
UCLA
UCLA Electronic Theses and Dissertations

Title
Cryptographic Protocols with Strong Security: Non-Malleable Commitments, Concurrent
Zero-Knowledge and Topology-Hiding Multi-Party Computation

Permalink
https://escholarship.org/uc/item/1fj534j8

Author
Richelson, Silas

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1fj534j8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Cryptographic Protocols with Strong Security: Non-Malleable Commitments,

Concurrent Zero-Knowledge and Topology-Hiding Multi-Party Computation

A dissertation submitted in partial

satisfaction of the requirements for the

degree Doctor of Philosophy in Mathematics

by

Silas Isaac Richelson

2014

c© Copyright by

Silas Richelson

2014

ABSTRACT OF THE DISSERTATION

Cryptographic Protocols with Strong Security: Non-Malleable Commitments,

Concurrent Zero-Knowledge and Topology-Hiding Multi-Party Computation

by

Silas Isaac Richelson

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2014

Professor Rafail Ostrovsky, Chair

Abstract. The idea of protocol security is fundamental in cryptography, and the crypto-

graphic literature is full of di�erent notions of security and di�erent models in which these

notions can be achieved. This thesis contains three distinct lines of work, connected by

the commonality that the security that they achieve is relevant in today's world of highly

interconnected and parallelized networking. We make advancements to the well-studied

non-malleable and concurrent security models, and in addition we formulate a new security

notion of our own called �topology hiding security.� Speci�cally, we give a new protocol for

non-malleable commitment, a new model for constant round concurrent zero knowledge, and

a new multi-party computation protocol which achieves topology hiding security for a large

family of underlying network graphs.

ii

The dissertation of Silas Isaac Richelson is approved.

Haruzo Hida

Ciprian Manolescu

Vwani P. Roychowdhury

Rafail Ostrovsky, Committee Chair

University of California, Los Angeles

2014

iii

Contents

Introduction 1

1 Preliminaries 3

1.1 Basic Notations . 3

1.2 Cryptographic Building Blocks . 4

1.3 Commitment: �The Digital Analogue of a Sealed Envelope� 6

1.4 Zero-Knowledge: �Proofs that Yield Nothing but their Validity� 10

2 An Algebraic Approach to Non-Malleability 13

2.1 Introduction . 13

2.1.1 Non-Malleable Commitments . 13

2.1.2 Prior Work . 14

2.1.3 Our Results . 15

2.1.4 The New Protocol . 18

2.1.5 Proving Non-Malleability . 19

2.2 Non-Malleable Commitments . 24

2.2.1 De�nition of Non-Malleable Commitments 25

2.2.2 Malleability of Aforementioned Schemes 27

iv

2.3 A New Non-Malleable Commitment Scheme 28

2.3.1 Tags in Error Corrected Form . 28

2.3.2 The Protocol . 30

2.4 Proof of Non-Malleability . 33

2.4.1 The Extractor E . 34

2.4.2 Useful and Interesting Transcripts . 39

2.4.3 Proof of Lemma 2.1 − Part 0: Proof Overview 42

2.4.4 Proof of Lemma 2.1 − Part 1: Analyzing Dependencies 44

2.4.5 Proof of Lemma 2.1 − Part 2: Reductions to the Hiding of 〈C,R〉 . . 49

2.4.6 Many-Many Non-Malleability . 56

2.5 Optimizing Communication . 58

2.5.1 Mixed Dependencies . 59

2.5.2 Proof of Non-Malleability of 〈C,R〉MANY−COORDS 67

2.6 Non-Malleability in 4-Rounds . 71

3 ConcurrentZero-Knowledge in theBoundedPlayer

Model 75

3.1 Concurrent Zero-Knowledge . 75

3.1.1 Round-e�cient cZK in relaxed models. 76

3.2 The Bounded Player Model . 78

3.2.1 cZK in the BP Model . 78

3.2.2 Techniques . 79

3.2.3 Formal De�nitions . 80

3.3 The ω(1)−Round Protocol . 82

3.3.1 Building Blocks . 82

v

3.3.2 The Protocol . 84

3.3.3 Proof of Concurrent Soundness . 86

3.3.4 Proof of Concurrent Zero Knowledge 92

3.4 The Constant Round Protocol . 99

3.4.1 Building Blocks . 99

3.4.2 The Protocol . 100

3.4.3 Proof of Concurrent Soundness . 101

3.4.4 Proof of Concurrent Zero-Knowledge 104

3.5 Concurrent Self-Composition in the BP Model 111

3.6 Impossibility Results in Bounded Player Model 115

4 Topology-Hiding Multi-Party Computation 121

4.1 Introduction . 121

4.1.1 Our Contributions . 123

4.1.2 Related Work . 124

4.2 Topology-Hiding Security . 126

4.2.1 Graph Related Notions . 126

4.2.2 Topology Hiding Security − The Game-Based Version 127

4.2.3 UC Security . 128

4.2.4 Topology Hiding Security − The Simulation-Based Version 131

4.2.5 Topology Hiding Security Implies IND-CTA Security 132

4.3 Topology Hiding MPC Against Semi-Honest Adv 133

4.3.1 High-Level Protocol Overview of Our Basic Protocol 134

4.3.2 Topology Hiding Securely Realizing LMPC 136

4.3.3 The Functionalities LKeyGen and Lbc-helper 138

4.3.4 Realizing Fbroadcast in LMPC−hybrid model 139

vi

4.3.5 Allowing for Corruption of Whole Neighborhoods 143

4.4 Topology Hiding MPC Against Fail-Stop Adv 146

4.4.1 Impossibility Result . 147

4.4.2 Feasibility Result . 150

Bibliography 152

vii

List of Figures

1.1 Hiding Game . 8

1.2 Naor's Statistically Binding Bit Commitment. 8

1.3 Elgamal Commitment. 9

2.1 Protocol with Man-in-the-Middle . 20

2.2 Non-malleable commitment scheme 〈C,R〉. 31

2.3 The Extractor E. 36

2.4 : Updated NMC scheme 〈C,R〉MANY-COORDS. 60

2.5 : 4-round non-malleable commitment scheme 〈C,R〉OPT. 72

2.6 4-round non malleable zero-knowledge argument (P, V). 74

3.1 The Bounded Player Functionality FN
bp. 81

3.2 Rsim - A variant of Barak's relation [PR05a] 85

3.3 Perfect Bounded cZK Protocol 〈PpZK, VpZK〉N 86

3.4 Protocol 〈P, V 〉−cZK in the BP Model . 87

3.5 Protocol 〈P, V 〉− Constant Round cZK in the BP Model 101

4.1 The functionality Fgraph. 132

4.2 The functionality LMPC. 137

4.3 The protocol Π
(i,j,j′)
msg-pass. 137

4.4 The functionality LKeyGen. 139

viii

4.5 The functionality Lbc-helper. 140

4.6 The (LKeyGen||Lbc-helper)-hybrid protocol Πr
broadcast. 141

4.7 The functionality LΠ-next. 144

4.8 The (LKeyGen||LΠ-next)-hybrid protocol Π′. 145

4.9 Graphs used by A in proof of Theorem 4.1. 150

ix

Acknowledgements

First and foremost, I would like to thank my advisor Rafail Ostrovsky. Without Ra�'s

patience and generosity with his time and positive energy, I would not have been able to

complete this thesis. I feel I owe Ra� an additional special thanks as it was because of his

recommendation that I decided to pursue cryptography in the �rst place. In working with

him for just four years I have learned so much, both as a cryptographer and as a person,

and I look forward to continuing to work with him in the future.

Secondly I would like to thank Alon Rosen. I went to visit Alon at the Herzliya

Interdisciplinary Center (IDC) for an incredibly fun and productive seven months. Alon

opened me up to new ideas and an entirely new approach to cryptography. It was an honor

to study under Alon as he is the protocol master. And his refreshing attitude toward research

makes even the unsuccessful days and weeks enjoyable. I also look forward to a future full

of interaction and collaboration with Alon.

Additionally, I would like to thank all the people who made working at UCLA and

IDC so pleasant. Special thanks goes to Maggie Albert and Martha Contreras for helping

me stay on track and for always being friendly faces around the department. I would also

like to thank the group at IDC: Hai Brenner, Margarita Vald, Ilan Orlov, Tal Moran, Alon

Rosen, and the many students whose visits overlapped with mine. Working with you has

taught me the power and importance of collaboration.

I thank my coauthors, Vipul Goyal, Abhishek Jain, Tal Moran, Ilan Orlov, Rafail

Ostrovsky, Alon Rosen, Margarita Vald and Ivan Visconti, as working with you has made

this thesis possible. In particular, chapter three contains joint work with Goyal, Rosen and

Vald entitled �An Algebraic Approach to Non-Malleability�; chapter four is a combination

of the works:

x

• Vipul Goyal, Abhishek Jain, Rafail Ostrovsky, Silas Richelson, Ivan Visconti. �Con-

current Zero-Knowledge in the Bounded Player Model.� TCC, pages 60-79. 2013.

• Vipul Goyal, Abhishek Jain, Rafail Ostrovsky, Silas Richelson, Ivan Visconti. �Con-

stant Round Concurrent Zero-Knowledge in the Bounded Player Model.� Asiacrypt,

pages 20-41. 2013.

Finally, chapter �ve is joint work with Moran and Orlov entitled �Topology-Hiding MPC�.

I thank my friends in the UCLA math department, as without you I never would have

made it through. Because of all of you, Los Angeles feels like home. A special thanks goes to

the legendary Jane Sherman. I also thank Jukka Virtanen for teaching me how to navigate

the math department in a professional manner, and for sharing his love of poetry with me.

Finally, I would like to thank my family, whose love and support knows no bounds,

and Natalia for being so awesome.

xi

Bibliographical Sketch

I received my BA in 2008 from Harvard University. My publications include:

• Vipul Goyal, Abhishek Jain, Rafail Ostrovsky, Silas Richelson, Ivan Visconti. �Con-

current Zero-Knowledge in the Bounded Player Model.� TCC, pages 60-79. 2013.

• Vipul Goyal, Abhishek Jain, Rafail Ostrovsky, Silas Richelson, Ivan Visconti. �Con-

stant Round Concurrent Zero-Knowledge in the Bounded Player Model.� Asiacrypt,

pages 20-41. 2013.

xii

Introduction

When arguing for the security of a cryptographic protocol, Π, one generally considers

an adversary A who attacks Π. Π is considered secure if any A who can mount a successful

attack, can also do something unlikely − like factor integers in polynomial time. Originally,

security was considered in the standalone model where A was only allowed to execute the

protocol in his attack. However, in an attempt to achieve security notions which are useful

in today's massively interconnected and highly parallelized world, new and more stringent

security models were considered. One famous example is concurrent security, which asks

the question �what if A can run many executions of the protocol at the same time?� Non-

malleability goes one step further, asking �what if A can run many protocol executions, and

assume di�erent roles in each? Can he use information obtained in one execution to a�ect

his other executions?�

This thesis contains three distinct lines of work, connected by the common theme of

achieving levels of security which are relevant to today's world. We make advancements to

the well-studied non-malleable and concurrent security models, and in addition we formulate

a new model of our own. Speci�cally, in chapter three we describe a new non-malleable com-

mitment scheme which is vastly superior to all existing non-malleable commitment schemes

in terms of round, communication and computation complexity as well as simplicity.

Then in chapter four we give new protocols for concurrent zero-knowledge. The problem

of obtaining constant round zero-knowledge has been a prized open problem for more than

1

a decade and has led to advancement in the theory of protocols. A large body of work

is devoted to various relaxations of the plain model in which concurrent zero-knowledge is

possible. Our protocols are in another such model called the bounded player model, which

is arguably closer to the plain model than all others. We achieve constant round concurrent

zero-knowledge in the bounded player model.

Finally, we examine the security question �Can many parties who are connected to each

other by some incomplete network graph G run multi-party computation protocols which

hide the structure of G?� We feel this is an important security direction to pursue in today's

world where the relationship between nodes in a network might re�ect sensative information.

This question has received very little attention in the literature, and to our knowledge has

never been considered in the computational setting where the techniques of cryptography

apply. We formulate the notion of topology hiding security and give a protocol which achieves

it for a large family of network graphs.

2

Chapter 1

Preliminaries

1.1 Basic Notations

Throughout the rest of the paper we use the following notations. Let λ be the security

parameter. For positive integer n ∈ N, let [n] = {1, . . . , n}. We use ⊕ to denote the bitwise

XOR of strings operation. A function ε : N → R+ is negligible if it tends to 0 faster than

any inverse polynomial, i.e., for every constant c there exists nc ∈ N such that ε(n) < n−c

for all n > nc. We use negl(·) to specify a generic negligible function. We say that an event

occurs with high probability (whp) or overwhelming probability if its probability of occurring

is 1− negl(·). If a function is not negligible we say it is noticeable.

Let {Xn} and {Yn} be families of probability distributions where for each n ∈ N, Xn

and Yn are distributions over {0, 1}p(n) for a polynomial p. We say that {Xn} and {Yn} are

computationally indistinguishable, written {Xn} ≈c {Yn} (or just Xn ≈c Yn), if there exists

a negligible function ε such that for all probabilistic polynomial time (PPT) algorithms A

and large enough n,

∣∣∣∣Prx←Xn
(
A(x) = 1

)
− Pry←Yn

(
A(y) = 1

)∣∣∣∣ < ε(n).

3

We will speak (usually informally) about interactive protocols. For our purposes, all protocols

take place between two parties, modelled as interactive Turing machines. At any point during

or after the protocol's execution, the view of a party consists of the party's input, randomness

and all of the messages it has received, catalogued appropriately so that the order of messages

is clear. The notion of a party's view extends to the setting where many executions of the

protocol are executed in an arbitrarily (and possibly adversarially) selected ordering.

1.2 Cryptographic Building Blocks

One-Way Functions. We say that f : {0, 1}∗ → {0, 1}∗ is a one-way function (OWF) if

it can be computed in polynomial time, but for any PPT algorithm A,

∣∣∣∣Pr
y
R←f(Uλ)

(
A(y) ∈ f−1({y})

)∣∣∣∣ = negl(λ),

where Uλ is the uniform distribution on {0, 1}λ.

Pseudorandom Generators. We say that a deterministic polynomial time computable

functionG : {0, 1}n → {0, 1}N is a pseudorandom generator (PRG) if the following properties

hold.

Length Extending: N > n;

Pseudorandomness: G(Un) ≈c UN , where Un and UN are the uniform distributions

on {0, 1}n and {0, 1}N , respectively.

The notion of a PRG was put forward in [Yao82a]. PRGs exist if and only if one-way

functions exist [HILL99].

4

Collision Resistant Hash Functions. An e�ciently computable function ensemble H =

{hα}α∈{0,1}∗ where hα : {0, 1}∗ → {0, 1}|α| is a family of collision resistant hash functions

(CRHF) if for all PPT algorithms A,

∣∣∣∣Pr
α
R←{0,1}λ

(
A(α) = (x, y) st hα(x) = hα(y)

)∣∣∣∣ = negl(λ).

Error Correcting Codes. Error correcting codes (ECCs) are fundamental primitives,

generally formalized as functions which map a message to a codeword vector and have the

property that any distinct messages map to codewords that di�er on many coordinates. The

ECCs we will use have message space {0, 1}k and codeword space Fn for a �nite �eld F and

maps message c ∈ {0, 1}k to codeword ĉ ∈ Fn. Two important quantities of an ECC are the

rate, k
n log q

, and the distance, de�ned by

∆ := min
c 6=c′∈{0,1}k

#
{
i : ĉi 6= ĉ′i

}
.

Often the normalized distance ∆
n
is used instead.

The rate and distance together determine the quality of a code. One generally wishes

to maximize the distance while keeping the rate as close to 1 as possible. This problem is

surprisingly challenging, and the construction of a family of codes whose rate and normalized

distance simultaneously do not tend to 0 was a major achievement in the early theory of

coding. We will use Reed-Muller codes, a well-known example of such codes which are the

multivariate extensions of the classical Reed-Solomon codes [RS60].

When using a Reed-Muller code we will identify our usual message space {0, 1}k with

F[X]≤d = F[X1, . . . , Xs]
≤d, the set of s−variate polynomials of degree at most d over F.

This implicitly assumes that k ≤
(
d+s
s

)
log |F|. For a message c ∈ {0, 1}k identi�ed with the

5

polynomial c(X), we de�ne the codeword ĉ to be the evaluation vector

ĉ =
(
c(a)

)
a∈Zsq
∈ Zqsq .

Fact 1.1 (Reed-Muller Distance). The code RM[d, s]q has normalized distance at least

1− d
q
.

Secret Sharing. A secret sharing scheme gives a way to break a secret into shares in such

a way so that each individual share reveals nothing about the secret, but with all the shares

together, one can reconstruct the secret. We will use a packed variant of Shamir's secret

sharing scheme [Sha79] due to Franklin and Yung [FY92].

The Franklin-Yung packed secret sharing scheme is parametrized by the pair (d, n).

The message space is F` for some �eld F and ` ≤ d + 1. Given m = (m1, . . . ,m`) ∈ F`

one constructs n shares of m, denoted [m] =
(
[m]1, . . . , [m]n

)
∈ Fn by choosing a random

degree d polynomial f(x) ∈ F[x] such that f(βj) = mj for all j ∈ [`], and setting the share

[m]i = f(αi) where β1, . . . , β`, α1, . . . , αn ∈ F are public values (roots of unity are often

chosen in implementations). The security guarantee is that d+ 1− ` or fewer shares give no

information about the secret m, while d+ 1 or more allow one to reconstruct m entirely.

1.3 Commitment: �The Digital Analogue of a Sealed En-

velope�

A commitment scheme is a two-phase interactive protocol between two parties, a committer

C and receiver R. We denote R's view after the �rst phase (called the commit phase) by

Com(m; r) wherem and r are C's secret input and randomness, respectively. In the decommit

phase, C reveals m in such a way that R can verify that Com(m; r) is a commitment to m. In

6

all of the commitment schemes we will encounter, the decommit phase consists simply of C

sending (m, r) to R. The quantity Com(m; r) must satisfy two security properties: binding

and hiding. Informally, binding requires that after the commit phase, C cannot decommit to

any value other than m. Hiding stipulates that Com(m; r) gives R no information about m.

As usual, these properties can hold computationally, statistically or perfectly. The statistical

binding variant is de�ned formally below.

De�nition 1.1 (Statistically Binding Commitment Scheme). Let 〈C(m),R〉 be a two

phase protocol between C and R where m is C's secret input. Let z = Com(m; r) denote

R's view after the �rst phase. Let (m,w) = Decom(m, r, z) be R's view after the second

phase. We say that 〈C(m),R〉 is a statistically binding commitment scheme if the following

properties hold:

Correctness: If parties follow the protocol, then R(z,m,w) = 1;

Binding: With high probability over R's randomness, there does not exist a (m′, w′)

with m′ 6= m such that R(z,m′, w′) = 1;

Hiding: For all m0 6= m1, {Com(m0; r)}r ≈c {Com(m1; r)}r.

The Hiding Game: The computational hiding property above is often formalized as a

game between a challenger C and adversary A, where A presents C with two messages, C

commits to one of them and A tries to guess which one, winning if it guesses correctly. A

more formal description is given in Figure 1.1. The equivalence of these notions is easy to

see: an adversary who can win the game with probability noticeably better than 1/2 can

be used to break the hiding property in De�nition 1.1. The upside, as we will see later on,

is that the game based interpretation is very �exible and easy to work with. During the

proof of our main result we will get a lot of milage out of considering di�erent versions of

the game, tailored for speci�c reductions.

7

C/b∈{0,1} A

A wins if b′ = b

(m0,m1)

Com(mb; r)

b′

Figure 1.1: Hiding Game

2-Round, Statistically Binding Commitment from PRG: Naor's two-round, statis-

tically binding bit commitment scheme [Nao91] is shown in Figure 1.2. This will be both a

major building block in our non-malleable commitment scheme, and one of two focal exam-

ples for us throughout this thesis. Among the appealing features of this particular scheme

are its simplicity and its reliance on the minimal assumption that one way functions exist.

Setup: Let G : {0, 1}λ → {0, 1}3λ be a length tripling PRG.

Commiter's Private Input: A bit m ∈ {0, 1} to commit to.

Commit Phase:

• R→ C (Initialization Message): sample and send a random σ ∈ {0, 1}3λ.

• C→ R (Commit Message): sample random s ∈ {0, 1}λ and send z = G(s)⊕mσ.

Decommit Phase:

• C→ R (Decommit Message): send (m, s).

• (Veri�cation): R checks the correctness of the commit message.

Figure 1.2: Naor's Statistically Binding Bit Commitment.

8

Binding: For z to be both a commitment to 0 and 1, there must exist s, s′ ∈ {0, 1}λ such

that G(s) ⊕ G(s′) = σ. However, the probability that a random 3λ−bit string is the

XOR of two values in the image of G is at most 22λ/23λ = negl(λ).

Hiding: The pseudorandomness of G ensures that z is indistinguishable from random, re-

gardless of m.

One can use Naor's bit commitment scheme to commit to a string, bit by bit. Moreover, the

same initialization message can be used across all instantiations.

Non-Interactive, Perfectly Binding Commitment from DDH: The Elgamal com-

mitment scheme [Elg85] is shown in Figure 1.3. This scheme will serve as the main building

block in our DDH-based instantiation. Elgamal commitment is perfectly binding, requires

only one round of communication, and its algebraic nature makes it highly compatible with

certain types of interactive proof systems called sigma protocols.

Setup: Let G be a DDH group with random public generators g, h ∈ G, but where x such
that h = gx is secret. Let q be prime such that q = |G|, so Zq is identi�ed with the
exponent group of G.

Commiter's Private Input: A value m ∈ Zq to commit to.

Commit Phase:

• C→ R (Commit Message): sample random r ∈ Zq and send (a, b) = (gr, hrgm).

Decommit Phase:

• C→ R (Decommit Message): send (m, r).

• (Veri�cation): R checks the correctness of the commit message.

Figure 1.3: Elgamal Commitment.

9

Binding: Note that (m, r) 7→ (gr, hrgm) is a bijection between Z2
q and G

2. It follows that

each (a, b) corresponds to exactly one pair (m, r).

Hiding: The DDH assumption ensures that (g, h, a, b) = (g, gx, gr, gxr) · (1, 1, 1, gm) is indis-

tinguishable from random regardless of m.

1.4 Zero-Knowledge: �Proofs that Yield Nothing but their

Validity�

Throughout this paper we make frequent use of zero-knowledge proofs. Our non-

malleable commitment scheme will use them, and we will spend an entire chapter looking at

a special type of zero-knowledge. In this section we introduce zero-knowledge, and several

related notions.

An interactive proof system for a language L is a protocol, 〈P, V 〉 in which a prover

P tries to prove to a veri�er V that an instance x is in L. After the protocol is complete

V outputs either 1 or 0, indicating that it either accepts or rejects P 's proof. Furthermore,

two properties are required:

Completeness: If x ∈ L and both parties follow the protocol then V accepts.

Soundness: If x /∈ L then even a cheating P ∗ who deviates arbitrarily from the protocol

cannot cause V to accept, except with negligible probability.

We say that 〈P, V 〉 is an interactive argument if soundness holds only against a computation-

ally bounded P ∗. In their groundbreaking work, Goldwasser, Micali and Racko� [GMR89]

put forth the notion of zero-knowledge, de�ned below. Informally, an interactive proof sys-

tem is zero-knowledge if, after the protocol is complete, a dishonest veri�er V ∗ has learned

nothing except the validity of the statement x ∈ L. In particular, V learns nothing about

10

any witness to the truth of x ∈ L that P might be holding. This is formalized by requiring

the existence of a simulator who gets as input x and a cheating veri�er V ∗, and outputs a

string that is indistinguishable from V ∗'s view in the real interaction.

De�nition 1.2 (Zero-Knowledge). Let 〈P, V 〉 be an interactive proof or argument system

for a language L ∈ NP. Fix any x ∈ L with witness w, known to P . Let VIEW〈P (w),V 〉(x)

be the random variable denoting V 's view after completing 〈P, V 〉 on common input x and

secret input w to P . We say that 〈P, V 〉 is zero-knowledge if there exists a simulator S which

on input x and a cheating veri�er V ∗, outputs a random variable VIEWS(V ∗,x) such that

{
VIEW〈P (w),V ∗〉(x)

}
≈c
{
VIEWS(V ∗,x)

}
.

It is known that zero knowledge proofs for all languages L ∈ NP exist if and only if OWFs

exist [GMW91, OW93].

We will also use the related but weaker notion of witness indistinguishability. We say

that an interactive proof or argument system 〈P, V 〉 is witness indistinguishable if for all

x ∈ L with witnesses w and w′,

{
VIEW〈P (w),V ∗〉(x)

}
≈c
{
VIEW〈P (w′),V ∗〉(x)

}
.

Finally, we say that 〈P, V 〉 is a proof or argument of knowledge if P proves not just

that x ∈ L but that it knows some witness w to this fact. This is formalized by demanding

that there exists an extractor E who takes as input a complete transcript of an accepting

proof and the prover P , and outputs a witness to the fact x ∈ L.

11

12

Chapter 2

An Algebraic Approach to Non-Malleability

2.1 Introduction

The notion of non-malleability is central in cryptographic protocol design. Its objective is to

protect against a man-in-the-middle (MIM) attacker that has the power to intercept messages

and transform them in order to harm the security in other instantiations of the protocol.

Commitment is often used as the paragon example for non-malleable primitives because of

its ability to almost �universally� secure higher-level protocols against MIM attacks.

2.1.1 Non-Malleable Commitments

Commitments allow one party, called the committer, to probabilistically map a message m

into a string, Com(m; r), which can be then sent to another party, called the receiver. In

the statistically binding variant, the string Com(m; r) should be binding, in that it cannot

be later �opened" into a message m′ 6= m. It should also be hiding, meaning that for any

pair of messages, m,m′, the distributions Com(m; r) and Com(m′; r′) are computationally

indistinguishable. The hiding property is formalized via a hiding �game" in which the ad-

versary wins if he can distinguish between Com(m; r) and Com(m′; r′) with non-negligible

13

advantage.

A commitment scheme is said to be non-malleable if for every message m, no MIM ad-

versary, intercepting a commitment Com(m; r) and modifying it at will, is able to e�ciently

generate a commitment Com(m̃; r̃) to a related message m̃. Interest in non-malleable com-

mitments is motivated both by the central role that they play in securing cryptographic

protocols under composition (see for example [CLOS02, LPV09]) and by the unfortunate

reality that many widely used commitment schemes are actually highly malleable. Indeed,

man-in-the-middle (MIM) attacks occur quite naturally when multiple concurrent execu-

tions of protocols are allowed, and can be quite devastating. Beyond protocol composition,

non-malleable commitments are known to be applicable in secure multi-party computa-

tion [KOS03, Wee10, Goy11], authentication [NSS06], as well as a host of other non-malleable

primitives (e.g., coin �ipping, zero-knowledge, etc.), and even into applications as diverse as

position based cryptography [CGMO09].

2.1.2 Prior Work

Since their conceptualization by Dolev, Dwork and Naor [DDN91], non-malleable commit-

ments have been studied extensively, and with increasing success in terms of characterizing

their round-e�ciency and the underlying assumptions required. By now, we know how to

construct constant-round non-malleable commitments based on any one-way function, and

moreover the constructions are fully black-box. While this might give the impression that

non-malleable commitments are well understood, each of the currently known constructions

leaves something to be desired.

The �rst construction, due to DDN is perhaps the simplest and most e�cient, mainly be-

cause it can in principle be instantiated with highly e�cient cryptographic �sub-protocols".

This, however, comes at the cost of round-complexity that is logarithmic in the max-

imum overall number of possible committers. Subsequent works, due to Barak [Bar02],

14

Pass [Pas04b], and, Pass and Rosen [PR05b] are constant-round, but rely on (highly ine�-

cient) non-black box techniques. Wee [Wee10] (relying on [PW10]) gives a constant-round

black-box construction under the assumption that sub-exponentially hard one-way functions

exist. This construction employs a generic (and costly) transformation that is designed to

handle general �non-synchronizing� MIM adversaries that do not schedule the messages in

the di�erent protocol executions synchronously.

Finally, recent works by Lin and Pass [LP11] and Goyal [Goy11] attain non-malleable

commitment with constant round-complexity via the minimal assumption that polynomial-

time hard to invert one-way functions exist. The Lin-Pass protocol makes highly non-black-

box use of the underlying one-way function (though not of the adversary), along with a

concept called signature chains; resulting in signi�cant overhead. Goyal's protocol, using a

later result of Goyal, Lee, Ostrovsky and Visconti [GLOV12], can be made fully black-box,

with its only shortcomings being high-communication complexity and the use of the Wee

transformation (or alternatively a similarly costly transformation due to Goyal [Goy11]) for

handling non-synchronizing adversaries.

The current state of a�airs is such that in spite of all the remarkable advances, the DDN

construction and its analysis remain the simplest and arguably most appealing candidate

for non-malleable commitments. This is both due to its black-boxness and because it does

not require transformations for handling a non-synchronizing MIM (in fact, the protocol is

purposefully designed to introduce asynchronicity in message scheduling, which can be then

exploited in the analysis).

2.1.3 Our Results

In this work we introduce a new algebraic technique for obtaining non-malleability, resulting

in a simple and elegant non-malleable commitment scheme.

The scheme's analysis contains many fundamentally new ideas allowing us to overcome

15

substantial obstacles without sacri�cing e�ciency. The protocol is constructed using any

statistically binding commitment scheme as a building block, and hence requires the minimal

assumption that one way functions exist.

Theorem. Suppose the existence of 2-round statistically binding commitments (which is

true if and only if one-way functions exist). Then there is a 4-round non-malleable commit-

ment scheme.

Our protocol enjoys the following appealing features, each of which makes it preferable in

at least one way over any of the previously proposed protocols for non malleable commitment:

Simplicity. Compared to all previous protocols, ours is signi�cantly simpler to describe and

to instantiate (though not to analyze). The simplicity of the protocol also means that

there is no need to introduce costly transformations for handling non-synchronizing

adversaries.

E�ciency. In particular, ours is signi�cantly more e�cient than all prior protocols: it

has only four communication rounds and makes use of a surprisingly small number

of sub-protocols, each of which can be instantiated in a very e�cient way (e.g. using

standard sigma protocols).

Assumption. The assumption underlying our protocol is the existence of one-way func-

tions, which is necessary for non-malleable commitments.

A direct consequence of our non-malleable protocol is a 4-round non-malleable zero-

knowledge argument based on any one way function. This demonstrates that for zero-

knowledge, non-malleability does not necessarily come at the cost of extra rounds of inter-

action or complexity assumption.

16

Theorem. Suppose the existence of 2-round statistically binding commitments (which is

true if an only if one-way functions exist). Then there is a 4-round black-box non-malleable

zero-knowledge argument for every language in NP .

Beyond the above virtues, we believe that our new techniques are actually the most

signi�cant contributions of this work. In addition to our use of algebra, we make novel

combinatorial use of error correcting codes in order to ensure that di�erent committers' tags

di�er in many coordinates (more on that later on). Whereas prior work relied on �worst-case"

analysis of di�erences in committers' tags, ours follows from an �average-case� claim.

One way of viewing our construction is as a method for combining n atomic sub-protocols

in a way that simultaneously ampli�es their soundness and non-malleability properties, thus

requiring much weaker soundness and non-malleability to begin with. We hope that this

paradigm will become the norm for future work on in the area as, despite requiring more

careful and strenuous analysis, it leads to pleasantly lightweight protocols. For example,

this technique alone allows for an immediate linear reduction in communication complexity

compared with its nearest relative, Goyal's protocol.

Another immediate payo� of the use of error correcting codes is that it allows for par-

allelizing the �two slots� technique of [Pas04b, PR05b]. With two possible exceptions, the

so called two slot trick has become almost standard fare (in constant-round non-malleable

protocols) as it creates a way to turn an asymmetry between di�erent protocol instantiations

that the MIM is involved in into two: one which is heavy on the right and one on the left.

Running the two slots in parallel introduces several technical problems, most notably �if the

two imbalances are side by side, won't they just cancel each other out?� Our analysis uses a

cryptographic version of the �linear independence of polynomial evaluation� mantra in order

to argue that the MIM cannot combine the two imbalances and must deal with each one

separately.

We stress that the use of algebra and error correcting codes does not yield such reward

17

for free: the analysis required becomes substantially more di�cult. In the next section we

describe and brie�y discuss our new protocol and extractor. We then outline our techniques,

keeping it informal but pointing out several of the challenges faced and new ideas required

to overcome them.

2.1.4 The New Protocol

Suppose that committer C wishes to commit to messagem, and let t1, . . . , tn be a sequence of

tags that uniquely correspond to C's identity. We assume that the receiver R is familiar with

t1, . . . , tn (in particular the protocol's instructions depend on these tags). Let Com(m) =

Com(m; s) be a statistically binding commitment scheme (where s denotes the randomness

used in the commitment), and suppose that m ∈ Fq where q > maxi 2
ti . The protocol 〈C,R〉

proceeds as follows:

1. C chooses random r = (r1, . . . , rn) ∈ Fnq and sends Com(m) and {Com(ri)}ni=1 to R;

2. R chooses a vector α = (α1, . . . , αn) where each αi is randomly chosen from
[
2ti
]
⊂ Fq;

3. C responds with a = (a1, . . . , an) where ai = riαi +m;

4. C proves in ZK that a (from step 3) are consistent with m and r (from step 1).

The statistical binding property of the protocol follows directly from the binding property

of the underlying commitment Com. The hiding property follows from the hiding of Com,

the zero-knowledge property of the protocol used in step 4, and from the fact that for every

i the receiver R observes only a single pair of the form (αi, ai), where ai = riαi +m.

Note the role of C's tags in the protocol: ti determines the size of the i−th coordinate's

challenge space. Historically, non-malleable commitment schemes have used the tags as a

way for the committer to encode its identity into the protocol as a mechanism to prevent

M (whose tag is di�erent from C's) from �mauling� C's commitment into its own. In our

18

protocol the tags play the same role, albeit rather passively. For example, though the size of

the i−th challenge space depends on ti, the size of the total challenge space depends only on

the sum
∑n

i=1 ti of the tags. In particular, our scheme leaves open the possibility that the

left and right challenge spaces might have the same size (as usual, we think of M as taking

part in a left and right interaction with C and R respectively). This raises a red �ag, as

previous works go to great lengths to set up imbalances between the left and right challenge

spaces in order to force M to �give more information than it gets�. Nevertheless, we are able

to prove that any mauling attack will fail.

At a very high level, our protocol can be seen as an algebraic abstraction of Goyal's

protocol. However, the fundamental di�erence we should emphasize from [Goy11] is that he

crucially relies on the challenge space in the left interaction being much smaller than the

challenge space in the right. For us, the challenge spaces in the two interactions are exactly

the same size and so the techniques of [Goy11] do not apply to our setting; at least at �rst.

Our protocol does have small imbalances between the challenge spaces of individual coordi-

nates, which is what we will eventually use to prove non-malleability. However, proving that

the coordinates are su�ciently independent so that these imbalances accrue to something

usable is completely new to this work.

2.1.5 Proving Non-Malleability

Consider a MIM adversary M that is playing the role of the receiver in a protocol using

tags t1, . . . , tn while playing the role of the committer in a protocol using tags t̃1, . . . , t̃n (we

describe explicitly how to construct the tags from C's identity in Section ??). We refer to

the former as the �left" interaction and to the latter as the �right" interaction. We let m

and m̃ denote the messages committed to in the left and right interactions respectively. One

nice feature of our protocol is that it is automatically secure against a non-synchronizing

adversary, simply because there are so few rounds, there is no way for the MIM to bene�t

19

by changing the message order: any scheduling but the synchronous one can be dealt with

trivially. So the only scheduling our proof actually needs to handle is a synchronizing one,

as depicted in Figure 2.1 below.

C M R
Com(m),Com(r) Com(m̃),Com(r̃)

α =
(
α1, . . . , αn

)
, αi ∈

[
2ti
]
α̃ =

(
α̃1, . . . , α̃n

)
, α̃i ∈

[
2t̃i
]

a =
(
a1, . . . , an

)
ã =

(
ã1, . . . , ãn

)
ZK: ai = riαi +m ∀ i ZK: ãi = r̃iα̃i + m̃ ∀ i

Figure 2.1: Protocol with Man-in-the-Middle

As is customary in proofs of non-malleability, we demonstrate the existence of an ex-

tractor, E, who is able to rewind M and extract m̃ without needing to rewind C in the

left instantiation. Our extractor is modeled after Goyal's extractor which: (1) rewinds M

to where α̃ was sent and asks a new query β̃ instead, and (2) responds to M's left query

randomly (it cannot do better without rewinding C as it does not know m), hoping that M

answers correctly on the right.

In Goyal's protocol there is no way for E to know whether M answered correctly or not,

and so it must have a veri�cation message after the query response phase so E can compare

M's answer with the main thread to verify correctness. We sidestep this necessity in the

following way. We rewind to the beginning of step 2 twice and ask two new query vectors β̃

and γ̃, we answer randomly on the left obtaining
{

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
, where (α̃, ã) is from

the main thread. Comparing both (β̃i, bi) and (γ̃i, ci) with (α̃i, ai) will result in candidate

values m̃i and m̃
′
i, but with no veri�cation message it is not clear how E should verify which

one (if either) is correct.

20

We accomplish this with the following �collinearity test�. If m̃i = m̃′i then E checks

whether the points
{

(α̃i, ãi), (β̃i, b̃i), (γ̃i, c̃i)
}
are collinear. If so, E deems that m̃i was the

correct value. This requires proving that M cannot answer �incorrectly but collinearly�.

Tags in Error Corrected Form. As in previous non-malleable commitment schemes,

our protocol consists of n �atomic subprotocols�, one for each tag. Previous non-malleable

commitment schemes use the so called DDN trick [DDN91] in order to turn C's k−bit identity

into a list of n (= k) tags t1, . . . , tn, satisfying the properties: (1) each ti is of length log n+1;

and (2) if {ti}i and {t̃j}j are the tags resulting from two distinct identities then there exists

some i such that ti is completely distinct from {t̃j}j, meaning that ti 6= t̃j for all j.

Previous schemes' security proofs require the extractor to be able to use any completely

distinct left subprotocol (i.e., one whose tag is completely distinct from {t̃j}j) to extract

M's commitment m̃ with high probability. This ensures that extraction is possible even in

the worst case when there is a single such subprotocol. It also introduces a good deal of

redundancy into the protocol.

While one would expect most pairs of distinct identities to result in pairs of tags such

that property (2) holds for many i, all the DDN trick can guarantee in the worst case is that

it holds for a single i. If however, one �rst applied an error correcting code to C's identity

obtaining, say, a codeword in Fnq for suitably chosen q ≤ poly(n), then applying the DDN

trick to this codeword would yield tags such that (1) ti is of length O(log n); and (2) ti is

completely distinct from {t̃j}j for a constant fraction of the i ∈ {1, . . . , n}.

Our �completely distinct on average� property, on the other hand, requires only that

extraction is possible from a completely distinct left subprotocol with constant probability.

This allows us to remove much of the arti�cial redundancy resulting in an incredibly trim

protocol.

21

Non-malleability against a copying M. To get a sense of why we might expect our

scheme to be non-malleable, let us examine the situation against an M who attempts to maul

C's commitment by simply copying its messages from the left interaction to the right. Let

m be the message committed to on the left and let {ti}ni=1 and {t̃i}ni=1 be the corresponding

tags.

After the �rst message, M will have copied C's commitments over to the right interaction,

successfully committing to the coe�cients of the linear polynomials f̃i(x) = rix + m, i =

1, . . . , n. The hiding of Com ensures it does not know the polynomials themselves, and

so when it receives the right query vector α̃, its only hope of coming up with the correct

valuations f̃i(α̃i) is to copy R's challenge to the left interaction and copy C's response back.

However, it is unlikely that this will be possible. Indeed, M can only copy α̃i over to the

left when α̃i ∈
[
2ti
]
. If t̃i > ti then the i−th challenge space on the right is at least twice

as big as the i−th challenge space on the left, which means that the probability α̃i can be

copied is at most 1/2. We will use a code which ensures that t̃i > ti for a constant fraction

of the i, and makes the probability that M can copy every coordinate of R's query vector α̃

negligible. So M will not be able to successfully answer R's query and complete the proof

when performing the �copying� attack.

Non-malleability against general M. Establishing security against a general man-in-

the-middle adversary is signi�cantly more challenging, and this is where the bulk of the new

ideas are required. Our proof of non-malleability will require us to delve into the full range

of possibilities for M's behavior. In each case, we will show that one of three things happen:

1. M does not correctly answer its queries with good enough probability;

2. E succeeds in extracting m̃ with su�cient probability;

3. an M with such behavior can be used to break the hiding of Com.

22

The core of our result can be seen as a reduction from a PPT M who correctly answers its

queries with non-negligible probability and yet causes E to fail with overwhelming probability

to a machine A who breaks the hiding of Com. The following is a very high level outline of

our proof.

We de�ne USEFUL to be the set of transcripts which do not lead to situation 1 above;

that is, transcripts for which M has a good chance of completing the protocol given the

pre�x and challenges. This is important in order for E to have any chance of successfully

extracting m̃. Indeed, if M just aborts in every rewind, E will have no chance. From this

standpoint, USEFUL is the set of transcripts which give E �something to work with.� We

prove that most transcripts are in USEFUL in Claim 2.3.

We then de�ne EXT, the set of �extractable� transcripts, on which E will succeed with

high probability. These are the transcripts which lead to situation 2. Intuitively, EXT is

the set of transcripts such that M has good probability of correctly answering a query in

a rewind despite the fact that E provides random answers to M's queries. We prove that

indeed, if a transcript is in EXT then E succeeds in extracting m̃.

Finally, we de�ne INT, the set of �interesting� transcripts which are both useful and not

extractable. Transcripts in INT are troublesome as on the one hand, usefulness ensures that

the pre�x is such that if (in a rewind) M receives correct responses to its queries on the left,

it gives correct responses (with non-negligible probability) to the queries on the right. At

the same time however, transcripts in INT are not extractable and so the pre�x is also such

that if M receives random responses to its queries on the left it answers the right queries

incorrectly. Certainly, the hiding of Com ensures that M cannot know whether it receives

correct or random responses to its queries on the left. So this di�erence in behavior suggests

that we may be able to use M to violate the hiding of Com, leading to situation 3 above.

For this, the most di�cult part of our proof, we use the hiding of our protocol 〈C,R〉.

We will be able to use an M with the above �unlikely seeming� behavior in order to construct

23

an adversary that breaks the hiding of 〈C,R〉. Our framework simultaneously simpli�es and

generalizes [Goy11]'s techniques and gives us a desirable level of �exibility in how we apply

them, allowing us to overcome the substantial challenges which arise in our setting.

2.2 Non-Malleable Commitments

Non-malleability in cryptography refers to security against an adversary who participates

in two or more protocols and tries to use information obtained in one protocol execution

to in�uence another. The classic example is an adversary invoking two instantiations of a

commitment scheme, playing one as the receiver, the other as the committer, and trying

to use the commitment it receives in order to generate a commitment to a related value

in the other execution. Such an adversary is generally referred to as a man-in-the-middle

(MIM), and such an attack is called a mauling attack. At �rst glance, non-malleability

seems impossible as surely nothing can be done to protect against a MIM who simply copies

messages from one protocol execution to another. For this reason, non-malleable security

o�ers protection only against any MIM who tries to change messages in a meaningful way.

In this work, just as in [DDN91, PR05b], we will assume that players have identities.

In order to perform a successful mauling attack, a MIM has to maul a commitment corre-

sponding to C's identity into a commitment of his own, distinct identity. Though this sounds

like a strong assumption on the network, essentially requiring that �you know who you are

talking to�, for our purposes, it is actually equivalent to the requirement discussed above,

that the MIM do something other than simply copy messages. This is because our protocol

is interactive, and the �rst committer message contains a statistically binding commitment

to m. This means that if we set the committer's identity to be the �rst committer message,

C's and M's identities will be distinct unless M copied C's �rst message. Moving forward,

we assume that players have identities and we require that non-malleability holds only in the

24

case when C and M's identities are di�erent. We also assume for simplicity that player iden-

tities are known before the protocol begins, though strictly speaking this is not necessary,

as the identities do not appear in the protocol until after the �rst committer message.

2.2.1 De�nition of Non-Malleable Commitments

We wish for our commitment scheme to be impervious to a MIM adversary, M, who takes

part in two protocol executions (in the left interaction M acts as the receiver while in the

right, M plays the role of the committer), and tries to use the left interaction to a�ect the

right. The security property we desire can be summarized:

For any MIM adversary M, there exists a standalone machine who plays only one

execution as the committer, yet whose commitment is indistinguishable from M's

commitment on the right.

We follow Lin et al. [LPV08] who formalize the above nicely using the real/ideal paradigm.

In the real world, M interacts normally with C (who commits to an unknown message m)

on the left, and with R on the right. Let MIM〈C(m),R〉 be a random variable that describes

the pair (m̃, v) consisting of M's commitment in the right interaction and M's view after the

commit phase of both executions is complete. The randomness is over C and R's random

coins. Note that if M performs a mauling attack, it might not be possible to e�ciently learn

m̃ from v. In the ideal world, M interacts with a simulator S who plays the role of both the

committer on the left and the receiver on the right. Let MIM〈S,S〉 be the random variable

denoting M's right commitment and view after the commit phases are complete in the ideal

world.

De�nition 2.1 (Non-Malleable Commitments). A commitment scheme 〈C,R〉 is non-

25

malleable if for every PPT MIM adversary M, there exists a PPT simulator S such that

{MIM〈C(m),R〉}m ≈c {MIM〈S,S〉}.

We wish the ideal world to model the case when M is a standalone machine taking part

only in the right execution, and so our S will play honestly as R on the right, and act as a

�dummy committer� on the left committing honestly to 0.

Concurrent Non-Malleability: One can extend non-malleability to the concurrent set-

ting where M may participate in polynomially many left and right executions which may

be interleaved arbitrarily. Concurrent non-malleability, also known as many-many non-

malleability is de�ned below. To state the de�nition, we update the random variables

MIM〈C(m),R〉 and MIM〈S,S〉 appropriately.

Let 〈C,R〉 be a commitment scheme and �x polynomials ` = `(λ) and ˜̀ = ˜̀(λ).

Consider a MIM adversary M who participates in ` (resp. ˜̀) left (resp. right) executions

of 〈C,R〉 where it acts as the committer (resp. receiver). Let m = (m1, . . . ,m`) and m̃ =

(m̃1, . . . , m̃˜̀) be the values committed to in the left and right executions. Let MIM`,˜̀

〈C(m),R〉

be the random variable describing (m̃, v), M's commitments in the right executions and

view upon completion of the commit phases of all executions. Similarly, for a simulator S

who acts as C (resp. R) in all ` (resp. ˜̀) left (resp. right) executions, let MIM`,˜̀

〈S,S〉 be

the random variable describing (m̃, v), M's right commitments and view after the commit

phases are complete.

De�nition 2.2 (Many-Many Non-Malleable Commitments). A commitment scheme

〈C,R〉 is many-many non-malleable if for every PPT MIM adversary M, there exists a PPT

simulator S such that

{MIM`,˜̀

〈C(m),R〉}m ≈c {MIM`,˜̀

〈S,S〉}.

26

Additionally, we say that 〈C,R〉 is one-many or many-one non-malleable if ` = 1 or ˜̀= 1.

Non-Malleability wrt **INSERT-WORD-HERE**: The numerous applications that

non-malleable commitments and related primitives have found across cryptography have mo-

tivated several variants of the de�nition. The one given above is often refered to in the lit-

erature as non-malleability with respect to commitment. This is because any MIM adversary

who performs a mauling attack will not be able to successfully complete the commit phase.

An alternative weaker notion which appears occasionally in the literature is non-malleability

with respect to decommitment which stipulates that a MIM adversary performing a mauling

attack not be able to complete the decommit phase (but might manage to �nish the com-

mit phase successfully). De�nitionally, the only di�erece between the two is that the view

component of the random variables MIM〈C(m),R〉 and MIM〈S,S〉 refers to M's view after the

decommit phases of both executions are complete.

Another alternative de�nition given in [Goy11] is non-malleability with respect to re-

placement. Though weaker than non-malleability with respect to commitment, it is su�cient

for applications to MPC. Essentially the di�erence is that non-malleability with respect to

replacement limits the adversary's power to abort, forcing him instead to replace the abort

with a legitamite commitment to some value.

In this work we consider only non-malleability with respect to commitment; the version

we have already de�ned. It is the most standard notion and has the richest history.

2.2.2 Malleability of Aforementioned Schemes

In order to show the fundamental importance of non-malleable security, we describe mauling

attacks on the two commitment schemes we have already introduced, namely Naor's bit

commitment and Elgamal commitment. In fact, non-malleability is somewhat of a rare bird

27

among enhanced security properties in the sense that if a scheme is not non-malleable it is

often highly malleable, admitting devestating attacks to a MIM adversary.

Mauling Naor's Bit Commitment: Suppose M participates in two executions of Naor's

bit commitment (described in Section 1.3), both instantiated with the same length tripling

PRG G. Then M can maul a left commitment to m to a right commitment of 1 − m as

follows:

1. Upon receiving right initialization message σ̃, M sets σ = σ̃ and sends it to C;

2. Upon receiving left commitment message z, M sets z̃ = z ⊕ σ̃ and sends it to R.

If z is a commitment to 0 then z = G(s) and so z̃ = G(s)⊕σ̃ is a commitment to 1. Similarly,

if z is a commitment to 1 then z = G(s)⊕ σ and so z̃ = G(s) is a commitment to 0.

Mauling Elgamal Commitment: Now suppose that M participates in two Elgamal com-

mitments (described in Section 1.3), both instantiated with the same public parameters

(G, g, h). Then M can maul a left commitment to m to a right commitment of 2m by sim-

ply squaring the left message. Indeed, if (a, b) = (gr, hrgm) is a commitment to m, then

(ã, b̃) = (a2, b2) = (g2r, h2rg2m) is a commitment to 2m.

2.3 A New Non-Malleable Commitment Scheme

2.3.1 Tags in Error Corrected Form

Let x ∈ {0, 1}k be C's identity. All previous non-malleable commitment protocols use the so

called �DDN trick� [DDN91] to generate tags t1, . . . , tn (n = k) by setting ti = i◦xi = 2i+xi.

Tags generated in this fashion satisfy the property:

28

• if {ti}i and {t̃j}j are tags resulting from distinct identities x, x̃ ∈ {0, 1}k then there

exists some i such that ti 6= t̃j for all j. In this case we say that ti is completely distinct

from {t̃j}j.

In this work we generate tags by �rst applying an error correcting code to x, obtaining

codeword x̂ ∈ Fn/2, for some �nite �eld F and only then applying something like the DDN

trick, obtaining tags t1, . . . , tn with

ti =

 2i|F|+ x̂i, i ≤ n/2

(2n+ 1)|F| − tn−i, i > n/2
.

The properties we will need from our tags are listed below. Let {ti}i and {t̃j}j be the tags

resulting from distinct x, x̃ ∈ {0, 1}k.

0. Ordered: t1 < t2 < · · · < tn;

1. Well Spaced: ti+1 − ti = ω(log λ) for all i ∈ [n];

2. Every Coordinate Matters:
∑

j tj −
∑

j 6=i t̃j = ω(log λ) for all i ∈ [n];

3. Completely Distinct on Average: if i 6= j then ti 6= t̃j; moreover ti 6= t̃i holds for a

constant fraction of the i ∈ [n];

4. Balanced: ti < t̃i holds for a constant fraction of the i ∈ [n].

Properties 0-2 follow immediately as long as |F| = ω(log λ). Property 3 follows as long as

the error correcting code we choose has constant distance. Finally, property 4 holds because

if ti 6= t̃i then either ti < t̃i or else tn−i < t̃n−i. This is analogous to the two slot trick of

[Pas04b, PR05b].

It remains to select parameters. We make the conservative selection n = O(λ) and

q = log2(λ) to ensure both that the above properties hold and that all that is required of

29

the error correcting code is that it has constant distance and constant rate. Codes with

such properties are known to exist. We could use, for example polynomial based codes such

as Reed-Muller codes, the multivariate generalization of Reed-Solomon codes. This results

in the overall communication complexity of our non-malleable commitment scheme being

Õ(λ2). Slightly better communication complexity might be available through more agressive

choices of parameters or better codes. We do not press the issue further.

2.3.2 The Protocol

In this section, we describe our protocol. Let t1, . . . , tn be tags in error corrected form,

as described in Section 2.3.1. Let Com denote Naor's commitment scheme. Let Comσ(m)

denote a commitment to the message m with initialization message σ. Whenever we need

to be explicit about the randomness used to generate the commitment, we denote it as

Comσ(m; s) where s is the randomness. We use boldface to denote vectors; in particular a

challenge vector α = (α1, . . . , αn) and a response vector a = (a1, . . . , an). We write Com

for the entire commit message. The commitment scheme 〈C,R〉 appears in Figure 2.2.

Proposition 2.1. The commitment scheme 〈C,R〉 is computationally hiding and statistically

binding.

Proof. Statistical binding follows immediately from the statistical binding of Naor's com-

mitment scheme. To prove computational hiding, we consider the following hybrid games.

G0: This is the hiding game, described in Figure 1.1. An adversary A presents two mes-

sages m0,m1 ∈ Zq to a challenger C. C then chooses one of them, mb at random and

commits to it using 〈C,R〉. Speci�cally, upon receiving initialization message σ fromA,

C chooses random r1, . . . , rn ∈ Zq and sendsCom =
(
Comσ(mb),Comσ(r1), . . . ,Comσ(rn)

)
to A. A then sends random query vector α and C returns response vector a where

ai = riαi +mb. Finally, C proves in zero-knowledge that the commit message Com is

30

Public Parameters: Tags t1, . . . , tn and a large prime q such that q > 2ti for all i.

Commiter's Private Input: Message m ∈ Fq to be committed to.

Commit Phase:

0. R→ C Initialization message: Send the �rst message σ of the Naor commitment
scheme.

1. C→ R Commit message: Sample random r1, . . . , rn ∈ Fq.

• De�ne linear functions f1, . . . , fn by fi(x) = rix+m.

• Send commitments Com =
(
Comσ(m),Comσ(r1), . . . ,Comσ(rn)

)
.

2. R→ C Query:

• Send random challenge vector α = (α1, . . . , αn), αi ∈ [2ti] ⊂ Fq.

3. C→ R Response:

• Send evaluation vector a = (a1, . . . , an), ai = fi(αi).

4. C←→ R Consistency proof: Parties engage in a zero-knowledge argument
protocol where C proves to R that the commit message is well formed and that the
response is correct.

Decommit Phase:

C→ R Decommit Message: Send (m; r1, . . . , rn).

Veri�cation: R checks the correctness of the commit and response messages.

Figure 2.2: Non-malleable commitment scheme 〈C,R〉.

31

well formed and that the response vector is correct. At this point, A outputs a guess

b′ and wins if b′ = b. We must show that A's chances of winning are no greater than

1/2 + negl(λ).

G1: This is the same as the above game except that C simulates the zero-knowledge

proof at the end using its knowledge of A. The zero-knowledge property ensures that

∣∣∣∣Pr
(
A wins G1

)
− Pr

(
A wins G0

)∣∣∣∣ = negl(λ).

G2: This is the same asG1 except that C sends a random response vector a′. To see that

A's chance of winning this game is essentially the same as its chances of winning G1,

suppose C acts as an adversary against another challenger C ′ in a di�erent hiding game

as follows. Upon receiving (m0,m1;σ) from A, C chooses random values ri, si ∈ Fq for

i = 1, . . . , n and sends (ri, si)i=1,...,n and σ to C ′ who returns either zi = Comσ(ri) or

zi = Comσ(si) for i = 1, . . . , n, each with probability 1/2. Now C returns Comσ(mb)

for random b ∈ {0, 1} and zi for i = 1, . . . , n. When C receives α, it returns riαi +mb

for all i. Note that if zi = Comσ(ri) then A is playing game G1, while if zi = Comσ(si)

it is playing G2. Therefore, if A's chances of winning G1 and G2 di�er by a noticeable

amount, then C can win its own hiding game with C ′ with noticeable advantage over

1/2. So we see that

∣∣∣∣Pr
(
A wins G2

)
− Pr

(
A wins G1

)∣∣∣∣ = negl(λ).

Finally, the hiding of Com ensures that A's chances of winning G2 are 1/2 +

negl(λ). To see this, suppose again that C acts as adversary in its own hiding game

against challenger C∗ as follows. Upon receiving (m0,m1;σ) from A, C forwards it on

to C∗ and receives z = Comσ(mb) for some b. C then chooses random ri ∈ Zq for

32

i = 1, . . . , n and returns z along with Comσ(ri). When A sends α, C chooses random

response vector a′ and then simulates the zero-knowledge proof. Finally, C forwards

A's choice b′ to C∗. As C wins its hiding game if and only if A wins G2, the hiding of

Naor's bit commitment ensures that

∣∣∣∣Pr
(
A wins G2

)
− 1

2

∣∣∣∣ = negl(λ),

thus proving the hiding of 〈C,R〉.

Theorem 2.1 (Main theorem). The commitment scheme 〈C,R〉 is non-malleable.

2.4 Proof of Non-Malleability

In this section we prove most of Theorem 2.1. Speci�cally, we prove standalone non-

malleability of 〈C,R〉 against a synchronizing adversary. This is a MIM who plays cor-

responding messages of the left and right sessions one after another. We will show how to

handle non-synchronizing adversaries in the �nal, round-optimized version of our protocol

in Section 2.6. We remark here only that the simplicity of our protocol allows one to handle

any adversary except the synchronizing one essentially trivially.

Recall from De�nition 2.1 that we must show for any MIM M, there exists a simulator

S such that

{MIM〈C(m),R〉}m ≈c {MIM〈S,S〉},

where the distributions are over (m̃, v): M's commitment in the right interaction and view

after the commit phases of both executions are complete in the real and ideal worlds, re-

spectively. As we have already mentioned, our simulator simply commits honestly to 0 ∈ Zq

33

on the left and plays honestly as R on the right. We prove indistinguishability of the above

distributions for any M by constructing an extractor E which takes M's view after the com-

mit phases of the left and right executions are complete and outputs its commitment m̃

in the right execution whp. It follows that an algorithm which distinguishes MIM〈C(m),R〉

from MIM〈S,S〉 can be used to break the hiding of 〈C,R〉 in the following way: 1) let v be

M's view after completing the commit phases of the left and right executions in either the

real or ideal world; 2) use E to obtain the pair (m̃, v); 3) use the distinguisher to determine

whether M's interaction took place in the real or ideal world. This breaks the hiding of the

left commitment as the only di�erence between the worlds is that in the real, C commits to

m while in the ideal, S commits to 0.

2.4.1 The Extractor E

The high level description of our extractor (described formally in Figure 2.3) is quite simple.

Intuitively, our protocol begins by C committing to n, threashold 2, Shamir secret shar-

ings [Sha79] of m; R then asks for one random share from each sharing, which C gives. All

E does is rewind M to the beginning of the right session's query phase ask for a new random

share. Since E gets one share as part of its input, this will allow E to reconstruct m̃.

The problem with this approach is that E does not know the value C has commit to in

the left interaction and so it does not know how to answer M's query on the left correctly.

The best E can do is give M a random response on the left and hope that M will give a

correct response on the right anyway. On the one hand, the hiding of Com dictates that M

cannot distinguish a correct response from a random one. On the other hand, M doesn't

actually need to know whether the response on the left is correct or not in order to perform

a successful mauling attack. Imagine, for example, the MIM who mauls R's challenge to the

left execution and mauls C's response back. Such an M will prevent E from extracting m̃

34

because M only correctly answers E's query if given a correct response to its own left query,

which E cannot give. Of course we will prove that no M with such behavior can exist, but

this proof is highly non-trivial.

Another question which our extractor raises is �how can E tell a correct response from

an incorrect one?� As we have described it, the hiding of Com ensures that it cannot.

However, a small modi�cation to E �xes this. Instead of asking for one new share, E rewinds

twice to the beginning of the right query phase and asks for two di�erent new shares. The

key observation is that if M answers both queries correctly then the three shares it holds (the

two it receives plus the one it gets as input) are collinear, whereas if M answers at least one

incorrectly they are overwhelmingly likely to NOT be collinear. This is the �rst appearance

of a tangeable payo� of the algebraicity of our protocol. For example, the protocol of [Goy11]

(which is similar to ours, but strictly combinatorial in nature) does not have this algebraic

veri�cation technique at its disposal and must introduce use extra rounds into the protocol

to ensure its extractor can reconstruct m̃.

We now prepare to formally describe E. E is given as input a transcript of a complete

commit phase in both the left and right interactions. We denote the transcript with the

letter T. Speci�cally,

T =
(
Com, ˜Com,α, α̃, a, ã, π, π̃

)
.

Since E will not be interested in the proofs (π, π̃), and since without loss of generality M is

deterministic (which means that ˜Com, α, ã are uniquely determined by Com, α̃, and a)

we will often just write T =
(
Com, α̃, a

)
.

De�nition 2.3 (Accepting Transcript). We say that T ∈ ACC if R accepts M's proof π̃.

We say that M aborts if M behaves in such a way as to make T /∈ ACC. Note this includes

the case when M acts in an obviously corrupt fashion, causing C or R to abort.

35

The extractor E gets T ∈ ACC as input so the probabilities which arise in our analysis

often are conditioned on the event T ∈ ACC. We denote this with the convenient shorthand

PrT∈ACC
(
· · ·
)
instead of PrT

(
· · ·
∣∣T ∈ ACC

)
. Note that for �xed Com, M can be thought of

as a deterministic map, mapping right query vectors to left ones. We write α = M(α̃) to be

consistent with this point of view. We assume that the transcript E gets as input is consistent

with exactly one right commitment m̃. As 〈C,R〉 is statistically binding, this happens with

overwhelming probability. See Figure 2.3 for a formal description of the extractor.

Tags: Let {ti}i and {t̃i}i be the left and right tags, respectively, in error corrected form.

Input: T =
(
Com, α̃, a

)
∈ ACC, and a large value N = poly(λ). E is given oracle access

to M.

Extraction procedure: For j ∈ [N]:

1. Rewind M to the beginning of step 2 of the protocol:

• generate a random right challenge vector β̃j = (β̃1,j, . . . , β̃n,j), where β̃i,j ∈ [2t̃i].

• Feed M with β̃j and receive challenge βj = (β1,j, . . . , βn,j) for left interaction.

2. Generate and send bj = (b1,j, . . . , bn,j) to M where bi,j =

{
ai, βi,j = αi

r
R← Zq, βi,j 6= αi

.

Receive response b̃j = (b̃1,j, . . . , b̃n,j).

3. For each i ∈ [n] use
{

(α̃i, ãi), (β̃i,j, b̃i,j)
}
to interpolate a line and recover candidate

message m̃i,j.

4. Repeat steps 1-3. Let γ̃j = (γ̃1,j, . . . , γ̃n,j) be the new right challenge vector and
c̃j = (c̃1,j, . . . , c̃n,j) be the corresponding response. Let (m̃′1,j, . . . , m̃

′
n,j) be the

recovered candidate messages.

5. If for some i ∈ [n], m̃i,j = m̃′i,j and
{

(α̃i, ãi), (β̃i,j, b̃i,j), (γ̃i,j, c̃i,j)
}
are collinear output

m̃i,j and halt.

Output: Output FAIL.

Figure 2.3: The Extractor E.

36

Note that there are two ways for E to fail to output m̃. The �rst is if E fails to extract

any value and outputs FAIL. The other is if E accidentally extracts an incorrect value

m̃′ 6= m̃. The second way requires M to answer a pair of queries incorrectly but in such a

way so that they yield the same candidate message and they �pass the collinearity test�. In

this case we say that M answers incorrectly but collinearly.

De�nition 2.4 (Incorrect but Collinear). Fix i ∈ {1, . . . , n}. Let (β̃, b̃) and (γ̃, c̃) denote

two query/response pairs arising during the execution of E while rewinding M. Suppose that

interpolating (β̃i, b̃i) and (γ̃i, c̃i) against the main thread's point (α̃i, ãi) produces the same

candidate message m̃′. We say that M answers (β̃i, γ̃i) incorrectly but collinearly if:

1. m̃′ 6= m̃; and

2.
{

(α̃i, ãi), (β̃i, b̃i), (γ̃i, c̃i)
}
are collinear.

We de�ne the set IBCi(α̃i) =
{

(β̃, γ̃) : M answers (β̃i, γ̃i) incorrectly but collinearly
}
. Fi-

nally, de�ne

IBC =
{
T ∈ ACC : (β̃, γ̃) ∈ IBCi(α̃i) for some i

}
.

Note that IBCi(α̃i) is well de�ned given T and E's randomness. Intuitively IBC is the set

of transcripts for which E might fail because M answers incorrectly but collinearly. The

following claim shows that these transcripts rarely occur.

Claim 2.1. PrT∈ACC
(
T ∈ IBC

)
= negl(λ).

Proof. Fix i ∈ {1, . . . , n} and let T,T′ ∈ ACC be main threads with the same pre�x and i−th

right queries α̃i and α̃′i, respectively. Moreover, we �x E's randomness arbitrarily making

it deterministic, so that the sets IBCi(α̃i) and IBCi(α̃′i) are de�ned. Note that IBC
i(α̃i) and

IBCi(α̃′i) are disjoint. Indeed, suppose (β̃, γ̃) ∈ IBCi(α̃i) ∩ IBCi(α̃′i). Then the four points

{
(α̃i, ãi), (α̃

′
i, ã
′
i), (β̃i, b̃i), (γ̃i, c̃i)

}
37

are collinear. This means that the line they all lie on is correct because (α̃i, ãi) and (α̃′i, ã
′
i)

are correct (T,T′ ∈ ACC) and so (β̃, γ̃) /∈ IBCi(α̃i) ∪ IBCi(α̃′i) as M answered β̃i and γ̃i

correctly. Therefore, for a �xed pre�x Com and extractor queries (β̃, γ̃), there is at most

one value of α̃i such that (β̃, γ̃) ∈ IBCi(α̃i). As the set of possible α̃i is superpolynomial,

the chances that R's query α̃ in T is such that (β̃, γ̃) ∈
⋃
i IBC

i(α̃i) for any extractor query

(β̃, γ̃) is negligible. The result follows.

So we see that if our extractor never outputs the wrong message m̃′ 6= m̃ and so if E outputs

FAIL, it does so because it fails to receive correct answers to its queries. This allows us to

formulate conditions which make E's chances of success overwhelmingly high in terms of the

behavior of M. This will be useful moving forward.

Next, we de�ne EXT, the set of �extractable� transcripts, on which M has a non-

negligible chance of answering a query correctly even given random responses to its queries

on the left.

De�nition 2.5 (Extractable Transcripts). Fix ε∗ =
(
λ/N

)1/2
. We de�ne

EXTi =
{
Com : Prβ̃

(
M correctly answers β̃i

∣∣Com & M's queries answered randomly
)
≥ ε∗

}
.

Set EXT =
{
T ∈ ACC : Com ∈ EXTi for some i

}
.

Intuitively, EXT is the set of transcripts such that M has good probability of providing at

least one correct answer to a query in a rewind despite the fact that E provides random

answers to M's queries. We now prove that if a transcript is in EXT then E succeeds in

extracting m̃ whp.

Claim 2.2. Pr
(
E(T) 6= m̃

∣∣T ∈ EXT
)

= negl(λ), where the probability is over T and the

randomness of E.

38

Proof. Let Ei,j be the event that M answers both i−th queries correctly in rewind j. Since

T ∈ EXT, there exists some i such that Pr(Ei,j) ≥ (ε∗)2 = λ/N for all j. As the Ei,j are

independent, the expected number of Ei,j which occur during the lifetime of E is at least λ.

So we see that

Pr
(
E(T) 6= m̃

)
= Pr

(
T ∈ IBC

)
+ Pr(no Ei,j occur

)
= negl(λ),

by Claim 2.1 and the Cherno� bound.

At this point we formally make the assumption that there exists a PPT algorithm that can

distinguish {MIM〈C(m),R〉}m and {MIM〈S,S〉} with probability at least 2p for some non-

negligible p = p(λ). It then su�ces to prove that E succeeds with probability at least 1− p

since this will imply that E extracts m̃ AND the distinguisher correctly determines whether

(m̃, v) comes from the real or ideal world with probability at least p. This breaks the hiding

of Com. The required theorem is stated below.

Theorem 2.2 (Su�cient for Theorem 2.1). Let E be the extractor described in Fig-

ure 2.3, and let T be the transcript it is given as input. Let m̃ be M's commitment in the

right interaction of T. Then

Pr
(
E(T) 6= m̃

)
≤ p,

where the probability is over the randomness of E.

2.4.2 Useful and Interesting Transcripts

In this section we de�ne USEFUL to be the set of transcripts for which M has a good chance of

completing given the pre�x and challenges. This requirement on M's behavior is important

in order for E to have any hope of successfully extracting m̃. Indeed, if M just aborts in every

rewind, E will not stand a chance. From this standpoint, USEFUL is the set of transcripts

39

which give E �something to work with.�

De�nition 2.6 (Useful Transcripts). Fix non-negligible δ < 1
3
. We de�ne

1. BAD1 =
{
Com : PrT

(
T ∈ ACC

∣∣Com
)
≤ δp2

3

}
;

2. BAD2 =
{

(Com,α) : PrT
(
T ∈ ACC

∣∣Com & M(α̃) = α
)
≤ δp2

3

}
;

3. BAD3 =
{

(Com, α̃) : PrT
(
T ∈ ACC

∣∣Com & α̃i
)
≤ δp2

3n
for some i ∈ {1, . . . , n}

}
.

Set USEFUL :=
{
T ∈ ACC : Com /∈ BAD1 & (Com,α) /∈ BAD2 & (Com, α̃) /∈ BAD3

}
.

Informally, the BADi are sets of partial transcripts for which M is unlikely to complete the

protocol. BAD1 is a set of pre�xes while BAD2 (resp. BAD3) are sets of pre�xes and left

(resp. right) query vectors. We start by proving that most transcripts are indeed useful.

The proof involves little more than conditional probability and so may be freely bypassed

by an informal reader.

Claim 2.3. PrT∈ACC
(
T /∈ USEFUL

)
≤ δp.

Proof. It su�ces to prove that the quantities

PrT∈ACC
(
Com ∈ BAD1

)
; PrT∈ACC

(
(Com,α) ∈ BAD2

)
; PrT∈ACC

(
(Com, α̃) ∈ BAD3

)
are all less than or equal to δp

3
. All three are proven using conditional probability. We have

PrT∈ACC
(
Com ∈ BAD1

)
= PrT

(
Com ∈ BAD1

∣∣T ∈ ACC
)
≤

PrT
(
T ∈ ACC

∣∣Com ∈ BAD1

)
PrT(T ∈ ACC)

≤ δp

3
,

using the de�nition of BAD1 and the fact that PrT(T ∈ ACC) ≥ p. Similarly,

PrT∈ACC
(
(Com,α) ∈ BAD2

)
≤

PrT
(
T ∈ ACC

∣∣(Com,α) ∈ BAD2

)
PrT(T ∈ ACC)

≤ δp

3
.

40

And �nally, for BAD3, set Zi =
{

(Com, α̃i) : PrT
(
T ∈ ACC

∣∣Com & α̃i
)
≤ δp2

3n

}
. We have

PrT∈ACC
(
(Com, α̃) ∈ BAD3

)
= PrT

(
∃ i st (Com, α̃i) ∈ Zi

∣∣T ∈ ACC
)

≤
n∑
i=1

PrT
(
(Com, α̃i) ∈ Zi

∣∣T ∈ ACC
)

≤
n∑
i=1

PrT
(
T ∈ ACC

∣∣(Com, α̃i) ∈ Zi
)

PrT(T ∈ ACC)
≤ δp

3
.

The transcripts in EXT are those for which M is likely to correctly answer a right query even

given incorrect responses to its own left queries. On the other hand, USEFUL can be thought

of as the transcripts for which M answers the right queries correctly if given correct answers

to its left queries. This leads us to the following de�nition.

De�nition 2.7 (Interesting Transcripts). We de�ne INT = USEFUL \ EXT.

Transcripts in INT are troublesome as essentially, they are transcripts for which M answers

the right queries correctly if given correct answers to its left queries, but incorrectly if given

incorrect answers to its left queries. Certainly, the hiding of Com ensures that M cannot

know whether it receives correct or random responses to its queries on the left. So this

di�erence in behavior suggests that we may be able to use M to break the hiding of Com.

However, it is not so easy. Keep in mind, M does not have to know whether it is giving a

correct or incorrect answer on the left. Indeed, almost all mauling attacks one could think of

would have the property that M answers correctly on the right if and only if it gets correct

answers on the left. The following lemma comprises the heart of our analysis.

Lemma 2.1. If Com is computationally hiding then there exists a constant δ′ < 1
3
such that

PrT∈ACC
(
T ∈ INT

)
≤ δ′p.

41

Lemma 2.1 combined with Claims 2.2 and 2.3 give us

PrT∈ACC
(
E(T) 6= m̃

)
≤ δp+ δ′p+ negl(λ) < p,

proving Theorem 2.2.

2.4.3 Proof of Lemma 2.1 − Part 0: Proof Overview

At a very high level the proof proceeds by considering the possible di�erent ways in which M's

left queries α can �depend" on right queries α̃ given to M . Intuitively, αi′ being dependent

on α̃i is the result of M performing a mauling attack. Suppose that M mauls Com(fi′) in

order to obtain Com(f̃i). Then M does not know f̃i and so cannot hope to answer the query

α̃i except by mauling C's answer to query αi′ . Therefore, if M is rewound to the beginning

of step 2 and asked a di�erent query vector β̃ such that β̃i = α̃i, M will have to ask β such

that βi′ = αi′ if it wants to answer successfully. In this way, dependence can be thought of

as a quantitative outcome of a mauling attack.

Very roughly speaking we then classify the set of possible transcripts into three cate-

gories based on their dependencies (the actual proof will involve parameterized variants):

• 1−2: There exist (i1, i2, i
′) such that αi′ depends on both α̃i1 and α̃i2 .

• UNBAL: There exist i′ > i such that αi′ depends on α̃i.

• IND: There exists i such that each αi′ does not depend on α̃i.

The main line of reasoning of our proof will consist of arguing that the above types of

depenencies are impossible. We will show that if (1) either one of them or, (2) none of them

occur then either the extraction procedure E will succeed or M can be used to violate hiding.

To see why this is true consider �rst the case where 1−2-type dependencies exist.

42

This means that M is using fi′(αi′) in order to obtain both f̃i1(α̃i1) and f̃i2(α̃i2), which is

impossible given that α̃i1 and α̃i2 are chosen at random. This corresponds to Claim 2.5

below.

Next, consider UNBAL-type dependencies. In this case, M is using fi′(αi′) to answer α̃i

with f̃i(α̃i). But because i
′ > i, we have that the challenge space [2ti′] for αi′ is signi�cantly

larger than the challenge space [2t̃i] for α̃i, which intuitively means that M is �wasting

challenge space". This will mean that the residual right challenge space is super-polynomially

bigger than the residual left challenge space. This corresponds to Claim 2.6 below.

To take advantage of the observation that the residual right challenge space is much

larger than the residual left challenge space, we de�ne SUPER−POLY to be the set of tran-

scripts such that the number of α̃ for which M(α̃) = α is super-polynomial. We show that

if a transcript is in SUPER−POLY then E will succeed in extracting. Roughly speaking, this

is because M cannot hope to answer the right challenge α̃ from the information contained

in C's answer to the left challenge α alone; it must know some �extra information� about

the polynomials f̃ . This extra information is precisely what will let us extract. The above

argument corresponds to Claim 2.8 below.

The proof of Claim 2.8 relies on the computational hiding of the underlying commit-

ment. To enable the proof we use a variant of the standard hiding game, shown in Figure 1.1.

This game is at the heart of the �computational" component of our analysis.

Given that neither 1−2 nor UNBAL hold, we are left with IND. Consider �rst the case

in which IND does not hold. Then, for all i there will exist an i′ such that αi′ depends on α̃i.

Because neither 1−2 nor UNBAL hold this actually implies that for all i αi depends on α̃i.

To see this, note that α1 must depend on α̃1. Indeed, something must depend on α̃1, and it

cannot be αi′ for i
′ > 1. Similarly, either α1 or α2 must be dependent on α̃2. But since α1 is

43

dependent on α̃1 it must be that α2 is dependent on α̃2 and so on. Using the fact that many

of the tags on the left di�er from all of the tags on the right we can show that when restricted

appropriately (namely to the coordinates where the right tags are larger than the left tags)

the challenge space on the right will be super polynomially bigger than the challenge space

on the left (bringing us back to the case described above). This corresponds to Claim 2.7

below.

Finally, we are left with the case in which IND holds. In this case, there exists some i

such that none of the left challenges are dependent on α̃i (a non-malleable cryptographer's

fantasy). Intuitively this means that M does not need any of the left challenges in order to

correctly return f̃i(α̃i), implying that it knows some information about the polynomial f̃i,

allowing our extractor E to succeed. This corresponds to Claim 2.9.

2.4.4 Proof of Lemma 2.1 − Part 1: Analyzing Dependencies

Given a �rst message Com (which implicitly determines ˜Com = M(Com)), we say that a

right query vector α̃ is honest if M answers α̃ honestly in the right interaction given correct

responses to its queries α = M(α̃) in the left interaction.

We denote the set of honest right query vectors by HONCom, or just HON when Com is

clear from context (as in the case when, for example, M is rewound to the beginning of step 2

and asked a new query vector). We write Prα̃∈HON

(
· · ·
)
as shorthand for Prα̃

(
· · ·
∣∣α̃ ∈ HON

)
.

The following claim is a direct corollary of Claim 2.3.

Claim 2.4. If T ∈ INT then for a new right query vector β̃ in a rewind,

Prβ̃
(
β̃ ∈ HON

)
≥ δp2

3
and Prβ̃

(
β̃ ∈ HON

∣∣β̃i = α̃i
)
≥ δp2

3n

for all i = 1, . . . , n.

44

The remainder of our proof assumes that PrT∈ACC
(
T ∈ INT

)
≥ δ′p, and from this lower bound

we are able to lower bound the probability that M behaves in certain ways. Our goal is to

ensure that by setting N , the number of times E rewinds, to a su�ciently large polynomial

either E will successfully extract m̃ or M breaks the hiding of Com. We have already

introduced non-negligible p, constants δ, δ′ < 1/3, and N = poly(λ) for a yet unspeci�ed

polynomial. Shortly we will introduce parameters ε = 1/n − ε′ where ε′ = 1/2n2, and

also ` = N/(2λ). We will require that (ε′δδ′p4)/(24n) ≥ 2/` and (σδ2p5)/18 ≥ 2/` where

σ = (ε′δ′p)2/(65n6) is de�ned for convenience. All in all, setting N = ω
(
λn10p−7

)
will su�ce.

We now turn to formally de�ne ε−dependence.

De�nition 2.8 (ε−dependence). For �xed T ∈ ACC and i, i′ ∈ {1, . . . , n}, we say αi′ is

ε−dependent on α̃i if Prβ̃∈HON

(
βi′ = αi′

∣∣β̃i = α̃i
)
≥ ε. We say that α̃i is ε−independent if

none of the αi′ are ε−dependent on α̃i.

Note that if ε > ε′ and αi′ is ε−dependent on α̃i, then αi′ is also ε′−dependent on α̃i.

Additionally, notice that though our de�nition does leave open the possibility that there

could be more than one value which is ε−dependent on α̃i, there can only be polynomially

many (at most ε−1 to be exact). We call these values the ε−dependencies of α̃i. This notion

is di�erent from ε−dependence de�ned above only because the ε−dependencies are de�ned

regardless of what queries were asked in T, whereas we only say that αi′ is ε−dependent on

α̃i if both α̃i and αi′ appear in T. For the remainder of the proof we �x non-negligible values

ε and ε′ such that ε = 1
n
− ε′ and ε′ < 1

n2 .

De�nition 2.9 (Special Sets of Transcripts). Fix ω = ω(1). De�ne the following sets

of transcripts:

1. 1−2 :=
{
T ∈ ACC : ∃ (i1, i2, i

′) st αi′ is ε
′ − dependent on both α̃i1 and α̃i2

}
;

2. UNBAL :=
{
T ∈ ACC : ∃ i′ > i st αi′ is ε

′ − dependent on α̃i
}
;

45

3. IND :=
{
T ∈ ACC : ∃ i st α̃i is ε− independent

}
;

4. SUPER−POLY :=
{
T ∈ ACC : #{α̃ : M(α̃) = α} ≥ λω

}
.

Claim 2.5. Fix σ = (ε′δ′p)2

65n6 . If PrT∈ACC
(
T ∈ 1−2 & T ∈ INT

)
≥ δ′p

4
, then

PrT∈ACC
(
T ∈ SUPER−POLY & T ∈ INT

)
≥ σ.

notation: Let R and L be the sets of right and left query vectors respectively. We have

already seen that for �xed Com, M : R −→ L deterministically maps α̃ to α. We write

Ri(α̃i) and Li
′
(αi′) to mean the sets of right and left query vectors whose i−th and i′−th

coordinates are �xed on α̃i and αi′ , respectively. We write M : Ri
τ (α̃i) −→ Li

′
(αi′) if M maps

a τ fraction of Ri(α̃i) to L
i′(αi′).

Proof. Let (i1, i2, i
′) be such that PrT∈ACC

(
αi′ is ε

′− dependent on α̃i1 and α̃i2
)
≥ δ′p

4n3 . Such

(i1, i2, i
′) must exist by hypothesis of Claim 2.5. Now �x Com and α̃i1 . With probability at

least δ′p
8n3 over (Com, α̃i1), Prα̃i2

(
α̃i1 and α̃i2 share an ε

′−dependency
)
≥ δ′p

8n3 . However, since

α̃i1 has at most (ε′)−1 ε′−dependencies, there must exist some αi′ such that Prα̃i2
(
αi′ an ε

′−

dependence of α̃i2
)
≥ ε′δ′p

8n3 . It follows that

Pr(αi′) ≥ Pr
(
αi′
∣∣αi′ an ε′−dependence of α̃i) ·Prα̃i(αi′ an ε

′−dependence of α̃i) ≥
(ε′)2δ′p

8n3
.

Let τ = (ε′)2δ′p
8n3 . Then we see that M : Rτ → Li

′
(αi′), where

∣∣Rτ

∣∣ = τ
∣∣R∣∣ ≥ τ2λ

∣∣Li′(αi′)∣∣.
If ω is such that

∣∣Ri
τ (α̃i)

∣∣ = λ2ω
∣∣Li′(αi′)∣∣ then with probability at least (1 − λ−ω)τ over

α̃ ∈ Ri(α̃i),
#{α̃ : M(α̃) = α} ≥ λω. So we see that

PrT∈ACC
(
T ∈ SUPER−POLY & T ∈ INT

)
≥ τδ′p

8n3
− negl(λ) ≥ (ε′δ′p)2

65n6
= σ.

46

Claim 2.6. Fix σ = (ε′δ′p)2

65n6 . If PrT∈ACC
(
T ∈ UNBAL & T ∈ INT

)
≥ δ′p

4
, then

PrT∈ACC
(
T ∈ SUPER−POLY & T ∈ INT

)
≥ σ.

Proof. Fix a random �rst message Com. With probability at least δ′p
8
over Com,

Prα̃∈HON

(
∃ i′ > i st αi′ is ε

′ − dependent on α̃i
)
≥ δ′p

8
.

Let τ ′ = ε′δ′p
8
. It follows that M : Ri

τ ′(α̃i)→ Li
′
(αi′). But as i

′ > i, we have that

∣∣Ri
τ ′(α̃i)

∣∣ = τ ′
∣∣Ri(α̃i)

∣∣ ≥ τ ′2λ
∣∣Li′(αi′)∣∣,

So when restricted appropriately, M is exponentially many to one on average. As in Claim 2.5,

it follows that

PrT∈ACC
(
T ∈ SUPER−POLY & T ∈ INT

)
≥ τ ′δ′p

8
− negl(λ) ≥ ε′(δ′p)2

65
≥ σ.

Claim 2.7. If PrT∈ACC
(
T /∈ 1−2 ∪ UNBAL ∪ IND & T ∈ INT

)
≥ δ′p

4
, then

PrT∈ACC
(
T ∈ SUPER−POLY & T ∈ INT

)
≥ σ.

Proof. Consider the consequences of T /∈ 1−2 ∪ UNBAL ∪ IND. If T /∈ IND then for every

i, there exists at least one i′ such that αi′ is ε−dependent on α̃i. However, if T /∈ UNBAL,

then for all i′ > i, αi′ cannot be ε−dependent on α̃i (since ε ≥ ε′). Moreover, if T /∈ 1−2,

then there do not exist (i1, i2, i
′) such that αi′ is ε−dependent on α̃i1 and α̃i2 (again using

ε′ ≥ ε′). It follows that for each i, αi must be ε−dependent on α̃i. Indeed, α1 must be

47

ε−dependent on α̃1 as something must depend on α̃1 and it cannot be αi for i > 1. Next,

either α1 or α2 must be ε−dependent on α̃2 and it cannot be α1 as that is already dependent

on α̃1. Continuing in this fashion, we deduce that each αi is ε−dependent on α̃i.

Now, since each αi is ε−dependent on α̃i, Claim 2.5 ensures that for all i′ 6= i, αi is not

ε′−dependent on α̃i′ . It follows that for all i, Prβ̃∈HON

(
∃ i′ 6= i st βi′ = αi′

∣∣β̃i = α̃i
)
≤ ε′n.

As T /∈ IND, we have that for all i,

Prβ̃∈HON

(
βi = αi

∣∣β̃i = α̃i
)
≥ Prβ̃∈HON

(
∃ i′ st βi′ = αi′

∣∣β̃i = α̃i
)

− Prβ̃∈HON

(
∃ i′ 6= i st βi′ = αi′

∣∣β̃i = α̃i
)
.

≥ εn− ε′n = 1− 2ε′n,

so we see that, in fact, each αi is (1 − 2ε′n)−dependent on α̃i. As 2ε′n < 1
2
, each α̃i has a

unique (1− 2ε′n)−depencence.

Now, let S = {i : ti ≥ t̃i}, and �x random Com and α̃S, where α̃S = (α̃i)i∈S. Since

we are given that PrT∈ACC
(
T /∈ 1−2 ∪ UNBAL ∪ IND & T ∈ INT

)
≥ δ′p

4
, with probability at

least δ′p
8
over our choice of (Com, α̃S), we will have

Prα̃∈HON

(
each αi is (1− 2ε′n)− dependent on α̃i

∣∣(Com, α̃S)
)
≥ δ′p

8
.

However, as each α̃i has a unique (1− 2ε′n)−dependence, it follows that

Prβ̃∈HON

(
βi′ = αi′ for all i

′ ∈ S
∣∣β̃i = α̃i for all i ∈ S

)
≥ δ′p

8
.

So we see that Prβ̃∈HON

(
S ⊂ {i′ : βi′ = αi′}

∣∣β̃i = α̃i for all i ∈ S
)
≥ δ′p

8
with probability at

least δ′p
8
over our choice of (Com, α̃S).

48

Let τ ′′ = δ′p
8
. We have shown that M : RS

τ ′′(α̃S)→ LS(αS). But

∣∣RS
τ ′′(α̃S)

∣∣ = τ ′′
∣∣RS(α̃S)

∣∣ ≥ τ ′′2λ
∣∣LS(αS)

∣∣.
So M is exponentially many to one on average, which means that with all but negligible

probability, α has exponentially many preimages. It follows that

PrT∈ACC
(
T ∈ SUPER−POLY & T ∈ INT

)
≥ τ ′′δ′p

8
− negl(λ) ≥ (δ′p)2

65
≥ σ.

2.4.5 Proof of Lemma 2.1 − Part 2: Reductions to the Hiding of

〈C,R〉

In this section complete the proof of Lemma 2.1 by proving two claims which show how to

use an M with unlikely behavior to break the hiding of 〈C,R〉. We �rst give an intuitive

description of our method of argument. This description is slightly technical but does not

get into the speci�cs of either Claim 2.8 or Claim 2.9.

Our adversary A is de�ned as follows:

• A chooses random m0,m1 ∈ Zq and sends (m0,m1) to a challenger C, signaling the

beginning of the hiding game of 〈C,R〉.

• A instantiates M and runs two sessions of 〈C,R〉 until the end of the response message

of both executions, forwarding the messages it receives as C to C. In the left execution,

C commits to mu for secret u ∈ {0, 1}. More speci�cally:

� A, acting as R, sends σ̃ to M, and receives σ which it forwards to C.

� A then receives Com from C which it forwards to M, and receives ˜Com.

49

� A sends random α̃ such that α̃i ∈
[
2t̃i
]
to M, receiveing α which it forwards to

C.

� A receives a from C which it forwards to M, obtaining ã.

� A continues forwarding messages between M and C during the zero-knowledge

proof phase of 〈C,R〉, playing honestly as R in the right interaction.

� When the proofs are �nished, A veri�es both π and π̃. If either is not accepted,

A aborts. Let T =
(
Com, α̃, a

)
be the resulting transcript.

• A chooses random u′ ∈ {0, 1} and de�nes polynomial vector f such that f(α) = a and

every coordinate of f has constant term mu′ .

• A rewinds M to the beginning of the query phase of the right execution and sends a

new query β̃, receiving left query β. It can do this many times, resulting in a set of

new right queries {β̃, γ̃, . . . }.

• A answers the left queries it obtained in the previous step with f, and receives a right

response. It collects the points it receives into the set
{

(α̃, ã), (β̃, b̃), (γ̃, c̃), . . .
}
.

• A tests whether the points
{

(α̃, ã), (β̃, b̃), (γ̃, c̃), . . .
}
satisfy some condition. If so,

then A outputs u′, if not it outputs 1− u′.

Exactly what condition A tests for will change between the two proofs. In the proof of

Claim 2.8, A checks that the points
{

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
are collinear, while in the proof of

Claim 2.9, A checks whether b̃i = ãi for some preselected i. The important thing however, is

that the condition be satis�ed when M answers correctly, but not when M answers incorrectly.

Note that if u′ = u then responses generated with f are correct and so if T ∈ USEFUL, then

we can lower bound the probability that M answers correctly on the right using Claim 2.4.

On the other hand, if u′ 6= u then the responses on the left are random (as long as βi 6= αi

50

for all i ∈ [n]). If T /∈ EXT then we have an upper bound on the probability that M answers

any right query correctly. These observations together tell us that there is a non-negligible

gap between the probability is satis�ed when u′ = u and when u′ 6= u. This gap translates

to A having a noticeable advantage of winning the hiding game.

One issue with the above is that we have assumed that T ∈ INT when in reality we area

only allowed to assume that T ∈ INT with probability at least δ′p
4
. The following fact says

that as long as the gap is large enough, assuming T ∈ INT, this actually does not matter.

Fact 2.1. Consider a condition that the set
{

(α̃, ã), (β̃, b̃), (γ̃, c̃), . . .
}
either satis�es or not,

as described in the above paragraphs. Let E be an event such that:

• PrT∈ACC(E) ≥ ξ;

• Pr
(
Condition satis�ed

∣∣u′ = u & E
)
≥ ξ′;

• Pr
(
Condition satis�ed

∣∣u′ 6= u & E
)
≤ ξ′′,

for non-negligible values ξ, ξ′, ξ′′ satisfying ξ′′ ≤ (pξξ′)/8. Then A breaks the hiding of 〈C,R〉.

Proof. Fix ` = 1/(2ξ′′) and let A play in an `−way version of the usual hiding game of 〈C,R〉

as follows:

• A chooses random m1, . . . ,m` ∈ Zq and sends (m1, . . . ,m`) to C.

• A instantiates M and runs two sessions of 〈C,R〉 until the end of the response message

of both executions, forwarding the messages it receives as C to C. In the left execution,

C commits to mj′ for secret j
′ ∈ [`]. More speci�cally:

• For each j ∈ [`], A de�nes polynomial vectors gj such that gj(α) = a and every

coordinate of gj has constant term mj.

51

• A rewinds M to the beginning of the query phase of the right execution and sends a

new queries β̃, γ̃, . . . receiving left queries β,γ,

• For each j ∈ [`], A answers the left queries it obtained in the previous step with gj,

and receives a right response. It collects the set
{

(α̃, ã), (β̃, b̃j), (γ̃, c̃j), . . .
}
j
.

• A tests whether the points
{

(α̃, ã), (β̃, b̃j), (γ̃, c̃j), . . .
}
satisfy the condition. If so,

then A outputs j∗ = j and halts.

We have

Pr(A wins) ≥ PrT
(
T ∈ ACC

)
· PrT∈ACC(E)

· Pr
(
Condition satis�ed when j = j′

∣∣E)
· Pr

(
Condition not satis�ed whenever j 6= j′

∣∣E)
≥ (pξξ′) · Pr

(
Not E′j for all j 6= j′

∣∣E).
where E′j is the event

E′j : �Conditions are satis�ed when gj is used to answer left queries.�

We are given that Pr
(
E′j
∣∣E) ≤ ξ′′ for all j 6= j′, and as the E′j are independent this means

that the expected number of E′j which occur is at most ξ′′` = 1/2. It follows that

Pr(A wins) ≥ (pξξ′) · Pr
(
No E′j occur when j 6= j′

∣∣E) ≥ pξξ′

2
≥ 2

`
,

which means that A's chances of winning the hiding game are noticeably greater than 1/`,

which violates the hiding of Com.

52

Claim 2.8. Fix σ = (ε′δ′p)2

65n6 . If PrT∈ACC
(
T ∈ SUPER−POLY & T ∈ INT

)
≥ σ then there

exists a PPT A who breaks the hiding of 〈CR〉.

Proof. Our A proceeds as follows.

• As described above, A chooses random m0,m1 ∈ Zq and begins the hiding game, send-

ing (m0,m1) to C. Then A instantiates M and runs two sessions of 〈C,R〉 forwarding

the messages it receives as C to C. In the left interaction, C commits tomu for unknown

u ∈ {0, 1}. Let T =
(
Com, α̃, a

)
be the resulting transcript. Additionally, A chooses

random u′ ∈ {0, 1} and de�nes the polynomial vector f, to be the unique such vector

so that f(α) = a and so that every coordinate of f has constant term mu′ .

• A chooses two new random challenge vectors β̃ and γ̃ such that β̃i, γ̃i ∈
[
2t̃i
]
. It

rewinds M back to the beginning of the right execution's query phase and sends β̃

receiving left query β. It responds with b = f(β) receiving right response b̃. It repeats

this process, sending challenge γ̃, answering γ with c = f(γ) and receiving c̃.

• A checks whether the points
{

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
are collinear. If so, A outputs u′,

if not A outputs 1− u′.

In light of Fact 2.1, it su�ces to prove that:

1. Pr
({

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
collinear

∣∣u′ = u & T ∈ SUPER−POLY ∩ INT
)
≥ δ2p4

18
;

2. Pr
({

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
collinear

∣∣u′ 6= u & T ∈ SUPER−POLY ∩ INT
)
≤ 2ε∗,

since 2ε∗ ≤ (σδ2p5)/144. For the �rst quantity, note that
{

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
are collinear

if M answers correctly. As T ∈ USEFUL, M answers β̃ and γ̃ correctly with probability at

least
(
δp2/3

)2
if u′ = u (i.e., if M receives correct responses on the left) by Claim 2.4. We

see that

Pr
({

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
collinear

∣∣u′ = u & T ∈ SUPER−POLY ∩ INT
)
≥ δ2p4

18
.

53

For the second quantity, de�ne the temporary event

E′ : �
{

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
are collinear.�

We have

Pr
(
E′
∣∣u′ 6= u & T ∈ SUPER−POLY ∩ INT

)
≤ Pr

(
E′
∣∣β̃ is incorrect

)
+ Pr

(
β̃ is correct

∣∣u′ 6= u & T /∈ EXT
)

≤ Pr
(
E′
∣∣β̃ is incorrect

)
+ ε∗,

as if u′ 6= u then the answer M receives to β is random (i.e., distributed identically to an

answer from E) and T /∈ EXT. Therefore, proving that Pr
(
E′
∣∣β̃ is incorrect

)
= negl(λ)

completes the proof of Claim 2.8.

Suppose that α̃ and α̃′ are such that M(α̃) = α = M(α̃′) and such that M answers

α̃ and α̃′ honestly given correct response a to α. Note that it cannot be the case that{
(α̃, ã), (β̃, b̃), (γ̃, c̃)

}
and

{
(α̃′, ã′), (β̃, b̃), (γ̃, c̃)

}
are collinear as this would mean that the

four points {
(α̃, ã), (α̃′, ã′), (β̃, b̃), (γ̃, c̃)

}
lie on the same line, and moreover, that this is the correct line as it contains the correct

points (α̃, ã) and (α̃′, ã′). This contradicts the hypothesis that b̃ is an incorrect answer. So

we see that for each α there exists at most one α̃ such that

1. M(α̃) = α;

2. M answers α̃ honestly;

3.
{

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
are collinear.

54

As T ∈ SUPER−POLY, there are at least λω values of α̃ such that number 1 holds, and as

T /∈ BAD2, M answers a non-negligible fraction of these honestly. It follows that there are a

superpolynomial number of α̃ satisfying 1 and 2, which means that the probability that A

chose the unique α̃ such that all three hold is negligible.

Claim 2.9. If PrT∈ACC
(
T ∈ IND & T ∈ INT

)
≥ δ′p

4
then there exists a PPT A who breaks

the hiding of 〈C,R〉.

Proof. Our A proceeds as follows.

• As described above, A chooses random m0,m1 ∈ Zq and begins the hiding game, send-

ing (m0,m1) to C. Then A instantiates M and runs two sessions of 〈C,R〉 forwarding

the messages it receives as C to C. In the left interaction, C commits tomu for unknown

u ∈ {0, 1}. Let T =
(
Com, α̃, a

)
be the resulting transcript. Additionally, A chooses

random u′ ∈ {0, 1} and de�nes the polynomial vector f, to be the unique such vector

so that f(α) = a and so that every coordinate of f has constant term mu′ .

• A chooses random i ∈ [n] and random challenge vector β̃ such that β̃i = α̃i. It rewinds

M back to the beginning of the right execution's query phase and sends β̃ receiving left

query β. If βi′ = αi′ for any i
′ ∈ [n] then A aborts. If not, A responds with b = f(β)

receiving right response b̃.

• A checks whether b̃i = ãi. If so, A outputs u′, if not A outputs 1− u′.

First note that

Prβ̃
(
A not abort

∣∣T ∈ IND ∩ INT
)
≥ Pr

(
α̃i ε− independent

∣∣T ∈ IND ∩ INT
)

· Prβ̃
(
βi′ 6= αi′∀i′

∣∣α̃i ε− independent & β̃i = α̃i
)
.

≥ 1

n
· (nε′) = ε′.

55

So by Fact 2.1, it su�ces to prove that:

1. Pr
(
b̃i = ãi

∣∣u′ = u & u′ = uT ∈ IND ∩ INT & A not abort
)
≥ δp2

3n
;

2. Pr
(
b̃i = ãi

∣∣u′ 6= u & T ∈ IND ∩ INT & A not abort
)
≤ ε∗,

since ε∗ ≤ (δδ′ε′p4)/96n. For the �rst quantity, note that b̃i = ãi if M answers correctly. As

T ∈ USEFUL, M answers β̃ correctly with probability at least δp2/3n if u′ = u by Claim 2.4.

For the second quantity, note that if u′ 6= u then the answers M receives on the left are

distributed identically to the responses it gets from E (this is using that βi′ 6= αi′ for all

i′ ∈ [n]), and so Pr
(
b̃i = ãi

∣∣u′ 6= u & T ∈ INT & A not abort
)
≤ ε∗.

Claims 2.5 through 2.9 combine to give that if Com is computationally hiding, then

PrT∈ACC
(
T ∈ INT

)
≤ PrT∈ACC

(
T ∈ IND & T ∈ INT

)
+ PrT∈ACC

(
T ∈ UNBAL & T ∈ INT

)
+ PrT∈ACC

(
T ∈ 1−2 & T ∈ INT

)
+ PrT∈ACC

(
T /∈ IND ∪ UNBAL ∪ 1−2 & T ∈ INT

)
≤ δ′p

4
+
δ′p

4
+
δ′p

4
+
δ′p

4
= δ′p,

completing the proof of Lemma 2.1, Theorem 2.2 and Theorem 2.1.

2.4.6 Many-Many Non-Malleability

Though we have only proved non-malleability in the setting where M engages in a single

left and right session, our proof may be extended using known techniques to accomodate the

situation where M engages in polynomially many sessions on the right and left. The proof

is in two steps.

First, we show that our protocol is one-many non-malleable following the techniques

of [Goy11]. The observation is that we have many sessions on the right but only one on the

56

left, we can polynomially many copies of our extractor, one for each right session. Then since

none of the extractors needs to rewind the left session, we can prove that they all succeed

whp by the union bound.

Next, we use the transformation of [LPV08], that any one-many non-malleable com-

mitment scheme is also many-many non-malleable. The proof is a hybrid argument. The

intuition is that if having many sessions on the left compromised non-malleability, then

there would be (at least) one session whose existence was to blame. This violates one-many

non-malleability.

57

2.5 Optimizing Communication

In this section we address the issue of minimizing the communication complexity of

our scheme 〈C,R〉 from the previous section. A �rst glance does not o�er much hope as

the query/response phase appears to be the most communication heavy, requiring a total of

ω(n2 log λ) bits to be sent back and forth, and the size of the challenge space being this large

played an important role in the proof of non-malleability. However, viewing it from another

angle and asking the question �is there any way we can use the same protocol to commit to

a larger message?� o�ers some hope. Though this would not decrease the communication in

one run of 〈C,R〉, it would reduce the communication per bit of commitment message.

Committing to Di�erent Messages in each Coordinate. Recall that in the commit-

ment phase of our protocol, C commits to the coe�cients of n linear polynomials, each with

constant term m. Our �rst approach is to remove the requirement that all polynomials have

the same constant term. Note that this will not allow C's secret message to be (m1, . . . ,mn),

the set of all constant terms. The reason is that our proof of non-malleability requires the ex-

tractor E to be able to extract M's commitment on the right, which, if all polynomials share

the same constant term, ammounts to proving that there is one coordinate where extraction

is possible. In order for E to extract (m̃1, . . . , m̃n), we would have to prove that extraction

is possible in all coordinates, which is too much to hope for. Certainly extraction cannot

be guaranteed in coordinates where ti = t̃i. However, if we are able to amend our proof to

be able to show that extraction is possible from say a constant fraction of the coordinates

then we could let the constant terms be secret shares of the commitment message. Now

extracting in Ω(n) coordinates will be su�cient to reconstruct the secret, which if we use a

secret sharing scheme with constant rate, such as [FY92]'s packed variant of Shamir's secret

sharing scheme [Sha79], can be Ω(n) di�erent messages.

58

In order to prove that extraction is possible from many coordinates we must make a

small modi�cation to our protocol because of the following attack. Recall that the tags are

arranged in such a way so that t̃i < ti′ for all i
′ > i. Suppose after receiving C's commitment

message, which is a commitment to the coe�cients of linear polynomials f1 . . . fn, M sends

commitments to the coe�cients of f̃1, . . . , f̃n where f̃n is random and f̃i = fi+1 for all

i ≤ n − 1. Then upon receiving challenge (α̃1, . . . , α̃n) from R it sends α to C where

αi = α̃i−1 for all i ≥ 2. Note that this is sure to be a legal query as
[
2t̃i−1

]
⊂
[
2ti
]
for all

i ≥ 2. Upon receiving left response a, M sets ãn = f̃n(α̃n) and ãi = ai+1 for all i ≤ n − 1.

Such behavior from M ensures that E can only extract from the last coordinate.

In order to �x the protocol so the above attack is not possible, we arrange the com-

mitment message so that it consists of commitments to the coe�cients of n/2 quadratic

polynomials instead of n linear polynomials. Then during the query phase, the query vector

α is parsed so that (αi, αn−i) correspond to the i−th quadratic polynomial. This prevents M

from shifting the polynomials it receives because each polynomial gets a query from a small

domain and a large domain and furthermore, the smaller the domain is for the �rst query,

the larger the domain is for the second. We let the n/2 constant terms be secret shares of

C's commitment message m = (m1, . . . ,m`) for some ` = Ω(n). The new protocol is shown

in Figure 2.4, and the updated proof of non-malleability is given in Section 2.5.2. We collect

the necessary technical results into Section 2.5.1 to make exposition in Section 2.5.2 more

coherent.

2.5.1 Mixed Dependencies

A large part of our proof of non-malleability involved examining di�erent options

for the dependencies between the left and right sessions and proving that certain �unlikely

seeming� possibilities were in fact impossible. Changing the protocol so that more than one

59

Public Parameters: Tags t1, . . . , tn, large prime q such that q > 2ti for all i and ` = Ω(n).

Commiter's Private Input: Message vector m ∈ F`q to be committed to. Let(
[m]1, . . . , [m]n/2

)
be shares of m under an

(
`− 1, n/2

)
−Franklin-Yung packed secret

sharing scheme [FY92].

0. R→ C Initialization message: Send the �rst message σ of the Naor commitment
scheme.

1. C→ R Commit message: Sample random r1, . . . , rn ∈ Fq.

• De�ne quadratic functions f1, . . . , fn/2 by fi(x) = rn−i+1x
2 + rix+ [m]i.

• Send commitments Com =
(
Com(rn−i+1),Com(ri),Com

(
[m]i

))
i=1,...,n/2

.

2. R→ C Query:

• Send random challenge vector α = (αi, αn−i+1)i=1,...,n/2 where αi ∈ [2ti] ⊂ F2
q.

3. C→ R Response:

• Send a = (ai, an−i+1)i=1,...,n/2, where (ai, an−i+1) =
(
fi(αi), fi(αn−i+1)

)
.

4. C←→ R Consistency proof: Parties engage in a zero-knowledge argument
protocol where C proves to R that the commit message is well formed and that the
response is correct.

Figure 2.4: : Updated NMC scheme 〈C,R〉MANY-COORDS.

60

query is asked of each polynomial opens up a new possibility which seems unlikely. In this

section we prove that it cannot be the case that two right queries of the same polynomial

each are dependent on a left query, and moreover that these left queries are of di�erent

polynomials. Towards this end, we �rst prove an extension of Claim 2.2 which examines

the liklihood that M gives more than one correct response on the right given that it receives

exactly one correct response on the left and all of its other left queries are answered randomly.

De�nition 2.10 (Related Coordinates). We say that i1, i2 ∈ [n] are related, written

i1 ∼ i2, if the queries in coordinates i1 and i2 are answered by the same polynomial.

De�nition 2.11 (Generalized Extractable Transcripts). De�ne GEN−EXT(i1,i2,i′) to

be the set of left commitment messages Com such that M's likelihood of correctly answering

β̃i1 and β̃i2 on the right is ≥ ε∗∗ = λ2
√
ε∗ =

(
4λ9/N

)1/4
, if its left queries are answered as

follows:

• βi′ is answered correctly;

• all other βi are answered randomly.

These sets can be seen as generalized versions of the sets EXTi de�ned in De�nition 2.5. Set

GEN−EXT =
{
T ∈ ACC : ∃ (i1, i2, i

′) st i1 ∼ i2 & Com ∈ GEN−EXT(i1,i2,i′)
}
.

Claim 2.10. If PrT∈ACC
(
T ∈ GEN−EXT \ EXT

)
≥ δ′p

6
, then there exists an A that breaks

the hiding of 〈C,R〉MANY−COORDS.

Proof. Our A proceeds as follows.

• A chooses random m0,m1 ∈ Z`q and sends (m0,m1) to C signaling the start of the

hiding game of 〈C,R〉MANY−COORDS. Then A instantiates M and runs two sessions

of 〈C,R〉MANY−COORDS, forwarding the messages it receives as C to C. In the left

61

interaction, C commits to mu for unknown u ∈ {0, 1}. Let T =
(
Com, α̃, a

)
be the

resulting transcript. Additionally, A chooses random u′ ∈ {0, 1} and i′ ∈ [n] and

de�nes the polynomial vector f, to be such that f(α) = a and such that the polynomial

corresponding to the i−th coordinate has constant term [mu′]i. Let f denote the

coordinate polynomial corresponding to the i′−th query. Finally, A initializes a counter

variable c to zero.

• A now chooses N ′ =
(
N/4λ5

)1/4
random challenge vectors β̃1, . . . , β̃N ′ and rewinds M

back to the beginning of the right execution's query phase N ′ times, each time sending

β̃j and receiving βj.

• A chooses random i1, i2 ∈ [n] such that i1 ∼ i2. For each j ∈ [N ′], A prepares response

bj by choosing bj randomly except that bi′,j = f(βi′). A sends bj to M and receives

b̃j. A checks whether the points

{
(αi1 , ai1), (αi2 , ai2), (βi1,j, bi1,j), (βi2,j, bi2,j)

}
all lie on the same quadratic. If so, A increments c and continues.

• If after looping over all j ∈ [N ′], if c ≥ λ/2 then A outputs u′. Otherwise, A outputs

1− u′.

For the purposes of this proof, de�ne the events

• E : �T ∈ GEN−EXT \ EXT & (i1, i2, i
′) st Com ∈ GEN−EXT(i1,i2,i′).�

• E′j : �
{

(α̃i1 , ãi1), (α̃i2 , ãi2), (β̃i1,j, b̃i1,j), (β̃i2,j, b̃i2,j)
}
lie on the same quadratic.�

Note that PrT∈ACC(E) ≥ δ′p/6n3 by the hypotheses of Claim 2.10. By Fact 2.1, it su�ces to

prove that:

1. Pr
(
E′j for at least λ/2 values of j ∈ [N ′]

∣∣u′ = u & E
)
≥ 1

2
;

62

2. Pr
(
E′j for at least λ/2 values of j ∈ [N ′]

∣∣u′ 6= u & E
)
≤ 2
√
ε∗,

since 2
√
ε∗ ≤ δ′p2/96n3. For the �rst quantity, note that if u′ = u then the answers M

receives on the left are random except for bi′ which is a correct response to βi′ . As Com ∈

GEN−EXT(i1,i2,i′), we see that Pr
(
E′j
∣∣u′ = u & E

)
≥ ε∗∗ for all j. As the E′j are independent,

the expected number of E′j which occur is at least ε∗∗N ′ = λ. Using Markov, the probability

that at least λ/2 occur is at least 1/2.

For the second quantity, note that when u′ 6= u, the answers M receives on the left are

generated according to a random quadratic except that bi′′ is generated completely randomly.

Call this quadratic Q. As T /∈ EXT, we know that if M were receiving completely random

answers on the left then its probability of correctly answering β̃i1 on the right would be at

most ε∗. Using conditional probability we can show that with probability at least 1 −
√
ε∗

over Q, the probability that M answers β̃i1 correctly when given random answers to all its

left queries except that βi′ is answered according to Q is at most
√
ε∗. It follows that the

expected number of times M gives a correct answer to β̃i1 is at most
√
ε∗N ′ = 1/λ, and so by

the Cherno� bound, this number is less than λ/2 with high probability. Therefore, in order to

bound the second quantity, it su�ces to prove that
(
E′j
∣∣β̃i1 answered incorrectly

)
= negl(λ).

However, this is precisely what we proved in Claim 2.1, and so Claim 2.10 follows.

De�nition 2.12 (Transcripts with Mixed Polynomial Dependencies). We write i1 ∼

i2 if i1 and i2 are query coordinates for the same polynomial. De�ne the set

MIXED :=

T ∈ ACC : ∃ (i1, i2, i
′
1, i
′
2) st

1) αi′b is ε− dependent on α̃ib , b = 1, 2
2) 6 ∃ k 6= i′b st αk is ε

′ − dependent on α̃ib
3) i1 ∼ i2 but i′1 6∼ i′2

 .

Claim 2.11. If

PrT∈ACC
(
T ∈ (INT ∩MIXED) \ GEN−EXT

)
≥ δ′p

6

63

then there exists a PPT A who breaks the hiding of Com.

Proof. Our A proceeds as follows.

• A chooses random m0,m1 ∈ Z`q and begins the hiding game, sending (m0,m1) to C.

Then A instantiates M and runs two sessions of 〈C,R〉 forwarding the messages it

receives as C to C. In the left interaction, C commits to mu for unknown u ∈ {0, 1}.

Let T =
(
Com, α̃, a

)
be the resulting transcript. Additionally, A chooses random

u′ ∈ {0, 1} and de�nes the polynomial vector f, to be the unique such vector so that

f(α) = a and so that every coordinate of f has constant term mu′ .

• A chooses random i1, i2 ∈ [n] such that i1 ∼ i2 and random challenge vectors β̃, β̃
′
, γ̃

such that β̃i1 = β̃′i1 = α̃i1 and γ̃i2 = α̃i2 . It rewinds M back to the beginning of the right

execution's query phase three times sending β̃, β̃
′
, γ̃, receiving left challenges β,β′,γ.

A aborts unless there exist i′1, i
′
2 ∈ [n] such that i′1 6∼ i′2 and βi′1 = β′i′1

= αi′1 but

βk 6= αk, β
′
k 6= αk for all k 6= i′1 and γi′2 = αi′2 but γk 6= αk for all k 6= i′2.

• If A does not abort in the previous step, it proceeds by sending left responses b = f(β),

b′ = f(β′) and c = f(γ), receiving right response vectors b̃, b̃
′
, c̃.

• A checks whether b̃i1 = b̃′i1 = ãi1 , c̃i2 = ãi2 and the points

{
(α̃i1 , ãi1), (α̃i2 , ãi2), (β̃i2 , b̃i2), (β̃

′
i2
, b̃′i2), (γ̃i1 , c̃i1)

}
lie on the same quadratic. If so, A outputs u′, if not A outputs 1− u′.

For the purposes of this proof, de�ne the events

• E : �T ∈ (INT ∩MIXED) \ GEN−EXT & A does not abort.�

• E′ : �
{

(α̃i1 , ãi1), (α̃i2 , ãi2), (β̃i2 , b̃i2), (β̃
′
i2
, b̃′i2), (γ̃i1 , c̃i1)

}
lie on the same quadratic.�

64

Note that in order for A not to abort given that T ∈ (INT ∩MIXED) \ GEN−EXT, A must

choose i1, i2 correctly and then M must �x only the i′1−th (resp. i′2−th) coordinates of β

and β′ (resp. γ). Clearly the former happens with probably at least 1/n2 and if we let Y

equal the latter probability then we can bound Y as follows

Y ≥ Pr
β̃,β̃
′
,γ̃

(
β̃, β̃

′
, γ̃ ∈ HON

)
·
(

Prβ̃∈HON

(
βi′1 = αi′1 & 6 ∃ k 6= i′1 st βk = αk

∣∣β̃i1 = α̃i1
))3

≥
(
δp2

3n

)3

·
(

Prβ̃∈HON

(
βi′1 = αi′1

∣∣β̃i1 = α̃i1
)
− Prβ̃∈HON

(
∃ k 6= i′1 st βk = αk

∣∣β̃i1 = α̃i1
))3

≥
(
δp2

3n

)3

·
(
ε− nε′

)3 ≥
(
δp2

12n2

)3

.

Note that we have used Claim 2.4 to lower bound the probability that β̃ ∈ HON. We get

that PrT∈ACC(E) ≥ (δ3δ′p7)/(6912n8). By Fact 2.1, it su�ces to prove that:

1. Pr
(
E′ & b̃i1 = b̃′i1 = ãi1 & c̃i2 = ãi2

∣∣u′ = u & E
)
≥ δ3p6

27n3 ;

2. Pr
(
E′ & b̃i1 = b̃′i1 = ãi1 & c̃i2 = ãi2

∣∣u′ 6= u & E
)
≤ 2ε∗∗;

since 2ε∗∗ ≤ (δ6δ′p13)/(2239488n11). For the �rst quantity, note that if u′ = u then M gets

receives correct answers on the left. Therefore, the conditions will be satis�ed whenever

β̃, β̃
′
, γ̃ ∈ HON, which happens with probability at least

(
δp2/3n

)3
by Claim 2.4.

To examine the second quantity, note that as T /∈ GEN−EXT, the probability that M

answers β̃i2 correctly is at most ε∗∗. This is because when u′ 6= u, the answers on the left are

all incorrect except for bi′ . Note that even though the incorrect answers are not generated

randomly, they are each generated by evaluating a random quadratic polynomial vector,

where each coordinate quadratic intersects the correct quadratic at two random points. One

can show that these distributions are identical. Similarly, we see that M answers β̃′i2 and γ̃i1

65

correctly each with probability at most ε∗∗. Therefore, it su�ces to show that

Pr
(
E′
∣∣b̃i2 , b̃′i2 , c̃i1 incorrect) = negl(λ).

Towards this end, for query response pair (γ̃, c̃) and a single query α̃i1 let COMP
(
α̃i1 , γ̃, c̃

)
be the set of queries β̃, β̃

′
such that

• β̃i1 = β̃′i1 = α̃i1 , b̃i1 = b̃′i1 = ãi1 is the correct response;

• b̃i2 and b̃′i2 are incorrect responses to β̃i2 and β̃
′
i2
;

•
{

(α̃i1 , ãi1), (β̃i2 , b̃i2), (β̃
′
i2
, b̃′i2), (γ̃i1 , c̃i1), (γ̃i2 , c̃i2)

}
lie on the same quadratic.

Intuitively, COMP
(
α̃i1 , γ̃, c̃

)
is the set of queries β̃, β̃

′
that if M's queries β,β′ are answered

using f then M will answer incorrectly in both of the i2−th coordinates, but in such a way

that the conditions will be satis�ed. Note that if (γ̃, c̃) and (γ̃ ′, c̃′) are such that γ̃i2 6= γ̃′i2

but c̃i2 and c̃
′
i2
are correct responses, then for all α̃i1 ,

COMP
(
α̃i1 , γ̃, c̃

)
∩ COMP

(
α̃i1 , γ̃

′, c̃′
)

= ∅.

To see this, suppose (β̃, β̃
′
) ∈ COMP

(
α̃i1 , γ̃, c̃

)
∩ COMP

(
α̃i1 , γ̃

′, c̃′
)
. Then

1.
{

(α̃i1 , ãi1), (β̃i2 , b̃i2), (β̃
′
i2
, b̃′i2), (γ̃i1 , c̃i1), (γ̃i2 , c̃i2)

}
lie on the same quadratic; and

2.
{

(α̃i1 , ãi1), (β̃i2 , b̃i2), (β̃
′
i2
, b̃′i2), (γ̃

′
i1
, c̃′i1), (γ̃

′
i2
, c̃′i2)

}
lie on the same quadratic.

Call these quadratics Q1 and Q2. Since Q1 and Q2 intersect on three points, we have

Q1 = Q2 = Q. But then this means that Q contains the points
{

(α̃i1 , ãi1), (γ̃
′
i1
, c̃′i1), (γ̃

′
i2
, c̃′i2)

}
which are all points of correct responses. So Q intersects the correct quadratic at three

points, making it the correct quadratic. This means that (β̃i2 , b̃i2) and (β̃′i2 , b̃
′
i2

) are also

correct points contradicting the second criterion for membership in COMP.

66

It follows that for any α̃i1 and β̃, β̃
′
, there is at most one value of α̃i2 that could cause the

conditions to be satis�ed if b̃i2 and b̃
′
i2
are incorrect responses to β̃i2 and β̃

′
i2
. The probability

that this particular α̃i2 is the one that appears in the main thread is negligible.

2.5.2 Proof of Non-Malleability of 〈C,R〉MANY−COORDS

In this section, we complete the proof that 〈C,R〉MANY−COORDS is non-malleable. The

proof is very similar to the proof in Section 2.4, and so we will follow the same outline, and

only delve into details when the two proofs di�er.

Modifying the Extractor E. Recall that the proof in Section 2.4 assumed that a MIM

adversary M successfully executes a mauling attack on 〈C,R〉 with probability at least 2p, for

non-negligible quantity p = p(λ). It then described an extractor E (Figure 2.3), and proved

that when given a completed transcript T, E successfully outputs m̃, M's commitment in the

right execution, with probability at least 1− p. This ensured that M's mauling attack, and

the E's extraction would both succeed with probability at least p, which breaks the hiding

of Com.

We use the same high level approach, and also the same extractor in our proof that

〈C,R〉MANY−COORDS is non-malleable modi�ed to account for the fact that 〈C,R〉MANY−COORDS

uses quadratic polynomials with secret shares of secret vector m̃ ∈ Z`q as constant terms

instead of linear polynomials with the same constant term. Explicitly, �x N = poly(λ) such

that N = ω
(
λ9n44/p52

)
. For j ∈ [N]:

• E chooses two new queries β̃ = β̃j, γ̃ = γ̃j and rewinds M twice to the beginning of

the right execution's query phase sending β̃ and γ̃, receiving β and γ.

• E sends random responses b and c, receiving right responses b̃ and c̃.

67

• E keeps track of a set S ⊂ [n] initialized to [n]. For all i1, i2 ∈ S such that i1 ∼ i2, E

checks whether the points

{
(α̃i1 , ãi1), (α̃i2 , ãi2), (β̃i1 , b̃i1), (γ̃i1 , c̃i1)

}
OR

{
(α̃i1 , ãi1), (α̃i2 , ãi2), (β̃i2 , b̃i2), (γ̃i2 , c̃i2)

}
lie on the same quadratic. If so, E records (i1, i2, [m̃](i1,i2)), where [m̃](i1,i2) is the

constant term of this quadratic. E also removes i1 and i2 from S.

• As soon as E has recorded ` constant terms, it reconstructs and outputs m̃ and halts.

The non-malleability of 〈C,R〉MANY−COORDS now follows from proving that

PrT∈ACC
(
E(T) 6= m̃

)
≤ p.

Modifying INT, the Set of Interesting Transcripts. Our proof in Section 2.4 then

proceeded to de�ne the set of interesting transcripts, INT = USEFUL \ EXT. These are the

transcripts on which 1) if rewound, M will not simply �always abort� and 2) extraction fails.

Our de�nition of USEFUL from De�nition 2.6 remains the same, but our de�nition of EXT

from De�nition 2.5 changes, resulting in a new set INTMANY−COORDS. The reason for the

change in EXT is that in order for extraction to be successful, E must extract from many

coordinates rather than just one.

Explicitly, we keep the de�nition of EXTi and rede�ne

EXTMANY−COORDS =
{
T ∈ ACC : #{i : Com ∈ EXTi} ≥ `

}
.

The proof that extraction succeeds whp if T ∈ EXTMANY−COORDS requires, just as in the

original proof, proving that E does not output the incorrect value m̃′ 6= m̃ except with

negligible probability. This involves showing that M does not answer �incorrectly but co-

68

quadratically� except with negligible probability, which is proved just as Claim 2.1. Now,

PrT∈ACC
(
E(T) 6= m̃

)
≤ p follows from

PrT∈ACC
(
T ∈ INTMANY−COORDS

)
≤ δ′p

where INTMANY−COORDS = USEFUL \ EXTMANY−COORDS. If we think of INTMANY−COORDS in

terms of M's behavior, it is the set of completed transcripts such that if M is rewound and

asked a new query:

• M answers correctly with non-negligible probability if given correct responses to its

own queries;

• M answers correctly in at most `− 1 coordinates if given random responses to its own

queries.

So, at least behaviorally, INTMANY−COORDS can be thought of as containing INT (even though

technically they are sets of transcripts of di�erent protocols, so no formal notion of contain-

ment is possible).

Analyzing Dependencies. We now turn to the task of examining the dependencies be-

tween the left and right queries. We have already done most of the work required to complete

the proof, either in Section 2.4 or Section 2.5.1.

Recall we de�ned IND to be the set of transcripts such that there exists a query α̃i such

that no αi′ is ε−dependent on α̃i (in this case we said that α̃i is ε−independent). We then

proved Claim 2.9 by proving essentially that if α̃i is ε−independent, then Com ∈ EXTi.

This implied that T ∈ EXT, which allowed us to bound PrT∈ACC
(
T ∈ IND \ EXT

)
. In our

case, we still have that if α̃i is ε−independent then Com ∈ EXTi, but this no longer implies

69

that T ∈ EXTMANY−COORDS. We therefore de�ne

INDMANY−COORDS =
{
T ∈ ACC : #{i : α̃i is ε− independent} ≥ `

}
.

This allows us to bound PrT∈ACC
(
T ∈ INDMANY−COORDS \ EXTMANY−COORDS

)
, analogously

to Claim 2.9.

Recall that we de�ned SUPER−POLY to be the set of transcripts such that the left

query vectorα has a superpolynomial number of preimage right query vectors α̃. In Claim 2.8

we proved that interesting transcripts cannot be in SUPER−POLY except with very small

probability; otherwise M can be used to break hiding. We then de�ned sets of transcripts

• 1−2 :=
{
T ∈ ACC : ∃ (i1, i2, i

′) st αi′ is ε
′ − dependent on both α̃i1 and α̃i2

}
• UNBAL :=

{
T ∈ ACC : ∃ i′ > i st αi′ is ε

′ − dependent on α̃i
}

and proved that in Claims 2.5 and 2.6 that if interesting transcripts are likely to be in

either set, then they are also likely to be in SUPER−POLY, which breaks the hiding of

〈C,R〉 via Claim 2.8. It is easy to see that Claim 2.5, Claim 2.6 and Claim 2.8 all carry over

identically to 〈C,R〉MANY−COORDS, since these proofs only rely on counting the sizes of various

sets of queries, and not on the speci�c di�erences between 〈C,R〉 and 〈C,R〉MANY−COORDS.

Now, de�ne the set S(T) to be the set of i such that α̃i is not ε−independent. By

de�nition, for these α̃i there exists an αi′ such that αi′ is ε−dependent on α̃i. By our

discussion of INDMANY−COORDS, we may assume that
∣∣S(T)

∣∣ ≥ n− ` + 1. As no two α̃i1 and

α̃i2 can be ε−dependent on the same αi′ , we see that for at least n− 2`+ 2 values of i, α̃i is

ε−dependent on a unique αi′ . This means that there are at least
(
n/2
)
− 2`+ 2 pairs (i1, i2)

such that i1 ∼ i2 and α̃i1 and α̃i2 are dependent on unique αi′1 and αi′2 . By Claim 2.11, it

must be that i′1 ∼ i′2, which means that there are at least
(
n/2
)
− 2` + 2 related queries

70

on the right with a unique pair of related queries on the left that is ε−dependent on it.

By Claim 2.6, it must be that each of these pairs are the same coordinates. In other words,

it must be that there are at least
(
n/2
)
− 2`+ 2 pairs (i1, i2) such that i1 ∼ i2 and such that

αi1 (resp. αi2) is ε−dependent on α̃i1 (resp. α̃i2). Finally, this means that there are at least

n− 4`+ 4 values of i such that αi is ε−dependent on α̃i. Just as in Claim 2.7, we can show

that this means that T ∈ SUPER−POLY with su�cient probability to break the hiding of

〈C,R〉MANY−COORDS.

This completes the walkthrough of the proof of non-malleability of 〈C,R〉MANY−COORDS.

Explicitly, PrT∈ACC
(
T ∈ INTMANY−COORDS

)
≤ δ′p follows from the following assertions, whose

proofs are analogous to those of the claims they are next to.

• Claim 2.9: PrT∈ACC
(
T ∈ INTMANY−COORDS ∩ INDMANY−COORDS

)
≤ δ′p

6
;

• Claim 2.5 via Claim 2.8: PrT∈ACC
(
T ∈ INTMANY−COORDS ∩ 1−2

)
≤ δ′p

6
;

• Claim 2.6 via Claim 2.8: PrT∈ACC
(
T ∈ INTMANY−COORDS ∩ UNBAL

)
≤ δ′p

6
;

• Claim 2.10: PrT∈ACC
(
T ∈ INTMANY−COORDS ∩ GEN−EXT

)
≤ δ′p

6
;

• Claim 2.11: PrT∈ACC
(
T ∈ (INTMANY−COORDS ∩MIXED) \ GEN−EXT

)
≤ δ′p

6
;

• Claim 2.7 via Claim 2.8:

PrT∈ACC
(
T ∈ INTMANY−COORDS \ (INDMANY−COORDS ∪ 1−2 ∪ UNBAL ∪MIXED)

)
≤ δ′p

6
.

2.6 Non-Malleability in 4-Rounds

In this section we show how to squeeze our non-malleable protocol 〈C,R〉MANY−COORDS

into 4 rounds. In the new protocol, the zero-knowledge messages are lifted up and sent

71

together with the challenge-response messages. Consider the 4-round Feige-Shamir zero-

knowledge protocol [FS90] which consists of having the veri�er prove a hard statement using

3-rounds Witness indistinguishable Argument of Knowledge (WIAOK) while the prover also

uses 3-roundsWIAOK to prove another hard statement (that involves potential knowledge

of veri�er's trapdoor). We carefully parallelize the Feige-Shamir protocol with our 4-round

basic component of 〈C,R〉MANY−COORDS and obtain the �rst 4-round non-malleable commit-

ment scheme. Our 4-round commitment scheme 〈C,R〉OPT appears in Figure 2.5. We denote

by π1 and π2 theWIAOK of the veri�er and prover respectively. In π1 we use two One-Way

Functions and refer by L1 and L2 to their corresponding (hard on average) languages.

Public Parameters: Tags t1, . . . , tn, large prime q such that q > 2ti for all i and ` = Ω(n).

Commiter's Private Input: Message vector m ∈ F`q to be committed to.

1. R→ C: Sample random x1 ∈ L1 and x2 ∈ L2 and send the �rst message of π1

proving either x1 ∈ L1 or x2 ∈ L2 along with the �rst message σ of the Naor
commitment scheme.

2. C→ R: Send the challenge message of π1 along with the �rst message of π2 and the
commitment vector Com as done in Step 1 of 〈C,R〉MANY−COORDS. (The statement of
π2 is determined in the last step).

3. R→ C: Send the last message of π1 along with challenge message of π2 and the
challenge vector α = (α1, . . . , αn) as done in Step 2 of 〈C,R〉MANY−COORDS.

4. C→ R: Send the evaluations {fi(αi), fi(αn−i)}i∈[n/2] as in Step 3 of
〈C,R〉MANY−COORDS along with the last message of π2 proving the following statement:

• message 1 and 3 are correct; OR

• x1 ∈ L1; OR

• x2 ∈ L2.

Figure 2.5: : 4-round non-malleable commitment scheme 〈C,R〉OPT.

Proposition 2.2. 〈C,R〉OPT is a four round statistically binding, non-malleable commitment

72

scheme.

Proof Sketch. Statistical binding follows immediately from the statistical binding property

of Com. To prove computational hiding, we follow the proof of Proposition 2.1.

The proof that 〈C,R〉OPT is non-malleable against a synchronizing adversary follows

exactly the same argument as the proof that 〈C,R〉OPT is non-malleable except that now when

E is rewinding and answering M's queries randomly in the left interaction, it must complete

the proof π2 using one of the trapdoor statements. However, this is not problem. It just

means that before E can start rewinding M back to the beginning of the right execution's

query phase and trying to extract m̃, it must �rst rewind M back to the left execution's

commit phase and extract M's trapdoor witness.

In order to prove non-malleability against a non-synchronizing M, we simply enumerate

and check all of the other possibilities for M's scheduling. As 〈C,R〉OPT has only four rounds,

this is a very manageable task. Essentially extraction is trivial from an M who uses any

scheduling other than the synchronizing one.

By slightly modifying our new commitment scheme 〈C,R〉OPT, we obtain a simple 4-

round non-malleable zero knowledge argument (P, V) for any language L in NP . Detailed

description of our (P, V) protocol appears in Figure Figure 2.6.

Proposition 2.3. The protocol (P, V) is a non-malleable zero knowledge argument of knowl-

edge for any language L ∈ NP.

Proof Sketch. The proof of non-malleability is similar to the non-malleability of 〈C,R〉OPT.

The zero-knowledge property follows by the ZK of [FS90] and the hiding of 〈C,R〉OPT. Lastly,

the AOK property can be derived by constructing an extractor that behaves as a honest

veri�er and extracts the witness by rewinding and sending di�erent challenges.

73

Tags: Let the tag for the interaction be t = t1, . . . , tn in error corrected form.

Common input: x ∈ L.

Input to the prover: A witness w for x ∈ L.

1. V → P : Sample random x1 ∈ L1 and x2 ∈ L2 and send the �rst message of π1

protocol proving either x1 ∈ L1 or x2 ∈ L2 along with the �rst message σ of the Naor
commitment scheme.

2. P → V : Send the challenge message of π1 along with the �rst message of the π2 and
the commitment vector Com with w being the free coe�cient as done in Step 1 of
〈C,R〉OPT. (The statement of π2 is determined in the last step).

3. V → P : Send the last message of π1 along with challenge message of π2 and the
challenge vector α = (α1, . . . , αn) as done in Step 2 of 〈C,R〉OPT.

4. P → V : Send the evaluations {fi(αi), fi(αn−i)}i∈[n/2] as in Step 3 of 〈C,R〉OPT along
with the last message of π2 proving the following statement:

• either knowledge of w together with correctness of {fi(αi), fi(αn−i)}i∈[n/2].

• or x1 ∈ L1.

• or x2 ∈ L2.

Figure 2.6: 4-round non malleable zero-knowledge argument (P, V).

74

Chapter 3

Concurrent Zero-Knowledge in the Bounded Player

Model

3.1 Concurrent Zero-Knowledge

The original de�nition of zero knowledge is relevant to the �stand-alone� setting where

security is only required to hold if the protocol is run in isolation. If one were to run

many executions of such a protocol concurrently, the stand-alone security guarantees would

disappear. Given the interconnectivity present in today's world thanks to the internet and

other network environments, it seems unreasonable to demand that only one execution of

a protocol be run at once. With this in mind, Dwork, Naor and Sahai [DNS98] initiated

the study of concurrent zero-knowledge (cZK) proofs that remain secure even if several

instances of the protocol are executed concurrently under the control of an adversarial veri�er.

Subsequent to their work, cZK has been the subject of extensive research, with a large body of

work devoted to studying its round-complexity. In the standard model, the round-complexity

of cZK was improved from polynomial to slightly super-logarithmic in a sequence of works

[RK99, KP01, PRS02]. In particular, the Õ(log λ)-round construction of [PRS02] nearly

matches the lower bound of Ω̃(log k) with respect to black-box simulation [CKPR01] (see

75

also [KPR98, Ros00]).

Despite a decade of research, the Õ(log k)-round construction of [PRS02] is still the

most round-e�cient cZK protocol known. Moreover, the lower bound of [CKPR01] tells us

that in order to improve drastically upon [PRS02] one must use non-blackbox simulation

techniques, which would represent quite a breakthrough.

3.1.1 Round-e�cient cZK in relaxed models.

While the round-complexity of cZK in the standard model still remains an intriguing

open question, a long line of work has been dedicated towards constructing round-e�cient

cZK in various relaxations of the standard model. Below, we brie�y discuss the state of the

art on some of these models.

Bounded Concurrency Model. An interesting relaxation of the standard model is the

bounded-concurrency model [Bar01], where an a priori bound is assumed over the number

of sessions that will ever take place (in particular, this bound is known to the protocol

designer). It is known how to realize constant-round cZK [Bar01] in this model (sometimes

called bounded cZK), and also constant-round bounded-concurrent secure two-party and

multi-party computation [Lin03a, PR03, Pas04a].

Bare Public Key and Related Preprocessing Models. The zero-knowledge pre-

processing model was proposed in [KMO89] in the stand-alone setting and in [CO99] in

the context of cZK. In [CO99], interaction is needed between all the involved players in a

preprocessing phase. Then, after a synchronization barrier is passed, the preprocessing is

over and actual proofs begin. Interactions in each phase can take place concurrently, but

the two phases can not overlap in time. An improved model called the �Bare Public-Key�

(BPK) model was later proposed in [CGGM00] where the preprocessing is required to be

76

non-interactive. The name is derived from the observation that the non-interactive messages

played in the preprocessing can be considered as public announcements of public keys. In

this model it is known how to obtain constant-round black-box cZK under standard assump-

tions [SV12].

Superpolynomial Time Simulation Model. In the SPS model [Pas03], the zero-knowledge

simulator is allowed to run in super-polynomial time. This relaxation has yielded not

only constant-round cZK [Pas03], but also concurrent-secure computation [LPV09, CLP10,

GGJS12]. This is in contrast to the standard model, where concurrent-secure computation

is known to be impossible to achieve [Lin04, Lin03b, CKL03, CF01].

Timing Model In the timing model of [DNS98], where an upper-bound is assumed on

the delivery time needed of a message (and therefore the adversary is assumed to have only

limited control of the communication network), it is known how to construct constant-round

cZK [DNS98, Gol02, PTV10], as well as cMPC [KLP05].

Common Reference String Model. In the CRS model of [BSMP91], where all parties

receive the same honestly generated random string as input, it is known how to construct

constant round cZK and even UC secure MPC [SCO+01, CLOS02] which is impossible in

the plain model [Can01].

The Need for a New Model. While the above models are appealing both in terms of

naturality and in terms of feasibility results yielded, they provide limited insight towards

resolving the round complexity of cZK in the plain model. Indeed, any model where cMPC

or constant round black-box cZK is possible (such as all of the ones mentioned above) is

fundamentally di�erent from the plain model where these are known to be impossible [Lin04,

CKPR01].

77

3.2 The Bounded Player Model

We put forth the bounded player (BP) model for secure computation. In this model we

assume that there is an a priori polynomial upper bound on the number of players who will

ever participate in the protocol. The BP model lies between the bounded concurrency model

and the plain model since though there is a bound on the number of players, there is no

bound on the number of executions each one may enact. Interestingly, we prove in Section ??

that the the impossibility result of [Lin04] for cMPC in the plain model extends as well to

the BP model. This proves that the BP model is strictly closer to the plain model than the

bounded concurrency model.

Though the BP model bears resemblance to the BPK model described above, the

lack of a synchronization barrier in our model turns out to be very important and prevents

techniques relevant to the BPK model from applying. Indeed, the lower bound of [CKPR01]

in the plain model extends immediately to the BP model, while it is known how to construct

constant round black-box cZK in the BPK model [SV12].

3.2.1 cZK in the BP Model

In Sections 3.3 and 3.4 we give two protocols for cZK in the BP model culminating with the

following main theorem.

Theorem 3.1. Assume that CRHF families exist. Then there exists a constant round cZK

argument system in the BP model.

These protocols come from [GJO+13a] and [GJO+13b], respectively. Our �rst protocol

has slightly superconstant (any ω(1)) round complexity, and makes slightly stronger as-

sumptions. We describe them both however, because they represent di�erent and interesting

solutions to the same general problem one is confronted with when trying to construct cZK

78

in the BP model. This problem is discussed informally below.

3.2.2 Techniques

When faced with the task of constructing cZK in the BP model, one immediately gravitates

toward Barak's non-blackbox techniques since [CKPR01]'s impossibility of constant round

blackbox cZK in the plain model carries over to the BP model. Now, a natural approach to

leverage the bound on the number of players is to associate with each veri�er Vi a public key

pki and then design an FLS-style protocol [FLS90] that allows the ZK simulator to extract,

in a non-black-box manner, the secret key ski of the veri�er and then use it as a �trapdoor�

for �easy� simulation. The key intuition is that once the simulator extracts the secret key ski

of a veri�er Vi, it can perform easy simulation of all the sessions associated with Vi. Then,

since the total number of veri�ers is bounded, the simulator will need to perform non-black-

box extraction only an a priori bounded number of times (once for each veri�er), which can

be handled in a manner similar to the setting of bounded concurrency [Bar01].

The above idea has some merit. Indeed, if we can ensure that S can extract every

public key using a bounded polynomial number of non-blackbox simulations, then the a

priori bound on the number of players will land us in the setting of bounded concurrency

and we can argue using the techniques of [Bar01]. However, one quickly realizes that this

idea runs into the same problem one encounters when trying to extend [Bar01]'s bounded

cZK protocol to the setting of unbounded concurrency. The issue is that as soon as our

simulator attempts to extract ski from Vi in one protocol execution, Vi can switch and start

a new session. When S tries to extract in this new session, Vi can switch and start another

one, and so on. This type of unruly behavior from Vi would cause the running time of S to

blow up exponentially.

Our two protocols have di�erent ways of dealing with the above problem. The protocol

79

of Section 3.3 solves this problem by introducing many extraction opportunities in each

protocol. Now Vi has to guess in which slot, S is trying to extract from. If Vi guesses

wrong and S is able to extract from a slot without Vi switching to a new execution, then

S will have learned ski, the trapdoor in all protocol executions. Proof of security in this

protocol reduces to a �balls and bins� style probability computation. On the down side, a

superconstant number of rounds seem inherent to this proof technique.

The protocol of Section 3.4 solves the problem di�erently. Instead of inserting many

opportunities to extract the trapdoor, it extracts the trapdoor in pieces in such a way so

that if Vi switches and opens a new session mid-extraction, S will be able to use the partial

extraction work it has already done in the next session. In this protocol, Vi will get no

bene�t from switching sessions, as S will be able to recycle the work it has already done,

preventing its running time from blowing up.

3.2.3 Formal De�nitions

Let N = poly(λ) be a bound on the total number of players that can engage in

concurrent executions of a protocol at any time. We assume that each player Pi (i ∈ [N])

has an associated unique identity idi, and that there is an established mechanism to enforce

that party Pi uses the same identity idi in each protocol execution that it participates in.

Note, however, that such identities do not have to be established in advance. In particular,

new players can join the system with their own (new) identities, as long as the number of

players does not exceed N . We stress that there is not bound on the number of protocol

executions that can be started by each party.

The bounded player model is formalized by means of a functionality FN
bp that registers

the identities of the player in the system. Speci�cally, a player Pi that wishes to participate in

protocol executions can, at any time, register an identity idi with the functionality FN
bp. The

80

registration functionality does not perform any checks on the identities that are registered,

except that each party Pi can register at most one identity idi, and that the total number

of identity registrations are bounded by N . In other words, FN
bp refuses to register any new

identities once N identities have already been registered. The functionality FN
bp is formally

de�ned in Figure 3.1.

Functionality FNbp

FNbp initializes a variable count to 0 and proceeds as follows.

• Register commands: Upon receiving a message (register, sid, idi) from some party Pi,
the functionality checks that no pair (Pi, id

′
i) is already recorded and that count < N . If

this is the case, it records the pair (Pi, idi) and sets count = count + 1. Other wise, it
ignores the received message.

• Retrieve commands: Upon receiving a message (retrieve, sid, Pi) from some party Pj or
the adversary A, the functionality checks if some pair (Pi, idi) is recorded. If this the case,
it sends (sid, Pi, idi) to Pj (or A). Otherwise, it returns (sid, Pi,⊥).

Figure 3.1: The Bounded Player Functionality FN
bp.

In our constructions we will explicitly work in the setting where the identity of each

party is a tuple (h, vk), where h← Hλ is a hash function chosen from a family Hλ of collision

resistant hash functions, and vk is a veri�cation key for a signature scheme.

In order to de�ne cZK in the BP model, we appropriately modify the random variables

of De�nition 1.2. Let 〈P, V 〉 be an interactive argument system for a language L ∈ NP .

De�ne the random variables of VIEWN
〈P (w),V ∗〉(x) and VIEWN

S(V ∗,x) to be views of V ∗ when

interacting with P and S, respectively, in polynomially many concurrent executions of 〈P, V 〉

where each execution is run on common input x, and when V ∗ interacts with P , P uses secret

input w, a witness for x ∈ L. Furthermore, V ∗ may control at most N veri�ers with distinct

identities as per the functionality FN
bp.

81

De�nition 3.1 (cZK in the BP Model). We say that 〈P, V 〉 is concurrent zero-knowledge

in the bounded player model if for all PPT adversarial veri�ers V ∗, there exists a PPT

simulator S such that

{
VIEWN

〈P (w),V ∗〉(x)

}
≈c
{
VIEWN

S(V ∗,x)

}
.

We remark that one must show that a candidate protocol 〈P, V 〉 is concurrently sound in

the BP model, as this notion is strictly stronger than standalone soundness in the BP model.

This is unlike the plain model where concurrent soundness and standalone soundness are the

same, and is proven using the techniques of [MR01] (who prove the same statement for the

BPK model).

3.3 The ω(1)−Round Protocol

3.3.1 Building Blocks

Perfectly Hiding Commitment Scheme. In our constructions, we will make use of

a perfectly hiding string commitment scheme, denoted Com. For simplicity of exposition,

we will make the simplifying assumption that Com is a non-interactive perfectly hiding

commitment scheme (even though such a scheme cannot exist). In reality, Com would be

taken to be a 2-round commitment scheme, which can be based on collections of claw-free

permutations [GK96]. Unless stated otherwise, we will simply use the notation Com(x) to

denote a commitment to a string x, and assume that the randomness (used to create the

commitment) is implicit.

Perfect Witness Indistinguishable Argument of Knowledge. We will also make use

of a perfect witness-indistinguishable argument of knowledge system for all of NP in our

82

construction. Such a scheme can be constructed, for example, by parallel repetition of the

3-round Blum's protocol for Graph Hamiltonicity [Blu86] instantiated with a perfectly hiding

commitment scheme. We will denote such an argument system by 〈PpWI, VpWI〉.

Perfect Witness Indistinguishable Universal Argument. In our construction, we

will use a perfect witness-indistinguishable universal argument system, denoted 〈PpUA, VpUA〉.

Such an argument system can be constructed generically from a (computational) witness-

indistinguishable universal argument pUA by using techniques of [PR05a, PR05b]. Specif-

ically, in protocol 〈PpUA, VpUA〉, the prover P and veri�er V �rst engage in an execution of

pUA, where instead of sending its messages in the clear, P commits to each message using a

perfectly hiding commitment scheme. Finally, P and V engage in an execution of a perfect

zero knowledge argument of knowledge where P proves that the �decommitted� transcript

of pUA is �accepting�. The resulting protocol is still a �weak� argument of knowledge.

Perfect Bounded Concurrent Zero-Knowledge. Our cZK argument crucially uses

as a building block, a variant of the bounded cZK argument of Barak [Bar01]. Similarly

to [PR05a], we modify the protocol appropriately such that it is perfect bounded cZK. Specif-

ically, instead of a statistically binding commitment scheme, we will use a perfectly hiding

commitment scheme. Instead of a computationally witness-indistinguishable universal argu-

ment (UARG), we will use a perfect witness indistinguishable UARG, denoted 〈PpUA, VpUA〉.

The perfect bounded cZK scheme is denote 〈PpZK, VpZK〉N and showin in Figure 3.3. It is

de�ned using a length parameter `(N), a function of N , the bound on the number of veri�ers

in the system.

Resettable Witness Indistinguishable Proof System. We will further use a resettable

witness-indistinguishable proof system [CGGM00] for all of NP . Informally speaking, a

proof system is resettable witness indistinguishable if it remains witness indistinguishable

83

even against an adversarial veri�er who can reset the prover and receive multiple proofs such

that the prover uses the same random tape in each of the interactions. While the focus of

this work is not on achieving security against reset attacks, such a proof system turns out

to be useful when arguing concurrent soundness of our protocol (where our proof relies on a

rewinding based argument). We will denote such a proof system by 〈PrWI, VrWI〉. It follows

from [CGGM00] that such a proof system can be based on perfectly hiding commitments.

Dense Cryptosystems [SP92]. We will use a semantically secure public-key encryption

scheme, denoted as (Gen,Enc,Dec) that supports oblivious key generation (i.e., it should

be possible to sample a public key without knowing the corresponding secret key). More pre-

cisely, there exists a deterministic algorithm OGen that takes as input the security parame-

ter 1λ and a su�ciently long random string σ and outputs a public key pk ← OGen(1λ, σ),

where pk is perfectly indistinguishable from a public key chosen by the normal key genera-

tion algorithm Gen. For simplicity of exposition, we will assume that the OGen algorithm

simply outputs the input randomness σ as the public key. Such schemes can be based on a

variety of number-theoretic assumptions such as DDH [SP92].

3.3.2 The Protocol

Relation Rsim. We �rst recall a slight variant of Barak's [Bar01] NTIME(T (λ)) relation

Rsim, as used previously in [PR05a]. Let T : N → N be a �nice� function that satis�es

T (λ) = λω(1). Let {Hλ}λ be a family of collision-resistant hash functions where a function

h ∈ Hλ maps {0, 1}∗ to {0, 1}λ, and let Com be a perfectly hiding commitment scheme for

strings of length λ, where for any α ∈ {0, 1}λ, the length of Com(α) is upper bounded by

2λ. The relation Rsim is described in Figure 3.2.

We remark as in [BG02, Pas04a, PR05b, PR05a] that Figure 3.2 is slightly oversimpli-

�ed and will only be secure if {Hλ}λ is collision-resistant against �slightly� super-polynomial

84

Instance: A triplet 〈h, c, r〉 ∈ Hλ × {0, 1}λ × {0, 1}poly(λ).
Witness: A program Π ∈ {0, 1}∗, a string y ∈ {0, 1}∗ and a string s ∈ {0, 1}poly(λ).
Relation: Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1 if and only if:

1. |y| ≤ |r| − λ.

2. c = Com(h(Π); s).

3. Π(y) = r within T (λ) steps.

Figure 3.2: Rsim - A variant of Barak's relation [PR05a]

sized circuits. For simplicity of exposition, in this manuscript, we will work with this as-

sumption. We stress, however, that this assumption can be relaxed by using a �good� error-

correcting code ECC (with constant distance and polynomial-time encoding and decoding

procedures), and replacing the condition c = Com(h(Π); s) with c = Com(ECC(h(Π)); s).

We are now ready to present our concurrent zero knowledge protocol, denoted 〈P, V 〉.

Let P and V denote the prover and veri�er respectively. Let N denote the bound on

the number of veri�ers present in the system. Let fowf denote a one-way function, and

(Gen,Enc,Dec) denote a dense public key encryption scheme. Let 〈PpB, VpB〉N denote

the perfect zero-knowledge argument system as described above. Further, let 〈PpWI, VpWI〉

denote a perfect witness indistinguishable argument of knowledge, and let 〈PrWI, VrWI〉 denote

a resettable witness indistinguishable proof system.

The protocol 〈P, V 〉 is described in Figure 3.4. For our purposes, we set the length

parameter `(N) = n3 ·N ·P (λ), where P (λ) is a polynomial upper bound on the total length

of the prover messages in the protocol plus the length of the secret key of the veri�er.

The completeness property of 〈P, V 〉 follows immediately from the construction.

85

Parameters: Security parameter λ, length parameter `(N).

Common Input: x ∈ {0, 1}poly(n).
Private Input to P : A witness w such that RL(x,w) = 1.

Stage 1 (Preamble Phase):

V → P : Send h
R← Hλ.

P → V : Send c = Com(0λ).

V → P : Send r
R← {0, 1}`(N).

Stage 2 (Proof Phase): A special-purpose UARG consisting of following steps:

P ↔ V : Encrypted UARG

V → P : Send α
R← {0, 1}λ.

P → V : Send β̂ = Com(0λ).

V → P : Send γ
R← {0, 1}λ.

P → V : Send δ̂ = Com(0λ).

P ↔ V : A perfect WIAOK 〈PpWI, VpWI〉 proving the OR of the following statements:

1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.

2. ∃〈β, δ, r1, r2〉 such that:

• β̂ = Com(β; r1).

• δ̂ = Com(δ; r2).

• (α, β, γ, δ) is an accepting transcript for perfect WI UARG 〈PpUA, VpUA〉 proving
the statement: ∃〈Π, y, s〉 s.t. Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1.

Figure 3.3: Perfect Bounded cZK Protocol 〈PpZK, VpZK〉N

3.3.3 Proof of Concurrent Soundness

In this section, we prove the soundness of our cZK protocol described in Section ??. In

fact, we will prove concurrent soundness of 〈P, V 〉, i.e., we will show that a computationally-

bounded adversarial prover who engages in multiple concurrent executions of 〈P, V 〉 (where

the scheduling across the sessions is controlled by the adversary) cannot prove a false state-

ment in any of the executions, except with negligible probability. We note that similar to

86

Parameters: Security parameter λ, N = N(λ), t = ω(1).
Common Input: x ∈ {0, 1}poly(n).
Private Input to P : A witness w s.t. RL(x,w) = 1.

Private Input to V : A public key pk = (y0, y1) and secret key sk = (b, xb) s.t. b
R← {0, 1},

yb = fowf(xb).

Stage 1 (Preamble Phase): Repeat the following steps t times.

V → P : Send pk = (y0, y1).

P → V : Choose σp
R← {0, 1}λ and send cp = Com(σp).

V → P : Send σv
R← {0, 1}λ.

P → V : Send σp. Let σ = σp ⊕ σv.
P ↔ V : An execution of 〈PpB, VpB〉N to prove the following statement:

∃s s.t. c = Com(σp; s).

V → P : Send e1 = Encσ(xb), e2 = Encσ(xb).

V ↔ P : An execution of resettable WI 〈PrWI, VrWI〉 to prove the following statement:
∃〈i, b, xb, s〉 s.t. ei = Encσ(xb; s) and yb = fowf(xb).

Stage 2 (Proof Phase):

P ↔ V : An execution of perfect WIAOK 〈PpWI, VpWI〉 to prove the OR of the following
statements:

1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.

2. ∃〈b, xb〉 s.t. yb = fowf(xb).

Figure 3.4: Protocol 〈P, V 〉−cZK in the BP Model

the bare-public key model [CGGM00], �stand-alone� soundness does not imply concurrent

soundness in our model [MR01].

We �rst introduce some notation. Recall that in our protocol, in the execution of

〈PpWI, VpWI〉, the prover proves the OR of two statements. We will call a witness correspond-

ing to the �rst (resp., second) part of the statement as true (resp., trapdoor) witness.

We �rst state a basic lemma related to the soundness of each instance of 〈PpB, VpB〉N
across all executions of 〈P, V 〉. Its proof is essentially identical to [Bar01], and so we omit

87

it.

Lemma 3.1. Let P̂ be any non-uniform probabilistic polynomial time adversarial prover

that engages in any polynomial m = m(λ) number of concurrent executions of 〈P, V 〉 with

N honest veri�ers. Then, every instance of 〈PpB, VpB〉N across all executions of 〈P, V 〉 is

sound.

Completing the Proof of Soundness. Suppose that there exists an i such that P̂ suc-

ceeds in proving a false statement to the veri�er in session i. Let S denote the set of all such

i and let v = |S|.

Now, consider any i ∈ S. Note that it immediately follows from the (stand-alone)

soundness of 〈PpWI, VpWI〉 that with probability at least ε
v
−negl(λ), P̂ use a trapdoor witness

in 〈PpWI, VpWI〉 in session i. Let Ṽ denote the veri�er in session i and let pk = (y0, y1) denote

the public key of Ṽ . Now, we run P̂ such that in all protocol executions involving veri�er

Ṽ , we only use the secret key xb corresponding to yb, where b
R← {0, 1}. We now invoke

the knowledge extractor E for 〈PpWI, VpWI〉 on P̂ in session i. It follows from a standard

argument (based on using �good� pre�xes) that E successfully extracts a trapdoor witness

with probability p = p(ε) where p is some polynomial. We now consider two cases:

1. With probability α, E outputs a witness x̂1−b such that y1−b = fowf(x̂1−b).

2. With probability p− α, E outputs a witness x̂b such that yb = fowf(x̂b).

If α is non-negligible, then it is immediate to see that we can build a polynomial-time

inverter for one-way function fowf . Speci�cally, the inverter I for fowf works as follows. It

runs the entire experiment with P̂ in the same manner as above, except that y1−b is taken

from an external challenger for fowf . When E outputs a value x̂1−b, I outputs it as the

pre-image of y1−b w.r.t. fowf . Note that I succeeds with non-negligible probability α, which

is a contradiction.

88

On the other hand, if α = negl(λ), then we now focus on the second case. Let m̃

denote the total number of protocol sessions of 〈P, V 〉 involving veri�er Ṽ . Then, we have

that with probability p − negl(λ), when Ṽ (only) uses the secret key x0 in all m̃ protocol

sessions, the extractor E outputs a value x̂0, and similarly, when Ṽ (only) uses x1, E outputs

a value x̂1, where x̂b is such that fowf(x̂b) = yb. Then, by a standard hybrid argument, there

exists a session j (out of the m̃ sessions involving Ṽ) such that when Ṽ (only) uses the secret

key x0 (resp., x1) in session j, the extractor E outputs a value x̂0 (resp., x̂1), with probability

at least p′ = p−negl(n)
m̃

.1 Let H0 (resp., H1) denote the hybrid experiment where Ṽ uses x0

(resp., x1) in session j. Let x̂b be the random variable that denotes the value that E extracts

from P̂ in experiment Hb.

We will now argue that x̂0 ≈ x̂1, except with negligible probability, which is a contra-

diction to the above hypothesis, and thus concludes our proof. Let {eq1, e
q
2}tq=1 denote the

t = ω(1) pairs of ciphertexts that Ṽ sends to P̂ in session j. Further, let {〈PrWI, VrWI〉q}tq=1

denote the t instances of 〈PrWI, VrWI〉 in session j. We consider three intermediate hybrid

experiments Henc1 , Hwi and Henc2 described as follows.

Hybrid Henc1 : This is the same as H0, except that Ṽ prepares each ciphertext {eq1}tq=1 to

be an encryption of the secret key x1. We now invoke the knowledge extractor E (for for

〈PpWI, VpWI〉) on P̂ in 〈PpWI, VpWI〉 in session i. Let x̂enc1 be the random variable that denotes

the value that E outputs.

We now claim that x̂0 ≈ x̂enc1 . Suppose that this is not the case. Then, by a standard

hybrid argument, there exists q ∈ [t] such that x̂0:q is distinguishable from x̂0:q+1, where x̂0:q

is the random variable that denotes the value extracted by E in the intermediate hybrid

experiment H0:q that is essentially the same as H0, except that e
1
1, . . . , e

q
1 are prepared as

encryptions of x1. (Thus, we have that H0:t is the same as Henc1 .) In this case, we �rst note

1Here, the hybrids are such that Ṽ uses x0 in all session j′ < j, and x1 in all sessions j′ > j.

89

that if the execution of 〈PpWI, VpWI〉 in session i concludes before P̂ receives (eq+1
1 , eq+1

2), then

the witness used in 〈PpWI, VpWI〉 must be information-theoretically independent of the value

encrypted in eq+1
1 , which gives us a contradiction. Therefore, we now only consider the case

where the execution of 〈PpWI, VpWI〉 in session i concludes after P̂ receives (eq+1
1 , eq+1

2). In

this case, we will construct a polynomial-time machine M that breaks the semantic security

of the encryption scheme (Gen,Enc,Dec).

M works in the same manner as hybrid H0:q, except that it also interacts with an

external challenger C (for the encryption scheme (Gen,Enc,Dec)) in the following manner.

M receives a public key σ from C and then �forces� it to be the outcome of the (q + 1)th

coin-tossing subprotocol in session j. Speci�cally, after receiving the value σp from P̂ in the

(q + 1)th coin-tossing subprotocol, M rewinds P̂ and sends a value σv = σ ⊕ σp. It now

sends x0, x1 to C and receives a challenge ciphertext e∗. M continues in the same manner

as H0:q, except that it prepares eq+1
1 = e∗. Now, note that if e∗ is an encryption of x0,

then this machine is identical to H0:q, otherwise it is identical to H0:q+1. M now invokes

the knowledge extractor E on P̂ in 〈PpWI, VpWI〉 in session i. Note that the sessions i and j

may be interleaved in such a manner that when E rewinds P̂ to send a new �challenge� in

〈PpWI, VpWI〉, either of the following two events happen:

1. P̂ sends a new commitment string c′ = Com(σ′p) in the (q+1)th coin-tossing subprotocol

in session j. In this case, M simply continues session j honestly until it receives σ′p. At

this point, it rewinds P̂ again to send a value σv = σ⊕σ′p and then continues honestly.

2. Alternatively, P̂ may simply send a new value σ′p and then proceed to prove its cor-

rectness in the execution of 〈PpB, VpB〉j,q+1
N . If this is the case, then M simply aborts.

Now, conditioned on the event that M does not abort, we have that at some point, E stops

and outputs a value, say, x̂. Then, M �nds b such that fowf(x̂) = yb and outputs b to C. It

follows easily that M succeeds with noticeable (in λ) advantage, which is a contradiction.

90

Thus it only remains to argue that M aborts only with negligible probability. To see this,

we �rst note that it follows from the Soundness Lemma 3.1 that P̂ only proves a true

statement in each instance of 〈PpB, VpB〉N , except with negligible probability. Then, by the

computational binding property of the commitment scheme, we have that P̂ cannot send

decommitment c to two di�erent values σp and σ
′
p, except with negligible probability. Thus,

we have the σ′p = σp, except with negligible probability.

Hybrid Hwi: This is the same as Henc1 , except that for every q ∈ [t], Ṽ uses the witness cor-

responding to eq1 in the resettable-WI 〈PrWI, VrWI〉q. We now invoke the knowledge extractor

E on P̂ in 〈PpWI, VpWI〉 in session i in experiment Hwi. Let x̂wi be the random variable that

denotes the value that E outputs.

We now claim that x̂enc1 ≈ x̂wi. Suppose that this is not the case. Then by a standard

hybrid argument, there exists q ∈ [t] such that x̂enc1:q is distinguishable from x̂enc1:q+1 with

noticeable probability, where x̂enc1:q is the random variable that denotes the value extracted

by E in the intermediate hybrid experiment Henc1:q that is essentially the same as Hwi, except

that Ṽ uses the witness corresponding to e`1 in 〈PrWI, VrWI〉` for every ` ∈ [1, q]. (Thus, we

have that Henc1:t is the same as Henc1 .) In this case, we will construct a polynomial-time

machine M that breaks the resettable witness indistinguishability property of 〈PrWI, VrWI〉.

M works in the same manner as hybrid Henc1:q, except that it forwards the (q+ 1)th instance

of 〈PrWI, VrWI〉 in session j, i.e., 〈PrWI, VrWI〉q+1, to an external prover P (for the resettable-WI

protocol 〈PrWI, VrWI〉) in the following manner. M �rst gives w1, w2 to P , where w1 is the

witness corresponding to eq+1
1 , and similarly, w2 is the witness corresponding to eq+1

2 . Now,

during the execution of 〈PrWI, VrWI〉q+1, M simply forwards each message msgP from P to

P̂ and similarly forwards each response msgP̂ from P̂ to P . It then runs the knowledge

extractor E on P̂ in 〈PpWI, VpWI〉 in session i to extract a value, say x̂. Note that if sessions

i and j are scheduled such that when E rewinds P̂ in 〈PpWI, VpWI〉 in session i, P̂ sends

91

a new lth round-message msg′
P̂
in 〈PrWI, VrWI〉q+1, then M resets P to the point where its

supposed to receive the lth round message and sends msg′
P̂
. It then continues the execution

in the same manner as described above. When E �nally outputs x̂, thenM �nds b such that

fowf(x̂) = yb and outputs b to P . It follows easily that M succeeds with noticeable (in λ)

advantage, which is a contradiction.

Hybrid Henc2 : This is the same as Henc2 , except that Ṽ prepares each ciphertext eq2 to be

an encryption of x1. We now run the extractor E on P̂ in experiment Henc2 . Let x̂enc2 be

the random variable that denotes the value that E outputs. For the same reasons as argued

above (for Hybrid Henc1), it follows that x̂wi ≈ x̂enc2 .

This concludes the proof of soundness.

3.3.4 Proof of Concurrent Zero Knowledge

In this section, we prove that 〈P, V 〉 is concurrent zero-knowledge in the BP model. Towards

this end, we will construct a non-black-box (polynomial-time) simulator and then prove that

the concurrent adversary's view output by the simulator is indistinguishable from the real

view.

The Simulator. The simulator SIM consists of two parts, SIMeasy and SIMextract. Loosely

speaking, SIMextract is only used to cheat in a �special� preamble block of a session in order

to learn the secret key of a veri�er, while SIMeasy is used for the remainder of the simula-

tion, which includes following honest prover strategy in preamble blocks and simulating the

proof phase of each session using the veri�er's secret key as the trapdoor witness. Speci�-

cally, SIMextract cheats in the 〈PpB, VpB〉N protocol by committing to an augmented veri�er

machine Π that contains the code of SIMeasy, allowing it to simulate all of the simulator

messages except those generated by SIMextract (in di�erent sessions). As we show below,

these messages can be bounded to a �xed value. We now describe the simulator in more

92

detail.

Setup and Inputs. Our simulator SIM interacts with an adversary V ∗ = (V ∗1 , . . . , V
∗
N)

who controls veri�ers V1, . . . , VN . V ∗ interacts with SIM in m sessions, and controls the

scheduling of the messages. We give SIM non-black-box access to V ∗. Throughout the

interaction, SIM keeps track of a tuple ~β = (β1, . . . , βN) representing the secret keys SIM

has learned so far. At any point during the interaction either βi = ski (more precisely, βi is

one of the coordinates of ski) or βi is the symbol ⊥. Initially, SIM sets each βi to ⊥, but

it updates ~β throughout the interaction as it extracts secret keys. Additionally, SIM keeps

a counter vector ~a = (a1, . . . , aN), incrementing ai each time it executes a preamble block

using SIMextract against V
∗
i . We have SIM halt and output FAIL if any ai ever surpasses

λ3. Our technical lemma shows that this happens with negligible probability. Finally, we

have SIM keep track of a set of tuples

Ψ =
{(

(i, j, k)γ;φγ
)

: γ = 1, . . . , n3N}

where each (i, j, k)γ ∈ [N] × [m] × [t] and φγ is a string. The tuples (i, j, k)γ represent the

preamble blocks played by SIMextract; speci�cally, (i, j, k) corresponds to the k−th block

of the j−th session against V ∗i . The string φγ is the collection of simulator messages sent

in block (i, j, k)γ. This set of tuples Ψ (along with β) will be the extra input given to the

augmented machine. As we show below, the total size of Ψ will be a priori bounded by a

polynomial in λ.

Consider the interaction of SIM with some V ∗ impersonating Vi. Each time V ∗ opens

a session on behalf of Vi, SIM chooses a random k ∈ {1, . . . , t} according to a distribution

Dt which we de�ne later. This will be the only preamble block of the session played by

SIMextract provided that βi =⊥ when the block begins. If SIM has already learned the

secret key ski, it does not need to call SIMextract. We now describe the parts of SIM

93

beginning with SIMeasy.

The sub-simulator SIMeasy. Recall that SIMeasy is run on input β and Ψ. When

SIMeasy is called to execute the next message of a preamble block, it checks if the message is

already in Ψ. If this is the case, SIMeasy just plays the message. Otherwise, SIMeasy plays

fairly, choosing a random σp and sending cp = Com(σp; s) for some s. Upon receiving σv, it

returns σp and completes 〈PpB, VpB〉 using s as its witness. Its receipt of encryptions (e1, e2)

and acceptance of 〈PrWI, VrWI〉 ends the preamble block. If SIMeasy does not accept V ∗'s

execution of 〈PrWI, VrWI〉 it aborts the interaction, as would an honest prover.

When SIMeasy is called to execute 〈PpWI, VpWI〉 then it checks if the secret key of the

veri�er is in β. If yes, SIMeasy completes 〈PpWI, VpWI〉 using ski as its witness. Otherwise,

βi =⊥ and SIMeasy halts outputting FAIL. Our technical lemma shows that the latter does

not happen, except with negligible probability.

The sub-simulator SIMextract. When SIMextract is called to execute preamble block

k of session j with veri�er V ∗i , it receives Ψ, β and a as input. We assume βi =⊥ since

otherwise, SIM would not have called SIMextract. Immediately upon being called, SIMextract

increments ai and adds the tuple
(
(i, j, k);φ

)
to Ψ. Initially, φ is the empty string, but each

time SIMextract sends a message, it appends the message to φ. By the end of the block, φ is

a complete transcript of the simulator messages in preamble block (i, j, k).

The preamble block begins normally, with SIMextract choosing a random string and send-

ing cp, a commitment to it. Upon receiving σv, however, SIMextract runs Gen obtaining

key pair (σ, τ) for the encryption scheme and returns σp = σ ⊕ σv. Next, SIMextract en-

ters 〈PpB, VpB〉 which it completes using the already extracted secret key. Formally, when

V ∗ sends h, beginning 〈PpB, VpB〉, SIMextract chooses a random s and sends Com
(
h(Π); s

)
,

where Π is the next message function of V ∗, augmented with the ability to compute all the

intermediate messages sent by SIMeasy. The machine Π takes input y = (Ψ, β) and outputs

94

the next veri�er message in an interaction between V ∗ and a machine M who plays exactly

like SIMeasy with the following exception. For each tuple
(
(i, j, k);φ

)
∈ Ψ, M reads its mes-

sages of block (i, j, k) from the string y. In order to simulate SIMeasy in the subprotocols

〈PpWI, VpWI〉, M also uses the tuple ~β = (β1, . . . , βN) received as input, where each βi is the

secret key of the i′-th veri�er (if available), and ⊥ otherwise.

After committing to Π, and receiving r, SIMextract completes 〈PpUA, VpUA〉 using wit-

ness (Π,Ψ‖β, s) where Ψ and β might have been updated by other executions of SIMextract

occurring between the time SIMextract sent Com
(
h(Π); s

)
and received r. Our counter en-

sures that |Ψ| is a priori bounded, while |β| is bounded by de�nition. By construction,

Π correctly predicts V ∗'s message r, and so (Π,Ψ‖β, s) is a valid witness for 〈PsUA, VsUA〉.

Finally, SIMextract receives encryptions e1, e2 and the proof of correctness in 〈PrWI, VrWI〉. It

now decrypts the ciphertexts using τ thereby learning secret key ski of V
∗
i . If the decrypted

value is a valid secret key ski, then it updates β by setting βi = ski. Otherwise, it outputs

the abort symbol ⊥ and stops. (It is easy to see that since the proof system 〈PrWI, VrWI〉 is

sound, the probability of simulator outputting ⊥ at this step is negligible.)

Analysis. There are two situations in which SIM outputs fail: if some counter ai exceeds

λ3, or if SIMeasy enters an execution 〈PpWI, VpWI〉 without knowledge of sk. Note that the

latter will not happen, as to enter an execution of 〈PpWI, VpWI〉, all preamble blocks, in

particular the one played by SIMextract, must be complete, ensuring that SIMextract will

have learned sk. In our main technical lemma, we show that no counter will surpass λ3 by

proving that after SIM has run SIMextract λ
3 times against each Vi controlled by V ∗ it has,

with overwhelming probability, learned sk. Before stating the lemma, we introduce some

terminology.

Now, focusing on a given veri�er, we say that V ∗ has stopped session j in block k if the

k−th preamble block of session j has begun, but the (k + 1)−th has not. We say that V ∗

95

is playing strategy ~k′ = (k′1, . . . , k
′
m) if session j is stopped in block k′j for all j = 1, . . . ,m.

As the interaction takes polynomial time, V ∗ only gets to play polynomially many strategies

over the course of the interaction. Let kj ∈ {1, . . . , t} be the random number chosen by SIM

at the beginning of session j as per distribution Dt. This gives us a tuple ~k = (k1, . . . , km)

where the kj are chosen independently according to the distribution Dt (de�ned below). At

any time during the interaction, we say that V ∗ has won (resp. lost, tied) session j if k′j = kj

(resp. k′j > kj, k
′
j < kj). A win for V ∗ corresponds to SIM having run SIMextract, but not

yet having learned sk. As SIM only gets to call SIMextract λ
3 times, a win for V ∗ means

that SIM has used up one of its budget of λ3 without any payo�. A loss for V ∗ corresponds

to SIM running SIMextract and learning sk, thereby allowing SIM to call SIMeasy in all

remaining sessions. A tie means that SIM has not yet called SIMextract in the session, and

therefore has not used any of its budget, but has not learned sk.

Notice that these wins and ties are �temporary� events. Indeed, by the end of each session,

V ∗ will have lost, as he will have completed the preamble block run by SIMextract. However,

we choose to use this terminology to better convey the key intuition of our analysis: for SIM

to output FAIL, it must be that at some point during the interaction, for some identity, V ∗

has won at least λ3 sessions and has not lost any. We will therefore focus precisely on proving

that the probability that a PPT adversary V ∗ runs in the experiment m sessions so that the

counter for one identity reaches the value λ3 is negligible.

For a veri�er strategy ~k′ and a polynomial m, let P(~k′,m)(W,L) be the probability that in

an m−session interaction between V ∗ and SIM that V ∗ wins for some identity exactly W

sessions and loses exactly L, given that V ∗ plays strategy ~k′. The probability is over SIM 's

choice of ~k with kj ∈ {1, . . . , t} chosen independently according to Dt (de�ned below) for all

j = 1, . . . ,m.

The Distribution Dt and the Main Technical Lemma. De�ne Dt to be the distri-

96

bution on {1, . . . , t} such that

pk′ = Probk∈Dt
(
k = k′

)
= εnk

′
,

where ε is such that
∑
pk′ = 1. Note that ε is negligible in λ.

Lemma 3.2 (Main Technical Lemma). Let ~k′ be a veri�er strategy and m = m(n) a poly-

nomial. Then we have

P(~k′,m)(n
3, 0) = negl(λ).

The above proves that any veri�er strategy has a negligible chance of having λ3 wins and

no losses. As V ∗ plays polynomially many (i.e., N) strategies throughout the course of the

interaction, the union bound proves that V ∗ has a negligible chance of ever achieving λ3

wins and 0 losses. From this it follows that, with overwhelming probability, V ∗ will never

have at least λ3 wins and no losses, which implies that SIM outputs FAIL with negligible

probability as desired. The main idea of the proof is similar to the random tape switching

technique of [PRS02] and [MP07].

Proof. We �x a veri�er strategy ~k′ and a polynomial m and write P (W,L) instead of

P(~k′,m)(W,L). Let pk′ (resp. qk′) be the probability that V ∗ wins (resp. loses) a session

given that he stops the session in block k′. We chose the distribution Dt carefully to have

the following two properties. First, since p1 = εn is negligible, we may assume that V ∗ never

stops in the �rst block of a session. And secondly, for k′ ≥ 2 we have,

qk′ =
k′−1∑
i=1

pk′ = ε
nk
′ − 1

n− 1
≥ εnk

′

2n
=
pk′

2n
.

It follows that no matter which block V ∗ stops a session in, it will hold that the probability

he wins in that session is less then 2n times the probability that he looses that session. We

97

will use this upper bound on the probability of V ∗ winning a single session to show that

P (n3, 0) is negligible.

Let A be the event, (W,L) = (n3, 0), B be the event W + L = n3 and ¬B the event

W + L 6= n3. Since, A ⊂ B, and since P (A|¬B) = 0, we have that

P (n3, 0) = P (A) = P (A|B)P (B) + P (A|¬B)P (¬B) = P (A|B)P (B) ≤ P (A|B),

and so it su�ces to prove that P (A|B) is negligible. We continue the proof for the case

W + L = n3 (and thus m ≥ n3).

If W +L = n3 then V ∗ ties all but λ3 of the sessions. Let C = {C ⊂ [m] : |C| = n3}. Then C

is the set of possible positions for the sessions which are not ties. We are looking to bound

P
(
(W,L) = (n3, 0)

∣∣W + L = n3
)
and so we condition on the C ∈ C. Once a �xed C is

chosen, the position of each session which is not a tie is determined. Each such session must

either be a win or a loss for V ∗. Let p be the probability that some such session is a win.

Since we proved already that the probability that V ∗ wins in a given session is less then 2n

times the probability that V ∗ looses in that session, we have that p ≤ 2n(1 − p). Solving

gives p ≤
(
1− 1

2n+1

)
. It follows that for any C ∈ C, the probability that all sessions in C are

wins is (
1− 1

2n+ 1

)n3

≤
[(

1− 1

2n+ 1

)2n+1]n
≤ e−n.

From the viewpoint of random tape switching, we have shown that for every random tape

causing every session of C to be a win, there are exponentially many which cause a di�erent

outcome.

We therefore have

98

P (n3, 0) ≤ P
(
(W,L) = (n3, 0)

∣∣W + L = n3
)

=
∑
C∈C

P
(
(W,L) = (n3, 0)

∣∣C)P (C)

≤ e−n
∑
C∈C

P (C) = e−n,

as desired.

Bounding the length parameter `(N). From the above lemma, it follows easily that

the total length of the auxiliary input y to the machine Π committed by SIMextract (at any

time) is bounded by λ3 · N · P (λ), where P (λ) is a polynomial upper bound on the total

length of prover messages in one protocol session plus the length of a secret. Thus, when

`(N) ≥ n3 ·N · P (λ), we have that |y| ≤ |r| − λ, as required.

We now show through a series of hybrid experiments that the simulator's output is

perfectly indistinguishable from the output of the adversary when interacting with honest

provers.

3.4 The Constant Round Protocol

3.4.1 Building Blocks

Statistically binding commitment schemes. We will make use of a statistically binding

string commitment scheme, denoted Com. For simplicity of exposition, we will make the

simplifying assumption that Com is a non-interactive perfectly binding commitment scheme.

In reality, Com would be taken to be a standard 2-round commitment scheme, e.g. [Nao91].

Naor's commitment scheme exists as long as one way functions exist.

99

Signature schemes. We will use a signature scheme (KeyGen,Sign,VERIFY) that is

unforgeable against chosen message attacks. Note that such signatures schemes are known

based on one way functions [Rom90].

Witness indistinguishable arguments of knowledge. Like the previous protocol, we

make use of a witness-indistinguishable proof of knowledge (WIPOK). Such a scheme can

be constructed, for example, by parallel repetition of the 3-round Blum's protocol for Graph

Hamiltonicity [Blu86]. We will denote such an argument system by 〈PWI, VWI〉.

The universal argument of [BG02]. In our construction, we will use the 4-round uni-

versal argument system (UA), denoted pUA. Such an argument system is sound also when

the prover sends the statement in the very last round.

3.4.2 The Protocol

Recall the relation Rsim from Section 3.3, shown in Figure 3.2. Let P and V denote the

prover and veri�er respectively. Let N denote the bound on the number of veri�ers present

in the system. In our construction, the identity of a veri�er Vi corresponds to a veri�cation

key vki of a secure signature scheme and a hash function hi ∈ Hλ from a family Hλ of

collision-resistant hash functions. Let (KeyGen,Sign,VERIFY) be a secure signature

scheme. Let 〈PWI, VWI〉 be a witness-indistinguishable argument of knowledge system. Let

pUA be the universal argument (UARG) system of [BG02]; the transcript is composed of

four messages (h, β, γ, δ) where h is a collision-resistant hash function.

The protocol 〈P, V 〉 is described in Figure 3.5. For our purposes, we set the length

parameter `(N) = N ·P (λ)+λ, where P (λ) is a polynomial upper bound on the total length

of the prover messages in the UARG pUA plus the output length of a hash function h ∈ Hλ.

For simplicity we omit some standard checks (e.g., the prover needs to check that vk and h

100

are recorded, the prover needs to check that the signatures is valid).

Parameters: Security parameter λ, number of players N = N(λ), length parameter `(N).

Common Input: x ∈ {0, 1}poly(n).
Private Input to P : A witness w s.t. RL(x,w) = 1.

Private Input to V : A key pair (sk, vk)
R← KeyGen(1λ), and a hash function h

R← Hλ.

Stage 1 (Preamble Phase):

V → P : Send vk, h.

P → V : Send c = Com(0λ).

V → P : Send r
R← {0, 1}`(N), and σ = Signsk(c‖r).

P → V : Send c′ = Com(0λ).

V → P : Send γ
R← {0, 1}λ, and σ′ = Signsk(c

′‖γ).

Stage 2 (Proof Phase):

P ↔ V : An execution of WIPOK 〈PWI, VWI〉 to prove the OR of the following statements:

1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.

2. ∃〈c, r, σ〉, and 〈β, γ, δ, c′, t, σ′〉 s.t.
• VERIFYvk(c‖r;σ) = 1, and

• c′ = Com(β; t), and VERIFYvk(c
′‖γ;σ′) = 1, and

• (h, β, γ, δ) is an accepting transcript for a UARG pUA proving the following
statement: ∃〈Π, y, s〉 s.t. Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1.

Figure 3.5: Protocol 〈P, V 〉− Constant Round cZK in the BP Model

The completeness property of 〈P, V 〉 follows immediately from the construction.

3.4.3 Proof of Concurrent Soundness

Consider the interaction between a cheating P ∗ and an honest V . Suppose that P ∗

fools V into accepting a false proof in some session with non-negligible probability. We show

how to reduce P ∗ to an adversary that breaks the security of one of the used ingredients.

We will �rst consider P ∗ as a sequential malicious prover. We will discuss the issues deriving

101

from a concurrent attack later.

First of all, notice that by the proof of knowledge property of the second WIPOK,

we have that with non-negligible probability, an e�cient adversary E can simply run as

a honest veri�er and extract a witness from that WIPOK of session l where the false

statement is proved. Since the statement is false, the witness extracted will therefore be

(c, r, σ, β, γ, δ, c′, t, σ′) such thatVERIFYvk(c‖r;σ) = 1, c′ = Com(β; t),VERIFYvk(c
′‖γ;σ′) =

1, and (h, β, γ, δ) is an accepting transcript for a UARG pUA proving the statement ∃〈Π, y, s〉

s.t. Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1, and h is the hash function corresponding to the veri�er run

by E in session l.

By the security of the signature scheme, it must be the case that signatures σ and σ′

were generated and sent by E during the experiment (the reduction is standard and omitted).

Therefore we have that with non-negligible probability there is a session i where h

and γ were played honestly by E, (h, β, γ, δ) is an accepting transcript for the UARG for

Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1, and a commitment to β was given before γ was sent. Moreover,

there is a session j where c and r where played as commitment and challenge. Remember

that the session l is the one where the false statement is proved.

We can now complete the proof by relying almost verbatim on the same analysis

of [Bar01, BG02]. Indeed, by rewinding the prover and changing the challenge r in ses-

sion j, with another random string, we would have an execution identically distributed with

respect to the previous one. Therefore it will happen with non-negligible probability that

the prover succeeds in session l, still relying on the information obtained in sessions i and

j. The analysis of [?, BG02] by relying on the weak proof of knowledge property of the

UA, shows that this event can be reduced to �nding a collision that contradicts the collision

resistance of h.

102

We �nally discuss the case of a concurrent adversarial prover. Such an attack is played

by a prover aiming at obtaining from concurrent sessions some information to be used in

the target session where the false theorem must be proved. In previous work in the BPK

model and in the BP model this was a major problem because the veri�er used to give a

proof of knowledge of its secret key, and the malleability of such a proof of knowledge could

be exploited by the malicious prover. Our protocol however bypasses this attack because

our veri�er does not give a proof of knowledge of the secret key of the signature scheme,

but only gives signatures of speci�c messages. Indeed the only point in which the above

proof of soundness needs to be upgraded is the claim that by the security of the signature

scheme, it must be the case that signatures σ and σ′ were generated and sent by E during

the experiment. In case of sequential attack, this is true because running the extractor of the

WIPOK in session l does not impact on other sessions since they were played in full either

before or after session l. Instead, in case of a concurrent attack, instead, while rewinding the

adversarial prover, new sessions could be started and more signatures could be needed. As

a result, it could happen and that in such new sessions the prover would ask precisely the

same signatures that are then extracted from the target session. We can conclude that this

does not impact on the proof for the following two reasons. First, in the proof of soundness

it does not matter if those signatures appear in the transcript of the attack, or just in the

transcript of a rewinded execution. Second, the reduction on the security of the signature

scheme works for any polynomial number of signatures asked to the oracle, therefore still

holds in case of a concurrent attack. Indeed, the work of E is performed in polynomial time

even when rewinding a concurrent malicious prover, therefore playing in total (i.e., summing

sessions in the view of the prover and sessions played during rewinds) a polynomial number

of sessions, and therefore asking a polynomial number of signatures only to the signature

oracle.

103

Further details on the proof of soundness. Given a transcript (h, UA1, UA2, UA3) for

the universal argument of [BG02], notice that soundness still works when the prover sends

the statement to the veri�er only at the 4th round. This is because the prover commits

to the Merkle Tree of the PCP in message UA1, and therefore the statement is already

�xed in that commitment and the PCP would not work for other statements. The proof

of concurrent soundness of our protocol goes through a reduction to the soundness of the

universal argument of [BG02] and goes as follows.

Let P ∗ua be the adversarial prover that we construct against the universal argument

of [BG02], by making use of the adversary P ∗ of our protocol. Let Vua be the honest veri�er

of the universal argument of [BG02]. P ∗ua gets �h� from Vua and plays it in a random session

s of the experiment (it could therefore be played in a rewinding thread) with P ∗. Later on,

since by contradiction P ∗ is successful, UA messages (UA1, UA2, UA3) are extracted and

with noticeable probability they correspond to session s. Therefore P ∗ua sends UA1 to Vua and

gets back UA2′. Then P ∗ua rewinds P* to the precise point where UA2 was played. Now P ∗ua

plays UA2′. Again, later on, since by contradiction P ∗ is successful, P ∗ua will again extract

from P ∗ and with noticeable probability (still because the number of sessions played in the

experiment is polynomial), it will get an accepting transcript (UA1, UA2′, UA3∗) for the

same statement (this is guaranteed by the security of the signature scheme and the binding

of the commitment). Then P ∗ua can send UA3∗ to Vua therefore proving a false statement.

3.4.4 Proof of Concurrent Zero-Knowledge

In this section, we prove that the protocol 〈P, V 〉 described in Figure 3.5 is concurrent zero-

knowledge in the bounded player model. Towards this end, we will construct a non-black-box

(polynomial-time) simulator and then prove that the concurrent adversary's view output by

the simulator is indistinguishable from the real view. We start by giving an overview of the

104

proof and then proceed to give details.

Overview. Recall that unlike the bounded concurrency model, the main challenge in the

bounded player model is that the total number of sessions that a concurrent veri�er may

schedule is not a priori bounded. Thus, one can not directly employ Barak's simulation

strategy of committing to a machine that takes only a bounded-length input y (smaller than

the challenge string r) and outputs the next message of the veri�er. Towards this endIt

follows that once the simulator is able to �solve� the identity of a speci�c veri�er, then it

does not need to perform any more �expensive� (Barak-style) non-black-box simulation for

that identity. Then, the main challenge remaining is to ensure that the expensive non-

black-box simulations that need to be performed before the simulator can solve a particular

identity, can be a-priori bounded, regardless of the number of concurrent sessions opened by

the veri�er. Indeed, the protocol of Section 3.3 use a randomized simulation strategy (that

crucially relies on a super-constant number of rounds) to achieve this e�ect.

In our case, we also build on the same set of observations. However, we crucially follow

a di�erent strategy to a-priori bound the number of expensive non-black-box simulations

that need to performed in order to solve a given identity. In particular, unlike the protocol

of Section 3.3, where the �trapdoor� for a given veri�er simply corresponds to its secret

key, in our case, the trapdoor consists of a signed statement and a corresponding universal

argument proof transcript (where the signature is computed by the veri�er using the signing

key corresponding to its identity). Further, and more crucially, instead of the simulator

making a �disjoint� e�ort in each session in order to extract the trapdoor, in our case, the

simulator gradually builds the trapdoor by making �joint� e�ort across the sessions. In

fact, our simulator only performs one expensive non-black-box simulation per identity; as

such, the a-priori bound on the number of identities immediately yields us the desired e�ect.

Indeed, this is why we can perform concurrent simulation in only a constant number of

105

rounds.

The Simulator. We now proceed to describe our simulator S. Let N denote the a priori

bound on the number of veri�ers in the system. Then, the simulator S interacts with an

adversary V ∗ = (V ∗1 , . . . , V
∗
N) who controls N veri�ers. V ∗ interacts with S in m sessions,

and controls the scheduling of the messages. S is given non-black-box access to V ∗.

The simulator S consists of two main subroutines, namely, Seasy and Sheavy. As the name

suggests, the job of Sheavy is to perform the �expensive� non-black-box simulation operations,

namely, constructing the transcripts of universal arguments, which yield a trapdoor for every

veri�er Vi. On the other hand, Seasy computes the actual (simulated) prover messages in both

the preamble phase and the proof phase, by using the trapdoors. We now give more details.

Simulator S. Throughout the simulation, S maintains the following three data structures,

each of which is initialized to ⊥:

1. a list ~π = (π1, . . . , πN), where each πi is either ⊥ or is computed to be hi(Π). Here, hi

is the hash function corresponding to Vi and Π is the augmented machine code that is

used for non-black-box simulation. We defer the description of Π to below.

2. a list ~CHANGEME
heavy

= (CHANGEMEheavy
1 , . . . , CHANGEMEheavy

N), where each

CHANGEMEheavy
i is a tuple

〈hi, c, r,Π, y, s〉 s.t. Rsim(〈hi, c, r〉, 〈Π, y, s〉) = 1.

3. a list ~CHANGEME
easy

= (CHANGEMEeasy
1 , . . . , CHANGEMEeasy

N), where each

CHANGEMEeasy
i is a tuple 〈c, r, σ, β, γ, δ, c′, t, σ′〉 s.t.

• VERIFYvki(c‖r;σ) = 1, and

• c′ = Com(β; t), and VERIFYvki(c
′‖γ;σ′) = 1, and

106

• (hi, β, γ, δ) is an accepting transcript for a UARG pUA proving the following

statement: ∃〈Π, y, s〉 s.t. Rsim(〈hi, c, r〉, 〈Π, y, s〉) = 1.

Augmented machine Π. The augmented machine code Π simply consists of the code of the

adversarial veri�er V ∗ and the code of the subroutine Seasy (with a su�ciently long random

tape hardwired, to compute the prover messages in each session) , i.e., Π = (V ∗,Seasy).

The input y to the machine Π consists of the lists ~π and ~CHANGEME
easy

, i.e., y =

(~π, ~CHANGEME
easy

). Note that it follows from the description that |y| ≤ `(N)− λ.

We now describe the subroutines Seasy and Sheavy, and then proceed to give a formal

description of S. For simplicity of exposition, in the discussion below, we assume that the

veri�er sends the �rst message in the WIPOK 〈PWI, VWI〉.

Algorithm Seasy(i,msgVj , ~π,
~CHANGEME

easy
; z). The algorithm Seasy prepares the (sim-

ulated) messages of the prover P in the protocol. More speci�cally, when executed with

input (i,msgVj , ~π, ~CHANGEME
easy

; z), Seasy does the following:

1. If msgVj is the �rst veri�er message of the preamble phase from Vi in a session, then

Seasy parses ~π as π1, . . . , πN . It computes and outputs c = Com(πi; z).

2. If msgVj is the second veri�er message of the preamble phase from Vi in a session, then

Seasy computes and outputs c = Com(β; z), where β is the corresponding (i.e., fourth)

entry in CHANGEMEeasy
i ∈ ~CHANGEME

easy
.

3. If msgVj is a veri�er message of the WIPOK from Vi in the proof phase of a session,

then if CHANGEMEeasy
i = ⊥, then Seasy aborts and outputs ⊥, otherwise Seasy simply

runs the code of the honest PWI to compute the response using randomness z and the

trapdoor witness CHANGEMEeasy
i .

Algorithm Sheavy(i, j, γ, ~CHANGEME
heavy

). The algorithm Sheavy simply prepares one

107

UARG transcript for every veri�er Vi, which in turn is used as a trapdoor by the algorithm

Seasy. More concretely, when executed with input (i, j, γ, ~CHANGEME
heavy

), Sheavy does

the following:

1. If j = 1, then Sheavy parses the ith entry CHANGEMEheavy
i in ~CHANGEME

heavy

as (hi, c, r,Π, y, s). It runs the honest prover algorithm PUA and computes the �rst

message β of a UARG for the statement: ∃〈Π, y, s〉 s.t. Rsim(〈hi, c, r〉, 〈Π, y, s〉) = 1.

Sheavy saves its internal state as statei and outputs β.2

2. If j = 2, then Sheavy uses statei and γ to honestly compute the �nal prover message δ

for the UARG with pre�x (hi, β, γ). It outputs δ.

Algorithm S. Given the above subroutines, the simulator S works as follows. We as-

sume that every time S updates the lists ~π and ~CHANGEME
easy

, it also automatically

updates the entry corresponding to y (i.e., the �fth entry) in each CHANGEMEheavy
i ∈

~CHANGEME
heavy

. For simplicity of exposition, we do not explicitly mention this below.

Preamble phase:

1. On receiving the �rst message msgV1 = (vki, hi) from V ∗ on behalf of Vi in the preamble

phase of a session, S �rst checks whether πi = ⊥ (where πi is the i
th entry in the list

~π); if the check succeeds, then S updates πi = hi(Π). Next, S samples fresh random-

ness s from its random tape and runs Seasy on input (i,msgV1 , ~π, ~CHANGEME
easy

; s).

S sends the output string c from Seasy to V ∗. Further, S adds (hi, c, ·,Π, y, s) to

CHANGEMEheavy
i and (c, ·, ·, ·, ·, ·, ·, ·, ·) to CHANGEMEeasy

i .

2. On receiving the second message message msgV2 = (r, σ) from V ∗ on behalf of Vi in

the preamble phase of a session, S �rst veri�es the validity of the signature σ w.r.t.

vki. If the check fails, S considers this session aborted (as the prover would do) and

2For simplicity of exposition, we describe Sheavy as a stateful algorithm.

108

ignores any additional message for this session. Otherwise, S checks whether the entries

corresponding to r and σ (i.e., 2nd and 3rd entries) in CHANGEMEeasy
i are ⊥. If the

check succeeds, then:

• S sets r as 3rd entry of CHANGEMEheavy
i and r, σ as second and third entries

of CHANGEMEeasy
i .

• Further, S runs Sheavy on input3 (i, 1,⊥, ~CHANGEME
heavy

) to compute the mes-

sage β of a UARG for the statement: ∃〈Π, y, s〉 s.t. Rsim(〈hi, c, r〉, 〈Π, y, s〉) = 1.

Here hi, c, r,Π, y, s are such that CHANGEMEheavy
i = 〈hi, c, r,Π, y, s〉.

• On receiving the output message β, S sets to β the fourth slot of CHANGEMEeasy
i .

Next, S samples fresh randomness t and runs Seasy on input (i,msgV2 , ~π, ~CHANGEME
easy

; t).

On receiving the output string c′ from Seasy, S forwards it to V ∗. Further, S sets to

(c′, t) the 7th and 8th slot of CHANGEMEeasy
i .

3. Finally, on receiving the last message msgV�n = (γ, σ′) from V ∗ on behalf of Vi in

the preamble phase of a session, S �rst veri�es the validity of the signature σ′ w.r.t.

vki. If the check fails, S considers this session aborted (as the prover would do) and

ignores any additional message for this session. Otherwise, S checks whether the entries

corresponding to γ and σ′ in CHANGEMEeasy
i are ⊥. If the check succeeds, then:

• S sets to γ and σ′ the 5th and 9th slot of CHANGEMEeasy
i .

• Further, S runs Sheavy on input (i, 2, γ, ~CHANGEME
heavy

) to compute the �-

nal prover message δ of the UARG with pre�x (hi, β, γ), where (β, γ) are the

corresponding entries in CHANGEMEeasy
i .

• On receiving the output message δ, S sets to δ the 6th slot of CHANGEMEeasy
i .

3For simplicity of exposition, we assume that randomness is hardwired in Sheavy and do not mention it
explicitly.

109

Proof phase: On receiving any message msgVj from V ∗ on behalf of Vi, S runs Seasy on input

(i,msgVj , ~π, ~CHANGEME
easy

) and fresh randomness. S forwards the output message of

Seasy to V ∗.

This completes the description of S and the subroutines Seasy, Sheavy. It follows imme-

diately from the above description that S runs in polynomial time and outputs ⊥ with

probability negligibly close to an honest prover.

We now show through a series of hybrid experiments the simulator's output is compu-

tationally indistinguishable from the output of the adversary when interacting with honest

provers. Our hybrid experiments will be Hi for i = 0, . . . , 3. We write Hi ≈ Hj if no V
∗ can

distinguish (except with negligible probability) between its interaction with Hi and Hj.

Hybrid H0. Experiment H0 corresponds to the honest prover. That is, in every session

j ∈ [m], H0 sends c and c
′ as commitments to the all zeros string in the preamble phase. We

provide H0 with a witness that x ∈ L which it uses to complete the both executions of the

WIPOK 〈PWI, VWI〉 played in each session.

Hybrid H1. Experiment H1 is similar to H0, except the following. For every i ∈ [N],

for every session corresponding to veri�er Vi, the commitment c in the preamble phase is

prepared as a commitment to πi = hi(Π), where hi is the hash function in the identity of Vi

and Π is the augmented machine code as described above.

The computational hiding property of Com ensures that H1 ≈ H0.

Hybrid H2. Experiment H2 is similar to H1, except the following. For every i ∈ [N],

for every session corresponding to veri�er Vi, the commitment c′ in the preamble phase is

prepared as a commitment to the string β with randomness t, where β is the �rst prover

message of a UARG computed by Sheavy, in the manner as described above.

The computational hiding property of Com ensures that H2 ≈ H1.

110

Hybrid H3. Experiment H3 is similar to H2, except the following. For every i ∈ [N],

for every session corresponding to veri�er Vi, the WIPOK 〈PWI, VWI〉 in the proof phase is

executed using the trapdoor witness CHANGEMEeasy
i , in the manner as described above.

Note that this is our simulator S.

The witness indistinguishability property of 〈PWI, VWI〉 ensures that H3 ≈ H2.

3.5 Concurrent Self-Composition in the BP Model

In this section, we present the de�nition for concurrent (self-composition) secure multi-party

computation in the bounded player model. The de�nition we give below is an adaptation

of the de�nition of concurrent secure computation with adaptive inputs [Lin04, Pas04a], to

the setting of bounded player model. Parts of the de�nition below have been taken almost

verbatim from [Lin04, Pas04a].

We �rst setup notation. We denote computational indistinguishability by COMP, and

the security parameter by λ. For notational simplicity, we let the lengths of the parties' inputs

be λ. An n-ary functionality is denoted as f : ({0, 1}∗)n → ({0, 1}∗)n, where f = f1, . . . , fn.

Let P1, . . . , Pn denote the set of n-player that wish to jointly compute f . The output of

Pi with input xi is de�ned to be fi(~x), where ~x = x1, . . . , xn. In the context of concurrent

composition, each party uses many inputs (one per execution) and these may be chosen

adaptively based on previous outputs. The fact that bounded player model is considered

relates to the fact that the total number of parties that may engage in concurrent protocol

executions is a priori bounded.

In this work, we consider a malicious, static adversary. The scheduling of the messages

across the concurrent executions is controlled by the adversary. We do not focus on fairness,

hence we do not guarantee output delivery. The security of a protocol is analyzed by com-

111

paring what an adversary can do in the protocol to what it can do in an ideal scenario, where

a trusted party computes the function output on the inputs of the parties. Unlike in the

case of stand-alone computation, in the setting of concurrent executions, the trusted party

computes the functionality many times, each time upon di�erent inputs. We now proceed

to describe the ideal and real models of computation.

Ideal model. In the ideal model, there is a trusted party that computes the functionality

f based on the inputs handed to it by the player. Let there be N parties P1, . . . , PN where

arbitrary (possibly intersecting) subsets of n parties may engage in an arbitrary (polynomial)

number of concurrent sessions. Let I ⊂ N denote the subset of corrupted parties controlled

by the adversary. An execution in the ideal model with an adversary with auxiliary input z

corrupting parties I proceeds as follows:

Inputs: The inputs of the parties P1, . . . , PN are respectively determined by probabilistic

polynomial time Turing machines M1, . . . ,MN and the initial inputs x1, . . . , xN to

these machines. As will be described below, these Turing machine determine the input

values to be used by the di�erent parties in the protocol executions. These input

values are computed from the initial input, the current session number and outputs

that were obtained from executions that have already concluded. Note that the number

of previous outputs ranges from zero (when no previous outputs have been obtained)

to some polynomial in λ that depends on the number of sessions initiated by the

adversary.

Session initiation: The adversary initiates a new session by sending a (start-session, Pi) to

the trusted party. If Pi /∈ I, then the trusted party sends (start-session, s) to Pi, where

s is the index of the session.

Honest parties send inputs to trusted party: Upon receiving (start-session, s) from the

trusted party, honest party Pi applies its input-selecting machineMi to its initial input

112

xi, the session number s and its previous outputs, and obtains a new input xi,j.
4 Pi

then sends (s, xi,j) to the trusted party.

Corrupted parties send inputs to trusted party: Whenever the adversary wishes, it

may send a message (s, x′i,j) to the trusted party for any x′i,s ∈ {0, 1}λ of its choice, on

behalf of a corrupted party Pi. It can send the pairs (s, x′i,s) in any order it wishes and

can also send them adaptively. The only limitation is that for any s, at most one pair

indexed by s can be sent to the trusted party on behalf of Pi.

Trusted party answers corrupted parties: When the trusted party has received mes-

sages (s, x′i,j) from a set of n parties P`1 , . . . , P`n (where `1, . . . , `n ∈ [N]), it sets

~x′s = (x′`1,s, . . . , x
′
`n,s

). It then computes f(~x′s) and sends (s, f`i(~x
′
s)) to party P`i for

every `i ∈ Is, where Is ⊆ I denotes the set of corrupted parties in session s. Note that

Is must be such that |Is| < n.

Adversary instructs the trusted party to answer honest parties: When the adver-

sary sends a message of the type (send-output, s, `i) to the trusted party, the trusted

party sends (s, f`i(~x
′
s)) to party P`i .

Outputs: Each honest party Pi always outputs the values fi(~x
′
s) that it obtained from the

trusted party. The adversary may output an arbitrary (probabilistic polynomial-time

computable) function of its initial-input and the messages obtained from the trusted

party.

Let S be a non-uniform probabilistic polynomial-time machine (representing the ideal-

model adversary). Then, the ideal execution of f with security parameter λ, input selecting

machines M = M1, . . . ,MN , initial inputs ~x = (x1, . . . , xN) and auxiliary input z to S,

4Speci�cally, in the �rst session, xi,1 = Mi(xi, 1). In the later sessions s, xi,s = Mi(xi, s, yi,1, . . . , yi,w),
where w sessions have concluded and the outputs of Pi were yi,1, . . . , yi,w.

113

denoted idealNf,I,S,M(λ, ~x, z), is de�ned as the output vector of the honest parties and S

from the above ideal execution.

Real model. We next consider the real model in which a real two-party protocol is executed

(and there exists no trusted third party). Let f , I, N be as above and let Π be a multi-party

protocol for computing f . Let A denote the adversary. Then, the real concurrent execution

of Π with security parameter λ, input selecting machines M = M1, . . . ,MN , initial inputs

~x = (x1, . . . , xN) and auxiliary input z to A, denoted realNΠ,I,A,M(λ, ~x, z), is de�ned as the

output vector of the honest parties and A, resulting from the following real-world process.

The real world execution proceeds as follows. Each honest party Pi �rst chooses an identity idi

and registers it with FN
bp. A corrupted party may choose to register its identity at any time it

wishes, even after the computation begins. An honest party initiates a new session whenever

it receives a start-session message from A. It then applies its input selecting machine to its

initial input, the session number and its previously received outputs, and obtains the input

for this session. Note that arbitrary (possibly intersecting) sets of n (out of N) player may

be participating in concurrent executions of Π. The scheduling of all messages throughout

the executions is controlled by the adversary. That is, the execution proceeds as follows.

The adversary sends a message of the form (s,msg, Pi, Pj) to an honest party Pi on behalf

of a corrupted party Pj. If that honest party is participating in session s, and this is the

�rst message it has received from Pj, then it �rst retrieves the identity idj of Pj from FN
bp.

It then adds (msg, Pi, Pj) to its view of session s and replies according to the instructions of

Π and this view.

Security Definition. Having de�ned the ideal and real models of computation, we are

now ready to give our formal security de�nition.

De�nition 3.2 (Concurrent Self-Composition in Bounded Player Model). Let N =

N(λ) be a polynomial and let f and Π be as above. Protocol Π is said to securely compute

114

f under concurrent composition in the N-bounded player model if for every real model non-

uniform probabilistic polynomial-time adversary A, there exists an ideal-model non-uniform

probabilistic expected polynomial-time adversary S, such that for all input-selecting machines

M = M1, . . . ,MN , every z ∈ {0, 1}∗, every ~x = (x1, . . . , xN), and every I ⊂ [N],

{
ideal

N
f,I,S,M(λ, ~x, z)

}
λ∈N COMP

{
real

FN
bp

Π,I,A,M(λ, ~x, z)

}
λ∈N

3.6 Impossibility Results in Bounded Player Model

In [Lin04], Lindell gave broad impossibility results for unbounded concurrent self-composition

in the standard model. We observe that the impossibility result of [Lin04] carries over in

a straightforward manner to bounded player model considered in the present work. Below,

in what is largely an informal discussion, we elaborate on this observation. [Lin04, Lin03b,

CKL03, KL11]

Lindell's impossibility result [Lin04] for unbounded concurrent self-composition in the

standard model is obtained by combining three di�erent results. Below, we will recall all of

these results and discuss how each of them carry over to the bounded player model. First,

we recall some basic de�nitions from [Lin04]. A large part of text below is taken verbatim

from [Lin04].

Security under concurrent general composition. Informally speaking, concurrent

general composition considers the case that a protocol ρ for securely computing some func-

tionality f , is run concurrently (many times) with arbitrary other protocols π. In other

words, the secure protocol ρ is run many times in a network in which arbitrary activity takes

place. (Note that in contrast, in concurrent self-composition, we only consider security for

concurrent executions of the same protocol ρ.) The formalize security in this setting, we

115

model the arbitrary network activity π as a �calling protocol� with respect to the function-

ality f f. That is, π is a protocol that contains, among other things, �ideal calls� to a trusted

party that computes a functionality f . This means that in addition to standard messages

sent between the parties, protocol π's speci�cation contains instructions of the type �send

the value x to the trusted party and receive back output y�. Then, the real-world scenario

is obtained by replacing the ideal calls to f in protocol π with real executions of protocol ρ.

The composed protocol is denoted πρ and it takes place without any trusted help. Security

is de�ned by requiring that for every protocol π that contains ideal calls to f , an adversary

interacting with the composed protocol πρ (where there is no trusted help) can do no more

harm than in an execution of π where a trusted party computes all the calls to f . This

therefore means that ρ behaves just like an ideal call to f , even when it is run concurrently

with any arbitrary protocol π. We refer the reader to [Lin04] for a formal security de�nition.

Concurrent general composition in the bounded player model. We note that security under

concurrent general composition can be naturally de�ned in the bounded player model by

considering an a priori bound on the total number of player in the system, in the same

manner as in De�nition De�nition 3.2. More speci�cally, we will consider an a priori bound

N on the total number of player in the system. Then, arbitrary (possibly intersecting)

subsets of parties may be involved in unbounded concurrent executions of ρ, in the presence

of arbitrary other protocols π. (Note that π can be at-most an N -party protocol.) Security

is de�ned in the same manner as above.

Functionalities that enable bit transmission. Informally speaking, a functionality

enables bit transmission if it can be used by the parties to send bits to each other. We now

recall the formal de�nition from [Lin04].

De�nition 3.3 (Bit-transmitting functionality). A deterministic functionality f = (f1, f2)

enables bit transmission from P1 to P2 if there exists an input y for P2 and a pair of inputs x,

116

x′ for P1 such that f2(x; y) 6= f2(x′; y). Likewise, f enables bit transmission from P2 to P1 if

there exists an input x for P1 and a pair of inputs y, y′ for P2 such that f1(x; y) 6= f1(x; y′).

A functionality enables bit transmission if it enables bit transmission from P1 to P2 and from

P2 to P1.

The above de�nition can be easily generalized to probabilistic functionalities, as well as

to multi-party functionalities in a straightforward way. We refer the reader to [Lin04] for

more details.

Extending Lindell's impossibility result to BP model. We now consider the three

steps involved in the impossibility result in [Lin04], and brie�y discuss why they carry over

to the bounded player model.

Step 1: First, it is shown in [Lin04] that for every functionality f that enables bit transmis-

sion, security under unbounded concurrent self-composition is equivalent to security

under concurrent general composition. That is, if f enables bit transmission, then f

can be securely computed unbounded concurrent self-composition if and only if it can

be securely computed under concurrent general composition.

We note that [Lin04] proves this (unconditional) result for two-party setting where

only one set of parties run all of the protocol executions. As such, the result already

works in the bounded player model.

Step 2: Next, we use the result of [Lin03b], where it is shown that security under concurrent

general composition implies security in the universal composability framework [Can01].

This result is also unconditional, and in fact, also works in a setup model (such as a

common reference string, etc).

Once again, we note that [Lin04] obtains this result even for the restrictive case where

only one set of parties engage in two-party protocol executions (the adversary is as-

117

sumed to be static). As such, this result is also applicable to the bounded player

model.

Step 3: Finally, one can use the result of Canetti et al. [CKL03] that shows a large class of

functionalities for which UC security cannot be achieved. With respect to the bounded

player model, we note that very recently, Kidron and Lindell [KL11] show that the

results of [CKL03] can be extend to the bulletin-board certi�cate authority model,

which is formalized in essentially the same manner as our bounded player model, in

that the parties register their unique identities to a functionality. We note that the

result in [KL11] already works when the number of parties are a priori bounded, as

such it is applicable to our setting.

Combining these three steps, we can obtain broad impossibility results for concurrent

self-composition in the bounded player model. In order to obtain the formal statement, let

us �rst recall the class of functionalities Ψ for which concurrent general composition is shown

to be impossible [Lin03b]. The following is taken verbatim from [Lin04, Lin03b].

1. Let f : {0, 1}∗ → {0, 1}∗ be a deterministic polynomial-time function that is (weakly)

one-way. Then, the functionality (x, λ)→ (λ, f(x)) cannot be securely computed under

concurrent general composition by any non-trivial protocol.

2. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a deterministic polynomial-time functionality.

If f depends on both parties' inputs, then the functionality (x, y) → (f(x, y), f(x, y))

cannot be securely computed under concurrent general composition 2. Let f : {0, 1}∗×

{0, 1}∗ → {0, 1}∗×{0, 1}∗ be a deterministic polynomial-time functionality and let f =

(f1, f2). If f is not completely revealing5 then the functionality (x, y)→ (f1(x, y), f2(x, y))

5Informally, a functionality is completely revealing if one party can choose an input so that the output
of the functionality will reveal the other party's input. See [Lin03b, Lin04] for details.

118

cannot be securely computed under concurrent general composition by any non-trivial

protocol.

Further, let Φ be the set of all two-party functionalities that enable bit transmission.

Then, we obtain the following result:

Corollary 1. Let f be a functionality in Φ∩Ψ. Then f cannot be securely computed under

unbounded concurrent self composition by any non-trivial protocol.

Remark. We note that the above discussion is relevant to the ��xed-roles� setting where

the parties play the same roles in each session in the concurrent self-composition setting. If

we allow interchangeable roles, then as shown in [Lin04], essentially all functionalities are

impossible to realize. We refer the reader to [Lin04] for more details.

119

120

Chapter 4

Topology-Hiding Multi-Party Computation

4.1 Introduction

Secure multi party computation (MPC) has occupied a central role in cryptography

since its inception in the '80s. The unifying question can be stated simply:

Can mutually distrusting parties compute a function of their inputs, while keeping

their inputs private?

Classical feasibility results [Yao82b, GMW87, BGW88] paved the way for a plenitude of

research which has over time simpli�ed, optimized and generalized the original founda-

tional constructions. Some particularly rich lines of work include improving the complexity

(round/communication/computation) of MPC protocols (e.g., [FY92, DN07, DIK10] and

many more) and striving to achieve security in the more di�cult (but realistic) setting where

the adversary may execute many instantiations of the protocol along with other protocols

(e.g., [PR03, Pas04b, CLOS02, Can01] and many more).

Common to nearly all prior work, however, is the assumption that the parties are all

capable of exchanging messages with one another. That is to say, most work in the MPC

literature assumes that the underlying network topology is that of a complete graph. This

121

is unrealistic as incomplete or even sparse networks are much more common in practice.

Moreover, the comparably small body of MPC work that deals with incomplete networks

concerns itself with the classical goal of hiding the parties' inputs. In light of the growing

impact of networking on today's world, this traditional security goal is insu�cient. Consider,

for example, the graph representing a social network: nodes representing people, edges

representing relationships. Most computation on social networks today is performed in

a centralized way�Facebook, for example, performs computations on the social network

graph to provide popular services (e.g., recommendations that depend on what �similar�

people liked). However, in order to provide these services Facebook must �know� the entire

graph.

One could imagine wanting to perform such a computation in a distributed manner,

where each user communicates only with their own friends, without revealing any additional

information to third parties (there is clearly wide interest in this type of service�Diaspora*, a

project that was expressly started to provide �Facebook-like� functionality in a more privacy-

preserving manner, raised over $200,000 in 40 days via Kickstarter).

Another motivating example is the recent push by US auto safety regulators towards

vehicle-to-vehicle communication, which envisions dynamic networks of communicating ve-

hicles; many �global� computations seem to be interesting in this setting (such as analysis

of tra�c patterns), but leaking information about the structure of this network could have

severe privacy implications.

The rise of the �internet of things�, connected by mesh networks (networks of nodes

that communicate locally with each other) is yet another case in which the topology of the

communication network could reveal private information that users would prefer to hide.

122

It is with such applications in mind that we initiate the study of topology-hiding MPC

in the computational setting. We consider the fundamental question:

Can an MPC protocol computationally hide the underlying network topology?

4.1.1 Our Contributions

Formally De�ning Topology-Hiding MPC: In keeping with tradition we give both

an indistinguishability game-based de�nition and a simulation-based one. Very brie�y, in

the game-based de�nition the adversary corrupts A ⊂ V and sends two network topologies

G0, G1 on vertices V . These graphs must be so that the neighborhoods of A are the same.

The challenger then picks Gb at random and returns the collective view of the parties in A

resulting from the execution of the protocol on Gb. The adversary outputs b′ and wins if

b′ = b. We say a protocol is secure against chosen topology attack (IND-CTA−secure) if no

PPT adversary can win the above game with probability negligibly greater than if it simply

guesses b′.

We then give a simulation-based de�nition of security using the UC framework. We

de�ne an ideal functionality Fgraph and say that a protocol is �topology hiding� if it is UC

secure in the Fgraph−hybrid model. The functionality Fgraph models a network with private

point-to-point links (private in the sense that the adversary does not know the network

topology). It receivesG as input, and outputs to each party a description of its neighborhood.

It then acts as an �ideal communication channel� allowing neighbors to send messages to

each other. For more details on Fgraph and the motivations behind our de�nition see the

discussion below. Finally, we relate the two new notions by proving that simulation-based

security implies game-based security.

Feasibility of topology-hiding MPC against semi-honest adversary:

123

Theorem 1. Assume trapdoor permutations exist. Let G be the underlying network graph

and d a bound on the degree of every vertex in G. Then every multiparty functionality may be

realized by a topology hiding MPC protocol which is secure against a semi-honest adversary

who does not corrupt all parties in any k−neighborhood of the underlying network graph

where k is such that dk = poly(λ).

We point out that many naturally occurring graphs satisfy dD = poly(λ) where D is the di-

ameter. Examples of such graphs include binary trees, hypercubes, expanders, and generally

graphs with relatively high connectivity and low degree such as those occurring from social

networks. For such graphs Theorem 1 is a feasibility result against a general semi-honest

adversary.

Impossibility in fail-stop model:

Theorem 2. There exists a functionality F and a network graph G such that realizing F

while hiding G is impossible.

Our proof uses the ability of the adversary to disconnect G with his aborts; we then prove

this is inherent.

Su�cient conditions in fail-stop model:

Theorem 3. Assume TDP exist. Every multiparty functionality may be realized by a topology

hiding MPC protocol which is secure against a fail-stop adversary who does not corrupt

all parties in any neighborhood of the underlying network graph and who's aborts do not

disconnect the graph.

4.1.2 Related Work

MPC on Incomplete Network Topologies One line of work which is in exception to

the above began with Dolev's paper [Dol82] proving impossibility of Byzantine agreement

124

on incomplete network topologies with too low connectivity. Dwork et. al. [DPPU88] coined

the term �almost everywhere Byzantine agreement� to be a relaxed variant of Byzantine

agreement where agreement is reached by almost all of the honest parties. Garay and

Ostrovsky [GO08] used this to achieve almost everywhere (AE) MPC. Recently [CGO12] gave

an improved construction of AE Byzantine agreement translating to an improved feasibility

result for AE MPC. These works are all in the information theoretic setting. We refer the

curious reader to [CGO12] and the references therein for more details.

Another recent line of work is that of Goldwasser et. al. [BGT13] who consider MPC

while minimizing the communication locality, the number of parties each player must ex-

change messages with. Their work is in the cryptographic setting and they give a meaningful

upper bound on the locality and overall communication complexity. Their work does not

address the notion of hiding the graph. Moreover they employ techniques such as leader

election which seem inherently not to hide the graph.

Finally, we mention the two classical techniques of mix-net and onion routing. The

mix-net technique introduced by Chaum [Cha81] uses public key encryption to implement

a �message transmit� scheme allowing a sender and receiver to using in a message transmit

using an additional shu�ing mechanism. The onion routing technique [RR99, RSG98] and

its extensions is a useful technique for anonymous communication over the Internet. Its

basic idea is establishing paths of entities called proxies that know the topology in order to

transmit massages.

Topology-Hiding MPC: While most of the cryptographic MPC literature disregards the

interplay between multiparty computation and networking, the above works give a relatively

satisfactory view of the landscape. Hiding the topology of the network in secure computation,

on the other hand, is somewhat of a novel goal. The only work in the MPC literature of which

125

we are aware that has considered this question is that of Hinkelmann and Jakoby [HJ07] who

focused on the information theoretic setting. Their main observation can be summarized:

If vertices v and w are not adjacent in G then Pv cannot send a message to Pw

without some intermediate Pz learning that it sits between Pv and Pw.

They use this observation to prove that any MPC protocol in the information theoretic

setting must inherently leak information about G to an adversary. They do, however, prove

a nice positive result: given some minimal amount of network information to leak (formalized

as a routing table of the network), one can construct an MPC protocol which leaks no further

information.

Their work left open the interesting possibility that, using cryptographic techniques,

one could construct an MPC protocol which (computationally) hides the network topology.

In this work we explore this possibility and emerge with a positive result.

4.2 Topology-Hiding Security

4.2.1 Graph Related Notions

We consider a network modeled by a directed graph G = (V,E) that is not fully

connected and where V = {P1, . . . , Pm} is identi�ed with a set of m = poly(λ) parties. As

usual in MPC, some of these parties might be corrupt, in which case they are controlled by

a PPT adversary A. For v ∈ V we de�ne the neighborhood of v by

N(v) = {w ∈ V : (v, w) ∈ E}.

126

Similarly, the closed neighborhood of v, is N[v] = N(v)∪ {v}. We sometimes refer to N[v] as

the closed 1−neighborhood of v, and for k ≥ 1 we de�ne the k−neighborhood of v as

Nk+1[v] =
⋃

w∈Nk(v)

N[w].

4.2.2 Topology Hiding Security − The Game-Based Version

Our �rst de�nition of topology-hiding security is formalized as a game between an

adversary A and a challenger C. The basic structure of the game �ts several types of

adversarial behaviors, e.g., semi-honest, fail-stop, and malicious, thus, we do not emphasize

the exact behavior of the adversary during the execution of the protocol.

• Setup: Let G be a set of graphs. For simplicity, we assume that all G ∈ G have the

same vertex set V = {P1, . . . , Pm}. Let Π be an m−party protocol which can be run

on any G ∈ G.

• A chooses a corrupt subset S ⊂ V , and gives inputs xi to the parties Pi ∈ S. Next,

A picks graphs G0, G1 ∈ G such that the local neighborhoods of S in G0 and G1 are

identical. That is, NG0 [S] = NG1 [S] (equality of graphs). It sends
(
S;G0, G1; {xi}i∈S

)
to C.

• Now C chooses a random b ∈ {0, 1} and runs Π on communication graph Gb, where

each honest Pi gets a random xi as input and each dishonest party gets the input

prescribed by A. During the execution, A controls the parties in S, and afterwards it

collects their views into the random variable VIEWS,{xi},Gb .

• Finally A outputs b′ ∈ {0, 1}. A wins if b′ = b, otherwise A loses.

127

De�nition 4.1. We say that an MPC protocol Π is Indistinguishable under Chosen Topology

Attack (IND-CTA secure) over G if for any PPT adversary A,

∣∣∣∣Pr(A wins
)
− 1

2

∣∣∣∣ = negl(λ).

4.2.3 UC Security

Universal composability (UC) [Can01] refers to a framework for proving protocol

security. It is a strong, simulation based notion of security. Intuitively, a protocol is UC

secure if any attack (concurrent, man-in-the-middle, etc.) on the protocol can be launched

with equal success against an �idealized� version of the protocol where a trusted party receives

parties' inputs, computes the functionality, and returns the outputs. This is formalized

using the real/ideal paradigm, as described below. The strength of the UC model provides a

desirable �ease of mind� in protocol design. The UC composition theorem [Can01] proves that

UC secure protocols are secure under composition (with themselves and other protocols).

This allows one, during security proofs, to �abstract away� subprotocols which are UC secure

and focus only on the new ingredients. This �protocol stacking� technique can result in the

security of protocols for highly complex functionalities following from the security of very

simple ones.

In this chapter, we strive to construct an MPC scheme which hides the topology of

the underlying communication network. We encapsulate this security property nicely using

the UC framework. We will say that a protocol is topology hiding if it is UC secure in some

Fgraph−hybrid model, where Fgraph is a low level functionality, which gives parties a list of

neighbors and provides message transmission between neighbors. We �nd this de�nition

appealing for two reasons. First, we feel it thoroughly captures the level of security we are

looking for as the Fgraph functionality does not reveal any global information about the graph

128

to anyone. Secondly, we feel that it is reasonable to expect such a functionality be o�ered

by a network. Indeed, it seems likely that such a functionality could be realized, say using

special hardware. We now discuss the notions involved in de�ning UC security.

The Environment. UC security requires that an outside observer not be able to distin-

guish a real protocol execution from an ideal one, even if it is able to corrupt a subset of the

parties. This outside observer is modeled as the environment, Z. So as not to underestimate

the control that Z has on the system, we assume that Z can set all parties' inputs, and

read all outputs. Furthermore, Z has the ability to corrupt sets of parties via an adversary

A that it controls. Once a party is corrupted, Z sees its entire view and gains the ability

to control its behavior. What Z does not see, however, is the communication between the

uncorrupted parties.

The Real World. The real world contains m parties who execute a protocol Π, the

environment Z, and an adversary A, who is controlled by Z. As mentioned above, Z sets

the inputs and receives the outputs of all parties, and communicates with A who corrupts a

subset of the parties. The uncorrupted parties follow the protocol, while corrupted parties

are completely controlled by A, and all of the communication to and from these parties is

seen by Z.

The Ideal World. The ideal world contains m �dummy� parties, an ideal functionality

F , the environment Z, and an �ideal adversary� or simulator, §. The parties in this world

are dummy parties because they simply pass their input to, and receive output from F . The

idea is that F o�ers the same functionality as the protocol Π in the real world, and yet is

computed by a trusted third party and so o�ers little risk of a security breach. Just as in

the real world, Z sets the inputs and will get the outputs of all players, and just as in the

real world, Z can corrupt a subset of the parties, at which point, complete control over these

129

parties is given to S. The goal of S is to simulate the view that the corrupt parties would

have in the real world by executing Π. The challenge is that in the ideal world, the honest

parties do not interact with the corrupt parties, and so S must generate this interaction

on its own. Moreover, S's method must work for all choices of parties' inputs by Z. S is

allowed to communicate with F and may run it on inputs of its choosing.

Hybrid Worlds. As mentioned above, when proving UC security of a protocol, the UC

composition theorem allows one to abstract away subprotocols using the notion of a hybrid

world. More speci�cally, suppose that a large protocol Π uses a simpler Π′ as a subprotocol,

and it is known that Π′ is UC secure. Then in order to prove the UC security of Π, it su�ces

to prove that Π is UC secure in the F ′−hybrid model. This essentially ammounts to proving

that a modi�ed version of Π, where every execution of Π′ is replaced by an ideal evaluation of

the functionality F ′ by a trusted third party, is UC secure. F ′ appears in the real and ideal

worlds as a functionality with whom parties can interact. Z sees only the communication

of the corrupt parties with F ′, and in the ideal world, S may communicate with F ′ but

the honest dummy parties still only communicate with F , the idealized version of Π. This

means that S must simulate the interaction that corrupt parties would have with F ′ in the

real F ′−hybrid world.

De�nition of UC Security Let REALΠ,A,Z(λ, z) denote the output of environment Z

with input z after an execution of the protocol Π with corrupt parties controlled with

adversary A. Let We denote by IDEALF ,SA,Z(λ, z) be the output of Z winth the ideal

adversary (simulator) S and functionality F , with security parameter λ. We denote the

simulator by SA, works with the adversary A attacking the real protocol. Similarly, we let

REALF
′

Π,A,Z(λ, z) and IDEALF
′

F ,SA,Z(λ, z) denote the outputs of Z after and execution in the

F ′−hybrid real and ideal worlds, respectively.

130

De�nition 4.2 (UC Security). We say that Π UC securely realizes a functionality F if

there exists a PPT S such that for all PPT Z and A and inputs z to Z,

{
IDEALF ,SA,Z(λ, z)

}
λ
≈c
{

REALΠ,A,Z(λ, z)
}
λ
.

Similarly, for an ideal functionality F ′, we say that Π UC securely realizes F in the F ′−hybrid

model if for all z,

{
IDEALF

′

F ,SA,Z(λ, z)
}
λ
≈c
{

REALF
′

Π,A,Z(λ, z)
}
λ
.

4.2.4 Topology Hiding Security − The Simulation-Based Version

As we have already mentioned, our simulation-based security notion is the usual

notion of UC security in a special hybrid model we call the Fgraph−hybrid model. The Fgraph

functionality (shown in Figure 4.1) takes as input the network graph from a special �graph

party� Pgraph and returns to each other party a description of their neighborhood. It then

handles communication between parties, acting as an �ideal channel� functionality allowing

neighbors to communicate with each other. This prevents the communication from passing

through the environment (implicitly revealing the network topology).

We think of Fgraph as modeling the actual communication network. That is, whenever

a protocol speci�es that a party should send a message to one of its neighbors using Fgraph,

this corresponds to a real world party directly sending the message over the network. Since

Fgraph provides local information about the graph to all corrupted parties, any ideal-world

adversary must have access to this information as well (regardless of the functionality we

are attempting to implement). To capture this, we de�ne the functionality FgraphInfo, that

is identical to Fgraph but contains only the initialization phase. For any functionality F , we

de�ne a �composed� functionality (FgraphInfo||F) that adds the initialization phase of Fgraph

131

Participants/Notation:
This functionality involves all the parties P1, . . . , Pm and a special graph party
Pgraph.

Initialization Phase:

Inputs: Fgraph waits to receive the graph G = (V,E) from Pgraph.

Outputs: Fgraph outputs NG[Pi] to each player Pi ∈ V .

Communication Phase:

Inputs: Fgraph waits to receive from each Pi a message mi consisting of a set of
destination/data pairs to be sent to its neighbors mi = {(pidj ,mi,j)}Pj∈NG(Pi).

Output: Once Fgraph has received input from all parties, it computes the set

Mi = {Pj ∈ NG(v) : Fgraph received input pair (pidi,mj,i) from Pj}

and gives output {(pidj ,mj,i)}Pj∈Mi to Pv. If Mi = ∅ for some Pi ∈ V then Pi gets
⊥ as output.

Figure 4.1: The functionality Fgraph.

to F . We can now de�ne topology-hiding MPC in the UC framework:

De�nition 4.3. We say that a protocol Π realizes a functionality F with topology hiding

security if it UC-realizes (FgraphInfo||F) in the Fgraph−hybrid model.

Note that this de�nition allows protocols and functionalities to depend on the graph (e.g.,

�nd a shortest path between two nodes with the same input, or count the number of triangles

in the graph).

4.2.5 Topology Hiding Security Implies IND-CTA Security

We prove below that our simulation-based notion is at least as strong as our game-based

de�nition. This means that our game-based impossibility result of Section 4.4.1 implies

impossibility in the simulation based de�nition as well.

Claim 1. For every functionality F that does not depend on the communication graph struc-

132

ture, if Π securely realizes F with topology-hiding security (under De�nition 4.3) then Π is

IND-CTA secure.

Proof. Let Π be a topology-hiding secure-computation protocol with respect to De�nition 4.3

and let G0 and G1 be two graphs. We consider two speci�c executions of Π on network

topologies G0 and G1 with corrupt parties given the same inputs. We de�ne random vari-

ables (REALG0 , IDEALG0) and (REALG1 , IDEALG1) as usual (we use REAL even though

technically we are in the Fgraph−hybrid model). We observe that IDEALG0 are IDEALG1

are identically distributed, as the output of the protocol is the same whether the protocol is

executed on G0 or G1. It follows that if Π realizes F with topology hiding security then we

have

REALG0 ≈c IDEALG0 = IDEALG1 ≈c REALG1 .

It follows that A cannot win the IND-CTA game with probability that is noticeably better

than 1/2 and so Π is IND-CTA secure.

Note that the assumption that F not depend on the network topology is stronger than we

need. Instead if G is such that the output of F is the same on all graphs in G, then Π will

be IND-CTA secure over G.

4.3 Topology Hiding MPC Against Semi-Honest Adv

In this section we describe a protocol for topology-hiding MPC against a semi-honest

adversary for a large class of graphs. Our main result is the following:

Theorem 4. Let d be a bound on the degree of any vertex in G. Then for every k satisfying

dk = poly(λ), and any m−party functionality F , there exists a protocol Π that topology hiding

securely realizes F against a semi-honest adversary A that does not corrupt all parties in

any closed k−neighborhood of G.

133

Note that this gives us security against a general semi-honest adversary when the graph

has constant degree and a logarithmic bound on the diameter (by setting k to be anything

larger than the graph diameter). We point out that many natural families of graphs are of

this sort, including binary trees, hypercubes, expanders and more. We also point out that it

su�ces to securely realize the broadcast functionality since UC secure MPC protocols can

be easily compiled from UC broadcast protocols.

4.3.1 High-Level Protocol Overview of Our Basic Protocol

Below we give a top-down description of our basic broadcast protocol: one that is

secure against adversaries that do not corrupt any complete 1-neighborhood in the graph

(i.e., in every star there is at least one honest node). This basic protocol can then be used

to construct a broadcast protocol that tolerates larger corrupt neighborhoods (more details

of this transformation appear in Section ??).

A Naïve Broadcast Protocol. To understand the motivation for the construction, �rst

consider a naïve broadcast protocol for a single bit:

1. In the �rst round, the broadcaster sends the broadcast bit b to all of its neighbors.

Every other party sends 0 to all of their neighbors.

2. In each successive round, every party computes the OR of all bits received from their

neighbors in the previous round, and sends this bit to all neighbors.

After j rounds, every party at distance j or less from the broadcaster will be sending

the bit b (this can be easily shown by induction); after diam(G) rounds all parties will agree

on the bit b.

This protocol realizes the broadcast functionality, but it is not topology-hiding for two

main reasons: a party can tell how far it is from the broadcaster by counting the number of

134

rounds until it receives a non-zero bit (assume b = 1 for this attack), and it can tell in which

direction the broadcaster lies by noting which neighbor �rst sent a non-zero bit.

Using Local MPC to Hide Topology. Our construction hides the sensitive information

by secret-sharing it among the nodes in a local neighborhood. Essentially, our basic protocol

replaces each node in the naïve protocol above with a secure computation between the node

and all of its direct neighbors in the graph.

In order to communicate a bit between one local neighborhood and another, without

revealing the bit to the vertex connecting the two neighborhoods, each local neighborhood

generates a public/private key pair, for which the private key is secret-shared between the

parties in the neighborhood. The input to each local MPC includes the private key shares.

The output to each party is encrypted under the public key of the neighborhood represented

by that party (i.e., of which the party is the center node).

Since we assume that no local neighborhood is entirely corrupted, the adversary does

not learn any of the plaintext bits. In the �nal round (at which point the broadcast bit has

�percolated� to all the neighborhoods in the graph). a secure computation is used to decrypt

the bits and output the plaintext to all the parties.

This part of the protocol is formally speci�ed as two separate functionalities, each in-

stantiated using a local secure computation: the KeyGen functionality (LKeyGen), handles the

generation and distribution of the public/private key-pair shares in each local neighborhood,

and the �broadcast-helper� functionality (Lbc-helper), handles the encryption/decryption and

ORing of the bits. The details of the construction are in Section ??.

Implementing Local MPC. To implement LKeyGen and Lbc-helper, the basic protocol uses

a general MPC functionality, LMPC, that allows the local neighborhoods to perform secure

135

computation protocols (i.e., among parties connected in a star graph). Realizing LMPC

ammounts to constructing a compiler which transforms a standard MPC protocol which

runs on a complete graph into one which runs on a star graph. We achieve this by having

players in the star who are not connected pass messages to each other through the center.

The messages are encrypted to ensure privacy. One subtle point is that the protocol must

not leak how many players are in the local neighborhood, as parties are not supposed to learn

the degrees of their neighbors. We sidestep this issue by having the center node �invent� fake

nodes so that parties learn only that the degree is at most d, some public upper bound on

the degree of any node in G. The functionality LMPC is shown in Figure 4.2, and explicit

protocol is shown in Section 4.3.2.

4.3.2 Topology Hiding Securely Realizing LMPC

The local MPC functionality LMPC is shown in Figure 4.2. As we have already men-

tioned, it is su�cient to securely realize message passing between all parties in Pi's local

neighborhood in the Fgraph−hybrid model. This is because, once all parties can send mes-

sages to each other, they can simply run their favorite UC secure MPC protocol as if the

network topology is that of a complete graph. Note that as we are in the semi-honest model

here, UC secure MPC does not require setup. We will use the constant round, protocol

of [Pas04b], as it is UC secure against a semi-honest adversary (against general adversaries

it is bounded concurrent secure).

For simplicity we describe only the protocol allowing Pj to securely send a message to

Pj′ for Pj, Pj′ ∈ N[Pi]. This protocol is very simple:

1. Pj′ generates a key pair and sends the public key to Pj through Pi;

2. Pj encrypts its message and sends the ciphertext back to Pj′ through Pi.

136

Graph Entry Phase:

Input: LMPC receives the graph G from Pgraph.

Output: LMPC outputs N[Pi] to each Pi.

MPC Phase (for all Pi ∈ V):

Input: LMPC receives from Pi a d−party protocol Πi and {xj,i}Pj∈N[Pi], Pi's inputs
to the protocols Πj of its neighbors.

Computation: LMPC simulates each Πi with inputs {xi,j}j obtaining outputs
{yi,j}j .

Output: LMPC gives {yi,j}j to each Pj ∈ N[Pi] as output.

Figure 4.2: The functionality LMPC.

Such a protocol naturally extends to allow all parties in N[Pi] to exchange messages with

each other (as long as Pi invents enough nodes to ensure that his neighbors do not learn his

degree, but just the preselected bound d). As we mention above, this is su�cient for securely

realizing LMPC in the Fgraph−hybrid model.

Participants/Notation: This protocol involves players Pi, Pj , Pj′ , Pj , Pj′ ∈ N[Pi],
and allows Pj to send the message msg to Pj′ . Let (Gen,Enc,Dec) be a public
key encryption scheme.

Input: Pi and Pj′ give no input, Pj gives input msg.

Protocol for Message Passing:

� Pj chooses a key pair (pk, sk)← Gen(1λ) and sends pk to Pi.

� Pi forwards pk to Pj′ .

� Pj′ computes encryption y = Encpk(msg) and sends y to Pi.

� Pi forwards y to Pj .

� Pj decrypts msg = Decsk(y).

Figure 4.3: The protocol Π
(i,j,j′)
msg-pass.

137

Security of LMPC. The proof is very simple so we su�ce it brie�y describe S, and leave

checking that it accurately emulates A's view in the real world to the reader. Since Π

is a UC secure MPC protocol on a complete graph, there exists a simulator S ′ who can

replicate any adversary A's real-world view in the ideal world. The only di�erence between

the view S ′ outputs and the view we need to output is that we must take into account

that our messages are encrypted and passed through Pi. Therefore, S generates key pairs

{(pkj,j′ , skj,j′)}Pj ,Pj′∈N[Pi], where Pj will use pkj,j′ to send messages to Pj′ and computes

encryptions of the messages in the view output by S, and distributes them accordingly to

the players. Security follows from the security of the encryption scheme.

4.3.3 The Functionalities LKeyGen and Lbc-helper

The functionality LMPC of the previous section is a general functionality that compiles

an MPC protocol Π on a complete graph into an analogous one which can be executed by

the parties in N[Pi], without compromising the security of Π, and also without leaking any

information about the topology. We will be interested in two speci�c local functionalities,

LKeyGen and Lbc-helper. These can be securely realized in the Fgraph−hybrid model by simply

instantiating LMPC with two speci�c MPC protocols.

Recall that our underlying idea is to replace the role of Pi in a usual broadcast proto-

col with an MPC to be performed by the parties in Pi's neighborhood. This will hide each

player's distance from the broadcaster because even though the bit might have been received

by Pi's neighborhood, it will not be known to any individual player. Our �rst functionality,

LKeyGen is useful towards this end. Intuitively, it generates a key pair (pk, sk) for the neigh-

borhood N[Pi] and gives pk to Pi and distributes secret shares of the secret key among Pi's

neighbors. Our second functionality, Lbc-helper will allow the broadcast bit to spread from

neighborhood to neighborhood once the neighborhoods have keys distributed according to

138

LKeyGen. The functionalities LKeyGen and Lbc-helper are shown in Figure 4.4 and Figure 4.5,

respectively. Both functionalities are local, meaning that they act in the same way on all

of the closed neighborhoods in G. For simplicity, we only describe the functionalities' in-

put/output behavior in one such closed neighborhood, N[Pi], even though many copies of

the same behavior are occurring at once: one for each closed neighborhood of G. Finally

let LKeyGen(i) and Lbc-helper(i) denote the copies of LKeyGen and Lbc-helper, respectively, which

take place in N[Pi]

Participants/Notation: For simplicity, we describe only the impact on the parties
in N[Pi], even though the same is occurring for all closed neighborhoods in G. Let
(Gen,Enc,Dec) be a public key encryption scheme.

Graph Entry Phase: same as in LMPC

KeyGen Phase:

� LKeyGen generates a key pair (pk, sk)← Gen(1λ).

� LKeyGen computes random shares {skj}Pj∈N[Pi] such that
⊕

j skj = sk.

Output: LKeyGen gives outputs
(
pk, {ski

)
to Pi, and skj to each Pj ∈ N[Pi].

Figure 4.4: The functionality LKeyGen.

4.3.4 Realizing Fbroadcast in LMPC−hybrid model

Our LMPC−hybrid protocol for broadcast, Πbroadcast uses the ideal functionalities LKeyGen

and Lbc-helper described above. As mentioned in the previous section, these functionalities

are obtained from LMPC by instantiating LMPC with speci�c MPC protocols. A description

of Πbroadcast is given in Figure 4.6. Note that Πr
broadcast is correct as long r > diam(G), the

diameter of the network graph G. Our statement and proof of security is below.

Claim 4.1. The protocol Πr
broadcast UC securely realizes Fbroadcast in the Fgraph−hybrid model

as long as the network topology graph G is such that

139

Participants/Notation: For simplicity, we describe only the impact on the parties
in N[Pi], even though the same is occurring for all closed neighborhoods in G. For
Pj ∈ N[Pi], let pk

j be the public key output to Pj by LKeyGen(j). Let skij denote Pj 's

share of ski (the secret key corresponding to pki), given as output by LKeyGen(i).

Graph Entry Phase: same as in LMPC

Main Phase:

Input: Lbc-helper receives inputs:

� αj ∈ {�cipher�, �plain�} from each Pj ∈ N[Pi];

�
(
pkj , skij

)
from each Pj ∈ N[Pi];

� encryptions {xj}Pj∈N[Pi] from Pi, where xj = Encpki(bj) for a bit bj ∈ {0, 1}.

The �rst input αj is a tag which determines whether Lbc-helper outputs ciphertexts
or plaintests. If all parties do not agree on αj , Lbc-helper halts giving no output.

Computation:

� Lbc-helper reconstructs the secret key ski =
⊕

Pj∈N[Pi]
skij ;

� Lbc-helper decrypts the bits bj = Decski(xj);

� Lbc-helper computes b =
∨
Pj∈N[Pi]

bj .

Output:

� If αj = �cipher� for all Pj ∈ N[Pi] then Lbc-helper outputs yj = Encpkj (b) to
each Pj .

� If αj = �plain� for all Pj ∈ N[Pi] then Lbc-helper outputs b to each Pj .

Figure 4.5: The functionality Lbc-helper.

140

1. Diameter(G) < r;

2. A does not corrupt any entire closed neighborhood of G.

Input: Pgraph inputs the graph G, each Pi inputs a bit bi ∈ {0, 1}.

KeyGen: Parties call LKeyGen and each Pi receives N[Pi] and
(
pki, {skji}Pj∈N[Pi]

)
.

Main Computation:

� Each Pi sets x
0
i,j = Encpki(bi) for each Pj ∈ N[Pi].

� For c = 1, . . . , r − 1, parties call Lbc-helper:
∗ Pi gives input

{
�cipher�;

(
pki, skii

)
; {xc−1

i,j }Pj∈N[Pi]

}
to Lbc-helper(i);

∗ For each Pj ∈ N[Pi], Pi gives input
{
�cipher�;

(
pki, skji

)}
to Lbc-helper(j);

∗ Pi receives output xci,j from Lbc-helper(j) for all Pj ∈ N[Pi].

� Finally, parties call Lbc-helper:
∗ Pi gives input

{
�plain�;

(
pki, skii

)
; {xr−1

i,j }Pj∈N[Pi]

}
to Lbc-helper(i);

∗ For each Pj ∈ N[Pi], Pi gives input
{
�plain�;

(
pki, skji

)}
to Lbc-helper(j);

∗ Pi receives the bit b∗i,j as output from Lbc-helper(j).

Output: Pi outputs b
∗
i =

∨
j b
∗
i,j .

Figure 4.6: The (LKeyGen||Lbc-helper)-hybrid protocol Πr
broadcast.

Simulator. Consider a corrupt party Pi. S simulates Pi's view as follows:

1. KeyGen: S generates (pki, ski)← Gen(1λ). When the parties call LKeyGen, S returns

pki to Pi and random strings rji for each Pj ∈ N[Pi], instead of shares of Pj's secret

key.

2. Main Computation: As output to each of the �rst r − 1 calls to Lbc-helper, S gives

output {xci,j}j,c to Pi, where xci,j = Encpki(0
λ) to Pv. To compute the output of the

last call of Lbc-helper, S inputs bi and all other corrupt parties' input bits to Fbroadcast

receiving b∗ which it returns to Pi.

141

Hybrid Argument.

H0 − This is the real execution of Πr
broadcast. Namely, each environment �rst runs LKeyGen,

after which each Pi has key data
(
pki, {skji}Pj∈N[Pi]

)
. Then parties enter the loop, run-

ning Lbc-helper r times. Initially, parties enter their secret bit and the key data received

from LKeyGen. In each subsequent call to Lbc-helper, the output from the previous call is

also given as input. Finally, Pi receives many copies of the same bit b∗i as output from

the last call to Lbc-helper, and Pi outputs this bit. The view of Pi therefore consists of

the following:

1. input bi ∈ {0, 1}, output b∗i ∈ {0, 1};

2. key data
(
pki, {(skji)}Pj∈N[Pi]

)
;

3. encryptions
{
xci,j
}c=0,...,r−1

Pj∈N[Pi]
.

Let B ⊂ V be the set of bad parties corrupted by A. The view of the adversary is

{(
bi, b

∗
i ; pk

i,
{
skji
}
Pj∈N[Pi]

;
{
xci,j
}
j,c

)}
Pi∈B

.

H1 − This is the same as the above experiment except the secret key shares are replaced by

random strings. The resulting view is

{(
bi, b

∗
i ; pk

i, {rji }j; {xci,j}j,c
)}

Pi∈B
.

As the secret key ski is secret shared among N[Pi] using a
∣∣N[Pi]

∣∣−out−of−∣∣N[Pi]
∣∣

secret sharing scheme, and A does not corrupt all of N[Pi], we have that H1 ≈ H0.

H2 − This is identical to H1 except that all of the encryptions x
c
i,j are changed to encryptions

of 0. The resulting view is exactly the view of the ideal world adversary, and is

indistinguishable from the view in H1 by semantic security of the encryption scheme.

142

4.3.5 Allowing for Corruption of Whole Neighborhoods

Our protocol Πr
broadcast from the previous section successfully realizes the broadcast

functionality while hiding the topology of the graph so long as A does not corrupt any entire

neighborhood of G. If A were to corrupt N[Pi] for some i, our protocol immediately becomes

insecure, as A would possess all of the shares of ski and so could simply decrypt all of the

encrypted bits Pi receives and learn when the broadcast bit reaches Pi. In this section, we

show how, given a protocol Π that is secure as long as A does not corrupt all parties in

a k−neighborhood, one can construct another protocol Π′ for the same functionality as Π,

but is secure as long as A does not corrupt an entire (k + 1)−neighborhood. The round

complexity of Π′ will be a constant times the round complexity of Π and so one can only

repeat this process logarithmically many times.

The main ideas of this section are essentially the same as those in the previous section,

and show that the technique for using local MPC to hide information as it spreads to all

parties in the graph is actually quite general. Like Πbroadcast, our protocol Π′ will be given

in the LMPC−hybrid model, where we will use the ideal functionality LKeyGen. However,

instead of using Lbc-helper, we will use a similar but di�erent local functionality, LΠ-next,

shown in Figure 4.7. Essentially, LΠ-next allows the role of Pi in Π to be computed using a

local MPC by all of the parties in N[Pi]. Then the protocol Π′ uses LΠ-next to execute Π

except that each party's role in Π is computed using local MPC by its local neighborhood

in Π′. This ensures that if Π is such that any adversary wishing to attack Π must corrupt

an entire k−neighborhood, then any adversary wishing to attack Π′ must corrupt an entire

(k + 1)−neighborhood.

Our hybrid protocol Π′ is described in Figure 4.8. Our statement and construction

of simulator are below. We leave out the hybrid argument as it is very similar to the one

in Section 4.3.4

143

Participants/Notation: For simplicity, we describe only the impact on the parties
in N[Pi], even though the same is occurring for all closed neighborhoods in G. For
Pj ∈ N[Pi], let pk

j be the public key output to Pj by LKeyGen(j). Let skij denote Pj 's

share of ski (the secret key corresponding to pki), given as output by LKeyGen(i).

Graph Entry Phase: same as in LMPC

Main Phase:

Input: LΠ-next receives inputs:

� a round number cj ∈ {1, . . . , r} from each Pj ∈ N[Pi];

�
(
pkj , skij

)
from each Pj ∈ N[Pi];

� an encrypted transcript so far T̂ c−1
i =

(
xi, σi; {ŷ`i,j}

`≤c−1
j

)
from Pi, where xi

and σi are Pi's input and randomness and ŷ`i,j = Encpki(y
`
i,j) is an encryption

of the message Pj sent to Pi in the `−th round of Π.

If all parties don't agree on the round number, LΠ-next halts giving no output.

Computation:

� LΠ-next reconstructs the secret key ski =
⊕

Pj∈N[Pi]
skij ;

� LΠ-next decrypts y
`
i,j = Decski(ŷ

`
i,j) for all Pj ∈ N[Pi] and ` ≤ c− 1;

� LΠ-next computes the next message function of Π,

FΠ
i,c

(
xi, σi, {y`i,j}j,`

)
=

{
{ycj,i}j , c ≤ r − 1

zi, c = r

Output:

� If c ≤ r − 1 then each Pj ∈ N[Pi] receives ŷ
c
j,i = Encpkj (y

c
j,i) from LΠ-next.

� If c = r then LΠ-next outputs yi to Pi.

Figure 4.7: The functionality LΠ-next.

144

Input: Pgraph inputs the graph G, each Pi inputs xi, their input to Π.

KeyGen: Parties call LKeyGen and each Pi receives N[Pi] and
(
pki, {skji}Pj∈N[Pi]

)
.

Main Computation:

� Pi initializes T̂
0
i to (xi, σi; ∅).

� For c = 1, . . . , r, parties call LΠ-next:

∗ Pi gives input
{
c;
(
pki, skii

)
; T̂ c−1

i

}
to Lbc-helper(i);

∗ For each Pj ∈ N[Pi], Pi gives input
{
c;
(
pki, skji

)}
to Lbc-helper(j);

∗ Pi receives output ŷci,j from Lbc-helper(j) for all Pj ∈ N[Pi].

∗ If c ≤ r−1, Pi updates T̂
c
i to include the messages {ŷci,j}j he just received.

Output: When c = r, Pi receives zi from LΠ-next(i), which it outputs.

Figure 4.8: The (LKeyGen||LΠ-next)-hybrid protocol Π′.

Claim 4.2. The protocol Π′ realizes the same functionality as Π. Moreover if Π realizes the

functionality UC securely in the Fgraph−hybrid model as long as A does not corrupt an entire

k−neighborhood of G, then Π′ is UC secure in the Fgraph−hybrid model as long as A does

not corrupt an entire (k + 1)−neighborhood of G.

Simulator. We construct a simulator S ′ which will make use of the simulator S for Π.

Consider a corrupt party Pi. S ′ simulates Pi's view as follows:

1. KeyGen: S ′ generates (pki, ski) ← Gen(1λ) and random shares {skij}Pj∈N[Pi] such

that
⊕

j sk
i
j = ski. When the parties call LKeyGen, S ′ returns (pki, skii) to Pi and skij to

Pj.

2. Main Computation: In order to simulate Pi's view we consider two cases:

Case 1−(Pi has at least one honest neighbor): In this case S ′ simulates Pi's view by

replacing all the messages Pi would receive with encryptions of 0.

Case 2−(all of N[Pi] is corrupt): In this case A can reconstruct ski and so will be able

to distinguish if S ′ sends encryptions of zero. However, A does not corrupt an

145

entire (k+1)−neighborhood of G which means the set {Pi ∈ V : N[Pi] is corrupt}

does not contain any k−neighborhood. Moreover, since each neighborhood in Π′

plays the role of a player in Π, we can simulate the view of such Pi using the

simulator S for Π. Speci�cally, S ′ internally runs S in order to simulate Pi's view

in Π, and encrypts with pki to obtain Pi's view in Π′.

4.4 Topology Hiding MPC Against Fail-Stop Adv

In this section we turn to consider the case when corrupt parties must follow the

protocol except that they may abort whenever the adversary instructs them to. Such an

adversary is called fail-stop. We have two main results in this section. In Section 4.4.1 we

give a general impossibility result, showing that any protocol that implements even a weak

version of the broadcast functionality is not IND-CTA secure. Our proof crucially relies on

the ability of the adversary to disconnect the communication graph by aborting with well

placed corrupt parties. In Section 4.4.2 we show that this is inherent by transforming our

broadcast protocol from the previous section into one which is secure against a fail-stop

adversary who does not disconnect the graph with his aborts, and who does not corrupt

(even semi-honestly) any k−neighborhood. We give a high level overview of our techniques

of this section before proceeding to the details.

In Section 4.4.1 we consider a protocol Π realizing the broadcast functionality being

executed on a line. The proof of the impossibility result is based on two simple observa-

tions. First, if some party aborts early in the protocol then honest parties' outputs cannot

depend on b. Clearly, if P ∗ aborts before the information about b has reached him, then no

information about b will reach the honest parties on the other side of P ∗. This means that

the outputs of all honest parties must be independent of b, otherwise an adversary would

be able to corrupt another party Pdet to act as a detective. Namely, A will instruct Pdet to

146

play honestly and based on Pdet's output, A will be able to guess which side of P ∗ Pdet is

on. Second, if P ∗ aborts near the end of the protocol then all parties (other than P ∗'s neigh-

bors) must ignore this abort and output what they would have output had nobody aborted.

Indeed, if P ∗ aborts with only k rounds remaining in the protocol, then there simply isn't

time for honest parties of distance greater than k from P ∗ to learn of this abort. Therefore,

all honest parties' outputs must be independent of the fact that P ∗ aborted, lest an A would

be able to employ Pdet to detect whether is within distance k of P ∗ or not. This di�erence

in honest parties' outputs when P ∗ aborts early versus late means there is a round i∗ such

that the output distribution of Pdet when P
∗ aborts in round i∗ is distinguishable from Pdet's

output distribution when P ∗ aborts in round i∗ + 1. We take advantage of this by having

two aborters P ∗1 and P ∗2 who abort in rounds i∗ and i∗ + 1. We prove that A will be able

to distinguish the cases from when Pdet is to the left of P ∗1 with the case when he is to the

right of P ∗2 allowing A to win the IND-CTA game with non-negligible advantage.

In Section 4.4.2 we modify our broadcast protocol of Section 4.3 to be secure against

a fail-stop adversary who does not disconnect the graph with his aborts. The idea is to run

the semi-honest protocol 2m − 1 times. Since the adversary can corrupt and abort with at

most m − 1 parties we are guaranteed that the majority of the executions have no aborts.

We ensure that A learns nothing from the outputs of the executions with aborts by holding

o� on giving any output until all 2m− 1 executions have occurred. Then we use a �nal local

MPC protocol to compute all outputs, select the majority and output this to all parties.

4.4.1 Impossibility Result

De�nition 4.4. We say that a protocol Π weakly realizes the broadcast functionality if Π

is such that when all parties execute the protocol honestly, all parties output
∨
xi where xi is

Pi's input.

147

Note that in weak broadcast, there are no guarantees on the behavior of honest parties

if any of the parties deviates from the honest protocol.

Theorem 4.1. There does not exist an IND-CTA secure protocol Π that weakly realizes the

broadcast functionality in the fail-stop model.

Let G be a line with m vertices. Namely, G = (V,E) with V = {P1, . . . , Pm} and

E = {(Pi, Pi+1)}i=1,...,m−1. Let Π be a protocol executed on G that weakly realizes the

broadcast functionality where P1 (the left most node) is the broadcaster (P1 has input b, and

the inputs to all other nodes is 0). Suppose Π has r rounds. We will show that Π cannot be

IND-CTA secure.

Claim 2. Let Hv,b be the event that Pv's output after executing Π matches the broadcast bit

b. Let Ei be the event that the �rst abort occurs in round i. Then either Π is not IND-CTA

secure, or there exists a bit b ∈ {0, 1} such that

∣∣∣Pr(Hv,b

∣∣Er−1

)
− Pr

(
Hv,b

∣∣E1

)∣∣∣ ≥ 1

2
− negl(λ)

for all honest Pv whose neighbors do not abort.

Proof. If some P ∗ aborts during the �rst round of Π then he disconnects the graph, making

it impossible for the parties separated from P1 to learn about b. These parties' outputs

therefore must be independent of b, which implies that there exists a b ∈ {0, 1} such that

Pr
(
Hb

∣∣E1

)
≤ 1

2
. If Π is to be IND-CTA secure then it must be that this inequality holds

(with possibly a negligible error) for all honest parties. Otherwise an adversary could use the

correlation between b and a party's output to deduce that this party is in the same connected

component as P1.

Formally, consider a fail-stop adversary A who corrupts three parties: the broadcaster

P1, aborter P
∗ = Pbm

2
c and detective Pdet. A then submits (G0, B0), (G1, B1) to the challenger

148

where G0 = G1 = G and Pdet = P4 in B0 while Pdet = Pm−1 in B1. Note that A's

neighborhoods are the same in G0 and G1. A instructs P ∗ to abort during the �rst round

and observes Pdet's output. Since Pm−1's output must be independent of b, if P4's output

depends in a non-negligible way on b, this will translate into an advantage for A in the CTA

game.

Finally, note that Pr
(
Hv,b

∣∣Er−1

)
= Pr

(
Hv,b

∣∣ no aborts
)

= 1 for all Pv which are not

neighbors of P ∗. The claim follows.

Proof of Theorem 4.1. It follows from Claim 2 that there exists a pair (i∗, b) ∈ {1, . . . , r} ×

{0, 1} such that ∣∣∣Pr(Hv,b

∣∣Ei∗)− Pr
(
Hv,b

∣∣Ei∗+1

)∣∣∣ ≥ 1

2r
− negl(λ). (4.1)

for all honest Pv who do not have an aborting neighbor. Furthermore, assume without loss

of generality that Pr
(
Hv,b

∣∣Ei∗) > Pr
(
Hv,b

∣∣Ei∗+1

)
. We construct a fail stop adversary A who

can leverage this fact to win the CTA game with non-negligible advantage.

Our adversary A corrupts four parties: the broadcaster P1, two aborters
(
P ∗L , P

∗
R

)
=(

Pbm
2
c−1, Pbm

2
c+1

)
, and the detective Pdet. A then submits (G0, B0) and (G1, B1) to the

challenger where G0 = G1 = G and B0 has Pdet = P4 and B1 has Pdet = Pm−1. These

graphs are shown in �gure Figure 4.9. Note that these adversary structures have identical

neighborhoods.

Now A guesses (i∗, b) ∈ {1, . . . , r} × {0, 1}. With non-negligible probability, (i∗, b) is

such that inequality Equation 4.1 is satis�ed. A gives b as input to P1 and instructs P ∗L to

abort on round i∗, P ∗R to abort on round i∗+1. Notice that since the two aborting parties are

a distance 2 from each other, the information about P ∗L 's abort does not reach P
∗
R by the time

he aborts one round later. Therefore, the information about P ∗L 's abort does not reach any

of the parties to the right of P ∗R at any point during the protocol. This means that if (G0, B0)

149

was chosen by the challenger, Pdet's output will be consistent with Ei∗ whereas if (G1, B1)

was chosen, Pdet's output will be consistent with Ei∗+1. A concludes by comparing Pdet's

output bit to the broadcast bit b. If they are equal, A sends 0 to the challenger, otherwise

he sends 1. The noticeable di�erence in output distributions ensured by i∗ translates to a

noticeable advantage for A.

P1 Pdet,0 P ∗L P ∗R Pdet,1

G0 : ∗ • • ∗ ∗ • ∗ • •

G1 : ∗ • • • ∗ • ∗ ∗ •

Figure 4.9: Graphs used by A in proof of Theorem 4.1.

4.4.2 Feasibility Result

In this section we informally comment that our semihonest protocol for broadcast

from Section 4.3 can be compiled into a protocol which is secure against a fail-stop adversary

when A cannot disconnect the graph with his aborts. The protocol is very simple and so we

do not prove security or even formally de�ne protocols.

The idea is to run the semihonest protocol many times. This ensures that a majority of

the executions contain no aborts, and so the semi-honest correctness ensures that a majority

of the executions give correct outputs. However, we change our protocol so that the outputs

of the individual executions are given to each Pi in encrypted form, and only after all of

them have been completed, N[Pi] runs a local MPC to compute the majority of the outputs

it has received. This ensures that all parties will receive the correct output.

150

If players simply ignore their neighbors' aborts and play on as if the aborts had not

happened (this might involve making fake inputs for the aborted party so as not to alert

its other neighbors of the abort), then the adversary gets no advantage from having parties

abort other than ruining the current protocol execution.

151

Bibliography

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS,

pages 106�115, 2001.

[Bar02] Boaz Barak. Constant-Round Coin-Tossing with a Man in the Middle or Realiz-

ing the Shared Random String Model. In Proceedings of the 43rd Annual IEEE

Symposium on Foundations of Computer Science, FOCS '02, pages 345�355,

2002.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applications.

In IEEE Conference on Computational Complexity, pages 194�203, 2002.

[BGT13] E. Boyle, S. Goldwasser, and S. Tessaro. Communication locality in secure multi-

party computation - how to run sublinear algorithms in a distributed setting. In

TCC, pages 356�376, 2013.

[BGW88] Michael Ben-Or, Sha� Goldwasser, and Avi Wigderson. Completeness Theorems

for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Ab-

stract). In Proceedings of the 20th Annual ACM Symposium on Theory of Com-

puting, STOC '88, pages 1�10, 1988.

[Blu86] Manual Blum. How to prove a theorem so no one else can claim it. In Interna-

tional Congress of Mathematicians, pages 1444�1451, 1986.

152

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Nonin-

teractive zero-knowledge. SIAM J. Comput., 20(6):1084�1118, 1991.

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In Proceedings of the 42nd Annual IEEE Symposium on

Foundations of Computer Science, FOCS '01, pages 136�145, 2001.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In

CRYPTO, Lecture Notes in Computer Science, pages 19�40. Springer, 2001.

[CGGM00] Ran Canetti, Oded Goldreich, Sha� Goldwasser, and Silvio Micali. Resettable

zero-knowledge (extended abstract). In STOC, pages 235�244, 2000.

[CGMO09] Nishanth Chandran, Vipul Goyal, Ryan Moriarty, and Rafail Ostrovsky. Position

based cryptography. In Shai Halevi, editor, CRYPTO, volume 5677 of Lecture

Notes in Computer Science, pages 391�407. Springer, 2009.

[CGO12] N. Chandran, J. A. Garay, and R. Ostrovsky. Edge fault tolerance on sparse

networks. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wat-

tenhofer, editors, ICALP (2), volume 7392 of Lecture Notes in Computer Science,

pages 452�463. Springer, 2012.

[Cha81] D. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Commun. ACM, 24(2):84�88, 1981.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of uni-

versally composable two-party computation without set-up assumptions. In EU-

ROCRYPT, pages 68�86, 2003.

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent

zero-knowledge requires
∼
Ω (log n) rounds. In STOC, pages 570�579, 2001.

153

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally

composable two-party and multi-party secure computation. In Proceedings of

the 34th Annual ACM Symposium on Theory of Computing, STOC '02, pages

494�503, 2002.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable

security in the plain model from standard assumptions. In Proceedings of the

51th Annual IEEE Symposium on Foundations of Computer Science, FOCS '10,

pages 541�550, 2010.

[CO99] Giovanni Di Crescenzo and Rafail Ostrovsky. On concurrent zero-knowledge

with pre-processing. In CRYPTO, pages 485�502, 1999.

[DBL90] Proceedings of the Twenty Second Annual ACM Symposium on Theory of Com-

puting, 14-16 May 1990, Baltimore, Maryland, USA. ACM, 1990.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable Cryptography

(Extended Abstract). In Proceedings of the 23rd Annual ACM Symposium on

Theory of Computing, STOC '91, pages 542�552, 1991.

[DIK10] I. Damgård, Y. Ishai, and M. Krøigaard. Perfectly secure multiparty computa-

tion and the computational overhead of cryptography. In Henri Gilbert, editor,

EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 445�

465. Springer, 2010.

[DN07] I. Damgård and J. B. Nielsen. Scalable and unconditionally secure multiparty

computation. In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture Notes

in Computer Science, pages 572�590. Springer, 2007.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In

STOC, pages 409�418, 1998.

154

[Dol82] D. Dolev. The byzantine generals strike again. J. Algorithms, 3(1):14�30, 1982.

[DPPU88] C. Dwork, D. Peleg, N. Pippenger, and E. Upfal. Fault tolerance in networks of

bounded degree. SIAM J. Comput., 17(5):975�988, 1988.

[Elg85] Taher Elgamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. In IEEE Transactions on Information Theory 31(4), pages

469�472, 1985.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowl-

edge proofs based on a single random string (extended abstract). In FOCS,

pages 308�317, 1990.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding pro-

tocols. In STOC [DBL90], pages 416�426.

[FY92] Matthew Franklin and Moti Yung. Communication complexity of secure com-

putation. In STOC, pages 699�710, 1992.

[GGJS12] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently secure

computation in constant rounds. In EUROCRYPT, 2012.

[GJO+13a] Vipul Goyal, Abhishek Jain, Rafail Ostrovsky, Silas Richelson, and Ivan Vis-

conti. Concurrent zero-knowledge in the bounded player model. Asiacrypt(1),

pages 20�41, 2013.

[GJO+13b] Vipul Goyal, Abhishek Jain, Rafail Ostrovsky, Silas Richelson, and Ivan Vis-

conti. Constant round concurrent zero-knowledge in the bounded player model.

TCC, pages 60�79, 2013.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-

knowledge proof systems for np. J. Cryptology, 9(3):167�190, 1996.

155

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing

non-malleable commitments: A black-box approach. In FOCS, pages 51�60.

IEEE Computer Society, 2012.

[GMR89] Sha� Goldwasser, Silvio Micali, and Charles Racko�. The knowledge complexity

of interactive proof systems. In SIAM Journal of Computing 18:(1), ACM, pages

186�208, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental

game. In STOC '87: Proceedings of the 19th annual ACM conference on Theory

of computing, pages 218�229, New York, NY, USA, 1987. ACM Press.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Widgerson. Proofs that yield nothing

but their validity. In SIAM Journal of Computing 38:(3), ACM, pages 691�729,

1991.

[GO08] J. Garay and R. Ostrovsky. Almost-everywhere secure computation. In Nigel P.

Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Sci-

ence, pages 307�323. Springer, 2008.

[Gol02] Oded Goldreich. Concurrent zero-knowledge with timing, revisited. In STOC,

pages 332�340, 2002.

[Goy11] Vipul Goyal. Constant Round Non-malleable Protocols Using One-way Func-

tions. In Proceedings of the 43rd Annual ACM Symposium on Theory of Com-

puting, STOC '11, pages 695�704. ACM, 2011.

[HILL99] Johan Haståd, Russell Impagliazzo, Leonid Levin, and Michael Luby. A pseudo-

random generator from any one-way function. In SIAM Journal of Computing

28:(4), ACM, pages 1364�1396, 1999.

156

[HJ07] M. Hinkelmann and A. Jakoby. Communications in unknown networks: Pre-

serving the secret of topology. Theor. Comput. Sci., 384(2-3):184�200, 2007.

[KL11] Dafna Kidron and Yehuda Lindell. Impossibility results for universal compos-

ability in public-key models and with �xed inputs. J. Cryptology, 24(3):517�544,

2011.

[KLP05] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent gen-

eral composition of secure protocols in the timing model. In STOC, pages 644�

653, 2005.

[KMO89] Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-

knowledge proofs (extended abstract). In FOCS, pages 474�479, 1989.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round E�ciency of Multi-

party Computation with a Dishonest Majority. In Advances in Cryptology �

EUROCRYPT '03, volume 2656 of Lecture Notes in Computer Science, pages

578�595. Springer, 2003.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-

loalgorithm rounds. In STOC, pages 560�569, 2001.

[KPR98] Joe Kilian, Erez Petrank, and Charles Racko�. Lower bounds for zero knowledge

on the internet. In FOCS, pages 484�492, 1998.

[Lin03a] Yehuda Lindell. Bounded-concurrent secure two-party computation without

setup assumptions. In STOC, pages 683�692, 2003.

[Lin03b] Yehuda Lindell. General composition and universal composability in secure

multi-party computation. In FOCS, pages 394�403, 2003.

157

[Lin04] Yehuda Lindell. Lower bounds for concurrent self composition. In TCC, volume

2951 of Lecture Notes in Computer Science, pages 203�222. Springer, 2004.

[LP11] Huijia Lin and Rafael Pass. Constant-round Non-malleable Commitments from

Any One-way Function. In Proceedings of the 43rd Annual ACM Symposium on

Theory of Computing, STOC '11, pages 705�714, 2011.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Con-

current non-malleable commitments from any one-way function. In Theory of

Cryptography, 5th Theory of Cryptography Conference, TCC 2008, pages 571�

588, 2008.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A uni-

�ed framework for concurrent security: Universal composability from stand-

alone non-malleability. In Proceedings of the 41st Annual ACM Symposium on

Theory of Computing, STOC '09, pages 179�188, 2009.

[MP07] Silvio Micali and Rafael Pass. Precise zero knowledge, 2007.

[MR01] Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In

CRYPTO, pages 542�565, 2001.

[Nao91] Moni Naor. Bit Commitment Using Pseudorandomness. J. Cryptology, 4(2):151�

158, 1991.

[NSS06] Moni Naor, Gil Segev, and Adam Smith. Tight bounds for unconditional au-

thentication protocols in the manual channel and shared key models. In Cynthia

Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer Science,

pages 214�231. Springer, 2006.

158

[OW93] Rafail Ostrovsky and Avi Widgerson. One-way functions are essential for non-

trivial zero-knowledge. In ISTCS, pages 3�17, 1993.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol

composition. In EUROCRYPT, pages 160�176, 2003.

[Pas04a] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest

majority. In László Babai, editor, STOC, pages 232�241. ACM, 2004.

[Pas04b] Rafael Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dis-

honest Majority. In Proceedings of the 36th Annual ACM Symposium on Theory

of Computing, STOC '04, pages 232�241, 2004.

[PR03] R. Pass and A. Rosen. Bounded-concurrent secure two-party computation in a

constant number of rounds. In FOCS, pages 404�413. IEEE Computer Society,

2003.

[PR05a] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In FOCS,

pages 563�572, 2005.

[PR05b] Rafael Pass and Alon Rosen. New and improved constructions of non-malleable

cryptographic protocols. In Proceedings of the 37th Annual ACM Symposium on

Theory of Computing, STOC '05, pages 533�542, 2005.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent Zero Knowl-

edge with Logarithmic Round-Complexity. In Proceedings of the 43th Annual

IEEE Symposium on Foundations of ComputerScience, FOCS '02, pages 366�

375, 2002.

159

[PTV10] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasubrama-

niam. Eye for an eye: E�cient concurrent zero-knowledge in the timing model.

In TCC, pages 518�534, 2010.

[PW10] Rafael Pass and Hoeteck Wee. Constant-Round Non-malleable Commitments

from Sub-exponential One-Way Functions. In Advances in Cryptology � EU-

ROCRYPT '10, pages 638�655, 2010.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-

knowledge proofs. In EUROCRYPT, pages 415�431, 1999.

[Rom90] John Rompel. One-way functions are necessary and su�cient for secure signa-

tures. In STOC [DBL90], pages 387�394.

[Ros00] Alon Rosen. A note on the round-complexity of concurrent zero-knowledge. In

CRYPTO, pages 451�468, 2000.

[RR99] M. K. Reiter and A. D. Rubin. Anonymous web transactions with crowds.

Commun. ACM, 42(2):32�38, 1999.

[RS60] Irving Reed and Gustave Solomon. Polynomial codes over certain �elds. In J.

Soc. Ind. Appl. Math, pages 300�304, 1960.

[RSG98] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and

onion routing. IEEE Journal on Selected Areas in Communications, 16(4):482�

494, 1998.

[SCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,

and Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO, pages

566�598, 2001.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612�613, 1979.

160

[SP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge

without interaction. In FOCS, pages 427�436. IEEE Computer Society, 1992.

[SV12] Alessandra Scafuro and Ivan Visconti. On round-optimal zero knowledge in

the bare public-key model. In Advances in Cryptology - EUROCRYPT 2012 -

31st Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, volume 7237 of Lecture Notes in Computer Science, pages

153�171. Springer, 2012.

[Wee10] Hoeteck Wee. Black-Box, Round-E�cient Secure Computation via Non-

malleability Ampli�cation. In Proceedings of the 51th Annual IEEE Symposium

on Foundations of Computer Science, pages 531�540, 2010.

[Yao82a] Andrew Yao. Theory and applications of trapdoor functions. In Proceedings of

the 23rd Annual ACM Symposium on Foundations of Computer Science, FOCS

'82, pages 80�91, 1982.

[Yao82b] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).

In FOCS, pages 160�164. IEEE, 1982.

161

