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ABSTRACT OF THE DISSERTATION

Machine Learning for Large-Scale Genomics: Algorithms, Models and Applications

By

Yifei Chen

Doctor of Philosophy in Computer Science

University of California, Irvine, 2014

Professor Xiaohui Xie, Chair

Genomic malformations are believed to be the driving factors of many diseases. Therefore,

understanding the intrinsic mechanisms underlying the genome and informing clinical prac-

tices have become two important missions of large-scale genomic research. Recently, high-

throughput molecular data have provided abundant information about the whole genome,

and have popularized computational tools in genomics. However, traditional machine learn-

ing methodologies often suffer from strong limitations when dealing with high-throughput

genomic data, because the latter are usually very high dimensional, highly heterogeneous,

and can show complicated nonlinear effects. In this thesis, we present five new algorithms or

models to address these challenges, each of which is applied to a specific genomic problem.

Project 1 focuses on model selection in cancer diagnosis. We develop an efficient algorithm

(ADMM-ENSVM) for the Elastic Net Support Vector Machine, which achieves simultane-

ous variable selection and max-margin classification. On a colon cancer diagnosis dataset,

ADMM-ENSVM shows advantages over other SVM algorithms in terms of diagnostic accu-

racy, feature selection ability, and computational efficiency.

Project 2 focuses on model selection in gene correlation analysis. We develop an efficient

algorithm (SBLVGG) using the similar methodology as of ADMM-ENSVM for the Latent

Variable Gaussian Graphical Model (LVGG). LVGG models the marginal concentration ma-
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trix of observed variables as a combination of a sparse matrix and a low rank one. Evaluated

on a microarray dataset containing 6,316 genes, SBLVGG is notably faster than the state-of-

the-art LVGG solver, and shows that most of the correlation among genes can be effectively

explained by only tens of latent factors.

Project 3 focuses on ensemble learning in cancer survival analysis. We develop a gradient

boosting model (GBMCI), which does not explicitly assume particular forms of hazard func-

tions, but trains an ensemble of regression trees to approximately optimize the concordance

index. We benchmark the performance of GBMCI against several popular survival models

on a large-scale breast cancer prognosis dataset. GBMCI consistently outperforms other

methods based on a number of feature representations, which are heterogeneous and contain

missing values.

Project 4 focuses on deep learning in gene expression inference (GEIDN). GEIDN is a large-

scale neural network, which can infer ˜21k target genes jointly from ˜1k landmark genes

and can naturally capture hierarchical nonlinear interactions among genes. We deploy deep

learning techniques (drop out, momentum training, GPU computing, etc.) to train GEIDN.

On a dataset of ˜129k complete human transcriptomes, GEIDN outperforms both k-nearest

neighbor regression and linear regression in predicting > 99.96% of the target genes. More-

over, increased network scales help to improve GEIDN, while increased training data benefits

GEIDN more than other methods.

Project 5 focuses on deep learning in annotating coding and noncoding genetic variants

(DANN). DANN is a neural network to differentiate evolutionarily derived alleles from sim-

ulated ones with 949 highly heterogeneous features. It can capture nonlinear relationships

among features. We train DANN with deep learning techniques like for GEIDN. DANN

achieves a 18.90% relative reduction in the error rate and a 14.52% relative increase in the

area under the curve over CADD, a state-of-the-art algorithm to annotate genetic variants

based on the linear SVM.
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Chapter 1

Introduction

1.1 Background

Genomics has been of interest to biologists and doctors for decades. In the macroscopic

paradigm, genomic malformations are believed to be the driving factors of many diseases,

including different cancer types. This raises the question of how to diagnose, or to evaluate

the risk of a disease, by reviewing individuals’ genomic and transcriptomic profiles. A vivid

application of this idea is cancer diagnosis and prognosis [2, 90, 26, 72]. However, disease

evaluation is traditionally considered a responsibility of physicians, who examine patients’

clinical conditions (ages, lab results, family history, etc.) and make assessments accordingly.

This often requires long-term domain training and experience, but can still be subjective.

Moreover, it remains challenging to incorporate large amounts of genomic information into

decision-making processes. In the microscopic paradigm, genomic and transcriptomic ac-

tivities have complicated patterns. For example, genes’ expressions may be up-regulated or

down-regulated, depending on different cellular conditions; DNA sequence base pairs may

mutate (e.g., Single Nucleotide Polymorphism), delete, or duplicate, which can present vari-
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ous alleles to a certain gene. Moreover, genes have intrinsic interactions: they regulate (pro-

motes or inhibits) the activities of one another, by forming structured regulatory networks

or pathways. Genomic and transcriptomic activities manifest cascading nonlinear effects,

and fundamentally control the living process of any organism. Any abnormal change in the

genome or the transcriptome is a potential factor to cause diseases [26, 63, 41]. Therefore,

it is fundamentally important to explore the genomic process itself.

Genomic studies have significantly progressed in the recent decade, thanks to the advances

of high-throughput molecular data, such as microarray gene expression data [79, 66, 65],

and next-generation sequencing data [71, 92, 77]. Such datasets usually contain hundreds

to tens of millions of individual samples, each of which is characterized by thousands or

even millions of molecular signatures. They have provided abundant information about the

whole genome in the molecular level. Therefore, deploying computational tools to study

genomics from these high-throughput data has become an important interdisciplinary effort

between molecular biology and machine learning. Representative research directions include

gene regulatory networks [60, 52], genome-wide association studies (GWAS) and pathway

analysis [14, 94, 115, 55, 27, 104]. Results of these kinds of research are further applied

to many important biomedical applications, such as disease diagnosis and prognosis, drug

design, etc.

However, traditional computational learning methodologies often cannot be directly applied

to high-throughput molecular datasets and large-scale genomic problems, because of the

following practical challenges:

• High-throughput molecular data are often of very high dimensions. For example,

a whole-genome microarray assay typically measures expression levels of thousands

to tens of thousands of genes. Moreover, the data are usually embedded in a low-

dimensional manifold. Consequently, feature extraction or dimensionality reduction

2



has become a critical condition for the success of any computational learning algo-

rithms, in particular, in the scenario in which only limited data are available.

• Heterogeneity commonly exists among available data resources. Specifically, gene ex-

pression data are continuous; next-generation sequencing data are categorical (i.e., A,

C, G, T); clinical features and genetic variant features are often a mixture of con-

tinuous, Boolean, categorical and other types. Moreover, different samples may have

different missing features or even different feature sets. Therefore, combining these

highly heterogeneous data to achieve improved predictive power is an unavoidable

problem.

• Shallow learning machines, such as linear regression and support vector machine, are

still the prevalent approaches. However, the size of genomic data is increasing rapidly.

For example, the colon cancer dataset collected in 1999 only has 62 samples of 2k genes

[2], while the Gene Expression Omnibus dataset compiled in 2013 has ˜129k samples

of ˜23k genes. Traditional methods often cannot scale up well, or cannot capture the

complicated nonlinear structure within the data. Predictive models that have strong

representative power but remain computationally efficient are in high demand in the

“big data” era.

1.2 Dissertation Contributions and Outline

In this thesis, we will develop a series of computational learning models and algorithms to

tackle high-throughput molecular data. The proposed methods have five concrete applica-

tions in large-scale genomics, as highlighted below:

1. cancer diagnosis;

2. cancer prognosis;
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3. gene regulatory network interpretation;

4. gene expression inference;

5. annotating pathogenicity of genetic variants.

Applications 1 and 2 belong to the macroscopic paradigm of genomics, as they both aim to

solve specific clinical problems; Applications 3, 4 and 5 belong to the microscopic paradigm

of genomics, as they aim to study the intrinsic activities of the genome. Along this line

of thinking, we will address the three computational challenges mentioned in the previous

section from different perspectives.

The themes of the following chapters are outlined as follows:

In Chapter 2, we will present an efficient algorithm, ADMM-ENSVM, to solve the Elastic Net

Support Vector Machine. ENSVM incorporates both `1- and `2-norm regularization into the

standard SVM, and can achieve simultaneous variable selection and margin-maximization.

However, because the loss function and the regularization term are both nondifferentiable,

there is no efficient method available to solve ENSVM for large-scale problems. Our proposed

algorithm is based on the Alternating Direction Method of Multipliers. By introducing

auxiliary variables, it decomposes the non-smooth optimization of ENSVM into smaller easier

sub-problems. We apply ADMM-ENSVM, SVM, `1-norm SVM and Hybrid Huberized SVM

(HHSVM, a smoothed approximation of ENSVM solved by a path algorithm) on a colon

cancer dataset with 2,000 microarray probes of 62 samples, and illustrate the advantage

of ADMM-ENSVM in terms of cancer diagnose (classification) accuracy, feature selection

ability, and computational efficiency over other approaches. This chapter is a revision of the

original publication [111].

In Chapter 3, we will present an efficient first-order algorithm, SBLVGG, based on the Split

Bregman method to solve the Latent Variable Gaussian Graphical Model. We consider
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the problem of covariance matrix estimation in the presence of latent variables. Under

proper conditions, it is possible to learn the marginal covariance matrix of the observed

variables via a tractable convex program, where the concentration matrix of the observed

variables is decomposed into a sparse matrix (representing the graphical structure of the

observed variables) and a low rank matrix (representing the marginalization effect of latent

variables). Empirically, SBLVGG converges quickly under mild conditions. We show that

SBLVGG is notably faster than the state-of-the-art algorithm on both artificial and real-

world data. Applying the algorithm to a gene expression dataset involving thousands of

genes, we show that most of the correlations between genes can be explained by only a few

dozen latent factors. This finding provides a new interpretation to the underlying structure

of gene regulatory networks. This chapter is a revision of the original publication [112].

In Chapter 4, we will present an ensemble algorithm, GBMCI, for survival analysis via di-

rectly optimizing the concordance index. Survival analysis focuses on modeling the time to

an event of interest, such as death or disease recurrence, while the concordance index is a

widely adopted evaluation metric for survival analysis. Current statistical models for survival

analysis often impose strong assumptions on hazard functions, which describe how the risk of

an event changes depending on each individual’s covariates. In particular, the prevalent pro-

portional hazards model assumes that covariates are multiplicatively related to the hazard.

Our nonparametric model GBMCI does not explicitly assume particular forms of hazard

functions, but utilizes an ensemble of regression trees to model it. We develop a gradient

boosting algorithm to train the tree ensemble by optimizing a smoothed approximation of

the concordance index. We benchmark the performance of GBMCI against several popular

survival models with a large-scale breast cancer prognosis task (˜50k microarray probes and

˜30 clinical variables of ˜2k patients). Our experiments demonstrate that GBMCI consis-

tently outperforms other methods based on a number of feature representations, which are

heterogeneous and contain missing values. This chapter has been originally published as

part of [19].
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In Chapter 5, we will present GEIDN, a large-scale neural network, to do gene expression

inference. Although genome-wide microarrays can measure the expression of all ˜22k human

genes, they are prohibitively expensive. However, genes’ expressions have strong correlation.

The Library of Integrated Cellular Signatures (LINCS) project has identified ˜1k landmark

genes that capture most of the information of the other ˜21k target genes, and has devel-

oped the L1000 microarray, which is optimized for measuring the expression of the landmark

genes. LINCS currently uses linear regression to infer target genes’ expressions separately,

which potentially conflicts with the fact that genes have intrinsic nonlinear interactions, and

that transcriptional programs are often grouped into modules. On the other hand, GEIDN

can infer target genes jointly from landmark genes, and can naturally capture hierarchical

nonlinear features shared among target genes. We deploy advanced deep learning techniques

to train GEIDN, such as drop out, momentum training, and GPU computing. On a Gene

Expression Omnibus dataset of ˜129k samples, GEIDN improves ˜41% over k-nearest neigh-

bor regression and ˜17% over linear regression in average prediction accuracy; GEIDN also

outperforms the latter two methods for > 99.96% of the target genes. Moreover, increased

network scales help to improve GEIDN, while increased training data benefits GEIDN more

than other methods. Lastly, we infer target genes of the L1000 data with GEIDN, and have

made the data publicly available for further study.

In Chapter 61, we will present DANN, a deep learning approach for annotating the pathogenic-

ity of genetic variants. Annotating genetic variants, especially noncoding variants, for the

purpose of identifying pathogenicity remains a challenging problem. CADD is an algorithm

designed to annotate both coding and noncoding variants, and has been shown to outper-

form other annotation algorithms. CADD trains a linear SVM to differentiate evolutionarily

derived (likely benign) alleles from simulated (likely deleterious) variants, with 949 highly

1This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Bioinformatics
following peer review. The definitive publisher-authenticated version “D. Quang, Y. Chen, and X. Xie.
DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics,
2014.” is available online at: http://bioinformatics.oxfordjournals.org/content/early/2014/11/19/
bioinformatics.btu703.full.pdf+html.
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heterogeneous features. However, linear SVM cannot capture nonlinear relationships among

the features, which can limit the performance. On the other hand, DANN uses the same fea-

ture set and training data as CADD, but trains a deep neural network. DANN can capture

nonlinear relationships among features and are better suited than SVMs for problems with a

large number of samples and features. As in Chapter 5, we exploit deep learning techniques

to train DANN. DANN achieves a 18.90% relative reduction in the error rate and a 14.52%

relative increase in the area under the curve (AUC) over CADD’s SVM methodology.

In Chapter 7, we will make conclusions and discuss potential future directions.
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Chapter 2

Efficient Variable Selection in Elastic

Net SVM for Cancer Diagnosis

2.1 Introduction

Datasets with tens of thousands of variables have become increasingly common in many real-

world applications. For example, in the biomedical domain a microarray dataset typically

contains about 20,000 genes, while a genotype dataset commonly includes half of a million

SNPs. Regularization terms that encourage sparsity in coefficients have become very popular

for simultaneous variable selection and prediction [99, 117].

A widely adopted strategy for imposing sparsity on regression or classification coefficients

is the `1-norm regularization. Perhaps the most well-known example is the least absolute

shrinkage and selection operator (lasso) method for linear regression. The method minimizes

the usual sum of squared errors while penalizing the `1-norm of the regression coefficients

[99]. Due to the nondifferentiability of the `1-norm, the lasso is able to perform continuous

shrinkage and automatic variable selection simultaneously. Although the lasso method has
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shown successes in many situations and has been generalized for different settings [116, 69],

it has several limitations. First, when the dimension of the data (p) is larger than the number

of training samples (n), the lasso selects at most n variable before it saturates [32]. Second,

if there is a group of variables whose pairwise correlations are very high, the lasso tends to

select only one variable from the group and does not care which one is selected.

The elastic net penalty proposed by Zou et al. in [117] is a convex combination of the

`1-norm and the ridge penalty, which has the characteristics of both the lasso and ridge

regression in the regression setting. More specifically, the elastic net penalty simultaneously

does automatic variable selection and continuous shrinkage, and can select groups of corre-

lated variables. It is especially useful for “large p, small n” problems, where the “grouped

variables” situation is a particularly important concern and has been addressed many times

in the literature [51, 50].

The idea of using `1-norm constraints to automatically select variables has also been extended

to classification problems. Zhu et al. [116] proposed an `1-norm support vector machine,

whereas Wang et al. [105] proposed a SVM with the elastic net penalty term, which they

named doubly regularized support vector machine (or Elastic Net SVM, abbr., ENSVM).

Using a mixture of the `1-norm and the ridge penalties, ENSVM is able to perform automatic

variable selection as the `1-norm SVM. Additionally, it also encourages highly correlated

variables to be selected (or removed) together, and thus achieves the grouping effect.

Although ENSVM has a number of desirable features, solving ENSVM is non-trivial because

of the nondifferentiability of both the loss function and the regularization term. This is espe-

cially problematic for large-scale problems. To circumvent this difficulty, Wang et al. [106]

proposed the Hybrid Huberized Support Vector Machine (HHSVM), which uses a huberized

hinge loss function to approximate the hinge loss in ENSVM. Because the huberized hinge

loss function is differentiable, HHSVM is easier to solve than ENSVM. Wang et al. proposed

a path algorithm to solve HHSVM [106]. However, because the path algorithm requires
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tracking disappearance of variables along a regularization path, it is not easy to implement

and still does not handle large-scale data well.

Our main contribution in this chapter is to introduce a new algorithm to directly solve

ENSVM without resorting to the approximation as in HHSVM. Our method is based on the

Alternating Direction Method of Multipliers (ADMM) [42, 44]. We demonstrate that the

method is efficient even for large-scale problems with tens of thousands variables.

The rest of the chapter is organized as follows. In Section 2.2, we provide a description of

the SVM model with the elastic net penalty. In Section 2.3, we derive an iterative algorithm

based on ADMM to solve the optimization problem in ENSVM and prove its convergence

property. In Section 2.4, we benchmark the performance of the algorithm on both simulated

and real-world data.

2.2 Support Vector Machines with Elastic Net Penalty

2.2.1 SVM as Regularized Function Estimation

Consider the classification of the training data {(xi, yi)}ni=1, where xi = (xi1, . . . , xip)
T are

the predictor variables and yi ∈ {−1, 1} is the corresponding class label. The support vector

machine (SVM) was originally proposed to find the optimal hyperplane that separates the

two classes of data points with the largest margin [101]. It can be equivalently reformulated

as an `2-norm penalized optimization problem:

min
β0,β

1

n

n∑
i=1

(1− yi(β0 + xTi β))+ +
λ

2
‖β‖2

2, (2.1)

where the loss function (1 − ·)+ := max(1 − ·, 0) is called the hinge loss, and λ ≥ 0 is a

regularization parameter, which controls the balance between the “loss” and the “penalty”.
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By shrinking the magnitude of the coefficients, the ridge penalty in (2.1) reduces the variance

of the estimated coefficients, and thus can achieve better prediction accuracy. However, the

ridge penalty cannot produce sparse coefficients and hence cannot automatically perform

variable selection. This is a major limitation for applying SVM to do classification in high-

dimensional datasets, such as gene expression data from microarrays [47, 78], where variable

selection is essential for both achieving better prediction accuracy and providing reasonable

interpretations.

To include variable selection, Zhu et al. [116] proposed an `1-norm support vector machine,

min
β0,β

1

n

n∑
i=1

(1− yi(β0 + xTi β))+ + λ‖β‖1, (2.2)

which does variable selection automatically via the `1-norm penalty. However, it shares sim-

ilar disadvantages with the lasso method for “large p, small n” problems, such as selecting

at most n relevant variables, and neglecting group effects. This is not satisfactory for some

applications. For example, in traditional microarray analysis, we often have p � n. Fur-

thermore, genes in the same biological pathway usually show highly correlated expressions.

Therefore, it is desirable to identify all, instead a subset, of them for the purposes of both

providing biological interpretations and building prediction models.

One natural thought to overcome the limitations outlined above is to apply the elastic net

penalty to SVM:

min
β0,β

1

n

n∑
i=1

(1− yi(β0 + xTi β))+ + λ1‖β‖1 +
λ2

2
‖β‖2

2, (2.3)

where λ1, λ2 ≥ 0 are regularization parameters. The model was originally proposed by

Wang et al.[105], and was named doubly regularized SVM. However, to emphasize the role

of the elastic net penalty, we refer to (2.3) as the Elastic Net SVM or simply ENSVM in the

remaining of the thesis. Due to the properties of the elastic net penalty, the optimal solution

11



of (2.3) will preserve both the sparsity and the grouping effects, which has been achieved in

the regression setting.

2.2.2 Related Work

A similar model has been proposed by Wang et al. [106] who applied the huberized hinge

loss function to ENSVM and proposed the Hybrid Huberized SVM (HHSVM):

min
β0,β

1

n

n∑
i=1

φ(yi(β0 + xTi β)) + λ1‖β‖1 +
λ2

2
‖β‖2

2, (2.4)

where φ is the huberized hinge loss function:

φ(t) =


0, for t > 1,

(1− t)2/2δ, for 1− δ < t ≤ 1,

1− t− δ/2, for t ≤ 1− δ,

(2.5)

with δ > 0 being a pre-specified constant. The main motivation for [106] to use the huberized

hinge loss function (2.5) is that it is an approximation of the hinge loss and differentiable

everywhere, thereby making the optimization problem easier to solve while at the same time

preserving the variable selection feature.

The minimizer of (2.4) is piecewise linear with respect to λ1 for a fixed λ2. Based on this

observation, [106] proposed a path algorithm to solve HHSVM. The path algorithm keeps

track of four sets as λ1 decreases, and calls an “event” happens if any one of the four sets

changes. Between any two consecutive “events”, the solutions are linear in λ1, and after an

“event” occurs, the derivative of the solution with respect to λ1 changes. When each “event”

happens, the algorithm solves a linear system. If the dimension of the data p is large, it will

be unavoidable to solve many large-scale linear systems so as to obtain the solution path.

Furthermore, those linear equations are quite different from each other, and there are no
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special structures involved. As a result, the path algorithm is computational very expensive

for “large p” problems.

2.3 Algorithm for Elastic Net SVM

The Alternating Direction Method of Multipliers developed in the 1970s [42, 44] has recently

become a method of choice for solving many large-scale problems [16, 15, 45]. It is equivalent

or closely related to many other algorithms, such as the Douglas-Rachford splitting [107],

the Split Bregman method [45] and the Method of Multipliers [87].

In this section, we propose an efficient algorithm based on ADMM to solve ENSVM in (2.3)

by introducing auxiliary variables and reformulating the original problem.

2.3.1 Deriving ADMM for Elastic Net SVM

Because of the two nondifferentiable terms in (2.3), it is difficult to solve ENSVM directly.

In order to derive an ADMM algorithm, we introduce some auxiliary variables to handle the

nondifferentiability of the hinge loss term and the `1-norm term.

Let X = (xij)
n,p
i=1,j=1, and Y be a diagonal matrix whose diagonal elements form the vector

y = (y1, . . . , yn)T . The unconstrained problem of (2.3) can be reformulated as an equality-

constraint problem

arg min
β,β0

1

n

n∑
i=1

(ai)+ + λ1‖c‖1 +
λ2

2
‖β‖2

2

s.t. a = 1− Y (Xβ + β01) ,

c = β, (2.6)
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where a = (ai, . . . , an)T and 1 is an n-column vector of 1s. Note that the Lagrangian function

of (2.6) is

L (β, β0, a, c,u,v)

=
1

n

n∑
i=1

(ai)+ + λ1‖c‖1 +
λ2

2
‖β‖2

2 + 〈u,1− Y (Xβ + β01)− a〉+ 〈v, β − c〉 , (2.7)

where u ∈ Rn is a dual variable corresponding to the linear constraint a = 1−Y (Xβ + β01),

v ∈ Rp is a dual variable corresponding to the linear constraint c = β, and 〈·, ·〉 denotes

the standard inner product in Euclidean space. The augmented Lagrangian function (2.8) is

similar to (2.7) except for adding two terms u1
2
‖1− Y (Xβ + β01)− a‖2

2 and u2
2
‖β − c‖2

2 to

penalize the violation of linear constraints a = 1−Y (Xβ + β01) and c = β, thereby making

the function strictly convex. That is,

L (β, β0, a, c,u,v)

=L (β, β0, a, c,u,v) +
µ1

2
‖1− Y (Xβ + β01)− a‖2

2 +
µ2

2
‖β − c‖2

2, (2.8)

where µ1 > 0 and µ2 > 0 are two parameters. It is easy to see that solving (2.6) is equivalent

to finding a saddle point (β∗, β∗0 , a
∗, c∗,u∗,v∗) of L (β, β0, a, c,u,v) such that

L (β∗, β∗0 , a
∗, c∗,u,v) ≤ L (β∗, β∗0 , a

∗, c∗,u∗,v∗) ≤ L (β, β0, a, c,u
∗,v∗) ,

for all β, β0, a, c,u and v.

We solve the saddle point problem via gradient ascent on the dual problem

max
u,v

E(u,v), (2.9)
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where E(u,v) = minβ,β0,a,c L (β, β0, a, c,u,v) . Note that the gradient ∇E(u,v) can be

calculated by the following [12]

∇E(u,v) =

1− Y (Xβ(u,v) + β0(u,v)1)− a(u,v)

β(u,v)− c(u,v)

 , (2.10)

with

(β(u,v), β0(u,v), a(u,v), c(u,v)) = arg min
β,β0,a,c

L (β, β0, a, c,u,v) . (2.11)

Using gradient ascent on the dual problem (2.9), Eq. (2.10) and Eq. (2.11), we get the

Method of Multipliers [87] to solve (2.6)


(βk+1, βk+1

0 , ak+1, ck+1) = arg minβ,β0,a,c L
(
β, β0, a, c,u

k,vk
)

uk+1 = uk + µ1(1− Y (Xβk+1 + βk+1
0 1)− ak+1),

vk+1 = vk + µ2(βk+1 − ck+1).

(2.12)

The efficiency of the iterative algorithm (2.12) depends on whether the first equation of

(2.12) can be solved quickly. The augmented Lagrangian function L still contains nondif-

ferentiable terms. But different from the original objective function (2.3), the hinge loss

induced nondifferentiability has now been transferred from terms involving 1− yi(xTi β + β0)

to terms involving ai; and the `1-norm induced nondifferentiability has now been transferred

from terms involving β to terms involving c. Moreover, the nondifferentiable terms involving

a and c are now completely decoupled. Therefore, we can solve the first equation of (2.12)
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by alternately minimizing (β, β0), a and c,


(βk+1, βk+1

0 ) = arg minβ,β0 L
(
β, β0, a

k, ck,uk,vk
)
,

ak+1 = arg mina L
(
βk+1, βk+1

0 , a, ck,uk,vk
)
,

ck+1 = arg minc L
(
βk+1, βk+1

0 , ak+1, c,uk,vk
)
.

(2.13)

For the Method of Multipliers, the alternate minimization (2.13) should run multiple times

until convergence. However, we do not have to completely solve the first equation of (2.12)

since it is only one step of the overall iterative algorithm. Instead, we use only one alternation,

which is called the Alternating Direction Method of Multipliers [42]. Specifically, we use the

following iterations to solve (2.6)



(βk+1, βk+1
0 ) = arg minβ,β0 L

(
β, β0, a

k, ck,uk,vk
)
,

ak+1 = arg mina L
(
βk+1, βk+1

0 , a, ck,uk,vk
)
,

ck+1 = arg minc L
(
βk+1, βk+1

0 , ak+1, c,uk,vk
)
,

uk+1 = uk + µ1(1− Y (Xβk+1 + βk+1
0 1)− ak+1),

vk+1 = vk + µ2(βk+1 − ck+1).

(2.14)

The first equation in (2.14) is equivalent to

(β, β0) = arg min
β,β0

λ2

2
‖β‖2

2 +
〈
vk, β − ck

〉
+
〈
uk,1− Y (Xβ + β01)− ak

〉
+
µ1

2
‖1− Y (Xβ + β01)− ak‖2

2 +
µ2

2
‖β − ck‖2

2.

The objective function in the above minimization problem is quadratic and differentiable.
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Therefore, the optimal solution can be found by solving a set of linear equations:

(λ2 + µ2)I + µ1X
TX µ1X

T1

µ11
TX µ1n


βk+1

βk+1
0

 (2.15)

=

XTY uk − µ1X
TY (ak − 1)− vk + µ2c

k

1TY uk − µ11
TY (ak − 1)

 .

Note that the coefficient matrix in (2.15) is a (p+ 1)× (p+ 1) matrix. For small p, we can

store its inverse in the memory, so the linear equations can be solved with minimal cost. For

large p, we use the conjugate gradient algorithm (CG) to solve it at each iteration efficiently.

The linear system (2.15) has very special characteristics for “large p, small n” problems: as

XTX is a positive-definite low-rank matrix with rank at most n, the coefficient matrix in

(2.15) is a linear combination of an identity matrix and a positive-definite low-rank matrix

with rank at most n+ 1. If we use CG to solve the linear system (2.15), it converges in less

than n + 1 steps [88]. In our numerical implementation, we found that CG converges in a

few steps much less than n+ 1.

The second equation in (2.14) is equivalent to

ak+1 = arg min
a

1

n

n∑
i=1

(ai)+ +
µ1

2
‖1− Y (Xβk+1 + βk+1

0 1)− a‖2
2

+ 〈uk,1− Y (Xβk+1 + βk+1
0 1)− a〉.

(2.16)

In order to solve (2.16), we need the following Proposition [110].
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Proposition 2.1. Let sλ(ω) = arg minx∈R λx+ + 1
2
‖x− ω‖2

2. Then

sλ(ω) =


ω − λ, ω > λ

0, 0 ≤ ω ≤ λ,

ω, ω < 0.

Note that each ai is independent of one another in (2.16) and

‖u‖2
2

2µ1

+
µ1

2
‖1− Y (Xβk+1 + βk+1

0 1)− a‖2
2 + 〈uk,1− Y (Xβk+1 + βk+1

0 1)− a〉

=
µ1

2
‖a− (1 +

u

µ1

− Y (Xβk+1 + βk+1
0 1))‖2

2.

Together with Proposition 2.1, we can then update ak+1 in (2.16) according to

Corollary 2.1. The update of ak+1 in (2.16) is equivalent to

ak+1 = S 1
nµ1

(1 +
uk

µ1

− Y (Xβk+1 + βk+1
0 1)), (2.17)

where

Sλ(ω) = (sλ(ω1), sλ(ω2), . . . , sλ(ωn)),∀ω ∈ Rn.

The third equation in (2.14) is equivalent to

ck+1 = arg min
c
λ1‖c‖1 + 〈vk, βk+1 − c〉+

µ2

2
‖βk+1 − c‖2

2. (2.18)

Minimization of c in (2.18) can be done efficiently using soft thresholding, because the

objective function is quadratic and the nondifferentiable terms are completely separable.
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Let Tλ be a soft thresholding operator defined in the vector space,

Tλ(ω) = (tλ(ω1), . . . , tλ(ωp)),∀ω ∈ Rp, (2.19)

where

tλ(ωi) = sgn(ωi) max{0, |ωi| − λ}.

Using the soft thresholding operator (2.19), the optimal solution of c in (2.18) can be written

as

ck+1 = Tλ1
µ2

(
vk

µ2

+ βk+1

)
. (2.20)

Finally, by combining (2.14), (2.15), (2.17) and (2.20) together, we obtain the ADMM al-

gorithm for ENSVM (2.3) (Algorithm 1). It is a practical algorithm for “large p, small n”

problems and is very easy to implement.

Algorithm 1 Alternating Direction Method of Multipliers for Solving the Elastic Net SVM
(ADMM-ENSVM)

Initialize β0, β0
0 , a0, c0,u0, and v0.

repeat
1) Update βk+1, βk+1

0 by solving the following linear equation system:(
(λ2 + µ2)I + µ1X

TX µ1X
T1

µ11
TX µ1n

)(
βk+1

βk+1
0

)
=

(
XTY uk − µ1X

TY (ak − 1)− vk + µ2c
k

1TY uk − µ11
TY (ak − 1)

)
.

2) ak+1 = S 1
nµ1

(
1 + uk

µ1
− Y (Xβk+1 + βk+1

0 1)
)

.

3) ck+1 = Tλ1
µ2

(
vk

µ2
+ βk+1

)
.

4) uk+1 = uk + µ1(1− Y (Xβk+1 + βk+1
0 1)− ak+1).

5) vk+1 = vk + µ2(βk+1 − ck+1).
until
Convergence
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2.3.2 Convergence Analysis

The convergence property of Algorithm 1 can be derived using the standard convergence

theory of the Alternating Direction Method of Multipliers [42, 31].

Theorem 2.1. Suppose there exists at least one solution (β∗, β∗0) of (2.3). Assume λ1 >

0, λ2 > 0. Then the following property for Algorithm 1 holds:

lim
k→∞

1

n

n∑
i=1

(1− yi(xTi βk + βk0 ))+ + λ1‖βk‖1 +
λ2

2
‖βk‖2

2

=
1

n

n∑
i=1

(1− yi(xTi β∗ + β∗0))+ + λ1‖β∗‖1 +
λ2

2
‖β∗‖2

2.

Furthermore,

lim
k→∞
‖(βk, βk0 )− (β∗, β∗0)‖ = 0,

whenever (2.3) has a unique solution.

2.3.3 Computational Cost

The efficiency of Algorithm 1 mainly depends on whether we can quickly solve the linear

equations (2.15). As we have described in Section 2.3.1, the coefficient of the linear equations

(2.15) has a special structure and thus can be efficiently solved by the conjugate gradient

method for “large p, small n” problems. More specifically, the computational cost for solving

(2.15) is O(n2p). The number of iterations of Algorithm (1) is hard to predict and it depends

on the choice of µ1 and µ2. According to our experience, we only need to iterate a few hundred

iterations to get a reasonable result provided that µ1 and µ2 are chosen properly.

Similar to our algorithm for (2.3), the major computational cost in each iteration for HHSVM
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also comes from solving a linear system. However, the linear system in HHSVM has no

special structures. It takes at least O(|A|2) with |A| being the number of unknowns variables.

Moreover, |A| can increase at each iteration. Furthermore, for large scale problems, it usually

takes a few thousand steps for the algorithm to converge. That’s why our algorithm for (2.3)

is much faster than the path algorithm for HHSVM for large scale problems.

2.4 Numerical Results

In this section, we use time trials on both simulation data and real microarray data to

illustrate the efficiency of ADMM-ENSVM. To evaluate the performance of ADMM-ENSVM,

we also compare it with the stochastic subgradient method and the path algorithm for

HHSVM. Our algorithm and the stochastic subgradient method were implemented in Matlab,

while HHSVM was implemented in R using the R code provided by the authors of [106]. All

algorithms were compiled on a windows platform and time trials were generated on an Intel

Core 2 Duo desktop PC (E7500, 2.93GHz).

The stopping criteria of Algorithm 1 is specified as follows. Let Φ(βk, βk0 ) = 1
n

∑n
i=1(1 −

yi(x
T
i β

k + βk0 ))+ + λ1‖βk‖1 + λ2
2
‖βk‖2

2. According to Theorem 2.1, limk→∞Φ(βk, βk0 ) =

Φ(β∗, β∗0). It is reasonable to terminate the algorithm when the relative change of the en-

ergy functional Φ(β, β0) falls below certain threshold δ. Furthermore, the linear constraints

in (2.6) should be satisfied when Algorithm 1 converges. Therefore, we would expect that

1√
n
‖1− Y (Xβk + βk0 1)− ak‖2 ≤ δ and 1√

p
‖βk − ck‖2 ≤ δ when the algorithm is terminated.

We used δ = 10−5 in our experiments. To summarize, we stop Algorithm 1 whenever

RelE :=
|Φ(βk, βk0 )− Φ(β∗, β∗0)|

max{1,Φ(βk, βk0 )}
≤ 10−5,
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1√
n
‖1− Y (Xβk + βk0 1)− ak‖2 ≤ 10−5,

and

1
√
p
‖βk − ck‖2 ≤ 10−5.

Note that the convergence of Algorithm 1 is guaranteed as shown in Theorem 2.1, no matter

what values µ1 and µ2 are set to be. However, the choices of µ1 and µ2 can influence the speed

of the algorithm, as it will affect the number of iterations involved. In our implementation, we

found that empirically setting µ1 = 100
n

and µ2 ∈ [50, 100] works well for all the experiments,

though the parameter selecting procedure can certainly be further improved.

2.4.1 Simulation

We consider a binary classification problem, where the samples are lying in a p dimensional

space. Only the first 10 dimensions are relevant for classification, and the remaining dimen-

sions are all noises. More specifically, we generate n samples: half of them are labeled as

“+1” and the other half are labeled as “−1”. The samples from the “+1” class are i.i.d.

drawn from a normal distribution with mean

µ+ = (1, . . . , 1︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
p−10

)T ,

and covariance matrix

Σ =

 Σ∗10×10 010×(p−10)

0(p−10)×10 I(p−10)×(p−10)

 ,
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where the diagonal elements of Σ∗ are 1 and the off-diagonal elements are all equal to ρ. The

“−1” class has a similar distribution except that

µ− = (−1, . . . ,−1︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
(p−10)

)T .

So the Bayes optimal classification rule depends on x1, . . . , x10, which are highly correlated

if ρ is large. The Bayes error is independent of the dimension p. This kind of simulation

data is also used in [106].

Table 2.1: Running times (CPU seconds) of ADMM-ENSVM, the path algorithm and the
stochastic sub gradient method (SSG) for HHSVM. The algorithms are run with various
(p, n) pairs and two correlation ρ between the features. The results for ADMM-ENSVM
and SSG are averaged over 25 runs (using 25 different values of λ1, λ2) and the results for
HHSVM are averaged over 5 runs (using 5 different values of λ2).

n, p Method ρ = 0 ρ = 0.8

n=50 ENSVM 0.41 0.31
HHSVM 3.30 3.19

p=300 SSG 2.35 4.06

n=100 ENSVM 1.19 0.71
HHSVM 21.65 21.01

p=500 SSG 4.34 4.06

n=200 ENSVM 3.60 3.75
HHSVM 405.9 390.1

p=1000 SSG 35.40 26.86

n=300 ENSVM 14.73 16.74
HHSVM 2.07 hours 2.03 hours

p=2000 SSG 123.22 122.84

n=400 ENSVM 48.62 57.15
HHSVM > 6 hours > 6 hours

p=5000 SSG 301.10 290.15

n=500 ENSVM 144.69 170.52
HHSVM - -

p=10000 SSG 785.57 909.92

Table 2.1 shows the average CPU times (seconds) used by the ADMM algorithm, the path
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Figure 2.1: CPU times of ADMM-ENSVM for the same problem as in Table 2.1, for different
values of n and p. In each case the times are averaged over 10 runs. (a) n is fixed and equals
to 300; (b) p is fixed and equals to 2000.
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algorithm for HHSVM, and the stochastic sub-gradient method. Our algorithm consistently

outperforms both the stochastic sub-gradient method and the path algorithm in all cases we

have tested. For the data with n = 300, p = 2000, the ADMM algorithm is able to achieve

120-fold speedup than the path algorithm. The ADMM algorithm is also significantly faster

than the stochastic subgradient method, achieving about 5-10 fold speedup in all cases. We

should also note that unlike the ADMM method, the objective function in the stochastic

subgradient method can go up and down, which makes it difficult to design the stopping

criteria.

To evaluate how the performance of our algorithm scales up with the problem size, we plot

the CPU time that Algorithm 1 takes to solve (2.3) for the data described above as a function

of p and n. Figure 2.1 shows such a curve, where the CPU times are averaged over 10 runs

with different data. We note that the CPU times are roughly linear in both n and p.

We also compare the performance of prediction accuracy and variable selection of three

different models: `1-norm SVM (L1 SVM), HHSVM and ENSVM. The optimal (λ1, λ2) pair

is chosen from a large grid using 10-fold cross-validation. As shown in Table 2.2 and Table

2.3, HHSVM and ENSVM are similar in prediction and variable selection accuracy, but both

are significantly better than `1-norm SVM.

Table 2.2: Comparison of test errors. The number of training samples is 50. The total
number of input variables is 300, with only 10 relevant for classification. The results are
averaged testing errors over 100 random repetitions, and the numbers in parentheses are the
corresponding standard errors. ρ = 0 corresponds to the case where the input variables are
independent, while ρ = 0.8 corresponds to a pairwise correlation of 0.8 between relevant
variables.

ρ = 0 ρ = 0.8

SVM 0.214(0.004) 0.160(0.003)
L1 SVM 0.143(0.007) 0.160(0.002)
HHSVM 0.133(0.005) 0.143(0.001)
ENSVM 0.111(0.002) 0.144(0.001)
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Table 2.3: Comparison of variable selection. The setup is the same as that described in
Table 2.2. qsignal is the number of selected relevant variables, and qnoise is the number of

selected noise variables.

ρ = 0 ρ = 0.8
qsignal qnoise qsignal qnoise

L1 SVM 7.2(0.3) 6.5(1.4) 2.5(0.2) 2.9(1.2)
HHSVM 7.6(0.3) 7.1(1.3) 7.9(0.4) 3.3(2.5)
ENSVM 8.6(0.1) 6.4(0.4) 6.6(0.2) 2.0(0.2)

2.4.2 Gene Expression Data

A microarray gene expression dataset typically contains the expression values of tens of

thousands of mRNAs collected from a relatively small number of samples. Genes sharing

the same biological pathways often have highly correlated expression levels [90]. Because of

these two features, it is more desirable to apply the Elastic Net SVM to do variable selection

and classification on the microarray data than the standard SVM or the `1-SVM [117, 106].

The dataset we investigate is taken from the paper published by Alon et al. [2]. It contains

microarray gene expressions from 62 samples (40 colon tumor tissues and 22 normal tissues).

Each sample consists of the expression values of p = 2000 genes. We apply the Elastic Net

SVM to select variables (i.e. genes) that can be used to predict sample labels and compare

its performance to the path algorithm developed for HHSVM. The results are summarized

in Table 2.4, which shows the computational times spent by different solvers in a ten-fold

cross-validation procedure with different parameters λ1 and λ2. The ADMM algorithm for

ENSVM is consistently many times faster than the path algorithm for HHSVM, with an

approximately ten-fold speedup in almost all cases.

We also evaluate the prediction accuracy and the variable selection functionality of ENSVM

with Algorithm 1. Following the method in [106], we randomly split the samples into a
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Table 2.4: Running times (CPU seconds) for different values of the regularization parameters
λ1 and λ2. The methods are ADMM-ENSVM and the path algorithm for HHSVM.

λ1 λ2 10-CV error ENSVM HHSVM

0.1 0.2 8/62 8.56 108.2
0.1 0.5 8/62 6.30 107.9
0.05 2 8/62 8.76 109.3
0.05 5 7/62 7.12 109.5

Table 2.5: Comparison of testing error and variable selection on the gene expression data.
Results are averaged over 100 repetitions and the numbers in the parenthesis are the standard
deviations.

Test error Number of genes selected

SVM 17.9% (0.69%) All
HHSVM 15.45%(0.59%) 138.37(8.67)
ENSVM 14.95% (0.53%) 87.7 (7.9)

training set (27 cancer samples and 15 normal tissues) and a testing set (13 cancer samples

and 7 normal tissues). In the training phase, we adopt 10-fold cross-validation to tune the

parameter λ1, λ2. This experiment is repeated 100 times. Table 2.5 shows the statistics of

the testing error and the number of selected genes, in comparison to the statistics of SVM

and HHSVM. We note that in terms of the testing error, ENSVM is slightly better than

HHSVM, which in turn is better than the standard SVM. In terms of variable selection,

ENSVM tends to select a smaller number of genes than HHSVM.

2.5 Discussion

In this chapter, we have developed an efficient algorithm based on the Alternating Direction

Method of Multipliers to solve the optimization problem of the Elastic Net SVM. We show
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that the proposed algorithm is substantially faster than both the subgradient method and

the path algorithm used in HHSVM, an approximation of ENSVM [105]. We also illustrate

the advantage of ENSVM in both variable selection and prediction accuracy using simulated

and real-world data.
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Chapter 3

Efficient Latent Variable Gaussian

Graphical Model Selection

3.1 Introduction

Estimating covariance matrices in the high-dimensional setting arises in many applications

and has drawn considerable attention recently. Because the sample covariance matrix is often

ill-conditioned in the high-dimensional regime, regularizing the sample covariance based on

proper assumptions of the underlying true covariance is often essential to gain robustness

and stability of the estimation.

One form of regularization that has gained popularity recently is to require that the under-

lying inverse covariance matrix to be sparse [28, 81, 6, 37]. If the data follow a multivariate

Gaussian distribution with covariance matrix Σ, the entries of the inverse covariance matrix

K = Σ−1 (also known as concentration matrix or precision matrix) encode the information

of conditional dependencies between variables: Kij = 0 if the variables i and j are condition-

ally independent given all others. Therefore, the sparsity regularization is equivalent to the
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assumption that most of the variable pairs in the high-dimensional setting are conditionally

independent.

To make the estimation problem computational tractable, one often adopts a convex relax-

ation of the sparsity constraint and uses the `1-norm to enforce the sparsity of the concen-

tration matrix [6, 37, 76, 113]. Denote Σn the empirical covariance. Under the maximum

likelihood framework, the covariance matrix estimation problem is then formulated as solving

the following optimization problem:

min − log detK + tr(ΣnK) + λ‖K‖1

s.t. K � 0, (3.1)

where tr denotes the trace, λ is a sparsity regularization parameter, and K � 0 denotes

that K is positive definite. Due to the `1-norm penalty and the explicit positive definite

constraint on K, the method leads to a sparse estimation of the concentration matrix that

is guaranteed to be positive definite. The problem is convex and many algorithms have been

proposed to solve it efficiently in high-dimensional settings [37, 70, 89, 114].

However, in many real applications only a subset of the variables is directly observed, and no

additional information is provided on both the number of latent variables and their relation-

ship with the observed ones. For instance, in the area of functional genomics it is often the

case that only mRNAs of the genes can be directly measured, but not the proteins, which

are correlated with but have no direct correspondence to the mRNAs because of the promi-

nent role of the posttranscriptional regulation. Another example is the movie recommender

system where the preference of a movie can be strongly influenced by latent factors such as

advertisements, social environment, etc. In such cases, the observed variables can be densely

correlated because of the marginalization over the unobserved hidden variables. Therefore,

the sparsity regularization alone may fail to model the data properly.
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We consider the setting in which the hidden (XH) and the observed variables (XO) are jointly

Gaussian with covariance matrix Σ(OH). The marginal statistics of the observed variable XO

are given by the marginal covariance matrix ΣO, which is simply a submatrix of the full

covariance matrix Σ(OH). Let the concentration matrix K(OH) = Σ−1
(OH). The marginal

concentration matrix Σ−1
O corresponding to the observed variables XO is given by the Schur

complement [18]:

K̂O = Σ−1
O = KO −KO,HK

−1
H KH,O, (3.2)

where KO, KO,H , and KH are the corresponding submatrices of the full concentration matrix.

Based on the Schur complement, it is clear that the marginal concentration matrix of the

observed variables can be decomposed into two components: one is KO, which specifies

the conditional dependencies of the observed variables given both the observed and latent

variables; and the other is KO,HK
−1
H KH,O, which represents the effect of marginalization over

the hidden variables. One can now impose assumptions to the two underlying components

separately.

By assuming that the KO matrix is sparse and the number of latent variables is small, the

maximum likelihood estimation of the covariance matrix of the observed variables at the

presence of latent variables can then be formulated as

min
S,L

− log det(S − L) + tr(Σn
O(S − L)) + λ1‖S‖1 + λ2 tr(L)

s.t. S − L � 0, L � 0, (3.3)

where we decompose Σ−1
O = S − L with S denoting KO and L denoting KO,HK

−1
H KH,O.

Because the number of the hidden variables is small, L is of low rank, whose convex relaxation

is the trace norm. There are two regularization parameters in this model: λ1 regularizes

the sparsity of S, and λ2 regularizes the rank of L. Under certain regularity conditions,
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Chandrasekaran et al. showed that this model can consistently estimate the underlying

model structure in the high-dimensional regime in which the number of observed/hidden

variables grow with the number of samples of the observed variables [18].

The objective function in (3.3) is strictly convex, so a global optimal solution is guaranteed

to exist and to be unique. However, finding the optimal solution in the high-dimension set-

ting is computationally challenging, due to the log det term and the trace norm term in the

likelihood function, the nondifferentiability of the `1-norm penalty, and the positive semidef-

inite constraints. For large-scale problems, the state-of-the-art algorithm for solving (3.3)

is the special-purpose algorithm LogdetPPA [103] developed for log-determinant semidef-

inite programs. However, LogdetPPA is designed to solve smooth problems. In order to

use LogdetPPA, one has to reformulate (3.3) as a smooth problem. As a result, no optimal

sparse matrix S can be generated and additional heuristic steps involving thresholding have

to be applied in order to enforce sparsity. In addition, LogdetPPA is not specially designed

for (3.3). We believe a much more efficient algorithm can be developed by exploiting the

unique structure of the model.

The main contribution of this chapter contains two aspects. First, we present a new algorithm

for solving (3.3) and show that the algorithm is significantly faster than the state-of-the-art

method, especially for large-scale problems. The algorithm is derived by reformulating the

problem and adapting the Split Bregman method [89, 114]. We derive a closed-form solution

for each subproblem involved in the Split Bregman iterations. Second, we apply the method

to analyze a large-scale gene expression data, and find that the model with latent variables

explains the data much better than the one without latent variables. In addition, we find

that most of the correlations between genes can be explained by only a few latent factors,

which provides a new perspective for analyzing this type of data.

The rest of the chapter is organized as follows. In Section 3.2, we derive a Split Bregman

method, called SBLVGG, to solve the latent variable Gaussian graphical model (3.3). The
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convergence property of the algorithm is also given. SBLVGG consists of four update steps

and each update has explicit formulas to calculate. In Section 3.3, we illustrate the utility

of our algorithm and compare its performance to LogdetPPA using both simulated data and

gene expression data.

3.2 Split Bregman Method for Latent Variable Gaus-

sian Graphical Model Selection

The Split Bregman method was originally proposed by Osher and his colleagues to solve total

variation based image restoration problems [45]. It was later found to be either equivalent or

closely related to a number of other existing optimization algorithms, including the Douglas-

Rachford splitting [107], the Alternating Direction Method of Multipliers (ADMM) [42, 44,

45] and the Method of Multipliers [87]. Because of the fast convergence and the easiness of

implementation, it has become a method of choice for solving large-scale sparsity recovery

problems [15, 16]. Recently, it is also used to solve (3.1) and is found to be very successful

[89, 114].

In this section, we first reformulate the problem by introducing an auxiliary variable and

then proceed to derive a Split Bregman method to solve the reformulated problem. Here

we would like to emphasize that, although the Split Bregman method has been introduced

to solve graphical model problems [89, 114], our algorithm is different from theirs in three

aspects. First, it is the first time to use the Split Bregman method to solve (3.3) and we

introduce an auxiliary variable for the data fitting term instead of the penalty term which has

been adopted in [89, 114]. Second, we provide an explicit formula for the third update, which

did not appear in [89, 114]. Third, instead of using the eigenvalue (or Schur) decomposition

as done in the previous work [89, 114], we use the LAPACK routine dsyevd.f (based on
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a divide-and-conquer strategy) to compute the full eigenvalue decomposition of symmetric

matrices, which is essential for solving the first and the third subproblems.

3.2.1 Derivation of the Split Bregman Algorithm for Latent Vari-

able Gaussian Graphical Model Selection

The log-likelihood term and the regularization terms in (3.3) are coupled, which makes the

optimization problem difficult to solve. However, the three terms can be decoupled if we

introduce an auxiliary variable to transfer the coupling from the objective function to the

constraints. More specially, the problem (3.3) is equivalent to the following problem:

(Â, Ŝ, L̂) = arg min
A,S,L

− log detA+ tr(Σn
OA) + λ1‖S‖1 + λ2tr(L) (3.4)

s.t. A = S − L

A � 0, L � 0.

The introduction of the new variable A is a key step of our algorithm, which makes the

problem amenable to the Split Bregman procedure to be detailed below. Although the Split

Bregman method originates from the Bregman iteration, it has been demonstrated to be

equivalent to the Alternating Direction Method of Multipliers (ADMM) [42, 44, 91]. For

simplicity of presentation, we will derive the Split Bregman method using the augmented

Lagrangian method [53, 87].

First, the augmented Lagrangian function of (3.4) is defined as,

L(A, S, L, U) := − log detA+ tr(Σn
OA) + λ1‖S‖1 + λ2tr(L)

+ tr(U(A− S + L)) +
µ

2
‖A− S + L‖2

F , (3.5)
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where U is a dual matrix variable corresponding to the equality constraint A = S − L, and

µ > 0 is a parameter. Compared with the standard Lagrangian function, the augmented

Lagrangian function has an extra term µ
2
‖A− S +L‖2

F , which penalizes the violation of the

linear constraint A = S − L.

With the definition of the augmented Lagrangian function (3.5), the primal problem (3.4) is

equivalent to

min
A�0,L�0,S

max
U
L(A, S, L, U). (3.6)

Exchanging the order of min and max in (3.6) leads to the formulation of the dual problem,

max
U

E(U) with E(U) = min
A�0,L�0,S

L(A, S, L, U). (3.7)

Note that the gradient ∇E(U) can be calculated by the following [12],

∇E(U) = A(U)− S(U) + L(U), (3.8)

where (A(U), S(U), L(U)) = arg minA�0,L�0,S L(A, S, L, U).

Applying gradient ascent on the dual problem (3.7) and using equation (3.8), we obtain the

Method of Multipliers [87] to solve (3.4),


(Ak+1, Sk+1, Lk+1) = arg minA�0,L�0,S L(A, S, L, Uk),

Uk+1 = Uk + µ(Ak+1 − Sk+1 + Lk+1).

(3.9)

Here we have used µ as the step size of the gradient ascent. It is easy to see that the efficiency

of the iterative algorithm (3.9) largely depends on whether the first equation of (3.9) can be
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solved efficiently. Note that the augmented Lagrangian function L(A, S, L, Uk) still contains

A, S, L and can not easily be solved directly. But we can solve the first equation of (3.9)

through an iterative algorithm that alternates between the minimization of A, S and L.

The Method of Multipliers requires that the alternative minimization of A, S and L are run

multiple times until convergence to get the solution (Ak+1, Sk+1, Lk+1). However, because

the first equation of (3.9) represents only one step of the overall iteration, it is actually not

necessary to solve it completely. In fact, the Split Bregman method (or the Alternating

Direction Method of Multipliers [42]) uses only one alternative iteration to get a very rough

solution of (3.9), which leads to the following iterative algorithm for solving (3.4) after some

reformulations,



Ak+1 = arg minA�0− log det(A) + tr(AΣn
O) + µ

2

∥∥A− Sk + Lk + Uk

µ

∥∥2

F
,

Sk+1 = arg minS λ1‖S‖1 + µ
2

∥∥Ak+1 − S + Lk + Uk

µ

∥∥2

F
,

Lk+1 = arg minL�0 λ2tr(L) + µ
2

∥∥Ak+1 − Sk+1 + L+ Uk

µ

∥∥2

F
,

Uk+1 = Uk + µ(Ak+1 − Sk+1 + Lk+1).

(3.10)

Convergence

The convergence of the iteration (3.10) can be derived from the convergence theory of the

Alternating Direction Method of Multipliers or the convergence theory of the Split Bregman

method [42, 31, 15].

Theorem 3.1. Let (Sk, Lk) be generated by (3.10), and (Ŝ, L̂) be the unique minimizer of

(3.4). Then,

lim
k→∞
‖Sk − Ŝ‖ = 0 and lim

k→∞
‖Lk − L̂‖ = 0.
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From Theorem 3.1, the condition for the convergence of the iteration (3.10) is quite mild

and even irrelevant to the choice of the parameter µ in the iteration (3.10).

Explicit formulas to update A, S and L

We first focus on the computation of the first equation of (3.10). Taking the derivative of

the objective function and setting it to be zero, we get

−A−1 + Σn
O + Uk + µ(A− Sk + Lk) = 0. (3.11)

It is a quadratic equation where the unknown variable is a matrix. The complexity for

solving this equation is at least O(p3) because of the matrix inversion involved in (3.11).

Note that S = ST and L = LT . Therefore, if Uk is symmetric, Σn
O + Uk − µ(Sk − Lk) is

symmetric as well. It is easy to show that the explicit form for the solution of (3.11) under

constraint A � 0 is

Ak+1 =
Kk +

√
(Kk)2 + 4µI

2µ
, (3.12)

where Kk = µ(Sk−Lk)−Σn
O−Uk and

√
C denotes the square root of a symmetric positive

definite matrix C. Recall that the square root of a symmetric positive definite matrix C is

defined as a matrix whose eigenvectors are the same as those of C and whose eigenvalues are

the square root of those of C. Therefore, to get the update of Ak+1, one can first compute the

eigenvalues and eigenvectors of Kk, then get the eigenvalues of Ak+1 according to (3.12) by

replacing K with its eigenvalues and I with 1, and finally multiply the eigenvectors back. We

adopt the LAPACK routine dsyevd.f (based on a divide-and-conquer strategy) to compute

the full eigenvalue decomposition of (Kk)2 + 4µI. It is about 10 times faster than eig (or

schur) routine when n is larger than 500.
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For the second equation of (3.10), we have made the data fitting term µ
2

∥∥Ak+1−S+Lk+ Uk

µ

∥∥2

F

separable with respect to the entries of S. The sparsity term ‖S‖1 is also separable. Thus,

it is very easy to get the solution and the computational complexity would be O(p2). Let Tλ

be a soft thresholding operator defined in the matrix space that satisfies

Tλ(Ω) = (tλ(ωij))
p
i,j=1,

where tλ(ωij) = sgn(ωij) max{0, |ωij| − λ}. Then the update of S is

Sk+1 = Tλ1
µ

(Ak+1 + Lk + µ−1Uk).

For the update of L, the following theorem is required.

Theorem 3.2. Given a symmetric matrix X and η > 0. Denote

Sη(X) = arg min
Y�0

ηtr(Y ) +
1

2
‖Y −X‖2

F .

Then Sη(X) = V diag((λi − η)+)V T , where λi(i ∈ 1, ..., n) are the eigenvalues of X with V

being the corresponding eigenvector matrix and (λi − η)+ = max(0, λi − η).

Proof. Note that tr(Y ) = 〈I, Y 〉, where I is the identity matrix. Thus, arg minY�0 ηtr(Y ) +

1
2
‖Y −X‖2

F = arg minY�0〈Y −X + ηI, Y −X + ηI〉. Denote the eigenvalue decomposition

of matrix X as X = V ΛV T , where V V T = V TV = I and Λ is a diagonal matrix. Then

〈Y −X + ηI, Y −X + ηI〉 = 〈V TY V − (Λ− ηI), V TY V − (Λ− ηI)〉.

Together with the fact that Sη(X) � 0, Sη(X) should satisfy (V TSη(X)V )ij = max(0, λi−η)

for i = j and 0 otherwise. Therefore, Sη(X) = V diag((λi − η)+)V T .
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Using the operator Sη defined in Theorem 3.2, it is easy to see that

Lk+1 = Sλ2
µ

(Sk+1 − Ak+1 − µ−1Uk). (3.13)

Here we also use the LAPACK routine dsyevd.f (based on a divide-and-conquer strategy) to

compute the full eigenvalue decomposition of Sk+1−Ak+1−µ−1Uk. Putting all components

together, we get SBLVGG to solve the latent variable Gaussian graphical model (3.3) as

shown in Algorithm 2.

Algorithm 2 Split Bregman Method for Solving the Latent Variable Gaussian Graphical
Model (SBLVGG)

Initialize S0, L0, U0.
repeat

1) Ak+1 =
Kk+
√

(Kk)2+4µI

2µ
, where Kk = µ(Sk − Lk)− Σ− Uk.

2) Sk+1 = Tλ1
µ

(Ak+1 + Lk + µ−1Uk).

3) Lk+1 = Sλ2
µ

(Sk+1 − Ak+1 − µ−1Uk).

4) Uk+1 = Uk + µ(Ak+1 − Sk+1 + Lk+1).
until
Convergence

3.3 Numerical Experiments

Next we illustrate the efficiency of the Split Bregman method (SBLVGG) for solving (3.3)

using time trials on an artificial dataset as well as a gene expression dataset. All the algo-

rithms were implemented in Matlab and run on a 64-bit linux desktop with Intel i3 - 3.2GHz

QuadCore CPU and 8GB memory. To evaluate the performance of SBLVGG, we compare it

with logdetPPA [103], the state-of-the-art solver for (3.3) in the large-scale case. In order to

solve (3.3) using LogdetPPA , we need to reformulate (3.3) as a smooth problem as done in

[18], which makes the derived matrix Ŝ not strictly sparse with many entries close to but not

exactly 0. We also demonstrate that the latent variable Gaussian graphical model (3.3) is
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better than the sparse Gaussian graphical model (3.1) in terms of the generalization ability

evaluated on the gene expression data.

Note that the convergence of Algorithm 2 is guaranteed as shown in Theorem 3.1, no matter

what value µ is set to. The speed of the algorithm can, however, be influenced by the choices

of µ as it would affect the number of iterations involved. In our implementation, we choose

µ in [0.005, 0.01] for the artificial data and [0.001, 0.005] for the gene expression data.

3.3.1 Artificial Data

Let p = po + ph, where p is the total number of variables in the graph, po is the number

of observed variables and ph is the number of hidden variables. The synthetic dataset is

generated in a similar way as that in Section 6.1 of [103]. First, we generate a p× p random

sparse matrix W with non-zero entries drawn from the normal distribution N (0, 1). Then,

we set

C = W ′ ∗W ; C(1 : po, po + 1 : p) = C(1 : po, po + 1 : p) + 0.5 ∗ randn(po, ph);

C = (C + C ′)/2; d = diag(C); C = max(min(C − diag(d), 1),−1);

K = B +max(−1.2 ∗min(eig(B)), 0.001) ∗ eye(p); KO = K(1 : po, 1 : po)

KOH = K(1 : po, po + 1 : p); KHO = K(po + 1 : p, 1 : po);

KH = K(po + 1 : p, po + 1 : p); K̃O = KO −KOHK
−1
H KHO.

Note that K̃O is the marginal precision matrix of observed variables. We generate n Gaussian

random samples from K̃O, and calculate the sample covariance matrix Σn
O. In our numerical

experiments, we set the sparsity ratio of KO around 5%, and ph = 10. The stopping criteria is

specified as follows. Let Φ(A,L) = − log detA+tr(AΣ)+λ1‖A+L‖1 +λ2tr(L). We stop our

algorithm if |Φ(Ak+1, Lk+1)−Φ(Ak, Lk)|/max
(
1, |Φ(Ak+1, Lk+1)|

)
< ε and ‖A−S+L‖F < ε
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Table 3.1: Numerical comparison at po = 3000, ph = 10 for the artificial data

(λ1, λ2) Method Obj. Value Rank Sparse Ratio

(0.0025, 0.21)
SBLVGG -5642.6678 8 5.56%

LodgetPPA -5642.6680 8 99.97%

(0.0025, 0.22)
SBLVGG -5642.4894 3 5.58%

LodgetPPA -5642.4895 3 99.97%

(0.0027, 0.21)
SBLVGG -5619.2744 16 4.14%

LodgetPPA -5619.2746 16 99.97%

(0.0027, 0.22)
SBLVGG -5619.0194 6 4.17%

LodgetPPA -5619.0196 6 99.97%

with ε = 1e− 4.

Figure 3.1a shows CPU time curves of SBLVGG and LogdetPPA with respect to the number

of variable (p) for the artificial data. For each fixed p, the CPU time is averaged over four

runs with four different (λ1, λ2) pairs. We can see that SBLVGG consistently outperforms

LogdetPPA. When po ≤ 2500, it is 3.5 times faster on average; when po = 3000, it is 4.5

times faster. This illustrates that SBLVGG scales better to problem size than LogdetPPA.

In terms of accuracy, Table 3.1 summarizes performance of two algorithms at po = 3000,

ph = 10 in three aspects: objective value, rank of L, sparsity of S (ratio of non-zero off-

diagonal elements). We find that in terms of objective value and rank, the two algorithms

generate almost identical results. However, SBLVGG outperforms LogdetPPA in terms of

sparsity of S, thanks to its soft-thresholding operator in Algorithm 2. LogdetPPA doesn’t

have such kind of operations. It generates many nonzero entries that are very close to zero

due to numerical error. We would like to emphasize that the results in lower dimensions are

very similar to po = 3000, ph = 10. We omit the details here.
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3.3.2 Gene Expression Data

The gene expression dataset [57] contains mRNA expression levels of the 6316 genes of

S. cerevisiae (yeast) under 300 different experimental conditions. First we centralize the

data and choose three subset of the data, i.e., 1000, 2000 and 3000 genes with the highest

variances. Figure 3.1b shows CPU time of SBLVGG and LogdetPPA with different p. We

can see that SBLVGG consistently performs better than LogdetPPA: in 1000-dimensional

case, SBLVGG is 2.5 times faster, while in 2000- and 3000-dimensional cases, it is almost

3 times faster. Table 3.2 summarizes the accuracy for the 3000-dimensional case in three

aspects: the objective value, the rank of L, the sparsity of S (Number of non-zero off-

diagonal elements) for four fixed pairs of (λ1, λ2). Similar to the case of the artificial data,

SBLVGG and LogdetPPA generate identical results in terms of objective value and number

of hidden units. However, LogdetPPA suffers from the floating point problem, and is not

able to generate exact sparse matrices; on the other hand, SBLVGG is doing much better.

Table 3.2: Numerical comparison at 3000-dimensional subset of the gene expression data

(λ1, λ2) Algorithm Obj. Value Rank # Non-0 Entries

(0.01,0.05)
SBLVGG -9793.3451 88 34

LodgetPPA -9793.3452 88 8,997,000

(0.01,0.1)
SBLVGG -9607.8482 60 134

LodgetPPA -9607.8483 60 8,997,000

(0.02,0.05)
SBLVGG -8096.2115 79 0

LodgetPPA -8096.2115 79 8,996,998

(0.02,0.1)
SBLVGG -8000.9047 56 0

LodgetPPA -8000.9045 56 8,997,000

We also investigate the generalization ability of the latent variable Gaussian graphical model

(3.3) versus that of the sparse Gaussian graphical model (3.1). A subset of the data, i.e.,

1000 genes with the highest variances, are used for this experiment. The 300 samples are

randomly divided into 200 for training and 100 for testing. We use the following quantity to
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evaluate the generalization ability,

NLoglike = − log detA+ tr(AΣn),

where Σn is the empirical covariance matrix of the observed samples and A is the estimated

covariance matrix based on model (3.3) or model (3.1). It is easy to see that NLoglike is

equivalent to the negative log likelihood function up to some scaling constant. Therefore,

it is reasonable to use NLoglike as a criteria for cross-validation and prediction. Reg-

ularization parameters λ1, λ2 for model (3.3) and λ for model (3.1) are selected by 10-fold

cross-validation on the training set. Table 3.3 shows that the latent variable Gaussian graph-

ical model (3.3) consistently outperforms the sparse Gaussian graphical model (3.1) in terms

of NLoglike. We also note that the latent variable Gaussian graphical model (3.3) tends

to use a moderate number of hidden units, and a very sparse conditional correlation matrix

to explain the data. For p = 1000, it tends to predict about 50 hidden units, and about

tens of direct interconnections between observed variables (sometimes even 0). This suggests

that most of the correlations between observed genes in the mRNA expression measurements

can be explained by only a small number of latent factors. Currently we only evaluate the

generalization ability using NLoglike. The initial result on the gene expression data is en-

couraging. Further evaluation will be performed by incorporating other prior information or

by comparing with known gene interactions.

3.4 Discussion

Graphical model selection in high-dimensions arises in a wide range of applications, where

it is common that only a subset of the variables are directly observable. In this scenario,

the marginal concentration matrix of the observed variables is generally not sparse due to

the marginalization effect of latent variables. A computationally attractive approach is to
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Table 3.3: Comparison of generalization ability on the gene expression data at dimension of
1000 using latent variable Gaussian graphical model (LVGG) and sparse Gaussian graphical
model (SGG)

Exp. Number
LVGG SGG

Rank of L Sparsity of S NLoglike Sparsity of K NLoglike
1 48 30 -2191.3 24734 -1728.8
2 47 64 -2322.7 28438 -1994.1
3 50 58 -2669.9 35198 -2526.3
4 52 64 -2534.6 30768 -2282.5
5 48 0 -2924.0 29880 -2841.4
6 51 52 -2707.1 28754 -2642.6
7 45 0 -2873.3 30374 -2801.4
8 49 0 -2765.5 31884 -2536.7
9 48 54 -2352.0 29752 -2087.2
10 47 0 -2922.9 29760 -2843.5

decompose the marginal concentration matrix into a sparse matrix and a low-rank one, which

reveals both the conditional graphical model structure of the observed variables and the effect

of the hidden variables. However, solving the regularized maximum likelihood problem is

nontrivial at large-scale, because of the complexity of the log-likelihood term, the trace norm

penalty and the `1-norm penalty. In this chapter, we propose a new approach based on the

Split Bregman method (SBLVGG) to solve this problem. We show that our algorithm is at

least three times faster than the state-of-the-art solver for large-scale problems.

We have applied the method to analyze the genes’ expressions of yeast in a dataset of

thousands of genes measured at 300 different experimental conditions. It is interesting to

note that the model considering the latent variables consistently outperforms the one without

latent variables in term of the testing likelihood. We also note that most of the correlations

observed between mRNAs can be explained by only tens of latent variables. The observation

is consistent with the module network idea proposed in the genomics community. It might

also suggest that the posttranscriptional regulation plays a more prominent role than it is

previously appreciated.
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Figure 3.1: (a) Comparison of CPU time curves w.r.t. number of variables p for the artificial
data; (b) Comparison of CPU time bar charts w.r.t. number of variables p for the gene
expression data
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Chapter 4

Ensemble Learning of Concordance

Index for Cancer Survival Analysis

4.1 Introduction

Survival analysis focuses on developing diagnostic and prognostic models to analyze the effect

of covariates on the outcome of an event of interest, such as death or disease recurrence in

disease studies. The analysis is often carried out using regression methods to estimate the

relationship between the covariates and the time to event variable. In clinical trials, time

to events are usually represented by survival times, which measure how long a patient with

a localized disease is alive or disease-free after treatment, such as surgery or surgery plus

adjuvant therapy. The covariates used in predicting survival times often include clinical

features, such as age, disease status, treatment type, etc. More recently, molecular features,

such as expression of genes, and genetic features, such as mutations in genes, have been

increasingly included in the set of covariates. Survival analysis also has applications in many

other fields. For instance, it is often used to model machine failure in mechanical systems.
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Depending on specific circumstances, survival times may also be referred to as failure times.

A major complication for survival analysis is that the survival data are often incomplete due

to censoring, because of which standard statistical and machine learning tools on regression

cannot be readily applied. The most common type of censoring that occurrs in clinical trials

is the right censoring, where the survival time is known to be longer than a certain value

but its precise value is unknown. This can be due to multiple reasons. For instance, a

patient might withdraw from a clinical trial, or a clinical trail might end early such that

some patients are not followed up with afterwards.

Many statistical methods have been developed for survival analysis. One major category of

these methods adopts a likelihood-based approach. An essential component of the models in

this category is the estimation of the hazard function λ(t), defined as the event rate at time

t conditional on survival up to time t. Different models often impose different assumptions

on the forms of the hazard function. In particular, the proportional hazards (PH) model

(also called the Cox model), one of most prevalent models in survival analysis, assumes

that different covariates contribute multiplicatively to the hazard function [23, 24, 3, 74].

To relax the proportional hazards assumption and allow for more complicated relationships

between covariates, parametric models based on artificial neural networks (ANN) [34, 73,

85, 86] and ensembles of tree models based on boosting [39, 40, 83, 84] have also been

proposed. In order to handle the censored data, all these models use an approximation of

the likelihood function, called the Cox partial likelihood, to train the predictive model. The

partial likelihood function is computationally convenient to use; however, it is unclear how

well the full likelihood can be approximated by the partial likelihood.

Many other methods aiming at optimizing a different class of objective functions rather

than the partial likelihood have also been proposed. Some of these methods adapt existing

regression models to estimate the relationship between survival times and covariates, by

taking the censored data into account in training the models [93, 100], while others adopt
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a classification-based framework and train their models using only the rank information

associated with the observed survival times [17, 33, 86]. Recently, random survival forests [56,

59], a new ensemble-of-trees model based upon bagging, became popular in survival analysis.

They resort to predicting either the cumulative hazard function, or the log-transformed

survival time.

In clinical decision-making, physicians and researchers are often more interested in evaluating

the relative risk of a disease between patients with different covariates than the absolute

survival times of these patients. For this purpose, Harrell et al. introduced the important

concept of concordance index (C-index, concordance C, or simply CI) as a measure of the

separation between two survival distributions [48, 49]. Given two survival distributions,

the C-index computes the fraction of pairs of patients with consistent risk orders over the

total number of validly comparable pairs. Because of its focus on assessing the accuracy

of relative risk, the C-index is widely adopted in survival model performance evaluation,

where the order of predicted survival times is compared to the order of the observed ones

[108, 82, 62].

Our goal in this chapter is to develop a new survival model to capture the relationship

between survival times and covariates by directly optimizing the C-index between the pre-

dicted and observed survival times. Although both the Cox model based on the partial

likelihood and the ranking based methods mentioned above also utilize only the order infor-

mation between survival times, the C-index based method provides a more principled way

of combining all pair-wise order information into a single metric. There have been prior

attempts in directly learning the C-index for survival analysis, including a neural network

based model [108] and an extension of the Cox model trained using a lower bound of C-index

[82]. However, both methods impose parametric assumptions on the effect of covariates on

survival times. Our contribution here is to adopt a nonparametric approach to model the

relationship between survival times and covariates by using an ensemble of trees, and to
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train the ensemble model by learning the C-index.

In the following, we will provide a detailed description of our ensemble survival model based

on learning the C-index. We will derive an algorithm to train the model using the gradient

boosting method originally proposed by Friedman [39]. The algorithm is implemented in an

R software packaged called GBMCI (gradient boosting machine for concordance index). We

benchmark the performance of GBMCI using a large-scale breast cancer prognosis dataset

and show that GBMCI outperforms several popular survival models, including the Cox PH

model, the gradient boosting PH model, and the random survival forest, in a number of

covariate settings.

4.2 Survival Analysis, Existing Models and the New

Approach

4.2.1 Survival Analysis

We review the basic concepts of survival analysis here. For a systematic treatment, see

[25, 1]. In survival analysis, the time to event (death, failure, etc) t is typically modeled as a

random variable, which follows some probability density distribution p(t). The density can

be characterized by the survival function S(t) = Pr(T > t) =
∫∞
t
p(T )dT for t > 0. The

survival function captures the probability that the event does not happen until time t. A

closely-related concept is the hazard function λ(t) = lim∆t→0
Pr(t<T<t+∆t|T>t)

∆t
= p(t)

S(t)
, which

measures the event rate at time t conditioned on survival until t. One can further show that

S(t) = e−
∫ t
0 λ(τ)dτ .
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The likelihood function for right-censored survival data is expressed as:

L (θ; {xi, ti, δi}ni=1) =
∏
i∈E

p(ti|xi, θ)
∏
j∈C

S(tj|xj, θ) =
n∏
i=1

λ(ti|xi, θ)δiS(ti|xi, θ). (4.1)

Note the augmentation of our notation (We will follow this convention in the following

context unless otherwise state): θ is the set of regression parameters of the survival/hazard

model; δi, i = 1, ..., n indicates whether the event happens (δ = 1), or not (δ = 0, i.e., the

data is censored); xi, i = 1, ..., n are the explanatory covariates that affect the survival time;

E is the set of data whose events are observed, and C is the set of censored data. The full

maximum-likelihood approach would optimize L over the functional space of S (or λ) and

parameter space of θ. Unfortunately, this is often intractable.

Proportional hazard model

In his seminal work [23, 24], Cox introduced the proportional hazard (PH) model λ(t|x, θ) =

λ0(t) exp {xT θ}. λ0(t) is the baseline hazard function; exp {xT θ} is the relative hazard, which

summarizes the effect of covariates. Cox observed that under the PH assumption, it suffices

to estimate θ without the necessity of specifying λ0(t) and optimizing the likelihood (4.1).

Instead, he proposed to optimize the so-called Cox partial likelihood,

Lp (θ; {xi, ti, δi}ni=1) =
∏
i∈E

exp{θTxi}∑
j:tj≥ti exp{θTxj}

. (4.2)

The Cox model has become very popular in evaluating the covariates’ effect on survival data,

and has been generalized to handle time-varying covariates and time-varying coefficients

[3, 74]. However, the proportional hazards assumption and the maximization of the partial

likelihood remain two main limitations. Nonlinear models, e.g., multi-layer neural networks

[34, 73, 85], have been proposed to replace θTx. However, they still assume parametric forms

of the hazard function and attempt to optimize the partial likelihood.
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Concordance index

The C-index is a commonly used performance measure of survival models. Intuitively, it is

the fraction of all pairs of patients whose predictions have correct orders over the pairs that

can be ordered. Formally, the C-index is,

CI =
1

|P|
∑

(i,j)∈P

I(F (xi) < F (xj)) =
1

|P|
∑
i∈E

∑
j:tj>ti

I(F (xi) < F (xj)). (4.3)

P is the set of validly orderable pairs where ti < tj; |P| is the number of pairs in P ; F (x)

is the prediction of survival time; I is the indicator function of whether the condition in

the parentheses is satisfied or not. In the PH setting, the predicted survival time can be

equivalently represented by the negative log relative hazard. The C-index estimates the

probability that the order of the predictions of a pair of comparable patients is consistent

with their observed survival information.

4.2.2 Gradient Boosting Machine

The gradient boosting machine (GBM) is an ensemble learning method, which constructs

a predictive model by additive expansion of sequentially fitted weak learners [39, 40]. The

general problem is to learn a functional mapping y = F (x; β) from data {xi, yi}ni=1, where β

is the set of parameters of F , such that some cost function
∑n

i=1 Φ(yi, F (xi; β)) is minimized.

Boosting assumes F (x) follows an “additive” expansion form F (x) =
M∑
m=0

ρmf(x; τm), where

f is called the weak or base learner with a weight ρ and a parameter set τ . Accordingly,

{ρm, τm}Mm=1 compose the whole parameter set β. They are learnt in a greedy “stage-wise”

process: (1) set an initial estimator f0(x); (2) for each iteration m ∈ {1, 2, ..,M}, solve

(ρm, τm) = arg min
ρ,τ

n∑
i=1

Φ(yi, Fm−1(xi) + ρf(xi; τ)). GBM approximates (2) with two steps.
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First, it fits f(x; τm) by

τm = arg min
τ

n∑
i=1

(gim − f(xi; τ))2 , (4.4)

where

gim = −
[
∂Φ(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

. (4.5)

Second, it learns ρ by

ρm = arg min
ρ

n∑
i=1

Φ (yi, Fm−1(xi) + ρf(xi; τm)) . (4.6)

Then, it updates Fm(x) = Fm−1(x) + ρmf(x; τm). In practice however, shrinkage is often

introduced to control overfitting, and the update becomes Fm(x) = Fm−1(x) + νρmf(x; τm),

where 0 < ν ≤ 1. If the weak learner is the regression tree, the complexity of f(x) is

determined by tree parameters, e.g., the tree size (or depth), and the minimum number of

samples in terminal nodes. Besides using proper shrinkage and tree parameters, one could

improve the GBM performance by subsampling, i.e., fitting each base learner on a random

subset of the training data. This method is called Stochastic Gradient Boosting [40].

Compared to parametric models such as generalized linear models (GLM) [75] and neural

networks, GBM does not assume any functional form of F but uses additive expansion to

build up the model. This non-parametric approach gives more freedom to researchers. GBM

combines predictions from the ensemble of weak learners, and so tends to yield more robust

results than the single learner. Empirically, it also works better than the bagging-based

random forests [38], probably due to its functional optimization motivation. However, it

requires the cost function Φ to be differentiable with respect to F . GBM has been imple-

mented in the popular open-source R package “gbm” [84] which supports several regression

models.
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Boosting the Proportional Hazard model

Ridgeway [83] adapted GBM for the Cox model. The cost function is the negative log partial

likelihood

Φ(y, F ) = −
n∑
i=1

δi

F (xi)− log

 ∑
j:tj≥ti

eF (xj)

 . (4.7)

One can then apply (4.4), (4.5) and (4.6) to learn each additive model. In the “gbm”

package, this cost function corresponds to the “coxph” distribution and is further optimized

to re-fit terminal nodes with Newton’s method. We denote this particular GBM algorithm

as GBMCOX, and its implementation in the “gbm” package as “gbmcox”.

4.2.3 Concordance Index Learning via Gradient Boosting

We now propose a gradient boosting algorithm to learn the C-index. As the C-index is a

widely used metric to evaluate survival models, previous works [108, 82] have investigated the

possibility to optimize it, instead of Cox’s partial likelihood. However, these works are limited

to parametric models, such as linear models or neural networks. Our key contribution is to

tackle the problem from a non-parametric ensemble perspective based on gradient boosting.

Optimizing the C-index directly is difficult because of its discrete nature, i.e., the summation

over indicator functions in (4.3). We resort to the differentiable approximation proposed in

[108], which adopts the logistic sigmoid function in each term. We call it the smoothed

concordance index (SCI). Specifically,

SCI =
1

|P|
∑

(i,j)∈P

1

1 + eα(F (xi)−F (xj))
, (4.8)

where α is a hyper-parameter that controls the steepness of the sigmoid function (accordingly,
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the approximability of SCI to CI), and F (x) is the prediction of survival time. Let Φ(y, F ) =

−SCI. Then, at each iteration m > 0 of gradient boosting,

gim =

[
∂SCI

∂F (xi)

]
F (x)=Fm−1(x)

=
α

|P|

 ∑
(k,i)∈P

eα(Fm−1(xk)−Fm−1(xi))

[1 + eα(Fm−1(xk)−Fm−1(xi))]
2

−
∑

(i,j)∈P

eα(Fm−1(xi)−Fm−1(xj))[
1 + eα(Fm−1(xi)−Fm−1(xj))

]2
 . (4.9)

So the base learner f(x; τm) can be fitted using {gim}ni=1 and (4.4). Next,

ρm = arg max
ρ

1

|P|
∑

(i,j)∈P

1

1 + eα(Fm−1(xi)+ρf(xi;τm)−Fm−1(xj)−ρf(xj ;τm))
. (4.10)

Although differentiable, SCI has a complicated error surface and is neither convex nor con-

cave. This brings two problems. First, the algorithm’s performance depends on its initial-

ization which may lead to different local optima; Second, it is difficult to find the global

solution of ρm in (4.10). In our implementation, we set the initial estimaton {f0(xi)}ni=1 as

the prediction from a fitted PH model, and use line-search to detect ρm locally. Empirically,

we have found that these heuristics work well for the algorithm.

Algorithm 3, Gradient Boosting Machine for Concordance Index Learning (GBMCI), sum-

marizes our whole algorithm, which also incorporates the stochastic boosting mechanism

[40]. Note that ensemble size M is an important parameter that requires tuning, as small M

may not capture the true model, while large M makes the algorithm apt to overfitting. In

practice, it is often selected by cross-validation. We implement GBMCI in the “gbm” pack-

age, under a new distribution called “sci”, which shares the same regression tree engine and

complete software architecture as “gbmcox” does. We name our implementation of GBMCI

as “gbmsci”.
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Algorithm 3 Gradient Boosting Machine for Concordance Index Learning (GBMCI)

Initialize {f0(xi)}ni=1 with the prediction of Cox’s PH model.
Set shrinkage ν, and subsampling size ns ≤ n.
for m=1:M do

1) Compute {gim}ni=1 by (4.9).
2) Randomly select a subset {xi, ti, δi}nsi=1 from the whole dataset.
3) Fit the weak learner f(x; τm), e.g., a regression tree, upon {xi, gim}nsi=1.
4) Compute ρm by (4.10) using line-search.
5) Update {Fm(xi)}ni=1 by Fm(x) = Fm−1(x) + νρmf(x; τm).

end for

4.3 Results

4.3.1 Dataset and Feature Extraction

We illustrate the utility of GBMCI on a large breast cancer dataset, which was originally

released by Curtis et al [26]. The dataset was adopted by the Sage Dream Breast Cancer

Challenge (BCC) [72], where it was named Metabric. It contains gene expressions, copy

number variations, clinical information, and survival data of 1,981 breast cancer patients.

The gene expression data consist of 49,576 microarray probes; the copy number data consist

of 18,538 SNP probes; the clinical data contain 25 clinical covariates; the survival data

contain the survival time and status (dead or censored). Following the convention of BCC,

we reserve 1001 patients for training, and the other 980 for testing. We applied several

successful feature selection schemes from the top competitors in BCC. See Table 4.1 for

details on how these features were generated.

4.3.2 Experimental Settings

As a boosting model, GBMCI’s main competitor is the boosted proportional hazard model

GBMCOX. As they share identical software environment with a common regression tree

engine, the comparison should be reliable and reasonable. For baseline evaluation, we in-
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Table 4.1: The five sets of features extracted from the Metabric breast cancer dataset.

Category Abbreviation Explanation

Clinical feature cl A subset of clinical covariates are selected by fitting the
Cox model with AIC in a stepwise algorithm. The fre-
quently selected features include age at diagnosis, lymph
node status, treatment type, tumor size, tumor group,
tumor grade, etc.

Gene feature ge A subset of gene expression microarray probes using Illu-
mina HT 12v3 platform are selected whose concordance
indices to the survival data are ranked highest (pos-
itive concordant) or lowest (negative concordant). A
few examples are, “ILMN 1683450”, “ILMN 2392472”,
“ILMN 1700337”.

Clinical and gene
feature

clge A combination of previously selected clinical features
and gene expression features are used to fit the Cox
model with AIC in a stepwise algorithm, yielding a re-
fined subset of features.

Metagene feature mt The high-dimensional gene expression data is fed into
an iterative attractor finding algorithm, yielding a few
Attractor Metagenes which are found commonly present
in multiple cancer types [20]. Some multi-cancer attrac-
tors are strongly associated with the tumor stage, grade,
or the lymphocyte status.

Clinical and Meta-
gene feature

mi A minimum subset of Metagenes that have strong prog-
nosis power for breast cancer [20], combined with several
important clinical covariates, such as age at diagnosis
and treatment type.

vestigate the performance of the PH model with a step-wise Akaike Information Criterion

(AIC) model selection scheme (denoted as “cox”). In addition, we also consider the popular

random survival forest (RSF) approach by Ishwaran [59], which is implemented in the R

package randomSurvivalForest [58] (denoted as “rsf”). We use the concordance index as the

evaluation criteria. All experiments are performed in R 2.15.1 software environment.

For “gbmsci”, the hyper-parameter α controls how well SCI approximates CI. Large α values

make the approximation good, but the gradient can be very large or even ill-defined, and

56



vice versa. In practice, we find α = 1 strikes a good balance between approximability

and numerical stability. The line-search range is [0, 100] along the gradient direction. The

shrinkage ν in “gbm” is 0.001 by default. In our experiments, we find ν = 0.002 works

well for “gbmcox”; and ν = 1 does for “gbmsci”. We do not essentially apply shrinkage for

“gbmsci”, because the small line-search range [0, 100] does not necessary detect the global

optimal ρ, thus it implicitly contributes to shrinkage. This is mainly for computational

efficiency purpose. “gbmsci” and “gbmcox” share other important parameter configurations:

maximum number of trees is 1500 (actual number is automatically tuned by 5-fold cross-

validation); tree depth is 6; ns
n

(see Algorithm 3) is 1 or 0.5. For “rsf”, the number of trees

is 1500; other parameters use default configurations.

4.3.3 Empirical Comparison

Each method are tested using the five feature representations in Table 4.1. For “gbmsci” and

“gbmcox”, as cross-validation introduces randomness by partitioning the training data, we

repeat the experiment 50 times. Their predictive concordance indices are shown in Figure

4.1 and 4.2. For “cox”, the predictive concordance indices are shown in Table 4.2, which also

summarizes the performances of “gbmsci” and “gbmcox”. For “rsf”, we also do 50 random

tests, because of bootstrapping when growing trees. The predictive concordance indices are

shown in Figure 4.3.

Figures 4.1 and 4.2 show that “gbmsci” fairly consistently outperforms “gbmcox”. The ad-

vantage is notable when using the features of cl, clge, ge, mt (without subsampling), and

substantial when using mi. “gbmsci” performs slightly worse only when using mt (with

subsampling), but is still comparable. Furthermore, all differences except mt (with sub-

sampling) are statistically significant (Student’s t-test, all p-values < 10−13). We also note

that subsampling generally improves the predictive power of both “gbmsci” and “gbmcox”,
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B: gbmcox (cl)  
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D: gbmcox (clge)  
E: gbmsci (ge)  
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G: gbmsci (mt)  
H: gbmcox (mt)  
I: gbmsci (mi)  
J: gbmcox (mi)  

Figure 4.1: Predictive performance I of GBM methods on the breast cancer dataset. The
box plots show the predictive concordance indices of “gbmsci” and “gbmcox” in 50 random
experiments without subsampling, using the five feature representations explained in Table
4.1. In each box plot, the central red line indicates the median C-index; the blue box is
the [25%, 75%] area; the black whiskers reach the upper and lower extremes not including
outliers; the red “+” symbols represent the outliers.
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Figure 4.2: Predictive performance II of GBM methods on the breast cancer dataset. The
box plots show the predictive concordance indices of “gbmsci” and “gbmcox” in 50 random
experiments with subsampling (ns

n
= 0.5), using the five feature representations explained in

Table 4.1. In each box plot, the central red line indicates the median C-index; the blue box
is the [25%, 75%] area; the black whiskers reach the upper and lower extremes not including
outliers; the red “+” symbols represent the outliers.
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Figure 4.3: Predictive performance of the RSF method on the breast cancer dataset. The
box plots show the predictive concordance indices of “rsf” in 50 random experiments, using
the five feature representations explained in Table 4.1. In each box plot, the central red
line indicates the median C-index; the blue box is the [25%, 75%] area; the black whiskers
reach the upper and lower extremes not including outliers; the red “+” symbols represent
the outliers.
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Table 4.2: Numerical statistics of predictive concordance indices of GBM models and the
Cox model on the breast cancer dataset. The five feature representations are explained in
Table 4.1. “gbmsci”-I and “gbmcox”-I run without subsampling (ns

n
= 1), while “gbmsci”-II

and “gbmcox”-II run with subsampling (ns
n

= 0.5). The numerical values in each entry show
the average C-index and the standard deviation (following ±) over 50 random runs. The
bold font highlights the best performance in each column.

Model
Feature Representation

cl clge ge mt mi

“gbmsci”-I
0.7107 0.7287 0.6599 0.7145 0.7416
±0.0015 ±0.0005 ±0.0004 ± 0.0004 ±0.0010

“gbmcox”-I
0.7039 0.7268 0.6523 0.7110 0.7222
±0.0008 ±0.0013 ±0.0007 ±0.0014 ±0.0003

“gbmsci”-II
0.7063 0.7341 0.6617 0.7169 0.7405
±0.0011 ±0.0014 ±0.0020 ±0.0017 ±0.0015

“gbmcox”-II
0.6983 0.7298 0.6549 0.7173 0.7306
±0.0009 ±0.0008 ±0.0014 ±0.0010 ±0.0008

“cox” 0.7042 0.7140 0.6590 0.6659 0.7299

except when using cl. This is consistent with the theoretical argument of [40, 83].

From Table 4.2, one can see “gbmsci” performs better than “cox” overall. The advantage

is notable when using cl (without subsampling), and substantial when using clge, mt and

mi. For other cases, “gbmsci“ and “cox” are comparable. On the other hand, “gbmcox”

performs better than or comparable to “cox” for cl, clge and mt, but does slightly worse for

ge and mi. Comparing Figures 4.1 and 4.2 with 4.3, one can see “gbmsci” outperforms “rsf”

in most cases, while “gbmcox” also performs better than “rsf” overall.

To summarize the comparative study, GBMSCI outperforms GBMCOX, Cox PH and RSF

in most of the feature-subsampling settings. The results also shed light on the importance

of feature representation. First, gene expression data may have potential prognosis power

given well designed feature extraction schemes - for example, the Attractor Metagene (mt).

Second, combining clinical and gene features together seems to provide enhanced prognosis

power over using them separately. This is the case in both the original gene space (clge),
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and the transformed space (mi).

4.4 Discussion

Many machine learning techniques have been adapted and developed for survival analysis

[118, 61, 62]. In particular, several important parametric models, such as neural networks

and support vector regression, have been generalized to handle censored data. They provide

survival studies with more comprehensive and flexible methodologies. However, ensemble

methods are mostly limited to either direct adaptation of boosting to the classical PH model

[83, 84], or bagging approaches such as random survival forests [56, 59]. Our proposed

algorithm GBMCI generalizes the gradient boosting machine to learn the concordance index

directly, which does not impose parametric assumptions on hazard functions and provides

a new ensemble learning methodology for survival analysis. As the C-index is a ranking

function in essence [82], our model also serves as an ensemble treatment to the ranking

problem for survival data. This is novel and has not been addressed previously [36, 13, 100].

We implemented GBMCI in an open-source R package, and tested it using a comprehensive

cancer prognosis study on the large-scale Metabric breast cancer dataset. We found that

GBMCI (“gbmsci”) performs notably and consistently better than three state-of-the-art sur-

vival models (the Cox PH model, “cox”, its boosting expansion, “gbmcox”, and the Random

Survival Forest, “rsf”) in terms of predictive C-indices when various feature representations

were applied. This study also demonstrates the enhanced prognosis power when gene ex-

pression profiles and clinical variables are combined and when the gene space is re-mapped

in the predictive model, and the importance of feature engineering of clinical and molecular

data in cancer prognosis studies. Interestingly, “gbmsci” typically outperforms “gbmcox”

and “cox” when using these informative features. This may provide useful cues for clinical

decision-making. Moreover, we also confirm the utility of the subsampling scheme of gradient
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boosting.

Although GBMCI has free parameters that require tuning, e.g., α and the line-search range,

they empirically work well among different experiments once they have been well tuned.

In addition, the algorithm still renders similar performance, when α is within a reasonable

neighborhood of 1 (e.g., α = 2). One possible reason for the robustness is that both the

objective function (4.8) and the gradient (4.9) are upper- and lower-bounded (as can be

shown through basic algebraic manipulations). Such bounds are not typically available

when optimizing other objective functions for different regression problems, such as the

partial likelihood for the Cox model, the mean absolute error for the Lasso regression, and

the polynomial alternative of SCI as proposed by [108].

The proposed algorithm has room for improvement. First, current initialization and line-

search steps, although working well in practice, are not necessarily the globally optimal

strategy. For initialization, one potential alternative is to fit PH models by subsampling

or bootstrapping of the training data. To better address the problems, one may have to

design other initialization heuristics, or adopt a global optimization technique such as Monte

Carlo methods. Second, GBMCI is computationally more intensive than other methods,

because of the pairwise sigmoid computation in (4.9) and (4.10). Fortunately, GBMCI is

easily parallelizable, which should help in dealing with large datasets. Third, biomedical

research often deals with high-throughput data, e.g., microarray gene expression profiles and

next generation sequencing data, which require feature selection and dimension reduction.

GBMCI does not tackle this task yet. However, as node-splitting of regression trees implicitly

perform feature extraction, one could either run GBMCI several iterations and pre-select

informative variables as a “warm-up” step before the main learning routine, or start GBMCI

with all variables, iteratively rank their node-split frequency and refine the variable pool.

These would allow GBMCI to perform feature selection and concordance index learning in

a unified framework.
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Last but not least, we note that ensemble methods are in general more expensive than the Cox

model, because of the necessity of tuning parameters, training ensemble weak learners, and

cross-validation. The trade-off between predictive power and computational cost remains

a question that depends on specific case requirements. For example, given a particular

prognosis analysis task, the Cox model may provide a quick baseline evaluation; ensemble

methods could be applied, if higher predictive accuracy and more thorough investigation of

covariates’ effect are required.
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Chapter 5

Deep Learning for Gene Expression

Inference

5.1 Introduction

Human mRNA expression (i.e., gene expression) profiles are historically adopted as the

genomic signature to characterize cellular responses to diseases, genetic perturbations and

drug actions. The Connectivity Map (CMap) project has built large public databases of

such signatures to discover functional connections among diseases, genes and drugs [66, 65].

Conventionally, gene expression profiles are acquired via high-density microarrays such as

the Affymetrix platform, which measure the expression of genes across the whole genome.

This is prohibitively expensive (e.g., ˜$300 per profile) to explore large chemical libraries,

which usually contain many genotypes, cell lineages and perturbations, etc. [79, 109].

Despite the large number of genes (˜22k), their expressions are strongly correlated, be-

cause they tend to regulate the activity of one another by forming a complicated structured

regulatory network. The regulatory interactions can be highly non-linear, dynamical and
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cascading, depending on different cell lineages or cell chemical environments. Furthermore,

most of human genes are believed to be regulated by a small subset of genes that are closely

related to transcription factors, grows factors and so on [79, 109]. In particular, the LINCS

project of the National Institutes of Health analyzes gene expression profiles of various nor-

mal and disease tissue cells in the CMap databases. By doing this, researchers identified ˜1k

genes that capture ˜80% of the whole-genome expression information. They call these ˜1k

genes the landmark genes, and the remaining ˜21k genes the target genes.

The LINCS’ discovery implies that gene expression profiles can be recovered by measuring

landmark genes, a greatly reduced subset of human genes. This further implies a potential

reduction of both time and financial costs of human genome profiling. Indeed, with this

motivation, LINCS has developed a gene expression profiling assay called L1000, which is

based on the Luminex bead platform and directly measures landmark genes at a much lower

cost (˜$5 per profile). The unmeasured part of the transcriptome is inferred computation-

ally. With L1000, the LINCS program has generated massive (˜1.3 million) gene expression

profiles under various cell types and perturbations.

However, LINCS currently adopts linear regression as the inference tool, which trains regres-

sion models separately for each target gene. It potentially conflicts with the fact that genes

have intrinsic nonlinear interactions, and that transcriptional programs are often grouped

into modules. Kernel machines can express dextrous nonlinear property and have been

applied to similar problems [109]. Unfortunately, they suffer from the poor scalability to

growing data size, which is a decisive trend of large-scale machine learning.

On the other hand, artificial neural networks can naturally abstract hierarchical nonlinear

features that are often shared between multiple tasks (outputs). Recently, they are signif-

icantly promoted by the deep learning methodologies [7, 29], due to the advancement of

modern computer hardwares, in particular, General-Purpose Computing on Graphics Pro-

cessing Units (GPGPU) [21, 64], the explosive availability of large datasets, and new training
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methodologies, such as dropout training [97, 5], momentum learning[98], layer-wise pre-

training [54, 9]. Deep learning has acquired wide success in many challenging applications,

such as object recognition, natural language processing and protein structure prediction

[68, 95, 30].

Given the increased availability of high-throughput microarray data, and the frequent obser-

vation of nonlinear interactions among human genes, we conceive that a deep neural network

is a promising candidate to tackle the gene expression inference problem. Motivated by this,

we propose GEIDN (Gene Expression Inference via Deep Neural Networks), to computation-

ally infer target genes from landmark genes. GEIDN is a multi-output multi-layer neural

network equipped with several advanced deep learning techniques, specifically, drop out, mo-

mentum training and GPU computing. For evaluation purposes, we also investigate a few

other representative machine learning models, including linear regression (with and without

the `1-norm regularization) and k-nearest neighbor regression. We do a comparative study

on a Gene Expression Omnibus dataset (GEO, http://www.ncbi.nlm.nih.gov/geo/) accessed

from the LINCS Cloud (http://www.lincscloud.org/), which consists of ˜129k samples. Ex-

perimental results demonstrate that GEIDN systematically outperforms other methods in

terms of prediction accuracy. Moreover, increased abundance of data benefits GEIDN more

than other methods; moderate expansion of the architecture also helps to improve GEIDN’s

performance. These results suggest potential advantages of applying large-scale deep neural

networks to gene expression inference. Lastly, we infer target genes of the L1000 dataset

with GEIDN, which can be used by biologists for further study.

The outline of this chapter is as follows. Section 5.2 formulates the gene expression infer-

ence problem mathematically, introduces major predictive models, and proposes the GEIDN

framework. Section 5.3 evaluates the inference results of GEIDN and other models on both

the GEO dataset and the L1000 dataset. Section 5.4 summarizes the finished work, discusses

the limitations of GEIDN and future directions.
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5.2 Methods

In this section, we formulate gene expression inference as a machine learning problem. We

will first introduce the basic notations, then introduce several important predictive models

that can be applied to this problem, and lastly propose GEIDN, explaining a few key deep

learning techniques we deployed to train GEIDN and implementation issues. First, assume

that there are L landmark genes, M target genes, and N training samples; the dataset

is expressed as {xi,yi}Ni=1, where xi ∈ RL denotes the expression of landmark genes and

yi ∈ RM denotes the expression of target genes in the i-th sample. Our goal is to infer

the functional mapping F : RL → RM that fits {xi,yi}Ni=1, which is essentially a multi-task

regression problem.

∀ testing dataset {xj,yj}N
′

j=1, suppose the prediction from F is {ŷj}N
′

j=1. We use the Rooted

Mean Squared Error (RMSE) to evaluate the predictive performance at each target gene t,

RMSE(t) =

√√√√ 1

N ′

N ′∑
j=1

(
y

(t)
j − ŷ

(t)
j

)2

. (5.1)

We also use the Rooted Mean Relative Squared Error (RMRSE) as an alternative evaluation

metric,

RMRSE(t) =

√√√√ 1

N ′

N ′∑
j=1

(
y

(t)
j − ŷ

(t)
j

y
(t)
j

)2

. (5.2)

This is motivated by the multi-task nature of the problem. As tasks (target genes) often

have different expected values (expression levels), it is reasonable to gauge the predictive

performance on each task using a common scale.

68



5.2.1 Linear Regression

In linear regression (LR), F(x) =
{
w(m)Tx + b(m)

}M
m=1

is a set of independently trained

models, where w(m) ∈ RL, b(m) ∈ R, and

(
w(m), b(m)

)
= arg min

w,b

1

N

N∑
i=1

(
y

(m)
i −wTxi − b

)2

. (5.3)

The `1-norm regularization can be further introduced to enforce sparse solution of w for the

variable selection purpose. In this case,

(
w(m), b(m)

)
= arg min

w,b

1

N

N∑
i=1

(
y

(m)
i −wTxi − b

)2

+ λ(m)‖w‖1. (5.4)

LR (5.3) is currently adopted by the LINCS project. In our study, we explore both (5.3) and

(5.4) (denoted as LR-L1). They are conveniently deployed from scikit-learn, a widely adopted

machine learning software package [80] (http://scikit-learn.org/stable/modules/linear_

model.html).

5.2.2 k-Nearest Neighbors Regression

The classical k-nearest neighbor (KNN) regression has the following procedure: First, a

spatial data structure T such as the KD tree [10] is built for training data in their feature

space; then for any new data, the k nearest training samples are queried from T , and the

average (or weighted sum) of their target values is computed as the prediction. However,

this strategy can be biased when duplicate features frequently exist in the data, which is

often the case for microarray data. Therefore, in gene expression study, a commonly adopted

alternative is to exchange the role of genes and samples. Specifically to our problem, T is

built for landmark genes in the space spanned by the training data; then for each target gene,
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the k landmark genes with the closest training sample values are queried, and the average

(or weighted sum) of their testing sample values is computed as the prediction. We call it

the gene-based KNN (KNN-GE). Note that each gene is scaled by the mean and standard

deviation of its training portion before both training and querying, which helps to make

genes at different expression levels numerically comparable; the KNN predictions are scaled

back as the final predictions.

Due to the non-parametric and distance-based nature, KNN doesn’t impose any prior as-

sumption on the learning machine. Therefore, it is very flexible to model nonlinear functions.

However, as performing prediction involves building and querying spatial data structures,

which has to keep all the training data, KNN suffers from the poor scalability to growing data

size and dimension. We evaluated KNN-GE in our study. KNN is also conveniently deployed

from scikit-learn (http://scikit-learn.org/stable/modules/neighbors.html).

5.2.3 GEIDN

GEIDN is a large-scale multi-output multi-layer neural network (NN). There are 978 input

neurons, which correspond to the 978 landmark genes, 2 or 3 hidden layers, each of which

has 3000 ˜8000 neurons, and 5322 (or 5323) output neurons, which correspond to 1/4 of

the 21,290 target genes. To be able to predict all target genes, we build 4 separate GEI-

DNs, each of which predicts a different 1/4 random subset of target genes. Training tasks

are assigned to UCI HPC’s GPU server, which has 4 Nvidia Tesla M2090 graphical cards

(http://hpc.oit.uci.edu/gpu). We did not train a network that jointly predicts all 21,290

genes, because larger networks require more CUDA cores and GPU memory to train in

a reasonable time. However, we note that this problem could be largely resolved, given

more powerful GPUs (e.g., Tesla K40, GTX TITAN Z), and network-distributed training

techniques on multiple GPUs such as those described in [21, 64, 22].
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We adopt the hyperbolic tangent (TANH) activation function for hidden units. During

learning, the hidden layers naturally represent the input data as a series of hierarchical

nonlinear features, which encode the highly coupled interactions between landmark genes

and target genes. We apply the linear activation function to output units for the regression

purpose. The loss function for training is the sum of mean squared error at each output

unit, namely,

L =
1

N

M∑
m=1

N∑
i=1

(
y

(m)
i − ŷ(m)

i

)2

. (5.5)

Training GEIDN fundamentally follows the framework of error gradient back-propagation and

mini-batch gradient descent, and is supplemented with advanced deep learning techniques.

See [67, 8] for systematic descriptions. Supplementary Table S1 introduces three GEIDN

architectures that we have explored, along with detailed parameter configurations, which are

tuned according to a validation dataset. We discuss a few key points as follows:

1. Dropout is a technique to perform model averaging and to prevent overfitting. For each

training sample, the neurons of each layer are randomly dropped out with some probability

1 − p, so the forward- and back-propagation are performed on a particularly “thinned”

network. For an architecture with n non-input neurons, there are O
(

1
pn

)
such thinned

networks. Therefore, dropout can achieve model averaging of exponentially many different

neural networks in an approximate but efficient framework. Randomly dropping out neurons

also helps to suppress co-adaptation among neurons [97]. In GEIDN, p is set to [0.85, 0.9]

for all neurons except the input and output neurons. Dropping out the input neurons is

essentially introducing “missing-value” noise to the data, which empirically is not necessary

for our problem.

2. Momentum training is a technique to acceleration gradient-based learning. Denote the
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weights of the NN as W, associated with velocity V. Then at each training iteration t+ 1,

V(t+1) = µ(t+1)V(t) − (1− µ(t+1))η(t+1)∇L
(
W(t)

)
W(t+1) = W(t) + V(t+1), (5.6)

where µ ∈ [0, 1] is the momentum coefficient, η is the learning rate, and ∇L (W) is the error

gradient of the loss function L with respect to W. µ usually starts small but increases to

the maximum over epochs. The motivation is to follow the gradient direction initially, but

later on emphasize more and more on the velocity direction so as to accelerate learning.

3. Learning rate is initialized to 1e − 3 (or 5e − 4), and annealed over iterations with the

following schedule,

η(t) =
η0

(1 + δ)t
, (5.7)

where δ is a small positive value, e.g., 1e− 6.

4. Weights are initialized by sampling from a uniform distribution defined by,

W(0) ∼ U

[
−

√
6√

ni + no
,

√
6√

ni + no

]
, (5.8)

where ni, no denote the number of fan-ins and fan-outs of the neuron which has the incoming

nerve of that particular weight. This scheme is designed to stabilize the activation variance

and the gradient variance as information propagates up and down the network [43]. For very

large architectures, however, the uniform distribution of the output layer is set to be within

a even smaller range (e.g., ±1e − 4, see GEIDN-3 in Table S1). Empirically, (5.8) tends to

generate large initial gradients that quickly saturate the hidden neurons in larger networks.

5. Data processing One standard way to pre-process neural network training data is to do

standardization, i.e., for each dimension (input or output), first subtracting the mean and
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then dividing by the standard deviation. The goal is to prevent neurons from saturating, by

first centering data around zero and then rescaling them in a reasonable range. However,

(1) as we are doing regression, standardizing will break the original scale relationship of

output channels during training; (2) as many genes’ expressions are highly skewed with little

variance, which is often due to random noise, standardization will amplify the noise of these

genes to be comparable to the variance of other genes. Since both effects are not desired,

we propose an adjusted scheme to process the training data: first, subtract each dimension

by its mean value; second, divide the whole training data by its global standard deviation.

During prediction, each output channel is first multiplied by the global scale, and then added

back with the training mean value of that channel.

6. Model selection. A separate validation dataset (detailed in next section) is used to tune

model and algorithm parameters. Training is run for a preset number of epochs. However,

the model is evaluated after each epoch on the validation dataset. Each time a new best

performance (a lowest loss computed by (5.5)) is reached, the model is saved as the optimal

model. After training finishes, the saved model is used for prediction.

GEIDN is implemented based on two Python libraries, Theano [11] and Pylearn2 [46], both

of which are developed by the LISA Lab at the University of Montreal. Theano is a symbolic

computation library, which comprehensively support definition, evaluation and optimization

of mathematical expressions. In particular, the back-propagation algorithm is achieved via

symbolic differentiation upon the Theano graph. By direction manipulation of GPU, Theano

can perform multi-dimensional tensor computation much faster than using CPU. Theano is

publicly available at https://github.com/Theano/Theano. Pylearn2 is a neural network &

deep learning library built on top of Theano. It supports a wide range of network archi-

tectures and learning algorithms. We adapt some of its modules to support the training of

GEIDN. It is freely available at https://github.com/uci-cbcl/pylearn2.
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5.3 Results

5.3.1 GEO Data and L1000 Data

The GEO dataset is generated from the Affymetrix platform. It contains 129,158 samples,

each of which has 22,268 fully measured microarray probes, corresponding to the 978 land-

mark genes and the 21,290 target genes. The L1000 dataset is generated from the Luminex

bead-based platform. Since the L1000 platform only measures the landmark genes, it can

generate very high-throughput expression profiles. Currently, the dataset contains 1,328,098

samples from cultured cells treated with different chemical and genetic perturbations. Its

“Level 3” representation has both directly measured landmark genes and linear-regression-

imputed target genes. The GEO dataset and the L1000 Level 3 dataset are roughly on the

same numerical scale (between 4.0 and 15.0, although the later has a small portion ranging

between 0.0 and 4.0), and are the focus of the gene expression inference problem. Both

datasets are originally accessed through the LINCS Cloud in a binary format called “gctx”,

whose size are ˜11G and ˜111G separately. They can be queried and manipulated on disk

by the L1000 Analysis Tools (https://github.com/cmap/l1ktools), which works on top of

Numpy, PyTables and HDF5. For more information about the data, see the LINCS Cloud.

To facilitate experiments and analysis, we transform the whole GEO dataset and a random

subset of 10,000 samples of the L1000 dataset (denoted as L1k-sub) into Numpy array

data files. Supplementary Figure S1 shows the marginal distribution of expression levels of

landmark genes and target genes of GEO and L1k-sub. GEO is further randomly partitioned

into ˜80% for training (104,000), ˜10% for validation (12,579) and ˜10% for testing (12,579).

They are denoted as GEO-tr, GEO-va, GEO-te. Specifically, the validation data is used to

do model selection and parameter tuning, such as λ (of LR-L1), k (of KNN-GE), and p, u, η,

etc. (of GEIDN).
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5.3.2 Main Results on the Complete GEO Dataset

LR, LR-L1, KNN-GE and three GEIDNs of different configurations (detailed in Supplemen-

tary Table S1) are trained using the GEO-tr data; free parameters (if any) are chosen by the

GEO-va data; prediction accuracy is evaluated using the GEO-te data. The complete pre-

dictive performances are described in Table 5.1 and visualized in Figure 5.1, from which we

can get a few key observations. First, KNN-GE seems to provide the baseline performance.

Second, LR has notable improvement over KNN-SP, but the sparse regularization does not

provide further improvement. Third, GEIDNs systematically outperform other approaches.

Fourth, the two evaluation metrics, RMSE and RMRSE, provide fairly consistent conclu-

sions. Furthermore, an internal comparison of GEIDN-1, 2 and 3 shows that a larger-scale

architecture does help to improve GEIDN. In general, GEIDN-3 has ˜40.90% relative im-

provement over KNN-GE (43.30% in RMSE and 38.49% in RMRSE), and ˜16.62% relative

improvement over LR (17.31% in RMSE and 15.94% in RMRSE).

Table 5.1: The average prediction error over all target genes for predictive models discussed
in Section 5.3.2. GEO-tr, GEO-va, and GEO-te are used for model training, validation, and
testing. Numerical values after “±” are the standard deviations. The bold font highlights
the best performances.

RMSE RMRSE

KNN-GE 0.8602±0.3221 0.1312±0.0451
LR 0.5898±0.1820 0.0960±0.0297
LR-L1 0.5897± 0.0959±0.0297
GEIDN-1 0.5195±0.1216 0.0851±0.0218
GEIDN-2 0.4997±0.1140 0.0822±0.0211
GEIDN-3 0.4877±0.1044 0.0807±0.0204

Figure 5.2 provides a more detailed comparative analysis of three representative models,

LR, KNN-GE, and GEIDN-3. It demonstrates that GEIDN-3 consistently performs better

than LR and KNN-GE at > 99.96% of the target genes. Also see Supplementary Figures

S2 and S3 for the comparative analysis of GEIDN-1, -2 to LR and KNN-GE, which show

75



(a)

(b)

Figure 5.1: The prediction error box plot over all target genes for predictive models discussed
in Section 5.3.2. GEO-tr, GEO-va, and GEO-te are used for model training, validation, and
testing. (a) Using RMSE as the evaluation metric; (b) using RMRSE as the evaluation
metric.
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similar patterns to that of Figure 5.2. As transcriptional programs have grouping effects,

joint prediction of target genes using shared nonlinearity might be preferred in the biological

sense. Our results seem to substantiate this conjecture, because only the GEIDN series do

joint nonlinear prediction and have the best prediction accuracy. All of these demonstrate

the potential utility of deep neural networks in accurately and effectively modeling massive

nonlinear interaction among human genes.

Figure 5.3 visualizes the learning curves of GEIDN-3, which traces the loss function’s value

(5.5) over training epochs. Also see Supplementary Figures S4 and S5 for those of GEIDN-1

and -2. Note again that the 21,290 target genes are evenly distributed into four networks

for training and prediction. Accordingly, each GEIDN architecture has four sets of learning

curves. A key observation is that overfitting is effectively controlled, even when training

such a large-scale architecture as GEIDN-3. We think this is attributed to the deep learning

techniques described in Section 5.2.3 and Supplementary Table S1, in particular, the drop

out mechanism.

5.3.3 The Effect of Data Size

Section 5.3.2 has demonstrated that GEIDN provides more accurate prediction than other

methods with a moderate large training dataset as GEO-tr. To explore the effects of data

size to different learning machines, we further subsample 8,000 from GEO-tr (denoted as

GEO-tr-sub) and 1,000 from GEO-va (denoted as GEO-va-sub), and use them to train LR,

LR-L1, KNN-GE, and GEIDN-1 again. The learned models are still evaluated on GEO-te.

The predictive performances are summarized in Table 5.2 and visualized in Supplementary

Figure S6. Comparing them to Table 5.1 and Figure 5.1, we can see that increased train-

ing data size systematically improve predictive accuracy of all the four methods, while the

improvement to GEIDN is more notable than others; when data is scarce, GEIDN still per-

77



(a) (b)

(c) (d)

Figure 5.2: The predictive errors of GEIDN-3 compared to LR and KNN-GE. Out of the
21,290 target genes, GEIDN-3 performs better than LR in 21,283 genes (99.97%), better
than KNN-GE in 21,288 genes (99.99%), in terms of RMSE; statistics are similar in terms
of RMRSE. (a) RMSEs of GEIDN-3 versus those of LR; (b) RMSEs of GEIDN-3 versus
those of KNN-GE; (c) RMRSEs of GEIDN-3 versus those of LR; (d) RMRSEs of GEIDN-3
versus those of KNN-GE.
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(a) (b)

(c) (d)

Figure 5.3: Learning curves of GEIDN-3. The target genes are randomly permuted and
then assigned with labels 1˜21,290. After that, they are evenly distributed into four neural
networks for training and prediction, whose learning curves are shown by (a), (b), (c), and
(d) separately. See Section 5.2.3 for the motivation of this design.
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forms the best, but the advantage margins are less significant. These observations suggest

that abundant data resource is a key element for deep learning to success, in particular in

capturing the complicate nonlinear effects within the data, which is not easily achievable by

traditional shallow models. Interestingly, we notice that LR-L1 performs notably better than

LR in this scenario. A further investigation of the validation results shows that the sparse

regularizations λ are typically stronger than that in Section 5.3.2. This result corroborates

the utility of model regularization when the training data size is small.

Table 5.2: The average prediction error over all target genes for LR, LR-L1, KNN-GE and
GEIDN-1. GEO-tr-sub, GEO-va-sub, and GEO-te are used for model training, validation,
and testing. Numerical values after “±” are the standard deviations. The bold font highlights
the best performances.

RMSE RMRSE

KNN-GE 0.9051±0.3482 0.1382±0.0476
LR 0.6433±0.1962 0.1054±0.0328
LR-L1 0.6256±0.1919 0.1013±0.0309
GEIDN-1 0.5928±0.1651 0.0968±0.0276

5.3.4 Inference on the L1000 Data

The LINCS project currently trains linear regression models on a smaller GEO dataset,

and uses them to infer the unmeasured target genes of the L1000 data. Following this,

we select three representative models trained in Section 5.3.2, LR, KNN-GE and GEIDN-

3, to do inference on the L1k-sub data. The prediction summary statistics are shown in

Figure 5.4. From 5.4a, 5.4c and 5.4e, it seems that LR’s inference has quite many outliers,

KNN’s inference range is more controlled, and GEIDN-3’s inference fairly consistently falls

within [0,15], which happens to be the numerical range of the landmark genes. From 5.4b,

5.4d, and 5.4f, it seems the prediction variances of GEIDN-3 and KNN-GE are smaller than

those of LR. As both GEIDN-3 and KNN-GE are nonlinear approaches and involve some

linear pre-processing of the data, we think that designing different pre-processing schemes
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may potentially alter the inference statistics. Above all, since the ground truth of target

genes is unobserved, how to verify the inference quality of different methods remains an

open question. Nevertheless, given the predictive performance on the fully-observed GEO

dataset, we believe GEIDN’s inference results on the L1000 data is a good candidate for

further study.

5.4 Discussion

Inference of human gene expressions has become an important problem in computational

biology, as it implies a notable reduction in both time and financial cost of human genome

profiling. The current linear-regression-based approach cannot model massive nonlinear

interactions among genes. We have developed GEIDN, a large-scale neural network, to com-

putationally infer the ˜21k target genes from the ˜1k landmark genes in a join framework.

With the help of modern deep learning techniques, such as dropout, momentum, and GPU

computing, GEIDN is able to model massive nonlinear interactions between landmark genes

and target genes. Using a GEO dataset with complete measurement of gene expression pro-

files of ˜129k samples, we demonstrate that GEIDN systematically outperforms two linear

regression modes and one k-nearest neighbor model. We also find that expanded network

scales help to improve GEIDN’s performance. Moreover, increased abundance of data bene-

fits GEIDN more than other approaches. As genomic data are increasingly available, GEIDN

is likely to play a more important role in gene expression inference.

Currently, target genes are distributed to four GEIDN networks for prediction due to hard-

ware limitations. Accordingly, a direct improvement is to enlarge the scale of GEIDN such

that it can jointly predict all target genes, either by using better GPUs, or by exploiting

multi-GPU technics such as those discussed in Section 5.2.3. This seems promising based

upon the performance of the current architectures.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Inference summary statistics of LR, KNN-GE and GEIDN-3 on L1k-sub.
(a)(c)(e) Minimum and maximum predictions at each target gene; (b)(d)(f) mean and stan-
dard deviation of predictions at each target gene.
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There are several open questions as to how to interpret the learned network: What features

does each hidden layer represent? Do the learned weights (upon convergence) have any

biological meaning? How is the network related to the gene regulatory network as known by

biologists? To address these questions, one needs to investigate the genes associated with

each neuron, check their weight patterns (scale, sparsity, etc.), and analyze them using the

domain knowledge. Unsupervised feature learning techniques such as the auto encoder can

be deployed to assist this process [102]. In one word, to interpret learned network in the

context of domain knowledge is a reverse engineering study. Otherwise, it is also possible

to design network architectures, which encapsulate the prior knowledge of gene regulatory

networks & pathways. Training such models might provide more informative features to

biologists, just like convolutional neural networks to computer vision researchers [68].

Finally, one important goal of the LINCS L1000 project is to infer the unobserved targets

genes from the measured landmark genes. But how to evaluate the inference quality on the

L1000 data remains not clearly defined. A proper evaluation of GEIDN on L1000 data may

be possible with a matched, representative gold standard dataset generated by a genome-

wide assay such as the Affymetrix microarray platform.
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Chapter 6

Deep Learning for Genetic Variants

Annotation

6.1 Introduction

Identifying the genetic variants responsible for diseases can be very challenging. The majority

of candidate variants lie in noncoding sections of the genome, whose role in maintaining

normal genome function is not well understood. Most annotation methods can only annotate

protein coding variants, excluding >98% of the human genome. Another annotation method,

Combined Annotation–Dependent Depletion (CADD) [63], can annotate both coding and

noncoding variants. CADD trains a linear kernel SVM to separate observed genetic variants

from simulated genetic variants. Observed genetic variants are derived from differences

between human genomes and the inferred human-chimpanzee ancestral genome. Because of

natural selection effects, observed variants are depleted of deleterious variants. Simulated

genetic variants are enriched for deleterious variants.

CADD’s SVM can only learn linear representations of the data, which limits its performance.
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To overcome this, we implemented a DNN algorithm that we have named DANN (Deleterious

Annotation of genetic variants using Neural Networks). A DNN is an artificial neural

network with several hidden layers of units between the input and output layers. The extra

layers give a DNN added levels of abstraction, but can greatly increase the computational

time needed for training. Deep learning techniques and GPU hardware can significantly

reduce the computational time needed to train DNNs. DNNs outperform simpler linear

approaches such as logistic regression (LR) and SVMs for classification problems involving

many features and samples.

6.2 Methods

6.2.1 Model Training

DANN trains a DNN consisting of an input layer, a sigmoid function output layer, and

three 1000-node hidden layers with hyperbolic tangent activation function. We use deep-

net (https://github.com/nitishsrivastava/deepnet) to exploit fast CUDA parallelized GPU

programming on an NVIDIA Tesla M2090 card and apply dropout and momentum train-

ing to minimize the cross entropy loss function. Dropout reduces overfitting by randomly

dropping nodes from the DNN [96]. Momentum training adjusts the parameter increment

as a function of the gradient and learning rate [98]. DANN uses a hidden node dropout rate

of 0.1, a momentum rate that increases from 0.01 to 0.99 linearly for the first 10 epochs

and then remains at 0.99, and stochastic gradient descent (SGD) with a minibatch size of

100. As a baseline comparison, we trained a LR model. For LR training, we applied SGD

using the scikit-learn library [80] with parameter α = 0.01, which we found to maximize the

accuracy of the LR model. LR and DNN are sensitive to feature scaling, so we preprocess

the features to have unit variance before training either model. We also train an SVM using
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the LIBOCAS v0.97 library [35] with parameter C = 0.0025, closely replicating CADD’s

training.

6.2.2 Features

There are a total of 949 features defined for each variant. The feature set is sparse, and

includes a mix of real valued numbers, integers, and binary values. For example, amino

acid identities are only defined for coding variants. To account for this, we include Boolean

features that indicate whether a given feature is undefined, and missing values are imputed.

Moreover, all n-level categorical values, such as reference allele identity, are converted to n

individual Boolean flags. See the Supplementary of [63] for more details about the features

and imputation.

6.2.3 Training Data

CADD’s training data consist of 16,627,775 “observed” variants and 49,407,057 “simulated”

variants. We trained all three models on this dataset to differentiate the simulated variants

from the observed variants. To account for the imbalance between the two datasets, we

randomly sampled 16,627,775 simulated variants for training. These 33,255,550 variants are

split into a “training set”, a “validation set”, and a “testing set” in an approximately 8:1:1

ratio. The three models are trained on the training set. For SGD, each gradient step is not

guaranteed to minimize the loss function; at 1/10 epoch intervals throughout the 20 epochs

of training the validation set is evaluated in order to select the “best” model that maximizes

classification accuracy on the validation set. The validation set is also used to fine tune

hyperparameters such as dropout rate, minibatch size, etc. Finally, the models are regularly

evaluated on the testing set to monitor for overfitting. In contrast, [63] trained CADD using

an “ensemble” strategy that involves training SVMs on ten different subsets of the training
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data. We found little performance improvement when we applied this strategy.

6.3 Results and Discussion

To compare the performance of the three models, we generated receiver operating char-

acteristic (ROC) curves discriminating the 3,326,573 simulated and observed variants in

the testing set and calculated AUC scores (Fig. 6.1a). We used the discriminant values

of the SVM and the sigmoidal function output of the DNN and LR models as classifiers

for the ROC curves. We do not directly compare to CADD because it can only evaluate

100,000 variants at a time and CADD was already trained on testing set variants; however,

the SVM we trained performs very similarly to CADD despite being trained on a smaller

dataset (data not shown). The classification accuracies of the SVM, LR, and DNN models

are 58.2%, 59.8%, and 66.1%, respectively. A few observations emerge from our analysis.

First, LR performs better than SVM, suggesting that the max margin regularization used

by SVM plays little role in this particular dataset. Second, DNN performs significantly bet-

ter than both LR and SVM, leading to a 18.90% reduction in the error rate and a 14.52%

improvement in the AUC relative to SVM. This suggests the importance of accounting for

nonlinear relationships among features, likely due to the heterogeneity of features generated

in genome annotations. Third, although DNN improves on the linear methods, its accuracy

is still unsatisfactory. We suspect a few factors might contribute to this: 1) The training

data are inflated with mislabeled samples. Observed variants can be under positive or weak

purifying selection, and therefore be functional. Conversely, many simulated variants can be

nonfunctional since they are randomly sampled from the genome. 2) The features currently

used in genome annotation are insufficient for functional prediction. 3) The model training

needs further improvement.

We also generated ROC curves showing the models discriminating pathogenic mutations de-
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fined by the ClinVar database [4] from likely benign Exome Sequencing Project (ESP) [41]

alleles with a derived allele frequency (DAF) ≥ 5% (Fig. 6.1b, n = 10,000 pathogenic/10,000

likely benign). Coding variants constitute 85.6% and 43.0% of the ClinVar and ESP databases,

respectively, reducing the difficulty of annotation since many more informative features are

available in coding regions. For variants with multiple gene annotations, we only selected

the gene annotation that yielded the highest score from each model. All three models greatly

improve on the AUC metric, with the LR and DANN models outperforming SVM; however,

the performance gap between the models is much smaller than the gap in the testing set.

In conclusion, we have improved considerably upon CADD’s SVM methodology. We can even

achieve better performance with LR, suggesting that LR is the preferred linear classifier

in this case. DANN achieves the best overall performance, substantially improving upon

the linear methods in terms of accuracy and separation on the testing set, which contains

mostly noncoding variants. This makes DANN the most useful annotation algorithm since

the vast majority of human variation is noncoding. When limited to a coding biased dataset,

all three models perform well, but the performance gap is small. Given DANN’s superior

performance for annotating noncoding variants, which comprise the overwhelming majority

of genetic variation, we expect DANN to play an important role in prioritizing putative

causal variants, such as those derived from GWAS, for further downstream analysis.
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Figure 6.1: ROC curves comparing performances of the neural network (DANN), support
vector machine (SVM), and logistic regression (LR) models in discriminating (a) “simulated”
variants from “observed” variants in the testing set and (b) pathogenic ClinVar variants from
likely benign ESP alleles (DAF ≥ 5%).
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Chapter 7

Conclusion

Genomic and transcriptomic activities are the fundamental controllers of the living process

of any organism. Their abnormal behaviors are believed to be the driving factors of many

diseases. Therefore, understanding the intrinsic mechanisms of the genome and the tran-

scriptome and informing clinical practices have become two important missions of large-scale

genomic researchers. In the recent decade, high-throughput molecular data have provided

abundant information about the whole genome; and it has become an important research

direction to study genomics from these high-throughput data by deploying computational

tools. However, traditional computational learning methodologies often have strong limita-

tions when dealing with high-throughput genomic datasets, because the latter are usually

very high dimensional, highly heterogeneous, and can show complicated nonlinear effects

given a large amount of data. In this thesis, we have presented five new algorithms or mod-

els, each of which address previous challenges from a certain perspective and is applicable

to a specific genomic problem:

1. ADMM-ENSVM. ENSVM can achieve simultaneous variable selection and max-margin

classification, but is difficult to solve at large scale because of multiple nondifferentiable
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terms in the objective function. ADMM-ENSVM decomposes ENSVM into smaller

sub-problems, and solves it efficiently. On a colon cancer diagnosis study, ADMM-

ENSVM shows the advantage over SVM, L1-norm SVM and HHSVM in terms of

diagnose accuracy, feature selection ability, and computational efficiency.

2. SBLVGG. LVGG interprets the marginal concentration matrix of observed variables

as a combination of a sparse matrix and a low rank matrix. SBLVGG decomposes

LVGG into smaller sub-problems, solves it efficiently, and is notably faster than the

state-of-the-art algorithms. Evaluated on a microarray dataset containing thousands

of genes, SBLVGG shows that most of the correlation among genes can be explained by

tens of latent factors. This provides a new interpretation of the underlying structure

of gene regulatory networks.

3. GBMCI. Survival analysis models often impose strong assumptions on hazard func-

tions. GBMCI does not explicitly assume particular forms of hazard functions; instead,

it trains an ensemble of regression trees to approximately optimize the concordance in-

dex via gradient boosting. We benchmark the performance of GBMCI against several

popular survival models with a large-scale breast cancer prognosis task. GBMCI con-

sistently outperforms other methods based on a number of feature representations,

which are heterogeneous and contain missing values.

4. GEIDN. Genome-wide microarrays are prohibitively expensive. However, genes’ ex-

pressions are strongly correlated. The LINCS project has developed the L1000 microar-

ray to measure the expression of ˜1k landmark genes, and uses linear regression to infer

the expression of ˜21k target genes separately. However, genes have intrinsic nonlinear

interactions, and transcriptional programs are often grouped into modules. GEIDN is

a large-scale neural network, which can infer target genes jointly and naturally cap-

ture hierarchical nonlinear features shared among target genes. We deploy advanced

deep learning techniques to train GEIDN, such as drop out, momentum training, and
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GPU computing. On a GEO dataset of ˜129k complete transcriptomes, GEIDN out-

performs both k-nearest neighbor regression and linear regression for > 99.96% of

the target genes. Moreover, increased network scales help to improve GEIDN, while

increased training data benefits GEIDN more than other methods.

5. DANN. Annotating noncoding genetic variants to identify pathogenicity remains chal-

lenging. CADD is a state-of-the-art algorithm to annotate both coding and noncoding

variants. CADD trains a linear SVM to differentiate evolutionarily derived alleles from

simulated variants, with 949 highly heterogeneous features. However, linear SVM can-

not capture nonlinear relationships among the features. DANN uses the same training

features and data as CADD, but trains a neural network. DANN can capture non-

linear relationships among features and deals with large data size better than SVM.

Like in GEIDN, we exploit deep learning techniques to train DANN. DANN achieves

a 18.90% relative reduction in the error rate and a 14.52% relative increase in AUC

over CADD.

7.1 Future Directions

Chapters 2–6 have discussed open questions and future directions that are specific for each

of the previous projects. Now we propose some higher-level directions:

• Feature representation has room for improvement. In the breast cancer prognosis

study, genes’ expression features are either selected by ranking the concordance index

or linearly transformed via the Metagene algorithm. This can be potentially improved

by more sophisticated feature extraction strategies. For example, one might introduce

the elastic net penalty (the grouping effect) to the Cox model to select genes, and design

an ADMM-alike algorithm to solve it; one can also use the node-splitting mechanism
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of GBMCI to automatically select genes; moreover, unsupervised feature learning such

as the auto encoder might extract nonlinear features that are more informative than

the current feature sets.

• Data fusion remains an open challenge. In the breast cancer prognosis study, clinical

covariates and gene expression features are combined by simple “concatenation” and

provide improved predictive power; in the genetic variant annotation study, highly

heterogeneous features are expanded into a “pseudo” feature vector. However, these are

by no means the optimal data fusion strategy, in particular when one considers about

the intrinsic connections among the raw feature sets. For example, gene expression

features might be the cause of many clinical features, while certain genetic variant

features might share redundant information. Therefore, more informative and more

principled data fusion strategies are needed for large-scale genomic problems.

• Interpretation of learned computational models and features brings a series of scientific

questions. For example, what biological meaning do the sparse part and low-rank part

of LVGG indicate? How to interpret the hidden layer features and the weights of

GEIDN? How well can LVGG and GEIDN characterize the underlying gene regulatory

networks & pathways as known by biologists? To address these questions, one needs to

analyze the learned model (the weights, structures, etc.) using the domain knowledge.

One can even design models that encapsulate the domain knowledge. Training such

models might provide more informative features to biologists.

• Developed models need more thorough applications and verifications to consolidate

their utilities. For example, how to evaluate the inference quality on the L1000 data

remains not clearly defined. A proper evaluation of GEIDN on L1000 data may be

possible with a matched, representative gold standard dataset generated by a genome-

wide assay such as the Affymetrix microarray platform.
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[27] R. K. Curtis, M. Orešič, and A. Vidal-Puig. Pathways to the analysis of microarray
data. Trends in biotechnology, 23(8):429–435, 2005.

[28] A. Dempster. Covariance selection. Biometrics, 28(1):157–175, 1972.

[29] L. Deng. A tutorial survey of architectures, algorithms, and applications for deep
learning. APSIPA Transactions on Signal and Information Processing, 3:e2, 2014.

[30] P. Di Lena, K. Nagata, and P. Baldi. Deep architectures for protein contact map
prediction. Bioinformatics, 28(19):2449–2457, 2012.

[31] J. Eckstein and D. Bertsekas. On the douglas rachford splitting method and the prox-
imal point algorithm for maximal monotone operators. Mathematical Programming,
55(1):293–318, 1992.

[32] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann.
Statist., 32(2):407–499, 2004. With discussion, and a rejoinder by the authors.

[33] L. Evers and C.-M. Messow. Sparse kernel methods for high-dimensional survival data.
Bioinformatics, 24(14):1632–1638, 2008.

[34] D. Faraggi and R. Simon. A neural network model for survival data. Statistics in
Medicine, 14(1):73–82, 1995.

[35] V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for large-scale risk
minimization. The Journal of Machine Learning Research, 10:2157–2192, 2009.

[36] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for
combining preferences. The Journal of Machine Learning Research, 4:933–969, 2003.

[37] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[38] J. Friedman, T. Hastie, and R. Tibshirani. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer-Verlag New York, 2009.

[39] J. H. Friedman. Greedy function approximation: a gradient boosting machine.(english
summary). Ann. Statist, 29(5):1189–1232, 2001.

[40] J. H. Friedman. Stochastic gradient boosting. Computational Statistics & Data Anal-
ysis, 38(4):367–378, 2002.

[41] W. Fu et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-
coding variants. Nature, 493(7431):216–20, Jan 2013.

96



[42] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Computers and Mathematics with Appli-
cations, 2(1):17–40, 1976.

[43] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Y. W. Teh and M. Titterington, editors, Proceedings of the 13th
International Conference on Artificial Intelligence and Statistics, pages 249–256, Chia
Laguna Resort, 2010.

[44] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un,
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Appendix A

Supplementary Material for Chapter 5

A.1 Supplementary Table

Table S1: The configurations of three GEIDN models

GEIDN-1 GEIDN-2 GEIDN-3

Architecture a [978, 3000, 3000, 5323] [978, 6000, 6000, 5323] [978, 6000, 8000, 8000, 5323]
Dropout b [1.0, 0.9, 0.9] [1.0, 0.85, 0.85] [1.0, 0.9, 0.9, 0.9]
Irange c [0.0388, 0.0316, 0.0268] [0.0293, 0.0224, 0.0230] [0.0293, 0.0207, 0.0194, 1e-4]
Learning rate d [1e-3, 4e-6] [5e-4, 4e-6] [5e-4, 4e-6]
Momentum e [0.01, 0.5, 20] [0.01, 0.5, 50] [0.01, 0.5, 50]
Mini-batch size 200 200 200
Training Epochs 200 300 400

a The number of neurons in each layer, from the input layer to the output layer.
b The probability p to random include a neuron in each layer during dropout training, from
the input layer to the last hidden layer.
c The boundary of the uniform distribution to sample the initial weights from in each layer,
from the first hidden layer to the output layer. See Equation 5.8 for details.
d Each entry specifies the initial learning rate η0, and the small positive value δ used for
learning rate annealing. See Equation 5.7 for details.
e Each entry specifies the initial momentum, the final momentum, and the number of epochs
to finish the momentum update. The momentum is increased linearly over epochs.
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A.2 Supplementary Figure

(a) (b)

(c) (d)

Figure S1: Marginal distribution of gene expression values over all: (a) landmark genes of
the GEO data; (b) target genes of the GEO data; (c) landmark genes of the L1k-sub data;
(d) target genes of the L1k-sub data. Note that target genes of the L1k-sub data are imputed
via linear regression and clipped to be between 0 and 15.
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(a) (b)

(c) (d)

Figure S2: The predictive errors of GEIDN-1 compared to LR and KNN-GE. (a) RMSEs of
GEIDN-1 versus those of LR; (b) RMSEs of GEIDN-1 versus those of KNN-GE; (c) RMRSEs
of GEIDN-1 versus those of LR; (d) RMRSEs of GEIDN-1 versus those of KNN-GE.
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(a) (b)

(c) (d)

Figure S3: The predictive errors of GEIDN-2 compared to LR and KNN-GE. (a) RMSEs of
GEIDN-2 versus those of LR; (b) RMSEs of GEIDN-2 versus those of KNN-GE; (c) RMRSEs
of GEDIDN-2 versus those of LR; (d) RMRSEs of GEIDN-2 versus those of KNN-GE.
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(a) (b)

(c) (d)

Figure S4: Learning curves of GEIDN-1. The target genes are randomly permuted and
then assigned with labels 1˜21,290. After that, they are evenly distributed into four neural
networks for training and prediction, whose learning curves are shown by (a), (b), (c), and
(d) separately. See Section 5.3.2 for the motivation of this design.
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(a) (b)

(c) (d)

Figure S5: Learning curves of GEIDN-2. The target genes are randomly permuted and
then assigned with labels 1˜21,290. After that, they are evenly distributed into four neural
networks for training and prediction, whose learning curves are shown by (a), (b), (c), and
(d) separately. See Section 5.3.2 for the motivation of this design.
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Figure S6: The prediction error box plot over all target genes for LR, LR-L1, KNN-GE and
GEIDN-1. GEO-tr-sub, GEO-va-sub, and GEO-te are used for model training, validation,
and testing. (a) Using RMSE as the evaluation metric; (b) using RMRSE as the evaluation
metric.
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