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Searching for Fundamentals 
and Commonalities of Search

John M. C. Hutchinson, David W. Stephens, 
Melissa Bateson, Iain Couzin, Reuven Dukas, 

Luc-Alain Giraldeau, Thomas T. Hills, 
Frederic Méry, and Bruce Winterhalder

Abstract

This chapter reports the discussion of a group of mostly behavioral biologists, who at-
tempt to put research on search from their own discipline into a framework that might 
help identify parallels with cognitive search. Essential components of search are a func-
tional goal, uncertainty about goal location, the adaptive varying of position, and often 
a  stopping rule. The chapter considers a diversity of cases where search is in domains 
other than spatial and lists other important dimensions in which search problems differ. 
One dimension examined in detail is social interactions between searchers and search-
ers, targets and targets, and targets and searchers. The producer-scrounger game is pre-
sented as an example; despite the extensive empirical and theoretical work on the equi-
librium between the strategies, it is largely an open problem how animals decide when 
to adopt each strategy, and thus how real equilibria are attained. Another dimension that 
explains some of the diversity of search behavior is the modality of the information 
utilized (e.g., visual, auditory, olfactory). The chapter concludes by highlighting further 
parallels between search in the external environment and cognitive search. These sug-
gest some novel avenues of research.

Evolutionary Biology of Search

To begin, it may be useful to say something about the perspective we bring to 
the study of search. Our group is predominantly whole-organism biologists 
who investigate the mechanisms and adaptive signi cance of behavior. In do-
ing this, behavioral ecologists commonly appeal to  optimality or game-theo-
retical models, and these models, along with knowledge about animal genetics, 
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physiology, neurobiology, phylogeny and development, have guided our think-
ing about search.

For example, a classic  optimality model considers when a foraging animal 
should stop feeding in a patch being depleted of prey and switch to a new 
patch, despite the cost of moving (Charnov 1976). The prediction most often 
tested is that increasing the travel time between patches should increase the 
time spent in each patch. This prediction has generally been con rmed, but 
less successful have been predictions about the absolute time spent in a patch 
(Nonacs 2001) and what cues to attend to so as to decide when to leave a 
patch (e.g., Roche et al. 1998; Hutchinson et al. 2008). Failures like this lead 
biologists to change or elaborate the basic model, for instance by incorporating 
additional aspects of the environment or by invoking some informational or 
cognitive constraint (e.g., Nonacs 2001; Hills and Adler 2002). Ideally, predic-
tions are tested by manipulating the environment of an individual in the hope 
of a real-time response, but alternatives are to utilize variation among species 
or natural variation among individuals of a single species.

If what follows manages to say anything novel of interest to workers on 
cognitive search, we suspect that it will be because of, not despite, this perspec-
tive of the adaptation of behavior. Our biological perspective also brings to the 
table a greater diversity of search problems faced by different animals, and 
plants too (de Kroon and Mommer 2006), than by humans and our machines.

The Essence of Search

How would you de ne   search? It is all too easy for a de nition to use a near 
synonym like �“locate,�” which does not gain us much, or unintentionally  to 
exclude phenomena such as searching internally for a solution to an anagram. 
Seeking a de nition moved us beyond sterile questions of semantics, because 
it enabled us to recognize the essence of the search process that makes it dis-
tinct. We agreed that it would not be useful to de ne the term so broadly that it 
covered all adaptive processes.

Luc-Alain Giraldeau provided the initial insight. He proposed that for 
something to qualify as search there must  rst be a de ned goal, such as food, 
mates, or particular information. The search itself then consists of acting to 
vary position according to some scheme that facilitates  nding the goal. We 
de nitely do not mean to restrict �“vary position�” to moving in space; rather, 
we include movement in other dimensions, such as sampling at different times 
of day or shifting attention somehow in one�’s brain. It seems an important 
component of the de nition that the varying of the position is adapted toward 
ef cient location of the goal, hence the importance of de ning the goal  rst. 
Thus we would not consider as search the process by which sand grains get 
deposited by the wind on the lee side of a dune. Nor is it search if animals ex-
plore and learn about the environment incidentally, ahead of starting to seek a 
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goal (latent learning: Thistlethwaite 1951). Our opinion is that search does not 
start until that  goal seeking starts.

The goal that we invoke here is the function of the behavior. Without get-
ting into philosophical debates about teleology, biologists are happy to say 
that a character has a particular ultimate function if design considerations sug-
gest that natural selection has adapted it for that purpose. We are not talking 
about the proximate goal that one must identify to understand the mechanism 
of a control problem such as search. In this perhaps we differ from some oth-
er groups in this volume. To bring out the distinction, consider the  princess 
and monster game, a classic example from the theory of search games (Isaacs 
1965). A princess and a monster are free to move around in a darkened room or 
other space. The monster�’s goal, in the sense we intend, is to catch the princess; 
but, since neither can detect the other until they collide, its proximate goal can-
not be capture but merely to move in particular prespeci ed directions.

Formally there may be an additional part of the search process: the ap-
plication of a  stopping rule to decide when the goal has been attained. Some 
valid sorts of search may lack a stopping rule. For instance, one can imagine a 
chemotactic bacterium following a gradient to the source; when it reaches the 
source it need not apply a stopping rule but oscillate around the source, its goal 
seeking continuing. If there is a stopping rule, its application is itself part of the 
search process. Note that a stopping rule may test the environment repeatedly 
during a search even though it triggers stopping of the task only once.

One important aspect of search is that there is some uncertainty in the loca-
tion of the goal. If you can see the target and then walk straight toward it, that 
does not seem like search, although others coined the phrase �“nonexploratory 
search�” to cover situations where there is no uncertainty. Compare lea ng 
through a book to  nd a particular passage with using the subject index: the 
former represents search with uncertainty, whereas an index is like a lookup 
table in computer programming, which is constructed to avoid repeated search 
or calculation. What about a blind organism that can apply a deterministic al-
gorithm to locate a target reliably, say by chemotaxis? If it is absolutely always 
able to  nd the target, this behavior seems analogous to walking straight to-
ward a visible target. Now consider the ability of some ants to return straight to 
their nests using solely path integration of their wiggly outward route (Müller 
and Wehner 1988). That does not initially sound like search, but actually their 
method of path integration is a clever approximation rather than exact (Müller 
and Wehner 1988), and they routinely must apply backup search mechanisms 
(Wehner 2003; Merkle and Wehner 2010). So, if we de ne search as involv-
ing  uncertainty, recognizing a phenomenon as search may require us to know 
about the proximate mechanism and its performance.

We wondered whether a characteristic of search is that uncertainty tends 
to be reduced, or at least not to increase, at each step. One exception is the 
case when the search is for a mobile target known to be initially within some 
distance but able to move away (Foreman 1977), although perhaps search still 
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tends to delay the increase of uncertainty compared to random movement by 
the searcher. Real searches for a particular mobile prey can often fail, but this 
should not stop us considering the strategy that maximizes the probability of 
capture as a search.

Another aspect of most search is that it is sequential. By this we do not 
mean to exclude cases of multiple agents working in parallel and maybe shar-
ing information; still each agent individually is searching sequentially. By �“se-
quential�” we intend to capture the idea that several steps must be taken to reach 
the target; a single-step process of selection between options is not search. The 
options change at each step and information gained from earlier phases should 
inform the choices made at later steps. A revealing example in this context 
is the  secretary problem (Freeman 1983), the archetypal case of sequential 
search, which has been applied to model  mate choice. Candidates of different 
qualities appear in random order one at a time; the object is to select a candi-
date of good quality, and each of a sequence of decisions is whether to accept 
the current candidate or continue inspecting further candidates. In this case, the 
only scope for varying �“position�” is the gain in information from inspecting 
the next candidate, but the crucial aspect is that information on the qualities 
of candidates inspected at earlier steps should determine whether search is 
terminated at later steps.

We tried, but failed, to agree on a single-sentence de nition of search, pre-
ferring instead to list the key components: a functional goal,  uncertainty about 
goal location, the adaptive varying of position, and often a  stopping rule.

Nonspatial Search

The term search  is most directly associated with seeking items in space, for 
instance, searching for your keys. But the term is also used in nonspatial con-
texts, and we thought it worth constructing a list of these in the hope of recog-
nizing novel analogies between different domains.

Information

Many of the examples below  t into the larger category of  information search. 
Searching for information is an implicit component of most search models, 
because  nding the right target requires  rst acquiring relevant information 
(Vergassola et al. 2007). But sometimes we might consider that  nding particu-
lar information is a goal in itself (Inglis et al. 2001). For instance, an explana-
tion for why animals will work to explore suboptimal food sources (contrafree-
loading) is that they gain the knowledge to utilize these sources if the currently 
better source disappears (e.g., Bean et al. 1999). Models from foraging for food 
have been reapplied to searching for information both on the Web and in our 
brains (Pirolli 2007; Wilke et al. 2009).
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Quality

Selecting between mates is an example of a search over items of different 
qualities. In real life, candidates may well be distributed in space, but ideal-
ized models such as the secretary problem ignore this spatial component: the 
only decision is whether to continue search, not where to move, and it depends 
only on the qualities and number of earlier items, not on their positions. An 
interval between the inspection of successive items may represent a travel cost 
of moving between them, but the spatial aspect only makes a qualitative differ-
ence if there were some correlation of quality with position or if, for instance, 
checking one shop rather than another is more attractive because a third shop 
is closer to the  rst. Speed dating and comparison shopping on the Internet pro-
vide examples where a spatial component seems largely lacking. Nevertheless 
the money that advertisers pay to appear at the top of a Google search suggests 
that even slight spatial differences may be prominent to us.

Time

Animals  may have to learn when during the day events are likely to occur 
(e.g., Biebach et al. 1994) or how long a resource takes to renew after the last 
visit (e.g., Henderson et al. 2006). Sampling over time so as to predict when 
an event will reoccur in the future is a search process. For instance, many of us 
will have learned from trial and error what times of day we will be best able to 
 nd a parking space near work. When bees start to learn when a food source 
is available, their sampling is biased earlier in the day than when they had  rst 
experienced the reward on previous days, which is adaptive in searching for 
the �“opening time�” of the source (Moore and Doherty 2009). Resampling a 
patch more intensely immediately after it depletes may also represent an adap-
tive search strategy in time (by analogy with area-restricted search: Gibson et 
al. 2006).

Correlation Structure and Learning

Just as there may be an association between a time of day and the occurrence 
of an event, other events or conditions might be associated with each other. 
Many forms of  learning have been designed by natural selection for detect-
ing this correlational structure in the world and responding to it adaptively. 
 Habituation, which occurs following repeated exposure to the same meaning-
less stimulus, enables organisms to identify and ignore irrelevant events that 
do not predict meaningful events. Similarly, classical conditioning, which oc-
curs when a previously neutral stimulus is temporally correlated with a mean-
ingful event, enables organisms to identify and respond appropriately to events 
that predict meaningful events.
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We debated extensively whether these types of  learning should qualify as 
search. Although they share the goal of reducing  uncertainty about the conse-
quences of events, it is not clear that they involve any adaptive alteration of 
�“position,�” as required by our de nition of search. Indeed, they appear to be 
passive processes that occur all the time with no clearly de ned start or end, 
similar to latent learning.

Operant conditioning or trial-and-error learning, in which an animal learns 
the association between its actions and the occurrence of meaningful events, 
enables animals both to predict and to control these events. In addition to hav-
ing the goal of reducing uncertainty about the consequences of actions, this 
form of learning additionally has the feature that an animal can actively ex-
plore the correlational structure of the world during acquisition by varying the 
circumstances in which it tries out actions. Therefore, we conclude that this 
form of learning has all the features that we have de ned as characteristic of 
search. It is unclear whether operant conditioning always has a stopping rule.

Memory

Many kinds of  memory retrieval are also search processes, involving cued ac-
tivation of knowledge representations acquired from prior experience (Pachur 
et al., this volume). Importantly, memory retrieval also shares a parallel with 
spatial search in that similar items are retrieved near one another in time. Thus, 
in a  free recall task where a person is asked to name as many different animals 
as possible, items remembered successively tend to lie in similar subcatego-
ries; for instance,  rst we might list pets, then birds, then animals from the 
Antarctic (Bous eld 1953).

Puzzle Solutions

Other sorts of search are solutions to puzzles, such as algebra or chess. We 
would be interested to learn how our minds organize the set of possible so-
lutions, how we search through this landscape, and whether one could iden-
tify naturally occurring analogues to these sorts of problems for nonhuman 
animals.

Morphology and Physiology

All organisms are themselves the product of natural selection. We hesitate to 
call genetic evolution search because it involves neither a searcher nor a well-
de ned goal. However, analogous genetic algorithms have been constructed by 
humans to optimize the design of complex machinery such as turbine blades 
(Gen and Cheng 1997). This is a search process: the program is written so 
as to converge toward a speci ed goal. Similarly, Sherlock Holme�’s search 
method for the truth, by eliminating all alternatives, has echoes in how our 
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immune system selects out all immune cells sensitive to self, thus enabling it 
subsequently to recognize non-self (the  clonal selection theory). Animals may 
use other search heuristics to improve the design of aspects of their external 
phenotype-like burrows and tools. Thus  spiders adjust the spacing between 
the lines of their web in response to the size of prey caught (Schneider and 
Vollrath 1998). Going beyond morphology, any homeostatic mechanism has 
the property of directing the state toward the neutral or set point. When there 
is imprecision, lags, or overshoot in the process, this seems like search, but 
something like a mechanical thermostat may lack the aspect of uncertainty 
required to  t our de nition.

A Taxonomy of Search

Already we have mentioned a diversity of search problems. To recognize struc-
tural similarities between search in different domains, it helps to consider in 
what fundamental ways the problem of search can vary. This might also facili-
tate understanding why different methods of search are used in different search 
problems.

A distinction is often made between searching for one particular item (e.g., 
the dropped key to your house or a missing offspring) and searching for a 
class of items. Contrast the birdwatcher who goes out to a sewage farm on the 
off chance that something interesting will be there with the serious twitcher 
who  ies out to Fair Isle speci cally to see the rare American vagrant that 
was reported on Birdline. In practice, it is usually possible to recognize a con-
tinuum between these extremes: the twitcher would be satis ed by an even 
rarer species that turned up while he was there. Models of optimal search when 
the target is a speci c individual known to lie within a speci ed area predict 
rather different behaviors (e.g., systematic searching, randomized strategies; 
Alpern and Gal 2003) than when any individual in a population will suf ce 
(Hutchinson and Waser 2007).

Some searches, archetypally for a male  mate or for a nest site, are  one-
shot processes: once you make your choice, you stop searching. In contrast, 
once a bird  nds one worm, it immediately starts searching for another, so 
the problem is iterated. The iteration seems important mainly in affecting the 
 opportunity costs; one reason that the bird is less fussy about the quality of a 
worm than of its mate is because spending more time searching for one food 
item detracts from time searching for the next food item. In this respect there is 
no fundamental difference from the effect of other costs of search, such as mor-
tality risk and locomotion costs. There may also be external time constraints, 
such as the ending of the breeding season (e.g., Backwell and Passmore 1996).

Another aspect is the dimensionality and topology of the problem. Contrast 
one-dimensional searching for  otsam along a river bank (or between a succes-
sion of secretaries knocking at your door) with the extra freedom of movement 
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in search of two- or three-dimensional space: somewhere in between are ants 
exploring a tree or foragers relying on tracks through thick scrub; they face a 
network of restricted moves that creates a topologically very different search 
space than the almost unrestricted search of a shark in the ocean. Just as impor-
tant as the topology are the movement rules allowed in this landscape (e.g., in 
the secretary problem whether recall of candidates inspected earlier is allowed).

In some searches the animal can be guided only by its past experience in the 
patch, as in area-restricted search for buried prey (e.g., Nolet and Mooij 2002). 
In other cases there are external cues, such as a pheromone plume, that as-
sist in locating the target and perhaps in indicating target density (e.g., Waage 
1978). Mueller and Fagan (2008) make a similar distinction. The experimen-
tal and theoretical analysis of how animals utilize cues such as gradients and 
landmarks is well developed (e.g., Fraenkel and Gunn 1961; Schöne 1984; 
Dusenbery 2001).

In the absence of external cues, the autocorrelation of items and their quali-
ties in space and time provides the only information that the searcher uses. 
Autocorrelation in space is an integral part of models of  area-restricted search 
(Benhamou 1992), but in other cases modelers have instead invoked discrete 
recognizable patches of items in a sea of absence (e.g., Charnov 1976). Which 
is more appropriate depends both on the actual distribution of targets and 
on the ability of the searcher to recognize the edge of the patch at a glance 
(Bond 1980). Autocorrelation in time involves the processes of depletion, dis-
turbance, and renewal. Analyses of data derived from modern tracking tech-
nologies demonstrate the importance of considering autocorrelation in space 
and time at multiple scales simultaneously (e.g., Fauchald and Tveraa 2006; 
Amano and Katayama 2009).

An unduly neglected aspect of search is  social interactions among searchers 
and targets. We devote the next two sections to considering how social interac-
tions can transform the problem.

Social Interactions

Search is not always a single individual seeking an inanimate target that is 
indifferent to being located. There can be positive (mutualistic, +), negative 
(competitive, �–), or indifferent (neutral, 0) relationships, to varying degrees, 
among social searchers, among social targets, or between searchers and tar-
gets, whether social or solitary (summarized in Figure 4.1). Interactions may 
be infrequent or nearly continuous. Once atune to these social possibilities, 
one can recognize a large set of possibilities that may shape the evolution of 
search behavior.
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Searchers

Normally we expect  competition between foragers. Think of searching for a 
parking space as near as you can to a cinema: we probably suppose that the 
closest spots will tend to be occupied already, which makes us use different 
search strategies than if we expected randomly distributed spaces (Hutchinson 
et al. 2012). Because the strategies used by others determine the distribution 
of spaces, the situation is game theoretic. The converse case of  cooperation 
or sharing of information among searchers also affects the effectiveness and 
appropriate choice of different search tactics. In some central-place foragers 
( social insects, camp-based hunter-gatherers), it is deliberate sharing of infor-
mation that allows improvement in the locating of resources. But even if indi-
viduals do not deliberately signal to others,  they may coordinate by copying 
processes, resulting in emergent search properties of collections of individuals 
in contact with one another (see Box 4.1).

Searcher-Target Interactions

Some sorts  of targets want to be found (e.g., mates, +), some do their best to 
avoid being found (e.g., prey, �–), and some are indifferent (e.g., a water source, 
0). Mates may signal their presence to potential suitors; prey may adopt cryptic 
or evasive tactics. Each thereby may change what strategies are effective for 
the searcher. The brain presumably locates information for storage in a man-
ner to facilitate its being found: memories in some sense want to be located. 
Similarly, we expect food-storing birds to hide their caches at a pattern of sites 
that facilitate rediscovery by themselves, but with the complication that the 
cues should not make it easy for competitors to pilfer (Cheng and Sherry 1992; 
Barnea and Nottebohm 1995; Briggs and Vander Wall 2004). Plants may dis-
tribute their  owers on an in orescence so as to bene t from the search rules 

Searcher Target
Inanimate

Individual

Group

Individual

Group

0: Indifferent to being found
or

�–: Avoids being found
or

+: Tries to be found

0: Independent
or

�–: Competitive
or

+: Cooperative

0: Independent
or

�–: Competitive
or

+: Cooperative

Figure 4.1  A schematic summary of the possible social interactions of searchers with 
other searchers, of searchers with their targets, and of targets with other targets.
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Box 4.1   Collective Search

Generally speaking, adaptive search strategies act to match individual behav-
ior to the relevant statistical properties of the environment. In terms of sensing, 
separating a relevant signal from environmental noise is often a challenge. At the 
level of individuals, sensory adaptation and simultaneous use of multiple modes 
of sensory information can allow individuals to respond dynamically to maximize 
the signal-to-noise ratio. When searching as a collective, however, strategies may 
be implemented both at the individual and group level. An illustrative example of 
collective search is to consider each individual as a sensing agent capable of de-
tecting and responding to relevant environmental features, such as the estimated 
direction of a local resource gradient, but also to other individuals. If the environ-
ment has simple structure, such as a linear gradient and low noise, taxis up the 
gradient is relatively straightforward. In more complex environments, such as where 
local noise inhibits taxis or where simple gradient climbing can result in entrap-
ment in local optima, collective strategies can facilitate much more effective search.

Modeling such behavior, Torney et al. (2009) considered the case of locating the 
source of a chemoattractant within a stochastically  uctuating advective  ow; think 
of how blood from an injured swimmer might drift offshore toward a patrolling 
shark. This is a ubiquitous behavior important to the lives of many aquatic animals 
and observed over a wide range of scales. In this situation, individual-level search 
is particularly ineffective since the  lamentous and turbulent structure of the plume 
confuses local search strategies, resulting in individuals following local optima and 
seldom being able to  nd the source itself. Similar problems apply when consider-
ing any spatially heterogeneous gradient of resource (including gradients of discrete 
resources). A highly effective strategy under such circumstances is for multiple indi-
viduals to reconcile their goal-oriented taxis with social interactions (i.e., af liating 
or aligning with others). The central principle is that if organisms dynamically adjust 
how much they are in uenced by social interactions based on their con dence in 
their own environmental assessment, they can, as a collective,  nd global optima. 
Thus, in the model of Torney et al. (2009), if an individual perceives an increas-
ing local concentration of odor, it decreases the weight it places on social interac-
tions. When concentrations are unpredictable or declining, individuals may instead 
place more weight on social interactions. This strategy does not require organisms to 
know the informational state of others explicitly but nevertheless can spontaneously 
create a time-varying spatial leadership structure in which individuals with low con-
 dence follow spontaneously those who are obtaining relevant information from 
the environment. Thus individuals continuously adapt to the changing physical and 
social structure of their environment, giving them the capacity to respond to struc-
tural information over length scales much larger than their own range of perception.

Evidence that animals can, and do, adjust their sensitivity to the behavior of 
others comes from studies of schooling  sh. For example, the context depen-
dence of interaction ranges can explain the group-size distribution of school-
ing killi sh (Hoare et al. 2004), and stickleback  sh have been shown to re-
strict their schooling tendency when they can gather direct reliable information 
from the environment, but increase their tendency to group with others when 
this information is perceived to be unreliable or scarce (van Bergen et al. 2004).
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of pollinators, but not necessarily in the very best interest of the pollinators 
(Jordan and Harder 2006).

A special case is when both searcher and target are mobile and can search 
for each other (technically, models of rendezvous: Alpern and Gal 2003). For 
instance, both sexes of some butter y species  y to the tops of hills (hill-top-
ping) to facilitate encounter there (Alcock 1987). In contrast, had they not 
evolved to utilize such an asymmetry in the environment, the optimal policy 
to maximize encounter is for both sexes to move as fast as possible in straight 
lines (Hutchinson and Waser 2007). A similar situation of symmetrical roles for 
searcher and target is mutual mate choice, which has been modeled both with 
and without competition between searchers through depletion (e.g., Collins 
and McNamara 1993; Johnstone 1997).

Targets

Targets, if they are living, have their own internal relationships that affect 
search. Many animals create exclusive home ranges to avoid  competition with 
neighbors, and their consequent overdispersion should affect the search rules 
used by predators (Iwasa et al. 1981). Conversely, in the sel sh herd model 
individuals hide behind neighbors so as to minimize their own chance of being 
selected by a predator, incidentally creating herds (Hamilton 1971), which may 
facilitate the search of the predator (Treisman 1975).

Open Questions

Behavioral ecologists have models for many of the behaviors mentioned 
above. The application of game theory can predict rather different outcomes 
than models that ignore the social interactions we have considered here (e.g., 
Johnstone 1997; Hamblin et al. 2010). But do animals, including humans in 
everyday life, also know to shift their search methods in social situations? For 
instance, if a traplining hummingbird tries to adjust its revisit rate to a par-
ticular  ower, it is crucial for it to judge whether nectar supply has declined 
because of competition (when it should revisit sooner) or because the  ower 
is producing at a slower rate (when it should revisit later; Garrison and Gass 
1999). A different sort of question is whether models of social foraging may 
be relevant to cognitive search processes that involve  parallel processing. For 
some more open questions, we now address in more detail the game-theoretic 
analysis of the well-studied producer-scrounger paradigm.

The Peculiar Social Dynamics of Sel sh Parallel Search

When several sel sh  animals search in parallel for some resource�—be it mates, 
nesting material, food, or information itself�—they have an option that is never 
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available in an individual search process: they can either search for the resource 
themselves or search for other individuals that have already uncovered a re-
source item. For instance, when a  group of pigeons search the ground for hid-
den seeds, only some do the actual searching whereas almost all of the group 
will gather at any one individual�’s discovery. The decision of whether to invest 
in one or the other search mode is modeled as an economic decision using a 
game-theoretic approach: the  producer-scrounger (PS) game, where producer 
is the strategy of searching directly for the resource and scrounger is the alter-
native of searching for individuals that have uncovered the resource (Barnard 
and Sibly 1981). Very similar scenarios have received other names, such as tol-
erated theft in anthropology or free-loading in economics. Essentially the dy-
namics are always the same. The PS game has been modeled in many different 
ways (see Giraldeau and Caraco 2000; Arbilly et al. 2010) and has given rise 
to an extensive experimental research program (Giraldeau and Dubois 2008; 
Katsnelson et al. 2011). In all cases, the question is directed at predicting what 
fraction of the sel sh parallel searchers searches directly for items.

All PS models predict that the strong frequency dependence of the scroung-
er strategy�’s payoffs leads to an equilibrium frequency of producers and 
scroungers characterized by equal payoffs for each strategy. In  behavioral 
ecology, the usual account of how this equilibrium is attained involves invok-
ing a mutant scrounger strategist originating within a population of pure pro-
ducers. The rare mutant outperforms the producers and so the strategy spreads 
in the population over generations. As the scrounger strategy becomes more 
common, its  tness declines and eventually reaches the  tness of the producer 
strategy. At that point, no further evolution occurs because both strategies have 
equal payoffs. This equilibrium point is referred to as an evolutionarily stable 
strategy (ESS) because no other combination of strategies can do better within 
this population (Maynard Smith 1982).

However, in almost every situation in which the predictions of the PS game 
have been studied experimentally, the equilibrium is reached quickly within 
a generation, not over evolutionary time. Moreover, individuals rarely search 
only as scroungers or as producers. Instead usually individuals alternate, some-
times rather quickly, between the two strategies. The process through which 
the population of parallel searchers reaches the equilibrium therefore involves 
sel sh agents using a decision rule adapted to maximize their individual ben-
e ts but leading the group to an equilibrium point that is not an evolutionary 
equilibrium in the sense above, but rather a Nash equilibrium that is behav-
iorally stable. The optimal decision rule speci es the probability of playing 
scrounger given how often it is played in the population. In the case of two-
person games, we know that such a decision rule can yield different equilibria 
than the ESS described earlier (McNamara et al. 1999).

The form of the optimal decision rule that evolves depends on the payoffs of 
playing each strategy as encountered over evolutionary time. But the assump-
tion of the model is that the players themselves simply apply the hardwired 
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rule that has evolved, and thus respond not to the payoffs but only to the pro-
portions of the strategies. In real life, however, given the diversity of foods 
and environments encountered each day and the differing payoffs of the two 
strategies in each, what might evolve instead is a rule that does try to sample 
the current payoff of each strategy and shift the probabilities of playing each 
accordingly. A number of early studies proposed learning rules that allow indi-
viduals to adjust their search strategy based on their experienced payoffs (e.g., 
Harley 1981). These learning rules must contend with the nontrivial problem 
of estimating the value of searching as a producer or as a scrounger while these 
payoffs keep changing as a result of other players also switching policy to learn 
both payoffs. How animals might discover their best policy remains a gap in 
our knowledge about the parallel search of groups of sel sh agents.

When trying to derive lessons from this collective search to problems of 
cognitive search, one must  rst determine whether cognitive search might be 
represented as a collective of sel sh agents. If it can, then no doubt the dynam-
ics of the  PS game will emerge. However, even if the  collective search involves 
cooperating rather than sel sh cognitive search agents,  scrounging will likely 
remain an option. In such cases, research has shown that cooperative solutions 
to the PS game dynamics can often lead to cooperative producers extending 
their assistance to all other searching agents, which means more scrounging in 
cooperative systems compared to sel sh ones (Mathot and Giraldeau 2010). 
It would be important, therefore, to investigate the extent to which cogni-
tive search can be represented as a group of agents searching in parallel (cf. 
Minsky 1986).

Multiple Modalities and Search Cues in the External Environment

Within the animal kingdom, a wide variety of senses are known. In addition to 
the obvious senses of vision, hearing, chemosensitivity (olfaction, taste) and 
touch (somatosensitivity), animals may be sensitive to magnetic and electric 
 elds, gravity, acceleration, time of day, the con guration of their own bod-
ies (proprioreception), and to the sensation of internal states, such as the full-
ness of the gut (visceral senses). Potentially any of these could be used to 
guide search. Which senses provide the most suitable cues to guide particular 
search problems is partly a function of the laws of physics and chemistry. For 
instance, in dense forest sound carries better than light; in turbulent wind, air-
borne pheromones will not allow precise location of a target. Even within each 
modality, selection of the signal allows some tuning of the physical properties; 
thus frequency affects sound transmission, and pheromones differing in their 
half lives are used in an adaptive way by ants to mark their trails with differ-
ent permanences (Dussutour et al. 2009). Sensitivity to a particular modality 
depends not only on the physical properties of the cue but on the sense organs 
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and brain of the searcher, which are constrained by their costs of construction 
and maintenance.

The physical differences between modalities can explain some of the varia-
tion of search strategy used by different organisms or the same organism in 
different contexts. Thus a moth can use its eyes to  y straight to a bright  ower 
or use the moon as a distant navigational beacon (keeping it at a constant an-
gle). And when searching for a mate releasing a pheromone it follows another 
distinctive search strategy,  ying crosswind when not sensing the odor, and 
 ying upwind when within the odor plume (Sotthibandhu and Baker 1979; 
Kennedy 1983).

Physical aspects may also explain both what modalities a species has 
evolved to use for search and which of these modalities it uses in particular 
circumstances. For instance, a pigeon may use a sun compass in clear weather 
but switch to a magnetic compass when the sun is obscured (Walcott 2005). 
Shine et al. (2005) consider why male garter snakes at low densities rely on 
following olfactory trails to  nd females (olfaction is accurate in distinguish-
ing sex), whereas at high densities they switch to visual tracking (vision is 
not disrupted by the trails of rivals and greater speed is valuable in the more 
competitive situation). A common pattern is that searching animals switch be-
tween modalities sequentially as they approach the target and each sense gets 
into range. For instance, the digger wasp Philanthus triagulum hunting prey is 
 rst attracted visually by a smallish and moving object, then approaches closer 
downwind to check its scent, jumps on it, and can then use tactile or taste cues 
(Tinbergen 1958). Analogously, female sage grouse  rst assess males gathered 
in a lek on the basis of their calls and then visit only those passing this test for a 
closer inspection of display rate (Gibson 1996). Similar winnowing of options 
by one cue at a time is mirrored in strategies humans used in Internet shopping 
(Fasolo et al. 2005).

Sequential application of each cue, one at a time, is one way in which cues of 
multiple modalities may be combined in search, but there are many other pos-
sibilities and many patterns have been observed (Candolin 2003; Hutchinson 
and Gigerenzer 2005). There is also a rich literature in human decision mak-
ing on how we combine information from different cues when comparing two 
items (Payne et al. 1993; Gigerenzer et al. 1999; Bröder and Newell 2008). It 
seems that often we do apply one cue at a time, even for information already 
in memory, particularly if the information was not originally presented as a 
single image (Bröder and Schiffer 2003); a single image seems unlikely if the 
information comes from several modalities and appears at separate times.

We observe that one aspect of search shows a striking commonality across 
modalities. When searching for cryptic prey visually, humans and other ani-
mals tend to pick a characteristic feature and focus on that,  ltering out other 
information (e.g., Dukas 2002). Such so-called search images improve per-
formance at spotting the target prey and other objects sharing the feature, but 
decrease our ability to detect other dissimilar prey items (Dukas and Kamil 
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2001). Analogues of search images have been found in the auditory (Fritz et 
al. 2007) and olfactory domains (Cross and Jackson 2010). Even bacteria can 
tune their sensitivity to particular chemicals in their environment (Muller-Hill 
1996), so it may be a rather general feature of search in the external world. The 
following might be an analogue in memory search: when people have to decide 
whether a sequence of sounds is a valid word, they recognize �“robin�” as a valid 
word more quickly if they have been warned that any valid word presented is 
likely to be the name of a bird (Neely 1977).

Humans form different neuroanatomical representations of memories 
depending on the sensory modalities they use to encode those memories 
(Markowitsch 2000). Do we also search for things in memory differently de-
pending on the modality with which the memory was encoded? For instance, 
whereas it is straightforward to order colors and sounds along simple axes such 
as wavelength or loudness, with tastes there are no such obvious dimensions 
because of the physical basis of chemosensitivity. And even though most real 
visual stimuli are complex patterns which also cannot be readily ranked along 
a single dimension, the poverty of our language to describe tastes points to a 
difference in our ability to classify them. Does this mean that we store and ac-
cess memories for tastes differently than we do for memories of visual objects? 
Is the process by which a wine expert deduces the origin and vintage of a wine 
from its taste different from how an expert attributes a painting?

Further Connections between Search in Behavioral 
Ecology and Cognitive Psychology

As our discussion above reveals, external search problems (often the domain 
of  ecology) and internal or more abstract search problems (often the domain 
of psychology) are perhaps not as unrelated as they may at  rst appear. Here 
we explore some more of the potential connections between ecological and 
psychological perspectives by considering speci c problems in cognitive psy-
chology about which insights from ecological research offer new questions.

Interindividual Variation in External Information Search

For  a grazing animal, exploration for new resources often goes on simultane-
ously with the exploitation of those resources. In other cases, for instance, 
when an animal or human is searching for a new home, an exploration phase 
precedes the exploitation. In the exploration phase, the search is only for infor-
mation in the external environment.

One task that captures this distinction between exploration and exploitation 
is called the  sampling paradigm (Hills and Hertwig 2010). In the sampling 
paradigm, a person is asked to make a decision between two options (Option A 
and Option B). The person is allowed to sample freely from these two options, 
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without receiving any direct reward, gaining only information that will later be 
useful. The options themselves are associated with speci c payoff distributions 
(e.g., Option A pays $3 with certainty, Option B pays $32 10% of the time, and 
$0 otherwise). So, for example, a person might sample from Option A several 
times and witness potential payoffs (e.g., $3, $3, $3) and then sample from 
Option B (e.g., $0, $0, $30). After some amount of sampling, the person makes 
a  nal consequential choice between the two options, and only then actually 
receives one payoff.

Studies of the sampling patterns in this information-search task reveal a 
bimodal distribution in the frequency with which individuals switch back and 
forth between Options A and B (Hills and Hertwig 2010). Some participants 
sample repeatedly from Option A, then they switch to sample repeatedly from 
Option B, and then they make a  nal decision. Others participants switch fre-
quently between Option A and Option B. People who frequently switch tend 
to take fewer samples overall than those who switch less frequently. People 
who frequently switch are also more likely to make a decision consistent with 
a roundwise decision policy, one based on the number of times a sample from 
one option beats the preceding sample from the other option. People who 
switch infrequently are more like to choose the option associated with the 
higher expected value overall.

 Individual differences in search behavior are not restricted to humans. In 
the fruit  y  Drosophila, natural allelic variation in a protein kinase gene results 
in the �“rover�” and �“sitter�” dimorphism (Osborne et al. 1997). Rovers leave 
food patches more readily, visit more food patches, and revisit food patches 
less compared to sitters, which are more sedentary and aggregate within food 
patches (Nagle and Bell 1987; Pereira and Sokolowski 1993; Stamps et al. 
2005). The same gene has been implicated in learning and memory traits in 
Drosophila larvae and adults (Méry et al. 2007; Reaume et al. 2011), and or-
thologues are involved in regulating food-related and social behaviors in a 
variety of other animals (Reaume and Sokolowski 2009). Do similar genetic 
differences underlie the variation in human search patterns? Moreover, might 
these differences in search behavior re ect differences in cognitive process-
ing that in uence a wide range of tasks involving cognitive search, including 
learning?

Memory Search

 Memory search can be characterized as search through information topologies 
stored in the brain (Davelaar and Raaijmakers, this volume; Hills and Dukas, 
this volume). What is the structure of these topologies? In the  semantic  uency 
task, people are asked to recall as many items as they can from a speci c cat-
egory (e.g., �“say all the animals you can think of�”). In this task, humans often 
produce items as if they were retrieving them from memory clusters (Bous eld 
1953). Some data suggests that  semantic memory may re ect a clumpy or 
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patch-like structure (Steyvers and Tenenbaum 2005). This suggests that human 
 memory search could follow similar  foraging policies as described for animals 
foraging on spatial patches of prey (Hutchinson et al. 2008; Hills et al. 2009).

However, memory representations differ in potentially important ways from 
space. Understanding the nature of these potentially dynamic topologies may 
be critical to our understanding of how memory search works. For example, 
an item in memory can belong to different representations simultaneously: the 
word �“cat�” can belong to the category of �“pets�” as well as to the category of 
�“predators.�” The representation need not be based solely on semantic similar-
ity but also, for instance, on phonological similarity (�“cat�” and �“bat�”). Thus 
words could potentially belong to more than one patch. Studies of memory 
search should ask what is the patch structure of memory and how are these 
patches used. For example, do the patch-like subcategories (e.g., pets) really 
re ect some special organizational linking of items in memory, or are items 
in memory evenly spread and the apparent patches simply the behavioral out-
comes of individuals moving in memory from one item to a nearby item, what 
Pollio et al. (1968) called an �“associative�” search? Studies of memory search 
can potentially explore the cognitive mechanisms guiding search in similar 
ways to those used to study animal foraging. For example, increasing the costs 
necessary to switch between patches leads animals to stay in patches for longer 
periods of time (Nonacs 2001). The analogous manipulation in a memory-
recall experiment could be accomplished by imposing external costs, for in-
stance, by increasing the time it takes to be presented with a new category 
for free recall (if subjects are paid in terms of recalled items per unit time; cf. 
Wilke et al. 2009). One could also look at recall patterns from more or less 
sparse semantic domains: foods are highly semantically similar; occupations 
may be less so. Recent models of semantic space allow the objective computa-
tion of similarity between words based on large corpora of text, using word 
co-occurrence (Jones and Mewhort 2007). This offers innovative ways to rep-
resent the landscape over which memory searches.

Do nonhuman animals also search memory as if it had a patchy structure? 
One experiment that we considered involved training a pigeon to peck at sev-
eral categories of images (e.g., cats, trees, and human faces). These could then 
be presented on a grid with numerous distractors (i.e., images not belonging 
to the target categories). After extensive training, the pigeons could then be 
asked to recall the locations of these targets on an unlabeled grid. Would they 
recall the items by category (e.g.,  rst all the cats, then all the trees), as if the 
information were stored in semantic patches or in some other way such as 
spatial proximity?

Some animals possess  cognitive maps which allow them to take novel 
routes between spatial locations. Might information in memory be stored as 
a cognitive map, allowing humans and nonhuman animals to link previously 
unlinked information adaptively?
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Problem Solving

Another form of internal cognitive search involves manipulating the arrange-
ment of information in working memory in such a way that it provides a solu-
tion to a problem. Chess players search for potential solutions to a chess prob-
lem, even if they have never before seen this particular arrangement of chess 
pieces (De Groot 1965). A similar kind of problem involving a search through 
arrangements is the  Tower of London problem, involving the lawful rearrange-
ment of colored balls on sticks to match a  nal target pattern (Shallice 1982). 
A novice player cannot solve such a problem by recalling the answer; it re-
quires the active construction of a new solution, by cognitively simulating and 
searching through the possibilities.

Some nonhuman animals appear capable of this kind of problem solving. 
Jumping spiders plan paths before moving (Tarsitano and Andrew 1999). 
Some individual ravens faced with food suspended on a string discovered how 
to lift it up using beak and feet without trial-and-error learning of the process 
(Heinrich 1995). Emery and Clayton (2004) discuss other examples of such 
insight.

These kinds of  planning associated with  problem solving might be produc-
tively thought of as forms of  route planning, similar to the way rats have been 
demonstrated to simulate exploration of space actively in so-called  episodic 
 future thinking (Redish, this volume). Are searches through con gural solu-
tion spaces governed by similar kinds of strategies, as found in  spatial search?

Language Acquisition

Is learning language also a kind of search process? Social animals may have 
as a developmental goal the acquisition of effective communication strate-
gies. Human children learn language, learning both word meaning and gram-
mar, and they do so in predictable ways. However, the process of  language 
acquisition is still not well understood. Could it represent a search process? 
Goldstein et al. (2003) suggest this possibility by noting that human children 
share a phase of exploratory linguistic babbling similar to that found in birds; 
in both cases, the babbling appears to be �“shaped�” by interactions with adults. 
Analogously, male brown-headed cowbirds (West and King 1988) and satin 
bowerbirds (Patricelli et al. 2002) rely on feedback from females they court 
to re ne their courtship behavior. Even  Drosophila males show plasticity in 
the courtship dance, which is learned through successive interactions with fe-
males (Polejack and Tidon 2007). Though the question is rather broad, could 
goal-directed exploration characterize the learning of these various forms of 
communication?
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Tailpiece

This chapter is not a comprehensive review of search, but rather re ects the 
esoteric choice of topics that matched our interests and expertise and that we 
had time to discuss. The topic seems endless because search is such a wide-
spread phenomenon and research on it so multifarious. By thinking carefully 
about what is fundamental to search, and by recognizing some commonalities 
between research in different disciplines, we hope to have introduced a little 
more structure into the topic. There may never be a single overarching theory 
of search, but some imposed structure is helpful in recognizing how our own 
research relates to existing work, and in drawing attention to relevant gaps in 
our knowledge that require investigation.
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