with gain loop estimates

outperforms the static conventional ML detector.

4.4 The Generalized WSSJD

In this section we generalize the WSSJD algorithm to an extended MHMT family of

channels. We show that, if the interference matrix satisfies a specific property, the transformed

channel can be detected on a deterministic trellis whose branch labels do not depend on ITI.

4.4.1 WSSJD Property

Consider a general mHnT system given by

R(D) = Am,nX(D)h(D) + Ω(D), (4.40)

where X(D) consists of input sequences stored on n tracks, R(D) corresponds to the readback

sequences from m heads, and Ω(D) is a length-m vector of Gaussian noise sequences. We

assume that the entries of Am,n contain unknown variables, whose values are affected by physical

properties. For convenience, we call these variables the “ITI parameters”. The matrices whose

entries are independent of ITI parameters are said to be deterministic.
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Suppose the SVD of Am,n has the form of

Am,n =

[
U(1) U(2)

]
·

 Λp O

O O

 ·
 V>(1)

V>(2)

 , (4.41)

where U(1) is m× p, U(2) is m× (m− p), V(1) is n× p, and V(2) is n× (n− p). For full rank

Am,n, p = min(m,n); otherwise, p < min(m,n). The submatrix Λp = diag(λ1, · · · , λp) is a

diagonal matrix of singular values of Am,n.

Let Λ−1
p = diag(λ−1

1 , · · · , λ−1
p ) be the inverse of Λp. Substituting Am,n by (4.41) and

reorganizing (4.40), we can transform the original mHnT channel into

Λ−1
p U>(1)R(D) = V>(1)X(D)h(D) + Λ−1

p U>(1)Ω(D). (4.42)

Define R̄(D) = Λ−1
p U>(1)R(D) as the new outputs, Z(D) = V>(1)X(D) as the new inputs,

and Ω̄(D) = Λ−1
p U>(1)Ω(D) as the new noise components. The transformed channel model is

described by

R̄(D) = Z(D) + Ω̄(D). (4.43)

It can be verified that the noise components in the new system are independent,

E[ω̄kω̄
>
k ] = E[Λ−1

p U>(1)ωkω
>
k U(1)Λ

−1
p ] = σ2Λ−2

p . (4.44)

The transformed channel consists of p parallel subchannels, each of which is mathematically

modeled as

λ−1
i

 m∑
j=1

uijr
(j)(D)

 = z(i)(D)h(D) + ω̄(i)(D), (4.45)

for i = 1, ..., p. The ML solution of (4.43) is the vector of input sequences that minimize the
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weighted path metric,

Z∗(D) = arg min
Z(D)

p∑
i=1

λ2
i ‖r̄(i)(D)− z(i)(D)h(D)‖2. (4.46)

A WSSJD trellis is constructed to track Z(D). From (4.42), we see that Z(D) is obtained by

applying a linear transform V >(1) to the original input X(D). Therefore, if V(1) is a deterministic

matrix, then the resulting WSSJD trellis will be independent of the ITI parameters.

Definition1. An MHMT interference matrix Am,n satisfies the WSSJD property if its SVD has

a deterministic V(1) matrix.

The WSSJD trellis is preferable in practice since it has fixed branch labels. It is possible

that, on the real HDD, the ITI parameters vary from track to track and disk to disk. If the

interference matrix satisfies the WSSJD property, then only one WSSJD trellis is needed to store

in the memory. It helps to save memory space compared to maintaining separate trellises for each

interference matrix.

For the case when ITI parameters are unknown, we could incorporate gain loops to

adaptively train the detector. For instance, assume the entries in Am,n are functions of an

unknown parameter ε. Mathematically, the i-th subchannel is given by

λ−1
i (ε) ·

∑
j

uij(ε)r
j(D)

 = zi(D)h(D) + ω̄i. (4.47)

Let g(i) and ûij be the estimator of λi(ε)−1 and uij(ε), respectively. We estimate them by the

following steps:

1. Treat g(i) as the gain factor, and estimate it by a gain loop.

2. Solve for ε̂ from g(i) by assuming g(i) = λ−1
i (ε̂).

3. Update the estimates ûij = uij(ε̂) using the new estimate ε̂.

4. Weight the branch metric of the i-th subchannel by (g(i))−2.
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5. Repeat step 1)-4) using new estimates gi and ûij .

4.4.2 WSSJD Channels

Proposition 3 and Proposition 4 give sufficient conditions for an interference matrix to

satisfy the WSSJD property.

Proposition3. Let Tn be an arbitrary n× n symmetric deterministic matrix. If an n× n matrix

An can be written as

An =
N∑
i=0

γiT
i
n, (4.48)

where γi, i = 0, ..., N , are variables, and N is an arbitrary nonnegative integer, then An satisfies

the WSSJD property.

Proof. The symmetric matrix Tn can be factorized as Tn = VnΣnV
>
n , where Vn is a unitary

matrix, and Σn is diagonal. Since V>nVn = In, we have Ti
n = VnΣ

i
nV
>
n . Therefore, (4.48)

becomes

An =

N∑
i=0

γiVnΣ
i
nV
>
n = Vn

(
N∑
i=0

γiΣ
i
n

)
V>n . (4.49)

Since Vn is deterministic, An satisfies the WSSJD property.

Proposition4. Let Tn be an arbitrary n× n symmetric deterministic matrix. If an m× n matrix

Am,n satisfies

A>m,nAm,n =

N∑
i=0

γiT
i
n, (4.50)

where γi, i = 0, ..., N , are variables, and N is an arbitrary nonnegative integer, then Am,n

satisfies the WSSJD property.
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Proof. Suppose the SVD of Am,n is Am,n = UmΣV>n . Then,

A>m,nAm,n = Vn

(
Σ>Σ

)
V>n . (4.51)

As shown in the proof of Proposition 3, Vn is the deterministic unitary matrix in the eigen-

decomposition of Tn. Hence, Am,n satisfies the WSSJD property.

We construct several matrices that satisfy the WSSJD property, based on Proposition 3

and Proposition 4. In the following examples, we assume Tn to be the n× n symmetric matrix

of the form

Tn =



0 1 O

1 0 1

. . .
. . .

. . .

1 0 1

O 1 0


. (4.52)

On real HDDs, the dominant ITI often comes from the adjacent tracks, so (4.52) is a reasonable

assumption for Tn to capture this phenomenon. The eigen-decomposition of Tn has been well

studied [35]. Example 6-10 are constructed based on Tn. The ITI parameters are presented by

Greek letters.

Example6. An interference matrix of the form

An =



α ε O

ε α ε

. . .
. . .

. . .

ε α ε

O ε α


, (4.53)

satisfies WSSJD property. It is easy to see that An = αIn + εTn.
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Example7. Consider the case when n = 3 and N = 2. Since

T2
3 =


1 0 1

0 2 0

1 0 1

 , (4.54)

by Proposition 3 we know that A3 of the form

A3 = αI3 + βT3 + γT2
3 =


α+ γ β γ

β α+ 2γ β

γ β α+ γ

 (4.55)

satisfies the WSSJD property. We do not need to consider the case when N ≥ 3 since

Ti
3 =


2bi/2cT3 i is odd

2i/2−1T2
3 i is even.

(4.56)

Example8. It is obvious to see that A3,2 given in (4.4) satisfies

A>3,2A3,2 = (1 + α2 + ε2)I2 + (α2 + 2ε)T2. (4.57)

Example9. The 4× 3 matrix A4,3 given by

A4,3 =



α ε/
√

2 0

ε α/
√

2 0

0 α/
√

2 ε

0 ε/
√

2 α


, (4.58)

satisfies A>4,3A4,3 = (α2 + ε2)I3 + (
√

2αε)T3.
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Figure 4.7: Head Alignments corresponding to the interference matrices in (a) Example
9, and (b) Example 10.

Example10. Suppose An+1,n is of the form

An+1,n =



α O

ε α

. . .
. . .

ε α

O ε


. (4.59)

Since A>n+1,nAn+1,n = (α2 + ε2)In + (αε)Tn, An+1,n satisfies the WSSJD property.

Fig.4.7(a) and Fig.4.7(b) show possible physical head layouts for Example 9 and Example

10, respectively. The ITI parameters are labeled on the figures to indicate the amount of ITI

sensed by each head. Guard bands are added to prevent cross-talk between different track groups.

4.4.3 Discussion on Feasible Interference Matrices

In [49] the authors investigate the optimal placement of three heads that achieves the

lowest BER. They show that, when ITI is high, the optimal placement is to put two heads

symmetrically over two tracks, and place the third head at a similar off-track as either one of the

other two. As mentioned in [49], this asymmetric placement could be derived from the distance
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analysis of the simplified model. We assume the same interference matrix as in [49],

B3,2 =


α 1− α

1− α α

β 1− β

 , (4.60)

where α ∈ [0.5, 1], and β ∈ [0.5, 1]. It indicates that a large α leads to small ITI in the first two

heads. Assume the ISI channel is h(D). The squared distance of a given error event E(D) is

d2(E(D)) = ‖B3,2E(D)h(D)‖2

= (α2 + (1− α)2 + β2)‖e(1)(D)h(D)‖2

+ (α2 + (1− α)2 + (1− β)2)‖e(2)(D)h(D)‖2

+ [4α(1− α) + 2β(1− β)]
〈
e(1)(D)h(D), e(2)(D)h(D)

〉
. (4.61)

The minimum squared distance considering all single track error events is

d2
s =

[
2(α− 1

2
)2 + (β − 1)2 +

1

2

]
d2

0, (4.62)

which can be achieved by setting e(1)(D) = 0 and e(2)(D) to be the non-zero error event that

leads to d2
0 on h(D).

For double track error events, the minimum squared distance becomes

d2
d =

[
8(α− 1

2
)2 + 4(β − 1

2
)2

]
d2

0. (4.63)

To achieve (4.63), choose e(1)(D) to be the dominant error event on channel h(D), and set

e(2)(D) = −e(1)(D).

The overall minimum squared distance

d2
min,B3,2

= min d2(E(D)) = min{d2
s , d

2
d}. (4.64)
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Figure 4.8: Minimum Squared Distance of 3H2T system with B3,2. Assume d0 = 1.

Consider the effect of varying α and β in the range of [0.5, 1]. Increasing α will increase both d2
s

and d2
d. Increasing β will decrease d2

s , but increase d2
d. The difference between d2

d and d2
s is

d2
d − d2

s = 6(α− 1

2
)2 + 3(β − 1

3
)2 − 5

6
. (4.65)

When α is close to 1, i.e. the ITI is small, it is easy to see d2
d > d2

s , so single track error events

dominate. To make d2
min larger, a small value of β is preferred since it leads to larger d2

s . In

contrast, decreasing α to 0.5, i.e. large ITI, the double track error events become more severe.

Therefore, a large β could help to improve the overall performance. In Fig. 4.8 we plot the

minimum distance found at different values of β. Our analysis agrees with the simulation results

in [49]. It is shown in Fig. 13 of [49] that the optimal placement of the third head is to set β = 0.5

for small ITI, and β = 1 for large ITI. In addition, the 3H2T system generally performs better at

small ITI.

We examine the head placements that are amenable to apply WSSJD. When β = 0.5, the

matrix B3,2 is equivalent to A3,2 in (4.4) up to a scaling and row permutation. When β = 1, the
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matrix

B3,2 =


α 1− α

1− α α

1 0

 (4.66)

does not satisfy the WSSJD property. However, it can be partitioned into a 2× 2 submatrix that

has the desired property, and a 1 × 2 deterministic matrix. To apply WSSJD, only the 2 × 2

submatrix needs to be transformed. In [49] the authors also considered an interference matrix of

the form

B3,2 =


α 1− α

1− α α

α 1− α

 . (4.67)

To apply WSSJD to this channel, the readback signals from head 1 and head 3 are averaged. Then

the resulting channel becomes a symmetric 2H2T system that has been studied in [17].

4.5 Conclusion

The WSSJD algorithm is an alternative way to implement the ML detection for the

MHMT channel. It is preferable in real drives since the branch labels in a WSSJD trellis are

independent of the ITI parameters. In this work, we extend WSSJD to generalized MHMT

channels whose interference matrices satisfy the WSSJD property. Gain loop structures are

incorporated into WSSJD to adaptively estimate the unknown ITI parameters. We mainly focus

on the performance of WSSJD on 3H2T systems, since they are potential candidates to implement

in the new generation TDMR drives. Simulation results show that WSSJD with gain loop

estimates could achieve near optimal performance in a time-varying ITI environment. The head

alignment for the 3H2T system assumed in [49] is theoretically analyzed from the minimum

distance perspective. We show that, WSSJD could be applied to many feasible interference
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matrices derived in [49], with a simple modification.

4.6 Appendix

Minimum Distance of 3H2T system We consider the channel model given by (4.3) and

(4.4). Let E(D) be an error event. The squared minimum distance is calculated by

d2(E(D)) = ‖A3,2E(D)h(D)‖2

= ‖e(1)(D)h(D) + ε · e(2)(D)h(D)‖2 + α2‖e(1)(D)h(D) + e(2)(D)h(D)‖2

+ ‖ε · e(1)(D)h(D) + e(2)(D)h(D)‖2

= (1 + α2 + ε2)
(
‖e(1)(D)h(D)‖2 + ‖e(2)(D)h(D)‖2

)
+ (4ε+ 2α2)

〈
e(1)(D)h(D), e(2)(D)h(D)

〉
(4.68)

We find min d2(E(D)) by considering single track error events and double track error events

separately.

1. Single track error events. Since the system is symmetric, it is sufficient to consider the case

when e(2)(D) = 0. Under this assumption, equation (4.68) reduces to

d2(e(1)(D)) = (1 + α2 + ε2)‖e(1)(D)h(D)‖2 ≥ (1 + α2 + ε2)d2
0, (4.69)

where d0 is the minimum distance measured on single track ISI channel with h(D).

2. Double track error events. By Cauchy-Schwarz inequality, we have

〈
e(1)(D)h(D), e(2)(D)h(D)

〉
≥ −|

〈
e(1)(D)h(D), e(2)(D)h(D)

〉
|

≥ −‖e(1)(D)h(D)‖ · ‖e(2)(D)h(D)‖

≥ −1

2

(
‖e(1)(D)h(D)‖2 + ‖e(2)(D)h(D)‖2

)
. (4.70)
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Using (4.70), we can get a lower bound of (4.68),

d2(e(1)(D), e(2)(D)) ≥ (ε2 − 2ε+ 1)
(
‖e(1)(D)h(D)‖2 + ‖e(2)(D)h(D)‖2

)
≥ 2(1− ε)2d2

0 (4.71)

To obtain d2
min = 2(1 − ε)2d2

0, choose e(1)(D) to be the error event that lead to d2
0 on

channel h(D), and set e(2)(D) = −e(1)(D).

Compare (4.69) and (4.71), we conclude that

d2
min,3H2T =


(1 + α2 + ε2)d2

0 if α2 > 1− 4ε+ ε2

2(1− ε)2d2
0 otherwise.

(4.72)
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Chapter 5

Enhancing the Average Lifetime of

Flash Memory by Short q-Ary WOM

Codes

Non-binary write-once memory (WOM) codes can be used to enhance the lifetime of

multi-level flash memories by constraining unidirectional changes of cell levels. Most earlier

works on WOM codes focus on their worst-case performance. In this work, we study the average

number of writes of WOM codes, assuming on each write iteration the input alphabet is fixed. We

model the WOM writing process as a Markov chain problem, and present techniques to evaluate

the number of successful writes in average. Several code constructions are compared. A greedy

algorithm is given to search for the optimal updating function of a given WOM labeling.

5.1 Introduction

Write-once memory (WOM) codes have been extensively studied as a coding technique

for data storage with one-time programming properties, e.g., punch cards, optical disks, and flash

memories. Flash memories are now the most widely used non-volatile memories due to their fast

read/write speed, low power consumption, and better data integrity. However, the limited lifetime

113
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and the high cost per bit are two main properties that are less appealing than hard-disk drives. One

of the most prominent features of flash memories is the asymmetry in programming and erasing.

Namely, the level of flash memory cells can be easily increased by injecting electrons to their

floating gates; however, to decrease the level of a single cell, the whole block of cells (∼ 106 cells)

has to be erased and reprogrammed. The block erasure operation is not only time-consuming,

but degrades the performance of flash memory cells as well. A typical 4-level flash cell can

tolerate approximately 103 to 104 erasures before it no longer could be used due to the heavy

programming noise at the end of its lifetime.

Considerable progress has been made to construct binary and non-binary WOM codes

since the pioneering work in [39] and [55]. Different constructions based on algebraic codes [25],

[59], and with error correction capability [60] were studied. For multi-level representation, WOM

codes based on lattices were studied in [28], [7] and [8]. Some of the above codes have very good

rate (close to capacity in [55]) and low encoding and decoding complexity.

Note that in all works mentioned above, it is assumed that the WOM codes should have t

writes (i.e. information updating cycles) for the worse case. In this paper, we study an alternate

criterion of WOM codes, that is, the average number of writes before an erasure is required.

This criterion is reasonable because the worst case does not represent a typical sequence of

information stored. If we assume the information message follows a distribution over a finite

set Σ, then the average number of writes would be positively related, in particular linearly, to

the expected lifetime of flash memory cells. Some initial results have been presented in [12]

on the average-case performance of floating codes. In this paper, we focus on developing tools

to evaluate the average number of writes of different WOM codes. The paper is organized as

follows. In Section 5.2 we mathematically model the WOM codes that will be used in this

work. In Section 5.3 we formally define the average number of writes of a given WOM code.

Then, we focus on lattice-based WOM codes, and develop recursive formulas to calculate their

average number of writes. In Section 5.4 we propose a greedy algorithm to search for the optimal

updating function for a given WOM labeling. The “optimality” is in the sense of maximizing the

number of successful writes in average-case. We also prove the optimality of the tile-labeling
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construction [8] when the alphabet size is 3. We conclude the paper in Section 5.5.

5.2 Preliminary

We assume that each memory cell can support q charge levels. Let [q] , {0, 1, · · · , q−1}.

The state of an n-cell memory unit is a vector of cell levels, denoted by x = (x1, ..., xn) ∈ [q]n.

A state y is accessible from state x if y < x, where “<” indicates yi ≥ xi, ∀i = 1, ..., n.

In the q-ary WOM model, messages can be stored on n cells under the restriction that the

cell levels can only be increased. The use of WOM code allows us to rewrite the same memory

cells for multiple times without violating the restriction. In this work, we assume that the set of

information messages to be stored in each write is fixed, and denoted as Σ.

The q-ary WOM code is defined by specifying a pair of decoding and updating functions.

The decoding function, Ψ : [q]n → Σ, maps each state of an n-cell memory to a message in Σ.

Notice that we do not need to know the write number in the decoding process since Σ remains the

same for each write iteration. The updating function Γ : [q]n × Σ→ [q]n generates the new cell

levels given the current state and the message to be stored. For a successful write, the updating

function finds an accessible state that carries the desired message, i.e. y = Γ(x,m) < x. If

such a state does not exist, an erasure is required. For simplicity, we denote this process as

Γ(x,m) = D, where D is an imaginary state that represents an erasure. The decoding and the

updating functions need to be consistent, i.e. Ψ(Γ(x,m)) = m, for all successful writes. A

t-write WOM code can guarantees t writes in the worst scenario.

5.3 Average Number of Writes of WOM Codes

In some works, a t-write WOM code is constructed by designing disjoint subsets of states

for each write iteration. Therefore, the expected performance of such codes is the same as the

worst case. In this paper, since we assume Σ is fixed for every write, the WOM code can reuse

its current state, if the incoming message is the same as its current label. By this assumption, a

t-write WOM code is possible to accommodate more number of writes.
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Suppose that M = {Mi}∞i=1 is a random process, where Mi is drawn i.i.d. from Σ

following a probability mess function p. For a WOM code(Ψ,Γ), define the random time,

T : [q]n ×M → Z, to be the number of successful writes starting from a state x ∈ [q]n for a

given message sequence m ∈M.

Definition2. The average number of writes from a state x, denoted as W(x), is the expectation

of the number of writes before an erasure is required. Mathematically,

W(x) =
∑

m∈M
Pr(m)T (x,m), (5.1)

The average number of writes of a WOM code is W = W(0), where 0 is the all-zero state.

The WOM code writing process can be modeled as a Markov chain. Let V = [q]n ∪D

be the set of possible states. The set of edges E is defined by

E = {(x,y) ∈ V 2 : ∃m ∈ Σ s.t. Γ(x,m) = y}. (5.2)

Given a message sequence m ∈ M, the states visited at each write form a random process

{Xi}∞i=0, Xi ∈ V . The transition probability associated with an edge (x,y) ∈ E is defined by

Pr(x,y) = Pr(Xi+1 = y|Xi = x) (5.3)

=


p(Ψ(y)) if y 6= D∑
m:Γ(x,m)=D

p(m) if y = D.
(5.4)

Then, the random time T is the number of successful writes when {Xi} first hits D, i.e.

T = min{i : Xi = D} − 1. (5.5)
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Since T is a non-negative random variable, we have

E[T ] =
∞∑
i=0

iPr(T = i) =
∞∑
i=0

Pr(T > i) =
∞∑
i=1

Pr(T ≥ i). (5.6)

Let Q denote the qn×qn transition matrix indexed by the states in V \{D} so that Qxy = Pr(x,y)

for all states x,y 6= D. Theorem 1 shows how to calculate W(x) by using Q.

Theorem1. The average number of writes starting from state x can be calculated by

W(x) =
[
(I−Q)−1Q · 1

]
x
, (5.7)

where 1 is the all-one vector of length q2, [v]x represents the entry in vector v indexed by x.

Proof. Let Prx(·) and Ex[·] denote the probability and expectation given the initial state X0 = x,

respectively. By definition of T ,

Prx(T ≥ i) = Pr(X0 6= D, ...,Xi 6= D|X0 = x)

= [Qi1]x. (5.8)

According to (5.6), we have

W(x) = Ex(T ) =
∞∑
i=1

[Qi1]x = [(I−Q)−1Q · 1]x (5.9)

For WOM codes with large amount of states, the calculation of (I −Q)−1 is compu-

tationally forbidden. We show that for some highly structured lattice WOM code, a recursive

formula can be used to calculate the number of average write for each state.

Lemma1. The average number of writes satisfies

W(x) =
∑

m∈Σ:Γ(x,m)6=D

Pr(m)[1 + W( Γ(x,m) )]. (5.10)
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Proof. Suppose X0 = x. By first step analysis, we have

Ex[T ] =
∑

y∈V :Qxy>0

QxyE[T |X0 = x, X1 = y]. (5.11)

If the incoming message leads to an erasure, then

E[T |X0 = x, X1 = D] = 0

by definition. For X1 6= D,

E[T |X0 = x, X1 = y] = 1 + E[T |X0 = y].

The Lemma is obtained by considering these two cases.

Remark5. In [?], the authors introduce the write-constrained memory (WCM) model, where

the transitions between states are associated with a costs. We find that Lemma 1 can be easily

extended to WCM to evaluate the average cost, by changing 1 + W(x) to c+ C(x), where c and

C represent the transition cost and accumulated average-cost, respectively.

We then give two WOM codes to show how to use the recursive formula to obtain the

closed form of W. In these examples, we assume p(m) is uniformly distributed. The simplest case

is when n = 1. Using only one cell, each message has to result in a different charge increments

ranging from 0 to |Σ| − 1, to guarantee b(q − 1)/(|Σ| − 1)c writes in the worst case.

Theorem2. Let ai = W(q − 1− i) and k = |Σ|. For i ≤ k − 1,

ai =

i+1∑
j=1

(
i+1
j

)
(k − 1)j

, (5.12)

and for i ≥ k, ai = 1 +
∑i

j=i−k+1 aj .
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Proof. By Lemma 1, we have

ai =

min{k−1,i}∑
j=0

1

k
(1 + ai−j) (5.13)

We use the mathematical induction to prove the case when i ≤ k − 1. It is obvious that

a0 = 1
k (1 + a0)⇒ a0 = 1

k−1 . Assume (5.12) is true for states up to i. Then for i+ 1,

ai+1 =
i+1∑
j=0

1

k
(1 + ai+1−j) = ai +

1

k
(ai+1 + 1). (5.14)

Rearrange the equation,

ai+1 =
k

k − 1
ai +

1

k − 1

=
i+1∑
j=1

(
i+1
j

)
(k − 1)j

+
i+2∑
j=2

(
i+1
j−1

)
(k − 1)j

+
1

k − 1

=

i+1∑
j=1

(
i+1
j

)
+
(
i+1
j−1

)
(k − 1)j

+
1

(k − 1)i+2

=

i+2∑
j=1

(
i+2
j

)
(k − 1)j

.

Therefore (5.12) is also correct for i+ 1.

Tile-labeling is proposed in [8] to construct t-write WOM codes on 2 cells. We will show

that such a construction method leads to a recursive structure that generating function can be

developed to calculate W. Consider the case when n = 2 and Σ = {1, 2, 3}. Fig. 5.1 shows an

example of tile-labeling when q = 4. The decoding function is obtained by covering the q × q
grid with the L-shape tile whose size is 3. The centers of the tile copies, which are the cubes

labeled by 1, form a lattice whose generator matrix is

G =

 1 1

2 −1

 (5.15)

Since |det(G)| = 3 = |Σ|, the tile copies could disjointly fill the whole q × q grid. The
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Figure 5.1: Example of tile labeling when q = 4 and Σ = {1, 2, 3}.

updating function Γ((x1, x2),m) chooses the accessible state x′ such that Φ(x′) = m and

max(x′1 − x1, x
′
2 − x2) is minimized. It is easy to see that under such a rule, the updating region

for each state is regularized: For the states on the right and upper boundaries (i.e. x1 = q − 1 or

x2 = q − 1, respectively), only one cell is allowed to update, and the increment is bounded by 2;

For other states (i.e. x1, x2 < q− 1), the updating region is an L-shape tile centered at the current

state. The cell level increment, therefore, is bounded by 1. It can be proved that this construction

can guarantee b3(q − 1)/2c writes.

Theorem3. Let ai,j = W(q − i− 1, q − j − 1) for 0 ≤ i, j ≤ q − 1. Let bi = ai,0 = a0,i. Let

A(x, y) and B(x) be the generating function of ai,j and bi, respectively. Then

A(x, y) =

3xy
(1−x)(1−y) + (2− x)B(x) + (2− y)B(y)− 1

2− x− y , (5.16)

where

B(x) =
x2 + x+ 1

(1− x)2(2 + x)
. (5.17)

Proof. By Lemma 1, we have the initial conditions: b0 = a0,0 = 1
2 , b1 = a1,0 = a0,1 = 5

4 . For

i > 1, j = 0, we have the recursive formula

bi =
1

2
(3 + bi−1 + bi−2). (5.18)
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Let B(x) =
∑∞

n=0 bnx
n. Then

B(x)− b1x− b0 =

1

2

(
3
∞∑
n=2

xn + x (B(x)− b0) + x2B(x)

)
, (5.19)

which leads to (5.17).

Similarly, for i, j ≥ 1 we have

ai,j =
1

2
(3 + ai−1,j + ai,j−1) (5.20)

Let A(x, y) =
∑

m≥0

∑
n≥0 am,nx

myn, we have

A(x, y)−B(x)−B(y) +
1

2
=

1

2

(
3xy

(1− x)(1− y)
+ x[A(x, y)−B(x)] + y[A(x, y)−B(y)]

)
, (5.21)

which leads to (5.16).

Remark6. Evaluating the generating functions we obtain

bi = i+ 1− 2

3
+

(−1)i

3 · 2i+1
, (5.22)

ai,i = T1 + 4T2 − 2T3 − T4, (5.23)
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Table 5.1: W of q × q t-write WOM code with tile labeling.

q 4 5 6 7 8
t 4 6 7 9 10
W 8.38 11.22 14.09 16.97 19.85

1 2 3

4 5 6

7 8 1 2 3

4 5 6

7 8 1 2 3

4 5 6

7 8 1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

4 5 6

7 8

2 3

5 6

8

3

6

7 8

1 2 3

1 2 3

4 5 6

1 2

4 5

7 8

1

4

7

1
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(b) t = 5,W = 7.88

Figure 5.2: Two WOM codes for q = 9 and |Σ| = 8.

where

T1 =
i−1∑
j=0

2i−j−2∑
l=i−j−1

3

2l+1

(
l

i− j − 1

)
, (5.24)

T2 =
i∑

j=0

bj ·
1

22i−j+1

(
2i− j
i

)
, (5.25)

T3 =
i−1∑
j=0

bj ·
1

22i−j

(
2i− j − 1

i

)
, (5.26)

T4 =
1

22i+1

(
2i

i

)
. (5.27)

Recall that for the q × q WOM code, W = a(q − 1, q − 1). Table ?? lists the number of writes in

the worst and average cases for different cell levels.

Remark7. For the generalized two-dimensional tile-labeling with larger alphabet [8], the recur-

sive formula also works, and can be naturally applied to calculate W.
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5.4 Construct WOM Codes to Maximize W

A WOM code designed to guarantee larger number of writes in the worst case may have

a bad performance in average. For example, Figs. 5.2 compare the performances of two WOM

codes in the worst-case and average-case. Construction 1 in Fig. 5.2(a) is a tile-labeling method

that can guarantee t = 4 writes. The rewriting region is the shifted L-shape tile centered at the

current state. Construction 2 in Fig. 5.2(b), proposed in [7] and [8], has the optimal worst-case

performance. The updating region for each write iteration is indicated by the thick boundaries

as shown in the figure. Under such updating rule, construction 2 can guarantee t = 5 writes.

However, in average it can support W = 7.88 writes, which is smaller than that of construction 1.

Generally it is very hard to find the optimal (Φ,Γ) pair that achieves the largest W for

a given q and Σ. However, for a given decoding function Φ, the optimal updating function that

leads to the largest W could be found by using greedy search. Algorithm 2 gives the pseudocode

of greedy search when n = 2. The search starts from state (q−1, q−1), and reversely scans each

row. When it visits state (i, j), all accessible states are found and denoted as A. The search order

guarantees that the states in A have been visited before reaching to (i, j). If the incoming message

equals to m∗ = Φ(i, j), no cell level change is needed. For other messages m ∈ Σ\{m∗}, we

find the states in A that are labeled m. To maximize W(i, j), we choose the state (xm, ym) ∈ B

which has the largest W(xm, ym) and set Γ((i, j),m) = (xm, ym). Finally, the average number

of writes at the current state is updated as

W(i, j) =

∑
m∈Σ∗\{m∗}

p(m)(W(xm, ym) + 1) + p(m∗)

1− p(m∗) (5.28)

where Σ∗ ⊆ Σ consists of messages that do not lead to an erasure. It is easy to generalize

Algorithm 2 to the case n > 2.

Theorem4. For a given Φ, the updating function Γ found by Algorithm 2 maximizes W(x), ∀x ∈

[q]n.

Proof. We prove the theorem by induction. First notice that W(q − 1, q − 1) is upper bounded
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Algorithm 2 Greedy search for optimal updating function
1: Input: a WOM labeling Ψ
2: Output: the updating function Γ that maximizes W
3: W = q × q zero matrix
4: Begin:
5: for i = q − 1 to 1 do
6: for j = q − 1 to 1 do
7: m∗ = Φ(i, j)
8: Γ((i, j),m∗) = (i, j)
9: w = p(m∗)

10: A = {(x, y) : (x, y) < (i, j)}
11: for m ∈ Σ\m∗ do
12: B = {(x, y) ∈ A : Φ(x, y) = m}
13: if B 6= ∅ then
14: (xm, ym) = arg max(x,y)∈BW (x, y)
15: Γ((i, j),m) = (xm, ym)
16: w = w + p(m)[W (xm, ym) + 1]
17: end if
18: end for
19: W (i, j) = w/(1− p(m∗))
20: end for
21: end for
22: end

by p(m)/(1− p(m)), where m = Φ(q − 1, q − 1). Assume Algorithm 2 maximizes W(y) for

all accessible states y < x. Then, by choosing the largest W(xm) for each writable message m,

W(x) is also maximized. To see this, assume there is another Γ′ giving a larger W(x). Then

there must exist an accessible state x′m labeled by m and W(x′m) >W(xm), but not chosen as

the next state in Γ. However, it conflicts with the greedy setting. Therefore, the assumption is not

true. Updating function Γ maximizes W(x) for all states x.

Corollary1. W(x) ≥W(y), if x < y.

Proof. Elementary. Notice that accessible states of x is also accessible from y.

Theorem5. Assume |Σ| = 3, and p(m) is a uniform distribution. The tile-labeling based WOM

construction given in Fig. 5.1 has the best average-case performance, i.e., W is maximized.

Proof. We aim to show that the (Φ,Γ) pair in tile-labeling results in the largest W. By Corollary
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1, it is easy to see that Γ is the greedy search result. We then prove that Φ achieves the largest W

by induction. First, tile-labeling on 2× 2 grid maximizes W(x) for every x ∈ [2]2. Assume the

statement is also true for the q1 × q2 grid. Consider the labeling on grid (q1 + 1)× (q2). We use

tile-labeling to assign messages to the cell states (i, j), 1 ≤ i ≤ q1, 0 ≤ j ≤ (q2 − 1). Then, for

the state x = (0, q2 − 1), to achieve the largest W(x), the optimal way is to assign transitions

from x to states (1, q2 − 1) and (2, q2 − 1), since they have the largest two W. The assignment is

possible if these three states carry different messages, which is satisfied by the tile-labeling rule.

Next, for the state x = (0, q2−2), we aim to assign it a different message from those of (1, q2−2)

and (0, q2 − 1), since these two states have the largest W. These three states form an L-shape tile.

The step is repeated until all the states (0, j) are labeled. The resulting decoding function is the

same as the tile-labeling function Φ. Similarly, we can extend the result to q1 × (q2 + 1). From

the discussion above, we can see that tile-labeling maximizes the average-case performance for

every state.

Remark8. Notice that if p(m) is not uniform, tile-labeling WOM may not be the optimal for

|Σ| = 3.

5.5 Conclusion

In this paper, we mathematically define the average number of writes, which is a quantity

positively related to the average-case performance of WOM codes. For highly structured tile-

labeling WOM codes, we develop recursive formulas to calculate their average number of writes,

and present the analytical results. Generally it is very difficult to construct WOM codes that

achieve the best average-case performance. However, for a given WOM labeling, greedy search

could be used to find the optimal updating function that leads to the largest average number of

writes. We have proved that tile-labeling construction is optimal when the alphabet size is 3.

For alphabet with larger size, it remains an open problem to find the optimal WOM codes in

average-case performance.
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