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ResearchUltra-low dose naltrexone attenuates chronic 
morphine-induced gliosis in rats
Theresa-Alexandra M Mattioli1, Brian Milne1,3 and Catherine M Cahill*1,2,3

Abstract
Background: The development of analgesic tolerance following chronic morphine administration can be a significant 
clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that 
inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated 
that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical 
studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone 
attenuates glial activation, which may contribute to its effects on attenuating tolerance.

Results: Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-
labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes 
from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-
injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-
treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-
administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial 
activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of 
tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference 
observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, 
using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine 
administration.

Conclusion: Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and 
the inhibition of spinal gliosis by treatment with ultra-low dose naltrexone. This research provides further validation for 
using ultra-low dose opioid receptor antagonists in the treatment of various pain syndromes.

Background
Opioid drugs, such as morphine, are widely used for the
management of moderate to severe pain. Unfortunately,
the usefulness of morphine and other opioid analgesics in
the management of pain is limited due to the develop-
ment of tolerance to the analgesic effects of these drugs
with repeated exposure [1]. Clinically, the onset of toler-
ance necessitates increasing doses of opioids, which in
turn typically increases the number and severity of
adverse effects and compliance [2].

Morphine acts to inhibit nociception predominately via
Gi protein-coupled μ-opioid receptors [3,4] located in

nociceptive pathways throughout the central nervous sys-
tem including the dorsal spinal cord. Within the spinal
cord, μ-opioid receptors are well recognized to localize
on pre- and post-synaptic nociceptive neurons, but they
are also present on astrocytes and microglia [5-10], how-
ever the function of μ-opioid receptors on glial cells
remains elusive.

A number of factors appear to contribute to the devel-
opment of analgesic tolerance. In general, the develop-
ment of tolerance is thought to involve cellular
adaptation/modulation that results in decreased analge-
sic potency. The precise mechanism(s) of action is not
known; however, investigators have been able to attenu-
ate or reverse established analgesic tolerance to morphine
by inhibiting either the release of neurotransmitters and/
or inhibition of their receptors [11-16]. Within the last
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decade, activation of spinal glia has emerged as a novel
mechanism underlying analgesic tolerance [17-19]. Rele-
vant to the current study, the administration of sub-ther-
apeutic (ultra-low) doses of opioid specific antagonists
(e.g. naloxone, naltrexone) augmented opioid-induced
analgesia and inhibited and/or reversed the development
of tolerance and physical dependence [20]. Although this
relationship was studied intensively in various in vitro
and in vivo models [20-22], only recently have clinical tri-
als been undertaken to investigate the improved thera-
peutic benefit of combining opioid analgesics with ultra-
low dose opioid receptor antagonists. To date, clinical tri-
als have confirmed that combinations of opioids and
ultra-low dose antagonists both enhance and prolong
opioid-induced analgesia, and prevent analgesic tolerance
and physical dependence [23,24]. Precisely how ultra-low
dose antagonists prevent/reverse tolerance to opioid
analgesics is not fully understood, but spinal glia may play
a crucial role. We demonstrate that one contributing
mechanism is that ultra-low dose naltrexone blocks opi-
oid-induced activation of spinal glial cells.

Results
Ultra-low dose naltrexone attenuated the development of 
tolerance to morphine antinociception
Animals chronically administered intrathecal morphine
(15 μg; MS) by lumbar puncture displayed a loss in anti-
nociception on day 5 (49.1% maximum possible effect;
MPE) as compared to day 1 treatment (100% MPE; Figure
1). Attenuation of the loss in antinociception was
observed in animals that were co-administered ultra-low
dose naltrexone (5 ng; NTX) with morphine, maintaining
72.7% of the maximum possible antinociceptive effect
(Figure 1). This effect is dose dependent, as animals co-

administered 0.05 ng naltrexone with morphine showed a
loss in antinociception similar to animals treated with
morphine only, maintaining 41.6% of the maximum pos-
sible antinociceptive effect on day 5. Control animals
administered vehicle (saline) or ultra-low dose naltrexone
alone did not produce changes in thermal nociceptive
thresholds compared to baseline values (Figure 1).

Ultra-low dose naltrexone attenuated morphine-induced 
increases in the expression of glial fibrillary acidic protein 
(GFAP) and CD3/CD11B (OX42)
Spinal cords collected from animals administered vehicle
(saline), morphine (15 μg), combined morphine and
ultra-low dose naltrexone (5 ng), or naltrexone alone
were processed for immunohistochemical labelling. Rep-
resentative images (Figure 2A i-iv) illustrate the increase
in GFAP labelling observed in animals chronically admin-
istered morphine alone (Figure 2A ii) as compared to all
other treatments. Quantification of GFAP labelling inten-
sity (Figure 2B) revealed a significant increase in GFAP
labelling in morphine only treated spinal cord sections as
compared to saline controls. Co-administration of ultra-
low dose naltrexone in combination with morphine did
not produce a significant increase in GFAP expression as
compared to saline-treated and naltrexone-treated con-
trols (P > 0.05). No difference in GFAP expression was
observed between saline-treated and naltrexone-treated
treated sections. Similarly, increased CD3/CD11B
expression was observed in morphine-treated animals
compared to controls (Figure 3B), which was attenuated
by co-administration of ultra-low dose naltrexone. There-
fore, ultra-low dose naltrexone significantly attenuated
the increase in GFAP and CD3/CD11B expression
induced by chronic morphine administration.

Ultra-low dose naltrexone attenuated morphine-induced 
astrocyte hypertrophy
Astrocyte cells were reconstructed in three dimensions
from spinal cord sections obtained from rats chronically
administered drug treatments. Representative images of
astrocytes reconstructed from morphine-treated animals
(Figure 4A i-iv) demonstrate hypertrophy characteristic
of astrogliosis. Measurement of astrocyte cell volume
confirmed that chronic morphine treatment produced
significantly larger volumes compared to saline-treated
controls (Figure 4B). Co-administration of ultra-low dose
naltrexone with morphine attenuated this increase in cell
volume (p < 0.001 compared to morphine-treated), how-
ever, astrocytes were still of significantly larger volumes
than saline-treated controls but did not differ from nal-
trexone only controls. Moreover, naltrexone treatment
alone did not significantly affect astrocyte volume com-
pared to saline-treated controls. Thus, co-administration

Figure 1 Co-administration of ultra-low dose naltrexone (5 ng; 
NTX) with morphine (15 μg; MS) attenuated the loss in antinoci-
ception produced by morphine treatment alone in rats. The lower 
dose, 0.05 ng NTX did not attenuate the loss in antinociception pro-
duced by chronic morphine. Ultra-low dose naltrexone alone did not 
produce significant antinociception as compared to vehicle (saline) 
treated controls. Statistical analyses were performed using a two-way 
ANOVA followed by Bonferroni post hoc test. The asterisk denotes a sig-
nificant difference from morphine-treated rats. ** = p < 0.01, *** = p < 
0.001.
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Figure 2 Intensity of astrocyte labelling in the dorsal lumbar spinal cord of rats. (A) Representative photomicrographs acquired by confocal mi-
croscopy of spinal cord sections labelled for the astrocytic protein, glial fibrillary acidic protein (GFAP). Spinal cord sections were collected from rats 
receiving intrathecal vehicle (saline; SAL) (i), morphine (15 μg; MS) (ii), morphine and naltrexone (5 ng; MS+NTX) (iii), or naltrexone (NTX) alone (iv). 
Photomicrographs were converted to gray scale and then analyzed to obtain mean gray values. Morphine treatment produced a significant increase 
in the amount of GFAP labelling as compared with saline-treated control. Attenuation of increased GFAP immuno-labelling was observed in animals 
co-administered ultra-low dose naltrexone with morphine (### = p < 0.001 compared to morphine treatment). Naltrexone alone had no significant 
effect on GFAP immuno-labelling compared to saline control (p > 0.05). Data represent means ± s.e.m. for n = 6-8 sections per rat from n = 5-6 per 
group. Statistical analyses were performed by a one-way ANOVA followed by Tukey's post-hoc multiple comparison test. The asterisk denotes signifi-
cant difference from saline-treated rats, *** = p < 0.001.
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Figure 3 Intensity of microglial labelling in the dorsal lumbar spinal cord of rats. (A) Representative photomicrographs acquired by confocal 
microscopy of spinal cord sections labelled for the microglial marker, CD3/CD11B (OX42). Spinal cord sections were collected from rats receiving in-
trathecal vehicle (saline; SAL) (i), morphine (15 μg; MS) (ii), morphine and naltrexone (5 ng; MS+NTX) (iii), or naltrexone (NTX) alone (iv). Photomicro-
graphs were converted to gray scale and then analyzed to obtain mean gray values. Morphine treatment produced a significant increase in the 
amount of OX42 labelling as compared with saline control. Attenuation of increased OX42 immuno-labelling was observed in animals co-adminis-
tered ultra-low dose naltrexone with morphine (### = P < 0.001 compared to morphine treatment). Naltrexone alone had no significant effect on OX42 
immuno-labelling compared to saline control (P > 0.05). Data represent means ± s.e.m. for n = 6-8 sections per rat from n = 3-6 per group. Statistical 
analyses were performed by a one-way ANOVA followed by Tukey's post-hoc multiple comparison test. The asterisk denotes significant difference from 
saline-treated rats, * = P < 0.05.
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Figure 4 Ultra-low dose naltrexone attenuates morphine-induced astrocyte hypertrophy. (A) Representative three dimensional images of as-
trocytes from rats receiving intrathecal vehicle (saline, SAL) (i), morphine (15 μg, MS) (ii), morphine and naltrexone (5 ng, MS+NTX) (iii), or naltrexone 
(NTX) alone (iv). Morphine treatment produced a significant increase in astrocytic cell volume as compared with saline-treated and naltrexone-treated 
controls. Co-administration of ultra-low dose naltrexone with morphine attenuated this hypertrophy; astrocytes have significantly smaller volumes as 
compared to morphine only treatment (### = p < 0.001). Data represent means ± s.e.m. for n = 12-24 cells per rat from n = 5 per group. Statistical anal-
yses were performed by a one-way ANOVA followed by Tukey's post-hoc multiple comparison test. The asterisk denotes significant difference from 
saline-treated rats. * = p < 0.05, *** = p < 0.001. Scale bar, 30 μm.
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of ultra-low dose naltrexone significantly attenuated
morphine-induced hypertrophy of astrocytes.

Chronic morphine does not induce cell proliferation
The number of GFAP and OX42-positive cells present in
lumbar spinal cord sections from animals chronically
administered intrathecal vehicle (saline) or morphine (15
μg) were counted (Table 1). The number of GFAP-posi-
tive (astrocytes) and OX42-positive (microglia) cell bod-
ies observed in spinal cord sections from morphine-
treated rats was not significantly greater than the number
in spinal cord sections from saline-treated controls. To
confirm this finding, cell proliferation was assessed via 5-
bromo-deoxyuridine (100 mg/kg, i.p; BrdU) experiments.
BrdU was injected on alternative days 30 minutes prior to
intrathecal administration of saline or morphine (15 μg)
for 5 days. Immunohistochemical labelling of spinal cord
sections collected from these animals revealed no signifi-
cant increase in the number of BrdU-positive cells in
morphine-treated animals compared to saline controls
(Figure 5J). Double labelling of sections with the astro-
cytic marker GFAP (Figure 5A-C), or the neuronal
marker MAP-2 (Figure 5G-I) revealed no co-localization
with BrdU-positive cells. Iba1, the microglial and mac-
rophage marker, co-localized with a portion of the BrdU-
positive cells (Figure 5D-F). The results of the BrdU
experiments confirm the cell counts of astrocytes and
microglia, demonstrating that the chronic morphine
treatment employed in this study does not induce spinal
cord cell proliferation.

Discussion
The current study has provided additional evidence that
ultra-low dose naltrexone attenuates the development of
tolerance to the antinociceptive effects of morphine as
previously demonstrated by Powell et al [20]. As the
mechanism by which this phenomenon occurs is
unknown, this study sought to investigate the contribu-
tion of glia in the actions of ultra-low dose opioid antago-
nists. Intrathecal catheterization has been shown to
induce gliosis [25], therefore the current study used lum-
bar puncture drug delivery to reproduce the original
behavioural findings of Powell et al [20]. Preliminary
experiments investigated the effects of different ultra-low
doses of naltrexone on morphine tolerance. In this study,
the dose of naltrexone (0.05 ng) used in experiments by
Powell et al [20] did not attenuate the loss in antinocicep-
tion observed with chronic morphine administration.
However, a hundred-fold greater dose (5 ng) preserved
the analgesic effects of morphine throughout the treat-
ment period, and thus was used to determine the effects
on morphine-induced gliosis. In addition to the use of
intrathecal catheters for drug delivery, another important
difference in experimental protocol in the present study

were the housing conditions; animals used in this study
were housed in a room on a reverse light-dark cycle
(lights off at 7:00 am), with all behavioural testing con-
ducted during the animals' active (dark) phase. It is well
accepted that pain responsiveness and endogenous opi-
oids have circadian fluctuations in rats [26] and that mor-
phine-induced antinociception is greater during the
active phase compared to during the inactive light phase.
These fluctuations may account for the greater dose of
opioid antagonist required to attenuate tolerance in the
present study compared to what has been previously pub-
lished.

Current research has demonstrated that spinal glia are
not merely support cells within the CNS as previously
hypothesized (i.e. responsible for the maintenance of
neurons and CNS homeostasis); they also actively com-
municate with neurons, are involved in the modulation of
synaptic signalling and may be involved in the develop-
ment of opioid tolerance. Chronic, but not acute, mor-
phine administration, induces gliosis characterized by
cell hypertrophy, and is associated with increased expres-
sion of GFAP [19,27-30] in astrocytes and CD3/CD11B
(OX42) in microglia [31]. Reactive glial cells (microglia
and astrocytes) can release a variety of pro-nociceptive
and neuroexcitatory substances (e.g. prostaglandins,
excitatory amino acids, interleukins, nitrogen oxide spe-
cies, ATP, glutamate etc.), which may enhance pain trans-
mission by nociceptive neurons [19,28,32-34].

This is the first report to demonstrate that co-adminis-
tration of ultra-low dose naltrexone prevents morphine-
induced gliosis, demonstrated by normalization of GFAP
and CD3/CD11B expression and attenuation of increased
astrocyte cell volume. The observed increases in GFAP/
CD3/CD11B expression and astrocyte cell volume in spi-
nal cord sections from animals chronically administered
intrathecal morphine are consistent with gliosis and are
in agreement with previous findings of astrocyte and
microglial activation by chronic morphine administration
[19,28-30]. As no significant difference was found in the
number of immuno-positive cells or in the number of
newly generated cells between morphine treated and
saline controls, glial proliferation likely contributes very
little to the observed increases in GFAP and CD3/CD11B
expression. This finding is in agreement with that of Song
and Zhao [19], in which chronic morphine resulted in
increased astrocyte immunoreactivity with no difference
in the number of cells from saline treated controls. In
contrast, Narita et al [30] reported that astrocyte prolifer-
ation was induced by chronic morphine administration;
however, no quantification of the number of GFAP-posi-
tive cells was reported. Agents that modify [19] or inhibit
[18] activation of astrocytes and microglia prevent the
development of morphine tolerance; thus inhibition of
gliosis by ultra-low dose naltrexone may prevent the
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Figure 5 The morphine-induced increase in astrocyte and microglial immuno-labelling is caused by cell hypertrophy, not proliferation. 
Lumbar spinal cord sections were collected from animals administered BrdU (100 mg/kg) by intraperitoneal injection on days 1, 3, 5, and either in-
trathecal vehicle (saline; SAL) or morphine (15 μg; MS) once daily for five days by lumbar puncture. Representative photomicrographs acquired by 
confocal microscopy of spinal cord sections double labelled with 5-bromo-2-deoxyuridine (BrdU) and the astrocytic protein GFAP (B, C), the microglial 
marker Iba1 (E, F) or the neuronal marker MAP2 (H, I). No co-localization of BrdU-positive cells with GFAP or MAP-2-positive cells was observed. How-
ever, BrdU co-localized with a small number of Iba1 positive cells (arrow), suggesting a small portion of the newly formed cells were microglia or mac-
rophages. (J). No difference was observed in the number of BrdU-positive cells in the dorsal horn (lamina II-IV) of lumbar spinal cord sections from 
animals administered chronic intrathecal saline or morphine. Data represent means ± s.e.m. for n = 6 sections per rat from n = 3 per group. Statistical 
analyses were performed by an un-paired t-test. ns = no significance. Scale bars, 30 μm.
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development of analgesic tolerance. This evidence, taken
in concert with the findings of the current study, supports
the hypothesis that spinal glia are involved in the devel-
opment of morphine analgesic tolerance and in the medi-
ation of nociception. It has also been reported that ultra-
low dose naltrexone augments morphine antinociception
in a model of pertussis toxin induced hyperalgesia [35].

While the present study provides strong support for the
role of glia in the ultra-low dose effect, various molecular
studies indicate that ultra-low dose antagonists may pre-
vent opioid receptor coupling to stimulatory G-proteins
(Gs). Classically, opioid activation of μ-opioid receptors
results in coupling to inhibitory G-protein subunits (Gi/
Go) and produces analgesia; however, following chronic
opioid administration, increased coupling of μ-opioid
receptors to Gs has been observed [21]. Therefore,
increased excitatory stimulation via Gs-coupled μ-opioid
receptors may oppose the analgesic effects mediated via
Gi/Go signalling, and manifest as tolerance [21,36]. Wang
et al [21] demonstrated that the switch in G-protein cou-
pling to μ-opioid receptors induced by chronic morphine
could be prevented by co-administering an ultra-low dose
of naloxone, further supporting this hypothesis. Despite
these advances, the switch in G-protein coupling to μ-
opioid receptors induced by chronic morphine treatment
has not been localized to a specific cell population within
the spinal cord, and therefore, may occur in glia or noci-
ceptive neurons. On the contrary, the effects of ultra-low
dose antagonists may not be mediated by μ-opioid recep-
tors but through a novel mechanism such as an interac-
tion with filamin A [37] or Toll-like receptors [38]. Thus,
future studies will aim to identify the mechanism by
which ultra-low dose naltrexone alters gliosis.

Conclusions
The results of this study may have a significant impact on
the clinical management of moderate to severe pain.
Patients currently treated with chronic opioid therapy
may benefit not only from increased efficacy of combined
opioid treatment [23,39], but may also experience fewer
and less severe adverse effects [24,40], as sufficient anal-

gesia can be achieved and maintained at lower opioid
doses. Additionally, an understanding of the mechanism
of action of opioid drugs will provide insight toward the
development of more selective and efficacious pharmaco-
logical treatments for pain management. Not the least of
which could be for improving treatment of chronic pain
conditions such as neuropathic pain where glial activa-
tion is also evident, with reactive gliosis being a key con-
tributor to the painful neuropathy [41-44]. Additionally,
reduced opioid analgesic efficacy has also been reported
in patients with neuropathic pain [45,46], however, co-
administration of ultra-low dose antagonists with opioid
agonists increased analgesic efficacy in animal models of
neuropathic pain [47] and in clinical trials [23,24]. Future
research will be required to determine if ultra-low dose
naltrexone is able to alleviate established chronic pain.

Methods
Animals
Adult male Sprague-Dawley rats (180-200 g; Charles
River, Québec, Canada), were housed in groups of two
with ad libitum access to food and water, and maintained
on a reverse 12/12 h light/dark cycle. All behavioural
experiments were performed during the dark phase of the
cycle, and animals were handled prior to experimentation
in order to reduce stress-related analgesia. All experi-
mental protocols were approved by the Queen's Univer-
sity Animal Care Committee, and complied with the
policies and directives of the Canadian Council on Ani-
mal Care and the International Association for the Study
of Pain.

Drug treatments
Morphine was purchased from Sabex, Kingston General
Hospital, Kingston, Ontario, Canada. Naltrexone and 5-
bromo-2-deoxyuridine (BrdU) were purchased from
Sigma (St. Louis, MO, USA). Animals were separated into
one of five groups receiving i) morphine (15 μg; n = 18),
ii) morphine and naltrexone (5 ng; n = 19), iii) morphine
and naltrexone (0.05 ng; n = 3), iv) naltrexone (5 ng) alone
(n = 8), or v) saline (n = 15). Intrathecal (i.t.) administra-

Table 1: Glial cell counts.

Cell Type Saline Morphine

Astrocyte (GFAP) 6.767 ± 0.502 8.295 ± 0.558

Microglia (OX42) 8.083 ± 0.911 8.886 ± 0.499

The number of astrocyte (GFAP-positive) or microglia (OX42-positive) cell bodies in the dorsal horn of spinal cord sections collected from rats 
receiving intrathecal morphine (15 μg, MS), or vehicle (saline). No significant difference was observed between treatment groups. Data 
represent means ± s.e.m. for n = 6-8 sections (150 μm × 150 μm) per rat from n = 4-6 per group. Statistical analyses were performed using an 
unpaired t-test.
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tion of all drugs (diluted in saline to 30 μl volume) was
accomplished by way of lumbar puncture between the L4
and L5 vertebrae under brief isofluorane anesthesia. Suc-
cessful drug placement was confirmed by a vigorous tail
flick upon injection.

To determine if chronic morphine treatment induced
cell proliferation, animals received 5-bromo-2-deoxyuri-
dine (BrdU, 100 mg/kg; prepared in a concentration of 25
mg/ml in 0.007 N NaOH and saline), injected intraperito-
neally (i.p.) on days 1, 3, and 5. Animals were separated
into two groups receiving intrathecal morphine (15 μg/15
μl; n = 3) or saline (15 μl; n = 3) by lumbar puncture under
brief isoflurane anaesthesia for 5 days. Saline or mor-
phine was injected 30 minutes after BrdU injections.

Behavioural tail flick assay
The effects of drug administration on thermal nocicep-
tive responses were assessed on Days 1, 3 and 5 of the
study using the tail flick assay. In brief, a beam of radiant
light was applied to a spot marked 5 cm from the tip of
the tail, and the latency to a vigorous tail flick was mea-
sured. Three baseline latencies were measured prior to
drug injection to determine the normal nociceptive
responses of the animals. A cut-off time of three times
the animal's average baseline was imposed to avoid tissue
damage in the event that the animal became unrespon-
sive following drug injection. Rats were then injected
intrathecally with their respective treatments, and the
thermal latency measured at 30 minutes post-injection,
as previous studies have found that the peak antinocicep-
tive effects of morphine occur at this time point [48].
Tail-flick values were converted to a maximum possible
effect (% MPE): (post-drug latency - baseline) ÷ (cut-off
latency - baseline) × 100. Statistical analyses were per-
formed using a two-way analysis of variance (ANOVA),
followed by Bonferroni's post-hoc multiple comparisons
test to determine between group differences. P values less
than 0.05 were considered significant. All behavioural
testing was performed by the experimenter blind to drug
treatment.

Immunohistochemistry
On day 6, 24 h after the last injection, rats (n = 3 per drug
treatment) were deeply anesthetized with sodium pento-
barbital (75 mg/kg, i.p.; MTC Pharmaceuticals, Cam-
bridge, Ontario, Canada) and transaortically perfused
with 4% paraformaldehyde (PFA) in 0.1 M phosphate buf-
fer (PB; 500 ml, pH 7.4). The spinal cords were removed
by spinal ejection and post-fixed in the above fixative for
1 hour on ice and cryoprotected in 30% sucrose in 0.1 M
PB for 48 hours at 4°C. Lumbar segments were isolated
and cut into 40 μm transverse sections on a freezing
sledge microtome and collected in 0.1 M Tris buffered
saline (TBS; pH 7.4).

Free-floating sections were incubated in a blocking
solution containing 5% NGS in TBS-T (TBS and 0.2%
Triton X-100), followed by incubation with a rabbit poly-
clonal antisera recognizing glial fibrillary acidic protein
(GFAP; 1:2500 working dilution; DakoCytomation,
Ontario, Canada) to label astrocytes and a mouse mono-
clonal antisera recognizing OX42 (1:1000 working dilu-
tion; Serote, NC, USA) to label CD3/CD11B receptors on
microglia. Spinal cord sections were incubated overnight
at 4°C with both primary antibodies, followed by incuba-
tion with goat anti-rabbit and goat anti-mouse secondary
antibodies (1:200 working dilution; Molecular Probes,
Invitrogen, Ontario, Canada) conjugated to Alexa 488
and Alexa 594 fluorophores, respectively. To assess non-
specific labelling, control sections were processed in the
absence of primary antibody. Sections were mounted on
glass slides, air-dried and cover-slipped using Aqua-
mount (Fisher Scientific, Ontario, Canada).

BrdU immuno-labelling was performed as described by
Suter et al [49]. Briefly, spinal cord sections were heated
in solution containing 50% formamide, 50% 2× saline
sodium citrate (SSC) for 2 h at 65°C. Sections were fur-
ther incubated at 37°C for 30 min in 2N HCL then placed
in 0.1 M borate buffer (pH 8.5). Sections were incubated
in blocking solution, followed by incubation with a mouse
monoclonal antibody against BrdU (1:500, Chemicon,
Temecula, CA). To identify the phenotype of newly
formed cells, sections were double labelled with one of
the following antibodies: rabbit anti-GFAP (for astro-
cytes, 1:2500), rabbit anti-Iba1 polyclonal antibody (ion-
izing calcium-binding adaptor molecule, for microglia
and macrophages, 1:1000; Wako, Richmond, VA), or rab-
bit anti-MAP-2 polyclonal antibody (microtubule-associ-
ated protein 2, for neurons, 1:1000; Chemicon, Temecula,
CA). Sections were then incubated with goat anti-rabbit
and goat anti-mouse secondary antibodies (1:200) conju-
gated to Alexa 488 and Alexa 594 fluorophores, respec-
tively, and mounted as described above.

Imaging of immunoreactive cells was performed as pre-
viously described [50]. In brief, immunoreactive cells
were imaged using the Leica TCS SP2 multi photon con-
focal microscope (Leica Microsystems Inc, Ontario, Can-
ada). Images were taken within the dorsal horn (lamina
III-V) at 63× magnification for quantification of intensity.
Serial images (twenty-five to thirty-five) were captured at
100× magnification, at 0.75 μm increments throughout
the z plane in the deep and superficial dorsal horn (4
series per section, 3 sections per animal).

For quantification of the intensity of antibody labelling,
images were converted to gray scale using Adobe Photo-
shop 7.0. Using Image J (NIH), the mean gray values were
measured and the average within each treatment group
calculated and expressed as mean ± s.e.m. For quantifica-
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tion of GFAP, OX42 and BrdU-positive cells, immunola-
belled cell bodies were counted for each section (150 μm
× 150 μm) and the average within each treatment group
calculated and expressed as mean ± s.e.m. To quantify
astrocyte volume, images taken at 100× magnification
were stacked and reconstructed in three-dimensions
using ImagePro Plus v5.0 software (MediaCybernetics,
MD, USA). Total cell volume was calculated for each
reconstructed cell. The average volume for cells within
each treatment group was calculated and expressed as
mean ± s.e.m. Mean intensities and 3D volumes were
analyzed by one-way ANOVA followed by Tukey's post-
hoc multiple comparison test. Differences in cell num-
bers were analyzed by unpaired T-tests. P values less than
0.05 were considered significant. All quantification data
was collected by experimenter blind to drug treatment.
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