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Abstract

Healthcare professionals increasingly rely on observational healthcare data, such as administrative 

claims and electronic health records, to estimate the causal effects of interventions. However, 

limited prior studies raise concerns about the real-world performance of the statistical and 

epidemiological methods that are used. We present the “OHDSI Methods Benchmark” that aims to 

evaluate the performance of effect estimation methods on real data. The benchmark comprises a 

gold standard, a set of metrics, and a set of open source software tools. The gold standard is a 

collection of real negative controls (drug-outcome pairs where no causal effect appears to exist) 

and synthetic positive controls (drug-outcome pairs that augment negative controls with simulated 

causal effects). We apply the benchmark using four large healthcare databases to evaluate methods 

commonly used in practice: the new-user cohort, self-controlled cohort, case-control, case-

crossover, and self-controlled case series designs. The results confirm the concerns about these 

methods, showing that for most methods the operating characteristics deviate considerably from 

nominal levels. For example, in most contexts, only half of the 95% confidence intervals we 

calculated contain the corresponding true effect size. We previously developed an “empirical 

calibration” procedure to restore these characteristics and we also evaluate this procedure. While 

no one method dominates, self-controlled methods such as the empirically calibrated self-

controlled case series perform well across a wide range of scenarios.
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Plain Language Summary:

Existing healthcare data such as insurance claims and electronic health records are used to 

determine what the effects, both good and bad, of medical treatments are. However, concerns have 

been raised about whether the results are reliable. One challenge that must be overcome is that 

people who get a treatment may differ from those that do not, and if we do not adjust for that 

appropriately we may draw incorrect conclusions. For example, studying a chemotherapy drug, 

one might erroneously conclude the drug causes cancer, because patients taking the drug have 

cancer more often than those that do not take the drug.

We have created a benchmark to measure the performance of various methods for dealing with this 

and related issues. We use “control questions,” i.e., questions where we know the answer, and 

evaluate whether the different methods produce the expected results. Running this benchmark on 

four large healthcare databases covering millions of lives, we observe that most methods are not 

reliable. For example, more often than not, the known “true” answer lies outside the confidence 

interval, despite the fact that such confidence intervals are typically designed to include that true 

answer 95% of the time.

Our results therefore confirm the concerns about using healthcare data to determine the effect of 

treatments, but also show a way forward: when performing a study using a particular method, 

researchers should also perform a similar, although smaller, experiment like we did, to measure 

how reliable the method is in that context. These performance characteristics can then be taken 

into account when interpreting the results. We call this ‘empirical calibration.’ When using this 

calibration, we show that some methods tend to work rather well across the different scenarios we 

test.

Keywords

evaluation; methods; causal effect estimation; observational research

1 Introduction

Observational healthcare data, such as administrative claims and electronic health records, 

offer opportunities to generate real-world evidence about the effect of treatments that can 

meaningfully improve the lives of patients. Even though healthcare researchers have had 

access to large-scale observational databases for at least two decades, the literature still 

abounds with divergent opinions about the value of observational studies. Many past 

observational study results have failed to show concordance with randomized trials (Rush, 

Campbell, Jhund, Petrie, & McMurray, 2018) and have failed to replicate upon subsequent 

investigation (Overhage, Ryan, Schuemie, & Stang, 2013). A valid criticism of the entire 

observational study enterprise remains its historical lack of reproducibility: any researcher 

with a hypothesis about a potential causal effect of an exposure on an outcome can choose 

any observational dataset that captures the exposure and the outcome, choose from a wide 

array of alternative analytical designs, produce an effect estimate and, then, rationalize the 

clinical interpretation of the findings, whatever they might be. A different researcher with 

the same question could choose to study different data or apply different methods and may 

well reach different conclusions. In the face of conflicting evidence, decision-makers are 
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faced with making the subjective determination of which study results to trust; many decide 

to dismiss observational evidence completely. Little empirical evidence exists to guide 

decisions about when and how to use observational studies. If the field of observational 

research is to mature from an artisanal pursuit devoid of any established performance 

characteristics into a true data science, further methodological work is required to quantify 

the reliability of the generated evidence. Our proposed benchmark aims to help fill this void.

The performance of effect estimation methods will likely vary from use-case to use-case. We 

therefore recommend that practitioners always perform an evaluation within the study 

setting of interest, for example, by including negative (Dusetzina, Brookhart, & 

Maciejewski, 2015; Prasad & Jena, 2013) and positive controls (Schuemie, Hripcsak, Ryan, 

Madigan, & Suchard, 2018; Schuemie, Ryan, Hripcsak, Madigan, & Suchard, 2018) to 

estimate residual bias. Nonetheless, characterizing how a method performs across a wide 

range of settings also adds value. This understanding can serve as a prior when a study-

specific evaluation is not (yet) available, and may aid development of novel methodology. 

We establish the Observational Health Data Science and Informatics (OHDSI) (Hripcsak et 

al., 2015) Methods Benchmark that seeks to measure the performance and operating 

characteristics of observational analysis methods against disparate observational data for the 

task of population-level effect estimation. We subsequently apply this benchmark to a wide 

range of commonly used study designs and analysis approaches as implemented in the 

OHDSI Methods Library (https://ohdsi.github.io/ MethodsLibrary), an open source 

collection of R packages.

1.1 Population-level effect estimation

Observational healthcare data can support multiple analytic use-cases such as clinical 

charac-terization of populations of interest, patient-level prediction (Reps, Schuemie, 

Suchard, Ryan, & Rijnbeek, 2018), and population-level effect estimation. In this 

manuscript we focus on population-level effect estimation, that is, the estimation of average 

causal effects of medical interventions on specific health outcomes of interest. In what 

follows, we consider two different estimation tasks:

• Direct effect estimation: estimating the effect of an exposure on the risk of an 

outcome, as compared to no exposure.

• Comparative effect estimation: estimation the effect of one exposure (the target 

exposure) on the risk of an outcome, as compared to another exposure (the 

comparator exposure).

In both cases, the patient-level causal effect contrasts a factual outcome, e.g., what happened 

to the exposed patient, with a counterfactual outcome, that is, what would have happened 

had the exposure not occurred (direct) or had a different exposure occurred (comparative). 

Since any one patient reveals only the factual outcome (the fundamental problem of causal 

inference), the various effect estimation methods employ analytic devices to shed light on 

the counterfactual outcomes.

Use-cases for population-level effect estimation include treatment selection, safety 

surveillance, and comparative effectiveness. Methods can test specific hypotheses one-at-a-
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time (e.g., ‘signal evaluation’) or explore multiple-hypotheses-at-once (e.g., ‘signal 

detection’). In all cases, the objective remains the same: to produce a high-quality estimate 

of the causal effect.

1.2 Prior work

Many authors have employed simulation to evaluate the general usefulness of specific 

observational study designs yet concerns always remain about real world relevance. Others 

use just one or two real world examples, raising concerns about generalizability. Substantial 

literature compares results from observational studies to those from randomized controlled 

trials (RCTs) (Anglemyer, Horvath, & Bero, 2014). Indisputably, RCTs provide the most 

credible evidence about causal effects of medical interventions. However, for myriad 

reasons, RCTs themselves can fail to replicate (Ioannidis, 2005) or can yield answers that 

are simply wrong or irrelevant to the populations of actual interest (Deaton & Cartwright, 

2018; Frieden, 2017).

The EU-ADR (Exploring and Understanding Adverse Drug Reactions) project performed 

the first attempt at systematically evaluating a wide range of population-level estimation 

methods (Schuemie et al., 2012). The project constructed a reference set (Coloma et al., 

2013) consisting of 50 negative controls (drug-outcome pairs where no causal association is 

believed to exist) and 44 positive controls (drug-outcome pairs where the drug is known to 

cause the outcome). The project applied ten different methods to estimate the effects for the 

negative and positive controls, using data from seven databases across three countries in 

Europe comprising over 20 million subjects. The project evaluated each method on whether 

positive controls tended to have higher estimates than negative controls. In that experiment, 

two particular analytic methods, the case-control design and the Longitudinal Gamma 

Poisson Shrinker (Schuemie, 2011), provided the best performance.

The Observational Medical Outcomes Partnership (OMOP) performed a similar evaluation 

in the U.S. (Ryan et al., 2012). OMOP evaluated eight analytic methods on a set of 44 

negative controls and 9 positive controls in ten databases comprising over 130 million 

subjects. Although no specific method demonstrated superior performance across the board, 

a propensity score-based new-user cohort method achieved the highest performance. OMOP 

also performed a second, much larger experiment (DuMouchel, Ryan, Schuemie, & 

Madigan, 2013; Madigan, Schuemie, & Ryan, 2013; Noren et al., 2013; Overhage et al., 

2013; Reich, Ryan, & Schuemie, 2013; Ryan & Schuemie, 2013; Ryan, Schuemie, Gruber, 

Zorych, & Madigan, 2013; Ryan, Schuemie, & Madigan, 2013; Ryan, Schuemie, Welebob, 

et al., 2013; Ryan, Stang, et al., 2013; Schuemie, Madigan, & Ryan, 2013; Suchard, Zorych, 

et al., 2013). This experiment evaluated hundreds of different variants of seven main analytic 

methods on a set of 234 negative controls and 165 positive controls in five databases 

comprising 73 million subjects. Schuemie, Gini, et al., (2013) also replicated the experiment 

in the EU-ADR network. The results of these experiments suggested higher performance for 

self-controlled methods, but also revealed that for all methods, the coverage of, for example, 

95% confidence intervals, was substantially less than the nominal 95%.

All prior evaluations relied on reference sets of manually crafted negative and positive 

controls. These sets require onerous work to create, and, even after meticulous manual 
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review, arguments arose over the true status of controls (Hennessy & Leonard, 2015; 

Overhage, Ryan, Schuemie, & Stang, 2015). More importantly, whereas we can assume the 

true relative risk is 1 for the negative controls, the true magnitude of the effect is never 

known with acceptable precision for the positive controls. This is the main reason why all 

evaluations primarily focused on the ability to distinguish positive from negative controls 

and not on the ability to accurately estimate the effect size. Another important limitation of 

positive controls is the fact that, by design, little or no controversy surrounds their existence. 

Physicians know of these effects, and, in the case of adverse outcomes, may well attempt to 

mitigate these known risks, for example, by careful monitoring to prevent the adverse 

outcome, or by selectively prescribing only to those who have not experienced the outcome 

before. The latter behavior might lead to bias in the evaluation of methods, favoring self-

controlled methods (Noren, Caster, Juhlin, & Lindquist, 2014). A further limitation of these 

earlier evaluations is their failure to include some important analytical choices. For example, 

in the OMOP experiments, the new-user cohort design did not consider time-to-event 

models; the multiple self-controlled case series design (Simpson et al., 2013) failed to 

include a variant that disabled shrinkage on the estimate of the effect of interest, thus only 

evaluating SCCS estimates with a built-in bias towards the null.

2 Analytical Methods

This section highlights the OHDSI Methods Benchmark, the analytical methods included in 

our evaluation, and the data sources used. More details can be found in the protocol provided 

online, along with the full source code used to execute this study, at https://github.com/

ohdsistudies/MethodsLibraryPleEvaluation.

2.1 Notation

A key concept in our methodology is that of a cohort. We define a cohort c, c = 1, … , C as a 

group of subjects that satisfy one or more criteria for a duration of time. For example, a 

cohort could comprise individuals newly diagnosed with hypertension, with one year’s 

observation prior to cohort entry, prescribed a beta blocker at cohort entry, and followed 

thereafter for two years. A subject can belong to multiple cohorts at the same time, and 

belong to the same cohort multiple times. For example, a subject could drop in and out of a 

hypertension cohort according to whether they are taking or not taking a particular drug. We 

refer to each period of time a subject is in a cohort as an “entry.” We denote by Nc the 

number of entries in cohort c and by dci the duration (in days) for entry i in cohort c. Finally, 

Nc(t) denotes the number of entries in cohort c that span day t.

We use cohorts to study associations between interventions and “outcomes.” An outcome 

(e.g., stroke) occurs at a discrete moment in time and may or may not have a duration. We 

denote by yci the number of outcome events observed for entry i in cohort c and by yci (t) the 

number of outcome events observed for entry i in cohort c on day t.

An “exposure cohort” is a cohort where all entries are exposed to a particular treatment x, x 
= 1, … , X .As such, yci (x = j) denotes the number of outcome events for subject i in 

exposure cohort c associated with treatment x = j. We can also consider a counterfactual 

cohort, identical in every way, except each subject is unexposed to treatment j at all times 
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while in the cohort. Here. yci (x = ¬ j) denotes the number of outcome events for patient i in 

this counterfactual cohort.

We define the causal effect of x = j on Y, within some exposure cohort c defined by 

exposure to x = j, as the incidence rate ratio:

μcx =
∑iyci(x = j) ∕ ∑idci

∑iyci(x = ¬ j) ∕ ∑idci
.

Alternatively, we can also formulate the effect as the hazard ratio:

ℎcx = E lim
Δt 0

∑iyci(x = j, [t, t + Δt]) ∕ Nc(t)
∑iyci(x = ¬ j, [t, t + Δt]) ∕ Nc(t) .

Note that these quantities estimate the average treatment effect in the treated (ATT).

Finally, yci (x = j, t) denotes the number of outcome events on day t for subject i in exposure 

cohort c associated with treatment x = j and yci (x = ¬ j, t) denotes the corresponding 

quantity in the counterfactual unexposed cohort.

2.2 The OHDSI Methods Benchmark

The OHDSI Methods Benchmark consists of a gold standard (i.e., a set of causal facts), and 

a set of metrics to characterize a method’s performance in estimating the answers.

2.2.1 Gold standard—The gold standard comprises 800 controls, with each item 

specifying a target treatment, comparator treatment, outcome, nesting cohort, and true effect 

size. Of the total set, 200 are “neg-ative controls” and Table 1 shows four examples. For 

each negative control, neither the target treatment nor the comparator treatment are believed 

to cause the corresponding outcome. Therefore the true effect sizes for the direct causal 

effect of the target treatment on the outcome, the direct causal effect of the comparator on 

the outcome, and the comparative effect of the target treatment versus the comparator 

treatment on the outcome are all 1. For example, considering the first row of Table 1, and 

letting y denote the outcome “acute pancreatitis” and x = j denote the treatment 

brinzolamide, we have

yci(x = j, t) = yci(x = ¬ j, t), i = 1, …, Nc, t = 1, …, dci .

As a consequence, both μcx = 1 and hcx = 1.

We selected these negative controls by first picking four outcomes (acute pancreatitis, 

gastrointestinal bleeding, inflammatory bowel disease, and stroke) and four pharmaceutical 

treatments (ciprofloxacin, diclofenac, metformin, and sertraline) representing chronic, acute, 

rare, and prevalent outcomes and treatments. For each of the four outcomes, we created 25 

entries with target and comparator treatments that we do not believe cause the outcome. For 

example, the top two rows of Table 1 consider the outcome of acute pancreatitis and, 

collectively, four treatments that do not cause acute pancreatitis. Similarly, for each of the 
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four treatments, we selected 25 comparator treatment-outcome pairs such that neither the 

target treatment nor the comparator treatment cause the corresponding outcome. For 

example, for the bottom two rows of Table 1 where the target treatment is diclofenac, we 

selected celecoxib as a comparator treatment and in one case selected “acute stress disorder” 

as the outcome and, in the other case, “ingrowing nail.” Neither diclofenac nor celecoxib 

cause either acute stress disorder or ingrowing nail.

To create these entries, we deployed an automated procedure (Voss et al., 2017) to generate 

candidate lists of negative controls for each of the four main outcomes and four main 

treatments, drawing on literature, product labels, and spontaneous reports. We used these 

candidates to construct target-comparator-outcome triplets where neither the target nor the 

treatment causes the outcome, and the target and comparator were either previously 

compared in a randomized trial per ClinicalTrials.gov, or both had the same four-digit ATC 

code (same indication) but not the same five-digit ATC code (different class). We ranked the 

candidate negative controls on prevalence of the treatments and outcome and manually 

reviewed from the top until we established 25 controls per initial outcome or treatment that 

passed review, considering both lack of casual associations between treatments and 

outcomes as well as the suitability of the comparator.

We associated a “nesting cohort” with each negative control. The nesting cohort identifies a 

more homogeneous subgroup of the population, for example, people diagnosed with 

arthralgia. Often, retrospective case-control studies are nested in such a subgroup rather than 

the general population captured in a database to make exposed and unexposed more 

comparable. Defining the nesting cohort thus allows us to evaluate such a nested case-

control design. We selected nesting cohorts by manually reviewing the most prevalent 

conditions and procedures on the first day of the target or comparator treatment. 

Supplementary Table 1 provides the full list of negative controls.

The remaining 600 entries comprise positive controls. To avoid the aforementioned 

shortcomings of “real” positive controls, we chose to generate synthetic positive controls 

(Schuemie, Hripcsak, et al., 2018). We used an automated procedure to derive these from the 

200 negative controls by adding simulated additional outcomes in the target treatment cohort 

until a desired incidence rate ratio was achieved. For example, assume that, during treatment 

with diclofenac, m occurrences of ingrowing nail were observed. None of these were caused 

by diclofenac since this is one of our negative controls. If we were to add an additional m 
simulated occurrences during treatment with diclofenac, we would have doubled the 

observed effect size. Since this was a negative control, and since only the treatment cohort 

received new ingrowing nails and not the counterfactual cohort, the observed relative risk 

which was one becomes two.

More specifically, let θ denote the target effect size. Currently we use θ = 1.5, θ = 2 and θ = 

4 to generate 3 positive controls from every negative control. We increase outcome count yci 

(x = j) in the target treatment (j) cohort to yci∗ (x = j) to approximate the desired θ. To avoid 

issues due to low sample size, we generate positive controls only when yci ≥ 25.

The steps in the “injection” process are as follows:
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1. Within the target treatment cohort c, we fit an l1-regularized Poisson regression 

model (Suchard et al., 2013) where the outcome yci (x = j) represents the subject-

level dependent variable and Zci represents the independent variables. The 

independent variables include demographics, as well as all recorded diagnoses, 

drug exposures, measurements, and medical procedures all measured prior to 

cohort entry (“baseline covariates”). We use 10-fold cross-validation to select the 

regularization hyperparameter. Let λci = E(yci ∣ Zci) denote the predicted Poisson 

event rate for entry i in treatment cohort c.

2. For every entry in the target treatment cohort, sample n from a Poisson 

distribution with parameter (θ − 1)λci and set yci∗ (x = j) = yci(x = j) + n.

3.
Repeat step 2 until 

∑iyci∗ (x = j) ∕ ∑idci
∑iyci(x = j) ∕ ∑idci

− θ = ϵ, where ϵ is currently set to 0.01.

Figure 1 depicts this process. Assuming the synthetic outcomes have the same measurement 

error (same positive predictive value and sensitivity) as the observed outcomes, this process 

creates data that mimic a true marginal effect size of θ. Because we sample new outcomes 

from a large-scale predictive model, we also mimic the conditional effect (conditional on Z). 

We note that the altered data can capture effects due to measured confounding but not 

unmeasured confounding. Since all outcomes we consider are rare, post-injection odds ratios 

are all but identical to the corresponding relative risks.

We define exposures as exposure to any drug containing the ingredient specified in the gold 

standard. We merge consecutive exposures if the gap between exposures is less than 30 days. 

We defined the four main outcomes of interest (acute pancreatitis, gastrointestinal bleeding, 

inflammatory bowel disease, and stroke) using manually crafted rule-based definitions 

including various diagnosis codes (see Supplementary Data). The outcome occurs if we 

observe the outcome concept or any of its descendants. The nesting cohorts comprise the 

group of people that have any occurrence of the diagnosis code or any of its descendants. We 

define the cohort start date as the day of the first such diagnosis, and the cohort end date as 

the end of observation.

2.2.2 Metrics—For every database-method-control combination, we generate an effect 

size estimate that takes the form of either a relative risk, an odds ratio, or a hazard ratio, 

together with an indication of the uncertainty associated with the estimate (either a 95% 

confidence interval or a standard error). We also assume that the method computes a two-

sided p-value for the null hypothesis of no effect.

Based on the estimates of a particular method for the 800 negative and positive controls, we 

can then compute the following metrics:

• AUC: The ability to discriminate between positive controls and negative controls 

based on the point estimate of the effect size.

• Coverage: How often the true effect size is within the 95% confidence interval.
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• Mean precision: Precision is computed as 1 / (standard error)2, higher precision 

means narrower confidence intervals. We use the geometric mean to account for 

the skewed distribution of the precision.

• Mean squared error (MSE): Mean squared error between the log of the effect 

size pointestimate and the log of the true effect size.

• Type 1 error: For negative controls, how often the null was rejected (at α = 0.05). 

This is equivalent to the false positive rate and 1 - specificity.

• Type 2 error: For positive controls, how often the null was not rejected (at α = 

0.05). This is equivalent to the false negative rate and 1 - sensitivity.

• Non-estimable: How many of the controls the method was unable to produce an 

estimate. There can be various reasons why an estimate cannot be produced, for 

example, because there were no subjects left after propensity score matching, or 

because no subjects remained posessing the outcome.

The benchmark computes these metrics both overall, as well as by true effect size, by each 

of the four initial outcomes and four initial exposures, and by amount of data as reflected by 

the minimum detectable relative risk (MDRR) that we compute using a standard approach 

(Armstrong, 1987). When a method cannot estimate an effect, it returns an estimate of 1 

with an infinite confidence interval.

2.3 Empirical calibration

In prior work, we described a method for empirically calibrating p-values (Schuemie, Ryan, 

Du-Mouchel, Suchard, & Madigan, 2014). Briefly, when evaluating a particular analytical 

method, the calibration procedure applies the method not only to the target-comparator-

outcome of interest but also to all the negative controls. This generates draws from an 

“empirical” null distribution. By contrast with the theoretical null distribution (typically a 

Gaussian centered on 1), the empirical null distribution does not assume that the estimated 

effect size provides an unbiased estimate of the true effect. Instead the location and 

dispersion of the empirical null distribution reflects both random error and systematic error. 

“Calibrated” or “empirical” p-values use the empirical null distribution in place of the 

theoretical null distribution when computing p-values.

More formally, let θ i denote the estimated log effect estimate (relative risk, odds or 

incidence rate ratio) from the ith negative control, and let τ i denote the corresponding 

estimated standard error, i = 1, … , n. Let θi denote the true log effect size (assumed 0 for 

negative controls), and let βi denote the true (but unknown) bias associated with pair i, that 

is, the difference between the log of the true effect size and the log of the estimate that the 

study would have returned for control i had it been infinitely large. As in the standard p-

value computation, we assume that θ i is normally distributed with mean θi + βi and variance 

τ i
2. Note that in traditional p-value calculations, βi is assumed to be equal to zero for all i. 

Instead we assume the βi’s arise from a normal distribution with mean v and variance σ2. 

This represents the null (bias) distribution. We estimate v and σ2 via maximum likelihood. 

In summary, we assume the following:
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βi ∼ N(v, σ2) and θi ∼ N(θi + βi, τi2),

and we estimate v and σ2 by maximizing:

∏
i = 1

n ∫ p(θi ∣ βi, θi, τi) p(βi ∣ v, σ2)dβi

yielding maximum likelihood estimates v and σ2. We compute a calibrated p-value that uses 

the empirical null distribution. Let θn + 1 denote the log of the effect estimate for the 

outcome of interest, and let τn + 1 denote the corresponding (observed) estimated standard 

error. Assuming βn+1 arises from the same null distribution, we have that:

θn + 1 ∼ N(v, σ2 + τn + 1),

and the p-value calculation follows naturally. Our prior work has shown that, unlike standard 

p-values, calibrated p-values maintain type I error rates at or close to the desired level, e.g., 

5%.

Schuemie, Hripcsak, et al. (2018) used positive controls to extend the concept of calibrated 

p-values to calibrated confidence intervals. These intervals reflect actual accuracy on 

negative and positive controls and, like calibrated p-values, capture both random and 

systematic error. We assume that βi, the bias associated with control i, again comes from a 

Gaussian distribution, but this time using a mean and standard deviation that are linearly 

related to θi, the true effect size:

βi ∼ N(v(θi), σ2(θi))

where:

v(θi) = a + bθi and σ2(θi) = c + d × ∣ θi ∣ .

We estimate a, b, c and d by maximizing the marginalized likelihood in which we integrate 

out the unobserved βi:

∏
i = 1

n ∫ p(θi ∣ βi, θi, τi2) p(βi ∣ a, b, c, d, ]θi)dβi

yielding (a, b , c , d). We compute a calibrated CI that uses the systematic error model. Let 

θn + 1 again denote the log of the effect estimate for the outcome of interest, and let τn + 1
denote the corresponding (observed) estimated standard error. Then:
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θn + 1 ∼ N(θn + 1 + a + b × θn + 1, c + d × ∣ θn + 1 ∣ + τn + 1
2 ),

and the calibrated confidence interval follows.

Our prior work has also shown that, unlike standard confidence intervals, calibrated 

confidence intervals maintain coverage at or close to the desired level, e.g., 95%. Typically, 

but not necessarily, the calibrated confidence interval is wider than the nominal confidence 

interval, reflecting the problems unaccounted for in the standard procedure (such as 

unmeasured confounding, selection bias and measurement error) but accounted for in the 

calibration.

In this paper, we are using controls both for calibration and for evaluation. To avoid an over-

optimistic evaluation, we use a leave-one-out approach: for each control (positive or 

negative) we use all the controls except the control being calibrated and its siblings. By 

siblings we mean the set containing a negative control and the positive controls derived from 

that negative control.

2.4 Implementation

To facilitate others in executing the Methods Benchmark on their own data and methods, we 

have created an open-source R package (https://github.com/OHDSI/MethodEvaluation). 

This package works with any observational database in the OMOP Common Data Model 

(Overhage, Ryan, Reich, Hartzema, & Stang, 2012). The package will construct the various 

exposures, outcomes, and nesting cohorts, as well as perform the positive control synthesis. 

The package also computes the various performance metrics described above. Note that 

negative controls are application-specific and implementation requires a de novo effort to 

develop negative controls for each new application domain.

2.5 The OHDSI Methods Library

The OHDSI Methods Library comprises a collection of open source R packages designed to 

work directly on observational data in the OMOP Common Data Model. The library 

supports a wide array of technical platforms including traditional database systems 

(PostgreSQL, Microsoft SQL Server, and Oracle), parallel data warehouses (Microsoft APS, 

IBM Netezza, and Amazon RedShift), as well as Big Data platforms (Hadoop through 

Impala, and Google Big-Query). With a few lines of R code and predefined exposures and 

outcomes of interest, the library allows one to execute a full observational study, producing 

effect size estimates as well as study diagnostics and additional information such as 

population characteristics. The Methods Library implements a wide range of population-

level estimation methods, was primarily developed by the authors of this paper, and has 

already been used extensively in published clinical and methodological studies (Duke et al., 

2017; Ramcharran, Qiu, Schuemie, & Ryan, 2017; Ryan et al., 2018; Ryan, Schuemie, 

Ramcharran, & Stang, 2017; Schuemie, Hripcsak, Ryan, Madigan, & Suchard, 2016; 

Schuemie, Hripcsak, et al., 2018; Schuemie et al., 2014; Schuemie, Ryan, et al., 2018; 

Suchard et al., 2019; Tian, Schuemie, & Suchard, 2018; Vashisht et al., 2018; Wang et al., 

2017; Weinstein et al., 2017; Yuan et al., 2018; Suchard et al., 2019).
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Below are descriptions of the five packages included in our evaluation, representing five 

well-known population-level estimation methods. For each package, we also list the analytic 

choices within each method that we evaluate separately.

2.5.1 Cohort method—The new-user cohort method attempts to emulate a randomized 

clinical trial (Hernan & Robins, 2016). Subjects that are observed to initiate one treatment 

(the target exposure cohort j with treatment x = j) are compared to subjects initiating another 

treatment (the comparator exposure cohort k with treatment x = k) and are followed for a 

specific amount of time following treatment initiation, for example, the time they stay on the 

treatment. Figure 2 provides an illustration.

We compute the hazard ratio between the two cohorts:

ℎ(j ∕ k) = E lim
Δt 0

∑iyji(x = j, [t, t + Δt]) ∕ Nj(t)
∑iyki(x = k, [t, t + Δt]) ∕ Nk(t) .

One crucial difference with a randomized trial is that there is no randomization, and 

therefore there might be systematic differences between the target and comparator 

populations, making the comparator a poor approximation of the counterfactual. Without 

adjusting for these differences, estimates are likely to be confounded. A popular mechanism 

for adjusting for confounding is the use of Propensity Scores (PS). The PS is the probability 

of a subject re-ceiving one treatment instead of the other, conditional on baseline 

characteristics (Rosenbaum & Rubin, 1983):

ecijk = Pr(x = j ∣ x = j or x = k, Zci) .

A model – typically a logistic regression – is fitted using the observed treatment assignments 

(target or comparator), then the model is used to produce the PS for each subject. In the past, 

PS’s were computed based on manually selected characteristics, and although the 

CohortMethod package can support such practices, we use large-scale regularized regression 

using many generic characteristics. Tian et al. (2018) provide empirical evidence indicating 

the superiority of such an approach. These characteristics include demographics, as well as 

all diagnoses, drug exposures, measurement, and medical procedures observed prior to 

treatment initiation, and exclude the target and comparator treatment. A model typically 

involves 10,000 to 100,000 unique characteristics.

The advantage of the PS is that, when there are no unmeasured confounders, the treatment 

assignment is independent of the potential outcomes, conditional on the PS:

(yci(x = j), yci(x = k)) ⫫ xci ∣ ecijk .

In other words, absent unmeasured confounding, conditional on the PS, the comparator can 

serve as a counterfactual, and we can compute an unbiased hazard ratio.
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One way to take advantage of this property is by performing stratification on the PS, or 

matching, which can be considered very fine stratification. Another way is to use inverse 

probability of treatment weighting (IPTW), where each observation is weighted by wci jk = 

pcj/eci jk if x = j, and by wci jk = (1 – pcj)/(1 – eci jk) if x = k, where pcx is the proportion of c 
having x = j (Xu et al., 2010).

Another strategy for adjusting for differences between the two groups is to include 

additional variables in the outcome model. One major limitation of this approach is that, 

whereas there often is a wealth of data to fit a propensity model (with thousands of people in 

both treatment groups), the outcomes we study tend to be somewhat rare, causing a paucity 

of data when trying to fit elaborate models with the outcome as the dependent variable. One 

approach is to use both a PS and add the same variables that were used in the propensity 

model in the outcome model, thus adjusting for the same variables twice, but in different 

ways.

The new-user cohort method inherently is a method for comparative effect estimation, 

comparing one treatment to another. It is difficult to use this method to compare a treatment 

against no treatment, since it is hard to define a group of unexposed people that is 

comparable with the exposed group. If one wants to use this design for direct effect 

estimation, one way is to select a comparator treatment for the same indication as the 

exposure of interest, where the comparator treatment is believed to have no effect on the 

outcome. Unfortunately, such a comparator might not always be available. In our gold 

standard, the comparators were specifically selected to have no effect, so we can also 

evaluate the cohort method’s performance for direct effect estimation.

Evaluation settings.: In our evaluation we focus on differences between the various 

adjustment strategies. All evaluations require 365 days of continuous observation prior to 

treatment initiation, capture a large set of covariates in the year prior to exposure, use a Cox 

proportional hazards model, and follow subjects from the day of treatment initiation (so 

including outcomes occurring on the day of treatment initiation) until treatment 

discontinuation (end of exposure) or end of observation, whichever is first. Subjects having 

both target and comparator exposures are removed. PS are computed using large-scale 

regularized regression (Suchard, Simpson, et al., 2013), where the regularization 

hyperparameter is selected by optimizing the out-of-sample likelihood in a 10-fold cross-

validation. All PS matching uses a caliper of 0.2 on the standardized logit scale (Austin, 

2011). Stratification applies five equally-sized strata based on the PS distribution in the 

study population. A full outcome model including all covariates that are also included in the 

PS is fitted using a large-scale Cox regression with regularization on all variables except the 

treatment variable, again applying 10-fold cross-validation to select the regularization 

hyperparameter.

Table 2 lists the variants of the new-user cohort method included in the evaluation. A 

stratified outcome model is conditioned on the matched sets or PS strata and is required 

when using PS stratification or variable ratio matching. Variable ratio matching allows for 

more than one comparator subject to be selected for each target subject, as long as the 

matches stay within the predefined caliper (Rassen et al., 2012). Trimming is a common 
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practice when performing IPTW to counter the effect of extreme weights (Brookhart, Wyss, 

Layton, & Stürmer, 2013). Here we trim the most extreme 5% of each exposure group

2.5.2 Self-controlled cohort—Figure 3 illustrates the self-controlled cohort (SCC) 

design (Ryan, Schuemie, & Madigan, 2013) that compares the rate of outcomes during 

exposure (A) to treatment j to the rate of outcomes in the time just prior to the exposure (B):

μ(A + B) =
∑iyAi(x = j) ∕ ∑idAi

∑iyBi(x ≠ j) ∕ ∑idBi(x ≠ j) .

Because this is a self-controlled design (subjects are used as their own comparator), and 

because of the proximity in time (the control cohort entry immediately precedes the target 

cohort entry), an assumption is made that the comparator cohort is a good approximation of 

the counterfactual:

∑iyAi(x = ¬ j)
∑idAi

=
∑iyBi(x ≠ j)

∑idBi
.

However, the method is vulnerable to differences between different time periods.

Evaluation settings.: All evaluations of the SCC compare time while exposed to time prior 

to exposure, require 365 days of continuous observation prior to the exposure, and 183 days 

of continuous observation after the exposure start. Where possible, the pre-exposure window 

is set to the same length as the exposure window. All exposures are included, not just the 

first per person. Confidence intervals of the incidence rate ratio are computed using an exact 

test (Lehmann, 2005).

Table 3 shows the analysis variations included in our evaluation. We vary the definition of 

the time-at-risk to be either the entire time the subject was exposed, or just the first 30 days 

after exposure start. In all analyses, the pre-exposure window is set to be the same length as 

the corresponding exposure window. In some variants, the date when the exposure started 

was included in the time-at-risk, in others it was ignored. Sometimes the amount of 

observation time prior to exposure is shorter than the time-at-risk window. By default, the 

pre-exposure window is then truncated to the available observation time, but in some 

analyses (marked “require full observation”) subjects were removed from the analyses if the 

pre-exposure observation time was too short.

2.5.3 Case-control—Figure 4 illustrates the case-control design. Case-control 

(Vandenbroucke & Pearce, 2012) studies consider questions of the form: “Are persons with 

a specific disease outcome exposed more frequently to a specific agent than those without 

the disease?” Thus, the central idea is to compare “cases,” i.e., subjects that experience the 

outcome of interest, with “controls,” i.e., subjects that did not experience the outcome of 

interest. Because in our case-control designs tested here we consider only exposure on the 

index date (not prior), we can frame the case-control design as defining four cohorts having 

length = 1 day for all entries:
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A: exposed cases, defined as any day when an outcome occurs (yAi (t) = 1) and the subject is 

exposed (x(t) = 1)

B: exposed controls, defined as any day when an outcome does not occur (yBi (t) = 0) and 

the subject is exposed (x(t) = 1)

C: unexposed cases, defined as any day when an outcome occurs (yCi (t) = 1) and the subject 

is not exposed (x(t) = 0)

D: unexposed controls, defined as any day when an outcome does not occur (yDi (t) = 1) and 

the subject is not exposed (x(t) = 0). Typically, controls (B and D) are reduced to some small 

sample, and matched to cases on some variables.

The case-control design computes the odds ratio:

OR(A + B + C + D) =
NA ∕ NB
NC ∕ ND

.

Because essentially all the outcomes we consider are rare, the odds ratio is almost identical 

to the rate ratio:

OR(A + B + C + D) ∼ RR(A + B + C + D) =
NA ∕ (NA + NB)
NC ∕ (NC + ND) .

Although rarely stated, an assumption in the case-control design is that the unexposed cases 

and controls form a good counterfactual for the exposed cases and controls:

E(y(A + B)x = ¬ j) = E(y(C + D)x = ¬ j) .

Often, one matches controls to cases based on characteristics such as age and sex to make 

them more comparable. Another widespread practice is to nest the analysis within a specific 

subgroup of people, for example, people that have all been diagnosed with one of the 

indications of the exposure of interest.

Evaluation settings.: In all evaluations of the case-control design we match randomly 

selected controls to cases on age with a two-year caliper and sex, set the index date of the 

cases to the date of the outcome and use the same calendar date as the index date for the 

matched controls. We require 365 days of continuous observation prior to the index date, 

exclude cases from being controls for another case, and consider cases and controls to be 

exposed if they are exposed on the index date itself, including when the treatment is initiated 

on the index date. The outcome model uses logistic regression conditioned on the matched 

sets.

Table 4 enumerates the variants we evaluate. We either select up to two or ten matched 

controls per case, and optionally nest within the population corresponding to the indication.

2.5.4 Case-crossover—Figure 5 illustrates the case-crossover design.
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The case-crossover (Maclure, 1991) design is very similar to the case-control design, except 

the control cohorts are restricted to the same subjects as the case cohorts, and the control 

dates are restricted to dates falling in a specific interval before the case dates. It tries to 

determine whether there is something special about the day the outcome occurred. Since 

cases serve as their own control, it is a self-controlled design, and should therefore be robust 

to confounding due to between-person differences. One concern is that, because the outcome 

date is always later than the control date, the method will be positively biased if the overall 

frequency of exposure increases over time (or negatively biased if there is a decrease). To 

address this, the case-time-control design (Suissa, 1995) was developed, which adds 

matched controls to the case-crossover design to adjust for exposure trends.

Evaluation settings.: In all evaluations of the case-crossover design we require 365 days of 

continuous observation prior to the outcome date and consider subjects to be exposed if they 

are exposed on the outcome or control date itself, including when the treatment is initiated 

on the outcome or control date. The outcome model is a logistic regression conditioned on 

the persons.

Table 5 lists the variants of the case-crossover design included in our evaluation. When 

nested, the cases and, for the case-time-control extension, the controls, are selected from the 

group of people having the indication.

2.5.5 Self-controlled case series—Figure 6 illustrates the self-controlled case series 

design.

The Self-Controlled Case Series (SCCS) design (Farrington, 1995; Whitaker, Farrington, 

Spiessens, & Musonda, 2006) compares the rate of outcomes during exposure to treatment j 
(cohort A) to the rate of outcomes during all unexposed time (cohort B), both before, 

between, and after exposures. It is a Poisson regression that is conditioned on the person:

μ(A + B)x =
∑iyAi(x = j) ∕ ∑idAi
∑iyBi(x ≠ j ∕ ∑idBi

∣ (sAi = sBi)

where sci denotes the subject corresponding to entry i in cohort c. Thus, SCCS seeks to 

answer the question: “Given that a patient has the outcome, is the outcome more likely 

during exposed time compared to non-exposed time?” The assumption behind the SCCS is 

that the unexposed time of a subject forms a good counterfactual for the exposed time for 

that same subject. Like other self-controlled designs, the SCCS is robust to confounding due 

to between-person differences, but vulnerable to confounding due to time-varying effects. 

Several adjustments are possible to attempt to account for these.

Evaluation settings.: In all evaluations, we follow subjects from their start of observation 

(e.g., start of enrollment for insurance claims) to their end of observation, but disregard the 

first 365 days in the analysis except to determine the exposure status right after those initial 

365 days. For example, if a 60-day prescription is started on day 340 after observation start, 

the subject is considered exposed on days 366-400. Unless stated otherwise, the time-at-risk 

is assumed to start the day after exposure start, and end when exposure stops. Only the first 
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occurrence of the outcome is considered, recurrent outcomes are ignored. A Poisson 

regression conditioned on the person estimates the incidence rate ratio.

Table 6 shows the variations of the SCCS included in the evaluation. We evaluate the effect 

of including the first day of exposure in the risk window, since this day could have many 

unrelated diagnoses being recorded while visiting the doctor. One frequent practice in SCCS 

designs is to set aside the time just prior to exposure to adjust for time-varying effects such 

as the contra-indications. We further evaluate adjusting for age and season by assuming a 

constant effect of age and season within each calendar month and using 5-knot cubic splines 

to model the effect across months. One important assumption underlying the SCCS is that 

the observation period end is independent of the date of the outcome. Because for some 

outcomes, especially ones that can be fatal such as stroke, this assumption can be violated. 

An extension to the SCCS has been developed that corrects for any such dependency 

(Farrington et al., 2011). A final refinement of the SCCS is to include not just the exposure 

of interest, but all other exposures to drugs recorded in the database (Simpson et al., 2013), 

potentially adding thousands of additional variables to the model. L1-regularization using 

cross-validation to select the regularization hyperparameter is applied to the coefficients of 

all exposures except the exposure of interest.

2.6 Data sources

For our evaluation we use the four databases listed below. These databases are converted to 

the OMOP Common Data Model (Overhage et al., 2012), which not only imposes a standard 

data structure, but also a standard encoding of the information. This allows for the same 

analysis code to be executed against each database without modification. Figure 7 shows 

summary descriptives of the four databases.

CCAE.—The IBM MarketScan® Commercial Claims and Encounters (CCAE) database 

represents data from individuals enrolled in United States employer-sponsored insurance 

health plans. The data include adjudicated health insurance claims (e.g., inpatient, 

outpatient, and outpatient pharmacy) as well as enrollment data from large employers and 

health plans who provide private healthcare coverage to employees, their spouses, and 

dependents. Additionally, it captures laboratory tests for a subset of the covered lives. This 

administrative claimsdatabase includes a variety of fee-for-service, preferred provider 

organizations, and capitated health plans. The major data elements contained within this 

database are outpatient pharmacy dispensing claims (coded with National Drug Codes), and 

inpatient and outpatient medical claims, which provide procedure codes (coded in CPT-4, 

HCPCs, ICD-9-CM or ICD-10-PCS) and diagnosis codes (coded in ICD-9-CM or ICD-10-

CM). The data also contain selected laboratory test results (those sent to a contracted third-

party laboratory service provider) for a nonrandom sample of the population (coded with 

LOINC codes).

PanTher.—The Optum Pan-Therapeutic (PanTher) Electronic Health Records (EHR) 

dataset contains medical record data primarily from United States Integrated Delivery 

Networks. These include clinical information, inclusive of prescriptions as prescribed and 

administered, lab results, vital signs, body measurements, diagnoses, procedures, and 
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information derived from clinical notes using Natural Language Processing (NLP). PanTher 

integrates provider data from different EHR platforms (i.e., Cerner, Epic, GE, McKesson, 

etc.) and different versions of the same EHR platform.

JMDC.—The Japan Medical Data Center (JDMC) database consists of data from sixty 

societymanaged health insurance plans covering workers aged 18 to 65 and their dependents 

(children younger than 18 years old and elderly people older than 65 years old). JMDC data 

include membership status of the insured people and claims data provided by insurers under 

contract (e.g., patient-level demographic information, inpatient and outpatient data inclusive 

of diagnosis and procedures, and prescriptions as dispensed claims information). Claims 

data are derived from monthly claims issued by clinics, hospitals and community 

pharmacies. For claims only the month and year are provided; however, prescriptions, 

procedures, admission, discharge, and start of medical care are associated with a full date.

MDCR.—The IBM MarketScan® Medicare Supplemental Database (MDCR) represents 

health services of retirees in the United States with primary or Medicare supplemental 

coverage through privately insured fee-for-service, point-of-service, or capitated health 

plans. These data include adjudicated health insurance claims (e.g., inpatient, outpatient, and 

outpatient pharmacy). Additionally, it captures laboratory tests for a subset of the covered 

lives.

3 Results

We execute all 28 design variants of the five estimation methods on all 800 controls against 

the four databases, both with and without empirical calibration, thus producing a total of 

179,200 effect size estimates. From these we derive a large set of performance metrics, 

which vary depending on choices of which controls and data to include in the evaluation. 

Below we walk through several examples of our results, starting with a single control, single 

database and two analysis variants, and gradually increasing the complexity. However, it is 

infeasible to cover the full set of results in this paper, and instead we refer the reader to our 

R Shiny-based (Chang, Cheng, Allaire, Xie, & McPherson, 2018) application: http://

data.ohdsi.org/MethodEvalViewer/. This application, as shown in Figure 8, serves up our 

complete method evaluation results. Importantly, the app allows readers to inject their own 

sorting, and to filter the results to specific sets of controls, for example those for a specific 

outcome or exposure, or those with a specific true effect size.

3.1 Example analyses, control, and database

We use one example negative control, diclofenac - ingrowing nail, to illustrate our evaluation 

procedure. This is a negative control, because we firmly believe diclofenac does not cause 

ingrown nails, and we therefore assume the true effect size is 1.

When applying the cohort method in the CCAE database, we identify 967,086 new users of 

diclofenac, with at least 365 days of prior observation, no prior diclofenac exposure, and no 

prior diagnosis of ingrowing nails. We compare these to 774,063 new users of celecoxib, 

another negative control for ingrowing nail identified using similar criteria and included in 

the gold standard. We construct 98,159 baseline covariates based on data observed prior to 

Schuemie et al. Page 18

Harv Data Sci Rev. Author manuscript; available in PMC 2020 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://data.ohdsi.org/MethodEvalViewer/
http://data.ohdsi.org/MethodEvalViewer/


treatment initiation, including demographics, drug exposures, procedures, and diagnoses, 

and use these to fit a propensity model and compute the PS. For this example, we perform 1-

on-1 matching on the PS, leaving 466,622 subjects in both the diclofenac and the celecoxib 

group. In the time until exposure end or observation end (whichever comes first), we observe 

1,180 ingroing nail diagnoses in the diclofenac group, and 758 in the celecoxib group. A 

Cox regression produces a hazard ratio of 1.08 (95% confidence interval: 0.99-1.19).

When using the nested case-control design in the CCAE database, we first identify 

25,054,470 subjects with a diagnosis of arthralgia, the nesting cohort listed in the gold 

standard. Within this nesting cohort we identify 793,153 cases who had their first ingrown 

nail diagnosis after their arthralgia diagnosis. We select up to 10 controls for each case from 

the nesting cohort, matching on age and sex, and requiring the index date (outcome date of 

the matched case) to be after their arthralgia diagnoses. After matching, there are 407,386 

cases and 4,073,857 controls. We observe 5,736 cases and 35,330 controls to be on 

diclofenac on their index date. A logistic regression produces an odds ratio of 1.64 (95% 

confidence interval: 1.59-1.68).

3.2 Extending the example to all analyses

We similarly apply all other analysis variants discussed in Section 2.5 to produce the effect 

size estimates for our example negative control and show the results in Figure 9.

3.3 Extending the example to all controls

Similarly we apply all other analysis variants to all other negative and positive controls in 

our gold standard. Figure 10 shows the estimates for the two exemplar analysis variants 

discussed above. Note that this plot does not include all 800 controls, because some variants 

failed to produce an estimate.

To provide some sense of the scale of these analyses, we list median counts of some key 

quantities for the various analyses across the 200 negative controls in Table 7. We use the 

estimates for the gold standard to compute the metrics described earlier and shown in Figure 

11. For example, for our exemplar control we observe that the confidence interval produced 

by the specific cohort method analysis (0.99-1.19) contains the true effect size (1.00). In the 

‘Coverage’ column of Figure 11 we note that for this particular design using 1-on-1 PS 

matching, the 95% confidence interval contains the true effect size for 73% of our controls. 

The confidence interval of the nested case-control design (1.59-1.68) does not contain the 

true effect size. Figure 11 informs us that the 95% confidence interval of this particular 

design contains the true effect size only 22% of the time. We filter the set of controls to 

those having MDRR > 1.25 to ensure the different methods have somewhat comparable 

numbers of non-estimable controls. In general, all methods report lower coverage, and this is 

the case both for negative and positive controls, as can be seen in our web app. We compute 

the same metrics after applying empirical calibration of the confidence intervals and p-

values, as shown in Figure 12.
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3.4 Extending the example to all databases, stratifying by exposure and outcome

We compute similar metrics in the PanTher, JMDC, and MDCR databases, and provide 

these as supplementary materials. These metrics provide an overall evaluation of the 

performance of the various methods across all controls. However, we maybe interested in the 

performance in a given context, for example, when faced with a rare and acute outcome such 

as acute pancreatitis. As described earlier, our set of controls is constructed by first selecting 

four exposures and four outcomes, and generating controls for each of these. We can 

therefore stratify our controls accordingly. For example, there are 100 controls with acute 

pancreatitis as the outcome, and we can evaluate how well each method performs on this 

subset of controls. Figure 13 evaluates all analysis variants across all control strata, across all 

databases. To reduce visual complexity, we show only one metric: mean precision (1/SE2) 

after empirical calibration. Our Shiny app allows users to generate this graph interactively 

for the other metrics.

4 Discussion

Overall, we observe that most methods have low coverage and high type I error across all 

evaluated scenarios. For the methods we evaluate, the true effect size is generally more often 

outside the 95% confidence interval than within, and the methods reject the null hypothesis 

more often than not when the null hypothesis is in fact true. Many sources of systematic 

error threaten the validity of observational studies including selection bias, confounding, 

model misspecification, and measurement error. Since standard methods assume no 

systematic error exists, this poor performance perhaps should not surprise us. Fortunately, 

empirical calibration largely restores the nominal characteristics (i.e., 95% confidence 

interval coverage and 5% type I error rate). We believe these findings warrant consideration 

when interpreting findings of observational studies using these designs, and demonstrate the 

value of empirical calibration. This warrants particular scrutiny in large-scale observational 

research, where, we contend, textbook methods focus on the wrong type of error. 

Uncalibrated confidence intervals solely reflect random error. However random error 

approaches zero as sample size increases while systematic error, by stark contrast, remains 

stubbornly immune to more data. Empirical calibration represents an attempt to capture both 

sources of error.

4.1 How did the methods perform?

Answering the question “How did the methods perform?” depends on the use case and 

setting in which the method is used. If we are interested in establishing the magnitude of an 

effect, we may choose a method with low MSE, but we must also take into consideration 

how well a method expresses uncertainty. If a method with low MSE also has a low 

coverage of the 95% confidence interval it may still mislead us about the true magnitude of 

the effect. It is important to realize we can trade off performance on various metrics. We can 

use confidence interval calibration to ensure all methods have roughly nominal coverage and 

select the method with the highest precision after calibration to find which method reduces 

uncertainty the most. In that respect, the SCCS method adjusting for age and season, and the 

SCCS method adjusting for all drugs perform best in CCAE across all controls, with 

coverages after calibration of 94%, and 95% respectively, and mean precision after 
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calibration of 22.15 and 21.98, respectively. These same methods also comprise the top two 

in JMDC and MDCR, and are in the top five for Pan-Ther. If we drill down further into 

specific use cases, we do see different methods performing better under certain 

circumstances, as shown in Figure 13. For example, for our controls related to diclofenac, 

the self-controlled cohort performs best in three out of four databases, and for stroke the 

case-control design achieves the highest mean precision after calibration in the two US 

insurance claims databases (CCAE and MDCR).

If we are interested in the ability to distinguish effects from non-effects, we may look to type 

I and type II error. Again, we can trade off between these two errors, for example, by 

choosing a different alpha threshold. Alternatively, we might focus on the AUC, which 

summarizes the accuracy in distinguishing negative from positive controls, irrespective of 

the threshold. As yet another alternative, we could use empirical p-value calibration to 

restore type I error to nominal and select the method with the lowest type II error. The SCCS 

method adjusting for all other drugs consistently demonstrates the highest AUC in all four 

databases across all controls, with an AUC ranging from 0.95 to 0.98. This method also has 

the lowest type II error after calibration in all four databases. Across the eight subsets of 

controls, these findings are highly consistent, where this method has either the highest AUC 

or is very close to the best performance. These findings are in line with those from the 

second OMOP experiment, which also showed the highest AUCs for self-controlled methods 

(Ryan & Schuemie, 2013).

Even though one specific design might demonstrate the best performance on one or several 

metrics in our evaluation, it may very well be advantageous to use more than one method 

when estimating an effect. We observe that the correlation between estimates produced by 

the various methods can be quite low and even negative as shown in the Supplementary 

Materials, suggesting some orthogonality in the information provided by each method.

One interesting finding is that IPTW consistently presents considerably lower coverage than 

PS stratification and matching across scenarios and is in fact on par with using no PS 

adjustment. We hypothesize this may be due to extreme weights; using those weights may 

bias an estimate, but trimming extreme weights may introduce a different type of bias. This 

is in line with earlier findings comparing various PS adjustment strategies (Elze et al., 2017).

Mostly, the findings in the other databases agree with those for the CCAE database 

discussed above. One striking difference is that many methods appear strongly positively 

biased in the PanTher database. Upon investigation, it was revealed that the cause might be 

the definition of the observation period in this database. The observation period is defined to 

start at the first observed activity for a person, but for many subjects the first diagnosis and 

drug exposures are not observed until many years after observation start, suggesting 

incomplete data capture. Methods such as the SCCS will include these blind spots as time 

without exposure and without outcome, thus estimating a much lower rate of the outcome 

when not exposed, resulting in high incidence rate ratio estimates. It is interesting to note 

that the empirical calibration appears to largely correct for this systematic error.
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4.2 Limitations

The results reported here may be specific to the databases that were used and may not 

generalize to others. It is encouraging, however, to see consistency in the main findings 

across the four databases, even though they represent very different types of observational 

healthcare data.

Whereas our negative controls reflect real confounding, both measured and unmeasured, our 

positive controls retain just some of that confounding. The additional synthetic outcomes 

only reflect measured confounding. Furthermore, these additional outcomes do not represent 

some effects of measurement error; positive controls imply constant positive predictive value 

and sensitivity, which may not be true in reality. Our performance metrics based on these 

positive controls may therefore be somewhat optimistic.

Our process for synthesizing positive controls aims to ensure that the true effect size holds 

for the various effect statistics used by the different methods, such as the incidence rate ratio, 

hazard ratio, and odds ratio, either marginal or conditional. This allows us to compare all 

methods on equal footing, but in real world situations these different statistics may deviate. 

Many will be willing to make the assumption that these differences are inconsequential, as 

evidenced for example by the fact that many meta-analyses simply combine these different 

estimates. Under this assumption, our evaluation may inform on what method to select 

overall. For those that are unwilling to make this assumption, but are able to specify exactly 

what effect statistic suits their needs (e.g., a conditional hazard ratio estimate of the effect in 

the treated), our results may still inform on the optimal choice under this constraint. Our 

negative controls do precisely reflect real world situations, and the results on these controls 

should therefore be informative to all.

A limitation of our negative controls is that by definition there is no causal association 

between exposure and outcome, including beneficial ones. This means that the outcome can 

never be the indication for a drug, which would be the case if we would like to estimate the 

effectiveness of a drug. Our findings are therefore most relevant for the estimation of 

(previously unknown) adverse effects, but less so for effectiveness studies.

By necessity, we evaluate only a selection of population-level effect estimation methods. 

Others, such as those using manually selected covariates instead of our large-scale PS, using 

a non-exposure group in a new-user cohort method when performing direct effect 

estimation, G-estimation (Robins, Blevins, Ritter, & Wulfsohn, 1992) and estimation 

through use of instrumental variables (Ertefaie, Small, Flory, &Hennessy, 2017) (with or 

without G-estimation) should also be evaluated in due time, although implementations that 

allow systematics application of these methods on large numbers of exposure-outcome pairs 

will need to be developed first.

4.3 Open science and transparency

One important aspect of the work presented here is that of Open Science. Although we are 

unable to share the patient-level data from CCAE, PanTher, JMDC, and MDCR, all other 

study artifacts such as study code, code implementing the various methods discussed here, 

and result sets are made publicly available in our GitHub repositories. Our results are 
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furthermore shared through an interactive app to allow readers to explore the results 

independently of our interpretation as discussed in this paper. We strongly believe this open 

approach to science will be of great benefit to the field of data science and beyond.

5 Conclusions

Large observational healthcare databases allow us to answer many important questions, 

including questions about causal effects. We provide a benchmark for evaluating effect 

estimation methods on real data and apply this to a large set of methods currently used to 

inform medical decision making. Our results show most methods display operating 

characteristics that are far from nominal, having the true effect size outside of the 95% 

confidence interval most of the time, and incorrectly rejecting the null when the null is true 

most of the time. Empirical calibration can largely restore these nominal characteristics. 

Empirically calibrated self-controlled methods such as the SCCS yield the highest precision, 

as well as AUC, and perhaps provide a reasonable default approach for future analyses.

Although our results inform on how methods perform in a wide range of scenarios, we 

strongly recommend including negative and positive controls in each observational study 

both to measure operating characteristics in a specific research setting, and to facilitate 

empirical calibration.
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Figure 1: 
Synthesizing positive controls from negative controls.
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Figure 2: 
The new-user cohort design. Subjects observed to initiate the target treatment are compared 

to those initiating the comparator treatment. To adjust for differences between the two 

treatment groups several adjustment strategies can be used, such as stratification, matching, 

or weighting by the propensity score, or by adding baseline characteristics to the outcome 

model. The characteristics included in the propensity model or outcome model are captured 

prior to treatment initiation.
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Figure 3: 
The self-controlled cohort design. The rate of outcomes during exposure to the target is 

compared to the rate of outcomes in the time pre-exposure.
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Figure 4: 
The case-control design. Subjects with the outcome (“cases”) are compared to subjects 

without the outcome (“controls”) in terms of their exposure status. Often, cases and controls 

are matched on various characteristics such as age and sex.
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Figure 5: 
The case-crossover design. The time around the outcome is compared to a control date set at 

a predefined interval prior to the outcome date.
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Figure 6: 
The Self-Controlled Case Series design. The rate of outcomes during exposure is compared 

to the rate of outcomes when not exposed.
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Figure 7: 
Summary descriptives of the four databases included in this evaluation. Each row represents 

a database. Observation duration shows the distribution of the observation time per person. 

Observed age reflects the number of subjects that were observed for at least one day at that 

age. The observed calendar year represents the number of subjects that were observed for at 

least one day in that year. The y-axes of the bar charts show the number of subjects, with 

scales normalized for each database. The total number of subjects per database is provided 

on the right.
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Figure 8: 
Screenshot of the Shiny app at http://data.ohdsi.org/MethodEvalViewer/. This app shows the 

results for all methods on all four databases, and allows filtering the estimates in various 

ways before computing the performance metrics.
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Figure 9: 
Effect size estimates (and 95% confidence intervals) for one example control in the CCAE 

database. We use each analysis variant to estimate the causal effect size of diclofenac on the 

risk of ingrowing nails. The true effect size is 1. Comparative analyses (i.e., the cohort 

method) use celecoxib as comparator, and nested analyses restrict to a population with a 

prior diagnosis of arthralgia. We use the abbreviations “incl.” for “including,” “exp.” for 

“exposure,” and “ex.” for “excluding.”
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Figure 10: 
Effect size estimates and standard errors for all negative and positive controls for two 

exemplar analyses in the CCAE database. Each dot represents the estimate for a single 

control. The red dashed line indicates the boundary where the confidence interval no longer 

contains the truth. The cohort method uses 1-on-1 matching and an unstratified outcome 

model. The case-control analyses are nested within the relevant indication and select up to 

10 controls per case.
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Figure 11: 
Performance metrics on the CCAE database computed using controls with MDRR < 1.25. 

We use the abbreviations “incl.” for “including,” “exp.” for “exposure,” and “ex.” for 

“excluding.”
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Figure 12: 
Performance metrics on the CCAE database after empirical calibration computed using 

controls with MDRR < 1.25. We use the abbreviations “incl.” for “including,” “exp.” For 

“exposure,” and “ex.” for “excluding.”
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Figure 13: 
Performance on the CCAE database after empirical calibration computed using controls with 

MDRR < 1.25. The dotplot shows mean precision (1/SE2), stratified by main exposure and 

outcome, and by database. Each dot represents the performance of an analysis variant. 

Because precision depends, inter alia, on sample size, which differs for the different 

databases, we used varying scales for the y-axis. Note that some methods did not produce 

any estimates for some strata-database combinations, and therefore the number of dots is not 

always the same.
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Table 1:

Example entries in the gold standard.

Target Comparator Nesting cohort Outcome True effect size

Brinzolamide Levobunolol Glaucoma Acute pancreatitis 1.0

Cevimeline Pilocarpine Sjogren’s syndrome Acute pancreatitis 1.0

Diclofenac Celecoxib Arthralgia Acute stress disorder 1.0

Diclofenac Celecoxib Arthralgia Ingrowing nail 1.0
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Table 2:

Analysis variants of the new-user cohort method included in the evaluation.

Variant
description

PS
adjustment

Stratified
outcome model

Add covariates to
the model

No PS, simple outcome model none no no

1-on-1 matching, unstratified model 1-on-1 matching no no

Variable ratio matching, stratified model variable ratio matching yes no

Stratification stratification yes no

IPTW trimming + IPTW no no

Var. ratio matching + full model variable ratio matching yes yes
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Table 3:

Analysis variants of the self-controlled cohort design included in the evaluation. We use the abbreviations 

“incl.” for “including,” “exp.” for “exposure,” and “ex.” for “excluding.”

Description
Time

at risk
Exposure
start date

Require
full observation

Time exposed, incl. exp. start date Time exposed In exposure window no

30 days, incl. exp. start date 30 days In exposure window no

Time exposed, incl. exp. start date, require full obs. Time exposed In exposure window yes

Time exposed, ex. exp. start date Time exposed Excluded no

30 days, ex. exp. start date 30 days Excluded no

Time exposed, ex. exp. start date, require full obs. Time exposed Excluded yes
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Table 4:

Analysis variants of the self-controlled cohort design included in the evaluation.

Description Controls per case Nesting in indication

2 controls per case 2 no

10 controls per case 10 no

Nesting in indication, 2 controls per case 2 yes

Nesting in indication, 10 controls per case 10 yes
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Table 5:

Analysis variants of the self-controlled cohort design included in our evaluation.

Description Nesting in indication Control window Case-time-control

Simple case-crossover, −30 days FALSE −30 no

Simple case-crossover, −180 days FALSE −180 no

Nested case-crossover, −30 days TRUE −30 no

Nested case-crossover, −180 days TRUE −180 no

Nested case-time-control, −30 days TRUE −30 yes

Nested case-time-control, −180 days TRUE −180 yes
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Table 6:

Analysis variants of the self-controlled case series design included in the evaluation.

Description
Include

start day
Pre-exposure

window
Age and
season

Event-dependent
observation

All other
exposures

Simple SCCS no no no no no

Including exposure start day yes no no no no

Using pre-exposure window no yes no no no

Using age and season no no yes no no

Using event-dependent observation no no no yes no

Using all other exposures no no no no yes
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Table 7:

Some key median counts for the various analyses variants across all 200 negative controls in the CCAE 

database. We use the abbreviations “incl.” for “including,” “exp.” for “exposure,” and “ex.” for “excluding.”

Cohort
method

target
subjects

comparator
subjects

target
outcomes

comparator
outcomes

No PS, simple outcome model 926,669 573,353 464 129

1-on-1 matching, unstratified outcome model 85,773 85,773 86 42

Variable ratio matching, stratified outcome model 85,773 433,152 86 95

Stratification 926,669 573,353 464 129

IPTW 880,335 544,685 436 126

Var ratio matching + full outcome model 85,773 433,152 86 95

Self-controlled
cohort (SCC) subjects exposures

exposed
outcomes

unexposed
outcomes

Time exposed, incl. exp. start date 2,109,605 4,021,441 2,857 1,320

30 days, incl. exp. start date 2,109,605 4,021,441 1,705 756

Time exposed, incl. exp. start date, require full obs. 1,867,062 3,788,069 2,453 1,140

Time exposed, ex. exp. start date 2,109,605 4,021,441 2,362 1,320

30 days, ex. exp. start date 2,109,605 4,021,441 1,428 756

Time exposed, ex. exp. start date, require full obs. 1,864,181 3,783,178 2,061 1,139

Case-control cases controls
exposed

cases
unexposed

controls

2 controls per case 151,903 303,805 1,666 1,118

10 controls per case 151,903 1,519,025 1,666 5,745

Nesting in indication, 2 controls per case 61,917 123,834 1,036 811

Nesting in indication, 10 controls per case 61,917 619,170 1,036 4,101

Case-crossover cases
exposed

outcomes
unexposed

outcomes

Simple case-crossover, −30 days 242,160 2,718 1,586

Simple case-crossover, −180 days 242,160 2,718 1,429

Nested case-crossover, −30 days 61,917 1,248 744

Nested case-crossover, −180 days 61,917 1,248 642

Nested case-time-control, −30 days 61,917 1,248 744

Nested case-time-control, −180 days 61,917 1,248 642

Self-controlled
case-series (SCCS) cases

exposed
subjects

unexposed
subjects

Simple SCCS 9,088 9,060 854

Including day 0 9,185 9,176 1,062

Using pre-exposure window 9,188 9,060 854

Using age and season 18,601 9,287 866

Using event-dependent observation 9,088 9,060 854

Using all other exposures 135,724 9,285 866
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