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ABSTRACT OF THE DISSERTATION

Tropical techniques in cluster theory and enumerative geometry

by

Man Wai Cheung

Doctor of Philosophy in Mathematics

University of California, San Diego, 2016

Professor Dragos Oprea, Chair

There are three parts in this thesis. First, we generalize the class of tropical

curves from trivalent to 3-colorable which can be realized as the tropicalization of

an algebraic curve whose non-archimedean skeleton is faithfully represented by Γ.

Second, we prove the equality of two canonical bases of a rank 2 cluster

algebra, the greedy basis of Lee-Li-Zelevinsky and the theta basis of Gross-Hacking-

Keel-Kontsevich.

Third, we link up scattering diagrams D with quiver representations of

corresponding quivers Q. We define a notion of good crossing of broken lines γ

on D. Then we show if γ has good crossing over D, then it goes in the opposite

direction of the Auslander-Reiten quiver of Q. Then we give a stratification of

quiver representations by the bendings of γ.
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Chapter 1

Introduction

There are two distinct directions in this thesis. The first one is about toric

degenerations and tropical curves. We will introduce it in Section 1.1. The second

one is about an attempt to make a connection between two areas, mirror symmetry

and cluster algebras. Motivations and major results will be discussed in Section

1.2.

1.1 Faithful realizability of tropical curves

Curve counting has always been one of the major questions in algebraic

geometry. Mikhalkin in [Mik05] gave a ‘tropical’ formula for the number of curves

of genus g on a toric surface X passing through some number of points. The main

idea is to provide a one-to-one correspondence between algebraic and tropical curves.

Later, Nishinou and Siebert [NS06] developed such a correspondence theorem for

rational curves in higher dimensional toric varieties. By using techniques from

log geometry, they constructed a toric degeneration of the ambient toric variety

controlled by the parameterized tropical curve.

Fantini, Park, Ulirsch and I [CFPU14] generalize the work of Nishinou-

Siebert to get a larger class of tropical curves that can be realized as the tropical-

ization of algebraic curves whose non-archimedean skeleton is faithfully represented

by the curves. One new thing about our approach is we consider tropical curves

with valency greater than three. We have pushed the condition from trivalent to

1
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3-colorable.

Let N a finitely generated free abelian group and set NR = N ⊗Z R, M =

Hom(N,Z). Let K be a nontrivially valued non-archimedean analytic field, and

denote by R its valuation ring, Kalg a fixed algebraic closure of K. Let T be

the split algebraic torus SpecK[M ], and let T an be the non-archimedean analytic

space associated to T in the sense of [Ber90]. Following [Gub07], [Gub13], and

[EKL06], one can define a continuous tropicalization map trop : T an −→ NR.

Given a curve C in T , its tropicalization Trop(C) is the subset of NR defined by

Trop(C) := trop(Can). Let C be a smooth, complete, and connected curve over

K. Berkovich in [Ber90] associates to every semistable R-model C of C, i.e. a flat

and proper R-scheme C with generic fiber C and nodal special fiber Cs, a subset

ΣC of Can, called a skeleton, and shows that it is a deformation retract of Can.

By [DM69], a semistable model C of C always exists. As an abstract graph, the

skeleton ΣC is the dual graph of the special fiber Cs of C, and it can be naturally

endowed with the structure of a metric graph. Given a finite set V of Kalg-points

of C, we can associate an enlarged skeleton ΣC,V which contains ΣC and has new

edges of infinite length corresponding to the points of V

Starting with a non-superabundant, smooth and 3-colorable tropical curve

Γ ⊂ NR, we construct a cone in NR×R≥0 by putting Γ in height one. Then we obtain

a toric scheme X. Next, we define a suitable nodal curve C0 in the special fiber of X

whose dual graph is the skeleton of Γ. By applying log smooth deformation theory,

we lift the nodal curve C0 to a proper, flat, semistable family of curves C ⊂ X

with special fiber C0. The generic fiber C of C will then be a smooth complete

curve in the generic fiber X of X. We verify that our construction satisfies the

properties we asserted. Our crucial insight is to give a combinatorial interpretation

to the homomorphism of cohomology groups on C0 controlling the logarithmic

deformation theory. In particular, we found that for a non-superabundant tropical

curve, this homomorphism is surjective and the deformation is unobstructed. More

precisely, we prove

Theorem 1.1.1 (2.1.1 in Section 2). Let Γ be a non-superabundant, smooth and

3-colorable tropical curve with rational edge lengths. Then there exists a finite
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extension K = C((t1/`)) of C((t)) with valuation ring R, a toric scheme X over R

with big torus T , a complete smooth curve C over K, a semistable R-model C of C

together with an embedding of C into X, and a finite set V ⊆ C(Kalg) of marked

points, such that

Trop(C ∩ T ) = Γ

and the tropicalization is totally faithful with respect to ΣC,V .

Combining the above theorem with a result of [CDMY14], we also prove

Theorem 1.1.2 (2.1.2 in Section 2). For every metric graph G with rational edge

lengths there exists a tropical curve Γ in Rn, where

n = max
{

3,max{deg v − 1|v ∈ E(G)}
}
,

a finite extension K = C((t1/`)) of C((t)) with valuation ring R, a toric scheme X

over R with big torus T = Gn
m, a complete smooth curve C over K, a semistable R-

model C of C together with an embedding of C into X, and a finite set V ⊆ C
(
Kalg)

of marked points, such that

Trop(C ∩ T ) = Γ ,

the skeleton ΣC is equal to G, and the tropicalization is totally faithful with respect

to ΣC,V .

1.2 Cluster algebra and scattering diagrams

Fomin and Zelekinsky set up the theory of cluster algebras in 2000 in order

to understand total positivity in algebraic groups and canonical bases in quantum

groups. Roughly speaking, it is a subring of a field of rational functions. To define

a cluster algebra, instead of knowing all the generators at the beginning, we start

with initial data called an initial seed which includes some cluster variables. Then

there is a procedure called mutation to generate more seeds. A cluster algebra

would be defined to be the subring generated by the cluster variables in all the

seeds.
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In a few years, the theory developed rapidly and npw links with many other

areas, e.g., Poisson geometry, integrable systems, higher Teichmüller spaces, alge-

braic geometry, and quiver representations. Later Fock and Gonchenov introduced

a geometric point of view in [FG]. They introduce the A and X varieties which can

be obtained by gluing ‘seed tori’ by birational map called cluster transformations.

From another world in mathematics, namely mirror symmetry, scattering

diagram, theta functions and broken lines are introduced to understand if there exist

certain duality between spaces. 2 dimensional scattering diagram were introduced

by Kontsevich and Soibelman in [KS06] to study K3 surfaces. Leter Gross and

Siebert [GS11] consider general scattering diagram to describe toric degenerations

of Calabi-Yau varieties in order to construct mirror pairs. On the other hand, the

notion of broken lines is developed by Gross in [Gro10] to understand Landau-

Ginzburg mirror symmetry for P 2. Then Siebert, Carl and Pauperla [CPS10]

made use of broken lines to describe regular functions in the context of [GPS10],

and in particular to construct Landau-Ginzburg mirrors to varieties with effective

anti-canonical bundle. In order to construct mirrors to log Calabi-Yau surfaces

with maximal boundary with similar ideas, theta functions are introduced by Gross,

Hacking and Keel in [GHK11]. Suggested by Abouzaid, a formula for multiplication

of theta functions is given in [GHK11] in terms of trees of broken lines analogous

to the formula using tropical Morse trees.

The discovery of [GHK15] and [GHKK14] reveals that there is a strong

connection between cluster algebras and scattering diagrams. In particular, we

can view each chamber in the scattering diagram as one of the seeds in the cluster

algebras. The chambers can then be viewed as the ‘seed tori’ which ‘glued’ along

the walls in the scattering diagrams. Then theta functions can be viewed as cluster

variables. This can then united with the idea from Fock and Goncharov. The set

of theta functions are proposed to be a canonical basis for cluster algebras. There

are many other proposed bases as well, e.g. [GLS12], [Kel14], [DT11], [MSW13].

Together with Gross, Muller, Musiker, Rupel, Stella and Williams, we have proved

that the theta basis in rank 2 agrees with the greedy basis. The result is contained

in Chapter 5.
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A natural question to ask is if there is any deep, intrinsic relation between the

two subjects. With insight from Caldero and Chapoton in [CC06], theta functions

are related to quiver Grassmannians. As broken lines are used to define theta

functions, we propose each broken line corresponds to a family of subrepresentations

of an ambient quiver representation. More specifically, the initial slope of the broken

line tells us which ambient representation D we are working on. On the other

hand the final slope of the broken line gives one of the subrepresentations E of D.

So what does the bendings from the initial to the finial slopes of the broken lines

mean?

By employing the machinery of motivic Hall algebras developed by Joyce

[Joy07] and Hall algebra scatterings diagram introduced by Bridgeland [Bri15], we

can convert the usual wall crossing to be conjugation by Hall algebra elements. In

this way, each bending of the broken lines tells us stratas of quiver Grassmanians.

Then the bendings of the broken lines actually describe the filtration of the quiver

subrepresentation E. We will then be able to give a stratification of the quiver

Grassmannian. Details of the stratification will be stated in Section 7.4.

Our calculation for each strata involves not only the tools from Hall algebra

but also a closer understanding of quiver representations. More specifically, we

need to understand the Hom and Ext groups between indecomposable quiver

representations. This connects with the notion of Auslander-Reiten quivers which

records maps between indecomposables. We have stated some useful properties

of these concepts in Section 3.3.3. Furthermore, we have discovered scattering

diagrams are Auslander-Reiten quivers in certain sense. The result is stated in

Section 7.2. With all the machinery we have developed, we will be able to give an

alternative proof of the Caldero-Chapoton formula and give a richer meaning to

the equations.

1.3 Organization of this thesis

Chapter 2 contains the paper ‘Faithful realizability of tropical curves’.

Chapter 3 gives the basic definition for cluster algebras and quiver representa-
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tions. In the later chapter, we will relate scattering diagrams with Auslander-Reiten

quivers. Thus, we also give definition of Auslander-Reiten (AR) quivers and related

ideas in this chapter. Furthermore, in the computation of the statra of the quiver

Grassmanian, we have used heavily several properties of AR quivers which are

stated and proved in the last section of Chapter 3.

Chapter 4 gives the definitions for scattering diagrams, broken lines and

theta functions. The association of scattering diagrams to cluster algebras by

[GHKK14] is also indicated in this chapter. For the readability of the setup, we

have simplified the definition of scattering diagram in the beginning. However, a

more general set up for rank 2 cluster algebras is carefully computed in Section

4.2.2. This section also serves as an introduction to Chapter 5.

Chapter 5 states the paper ‘The Greedy Basis is Theta Basis’. The major

result of this paper is to show that greedy basis is the same as the theta basis in

rank 2.

Chapter 6 gives an introduction to Hall algebra. We will also go over the

definition for stability condition and then define the Hall algebra scattering diagram

by [Bri15]. Then we will define the integration map to indicate how to pass from

the Hall algebra scattering diagrams to ordinarily scattering diagrams. We further

define a notion for broken lines in the Hall algebra context. At last, we state some

properties in the Hall algebra scattering diagrams and broken lines for the use of

the next chapter.

Chapter 7 contains the last results of this thesis. We will first introduce

the relation between theta functions and quiver grassmannians. Then we will

‘visualize’ AR quiver on scattering diagram in Section 7.2. Next we will give an

alternative proof of the Caldero-Chapoton formula by using the Hall algebra set

up in Section 7.3. Afterward, we will describe how the bendings of broken lines

give stratification of quiver representations. We will be able to tell the stratas

explicitly. Finally in Section 7.4.4, we can tell the filtration of quiver representations

is Harder-Narasimhan filtration in rank 2.

As indicated in the introduction, the main goal of the thesis is connecting

several areas together. Therefore, there are several conflicts of notations between
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different papers. We have tried to state the major confusion and the choices we

have made in the Appendix. The reader are highly recommended to consult the

Appendix while reading this thesis.



Chapter 2

Faithful realizability of tropical

curves

2.1 Introduction

Let N be a finitely generated free abelian group, write M = Hom(N,Z)

for its dual, and set NR := N ⊗Z R. Let K be a non-archimedean field, let T be

the split algebraic torus SpecK[M ], and let T an be the non-archimedean analytic

space associated to T in the sense of [Ber90]. Following [Gub07], [Gub13], and

[EKL06], one can define a continuous tropicalization map trop : T an −→ NR.

Given a curve C in T , its tropicalization Trop(C) is the subset of NR defined by

Trop(C) := trop(Can). By the Bieri-Groves Theorem [BG84, Theorem A] and

[EKL06, Theorem 2.2.3] the set Trop(C) can be canonically endowed with the

structure of a 1-dimensional rational polyhedral complex. By using the lattice

length on NR with respect to N , Trop(C) can also be seen as a metric graph, with

some non-compact edges which have infinite length. Moreover, we can associate

weights to the edges of Trop(C) which satisfy a natural balancing condition.

Abstracting from these properties and following [Mik05], we define a tropical

curve as a balanced weighted 1-dimensional rational polyhedral complex; see

Definition 2.2.1 for a precise definition. It is then natural to ask which tropical

curves can be realized as the tropicalization of an algebraic curve in T ; this is

8



9

known as the problem of realizability of tropical curves. For the basics of tropical

geometry we refer the reader to [Mik05], [Gub13] and [MS15].

Let us now assume that K is nontrivially valued, and denote by R its

valuation ring. Let C be a smooth, complete, and connected curve over K. While

the underlying topological space of the non-archimedean analytic curve Can is an

infinite graph, Berkovich shows in [Ber90, Section 4.3] that it has the homotopy

type of a finite graph. More precisely, he associates to every semistable R-model

C of C, i.e. a flat and proper R-scheme C with generic fiber C and nodal special

fiber Cs, a subset ΣC of Can, called a skeleton, and shows that it is a deformation

retract of Can. Note that a semistable model C of C always exists, possibly after a

finite separable base change, by the semistable reduction theorem [DM69]. As an

abstract graph, the skeleton ΣC is the dual graph of the special fiber Cs of C, and

it can be naturally endowed with the structure of a metric graph.

Let Kalg denote a fixed algebraic closure of K. Given a finite set V of

Kalg-points of C, we can associate an enlarged skeleton ΣC,V which contains ΣC

and has new edges of infinite length corresponding to the points of V . Again, there

is an embedding of this enlarged skeleton as a deformation retract ΣC,V of Can. We

refer the reader to [BPR13, Section 3] for the details of this construction.

Given an embedding of C into a toric variety X with big torus T , we say

that the corresponding tropicalization is faithful with respect to a skeleton ΣC,V

if trop induces an isometric homeomorphism from ΣC,V ∩ T an onto its image in

Trop(C ∩ T ). In addition, if ΣC,V ∩ T an surjects onto Trop(C ∩ T ), we say that

the tropicalization is totally faithful with respect to ΣC,V . Examples in [BPR11,

Section 2.5] show that many tropicalizations are not faithful. In this article we

study the following refinement of the question of realizability:

Question (Faithful realizability). Given a tropical curve Γ ⊆ NR, can we find a

smooth, complete and connected curve C over K, a skeleton ΣC,V of Can, and an

embedding of C into a toric variety X with dense torus T such that

Trop(C ∩ T ) = Γ

and the tropicalization is totally faithful with respect to ΣC,V ?
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This question is also related to the problem of faithful tropicalization inves-

tigated in [BPR11] for curves and in [GRW14] in higher dimension.

We give a positive answer to both parts of the question of faithful realizability,

working over a finite extension C((t1/`)) of C((t)), when Γ ⊆ NR is a tropical curve

with rational edge lengths and fulfills the following three conditions:

• Γ is non-superabundant (Definition 2.4.1).

• Γ is smooth (Definition 2.2.2).

• Γ is 3-colorable (Definition 2.2.3).

Non-superabundancy for tropical curves is a natural genericity condition,

originally introduced in [Mik05], roughly saying that the deformation space of Γ as

an embedded metric graph in NR has the expected dimension (see the paragraph

after Definition 2.4.1); in our situation we adopt the point of view of [Kat12]. The

notion of 3-colorability is a mild combinatorial condition which is always satisfied by

trivalent tropical curves and tropical curves of genus at most three. More precisely

we prove the following result:

Theorem 2.1.1. Let Γ be a non-superabundant, smooth and 3-colorable tropical

curve with rational edge lengths. Then there exists

• a finite extension K = C((t1/`)) of C((t)) with valuation ring R,

• a toric scheme X over R with big torus T ,

• a complete smooth curve C over K,

• a semistable R-model C of C together with an embedding of C into X, and

• a finite set V ⊆ C(Kalg) of marked points,

such that

Trop(C ∩ T ) = Γ

and the tropicalization is totally faithful with respect to ΣC,V .
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Now we can combine Theorem 2.1.1 with a result of [CDMY14], which

states the following: Given a metric graph G with rational edge lengths, there is a

non-superabundant, smooth and 3-colorable tropical curve Γ in Rn whose skeleton

is G. We will recall their result and adjust it to our needs in Theorem 2.5.2. This

leads to the following theorem:

Theorem 2.1.2. For every metric graph G with rational edge lengths there exists

• a tropical curve Γ in Rn, where

n = max
{

3,max{deg v − 1|v ∈ E(G)}
}
,

• a finite extension K = C((t1/`)) of C((t)) with valuation ring R,

• a toric scheme X over R with big torus T = Gn
m,

• a complete smooth curve C over K,

• a semistable R-model C of C together with an embedding of C into X, and

• a finite set V ⊆ C
(
Kalg) of marked points,

such that

Trop(C ∩ T ) = Γ ,

the skeleton ΣC is equal to G, and the tropicalization is totally faithful with respect

to ΣC,V .

In particular, if G has no univalent vertices then the skeleton ΣC in Theorem

2.1.2 is the minimal skeleton of Can, since each proper subgraph of G has homotopy

type different than the homotopy type of Can. The methods of [CDMY14] allow us

to consider more general graphs G that may have infinite rays. Our proof applies

to this situation, giving us the same data as in Theorem 2.1.2 together with an

additional subset V ′ ⊆ V of marked points such that G = ΣC,V ′ .

Our proof of Theorem 2.1.1 generalizes the methods developed in [NS06]

and extended in [Nis15a]. We now outline the steps of the proof: Let Γ ⊂ NR be

a non-superabundant, smooth and 3-colorable tropical curve with rational edge

lengths. Choose a finite extension K = C((t1/`)) of C((t)) such that all vertices of
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Γ have coordinates in the value group of K. Define ∆ to be the fan in NR × R≥0

obtained by putting a copy of Γ in the height one part NR × {1} of NR × R≥0 and

taking cones over all edges and vertices of Γ. The fan ∆ defines a toric scheme

X = X∆ over R = C[[t
1
` ]].

(I) In Section 2.2 we define a suitable nodal curve C0 in the special fiber Xs of

X, whose dual graph is the skeleton of Γ.

(II) The special fiber Xs is log smooth over the standard log pointO0 = (SpecC,N);

and the curve C0, endowed with the log structure induced from Xs, is log

smooth over O0. These observations allow us to apply log smooth deformation

theory in Section 2.3 and Section 2.4 in order to show that we can lift the

nodal curve C0 to a proper, flat semistable curve C ⊆ X over R with special

fiber C0. The generic fiber C of C is a smooth complete curve in the generic

fiber X of X, which is a T -toric variety over K. We set V = C ∩ (X − T ).

(III) Finally, in Section 2.5, we verify that this construction satisfies the properties

asserted in Theorem 2.1.1: Lemma 2.5.1 shows that in this case Trop(C∩T ) =

Γ, and the results of [BPR11, Section 6] allow us to show that trop |ΣC,V :

ΣC,V → Trop(C) is totally faithful.

The crucial technical insight of this paper is contained in Section 2.4, where

we give a combinatorial interpretation to the homomorphism of cohomology groups

on C0 controlling the logarithmic deformation theory used in Step (II) of our proof.

In particular, we deduce that if Γ is non-superabundant, this homomorphism is

surjective and the deformations are unobstructed.

Smoothness and 3-colorability of the tropical curve Γ are only used in Step

(I) of our proof. The proof would work equally well with any other condition on Γ

that allows us to construct a suitable nodal curve C0 in Xs. The classical condition

of trivalency used extensively in the literature implies 3-colorability; in particular,

Theorem 5.1.7 holds for all smooth non-superabundant trivalent tropical curves.

The question of realizability of tropical curves has initially been studied by

Mikhalkin [Mik05] in order to count algebraic curves in toric surfaces. Nishinou and
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Siebert [NS06] generalize his results to loopless (hence non-superabundant) trivalent

tropical curves in higher dimension, and Tyomkin [Tyo12] further generalizes this to

non-superabundant trivalent tropical curves of higher genus. See [Gro11, Chapter

4] for an expository account of the methods of [NS06]. Special conditions ensuring

the realizability of some superabundant tropical curves are studied by Speyer in

[Spe05], and by Katz in [Kat12]. In the upcoming [Nis15a] Nishinou extends the

approach of [NS06] to more general trivalent tropical curves (see also [Nis15b]).

Another approach to the problem in the trivalent case has recently been developed

by Lang in [Lan15]. Our Theorem 2.1.1 gives realizations for a wide class of tropical

curves, including tropical curves of higher valence and higher genus.

2.2 Construction of the special fiber

We begin by recalling the definitions of a tropical curve and stating the

combinatorial conditions our tropical curves will have to satisfy.

Definition 2.2.1. Let Γ be the (non-compact) weighted graph obtained by removing

all vertices of valence one from a finite connected weighted graph. We say that Γ is

a tropical curve in NR if it is endowed with a closed embedding Γ ⊂ NR such that

every vertex of Γ is contained in NQ, every edge of Γ is contained in a line of of

rational slope of NR and the balancing condition is satisfied: for every vertex v of

Γ, if e1, . . . em are the edges of Γ adjacent to v, w1, . . . wm ∈ N are their weights

and ~e1, . . . , ~em ∈ N are the primitive integer vectors from v in the direction of the

edges ej, then we have
∑m

j=1wj~ej = 0.

Moreover, a tropical curve Γ ⊂ NR can be endowed with the structure of

metric graph by using the lattice length on NR with respect to N . That is, the

length of an edge between the two vertices v1 and v2 is the largest positive real

number l such that v2− v1 = lv for some v ∈ N , and the unbounded edges of Γ are

then precisely those of infinite length. We then call skeleton of Γ the finite metric

graph obtained by erasing from Γ all unbounded edges.

The following definition is the one-dimensional version of [MZ14, Definition

1.14]. For a planar tropical curve it also coincides with [Mik05, Definition 2.18].



14

Definition 2.2.2. A tropical curve Γ ⊂ NR is said to be smooth if all its weights

are equal to 1 and, for every vertex v of Γ, there exists a basis {b1, . . . , bn} of N

and a positive integer 1 ≤ d ≤ n such that the edges of Γ adjacent to x are in the

directions of
{
b1, . . . , bd,−

∑d
i=1 bi

}
.

We conclude our list of definitions with a mild combinatorial condition.

Definition 2.2.3. A tropical curve Γ ⊂ NR is said to be 3-colorable if there exists

an ordering {v1, v2, . . .} of the vertices of Γ such that for every i, the vertex vi is

adjacent to less than three of the vertices {vj}j<i.

Remark 2.2.1. A tropical curve Γ is 3-colorable if and only if its coloring number

(in the sense of [EH66]) is at most three. It is simple to show that Γ is 3-colorable

if and only if it is 2-degenerate in the sense of [LW70], i.e. if and only if every

subgraph G of Γ contains a vertex that is adjacent to at most two other vertices of

G.

Example 2.2.2. Every trivalent tropical curve is 3-colorable. Indeed, let Γ be a

trivalent tropical curve and let m be the number of vertices of Γ. The balancing

condition implies that Γ has at least one unbounded edge e; let vm be the vertex

adjacent to e. Then vm has bounded valence at most two, and after removing

it and and all the adjacent edges we can find one new vertex vm−1 of valence at

most two. By repeating this argument until we have selected all the vertices of Γ

we obtain an ordering which satisfies the condition of Definition 2.2.3, therefore

Γ is 3-colorable. Observe that also any tropical curve of genus at most three is

3-colorable, since the smallest graph whose vertices have all bounded valence of

three or more is a tetrahedron.

Let Γ be a tropical curve in NR. Let K = C((t1/`)) be a finite extension

of C((t)) such that all the vertices of the underlying graph of Γ lie in Nv(K×) =

N ⊗Z v(K×), where v(K×) = Z[1
`
] is the value group of K, and let R = C[[t1/`]] be

the valuation ring of K. Define a set of cones in NR × R≥0 by putting a copy of Γ

into NR × {1} and taking cones over all edges and vertices of Γ. More precisely, let

∆ be the collection of the cones

c(F ) = R>0(F × {1}) ⊆ NR × R≥0
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and

c(F ) ∩ (NR × {0}) ⊆ NR × R≥0,

where F is either an edge or a vertex of Γ. Then ∆ is a fan. Indeed, as in the

proof of [BGS11, Theorem 3.4] the only non-trivial part is to show that the set

∆0 = ∆ ∩ (NR × {0}) of the recession cones of Γ is a fan (see [BGS11, Examples

3.1 and 3.9(i)]). Since Γ is one-dimensional, the recession cones of Γ are either rays

starting at the origin or the origin itself. Two such rays are either equal or their

intersection is the origin and this observation suffices to show that the recession

cones form a fan. Moreover, the fan ∆ is v(K×)-admissible in the sense of [Gub13,

Definition 7.5]. We set X to be the toric scheme over R defined by ∆.

Remark 2.2.3. We could compactify X by completing the cone ∆, but prefer not

to do so, since we only want to keep the toric strata that are relevant to our

construction.

Using the correspondence of [Gub13, 7.9] we can give an explicit description

of the toric scheme X. Its generic fiber Xη is the toric variety over K associated

to the fan ∆0. Its special fiber Xs is reduced by [Gub13, Lemma 7.10], since

the valuation v is discrete and the vertices of Γ are in Nv(K×). The irreducible

components of Xs are toric varieties over the residue field C, and they correspond

bijectively to the vertices of Γ. Whenever two vertices v and w are connected by

an edge e, the two components Xv and Xw are glued along the boundary divisor

corresponding to e.

If Γ is smooth and v is a vertex of Γ with valΓ(v) = d + 1, from the

explicit description of Γ around v of Definition 2.2.2, we deduce that the cor-

responding component Xv of Xs is isomorphic to Pd × Gn−d
m , where Pd := Pd \

{orbits of T of codimension 2 or higher}, and the boundary divisors of Pd are all

isomorphic to Gd−1
m .

Example 2.2.4. Consider the admissible cone ∆ ⊆ R2 × R≥0 obtained as described

above by placing at height 1 the tropical curve Γ ⊆ R2 in Figure 2.1.

We obtain a toric scheme X over C[[t]] whose generic fiber X is the toric

variety associated to the recession fan ∆0 = ∆ ∩ (R2 × {0}) of Γ, which is the fan

(Figure 2.2) in R2:
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Γ

Figure 2.1: The tropical curve Γ

∆0

Figure 2.2: Recession fan ∆0 = ∆ ∩ (R2 × {0})

Therefore X is the toric surface obtained by blowing up P2
C((t)) in three

points, with the six closed points fixed by the torus removed. The special fiber Xs

of X consists of six copies of P2
C without their closed torus invariant points, glued

over the one-dimensional toric strata as indicated by their moment polytopes in

Figure 2.3.

The following proposition is the main result of this section.

Proposition 2.2.4. Suppose that Γ is a smooth and 3-colorable tropical curve.

Then there is a complete and connected curve C0 ⊆ Xs fulfilling the following

properties:

1. For each vertex v ∈ Γ, let Cv := C0 ∩Xv ⊆ Xs; then Cv ∼= P1.

2. Each Cv intersects every toric boundary stratum of Xv transversally.
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Xs

Figure 2.3: Moment polytopes

3. If v and w are two vertices of Γ connected by an edge, then the components

Cv and Cw intersect in a node.

Proof. Let {vi}i be an ordering of the vertices of Γ as in Definition 2.2.3. For every

i, we inductively define a smooth rational curve Cvi in Pd×{1} ⊆ Xvi
∼= Pd×Gn−d

m

subject to the following condition: if vj is a vertex of Γ adjacent to vi, for j < i,

the two curves Cvi and Cvj intersect in a point of Xvi ∩ Xvj . Such a curve Cvi

exists since the condition that we are imposing is the passage through at most two

given points. Moreover, we can choose the curves Cvi meeting transversally each

boundary stratum of Pd × {1}, since a generic line in Pd intersects any coordinate

hyperplane transversally away from the strata of codimension two or higher. Finally,

let C0 be the union of the curves Cvi .

Example 2.2.5. Consider the tropical curve Γ and the associated toric scheme X as

in Example 2.2.4. Then the curve C0 in Xs constructed in Proposition 2.2.4 is a

loop consisting of six copies of P1
C, and it can be visualized using tropical lines in

the moment polytopes as in Figure 2.4.

Remark 2.2.6. Note that the curve C0 constructed in Proposition 2.2.4 is a nodal

curve, and its dual graph is equal to the graph underlying the skeleton of Γ.

We remind the reader that the data of an n-dimensional toric scheme over R is

essentially equivalent to the notion of a toric degeneration, a toric morphism from

a complex toric variety of dimension n+ 1 to A1
C as in [NS06, Section 3], and the

embedding C0 ⊆ Xs is a pre-log curve in the sense of [NS06, Definition 4.3].
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C0 ⊆ Xs

Figure 2.4: The curve C0 visualized using tropical lines in the moment polytopes

2.3 Log smooth deformation theory

In this section, we explain the conditions under which we can use log smooth

deformation theory to lift the nodal curve C0 to a semistable curve C over R in X.

Our approach is a generalization of the methods developed in [NS06].

We use logarithmic geometry in the sense of [Kat89], a theoretical framework

that makes it possible to treat certain singularities, such as toric or normal crossings

singularities, as if they were smooth. For the basics of this theory, see [Kat89] and

[Gro11, Chapter 3].

In our setting, we endow the scheme O = SpecR with the divisorial log

structure defined by its special fiber. Its generic fiber is then SpecK with the trivial

log structure, while its special fiber is the standard log point O0 := (SpecC,C××N).

We endow a toric scheme X with the divisorial log structure defined by its toric

boundary; then X is log smooth over O. If Y → X is a morphism of log schemes,

we denote by ΘY/X the log tangent sheaf of Y over X. By [Oda88, Proposition

3.1], there is then a natural isomorphism ΘX/O
∼= OX ⊗Z N .

Finally, we endow the nodal curve C0 ⊆ Xs with the log structure inherited

from the log structure of Xs (see [Kat89, Example 1.5(3)]). Then C0 is log smooth

over the standard log point O0. Note that the log structure of C0 not only encodes

information about the nodal points, but also marks the points of the intersection

of C0 with those toric boundary divisors of X0 which lie in only one component of

X0. In the situation of Section 2.2, this means that C0 has one marked point for

each unbounded edge of Γ.
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We now develop the log smooth deformation theory we need for our proof.

Let Rk = C[[t
1
` ]]/(t

k+1
` ) and endow Ok = SpecRk with the log structure induced

by N→ Rk : a 7→ t
a
` . Note that we have natural closed immersions Ok′ ↪→ Ok for

0 ≤ k′ ≤ k.

Definition 2.3.1. Let C0 be a log smooth curve over O0. A k-th order deformation

of C0 is a log smooth morphism Ck → Ok whose base change to O0 is C0 → O0.

Suppose we are given a (k−1)-st order deformation Ck−1 → Ok−1 of C0 → O0.

By [Gro11, Proposition 3.40] there is an element ob(Ck−1/Ok−1) ∈ H2
(
C0,ΘC0/O0

)
such that Ck−1 → Ok−1 lifts to a k-th order deformation Ck → Ok if and only if

ob(Ck−1/Ok−1) = 0. Since C0 is of dimension one, we have H2
(
C0,ΘC0/O0

)
= 0

and therefore such a lift always exists. Moreover, the set of such lifts is a torsor over

H1
(
C0,ΘC0/O0

)
. However, lifting a log smooth curve together with its embedding

into X is more complicated.

Let f = f0 : C0 ↪→ Xs be a strict closed immersion of C0 into the special

fiber Xs of a toric scheme X, and consider the commutative diagram

C0
f0−−−→ Xy y

O0 −−−→ O

Definition 2.3.2. A k-th lift of f0 is a commutative diagram

Ck
fk−−−→ Xy y

Ok −−−→ O

where fk : Ck → X is strict and Ck → Ok is a k-th lift of C0 → O0. In this case

Nakayama’s lemma guarantees that fk is a closed immersion.

The following proposition is the main result of this section; it expands on

the argument in [Gro11, Theorem 3.41]. We refer the reader to [NS06, Lemma 7.2

and Proposition 7.3] for the original results.
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Proposition 2.3.3. Let fk−1 be a (k−1)-st lift of f0 and suppose that the canonical

homomorphism

H1(C0,ΘC0/O0) −→ H1(C0, f
∗
0 ΘX/O) (2.3.1)

is surjective. Then there exists a k-th lift of f0 that extends fk−1.

In [NS06] the authors assume that C0 is rational. In this case

H1(C0, f
∗
0 ΘX/O) = 0

and the homomorphism (2.3.1) is always surjective.

Proof of Proposition 2.3.3. Assume that we are given a (k − 1)-st lift fk−1 and let

Ck → Ok be a lift of Ck−1 → Ok−1.

Suppose that (2.3.1) is surjective. Choose an affine open cover (Ui) of C0

and let Uij = Ui ∩ Uj. Since the Ui are affine, log smooth thickenings exist and are

unique by [Gro11, Proposition 3.38]. Let Uk
i and Uk−1

i be log smooth thickenings

of Ui over Ok and Ok−1 respectively. In particular, we assume that Uk
i is a lifting

of Uk−1
i to a log smooth scheme over Ok. We have gluing morphisms

θkij : Uk
ij −→ Uk

ji

and

θk−1
ij : Uk−1

ij −→ Uk−1
ji

that fulfill θk−1
ij = θkij|Uk−1

ij
for all i and j. Moreover, we have lifts fk−1

i : Uk−1
i → X

that satisfy the compatibility condition fk−1
i = fk−1

j ◦ θk−1
ij on Uk−1

ij .

Since X is log smooth over O, we can find lifts fki : Uk
i → X of the fk−1

i to

the thickening Uk
i of Uk−1

i for every i. By [Kat89, Proposition 3.9] the set of such

lifts fki on Uk
i forms a torsor over H0

(
Ui, f

∗ΘX/O|Ui
)
.

Now compare the two liftings fki and fkj ◦ θk−1
ij on Uk

ij. Note that they

both lift fk−1
i = fk−1

j ◦ θk−1
ij on Uk−1

ij and therefore differ by a section ψij ∈
H0(Uij, f

∗ΘX/O|Uij), i.e. we have

fki = fkj ◦ θkij + t
k
N ψij .

The ψij define a 2-cocycle of f ∗ΘX/O on C0, since H2(f ∗ΘX/O) = 0.
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Since (2.3.1) is surjective, there is a 2-cocycle φkij for ΘC0/O0 such that

f ◦ φij = ψij for all i and j. We can now replace the lift Ck of Ck−1 by the lift C̃k

of Ck−1 that is given by the gluing maps θ̃kij = θkij + t
k
N φij. But then we have

fki = fkj ◦ θkij + t
k
N ψij

= fkj ◦ (θ̃kij − t
k
N φij) + t

k
N ψij

= fkj ◦ θ̃kij − t
k
N ψij + t

k
N ψij = fkj ◦ θ̃kij

and therefore we can glue the local lifts fki to a global lift fk : C̃k → X.

In our setting, we can deduce the following result:

Proposition 2.3.4. Let Γ, X, and C0 be as in Section 2.2, and assume that the

homomorphism (2.3.1) is surjective. Then there exists a semistable curve C over R

with smooth generic fiber C and special fiber C0, together with a closed immersion

C ↪→ X extending C0 ↪→ X.

Proof. Taking the direct limit of all Ck, we obtain a formal scheme C over O, with

a closed immersion into the t-adic formal completion X̂ of X. Since C0 is complete,

all Ck are proper over Ok and therefore C is proper over O. By Grothendieck’s

existence theorem [Gro61, Théorème 5.1.4], C is then the t-adic formal completion

of a closed subscheme C of X, proper over O. Note that by construction the special

fiber of C is equal to C0.

We want to show that with the log structure induced from X the R-scheme

C is log smooth over O. Since this can be checked in an étale neighborhood in C of a

node p of C0, without loss of generality we can assume that C0 = Spec
(
C[x, y]/(xy)

)
.

For e > 0, set Ce = Spec
(
R[x, y]/(xy− te/`)

)
with log smooth logarithmic structure

as in [Gro11, Example 3.26]. By the description of log smooth curves of [Kat00,

Proposition 1.1], there exists some e > 0 such that the special fiber of Ce is C0.

Therefore, for every k > 0 the restriction Ce ×O Ok is the unique log smooth lifting

of C0 → O0 to Ok. This implies that C = Ce, so C is log smooth over O.

Then the generic fiber C of C is log smooth over K. Therefore C has only

toric singularities, hence it is smooth, since it is one-dimensional. Since C is proper

over O, the curve C is complete.
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Remark 2.3.1. Assume we are in the situation of Proposition 2.3.4. Then the

log structure of C, which is the one induced by the log structure of X, contains

information not only about the nodes of C0 but also about finitely many sections of

C → O, which are disjoint since C is log smooth. In the special fiber, these sections

cut out precisely the marked points of C0, which correspond to the unbounded edges

of Γ. On the other hand, in the generic fiber they cut out a finite set V ⊆ C(Kalg) of

marked points of C, which is precisely the intersection of C with the toric boundary

of X. Therefore, this construction naturally gives rise to a generalized skeleton

ΣC,V of Can.

2.4 The abundancy map in cohomology

Let Γ ⊆ NR be a tropical curve with skeleton G, and denote by EG the set

of edges of G.

Choose a direction for every edge e ∈ EG and write ~e for the vector in NR

connecting the two endpoints of e according to this direction.

We denote by H1(Γ) the first simplicial homology group of Γ. An element of

H1(Γ) is a formal sum
∑

e∈EG ae[e], with integer coefficients, forming a cycle in Γ.

The next definition is due to Mikhalkin [Mik05, Section 2.6], but our formulation

is essentially the one of [Kat12, Section 1].

Definition 2.4.1. A tropical curve Γ is said to be non-superabundant, if the

abundancy map

ΦΓ : REG −→ Hom
(

H1(Γ), NR
)

(`e) 7−→

(∑
e∈EG

ae[e] 7→
∑
e∈EG

`eae~e

)
,

is surjective.

We remark that the homomorphism ΦΓ

(
(le)e

)
does not depend on the choice

of a direction of the edges of Γ, as edge directions are specified in both the source

and the target of Hom
(

H1(Γ), NR
)
.
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The intersection of the kernel of ΦΓ with REG
>0 can be seen as the moduli

space of metric graphs embedded in NR which have the same combinatorial type as

the skeleton of Γ, modulo translations. Then for Γ to be non-superabundant means

that this moduli space has the expected dimension #EG − b1(Γ)n, where b1(Γ) is

the first Betti number of Γ and n is the rank of N . See [Mik05, Sections 2.4–2.6]

for a thorough discussion of those dimension counts. For example, whenever Γ

is trivalent, by [Mik05, Proposition 2.13] the expected dimension of the moduli

space of metric graphs in NR which have the same combinatorial type as Γ is

x+ (n− 3)(1− b1(Γ)), where x is the number of unbounded edges of Γ.

Now let Γ be a tropical curve, let X be the toric scheme as constructed in

Section 2.2, and let C0 be a nodal curve in Xs fulfilling the conclusion of Proposition

2.2.4. The crucial result of this section is the following proposition, which gives a

cohomological interpretation of the abundancy map.

Proposition 2.4.2. There are a homomorphism δ : CEG −→ H1(C0,ΘC0/O0),

and an isomorphism H1(C0, f
∗ΘX/O) ∼= Hom

(
H1(Γ), NC

)
such that the induced

homomorphism

CEG δ−→ H1(C0,ΘC0/O0) −→ H1(C0, f
∗ΘX/O) ∼= Hom

(
H1(Γ), NC

)
is equal to ΦΓ ⊗ C.

The proof of this statement will require several steps. We will begin by

defining the homomorphism δ. In Lemma 2.4.1 we construct the isomorphism, and

we conclude by explicitly computing the resulting composition.

Proof of Proposition 2.4.2. Note that there are compatible one-to-one correspon-

dences between the vertices v of Γ and the components Cv of C0 as well as between

the edges e of G and the corresponding nodes, denoted p(e), of C0. We have two

normalization exact sequences (see [Har77, Exercise IV.1.8]) of sheaves on C0

0 // ΘC0/O0
//

��

∏
v(ΘC0/O0)|Cv //

��

∏
eCp(e)

//

��

0

0 // OC0 ⊗N //
∏

v(OC0/O0 ⊗N)|Cv //
∏

eNCp(e)
// 0

(2.4.1)
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where Cp(e) and NCp(e) denote the skyscraper sheaves at p(e). These products of

the skyscraper sheaves are identified with the cokernel of the maps on the left of

the horizontal exact sequences.

The first and the second vertical maps are given by composing the natural

map ΘC0/O0 → f ∗ΘX/O with the natural isomorphism f ∗ΘX/O
∼= OC0⊗N of [Oda88,

Proposition 3.1]. These maps induce the third vertical map. Taking the long exact

cohomology sequences of these two short exact sequences, we obtain the following

commutative square:

∏
eC

δ //

��

H1(C0,ΘC0/O0)

��∏
eNC

δ // H1(C0,OC0 ⊗N)

(2.4.2)

Now we need the following lemma:

Lemma 2.4.1. There is an isomorphism

α0 : H1(C0,OC0)
∼−→ Hom

(
H1(Γ),C).

which induces the isomorphism

α : H1(C0,OC0 ⊗N)
∼−→ Hom

(
H1(Γ), NC

)
.

such that the composition α ◦ δ :
∏

eNC → Hom
(

H1(Γ), NC
)

is given by sending a

family (ue)e of elements ue ∈ NC to the homomorphism∑
e

ae[e] 7−→
∑
e

aeue

in Hom
(

H1(Γ), NC
)
.

Proof. Consider the normalization short exact sequence

0→ OC0 →
∏
v

OCv →
∏
e

Cp(e) → 0.

The associated long exact cohomology sequence is

0→ H0(C0,OC0)→
∏
v

H0(Cv,OCv)→
∏
e

C→ H1(C0,OC0)→ 0, (2.4.3)
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since by the rationality of Cv we have H1(Cv,OCv) = 0.

The first three terms of the sequence (2.4.3) are Hom(·,C) of the reduced

simplicial chain complex

ZEG → ZVG → Z→ 0,

which defines H1(Γ). Therefore we obtain an isomorphism H1(C0,OC0)
∼= H1(Γ,C),

and the latter is isomorphic to Hom
(

H1(Γ),C
)

by the universal coefficient theorem

for Γ. Since N is a free abelian group, we may apply −⊗N to α0, which induces

the isomorphism α. In this case, the homomorphism
∏

eNC → Hom
(

H1(Γ), NC
)

is given by sending a family (ue)e of elements ue ∈ NC to the homomorphism∑
e

ae[e] 7−→
∑
e

aeue

in Hom
(

H1(Γ), NC
)
.

Let us now finish the proof of Proposition 2.4.2. By Lemma 2.4.1, it is

enough to show that the homomorphism∏
e

C −→
∏
e

NC (2.4.4)

on the left of diagram (2.4.2) is given by sending (le)e to the family (le~e)e in
∏

eNC.

Let e be an edge of Γ. Let v1 and v2 be the two vectors in NR×R≥0 pointing

to the two ends of e, so that v2 − v1 = ~e. We complete {v1, v2} to a Zn ⊕ 1
`
Z-

integral basis {v1, . . . , vn+1} of NR×R≥0, and we write x1, . . . , xn+1 for the induced

coordinates on the open affine torus-invariant subset U corresponding to the cone

in ∆ containing e. Then ΘU/O has generators x1
∂
∂x1
, . . . , xn+1

∂
∂xn+1

that fulfill the

relation T ∂
∂T

= 0, where T denote the image in OU of the coordinate t
1
` on O. Since

f0 : C0 ↪→ X is a strict closed immersion, the pullbacks y1 = f ∗0x1 and y2 = f ∗0x2

define coordinates on OC0 such that the formal completion of OC0,p(e) is isomorphic

to C[[y1y2]]/(y1y2). In these coordinates the stalk (ΘC0/O0)p(e) is generated by the

two elements y1
∂
∂y1

and y2
∂
∂y2

, which fulfill the relation y1
∂
∂y1

+ y2
∂
∂y2

= 0.

Therefore around p(e) the natural homomorphism

ΘC0/O0 −→ f ∗ΘX/O
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is given by the associations y1
∂
∂y1
7→ x1

∂
∂x1

and y2
∂
∂y2
7→ x2

∂
∂x2

. Since v2−v1 = ~e the

map (2.4.4) sends (0, . . . , 0, le, 0, . . . , 0) to (0, . . . , 0, le~e, 0, . . . , 0), which concludes

the proof of Proposition 2.4.2.

Remark 2.4.2. In particular, if Γ is trivalent, then the homomorphism (2.3.1) is

precisely ΦΓ ⊗ C. Indeed, in this case, for every vertex v, we have ΘC0/O0|Cv ∼=
OP1(−1), so Hi(C0,ΘC0/O0|Cv) = 0 for i = 0, 1, and therefore the homomorphism δ

in Proposition 2.4.2 is an isomorphism by the long exact sequence associated to

the first line of the diagram (2.4.1). This is the case considered in [Nis15a].

2.5 Proofs of Theorems 2.1.1 and 2.1.2

In this section we complete the proofs of Theorem 2.1.1 and Theorem 2.1.2.

It is worthwhile to notice that 3-colorability and smoothness of the tropical curve

Γ ⊆ NR are only used to construct a suitable nodal curve C0 ⊆ Xs in Section 2.2.

Whenever such a nodal curve exists, the non-superabundancy of Γ is sufficient for

the conclusion of Theorem 2.1.1 to hold.

Let Γ ⊆ NR be a tropical curve, let X be the toric R-scheme defined as in

Section 2.2, and denote by X the generic fiber of X.

Lemma 2.5.1. Let C be a flat R-curve in X and denote by C ⊆ X its generic fiber.

If the special fiber Cs is proper over C and intersects every torus orbit contained in

the special fiber of X, then Trop(C ∩ T ) = Γ.

Proof. By [Gub13, Proposition 11.12] the properness of Cs implies that Trop(C) ⊆ Γ,

and therefore the vertices of Trop(C) are a subset of Γ. By Tevelev’s Lemma

[Gub13, Lemma 11.6] Trop(C) intersects the relative interior of every face in Γ. In

particular, the vertices of Trop(C) coincide with the vertices of Γ. Again, since

Trop(C) intersects the relative interior of every face of Γ, all one-dimensional faces

of Γ already have to be contained in Trop(C), and therefore Trop(C) = Γ.

In the proof of Theorem 2.1.1 we use the initial degeneration inP (C) of C

along an open face P of Trop(C). In our situation inP (C) can be defined as the
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C-scheme

inP (C) =
(
Cs ∩ XP

)
× TP ,

where XP is the torus orbit in Xs corresponding to P , and TP is the subgroup of the

reduction of the torus T = SpecR[M ] that stabilizes XP . By [HK12, Lemma 3.6]

this coincides with the usual definition of the initial degeneration of C at a point

p ∈ P , as for example in [BPR11, Section 2.1], since C is proper over O = SpecR

and the multiplication map T ×O C → X is flat by the same argument as in [Hac08,

Lemma 2.7] and surjective because C meets each torus orbit of X.

Proof of Theorem 2.1.1. Let Γ ⊂ NR be a non-superabundant, smooth and 3-

colorable tropical curve with rational edge lengths, let K and X be be defined as in

Section 2.2, and C0 be a curve in Xs as constructed in Proposition 2.2.4. Since Γ is

non-superabundant, Proposition 2.4.2 and Proposition 2.3.4 imply that there is a

semistable curve C over R with smooth generic fiber C and special fiber C0, together

with a closed immersion C ↪→ X. By Lemma 2.5.1 we have Trop(C ∩ T ) = Γ. By

construction of C0, all the initial degenerations of C along open faces of Γ are

smooth and irreducible, and so the tropical multiplicities are all one. Therefore,

[BPR11, Corollary 6.11] implies that the tropicalization is faithful with respect to

the skeleton ΣC,V of Can, where V = C \ (C ∩ T ) is the set of marked points as

described in Remark 2.3.1.

Theorem 2.1.2 follows from Theorem 2.1.1 and the following result, which is

a slight extension of a theorem of Cartwright–Dudzik–Manjunath–Yao.

Theorem 2.5.2 ([CDMY14]). Let G be a metric graph with rational edge lengths.

Set

n = max
{

3,max{deg v − 1 | v ∈ EG}
}

and let N be a free abelian group of rank n. Then there exists a non-superabundant,

smooth and 3-colorable tropical curve Γ ⊆ NR with rational edge lengths and whose

skeleton is isomorphic to G.

Proof. Fix an integral basis v1, . . . , vn of NR. Let Γ be a tropical curve as given by

[CDMY14, Theorem 1.1]. As noted in [CDMY14, Remark 2.8], the only part that
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is not included there is the non-superabundance of Γ. Let G′ be the minimal finite

graph underlying the skeleton of Γ and consider a spanning tree T of G′. Then the

set of ε ∈ EG̃\T parametrizes a basis {cε} of H1(Γ,Z), and cε is the only element of

the basis which contains ε.

In order to show the surjectivity of the abundancy map it is enough to show

that for all ε ∈ EG̃\T and 1 ≤ i ≤ n the homomorphisms

fε,i : H1(Γ) −→ NR

cε′ 7−→

vi if ε′ = ε

0 if ε′ 6= ε.

are in the image of ΦΓ. By the construction of [CDMY14], every ε will contain an

edge e of G′ such that ~e is parallel to vi. Since cε is the only element of the basis

which contains e, if we take the vector ` ∈ R#EG′ with value |vi| in the e-th entry

and 0 otherwise, we obtain Φ(`) = fε,i.

Remark 2.5.3. It is possible to extend Theorem 2.1.1, and therefore Theorem 2.1.2,

to the equicharacteristic p > 0 case. Let Γ ⊂ NR be a non-superabundant, smooth

and 3-colorable tropical curve. Then for all but finitely many prime numbers

p there exists a finite field extension K of Fp((t)) such that we can construct a

suitable curve C0 in the special fiber of X using the method of Section 2.2. The

results of Section 2.3 remain valid over any discrete valuation ring of the form

k[[t]], where k is an arbitrary field, so in particular they hold over R. Observe that

the abundancy map ΦΓ defined in 2.4.1 is the base change ΦΓ,Z ⊗ R of the map

ΦΓ,Z : ZEG → Hom
(

H1(Γ,Z), N
)

defined by

(`e) 7−→
( ∑
e∈EG

ae[e] 7→
∑
e∈EG

`eae~e
)

as in Definition 2.4.1. For a field L we denote by ΦΓ,L the base change of ΦΓ,Z to

L. Given two fields L and L′ of the same characteristic, the surjectivity of ΦΓ,L is

equivalent to the surjectivity of ΦΓ,L′ , and in particular Γ is non-superabundant

if and only if ΦΓ,Q is surjective. In this case the map ΦΓ,Fp is surjective for all

but finitely many prime numbers p. Therefore, if Γ is non-superabundant, log
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deformations of C0 can be constructed for p big enough and it follows that, given

a tropical curve Γ satisfying the hypotheses of Theorem 2.1.1, for all but finitely

many prime numbers p we can find a finite field extension K of Fp((t)) such that

the conclusion of Theorem 2.1.1 holds over K.

This chapter, in full, is a reprint of the paper “Faithful Realizability of

Tropical Curves” as it appears in International Mathematics Research Notices

2015. Man-wai Cheung; Lorenzo Fantini, Jennifer Park, Martin Ulirsch. The thesis

author was the author of this paper.



Chapter 3

Introduction to cluster algebras

and quiver representations

3.1 Cluster algebras

A cluster algebra A of rank n is a subring of the ring of rational functions

in n variables over a field k. Instead of knowing all the generators and relations in

the beginning, we are only given some initial data which is called the initial seed.

In this thesis, all cluster algebras are assumed without frozen variables.

A seed is a pair Σ = (a, B), where

• a is a set of algebraically independent elements {A1, . . . An} lying in the field

of rational functions of n independent variables;

• B = (bij) is a skew-symmetrizable integer matrix. A square integer matrix

B = (bij) is called skew-symmetrizable if there exists a diagonal skew-

symmetrizing matrix D with positive integer diagonal entries di such that

DB is skew-symmetric, i.e. dibij = −djbji for all i, j.

Elements in a are called cluster variables and B is called the exchange ma-

trix. The seed we started with is called the initial seed. To generate new

seeds, there is a procedure called mutation to obtain a new seed µk((a, B)) =

30
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{{A1, . . . , Âk, . . . , An} ∪ {A′k}, µk(B)} for k = 1, . . . , n, where

AkA
′
k =

∏
bik>0

Abiki +
∏
bik<0

A−biki ,

and

(µk(B))i,j =

{
−bij if k = i or k = j;

bij +
|bik|bkj+bik|bkj |

2
otherwise.

Starting from an initial seed, one can apply all possible sequences of compositions

of mutations (possibly infinite). This gives a set (possibly infinite) of all cluster

variables generated under mutations. The cluster algebra A = A(B, a) is the

subalgebra of k(A1, . . . , An) generated by all cluster variables. We define the

exchange graph of a cluster algebra to be the graph whose vertices are the seeds,

and whose edges connect pairs of seeds which are connected by mutations.

Every cluster algebra belongs to a series A(B) consisting of all cluster

algebras of the form A(B, a), where B is fixed and a is allowed to vary. Two series

A(B) and A(B′) are strongly isomorphic if B and B′ can be obtained from

each other by a sequence of mutation, modulo simultaneous relabeling of rows and

columns.

Let us illustrated the construction by an example.

Example 3.1.1 (Rank 2 cluster algebra). In the rank 2 case, the initial seed can be

represented as

Σ = ({A1, A2}, B =

(
0 −b
c 0

)
),

where b and c are positive integers. Mutating at 1 gives us

A1A
′
1 = 1 + Ac2.

Now we denote x3 = A′1 and put x1 = A1, x2 = A2. Then by repeating the mutation

process and naming new cluster variables as xk+1, we will get a recursive relation

indexed by k ∈ Z as

xk−1xk+1 =

xbk + 1 if k is odd;

xck + 1 if k is even.
(3.1.1)
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The cluster algebra A(b, c) is the Z-subalgebra of Q(A1, A2) which they generate.

Note that all the xk, k 6= 1, 2 lies in Q(A1, A2). Each pair {xk, xk+1} is called a

cluster and a monomial in the variables of a cluster is called a cluster monomial.

In the above example, if we put b = c = 1, we will find out that there are

only 5 cluster variables in A(1, 1). In general, a cluster algebra with a finite number

of cluster variables is called a cluster algebra of finite type.

Fomin-Zelevinsky [FZ03] showed that there is a bijection between the Cartan

matrices C of finite type with cluster algebra A(B), where C(B) = C is defined as

cij =

{
2 if i = j;

−|bij| if i 6= j.

Another algebraic feature of cluster algebras is the Laurent phenomenon.

[FZ02] shows that every cluster variable can be expressed as a Laurent polynomial

of the initial variables with integral coefficients. Furthermore, Fomin and Zelevinsky

further conjectured that all those coefficients are non-negative. There have been

many attempt to this conjecture. For example, Caldero-Chapoton [CC06] on finite

type, Lee-Schiffler [LS15] on skew-symmetric type, Gross-Hacking-Keel-Kontsevich,

Maxim [GHKK14] for cluster algebras of geometric type. The GHKK construction

will be discussed in Section 4.2.

We will give the definition of quiver representation in the next section. Let

us first state the result from Caldero-Chapoton in this section.

In the finite classification, Fomin and Zelevinsky have shown [FZ03] the

cluster algebras of finite type can be associated to a Dynkin quiver. At the same time,

the set of indecomposable representations of a quiver of Dynkin type is in bijection

with the set of positive roots by Gabriel’s theorem. Using these correspondence,

Caldero and Chapoton [CC06] then related cluster variables with indecomposable

quiver representations. They found that the coefficients of the cluster variables

are the Euler characteristics of the quiver Grassmannians. This proves that the

coefficients are non-negative. Even though the result of Caldero-Chapoton is for

finite type quivers, Dominguez-Geiss [DG14] generalized the result to generalized

cluster categories.
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Proposition 3.1.2. Let Q be a finite quiver with vertices 1, . . . , n, and D a finite-

dimensional representation of Q with dimension vector d. Denote Gr(e,D) :=

{E ∈ mod(Q)|E ⊆ D, dim(E) = e} for e ∈ Nn. Define the CC function as

CC(D) =
1

Ad11 · · ·Adnn

∑
0≤e≤d

χ(Gr(e,D))
n∏
i=1

A
∑
j→i ej+

∑
i→j(dj−ej)

i ,

where the sum is taken over all vectors e ∈ Nn such that 0 ≤ ei ≤ di for all i.

Then we have CC(D) = XD, the cluster variable obtained from D by composing

Fomin-Zelevinsky’s bijection with Gabriel’s.

3.2 Quiver Representations

We will review some basic definitions and ideas of quiver representations in

this section.

3.2.1 Quivers and quiver reprsentations

A quiver Q of rank n is a directed graph of n vertices. More precisely

Q = (Q0, Q1, s, t), where Q0 is the set of vertices of Q, Q1 is the set of arrows of Q,

s, t : Q1→Q0 two maps. For an arrow α ∈ Q1, s(α) is the starting point of α and

t(α) is the end point of α. It can be written as α : s(α)→t(α). Let us assume the

vertices of Q are numbered {1, . . . , n}. We will mainly talk about acyclic quivers

Q. Thus we can further assume i > j if there is an arrow goes from vertex j to i.

Definition 3.2.1. A C-linear representation V = (Va, Vα)a∈Q0,α∈Q1 of Q is defined

by:

• To each point a in Q0 is associated a C vector space Va

• To each arrow α : a→b in Q1 is associated a C-linear map Vα : Va→Vb.

It is called finite dimensional if each vector space Va is finite dimension. In this

case, the dimension vector of M is defined to be the vector

dim(V ) = (dimVa)a∈Q0 .
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A morphism of representations φ : V→W is a collection φ = (φi)i∈Q0 of

linear maps φi : Vi→Wi for each vertex i such that the following commutative

diagram commutes:

Vs(α) Ws(α)

Vt(α) Wt(α)

φs(α)

Vα Wα

φt(α)

Let f : V→V ′ and g : V ′→V ′′ be two morphisms of representations of Q. Then

their composition is defined as (gf)a = ga ◦ fa for a ∈ Q0. Then gf : V→V ′′ is also

a morphism of representations. This defines a category Rep(Q) of representations

of Q. We denote by rep(Q) the full subcategory of Rep(Q) consisting of the finite

dimensional representations.

Let V = (Vi, Vα) and W = (Wi,Wα) be representation of Q. Then the

direct sum V ⊕W is defined as

(V ⊕W )i = Vi ⊕Wi

(V ⊕W )α =

(
Vα 0

0 Wα

)
A representation V is called indecomposable if V 6= 0 and if V = A⊕B,

then A = 0 or B = 0.

Let N = ZQ0 and M = Hom(N,Z).Define a bilinear form, χ(·, ·), the Euler

form on N as

χ(d, e) =
∑
i∈Q0

diei −
∑
α:i→j

diej (3.2.1)

for d, e ∈ N . We further define a map E : N→M by

E(d) = χ(·, d). (3.2.2)

Example 3.2.2. Let us take the Kronecker 2-quiver Q2 as an example.

1 2

α1

α2
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Then the set of indecomposable representations would be of the form

Cn Cn+1 , Ck Ck , Cn+1 Cn ,

where n ∈ Z, k ∈ Z≥1.

Simple, projective and injective representations

Consider the path algebra CQ. The path algebra CQ is the C-algebra

with basis the set of all the paths in the quiver Q and with multiplication defined

on two basis elements α, α′ by

αα′ =

{
α · α′ if s(α′) = t(α)

0 otherwise,

where α · α′ means composing the paths α followed by α′. The product of two

arbitrary elements
∑

α λαα,
∑

α′ λα′α
′, λα, λα′ ∈ C is given by

∑
α λαλα′αα

′. Note

that CQ is finite dimensional if and only if Q is a finite quiver without oriented

cycles.

Example 3.2.3. Consider Q2 in Example 3.2.2. Then CQ2 are generated by vi, αi,

where vi are constant paths on vertex i, i = 1, 2. The multiplications are v1α1 = α1,

α2v2 = α2, v2
i = vi, i = 1, 2 and other path multiplications are zero in CQ2.

Denote ModCQ as the abelian category of all right CQ-modules and modCQ
the full subcategory of ModCQ whose objects are the finitely generated modules.

Then there is an equivalence of categories modCQ ∼= rep(Q). Therefore, we can

translate all the notions from module theory to the theory for quiver representations.

In particular, a representation is projective (or injective) if it is equivalent to a

projective (or injective) module in modCQ. In this section, we can are to give

explicit construction of simple, indecomposable projective, indecomposable injective

representations.

Definition 3.2.4. A simple representation is defined to be a non zero representa-

tion with no proper subrepresentations.
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Given a vertex i, define S(i) to be the representation

S(i)j =

{
C if j = i

0 if j 6= i

and S(i)α = 0. This is the simple representation associated to the vertex i.

Definition 3.2.5. Let i be a vertex of Q.

1. Define the projective representation P (i) at vertex i as

P (i) = (P (i)j, P (i)α)j∈Q0,α∈Q1

where P (i)j is the C-vector space with basis the set of all paths from i to j in

Q. For α : j→l, P (i)α : P (i)j→P (i)l is the linear map defined on the basis

by composing the paths from i to j with the arrow α : j→l.

2. Define the injective representation I(i) at vertex i as

I(i) = (I(i)j, I(i)α)j∈Q0,α∈Q1

where I(i)j is the C-vector space with basis the set of all paths from j to i in

Q. For α : j→Q, I(i)α : I(i)j→I(i)l is the linear map defined on the basis

by deleting the arrow α from those paths from j to i which start with α and

sending to zero the path that do not start with α.

Example 3.2.6. For Q2 in Example 3.2.2:

S(1) = C 0 , S(2) = 0 C

P (1) = C C2 , P (2) = 0 C = S(2)

I(1) = C 0 = S(1), I(2) = C2 C

There is one handy property about the indecomposable projectives for

calculation.

Lemma 3.2.7. Let V be a representation of Q. Then there are natural isomor-

phisms

Hom(P (i), V ) ∼= Vi,

where Vi is the vector space associated to vertex i.
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The notion of projective resolution in module theory continues in modCQ.

Definition 3.2.8. Let V be a representation of Q. A projective resolution of

V is an exact sequence

· · ·→P3→P2→P1→P0→V→0,

where each Pi is a projective representation.

In particular, as we are talking about representations of quivers without

oriented cycles. The situation is even simpler

Theorem 3.2.9. [Sch14, Theorem 2.15] Let V be a representation of Q. There

exists a projective resolution of V of the form

0 −→ P1 −→ P0 −→ V −→ 0,

where P1 =
⊕

α∈Q1
(dimVs(α))P (t(α)) and P0 =

⊕
i∈Q0

(dim(Vi))P (i).

Now consider the projective resolution of E

0 −→ P1 −→ P0 −→ E −→ 0.

Let F be any representation of Q. Applying Hom(·, N) to the above projective

resolution and using Lemma 3.2.7, we get the following exact sequence

0→Hom(E,F )→Hom(P0, F )→Hom(P1, F )→Ext1(E,F )→0.

By using Lemma 3.2.7, we have

χ(E,F ) = dim Hom(E,F )− dim Ext1(E,F ). (3.2.3)

For the definition of Nakayama functor in the next section, let us define

minimal projective resolution.

Definition 3.2.10. Let M ∈ repQ. A projective cover of M is a projective

representation P together with a surjective morphism g : P→M with the property

that, whenever g′ : P ′→M is a surjective morphism with P ′ projective, then there
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exists a surjective morphism h : P ′ � P such that the diagram commutes, i.e.

gh = g′.

P ′

P M 0

0

h
g′

g

Then

Definition 3.2.11. A projective resolution

· · ·→P3
f3−→ P2

f2−→ P1
f1−→ P0

f0−→ 0

is called minimal if f0 : P0→M is a projective cover and fi : Pi→ ker fi−1 is a

projective cover for every i > 0.

3.3 Auslander-Reiten theory

3.3.1 Auslander-Reiten translation

Let Qop be the quiver obtained from Q by reversing each arrow. Define

D = HomC(−,C) : repQ −→ repQop

Let P =
⊕

i∈Q0
P (i). We have that Hom(V, P ) is a representation (Hi, φαop)

ofQop for V a representation ofQ, whereHi = Hom(V, P (i)) for every i ∈ Q0 and for

α : i→j in Q, define a morphism α : P (j)→P (i) by αl : P (j)l→P (i)l by composing

α with the paths from j to l. Then define φαop : Hj→Hi as φαop(f) = α ◦ f . That

is we have the commutative diagram

V P (j)

P (i)

f

φαop (f)
α

Then we define the Nakayama functor as

ν = DHom(−, P ) : repQ −→ repQ.
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Example 3.3.1. Consider Q2 again. We take P (2) = 0⇒C. Then Hom(P (2), P )

gives us C2 ⇔ C. Taking D will give us C2⇒C, which is I(1). Notice that this

example also suggests that ν maps projectives to injectives which is true in general.

Now we are ready to define Auslander-Reiten translation.

Definition 3.3.2. Let

0
p1−→ P1

p0−→ P0 → V→0

be a minimal projective resolution. Applying the Nakayama functor, we get an exact

sequence

0→τV→νP1
νp1−−→ νP0

νp0−−→ νV→0,

where τV = ker νp1 is called the Auslander-Reiten translate of M and τ is the

Auslander-Reiten translation.

Example 3.3.3. Let us calculate τ(C2 ⇒ C3) where C2 ⇒ C3 is the indecomposable

representation. First we have the minimal projective resolution

0
p1−→ (0⇒C)

p0−→ (C⇒C2)2 → (C2 ⇒ C3)→0.

Applying the Nakayama functor will give us

0→τ(C2 ⇒ C3)→(C2⇒C)
νp1−−→ (C⇒0)2 νp0−−→ 0→0.

Thus τ(C2 ⇒ C3) = 0⇒C.

There is a fundamental result called the Asulander-Reiten Formula to relate

short exact sequences and morphisms in the module category. This result also give

us a way to compute Ext1 which is heavily used in this article.

Theorem 3.3.4. [Sch14, Theorem 7.18, Auslander-Reiten formulas] Let V,W be

CQ-modules. We define

Hom(V,W ) = Hom(V,W )/P (V,W ),

Hom(V,W ) = Hom(V,W )/I(V,W ),

where P (V,W ) (I(V,W )) is the set of morphisms f ∈ Hom(V,W ) such that f

factors through a projective (injective) CQ-module.

Then there are isomorphisms

Ext1(V,W ) ∼= DHom(τ−1W,V ) ∼= DHom(W, τV ).
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Almost split sequence

There is a canonical extension between a module and its Auslander-Reiten

translate. We have a notion of almost split sequence to describe the short exact

sequence.

Definition 3.3.5. A morphism f : L→E is called left minimal almost split if

1. f is not a section, i.e. there is no morphism h : E→L such that hf = idL;

2. for each morphism u : L→U in modCQ which is not a section, there exists

a morphism u′ : E→U such that u′f = u;

3. if h : E→E is such that hf = f then h is an automorphism of E.

Similarly, a morphism g : E→F is called right minimal almost split if

1. g is not a retraction, i.e. there is no morphism h : F→E such that gh = idF ;

2. for each morphism v : V→F in modCQ which is not a retraction, there

exists a morphism v′ : V→E such that gv′ = v;

3. if h : E→E is such that gh = g then h is an automorphism of E.

Then we can define almost split sequence

Definition 3.3.6. A short exact sequence in modCQ

0 −→ L
f−→M

g−→ N −→ 0

is an almost split sequence if f is a left minimal almost split morphism and g

is a right minimal almost split morphism.

Let M = ⊕Mi, where Mi are indecomposable. Then there exists Mi such

that both L→Mi = M/(⊕j 6=iMi) and Mi

g|Mi−−→ N are not zero. If not, we can

decompose M = A⊕B, where A = im f and B = ker g. Then the sequence would

be split which contradicts to the definition of almost split exact sequence.

The following theorem gives us the existence of almost split sequences.
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Theorem 3.3.7. [Sch14, Theorem 7.26] For any finite quiver Q without oriented cy-

cle, there exists a bijection τ from the indecomposable non-projective representations

to indecomposable non-injective representations such that for each non-projective

indecomposable V , there exists an almost split sequence

0→τV→E→V→0,

where τ is the Auslander-Reiten translation.

Example 3.3.8. Continuing our calculation in Example 3.3.3, we have the almost

split sequence

0 −→ (0⇒C) −→ (C⇒C2)2 −→ (C2⇒C3) −→ 0.

3.3.2 Auslander-Reiten quiver

Let V and W be indecomposable modules in modCQ. A homomorphism

f : V→W is in modCQ is irreducible if f is neither a section nor a retraction;

and if f = gh for some morphism h : V→Z, g : Z→W , then either h is a section

or g is a retraction.

Define Irr(V,W ) as the set of irreducible morphisms from V to W . It is

called the space of irreducible morphisms.

Definition 3.3.9. [ASS06, Definition IV 4.6] Consider the path algebra CQ, where

Q is a finite acyclic quiver. The quiver Γ(modCQ) is defined as:

• The points of Γ(modCQ) are the isomorphism classes [V ] of indecomposable

modules V in modCQ.

• Let [V ], [W ] be the points in Γ(modCQ) corresponding to the indecomposable

modules V , W in modCQ. The arrows [V ]→[W ] are in bijective correspon-

dence with the vectors of a basis of the K-vector space Irr(V,W ).

The quiver Γ(modA) of the module category modCQ is called the Auslander-

Reiten quiver of CQ. We will write AR quiver for shorthanded notation.
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Proposition 3.3.10. [ASS06, Proposition VIII 2.1] The Auslander-Reiten quiver

Γ(modCQ) of CQ contains a connected component P(CQ) where

• for every indecomposable CQ-module V in P(CQ), there exist a unique t ≥ 0

and a unique a ∈ Q0 such that V ∼= τ−tP (a).

• P(CQ) contains a subquiver consisting of all the indecomposable projective

CQ-modules; and

• P(CQ) is acyclic.

Γ(modCQ) also contains a connected component I(CQ), where

• for every indecomposable CQ-module W in I(CQ), there exist a unique s ≥ 0

and a unique a ∈ Q0 such that W ∼= τ sI(a).

• I(CQ) contains a subquiver consisting of all the indecomposable injective

CQ-modules; and

• I(CQ) is acyclic.

Furthermore, P(CQ) = I(CQ) if and only if Q is of Dynkin type.

P(CQ) is called the pre-projecrive component of Γ(modCQ) and I(CQ)

is called the pre-injective component of Γ(modCQ). An indecomposable CQ-

module is called pre-projective if it belongs to P(CQ) and it is called pre-

injective if it belongs to I(CQ). From the above, if Q is of Dynkin type, then

P(CQ) = I(CQ) from the theorem above. Then Γ(modCQ) is connected and

Γ(modCQ) = P(CQ) = I(CQ) from the properties of projectives and injectives.

If Q is not of Dykin type, there are representations which is neither pre-projective

or pre-injective. We will call the connected component R(CQ) of Γ(modCQ)

to be regular if R(CQ) contains neither projective nor injective modules. An

indecomposable representation is called regular if it belongs to a regular component

of Γ(modCQ) and an arbitrary indecomposable representation is called regular if

it is a direct sum of indecomposable regular representations.
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Example 3.3.11. For Kronecker 2-quiver, we have the Auslander-Reiten quiver as

follows

C⇒C2 · · · C2⇒C

0⇒C C2⇒C3 R(Q) · · · C⇒0

Note that the left component contains P (1) and P (2). Thus that is the pre-

projective component. The right component contains I(1) and I(2) which means it

is the pre-injective component. The middle component is the regular component

which contains all the Ck⇒Ck, where k ≥ 0.

3.3.3 Computing Hom and Ext1 group

We are going to state the properties of the Auslander-Reiten quiver which

is useful for computing the Hom and Ext1 group.

Let V and W be two indecomposable CQ-module. A path in modA from

V to W is a sequence

V = V0
f1−→ V1

f2−→ · · · ft−→ Vt = W

where all the Vi are indecomposable, and all the fi are nonzero nonisomorphisms.

In this case, V is called a predecessor of W and W is called a successor of V in

modA.

Proposition 3.3.12. [ASS06, VIII Lemma 2.5]

• Let P be a preprojective component of the quiver Γ(modCQ) and V be an

indecomposable module in P. Then the number of predecessors of V in P is

finite and any indecomposable CQ-module L such that HomCQ(L, V ) 6= 0 is

a predecessor of V in P. In particular, HomCQ(L, V ) = 0 for all but finitely

many nonisomorphic indecomposable CQ-modules L.

• Let I be a preinjective component of the quiver Γ(modCQ) and N be an

indecomposable module in I. Then the number of successors of W in I is

finite and any indecomposable CQ-module L such that HomCQ(W,L) 6= 0 is
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a predecessor of W in I. In particular, HomCQ(W,L) = 0 for all but finitely

many nonisomorphic indecomposable CQ-modules L.

From the theorem above, we can tell immediately that if V is a predecessor

of W , then Hom(W,V ) = 0, where V and W ∈ P or V and W ∈ I. We can also

understand the Hom group between different connected component in Γ(modCQ).

Proposition 3.3.13. [ASS06, Corollary VIII 2.13] Let P , I and R be three inde-

composable CQ-module.

1. If P is preprojective and R is regular, then Hom(R,P ) = 0.

2. If P is preprojective and I is preinjective, then Hom(I, P ) = 0.

3. If R is regular and I is preinjective, then Hom(I, R) = 0.

We may write as Hom(R,P) = Hom(I,P) = Hom(I,R) = 0.

Let us abuse the term ‘predecessor’ and ‘sucessor’ to say elements in P are

predecessors of elements in R, I and elements in R are predecessors of elements of

I. We will do the same for sucessor.

Important lemmas

From the properties of the AR quivers, we observe the following properties

which will be useful for computations in later chapters.

Lemma 3.3.14.

Ext1(P ,R) = Ext1(P , I) = Ext1(R, I) = 0.

Proof. Let us first show Ext1(P ,R) = 0. If not, there exists a non-split exact

sequence

0 −→ R
f−→ V

g−→ P −→ 0

where R ∈ R, P ∈ P and for some V ∈ rep(Q). Decompose V =
⊕

Vi where Vi

are indecomposable. Consider Vi such that Vi ∩ im f 6= 0 and g(Vi) 6= 0. If such

a Vi does not exist, the exact sequence will split. Then if Vi ∈ R, g|Vi : Vi→P
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nonzero will contradict Theorem 3.3.13. Similarly, if Vi ∈ P or I, it will contradict

Theorem 3.3.13. Thus Ext1(P ,R) = 0. Repeating the same argument will give us

Ext1(P , I) = Ext1(R, I) = 0.

Lemma 3.3.15. If V,W ∈ P or V,W ∈ I and if Hom(V,W ) 6= 0, then

Ext1(V,W ) = 0.

Proof. Consider V,W ∈ P. If V is projective, then Ext(V,W ) = 0 for all 2. Now

assume V is not projective. Then by Auslander-Reiten Theorem 3.3.4 which tells

Hom(W, τV ) 6= 0, i.e. we have a map

W −→ τV

By Theorem 3.3.7 and the remark above, there exists E for V non-projective such

that there is an almost split exact sequence

0 −→ τV
f−→ E

g−→ V −→ 0.

We can again decompose E =
⊕

Ei where Ei are indecomposable. We can further

assume Ei ∈ P for all i by Theorem 3.3.13. Pick Ei such that Ei ∩ im(f) 6= 0

and g(Ei) 6= 0. Such an Ei exists because the sequence is non-split. Then

Hom(τV, Ei) 6= 0 which implies τV is a predecessor of Ei. And Hom(Ei, V ) 6= 0

also implies Ei is a predecessor of V. Then there exists a path in AR quiver such

that

W→τV→· · ·→Ei→· · ·→V→· · ·→W.

The last arrow follows from the assumption Hom(V,W ) 6= 0. Then we obtain a

cyclic in P which contradicts to Theorem 3.3.12. We can repeat a similar argument

for V,W ∈ I.

Lemma 3.3.16. Now if V,W ∈ P or V,W ∈ I, assume Ext1(W,V ) 6= 0, then V

is a predecessor of W in the AR quiver. That is Hom(W,V ) = 0.

Proof. Consider V,W ∈ P . As Ext1(W,V ) 6= 0, we have a non-split exact sequence

0 −→ V −→ E −→ W −→ 0,
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for some E ∈ rep(Q). By repeating the arguments in the proofs of the two

theorem above, we can decompose E as sums of indecomposable Ei with Ei ∈ P.

Furthermore, there exists Ei such that V is a predecessor of Ei and Ei is a

predecessor of W in P , then we have a path in P :

V→ . . .→Ei→· · ·→W.

This shows that V is a predecessor of W . This holds similarly for V,W ∈ I.

Combining all the lemmas above, we have if V,W ∈ P or V,W ∈ I,

if Hom(V,W ) 6= 0, then Ext1(V,W ) = 0. However if Ext1(W,V ) 6= 0, then

Hom(W,V ) = 0. This is saying that

χ(V,W ) = dim Hom(V,W )− dim Ext1(V,W )

actually equals to either dim Hom(V,W ) or − dim Ext1(V,W ).



Chapter 4

Introduction to Scattering

Diagrams and the Theta Basis

There are a lot of conjectures in mirror symmetry. Two major ones are

Kontsevich’s homological mirror symmetry conjecture (HMS) [Kon95] and the

Strominger-Yau-Zaslow conjecture (SYZ) [SYZ96]. By HMS, the existence of a

canonical basis of sections of ample line bundles is predicted when a particular choice

of corresponding Lagrangian sections is given. Those elements in the canonical basis

are called theta functions. The SYZ conjecure states that there are Lagrangian

fibrations of X and its mirror X̌ to the same base space B such that the general

fibres are dual tori. Both conjectures suggest the existence of theta functions.

Morally, given a choice of Lagrangian sections corresponding to ample line bundles,

elements of the canonical basis of sections are called theta functions.

With the idea of looking at fibrations from SYZ, Gross and Siebert con-

structed toric degenerations from affine manifolds with singularities. This construc-

tion introduced the idea of scattering diagrams. In [GHKK14], Gross, Hacking,

Keel, and Kontsevich relate scattering diagrams with cluster algebras and propose

that theta functions also formed the canonical basis for a given cluster algebra.

47
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4.1 Scattering Diagram

In this section, we will go over the definition of scattering diagrams which

will be associated to cluster algebras A(B). To simplify the discussion, we will

assume that the skew-symmetrizable matrix B in the initial seed is skew-symmetric

in this section.

Later in Chapter 5, we will discuss about rank 2 cluster algebras A(b, c)

with B skew-symmetrizable. Thus the rank 2 scattering diagram associated to

A(b, c) will be defined as an example in Section 4.2.2. This will give a hint to

the construction for n-dimensonal scattering diagram as it is nothing more than

replacing 2 by n.

LetN be a rank n lattice, M = Hom(N,Z). WriteMR = M⊗R, NR = N⊗R.

Take k to be a field of characteristic 0. Fix a basis f1, . . . , fn of M . Given m ∈M ,

we can write Am ∈ k[M ] as Aa11 · · ·Aann if m = a1f1 + · · ·+ anfn.

We further fix a skew-symmetric bilinear form on N

{·, ·} : N ×N→Z.

Define the skew symmetric ε with εij = {ei, ej}. The skew-symmetric form induces

a map

p∗ : N −→M

n 7→{n, ·}

In this thesis, we will assume p∗ to be injective. If p∗ is not injective, we can replace

initial data so that p∗ is injective in the new setting. However, this replacement is

tedious. Therefore, in the following set up, we will make the assumption to simplify

the formulation. One may refer to Appendix B in [GHKK14] for the full details.

A seed data s = (ei) is a basis e1, . . . , en of N . Note that s may or may

not the standard basis of N . Denote

N+ = {
∑

aiei|ai ≥ 0,
∑

ai > 0}

Definition 4.1.1. A wall in MR = M ⊗Z R is a pair (d, fd) where
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• d ⊆MR, support of the wall, is a convex rational polyhedral cone of codimen-

sion one, contained in n⊥ for some n ∈ N+,

• fd ∈ C[[A1, . . . , An]] such that fd = 1 +
∑

k≥1 ckA
kp∗(n) for some ck ∈

(A1, · · ·An).

A wall (d, fd) is called incoming if p∗(n) ∈ d. Otherwise it is called

outgoing. Later we will subdivide the walls into small walls and the call the walls

which contains −p∗(n) as the outgoing piece.

Definition 4.1.2. A scattering diagram D is a collection of walls such that, for

each k ≥ 0, the set

{(d, fd) ∈ D | fd 6= 1 mod (A1, · · · , An)k}

is finite. The support of a scattering diagram, Supp(D), is the union of the supports

of its walls. We will write

Sing(D) =
⋃
d∈D

∂d ∪
⋃

d1,d2∈D,dim d1∩d2=n−2

d1 ∩ d2.

Now consider a smooth immersion

γ : [0, 1]→MR\{0}

with endpoints not in the support of D. Assume γ is transversal to each wall of D.

For each power k ≥ 1, we can find the sequence of numbers 0 < t1 ≤ t2 ≤ · · · ≤
ts < 1 with γ(ti) ∈ di for some i with fdi 6= 1 mod mk and di 6= dj whenever ti = tj .

For each i, define pdi ∈ Autk−alg
(
k[[A1, . . . , An]]

)
, the path-ordered product as

pdi(A
m) = Amf

〈m,n0〉
di , (4.1.1)

where the lattice point n0 ∈ N is primitive, annihilates the tangent space to

di, and is uniquely determined by the sign convention 〈n0, γ
′(ti)〉 < 0. Take

pkγ,D := pds ◦ · · · ◦ pd1 . We can then define the path-ordered product as

pγ,D = lim
k→∞

pkγ,D. (4.1.2)

With the path-ordered product, we can talk about equivalence among

scattering diagrams.
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Definition 4.1.3. Two scattering diagram D, D′ are equivalent if pγ,D = pγ,D′

for all path γ for which both are defined.

Note that the path-ordered product depends on the path γ on D. We will

call D consistent if the automorphism only depends on the endpoint of the path γ.

Definition 4.1.4. A scattering diagram is consistent if pγ,D only depends on the

endpoints of γ for any path γ for which pγ,D is well defined.

Not every scattering diagram D is consistent; however, there always exists a

consistent scattering diagram which contains D as seen in the following theorem.

Theorem 4.1.5. (Kontsevich-Soibelman [KS06], Gross-Siebert [GS11]) Given a

scattering diagram D, there always exists a consistent scattering diagram D′ which

contains D such that D′ \D only consists only of outgoing walls. And it is unique

up to equivalent.

The next result explains how to obtain Laurent polynomials out of scattering

diagrams.

Theorem 4.1.6. Let D := Ds be as constructed above and consider a Laurent

polynomial f ∈ Z[M ]. For any path γ which is regular with respect to D, pγ,D(f)

can be viewed as an element of Z(M). If for any such γ in MR, with starting point

in the first quadrant and endpoint in one of the chambers of D, we have that pγ,D(f)

lies in Z[M ], then f is a universal Laurent polynomial.

Proof. This is [GHKK14, Theorem 4.4] applied to the case at hand. Specifically,

let A be the cluster variety defined by the given choice of seed. By definition, A
is obtained by gluing together a collection of tori via cluster transformations and

thus a regular function on A is precisely a universal Laurent polynomial. On the

other hand, in [GHKK14, Section 4] another variety A′ is defined. This is done

by associating a torus A′τ := SpecZ[M ] to a chamber τ ⊆MR of D. For any two

chambers τ, τ ′ we can glue A′τ to A′τ ′ using the rational map defined on function

fields by pγ,D : Z(A1, A2)→ Z(A1, A2), where γ is a path beginning in τ ′ and ending

in τ . Performing these gluings gives A′.
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Now [GHKK14, Theorem 4.4] gives an explicit isomorphism between A and

A′, and thus the algebra of regular functions on A and A′ are isomorphic. Further-

more, this isomorphism restricts to the identity on the torus of A corresponding

to the initial seed and the torus of A′ corresponding to the positive chamber. In

particular, a function f on this torus extends to a function on A′ if pγ,D(f) lies in

Z[M ] for any path γ from the positive chamber to any other chamber. This shows

the characterization of universal Laurent polynomials.

4.2 The association to cluster algebra

With a fixed seed data, we will now construct a scattering diagram. Set

Din,s = {(e⊥i , 1 + Ap
∗(ei))|i = 1, . . . n}. (4.2.1)

Then by Theorem 4.1.5, there exists a consistent scattering diagram Ds,

in the sense of Definition 4.1.2, containing Din,s and Ds \Din,s contains outgoing

walls only.

Similar to the definition of cluster algebra, we would also mutate the seed

data s. For k = 1, . . . n, the mutated seed data µk(s) is a new basis

e′i =

{
ei + [εik]+ek i 6= k

−ek i = k

where [εik]+ = max(0, εik). The matrix ε′ = {e′i, e′j} is defined by the new set of

(ei).

By repeating what we did in Equation 4.2.1, we will obtain a new scattering

diagram Din,µk(s) and the corresponding consistent scattering diagram Dµk(s). As

both scattering diagrams Ds, Dµk(s) correspond to the same cluster algebra, we are

going to see they are the ’same’ up to a transformation.

First, we let

Hk,+ = {m ∈MR|〈ek,m〉 ≥ 0}, Hk,− = {m ∈MR|〈ek,m〉 ≤ 0}

Define the piecewise linear transformation Tk : M→M by

Tk(m) =

{
m+ 〈ek,m〉p∗(ek) m ∈ Hk,+

m m ∈ Hk,−
(4.2.2)
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for m ∈M . We denote Tk,− = Tk|Hk,− and Tk,+ = Tk|Hk,+ .

Tk acts on Ds to give us a new scattering diagram Tk(Ds). More precisely,

1. for each wall (d, fd) ∈ Ds \ {dk}, Tk(d) leads us two possible walls, namely

(Tk(d ∩Hk,−), Tk,−(fd)), (Tk(d ∩Hk,+), Tk,+(fd)).

If dim d ∩Hk,± < rank M − 1, we will take away (Tk(d ∩Hk,±), Tk,±(fd)).

T (fd) is the formal power series obtained by applying T to each exponent in

fd.

2. Tk(ds) contains the wall d′k = (e⊥k , 1 + A−p
∗(ek)).

Then we have

Theorem 4.2.1. [GHKK14, Theorem 1.22] Tk(Ds) is a consistent scattering dia-

gram for µk(s) and N+
µk(s), where N+

µk(s) = {
∑
aie
′
i|ai ≥ 0,

∑
ai > 0}, µk(s) = (e′i).

Furthermore, Dµk(s) and Tk(Ds) are equivalent.

4.2.1 Chamber structure

In this section, we will discuss the chamber structure of scattering diagram.

Last section tells us that scattering diagrams after mutations are equivalent. This

section will tell us that we can pull back the information into the initial scattering

diagram.

Given a seed data s = (e1, . . . , en), define

C+
s := C+ = {m ∈MR|〈ei,m ≥ 0, i = 1, . . . n}

C−s := C− = {m ∈MR|〈ei,m ≤ 0, i = 1, . . . n}

We will call C+
s as the positive chamber. After mutation at vertex k, we will have

another scattering diagram Dµk(s) and the corresponding positive chamber C+
µk(s).

Note that the closures of T−1
k (C+

µk(s)) and C+
s share a common codimension one

face given by intersection with e⊥k . This is telling us that the scattering diagram is

somehow a dual of the exchange graph of cluster algebra.
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In general, take an arbitrary seed sv and let v be the corresponding vertex in

the exchange graph. Then consider the sequence of mutations µk1 , . . . , µkp from the

initial seed s to sv. Denote Tv = Tkp ◦ · · · ◦ Tk1 as the composition of the semilinear

map Tki . Then we have Tv(Ds) = Dsv from Theorem 4.2.1. We pull back the

positive chamber in Ds′ and hence define

C+
v = T−1

v (C+
sv)

which is a chamber in Ds corresponding to the vertex v. We further define ∆s for

the set of chambers C+
v for v in the exchange graph. Note that the union of all the

C+
v may not equal to the whole MR. For example, in the next sections, we will see

there is a region called the badlands which contained in MR \ ∪vC+
v .

4.2.2 Example: Two-dimensional case

Let us illustrate what have just defined in 2-dimension explicitly. Now

M ∼= Z2. Then a two-dimensional scattering diagram is a diagram with walls that

are rays or lines passing through the origin. The corresponding cluster algebra

is A(b, c) defined in Example 3.1.1. As noted in the beginning of this chapter,

the skew-symmetrizable matrix B in the initial seed of A(b, c) is B =

(
0 c

−b 0

)
.

which is not skew-symmetric.

First, we start with the fixed data: the lattice N , the dual lattice M =

Hom(N,Z), the skew symmetric form {·, ·} =

(
0 1

−1 0

)
. Note that this example

also demonstrates the skew-symmetrizable matrix B in Section 3.1 and ε in Section

4.2 differ by a transpose.

In this case, we add a bit more information about the fixed data:

1. the integers (b, c) where the greatest common divisor of b, c is 1;

2. a sublattice N◦ = bZ× cZ of N ;

3. M◦ = Hom(N◦,Z).
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1 + A−2
1

1 + A2

1 + A−2
1 A2

2

1 + A−2
1 A2

Figure 4.1: The scattering diagram D(2,1).

Then we consider the initial seed data s which is a standard basis (e1 =

(1, 0), e2 = (0, 1)) of N . Then the dual basis of M would be (e∗1, e
∗
2) of M , and

the corresponding basis for M◦ would be f1 = 1
b
e∗1, f2 = 1

c
e∗2. Then we continue to

define the map

p∗ : N −→M◦,

with n 7→ {n, ·}. Note that in this case n = (n1, n2) 7→ (−n2, n1) = −n2bf1 + n1cf2.

Thus we will follow what we did in last section, the constructed scattering diagram

would be

Din,s = {(Re1, 1 + A(−b,0)), (Re2, 1 + A(0,c))},

with components lie in M◦. Then we obtain the consistent scattering diagram

D(b,c) again by Theorem 4.1.5. The case of D(2,1) is illustrated in Figure 4.1. Note

that since the initial diagram Din,(2,1) consists of the walls
(
R(−1, 0), 1 +A−2

1

)
and(

R(0, 1), 1+A2

)
, the associated consistent scattering diagram D(2,1) contains Din,(2,1)

together with the two walls
(
R≤0(−1, 1), 1 +A−2

1 A2
2

)
and

(
R≤0(−2, 1), 1 +A−2

1 A2

)
.

While this example portrays a scattering diagram with finitely many rays,

the diagram D(b,c) will consist of an infinite number of rays precisely when bc ≥ 4.

Figure 4.2 illustrate the D(2,2) which is with infinitely rays of slope (n,−(n+ 1)),

(n+ 1,−n) and (1, 1). In general if bc ≥ 4 then there are infinitely many discrete
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1 + A−2
1

1 + A2
2

1
(1−A−2

1 A2
2)2

1 + A−4
1 A2

2

1 + A−2
1 A4

2

1 + A−6
1 A4

2

1 + A−4
1 A6

2

Figure 4.2: The scattering diagram D(2,2).

outgoing rays converge to the ray of slopes −(bc±
√
bc(bc− 4))/2b. Then every

ray of rational slope appears in the region within these two rational slopes. This

region will be named as the badlands.

A detailed description of the diagram D(b,c) which appear for bc ≥ 4 can be

found in [GHKK14, Example 1.30].

4.3 Broken lines and theta functions

Broken lines were introduced in [Gro10] as a way of describing holomorphic

disks which appear in mirror symmetry in a tropical manner. Their theory was

further developed in [CPS10], and then used in [GHK11] and [GHKK14] to construct

canonical bases in various circumstances.

Definition 4.3.1. Let D be a scattering diagram, m ∈ M − {0} and Q ∈ MR −
Supp(D). A broken line for m with endpoint Q is a piecewise linear continuous

proper path γ : (−∞, 0) → MR \ Sing(D) with a finite number of domains of

linearity and a collection of monomials. A monomial cLA
mL ∈ k[M ] is attached to

each domain of linearity L ⊆ (−∞, 0) of γ. The path γ and the monomial cLA
mL

need to satisfy the following conditions:
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• γ(0) = Q.

• If L is the first (i.e., unbounded) domain of linearity of γ, then cLA
mL = Am.

• For t in a domain of linearity, γ′(t) = −mL.

• γ bends only when it crosses a wall. If γ bends from the domain of linearity

L to L′ when crossing (d, fd), then cL′A
mL′ is a term in pγ,d(cLA

mL).

Definition 4.3.2. Let D,m,Q as in Definition 4.3.1. For a broken line γ with

initial slope m and endpoint Q, denote I(γ) = m and b(γ) = Q. Define Mono(γ) =

c(γ)AF (γ) to be the monomial cLA
mL attached to the last domain of linearity L of

γ. We further define

ϑQ,m =
∑
γ

Mono(γ),

where the sum is over all broken lines for m with endpoint Q.

The following summarizes the main properties of the theta functions as

shown in [CPS10] and [GHKK14].

Theorem 4.3.3. 1. If D is any consistent scattering diagram, Q and Q′ are

two general irrational points on MRr Supp(D), and γ is a path joining Q to

Q′, then pγ,D(ϑQ,m) = ϑQ′,m.

2. (a) If Q and m lie in the interior of the same chamber of D, then ϑQ,m = xm.

(b) For n = 2, if Q lies in the interior of a chamber of D, then ϑQ,m is a

Laurent polynomial for any m.

(c) For n = 2, if Q lies in the interior of the first quadrant, then ϑQ,m is a

universal Laurent polynomial for any m.

Proof. (1) is a main result of [CPS10], see also [GHKK14, Theorem 3.5] for its

application to scattering diagrams in the current context. (2a) is [GHKK14,

Proposition 3.8] if Q and m are both in the positive quadrant of MR. If Q and m

are in some other chamber, say σ, then by [GHKK14, Construction 1.38], there is a

scattering diagram D′ obtained from a mutation of the initial seed defining D and

a piecewise linear map Tv : MR →MR which takes the support of D to the support
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of D′, and such that the positive chamber of D′ pulls back to σ. Furthermore, there

is a one-to-one correspondence between broken lines for D and D′ by [GHKK14,

Proposition 3.6]. Thus the claim follows from [GHKK14, Proposition 3.8] applied

to D′.

(2b) is [GHKK14, Example 7.18]. In slightly more detail, let Θ ⊆M denote

the set of m ∈ M for which ϑQ,m is a Laurent polynomial for Q general in the

first quadrant of MR. By [GHKK14, Theorem 7.16,(3)], Θ contains all points of

M contained in chambers (i.e., the set of points denoted as ∆+
V (Z) in [GHKK14,

Theorem 7.16,(3)]). Thus in particular, Θ contains all integral points in the first

three quadrants of MR. But by [GHKK14, Theorem 7.16,(4)], Θ is closed under

addition, and hence consists of all points in M . It then follows that ϑQ,m is a

Laurent polynomial for Q in any chamber by [GHKK14, Proposition 7.1].

Finally, (2c) follows from from (2b) and Theorem 4.1.6.

Remark 4.3.4. If Q lies inside the positive chamber, and m ∈M lies in one of the

chambers which is reachable from the positive chamber, i.e. m ∈ C+ ∈ ∆s defined

in Section 4.2.1. Then ϑQ,m = pγ,D(Am) for the path γ joining from chamber

containing m to Q. In this case, ϑQ,m is a cluster monomial. Further if Q is in the

positive chamber, and ϑQ,m is a finite sum, then ϑQ,m is an element of the cluster

algebra.

Remark 4.3.5. Theta functions are ’preserved’ under mutation. More precisely,

let Ds be the scattering diagram associated to the seed data s, Dµ(s) be the one

associated to µ(s) and T the semi-linear map defined in (4.2.2).

Then T defines a one-to-one correspondence from broken lines in Ds with

initial slope m and endpoint Q to broken lines in Ds with initial slope T (m) and

endpoint T (Q). Let ϑµ(s) denote theta functions defined on Dµ(s). Then forQ ∈ H±,

we have

ϑ
µ(s)
T (Q),T (m) = T±(ϑQ,m).

A proof of similar result is given in Theorem 5.3.3 so we are not going to repeat

here.

Let us compute some broken lines and theta functions in the two dimensional

scattering diagram shown in Section 4.2.2.
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Example 4.3.6. Consider the scattering diagram D(2,2) in Figure 4.2 and let Q be

a small irrational perturbation of the point (1.5, 1). There are three broken lines

with initial exponent m = (1,−1) and endpoint Q as shown in Figure 4.3. First of

all, we can have a broken line γ1 which does not bend. Therefore

Mono(γ1) = A1A
−1
2 .

There is the broken line γ2 which bends only at the x-axis. Since

p(−1,1),R(−1,0)(A1A
−1
2 ) = A1A

−1
2 (1 + A−2

1 ) = A1A
−1
2 + A−1

1 A−1
2 ,

to bend we need to choose the second term and obtain

Mono(γ2) = A−1
1 A−1

2 .

The last broken line γ3 bends both at the x- and y-axes, the latter bend coming

from

p(1,1),R(0,1)(A
−1
1 A−1

2 ) = A−1
1 A−1

2 + A−1
1 A2.

This time we have

Mono(γ3) = A−1
1 A2.

Thus the theta function associated to m = (1,−1) with endpoint point Q is

ϑQ,(1,−1) = A1A
−1
2 + A−1

1 A−1
2 + A−1

1 A2.

Example 4.3.7. Let us try one more calculation with broken lines. We take the same

scattering diagram D(2,2) in Figure 4.2. Now take the initial exponent m = (2,−2)

with the same endpoint Q. By similar calculations we get

ϑQ,(2,−2) = A2
1A
−2
2 + A−2

1 A2
2 + A−2

1 A−2
2 + 2A−2

2 + 2A−2
1 .

Note that

ϑQ,(2,−2) =
(
ϑQ,(1,−1)

)2 − 2. (4.3.1)

In the scattering diagram D(2,2) considered here, the ray with exponent

(1,−1) does not lie in the interior of any chamber. So neither ϑQ,(1,−1) nor ϑQ,(2,−2)

is a cluster monomial. Later in Remark 7.1.2, we will give a reason from the quiver

representation point of view about why we have ϑQ,(2,−2) =
(
ϑQ,(1,−1)

)2 − 2.
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1 + A−2
1

1 + A2
2

1 + A−4
1 A2

2

1 + A−2
1 A4

2

Q
A1A

−1
2

γ1

A−1
1 A−1

2

A1A
−1
2

γ2

A−1
1 A2

A−1
1 A−1

2

A1A
−1
2

γ3

Figure 4.3: The scattering diagram D(2,2) and the broken lines described in

Example 4.3.6.

This chapter overlaps with part of the paper “The Greedy Basis equals the

Theta Basis”. It is a joint work with Mark Gross, Greg Muller, Gregg Musiker,

Dylan Rupel, Salvatore Stella, Harold Williams.



Chapter 5

The Greedy Basis is the Theta

Basis

5.1 Introduction

Many bases for cluster algebras have been proposed, e.g. Generic Gases

[GLS12], cluster monomials [Kel14], atomic bases [DT11], Bracelet [MSW13] and

many others. In general, one expects any cluster algebra to admit several natural

bases related in potentially subtle ways. A basic example of this is the relationship

between the dual canonical and dual semicanonical bases of the coordinate ring of

the positive unipotent subgroup of a simple algebraic group. Determining whether

or not two constructions of canonical bases in a cluster algebra are the same is

nontrivial.

One of the other constructions of a basis is the greedy basis [LLRZ14]. The

greedy basis is defined for rank 2 cluster algebras so that all of its elements, not just

cluster variables, have positive Laurent expansions. The resulting coefficients can

be computed by enumerating combinatorial objects called compatible pairs which

are related to maximal Dyck paths. By studying the behaviors of the bending of

broken lines, we are able to show that the theta basis shares the same support with

the greedy basis. This proves

Theorem 5.1.1. [CGM+15] The greedy basis and the theta basis of a rank 2 cluster

60
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algebra coincide.

5.2 The greedy bases

We will work on rank 2 cluster algebra defined in Example 3.1.1. From the

result of Fomin-Zelevinsky, A(b, c) is actually a subalgebra of Z[A±1
1 , A±1

2 ], rather

than merely a subalgebra of Q(A1, A2).

Theorem 5.2.1. [FZ02, Theorem 3.1] Given any cluster variable xj, we have

xj ∈ Z[x±1
k , x±1

k+1] for every k ∈ Z.

We will denote by Z≥0[x±1
k , x±1

k+1] the subspace of Laurent polynomials with

positive coefficients. An element of Q(A1, A2) is a universal Laurent polynomial

(resp. positive universal Laurent polynomial) if it is contained in Z[x±1
k , x±1

k+1] (resp.

Z≥0[x±1
k , x±1

k+1]) for every k ∈ Z. A primary result of [FZ07], specialized to the rank

2 setting, states that A(b, c) is precisely the set of univeral Laurent polynomials in

Q(A1, A2).

Theorem 5.2.2. [LS13, Rup12] Each cluster variable of A(b, c) is positive.

An element of Z[A±1
1 , A±1

2 ] is called pointed at (a1, a2) ∈ Z2 if it can be

written in the form

A−a11 A−a22

∑
p1,p2≥0

c(p1, p2)Abp11 Acp22 ,

where c(p1, p2) ∈ Z with c(0, 0) = 1.

Proposition 5.2.3. [LLZ14a, Proposition 1.5] Let z be pointed at (a1, a2) ∈ Z2

and suppose z ∈ Z≥0[x
±1
0 , x±1

1 ] ∩ Z≥0[x
±1
1 , x±1

2 ] ∩ Z≥0[x
±1
2 , x±1

3 ]. Then the pointed

coefficients c(p1, p2) satisfy the following recursive inequality:

c(p1, p2) ≥ max

( p1∑
k=1

(−1)k−1c(p1 − k, p2)

(
a2 − cp2 + k − 1

k

)
, (5.2.1)

p2∑
j=1

(−1)j−1c(p1, p2 − j)
(
a1 − bp1 + j − 1

j

))
.
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A positive element of A(b, c) is called indecomposable if it cannot be written

as a sum of two positive elements. In the search for positive bases of A(b, c) one is

naturally led to investigate the indecomposable positive elements. A sufficient con-

dition for a positive pointed element to be indecomposable is the inequality (5.2.1)

being an equality. It turns out that this requirement alone uniquely determines a

collection of elements of A(b, c) with nice properties.

Theorem 5.2.4. [LLZ14a, Theorem 1.7] For any (a1, a2) ∈ Z2 there exists a unique

indecomposable positive element x[a1, a2] ∈ A(b, c) which is pointed at (a1, a2) and

whose pointed coefficients satisfy the recursion

c(p1, p2) = max

( p1∑
k=1

(−1)k−1c(p1 − k, p2)

(
a2 − cp2 + k − 1

k

)
, (5.2.2)

p2∑
j=1

(−1)j−1c(p1, p2 − j)
(
a1 − bp1 + j − 1

j

))
.

Moreover, the collection {x[a1, a2] : (a1, a2) ∈ Z2} is a basis of A(b, c) which contains

the cluster monomials and is independent of the choice of an initial cluster.

We will call x[a1, a2] the greedy element pointed at (a1, a2) and call {x[a1, a2] :

(a1, a2) ∈ Z2} the greedy basis of A(b, c). In view of the definition of pointed

elements, (a1, a2) is the d-vector of x[a1, a2]; we refer to [FZ07] for the definitions and

basic properties of d-vectors. In order to better connect with the scattering diagram

approach from Section 4.1, we now switch our point of view and consider ordinary

support rather than pointed support. Given a Laurent polynomial f =
∑

m∈M cmA
m

in Z[A±1
1 , A±1

2 ], the support of f is the set

{m ∈M | cm 6= 0}.

Theorem 5.2.5. [LLZ14a, Proposition 4.1], [LLZ14b, Corollary 3.5] For (a1, a2) ∈
Z2, the smallest (possibly degenerate) lattice quadrilateral Ra1,a2 containing the

support of x[a1, a2] is determined as follows.

1. If a1 ≤ 0 and a2 ≤ 0, then Ra1,a2 = {(−a1,−a2)}.

2. If a1 ≤ 0 < a2, then Ra1,a2 = {(p1,−a2) : −a1 ≤ p1 ≤ −a1 + ba2}.
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3. If a2 ≤ 0 < a1, then Ra1,a2 = {(−a1, p2) : −a2 ≤ p2 ≤ −a2 + ca1}.

4. If 0 < ba2 ≤ a1, then

Ra1,a2 = {(p1, p2) : −a1 ≤ p1 ≤ −a1 + ba2, −a2 ≤ p2 ≤ −a2 − cp1}.

5. If 0 < ca1 ≤ a2, then

Ra1,a2 = {(p1, p2) : −a1 ≤ p1 ≤ −a1 − bp2, −a2 ≤ p2 ≤ −a2 + ca1}.

6. If 0 < a1 < ba2 and 0 < a2 < ca1, then

Ra1,a2 =

{
(p1, p2)

∣∣∣∣ − a1 ≤ p1 < 0, −a2 ≤ p2 <
(a2

a1

− c
)
p1

}
⋃{

(p1, p2) : −a1 ≤ p1 <
(a1

a2

− b
)
p2, −a2 ≤ p2 < 0

}
⋃{

(−a1 + ba2,−a2), (−a1,−a2 + ca1)
}
.

Moreover, if z ∈ A(b, c) is pointed at (a1, a2) with support contained in Ra1,a2, then

z = x[a1, a2].

Proof. The first claim is the content of [LLZ14a, Proposition 4.1] and [LLZ14b,

Corollary 3.5].

Suppose z ∈ A(b, c) is pointed at (a1, a2) and that the support of z is

contained in Ra1,a2 . Suppose z 6= x[a1, a2]. Then there exists a monomial A
−a′1
1 A

−a′2
2

appearing in z with a different coefficient than in x[a1, a2]. Our assumptions on z

imply for any such monomial that we have a′1 < a1 or a′2 < a2. Choose a monomial

with (a′1, a
′
2) minimal in lexicographic order. Then in the greedy basis expansion of

z the element x[a′1, a
′
2] must appear with nonzero coefficient.

Consider the points O = (0, 0), A = (−a1 + ba2,−a2), B = (−a1,−a2),

C = (−a1,−a2 + ca1), D1 = (−a1 + ba2, ca1 − (bc + 1)a2), and D2 = (ba2 − (bc +

1)a1,−a2 + ca1). Then the support region of x[a1, a2] can be visualized as in Figure

5.1. To reach a contradiction, there are two cases to consider.

• If (−a′1,−a′2) lies on or North of the line segment OB, i.e. a1a
′
2 ≤ a′1a2, then

we consider the point C ′ = (−a′1,−a′2 + ca′2) at the Northern boundary of the
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O

B

(1) a1, a2 ≤ 0

O

AB

(2) a1 ≤ 0 < a2

O

B

C

(3) a2 ≤ 0 < a1

O

AB

C

D1

(4) 0 < ba2 ≤ a1

O

AB

C
D2

(5) 0 < ca1 ≤ a2

O

AB

C

(6) 0 < a1 < ba2,
0 < a2 < ca1,

(a1, a2) : non-imaginary root

O

AB

C

(6) 0 < a1 < ba2,
0 < a2 < ca1,

(a1, a2) : imaginary root

Figure 5.1: Support region of x[a1, a2].

support region Ra′1,a
′
2

of x[a′1, a
′
2] and compare with the line segment OC. In

this case, we have

−a1(−a′2 + ca′1) = a1a
′
2 − ca1a

′
1 ≤ a′1a2 − ca1a

′
1 = −a′1(−a2 + ca1)

and thus C ′ lies on or North of OC. If C ′ is North of OC or C ′ 6= C is on OC,

then it lies outside Ra1,a2 which is impossible. Thus we must have C ′ = C,

but this implies (a′1, a
′
2) = (a1, a2) which clearly must be false.

• If (−a′1,−a′2) lies on or East of the line segment OB, i.e. a′1a2 ≤ a1a
′
2, then

we consider the point A′ = (−a′1 + ba′2,−a′2) at the Eastern boundary of the

support region Ra′1,a
′
2

of x[a′1, a
′
2] and compare with the line segment OA. In

this case, we have

(−a′1 + ba′2)(−a2) = a′1a2 − ba2a
′
2 ≤ a1a

′
2 − ba2a

′
2 = (−a1 + ba2)(−a′2)
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and thus A′ lies on or East of OA. If A′ is East of OA or A′ 6= A is on OA,

then it lies outside Ra1,a2 which is impossible. Thus we must have A′ = A,

but this implies (a′1, a
′
2) = (a1, a2) which is clearly false.

It follows that z = x[a1, a2].

The proof of Theorem 5.2.5 actually establishes the following stronger result,

which never uses the special ‘pointed’ form, thus allowing for support anywhere in

the region Ra1,a2 .

Scholium 5.2.6. If z ∈ A(b, c) is any element containing the monomial A−a11 A−a22

with coefficient 1 and whose support is contained in the half-open quadrilateral

OABC from Figure 5.1 associated to (a1, a2), then z = x[a1, a2].

Remark 5.2.7. The existence of integers c(p1, p2) satisfying the recursive equations

(5.2.2), and thus the existence of the greedy basis itself, is quite non-trivial. The

authors of [LLZ14a] characterize each c(p1, p2) as the solution to an enumerative

problem; specifically, the number of certain ‘compatible pairs of edges’ inside a

type of lattice path called a ‘maximal Dyck path’.

This enumerative description not only establishes the existence of the greedy

basis, but shows that the coefficients c(p1, p2) are manifestly non-negative. Finding

naturally-defined bases for cluster algebras whose elements have positive coefficients

has been one of the core goals of the theory since its inception.

5.3 From g-vectors to d-vectors

In this section, we will relate theta functions with greedy basis. As mentioned

in Remark 4.3.4, if Q lies inside the positve chamber, and m ∈ M is in C ∈ ∆s,

then varthetaQ,m is a cluster monomial. From [GHKK14, 7.5] that the g-vector of

this cluster monomial is precisely m. On the other hand the description of greedy

elements given in [LLZ14a] is in terms of their d-vectors (cf. Remark 1.9 ibid.).

We refer to [FZ07] for the definition and basic properties of g and d vectors.

In order to compare the two we will leverage the observation that, in rank

2, these families of vectors are related by an easy piecewise-linear transformation
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as explained in the paragraph following Conjecture 3.21 in [RS15]. We will do so

via a scattering diagram Dd
(b,c) closely related to D(b,c).

Similar to the construction in Section 4.2, we define the piecewise-linear

map T : MR →MR as

T (m) :=

m m2 ≥ 0

m+ (bm2, 0), m2 ≤ 0.

We will denote its domains of linearity by

H+ := {m ∈MR |m2 ≥ 0} and H− := {m ∈MR |m2 ≤ 0} .

Let T+ and T− be the linear extensions to MR of T |H+ and T |H− respectively (T+ is

just the identity map but it will be convenient to use this notation in what follows).

Similar to the construction in Section 4.2, both T+ and T− act on pairs (d, fd) so

we can use them to define the image of such pairs under T .

Namely set

T (d, fd) := {T+ (d ∩H+, fd)) , T− (d ∩H−, fd))} .,

where T±(fd) is the formal power series obtained by applying T to each exponent

in fd. Having fixed the notation we are ready to introduce Dd
(b,c). The set

T (D(b,c)) :=
⋃

(d,fd)∈D(b,c)

T (d, fd)

is not a scattering diagram according to Definition 4.1.2 (not all of its elements are

walls for the same convex cone), but can be made into one by a few simple fixes.

First of all,
(
R(0, 1), 1 + Ac2

)
is the only wall of D(b,c) whose support is not

totally contained in one of the domains of linearity of T ; therefore, under T , it

breaks into two parts:(
R≥0(0, 1), 1 + Ac2

)
and

(
R≤0(b, 1), 1 + Abc1 A

c
2

)
.

Next note that, since T (−1, 0) = (−1, 0) and T (b,−1) = (0,−1), T maps all

the walls of D(b,c)rDin,(b,c) to the third quadrant. Indeed,
(
R≤0(−b, 1), 1+A−bc1 Ac2

)
is

the wall with the biggest slope in D(b,c)rDin,(b,c) and its image is
(
R≤0(0, 1), 1+Ac2

)
.
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Definition 5.3.1. Dd
(b,c) is the scattering diagram obtained from T

(
D(b,c)

)
by

replacing

•
(
R(−1, 0), 1 + A−b1

)
with

(
R(1, 0), 1 + Ab1

)
,

• both
(
R≥0(0, 1), 1 + Ac2

)
and

(
R≤0(0, 1), 1 + Ac2

)
with

(
R(0, 1), 1 + Ac2

)
.

Its chamber is the cone σd generated by (1, 0) and (0, 1).

Remark 5.3.2. It is not too hard to see that the scattering diagram Dd
(b,c) is consistent.

This fact, together with the uniqueness property implied by [GHKK14, Theorem

1.7], gives an alternative way to introduce it. Indeed, in analogy with the definition

of D(b,c), one could consider the scattering diagram Dd
in,(b,c) given by

Dd
in,(b,c) =

{(
R(1, 0), 1 + Ab1

)
,
(
R(0, 1), 1 + Ac2

)}
and obtain Dd

(b,c) using Theorem 4.1.5. The case of Dd
(2,1) is illustrated in Figure 5.2.

1 + A2
1

1 + A2

1 + A2
1A

2
2

1 + A2
1A

1
2

Figure 5.2: The scattering diagram Dd
(2,1).

For a broken line γ in D(b,c), we denote its image under T as T (γ): this

is the broken line in Dd
(b,c) whose underlying map is T ◦ γ. Given any domain of

linearity ` of γ, by subdividing it when necessary, we can always assume that either

γ(`) ⊂ H+ or γ(`) ⊂ H−. The monomial attached to ` in T (γ) is then obtained by
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applying, accordingly, either T+ or T− to the exponent of the monomial attached

to ` in γ.

Theorem 5.3.3. The map T defines a one-to-one correspondence from broken lines

in D(b,c) with exponent m and endpoint Q to broken lines in Dd
(b,c) with exponent

T (m) and endpoint T (Q). In particular, for Q ∈ H+ or Q ∈ H−, we have

ϑd
T (Q),T (m) = T+ (ϑQ,m) or ϑd

T (Q),T (m) = T− (ϑQ,m)

respectively.

Proof. This is essentially the same as the argument of [GHKK14, Proposition 3.6].

To prove the statement, we only need to check the bending at the x-axis. Let `,

`′ be the domains of linearity of γ before and after bending along R(−1, 0). So

c(`′)Am(`′) is a term in

p−m(`),R(−1,0)

(
c(`)Am(`)

)
= c(`)Am(`)

(
1 + A−b1

)|m2(`)|
.

First, assume γ passes from H− to H+. In this case, we have m2(`) < 0.

Now in order for the monomial c(`′)AT+(m(`′)) = c(`′)Am(`′) attached to `′ in T (γ)

to satisfy the bending rule, it must be a term in

p−T−(m(`)),R(1,0)

(
c(`)AT−(m(`))

)
.

Since the second component of T−(m(`)) is m2(`), we get

p−T−(m(`)),R(1,0)

(
c(`)AT−(m(`))

)
= c(`)AT−(m(`))

(
1 + Ab1

)−m2(`)

= c(`)Am(`)A
bm2(`)
1

(
1 + Ab1

)−m2(`)

= c(`)Am(`)
(
1 + A−b1

)−m2(`)
.

This shows that T (γ) satisfies the correct rule when bending along (R(1, 0), 1 +Ab1)

if γ passes from H− to H+. By repeating similar calculations, we can see that this

also holds when γ passes from H+ to H−.

The following demonstrates the utility of using Dd
(b,c).
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Proposition 5.3.4. For any m ∈M , if Q lies in the first quadrant, then

ϑd
q,m = Am (1 + f(A1, A2))

where f ∈ (A1, A2) ⊆ k[A1, A2]. In particular, m is the negative of the d-vector of

ϑd
Q,m.

Proof. For any m ∈M and any Q in the first quadrant, there is always a broken

line γ for m and Q that does not bend at any wall. Therefore Mono(γ) = Am

always appears as a term in ϑd
Q,m.

However, because the functions attached to the walls of Dd
(b,c) are all of

the form 1 + g(A1, A2) with g(A1, A2) ∈ (A1, A2) ⊆ k[[A1, A2]], it follows that any

term coming from a broken line which bends must be of the form cAmAd11 A
d2
2 with

d1, d2 ≥ 0, d1 + d2 > 0. This proves the result.

Remark 5.3.5. Combining Theorem 5.3.3 with the above result, when Q is in the

first quadrant we obtain the parametrization of theta functions we were after.

Indeed, we get

ϑd
Q,T (m) = ϑQ,m

with m being its g-vector and T (m) the negative of its d-vector.

5.4 Proof that the bases coincide

We may now state the main theorem in our current notation.

Theorem 5.4.1. For any integers b, c > 0, for each m = (m1,m2) ∈ Z2, and for

each generic point Q in the first quadrant, we have that

ϑd
Q,m = x[−m1,−m2]

as elements in the cluster algebra A(b, c). Hence, the greedy basis and the theta

basis for A(b, c) coincide.

The proof will be to show that the support of ϑd
Q,m is contained in the polygon

Rm1,m2 in Theorem 5.2.5. By Scholium 5.2.6, this is already enough to show that

ϑd
Q,m = x[−m1,−m2].
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We begin our analysis by describing the “changes of direction” of a broken

line γ in Dd
(b,c). Let ` be a domain of linearity of γ. We say that γ moves right

(resp. up) in ` if m1(`) < 0 (resp. m2(`) < 0). Conversely we will say that γ moves

left or down in `.

Lemma 5.4.2. Let ` and `′ be two consecutive domains of linearity of a broken

line γ in Dd
(b,c). Then

m1(`) ≤ m1(`′) and m2(`) ≤ m2(`′).

Proof. Suppose γ bends along the wall (d, fd) when passing from ` to `′ then

c(`′)Am(`′) is a term in

p−m(`),d

(
c(`)Am(`)

)
= c(`)Am(`)f

m(`)·n
d

with m(`) · n > 0. The desired property then follows immediately from the

observation that, by how Dd
(b,c) has been constructed, all the exponents of the

monomials of fd are non-negative.

An immediate consequence of this lemma is that, once a broken line begins

to move left or down, it will continue to do so. In particular, if γ is a broken line

ending in the first quadrant, it can move left (resp. down) only in the first and

fourth (resp. second) quadrant.

At any point Q = (Q1,Q2) ∈ γ at which γ is linear with exponent m =

(m1,m2), define the angular momentum of γ at Q to be Q2m1 −Q1m2.

Lemma 5.4.3. The angular momentum is constant on γ.

Proof. Let Q and Q′ be two points on γ. First, assume that Q = (Q1,Q2) and

Q′ = (Q′1,Q′2) are in the same linear region of γ, with exponent m = (m1,m2).

Since γ′ = −m at Q, there is some t such that

(Q′1,Q′2) = (Q1 + tm1,Q2 + tm2)

Then the angular momentum at Q′ is

(Q2 + tm2)m1 − (Q1 + tm1)m2 = Q2m1 −Q1m2
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Next, assume that Q and Q′ are points on γ on either side of a bend

at a wall (d, fd) at point Q′′ = (Q′′1,Q′′2). If the exponent of γ at Q is m =

(m1,m2) and fd is a series in A(w1,w2), then the exponent of γ at Q′ must be of the

form (m1 + kw1,m2 + kw2) for some positive integer k. By the argument of the

previous paragraph, the angular momentum at Q is Q′′2m1−Q′′1m2 and the angular

momentum at Q′ is

Q′′2(m1 + kw1)−Q′′1(m2 + kw2) = (Q′′2m1 −Q′′1m2) + k(Q′′2w1 −Q′′1w2)

Since the point (Q′′1,Q′′2) lies on the ray through (w1, w2), the expression Q′′2w1 −
Q′′1w2 is zero, and so the angular momenta at Q and Q′ are the same. This equality

extends transitively to any pair of points Q,Q′ on γ.

The sign of the angular momentum is a useful invariant for characterizing

the qualitative behavior of a broken line. For a broken line ending in the first

quadrant, the sign of the angular momentum characterizes whether that broken line

could have passed through the fourth quadrant (positive) or the second quadrant

(negative).

Lemma 5.4.4. Let γ be a broken line Dd
(b,c) with endpoint Q in the first quadrant.

If γ has positive (resp. negative) angular momentum, then the slope of the linear

domains of γ decreases (resp. increases) at each bend, except possibly at the boundary

of the first quadrant.

Figure 5.3 depicts a broken line with positive angular momentum. The slopes of

the linear domains decrease from 5
4

to 1 to 1
2

before increasing to +∞.

Proof. The lemma is straightforward except for broken lines with initial exponent

(m1,m2) with m1,m2 < 0. Consider a bend of γ at a point (Q1,Q2) in a wall

(d, fd(A
(w1,w2))). If the exponent immediately before the bend is (m1,m2), the

exponent immediately after the bend is (m1 + kw1,m2 + kw2) for some positive

integer k.

Assume that (Q1,Q2) is not in the boundary of the first quadrant, so that

(Q1,Q2) is a negative scalar multiple of the exponent (w1, w2). By this assumption,
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m = (0,−1)

m = (−2,−1)

m = (−2,−2)

m = (−4,−5)

Q

Quadrant IQuadrant II

Quadrant IV

Figure 5.3: A broken line with positive angular momentum

in view of Lemma 5.4.2 and the fact that Q lies in the first quadrant, we have also

m1 + kw1,m2 + kw2 < 0.

If the angular momentum Q2m1 −Q1m2 is positive, then the cross-product

w2m1 − w1m2 is negative. But for positive k,

k(w2m1 − w1m2) = m1(m2 + kw2)−m2(m1 + kw1) < 0⇒ m2 + kw2

m1 + kw1

<
m2

m1

as desired. If the angular momentum is negative, the slope increases by an identical

argument.

We can now constrain the possible final exponent of a broken line, which

will be used to bound the support of the corresponding theta function.

Lemma 5.4.5. Let γ be a broken line in Dd
(b,c) which begins in the third quadrant,

with endpoint Q in the first quadrant. Denote the initial exponent by m = (m1,m2)

and the final exponent by mQ = (mQ1 ,m
Q
2 ).

1. If γ has positive angular momentum, then m2 ≤ mQ2 < 0 and

m1 ≤ mQ1 ≤
(
m1

m2

− b
)
mQ2
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where the upper bound is equality only when mQ = (m1 − bm2,m2).

2. If γ has negative angular momentum, then m1 ≤ mQ1 < 0 and

m2 ≤ mQ2 ≤
(
m2

m1

− c
)
mQ1

where the upper bound is equality only when mQ = (m1,m2 − cm1).

Proof. Assume γ has positive angular momentum; consequently, γ passes through

the fourth quadrant before entering the first quadrant. Let (m′1,m
′
2) be the exponent

on γ in the fourth quadrant. By the preceding lemma,
m′2
m′1
≤ m2

m1
with equality only

if γ doesn’t bend before it reaches the fourth quadrant.

As the broken line passes into the first quadrant, it may bend at the wall

(R(1, 0), 1 +A(b,0)). By definition, the final exponent mQ on γ must be an exponent

that appears in A(m′1,m
′
2)(1 + A(b,0))−m

′
2 . It follows that

(mQ1 ,m
Q
2 ) = (m′1 + kb,m′2)

for some 0 ≤ k ≤ −m′2. Consequently, mQ2 = m′2 < 0 and

mQ1 ≤ m′1 − bm′2 =

(
m′1
m′2
− b
)
m′2 =

(
m′1
m′2
− b
)
mQ2 ≤

(
m1

m2

− b
)
mQ2

The second inequality is equality only if (m′1,m
′
2) = (m1,m2), and so the composite

inequality is equality only if mQ = (m1 − bm2,m2).

Analogous inequalities hold for negative angular momentum by the same

argument.

Proof of Theorem 5.4.1. If m = (m1,m2) such that m1 ≥ 0 or m2 ≥ 0, then ϑd
Q,m

is the cluster monomial x[−m1,−m2], as indicated in Remark 4.3.4. Next, assume

that m = (m1,m2) such that m1 ≤ 0 and m2 ≤ 0. The coefficient of A(a1,a2) in

ϑd
Q,m can have non-zero coefficient only if there is a broken line γ in Dd

(b,c) with

initial exponent m and final exponent a = (a1, a2). By the preceding lemma, this

implies that

m1 ≤ a1 ≤
(
m1

m2

− b
)
a2, m2 ≤ a2 ≤

(
m2

m1

− c
)
a1
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Furthermore, the upper bounds are only satisfied in the specific cases when (a1, a2)

is equal to (m1 − bm2,m2) or (m1,m2 − cm1). Since ϑd
Q,m ∈ Ab,c, Scholium 5.2.6

implies that ϑd
Q,m is a scalar multiple of x[−m1,−m2].

To show they coincide, we consider the coefficient of A(m1,m2) in each element.

The coefficient of A(m1,m2) in x[−m1,−m2] is 1, by the definition of a pointed element.

The coefficient of A(m1,m2) in ϑd
Q,m is the sum of the coefficients of all broken lines in

Dd
(b,c) with initial exponent (m1,m2) and final exponent (m1,m2). Since any bend

in a broken line would increase one of the components of the exponent, this only

happens for the unique broken line with initial exponent (m1,m2) that has no bends.

Hence, the coefficient of A(m1,m2) in ϑd
Q,m is 1, and so ϑd

Q,m = x[−m1,−m2].

Remark 5.4.6. As mentioned in Remark 5.2.7, the coefficients of x[−m1,−m2] may

be interpreted as counting ‘compatible pairs’ in a lattice path called a ‘maximal

Dyck path’. One consequence of Theorem 5.4.1 is that the coefficients c(p, q) are

equal to a weighted sum of certain broken lines. An interesting open problem is

to reprove the coincidence of the two bases by giving a combinatorial bijection

between broken lines and compatible pairs which directly proves the equality of

the respective coefficients.

This chapter contains part of the paper “The Greedy Basis equals the Theta

Basis”. It is a joint work with Mark Gross, Greg Muller, Gregg Musiker, Dylan

Rupel, Salvatore Stella, Harold Williams.



Chapter 6

The Hall algebra scattering

diagram

In this chapter, we will survey the link between stability conditions and

scattering due to Bridgeland in [Bri15]. We will further interpret wall crossing in

terms of Hall algebra multiplication defined in 6.1.1.

The definitions of the Hall algebra H(Q), the groups ĜHall, Ĝreg, and the

Lie algebras gHall, greg are stated in Section 6.1. Naively speaking, elements of

ĜHall, gHall are stacks while elements of Ĝreg, greg are varieties. Then the Hall

algebra scattering diagram is defined to take values in gHall. The reason for the

lengthy definition is that we are working with stacks. However, by a deep theorem

of Joyce (Theorem 6.2.3), there exists an element in Ĝreg associated to semistable

objects. Thus, we are actually working with greg.

To those who wish to skip the technical details, they can jump directly to

Theorem 6.2.2 and Section 6.3.

6.1 Hall algebra

Let Q be a finite acyclic quiver. Denote the sets of vertices and arrows

of Q as (Q0, Q1). Set N = ZQ0 , M = HomZ(N,Z), MR = M ⊗Z R. Denote

N⊕ = {n ∈ N |ni ≥ 0 ∀i}.
Write CQ as the path algebra of Q. Let rep(Q) = modCQ the abelian

75
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category of finite dimensional representations of Q. Let (ei)i∈Q0 be the canonical

basis indexed by the vertices of Q.

In this section, we will introduce motivic Hall algebra developed by Joyce

[Joy07].

Define the algebraic stack M parametrizing all objects of the category

rep(Q) as a fibered category over the category of the schemes. The objects of M
over a scheme S are pairs (E , ρ) where E is a locally free OS-module of finite rank,

and ρ : CQ→ EndS(E) is an algebra homomorphism. Let St /M denote the full

subcategory consisting of objects f : X →M for which X is an algebraic stack of

finite type over C and has affine stabilizers.

Definition 6.1.1. The Grothendick group K(St /M) of stacks over M is the free

abelian group with basis given by isomorphism classes of objects of St /M, modulo

the subgroup spanned by the relations

• for every object f : X → M in St /M, and every closed substack Y ⊂ X

with complementary open substack U = X \ Y , we have [X
f−→M] = [Y

f |Y−−→
M] + [U

f |U−−→M];

• for every object in St /M, and every pair of morphisms h1 : Y1 → X,

h2 : Y2 → X which are locally trivial fibrations in the Zariski topology with

the same fibres, we have [Y1
g◦h1−−→M] = [Y2

g◦h2−−→M].

K(St /M) has the structure of a K(St /C)-module, defined by setting

[X] · [Y f−→M] = [X × Y f◦π2−−→M]

and extending linearly. There is a unique ring homomorphism

Υ : K(St /C)→ C(q)

which takes the class of a smooth projective variety X over C to the Poincaré

polynomial

Υ([X]) =
2d∑
i=0

dimCH
i(Xan,C) · qi/2 ∈ C[q],
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where Xan denotes X considered as a smooth projective variety, and H i(Xan,C)

denotes singular cohomology. Note that we work with C(q), where q = t2 in the

setting of [Bri15].

Define the C(q) vector space

KΥ(St /M) = K(St /M)⊗K(St /C) C(q)

with the relation [X × Y f◦π2−−→M] = Υ([X]) · [Y f−→M].

Next, let us equip K(St /M) with a ring structure. Denote M(2) be the

stack of short exact sequences in rep(Q). The objects of M(2) over a scheme S

consist of three pairs (Ei, ρi) of M(S) for i = 1, 2, 3, together with morphisms α

and β of OS-modules which define a short exact sequence 0→ E1
α−→ E2

β−→ E3 → 0.

There is a diagram

M(2) M

M×M

b

(a1,a2)

where

b([0→A1→B→A2→0]) = B,

ai([0→A1→B→A2→0]) = Ai, for i = 1, 2.

Then the multiplication on K(St /M) is defined as

[X1
f1−→M] ? [X2

f2−→M] = [Z
b◦h−−→M], (6.1.1)

where Z and h are defined by

Z M(2) M

X1 ×X2 M×M

h

(a1,a2)

b

f1×f2

where the square is Cartesian.

ThenK(St /M) becomes a ring. As the multiplication operation isK(St /C)-

linear, it defines an algebra structure on the C(q)-vector space KΥ(St /M). Then

we get a C(q)-algebra H(Q).
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The stack M can be decomposed as a disjoint union

M =
∐
d∈N⊕

M(d),

where M(d) parameterize representations of Q of the fixed dimension vector d.

This induces a grading H(Q) =
⊕

d∈N⊕ H(Q)d, where H(Q)d = KΥ(St /Md). Note

that

H(Q)0 = C(q) · 1 = [M0 ⊂M].

So we have a vector space decomposition H(Q) = H(Q)0 ⊕ H(Q)>0, where

H(Q)>0 =
⊕

d∈N+ H(Q)d.

We can further consider H(Q)>k = ⊕dim(n)>kH(Q)n for each k ∈ N. Then

we have the quotient H(Q)≤k = H(Q)/H(Q)≥k. By taking limit, we obtain the

completed algebra

Ĥ(Q) = lim←−H≤k(Q).

Define gHall = H(Q)>0. Then we can obtain the corresponding completed Lie

subalgebra

ĝHall = Ĥ(Q)>0 ⊂ Ĥ(Q)

and the corresponding pro-unipotent group ĜHall. By consider the embedding

φ : ĜHall→Ĥ(Q), we can identify

ĜHall
∼= 1 + Ĥ(Q)>0 ⊂ Ĥ(Q).

Through this identification, ĜHall can act on Ĥ(Q) by conjugation.

Objects in H(Q) are of the form f : X →M such that X is an algebraic

stack of finite type over C and has affine stabilizers. Now we restrict X to be a

variety and consider the C[q, q−1]-submodule Hreg(Q) generated by those objects.

By [Bri15, Theorem 5.2], Hreg(Q) is closed under the Hall algebra product and is

then a C[q, q−1]-algebra.

By repeating the similar grading decomposition as above, we obtain the Lie

subalgebra Hreg(Q)>0 of Hreg(Q). Define

greg = (q − 1)−1Hreg(Q)>0 ⊂ gHall.

Then we take completion again and have the Lie algebra ĝreg = (q− 1)−1Ĥreg(Q)>0

and the corresponding pro-unipotent group Ĝreg ⊂ ĜHall.
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6.2 Stability conditions and scattering diagrams

Now let us define the relevant notion of stability condition.

Definition 6.2.1. Given ω ∈MR, an object E ∈ rep(Q) is said to be ω-semistable

if

• ω(E) = 0,

• every subobject B ⊂ E satisfies ω(B) ≤ 0.

By the definition of Grothendick group, we can identify elements inK(rep(Q))

with its dimension vector, so we have N ∼= K(rep(Q)). Now given a fixed ω ∈MR,

we can define a stability function Z : K(rep(Q))→ C as Z(E) = −ω(E) + iδ(E).

In this section, we take δ = (1, . . . , 1), i.e. δ(E) = dim(E). Note that if E 6= 0,

Z(E) lies on the upper half plane. So we can define the phase of E by

φ(E) =
1

π
argZ(E).

Then an object 0 6= E ∈ rep(Q) is Z-semistable if every nonzero subobject B ⊂ E

satisfies φ(B) ≤ φ(E). Note that 0 6= E ∈ rep(Q) is ω-semistable precisely if it is

Z-semistable with phase 1/2.

For every 0 6= E ∈ rep(Q), there exists a Harder–Narasimhan filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ek−1 ⊂ Ek = E whose factors Fi = Ei/Ei−1 are Z-semistable

with descending phase: φ(F1) > φ(F2) > · · · > φ(Fk).

Now for any interval I ⊂ (0, 1) there is an open substackMI =MI(ω) ⊂M
parameterising representations of Q lying in P(I) ⊂ rep(Q), where P(I) is the full

subcategory consisting of objects whose Harder Narasimhan factors have phases in

I. This defines a corresponding element

1I(ω) = [MI(ω) ⊆M] ∈ ĜHall ⊆ Ĥ(Q).

In particular, if I = {1/2}, by the remark above, 0 6= E ∈ rep(Q) is ω-semistable

precisely if it is Z-semistable with phase 1/2, then 11/2(ω) = 1ss(ω).

After all these set up, we can finally state a result of Bridgeland about the

linkage between stability conditions and scattering diagrams.
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Theorem 6.2.2. [Bri15, Theorem 6.5] There exists a consistent scattering diagram

D in MR such that:

1. the support d consists of maps ω ∈ MR = Hom(N,Z) ⊗ R for which there

exist ω-semistable objects in rep(Q);

2. the wall-crossing automorphism at a general point ω ∈ d ⊂ supp(D) is

ΦD(d) = 1ss(ω) ∈ ĜHall.

This scattering diagram is unique up to equivalence. It is called the Hall

algebra scattering diagram.

Bridgeland further [Bri15] shows that there is a bijection between equivalence

classes of consistent ĝHall-complexes and elements of the group ĜHall. In this case,

the Hall algebra scattering diagram D corresponds to ΦD = 1rep(Q) ∈ ĜHall.

Let us recall a theorem of Joyce

Theorem 6.2.3. For any ω ∈ MR the element of Ĝ ⊂ Ĥ(Q) defined by the

inclusion of the open substack of ω-semistable objects Mss(ω) ⊂M corresponds to

an element 1ss(ω) ∈ Ĝreg.

6.3 Wall crossing and theta functions

In this section, we will have a closer look at the wall crossing automorphism.

Before that, let us relate Hall algebra scattering diagram with torsion pair defined

by ω in rep(Q).

Definition 6.3.1. A torsion pair in rep(Q) is defined to be a pair of full additive

subcategories (T ,F) of rep(Q) such that

• if T ∈ T and F ∈ F , then Homrep(Q)(T, F ) = 0

• for any E ∈ A there is a short exact sequence

0→T→E→F→0

with T ∈ T and F ∈ F .
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Then a torsion pair always exists.

Lemma 6.3.2. [Bri15, Lemma 6.6] For each ω ∈ MR there is a torsion pair

(T (ω),F(ω)) ⊂ rep(Q) defined by setting

T (ω) = P(1/2, 1)

= {E ∈ rep(Q) : any quotient object E → D satisfies ω(D) > 0}

F(ω) = P(0, 1/2]

= {E ∈ rep(Q) : any subobject F ⊂ E satisfies ω(F ) ≤ 0}

We will denote 1T (ω) := 1(1/2,1)(ω), 1F(ω) := 1(0,1/2](ω) ∈ ĜHall. Now let us

set up to define theta function.

As H(Q) is N⊕-graded, we can obtain an associated N⊕-graded algebra

H(Q)⊗C C[M ] with relations

Am ·H = q−m·dH · Am, (6.3.1)

where m ∈M , H ∈ H(Q)d. By the same limiting process in Section 6.1, we obtain

the completion ̂H(Q)⊗C C[M ].

Next, we want to generalize the notions of broken line γ to the Hall algebra

scattering diagram. We consider the projection χ : H(Q)→ C,

χ([X]) = Υ([X])|q1/2=−1 =
∑

(−1)i dimCH
i(Xan,C), (6.3.2)

where Xan denotes X as a smooth complex analytic variety.

To each linear piece of γ, the attaching monomials attaching are replaced by

[X →M]⊗ Am. Behavior at a bend at a wall d is given by conjugation by ΦD(d).

We can retain the ordinary attaching monomials by applying

χ : H(Q)⊗C C[M ]→ C[M ],

which is

χ([X →M]) = χ(X)Ap
∗(dim(X)). (6.3.3)

Noted above that on crossing a generic point of a wall d ∈ D in the positive

direction, the wall crossing automorphisms are given by

Am 7→ ΦD(d)(Am).
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This is the conjugation of Ĝreg acting on ̂H(Q)⊗C C[M ]. After taking χ to

ΦD(d)(Am), we will obtain the path-ordered products as in 4.1.2. Furthermore,

if the quiver is acyclic, after applying the integration map to the Hall algebra

scattering diagram we have the Hall algebra scattering diagram is equivalent to the

cluster scattering by [Bri15, Lemma 11.4 and 11.5].

Then for each m lies in C, where C ∈ ∆ (cluster complex), we can define a

Hall algebra theta function as

ϑm(ω) = 1F(m)−1Am1F(m) ∈ ̂H(Q)⊗C C[M ], (6.3.4)

Note that here our direction goes from the negative chamber to the positive chamber

which is the reverse of the set up in [Bri15].

Again after applying χ to this Hall algebra theta function, we will get back

the theta function in usual sense. We will give more interpretation of theta function

in Section 7.3.

6.4 Hall algebra broken lines

In this section, we will repeat similar ideas as in Section 4.3 to define Hall

algebra broken lines.

Now we have D a Hall algebra scattering diagram.

Definition 6.4.1. Let D be a Hall algebra scattering diagram, m ∈M \ {0} and

Q ∈MR \ Supp(D).

A Hall algebra broken line for m with endpoint Q is a piecewise linear

continuous proper path γ : (−∞, 0] → MR \ Sing(D) with a finite number of

domains of linearity.

An element [N→M]Am ∈ H(Q) ⊗C C[M ], where N→M factors through

N→Md→M, where d is the dimension vector for the representation, is attached

to each domain of linearity L ⊆ (−∞, 0) of γ. The path γ and the [N→M]Am

need to satisfy the following conditions:

• γ(0) = Q.
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• If L is the first (i.e., unbounded) domain of linearity of γ, then [N→M]Am =

Am. This is corresponding to the zero representation [· 7→ 0].

• In each domain of linearity L ⊂ (−∞, 0], the attached Hall algebra monomial

is [N ⊂M]Am. After applying integration map, by (6.3.3), we have

χ([N ⊂M])Am = χ([N ])Ap
∗(dimN )+m.

Then for t ∈ L, γ′(t) = −(p∗(dimN ) +m).

• γ bends only when it crosses a wall. If γ bends from the domain of linearity

L to L′ when crossing d defined in Theorem 6.2.2, then [N ⊂ M]Am is a

term in ΦD(d) · ([N ⊂M]Am).

6.5 Further properties in the Hall algebra scat-

tering diagrams

In later sections, we will compute the Hall algebra wall crossing explicitly.

Let us formulate some equations in the Hall algebra in this section.

In Section 6.2, for ω ∈MR, we define

1ss(ω) = [M1/2(ω) ⊆M],

First note that if ω is a general point on some wall d in the cluster complex,

there is a representation D with dimD primitive which is a ω-semistable object.

We are going to show D is indecomposable. If not, D = D1 ⊕ D2 for some D1,

D2 non zero. Then for all ω ∈ di, ω(D1) + ω(D2) = ω(D) = 0. As D1 and D2

are subojects of D, by definition of semistability, ω(D1), ω(D2) ≤ 0. Therefore,

ω(D1) = ω(D2) = 0. However, d is of co-dimension 1 in N . Hence the normal

space to d is of dimension 1 only. This implies dimD1 and dimD2 are proportional

to dimD, contradicting to the condition that dimD is primitive. Thus D is

indecomposable.

Hence 1ss(ω) is a formal sum

1ss(ω) = 1 +
∑
k≥1

[BGLk(D)→M], (6.5.1)
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where BGLk(D) are classifying space for GLk. More precisely, [BGLk(D)→M]

means we map a point to k copies of D, i.e. · 7→ D⊕k.

Theorem 6.2.2 tells us that the wall crossing automorphism at ω is conjuga-

tion by 1ss(ω). Therefore, we wish to understand 1ss(ω)−1 which is

1ss(ω)−1 = 1 +
∑
k

(−1)k
k∏
l=1

[BGLrl(D)→M], (6.5.2)

where the product means multiplying k many [BGLrl→M], for some rl ∈ N ,

together. For example, up to degree 2, we have

1ss(ω)−1 = 1− [BG1(D)→M]− [BGL2(D)→M]

+[BG1(D)→M]2 + [BG1(D)→M] ? [BGL2(D)→M]

+[BGL2(D)→M] ? [BG1(D)→M].

Let us also recall how to express GLd as an element in K(Var /C):

Lemma 6.5.1. [Bri12, Lemma 2.6]

[GLd] = [Ad(d−1)/2]
d∏

k=1

(Ak − 1).

By similar techniques, we can also calculate the product
∏k

l=1[BGLrl(D)→M].

As the product is associative, we can work on [BGLr1(D)→M] ∗ [BGLr2(D)→M]

first. This consists of exact sequences

0 −→ D⊕r1 −→ Y −→ D⊕r2 −→ 0,

where the automorphisms of the exact sequence can be viewed as ’upper triangular’

matrices of the form (
GLl1 ∗

0 GLl2

)
,

where ∗ denotes entries with arbitrary element in C. Thus in general,

k∏
l=1

[BGLrl(D)→M]
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can be visualized as an (r1 + · · ·+ rk)-square matrix:
GLl1 ∗ ∗ ∗

0 GLl2 ∗ ∗

0 0
. . . ∗

0 0 0 GLlk

 .

Hence after applying the integration map to
∏k

l=1[BGLrl(D)→M], we have

χ(
k∏
l=1

[BGLrl(D)→M])

=
1(∏k

l=1 q
rl(rl−1)/2

∏rl
s=1(qs − 1)

)∏
u<v q

rurv

.



Chapter 7

The relation between scattering

diagrams and quiver

representations

Let Q be an acyclic finite quiver with vertices 1, . . . , n. In this section, we

will mostly denote representations of the quiver with upper case letters, e.g. D,

and its dimension vector as lower case, say d.

7.1 Theta functions and the Caldero-Chapoton

formula

Let D be a finite-dimensional representation of Q with dimension vector d.

Recall the Caldero-Chapoton formula in Theorem 3.1.2.

CC(D) =
1

Ad11 · · ·Adnn

∑
0≤e≤d

χ(Gr(e,D))
n∏
i=1

A
∑
j→i ej+

∑
i→j(dj−ej)

i ,

86
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where Gr(e,D) := {N ∈ mod(Q)|N ⊆ D, dim(N) = e} for e ∈ Nn, the sum is

taken over all vectors e ∈ N2 such that 0 ≤ ei ≤ di for all i. Then we have

CC(D) =

∏
A

∑
i→j dj

i

Ad11 · · ·Adnn

∑
0≤e≤d

χ(Gr(e,D))
n∏
i=1

A
∑
j→i ej+

∑
i→j −ej

i (7.1.1)

= A−E(d)
∑

0≤e≤d

χ(Gr(e,D))Ap
∗(e),

where E(d) is defined as in 3.2.2. Note that the suitable monomial corresponding to

D should be A−E(d) instead of Adim(D). The term A
∑
i→j dj

i hints that we should look

at the representations indexed by injective representations I(i) instead of simple

representations S(i).

First the map CC takes a rigid indecomposable representation D with

dimension vector di to the unique non-initial cluster variable CC(D) ([Kel10,

Corollary 5.6, Theorem 6.1]). A representation D is rigid if Ext1(D,D) = 0.

By arguments similar to those in Section 3.3.3, a pre-projective or pre-injective

representation is rigid. However a regular representation may not be rigid, e.g. for

the Kronecker 2-quiver, we have non-split exact sequence

0 −→ (C⇒C) −→ (C2⇒C2) −→ (C⇒C) −→ 0.

Furthermore, if E = E1 ⊕ · · · ⊕ Es is a decomposition into indecomposables, then

CC(E) =
∏s

i=1 CC(Ei) ([Kel10, 5.6(b1)]). By Remark 4.3.4, cluster variables are

theta functions. Thus a theta function associated to a cluster variable will give the

same Laurent polynomial in initial variables as in the Caldero-Chapoton formula.

We can see the relation between the Caldero-Chapoton formula and the theta

function as

CC(D) = ϑQ,−E(d), (7.1.2)

where Q is a point in the positive chamber. By point 1 in Theorem 4.3.3, ϑQ,−E(d) =

ϑQ′,−E(d) if Q and Q′ stays in the same chamber. We will further simplify the

notation as

ϑ−E(d) = ϑQ,−E(d).

Furthermore, the Equality 7.1.2 also tells us that each monomial in the summand

corresponds to a subrepresentation in D of dimension vector e. For example:
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Example 7.1.1. Going back to Example 4.3.6, we have

ϑQ,(1,−1) = A1A
−1
2 + A−1

1 A−1
2 + A−1

1 A2.

We can write it as

ϑQ,(1,−1) =
A2

1

A−1
1 A−1

2

(1 + A2
1 + A2

1A
2
2) = CC(C⇒C).

The three terms corresponds to the three representations with dimension vectors

(0, 0), (0, 1), (1, 1).

Remark 7.1.2. Let us recall (4.3.1),

ϑQ,(2,−2) =
(
ϑQ,(1,−1)

)2 − 2.

We learn that the theta functions does not satisfy the same equality satisfied by

the CC formula, namely CC(V ⊕W ) = CC(V )CC(W ) in the badlands region.

The ‘−2’ term in the equations means the theta ϑQ,(2,−2) fails to count the subrep-

resentations with dimension vector (1, 1). Furthermore, the number 2 comes from

the euler characteristics of framed representations with dimension vector (1, 1) in

the Kronecker 2-quiver. Therefore, the difference may suggest us to investigate the

difference between moduli spaces of representations and moduli spaces of framed

representations

In Section 5 [CGM+15], we have shown that rank 2 theta basis is the greedy

basis. By using 5.1, we can find out the different between ϑ(s,−s) and (ϑ(1,−1))
s. The

missing terms correspond to representations with dimension vectors (t, t), where

t < s. Thus all the difference comes from the badlands.

Chamber structure of scattering diagram

Consider a chamber C ∈ ∆s in the cluster complex in D. As noted in

Section 4.2.1, C corresponds to a seed data s. For a cluster algebra of rank n, the

chamber C will be a cone bounded by n walls. Thus, C is generated by n basis

vectors b1, . . . , bn which lies in the intersection of the walls which bound the cone.

If a bi is not in the standard basis of Zn, then it corresponds to a cluster variable

which is not initial. Thus by the identification between the Caldero-Chapoton
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formula and theta functions, we can express bi = −E(di) for some di ∈ N+ which

corresponds to indecomposable representation Di with the dimension vector di.

Further assume C corresponds to the seed consisting of non-initial variables only,

and pick any point c ∈ C, c = κ1b1 + · · · + κnbn for some non-negative integers

κ1, . . . , κn. Then c would correspond to the representation D = κ1D1 + · · ·+ κnDn.

Note that c = E(D). Therefore, in the discussion in this chapter, we can always

assume the representation is indecomposable.

For example, consider Figure 4.2, the scattering diagram associated to

the Kronecker 2-quiver. Let us consider the chamber C spanned by (2,−1) and

(3,−2). Then the corresponding cluster is ϑ(2,−1), ϑ(3,−2) which is associated to the

indecomposable projectives 0⇒C, C⇒C2. For any point r in the chamber C, we

can write r = λ1(2,−1) + λ2(3,−2). The corresponding quiver representation of r

would be (0⇒C)λ1 + (C⇒C2)λ2 . Therefore, in the computations in this section, we

can always assume the ambient representation D is indecomposable.

7.2 Good Crossing and the AR quiver

Consider a path γ in D. Assume γ crosses a wall d. Let n ∈ N+ be the

normal of d, i.e. d ⊂ n⊥. Then the crossing is a good crossing if the path passes

from the region where n is negative to the region it is positive. Otherwise, it is

called a bad crossing.

Note that in the two-dimensional scattering diagram, if the path travels

around the origin anti-clockwise from the lower half plane towards the positive

chamber, the crossing is always good.

Now consider two walls d1 and d2 in the cluster complex. Let fi ∈ N+ be

the normal of di respectively. Then d1 and d2 may or may not intersect along a

co-dimensional 2 polyhedral set which we call a joint. If d1 intersects d2 along a

joint j, we decompose d1 into three disjoint components d+
1 , j, d−1 where each of

them are connected. Let us assume −p∗(f1) does not lie on the joint j. Then d+
1 is

defined to be the connected piece which contains the point −p∗(f1) which we will

name the outgoing piece of d1. Figure 7.1 illustrates the decomposition. If d1, d2
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d−1

d2

d+
1

γ

−p∗(f1)

Figure 7.1: γ goes from d+
1 to d2

do not intersect along a joint, then we take d+
1 = d1. Note that d+

1 still contains

the point −p∗(f1) by construction.

Nest consider a path γ has good crossing from the outgoing piece of d1 to

the wall d2. Please refer to Figure 7.1 about how γ goes.

From the discussion in Section 6.5, for fi ∈ N+, i = 1, 2, we can consider fi

as a dimension vector for some indecomposable semistable representation Fi. Then

since γ having good crossing from outgoing piece of d1 to d2, −p∗(f1) points away

from the positive direction of f2, i.e.

〈−p∗(f1), f2〉 < 0.

Here the inequality is strict as we have assume −p∗(f1) does not lie on d2. By

Section A.1, we have

〈−p∗(f1), f2〉 = −{f1, f2}

=χ(f1, f2)− χ(f2, f1)

= dim(Hom(F1, F2))− dim Ext1(F1, F2)

− dim(Hom(F2, F1)) + dim(Ext1(F2, F1)). (7.2.1)

We will now apply the lemmas in Section 3.3.3.

First assume Q is a connected acyclic quiver of finite type. Then from

Theorem 3.3.10, we have the AR quiver is connected and it equals both the pre-

projective component and the pre-injective component. At the same time the
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regular component is empty. Note that if dim(Hom(F1, F2)) 6= 0, then F1 is a

predecessor of F2 which implies dim(Hom(F2, F1)) = 0. From Section 3.3.3, we

know that only one of the terms dim(Hom(Fi, Fj)), dim Ext1(Fi, Fj), i 6= j is

nonzero. In order to attain 〈−p∗(f1), f2〉 < 0, we will have

〈−p∗(f1), f2〉 = − dim Ext1(F1, F2)− dim(Hom(F2, F1)).

As the term above is negative, one of the dim Ext1(F1, F2) and / or dim(Hom(F2, F1))

is non-zero which implies F2 is a predecessor of F1 in the AR quiver by Lemma

3.3.16 and Theorem 3.3.12.

Now consider Q is a connected acyclic quiver with infinitely many inde-

composables. Then the AR quiver consists of three components: pre-projective P ,

regular R and pre-injective I. Assume Fi lies in one of the P ,R, I, for i = 1, 2

and F1, F2 do not lie in the same component. We are going to see that γ travels a

direction from I to R, to P. The reason is that from Theorem 3.3.13, we know

that

Hom(R,P) = Hom(I,P) = Hom(I,R) = 0.

And we also have

Ext1(P ,R) = Ext1(P , I) = Ext1(R, I) = 0

from Lemma 3.3.14. Therefore by using the same argument as above, we know that

〈−p∗(f1), f2〉 = − dim Ext1(F1, F2)− dim(Hom(F2, F1)).

Hence we can only have three choices for F1, F2: (1). F2 ∈ I, F1 ∈ P ; (2). F2 ∈ I,

F1 ∈ R; (3). F2 ∈ R, F1 ∈ P . All three cases indicates that F2 is the predecessor of

F1 in the general definition for predecessor. This is saying that if γ travels between

walls corresponding to P ,R, I, it would have crossed from the pre-injective to the

regular then to the pre-projective if the crossings are good.

We also have the cases F1, F2 ∈ P or F1, F2 ∈ I. Then by Lemma 3.3.15,

Lemma 3.3.16 together with Theorem 3.3.12, we have F2 is a predecessor of F1

from (7.2.1). Therefore, we can say if γ is having a good crossing in the scattering

diagram, it is going in an opposite direction to the AR quiver. More precisely, we

have
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Proposition 7.2.1. Given two walls d1 and d2 in the cluster complex in D. Let

fi ∈ N+ be the normal of di for i = 1, 2. If the two walls intersect along a joint,

a co-dimensional 2 polyhedral set, we consider the outgoing piece d+
1 of d1 which

contains −p∗(f1) instead of the entire d1.

Let γ be a path crossing the outgoing piece of d1 ∈ D and then d2 ∈ D with

both crossings good. Let Fi be the corresponding indecomposable representation for

di, i = 1, 2. Then we have F2 is a predecessor of F1 in the Auslander-Reiten quiver

of Q.

7.3 Theta function

In this section, we are going to give an alternative proof of the Caldero-

Chapoton formula by the machinery set up in Chapter 6. Notice that we will have

our paths going towards the positive chamber of the scattering diagrams which

differs from the direction in [Bri15].

Let Q be a point in the positive chamber. Let m0 ∈ C for some C ∈ ∆s, i.e.

m0 lies in the cluster complex. We further assume that C corresponds to a seed

which does not contain any initial cluster variables. Then we can write m0 = −E(d)

for some d ∈ (Z≥0)n. Then from the discussion about chamber structure in Section

7.1, there is a representation D associated to m with dimension vector d. We can

further assume D is indecomposable. Note that as m0 is in the cluster chamber, ϑm0

corresponds to a cluster variable which implies D is not a regular representation.

Recall in Lemma 6.3.2:

F(m0) = {E ∈ rep(Q) : any subobject F ⊂ E ⇒ m0(F ) ≤ 0}.

For any F ⊂ D, we have the inclusion F→D. Then Hom(F,D) 6= 0. By decompos-

ing F into sum of indecomposables Fi, then dim Hom(Fi, D) > 0. This implies Fi is

a predecessor of D. By Lemma 3.3.15 and Lemma 3.3.14, we have Ext1(Fi, D) = 0.

Thus χ(fi, d) = dim Hom(Fi, D) > 0. That is m0(F ) = −E(d)(f) < 0. Therefore

we have D ∈ F(m0).

Furthermore, for all F ∈ F(m0) indecomposable, by definition of F(m0),

E(d)(F ) = χ(f, d) ≥ 0, where f = dimF . By the discussion at the end of Section
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3.3.3, we obtain χ(f, d) = dim Hom(F,D).

Recall the theta function we defined in (6.3.4)

1F(m0)−1Am01F(m0).

Note that by the commutativity relation (6.3.1), we have

Am0 [MF
e→M] = qE(D)(e)[MF

e→M]Am0 ,

where objects in [MF
e→M] are representations E ∈ F(m0) with dimension vector

e. As noted above,

Am0 [MF
e→M] = qdim Hom(E,D)[MF

e→M]Am0 ,

By viewing qdim Hom(E,D) as [Adim Hom(E,D)] in the Hall algebra, we have

qdim Hom(E,D)[MF
e→M] = [MF ,d

e →M],

where objects in [MF ,d
e →M] are pairs (E,ψ) with E ∈ F(m0) having dimension

vector e and ψ : E→D a map.

Now consider (E,ψ) as an object in [MF ,d
e →M]. As E ∈ F(m0), R =

ker(ψ) ∈ F(m0). Consider the short exact sequence

0 −→ R −→ E −→ S −→ 0. (7.3.1)

The map ψ induces an injective map S→D. We wish to show S ∈ F(m0).

Note that by the properties of torsion pair in Definition 6.3.1, we have the following

exact sequence

0 −→ T −→ S −→ F −→ 0,

where T ∈ T (m0), F ∈ F(m0). Since D ∈ F(m0), Hom(T,D) = 0 from the

definition of torsion pair. So the exact sequence becomes

0 T S F 0

D

0

This forces the map T→S to be the zero map in the exact sequence. Thus we have

S ∼= F ∈ F(m0).
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Going back to (7.3.1), we have

[MF ,d
e →M] = 1F(m0) ∗ GF(m0)(D),

where objects in GF(m0)(D) are representations E in F(m0) equipped with an

inclusion into D. Then

ϑm0 = 1F(m0)−1Am01F(m0)

= 1F(m0)−1
∑

e=dimE

qdim Hom(E,D)[MF
e→M]Am0

= 1F(m0)−1 ∗ 1F(m0) ∗ GF(m0)(D)Am0

= GF(m0)(D)Am0

If Q is a quiver with finitely many indecomposables, by applying χ in 6.3.3

to GF(m0)(D), we get

ϑm0 = χ(GF(m0)(D))Am0 = A−E(D)
∑

0≤e≤d

χ(Gr(e,D))Ap
∗(e)

which is exactly as in (7.1.1). Therefore, we obtain the Caldero-Chapoton formula.

7.4 Stratification of quiver grassmannian

We will repeat similar calculations as in the last section to give a stratification

of quiver grassmannian.

Consider an indecomposable quiver representation D which is not regular.

Then m = −E(d) lies in the cluster complex. Now consider a broken line γ :

(∞, 0]→MR \ {0} with endpoint Q in the positive chamber and initial slope −E(d).

We further assume the final slope of the broken line is −E(d)+p∗(e) for some e. Let

γ bend over the walls d1, . . . , ds in the cluster complex and assume all the bendings

are good. Denote by f i ∈ N+ the normal vectors of di for i = 1, . . . s. From the

remarks in last sections, the walls di correspond to indecomposable representations

Fi with dimension vector f i.

For i = 1, . . . , s − 1, if di intersect di+1 along a co-dimension 2 joint j as

in Section 7.2, we decompose di into 3 connected components d+
i , j and d−i where
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−p∗(fi) lie on either d+
i or j. Let us further assume that γ crosses from d+

i to di+1.

If di does not intersect di+1 along a co-dimensional 2 joint, we can take d+
i = di.

By repeating same argument as in Section 7.2, we will have the following 2 cases.

A If −p∗(fi) lies on j, then 〈−p∗(fi), fi+1〉 = −{fi, fi+1} = 0. We then have

dim Hom(Fi, Fi+1) = dim Hom(Fi+1, Fi)

= dim Ext1(Fi, Fi+1) = dim Ext1(Fi+1, Fi) = 0.

B If −p∗(fi) lies on d+
i , and as γ crosses good from d+

i to di+1, then

〈−p∗(fi), fi+1〉 = −{fi, fi+1} < 0.

Therefore,

〈−p∗(fi), fi+1〉 = − dim Ext1(Fi, Fi+1)− dim Hom(Fi+1, Fi).

and dim Hom(Fi, Fi+1) = dim Ext1(Fi+1, Fi) = 0.

From the identification between theta functions and the Caldero-Chapoton

formula by equation 7.1.1, the setup above is saying that we are considering

the subrepresentations E of dimension e in D. By the bendings of γ, we have

e =
∑

i λifi for some λi ∈ N.

7.4.1 First Bending

As γ has good bending over the first wall d1, we have

〈E(d), f 1〉 > 0.

As Fi and D are indecomposable, by lemmas in Section 3.3.3, we have

〈E(d), f 1〉 = χ(F1, D) = dim Hom(F1, D).

We can describe the first bending as follows.
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Proposition 7.4.1. Let γ be a broken line as defined above. Consider the first

bending of γ over a general point ω1 on the wall d1 which corresponds to pre-

projective/ pre-injective indecomposable representation F1 of dimension vector f 1.

Then the Hall algebra wall crossing automorphism is

ΦD(d1)A−E(d) =
∑
λ

G1
λ1,f1

(D)A−E(d),

where G1
λ,f1(D) = {ψ : V→D|V is a representation of dimension vector λf 1, and

kerψ contains no subrepresentation of dimension vector proportional to f 1}.

Proof. By definition, the wall crossing at ω1 is

ΦD(d1)A−E(d) =1ss(ω1)−1A−E(d)1ss(ω1)

Then we employ (6.5.1)

=1ss(ω1)−1A−E(d)(1 +
∑
`≥1

[BGL`(F1)→M])

=1ss(ω1)−1(1 +
∑
`≥1

q`·χ(f1,D)[BGL`(F1)→M])A−E(d) (7.4.1)

=1ss(ω1)−1(1 +
∑
`≥1

q` dim Hom(F 1,D)[BGL`(F1)→M])A−E(d)

=1ss(ω1)−1
∑
`≥0

1Dss(`, ω1)A−E(d), (7.4.2)

where 1DF1
(`, ω1) is the moduli space of semistable representations F ′1 with a map

F ′1→D, where F ′1 has dimension vector `f 1. (7.4.1) follows from the commutativity

relation in (6.3.1). We obtain (7.4.2) by visualizing q`·dim Hom(F 1,D) as a vector

bundle of rank = ` dim Hom(F 1, D).

We now need to understand 1Dss(`, ω1)(SpecC).

Given ψ : F ′1→D, we consider kerψ. Take ω′ to be a point very close to d1

in the positive f1 direction. By Definition 6.3.1 and Theorem 6.3.2, we have

0 −→ T −→ kerψ −→ F −→ 0

where T ∈ T (ω′), F ∈ F(ω′). We claim T has dimension vector proportional to

dimF1. Firstly, as T ⊆ kerψ ⊆ F ′1, we have ω1(T ) ≤ 0 since F ′1 is ω1-semistable.
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And by definition of T , ω′(T ) > 0. As ω′ can be arbitrary close to the wall d1, we

have ω1(T ) = 0.

Consider the quotient F1 = F ′1/T . As both F ′1 and T have dimension vectors

as multiplies of f 1, F1 = λf 1 for some λ. Furthermore, ψ induces a map F1→D
with kernel in F(ω′). Thus we have the diagram

0 T F ′1 F1 0

D

where the row is an exact sequence.

From the exact sequence, we have

1Dss(`, ω1) =
∑
h

[BGL`(F1)→M] ∗ [G1
`−h,f1(D)→M],

where G1
`−h,f1 denotes denotes the stack of representations F1 with dimension vector

(`− h)f 1 and there exist a homomorphism F1→D with kernel in F(ω′). Then

∑
`

1Dss(`, ω1) =
∑
`

∑
h

[BGLh(F1)→M] ∗ [G1
`−h,f1(D)→M]

=
∑
h

[BGLh(F1)→M] ∗
∑
`

[G1
`−h,f1(D)→M]

=1ss(ω1) ∗
∑
λ

[G1
λ,f1(D)→M].

Therefore, we have

ΦD(d1)A−E(d) = 1ss(ω1)−1
∑
`≥0

1Dss(`, ω1)A−E(d) =
∑
λ

[G1
λ,f1(D)→M]A−E(d).

If F 1 is not regular, then by applying χ in 6.3.3, we have

χ(ΦD(d1)A−E(d)) =
∑
λ

χ([G1
λ,f1(D)→M])A−E(d)

=
∑
λ

χ
(
Gr(λ,Hom(F 1, D))

)
Aλp

∗(f1)A−E(d)
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This is the path-ordered product defined in 4.1.1.

Now we are ready to move forward to the second bending. As e =
∑
λif

i,

we will take the term

[G1
λ1,f1

(D)→M]A−E(D).

Applying the integration map, we have

χ([G1
λ1

(D)→M])A−E(D) = χ
(
Gr(λ1,Hom(F 1, D))

)
A−E(D)+p∗(λ1f1).

Let us consider the q-binomial coefficients

(
a

b

)
q

= (qa−1)···(qa−b+1−1)
(qb−1)···(q−1)

. Then

the above equation is

χ([G1
λ1

(D)→M])A−E(D) =

(
dim Hom(F 1, D)

λ1

)
q

A−E(D)+p∗(λ1f1).

Taking the limit q→1 will give us the usual broken line attaching monomial(
〈E(d), f 1〉

λ1

)
A−E(D)+p∗(λ1f1).

Note that after the first bending, if we take V1 = F⊕λ11 , we have

0 ⊂ V1

as the first step of a filtration of E ⊂ D.

7.4.2 Second bending

In the next step we consider, γ crosses a second wall d2. By Definition 6.4.1

of Hall algebra broken lines, [G1
λ1,f1

(D)→M]A−E(D) is attached to the linear piece

of γ after the first bending. In the usual broken line, the attached monomial is

χ (Gr(λ1,Hom(F 1, D)))A−E(D)+p∗(f1). As we are assuming the crossing of γ over

d2 is good, we have

〈−E(D) + p∗(f 1),−f2〉 ≥ 0,

i.e.

E(d, f2)− {f1, f2} ≥ 0.

From our assumption that γ goes from d+
1 to d2 and the description in the beginning

of Section 7.4, we have

−{f1, f2} ≤ 0.
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This implies E(d, f2) ≥ 0. Therefore

E(d, f2) = χ(f 2, d) = dim Hom(F 2, D).

We can then apply the wall crossing for the second bending at a general

point ω2 on d2 on [G1
λ1,f1

(D)→M]A−E(D).

ΦD(d2)
(
[G1
λ1,f1

(D)→M]A−E(D)
)

=1ss(ω2)−1 ? [G1
λ1,f1

(D)→M]A−E(d) ? 1ss(ω2)

=1ss(ω2)−1 ?
∑
`

[G1
λ1,f1

(D)→M] ? qdim(Hom(F2,D))1ss(`, ω2)A−E(d)

=1ss(ω2)−1
∑
`

[G1
λ1,f1

(D)→M] ? 1Dss(`, ω2)A−E(d)

where 1Dss(`, ω2) is the moduli space of semistable representation F ′2 with a map

F ′2→D, where F ′2 is a representation with dimension vector `f 2.

We will now put (6.5.2) into the above, i.e. we need to investigate

∑
`

(
1 +

∑
k

(−1)k
k∏
l=1

[BGLrl(F2)→M]

)
? [G1

λ1,f1
(D)→M] ? 1Dss(`ω2) (7.4.3)

(7.4.3) looks complicated. Actually it is very pretty at each degree. Fix ` and k.

For ease of reading, let us abuse notation to write G1 as [G1
λ1,f1

(D)→M]. Let us

the terms of dimension vector s · f2 in (7.4.3). We call this the multiplicities s

contributed. In order to achieve multiplicities s, we can have two choices

1. Bk ? G1 ? 1

2. Bk−1 ? G1 ? B′,

where Bk denote multiplying k of the classifying spaces [BGLrl→M], for some

r1, . . . , rk ∈ N, and B′ is an object in 1Dss(`, ω2). Note that the inverse 1ss(ω2)
−1

is an alternating sum. So elements in the forms of (1) and (2) differ by a sign.

Therefore, we can group the terms in the multiplicities s summand into pairs

±
(
Bk ? G1 −Bk−1 ? G1 ? B′

)
, (7.4.4)

where Bk =
∏k

l=1[BGLrl(F2)→M], Bk−1 =
∏k−1

l=1 [BGLrl(F2)→M] and B′ is the

last multiple of Bk: [BGLrk(F2)→M].
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First, let us understand the term

Bk ? G1 =
k∏
l=1

[BGLrl(F2)→M] ? G1.

The product in Bk means that we partition s into (r1, . . . , rk). Therefore,

we are looking at the diagram

0 F⊕r12 ⊕ · · · ⊕ F⊕rk2 Y F λ1
1 0

D

(7.4.5)

where Y is such that the row is exact.

As the exact sequence may not split, the term Y is actually[
Ext1(F⊕λ11 , F⊕r12 ⊕ · · · ⊕ F⊕rk2 )

G
→M

]
(7.4.6)

where G is the group of matrices of the form


GLr1 ∗ ∗ ∗

0 GLr2 ∗ ∗

0 0
. . . ∗

0 0 0 GLrk

 as noted

at the end of Section 6.5.

The second term Bk−1 ? G1 ? B′ in (7.4.4) corresponds to two diagrams

(7.4.7) and (7.4.9), where (7.4.7) refers to the product G1 ? B′ and (7.4.9) refers to

Bk−1 ? (G1 ? B′). First, G1 ? B′ gives

0 F λ1
1 U1 F rk

2 0

D D

(7.4.7)

for some U1. We are looking at fibres of projection to G1. Therefore we fix a map

F λ1
1 →D in G1.

From the discussion in the beginning of Section 7.4, we have Ext1(F2, F1) = 0.

Thus the exact sequence above is split. Therefore the middle term is U1 = F λ
1 ⊕F

rk
2 .

Notice that there is an automorphism of the exact sequence, namely

0 F λ
1 F λ

1 ⊕ F
rk
2 F rk

2 0

0 F λ
1 F λ

1 ⊕ F
rk
2 F rk

2 0

g

π

i
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with g ◦ π ◦ i is an identity. We obtain the object[
Hom(F rk

2 , D)/Hom(F rk
2 , F⊕λ11 )

GLrk
→M

]
=

[
Hom(F rk

2 , D/F⊕λ11 )

GLrk
→M

]
. (7.4.8)

The second multiplication Bk−1 ? (G1 ? B′) gives

0 F⊕r12 ⊕ · · · ⊕ F⊕rk−1

2 U2 F λ
1 ⊕ F

rk
2 0

D

(7.4.9)

These exact sequences are classified by Ext1(F λ
1 ⊕ F rk

2 , F⊕r12 ⊕ · · · ⊕ F
⊕rk−1

2 ) =

Ext1(F λ
1 , F

⊕l1
2 ⊕ · · · ⊕ F

⊕lr−1

2 ) as F2 is non-regular. Combining with (7.4.8) the

product gives us[
Hom(F rk

2 , D/F⊕λ11 )× Ext1(F λ1
1 , F⊕r12 ⊕ · · · ⊕ F⊕rk−1

2 )

T
→M

]
, (7.4.10)

where T is as in (7.4.6).

The value of (7.4.4) would be the difference of (7.4.6) and (7.4.10)], i.e.[
Ext1(F⊕λ11 , F⊕r12 ⊕ · · · ⊕ F⊕rk2 )

T
→M

]
−[

Hom(F rk
2 , D/F⊕λ11 )× Ext1(F λ1

1 , F⊕r12 ⊕ · · · ⊕ F⊕rk−1

2 )

T
→M

]

Let h = dim Hom(F2, D/F
⊕λ1
1 ) and e = dim Ext1(F⊕λ11 , F2). And s =

l1 + · · ·+ lr as we are counting at degree s. Applying χ to the term above gives us

± qse − q(r1+···+rk−1)e+rkh(∏k
l=1 q

rl(rl−1)/2
∏rl

t=1(qt − 1)
)∏

u<v q
rurv

=± qse(qrkh−rke − 1)(∏k
l=1 q

rl(rl−1)/2
∏rl

t=1(qt − 1)
)∏

u<v q
rurv

.

One can show that after summing over all the partitions of s, the multiplities

s term of (7.4.3) after applying χ would be

qse
(
h− e
λ2

)
q

.
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Let S2 be the space of the second bending with fixing F λ1
1 →D. Then S2

would have the same Poincaré polynomial as the following space:∑
s

[Ase ×Gr(s,Hom(F2, D/F
⊕λ1
1 )− Ext1(F⊕λ11 , F2))],

where if V , W are vector space, we use the relation V −W to denote the vector

space of dimension dimV − dimW . We now take the map F λ1
1 →D back into

account, and denote [G2
s,f2→M] as the degree s for the space we obtained after the

second bending. Then [G2
s,f2→M] have the same Poincaré polynomial as

[Asdim Ext1(F
⊕λ1
1 ) ×Gr(s,Hom(F2, D/F

⊕λ1
1 )− Ext1(F⊕λ11 ))×Gr(λ1,Hom(F1, D))].

Therefore, the Hall algebra wall crossing at second bending would then be

ΦD(d2)
(
[G1
λ1,f1

(D)→M]A−E(D)
)

=
∑
s

[G2
s,f2(D)→M]A−E(D).

From the construction, we take λ2 pieces of F2. Thus the attaching Hall

algebra monomial is

[G2
λ2,f2

(D)→M]A−E(D).

Applying integration map will give us

qλ2e
(
χ(f 2, d− λ1f

1)

λ2

)
q

(
χ(f 1, d)

λ1

)
q

A−E(D)+p∗(λ1f1+λ2f2).

Taking the limit q→1, will give us the usual attaching monomial.

Moreover, in the Hall algebra multiplication, we build up the representation

V2 of dimension vector λ1f
1 + λ2f

2 from the exact sequence. Thus, we have a

filtration

0 ⊂ V1 ⊂ V2

with the quotient V2/V1 = F⊕λ11 .

7.4.3 Further bending

We can repeat what we have done in the last section inductively.
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Assume now γ is having the j-th bending from d+
j−1 to dj . From the previous

r − 1 bendings, we have the attaching Hall algebra monomial

[Gj−1
λ1,··· ,λj−1,fj−1→M]A−E(D).

And there is the filtration

0 ⊂ V1 ⊂ · · · ⊂ Vj−1.

Bending over dj and taking λj copoies of Fj will give us the space Sj having

the same Poincaré polynomial as

[Aλj Ext1(Vj−1,Fj) ×Gr(λj,Hom(Fj, D/Vj−1)− Ext1(Vj−1, Fj))].

This also builds up one more piece in the filtration

0 ⊂ V1 ⊂ · · · ⊂ Vj,

where Vj/Vj−1 = F
⊕λj
j .

After the last bending of γ, notice that in our set up, we have

e =
s∑
j=1

λjfj.

Thus the Hall algebra multiplication allows us to build up a filtration for a subrep-

resentation E of D with dimension vector e.

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vs = E, (7.4.11)

where Vj/Vj−1 = F
⊕λj
j .

7.4.4 Harder-Narasimhan filtration

In two dimensions, a broken line γ can actually describe a Harder-Narasimhan

filtration for a subrepresentation E ⊂ D.

Let Q be in the positive chamber. Now consider the stability function

Z : K(rep(Q))→C as

Z(F ) = (E(d)− p∗(e)) · f + iQ · f.
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Now consider the line β : (0, 1)→D starting from −E(d)− p∗(e)) and ending at Q.

β is parametrized by β(t) = (1− t)(−E(d) + p∗(e)) + tQ. When β cross the walls d

with normal vector f ∈ N+ at t, we have

〈(1− t)(−E(d) + p∗(e)) + tQ, f〉 = 0.

Solving the above will give

t−1 − 1 =
Q · f

(E(d)− p∗(e))(f)
.

This is the slope of Z.

Let γ be the broken line we considered in the beginning of Section 7.4. If

γ has good bending over d, then −(E(d)− p∗(e))(−f) ≥ 0 from the properties of

γ. Thus (E(d)− p∗(e))(f) ≥ 0. Therefore, Q·f
(E(d)−p∗(e))(f)

has the same ordering as

φ(F ) = 1
π

argZ(F ).

As t−1 − 1 is strictly decreasing, φ(F ) is decreasing along β. Therefore

slopes of the quotients in the filtration (7.4.11) are strictly decreasing. Hence the

filtration (7.4.11) is a Harder-Narasimhan filtration.

7.4.5 Example

Let us illustrate what we have in this section by an example. We will

consider the Kronecker 2-quiver Q2 and the indecomposable representation C5⇒C6.

Then we will consider the subrepresentation E with dimension vector (2, 4). By

combining theta function and the Caldero-Chapoton formula, we learn that the

Euler characteristic is χ(C2⇒C4,C5⇒C6) = 18.

In terms of broken line language, we calculate

−E(5, 6) = (7,−6), −E(5, 6) + p∗(2, 4) = (−1,−2).

Therefore, we are looking for broken line γ with initial slope (7,−6), final slope

(−1,−2) and endpoint at some point Q in the positive chamber.

If we set Q = (2, 1), we will obtain two broken lines γ1 (blue) and γ2 (red)

as shown in Figure 7.2.
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1 + A−2
1

1 + A2
2

1
(1−A−2

1 A2
2)

2 1 +A−6
1 A4

2

1 +A−4
1 A2

2

8A−1
1 A−2

2

Q

4A1A
−2
2

A7
1A
−6
2

10A−1
1 A−2

2

A7
1A
−6
2

Figure 7.2: C2 ⇒ C4 ⊂ C5 ⇒ C6

Let us first start with γ1 (the blue line). The broken line γ1 bends over the

wall d = {R≥0(2,−1), 1 + A(−4,2)}. From Section 7.4.1, we see that the bending

contributes two copies of C⇒C2. Therefore the filtration for E1 is

0 ⊂ (C⇒C2)2 = E1.

Furthermore the Hall algebra element after bending is G1
2,(1,2)(C5⇒C6)→M, where

the objects are C2⇒C4 with a map (C2⇒C4)
ψ−→ (C5⇒C6) such that kerψ does

not contain any C⇒C2. Thus the space is

Gr(2,Hom
(
(C⇒C2), (C5 ⇒ C6)

)
.

Next, we have γ2. The broken line γ2 has two bendings: first at the wall

d1 = {R≥0(3,−2), 1 + A(−6,4)} then at the wall d2 = {R(1, 0), 1 + A(−2,0)}. From

the calculation of slopes, we know that both bendings take one copy of C2⇒C3,

0⇒C respectively. This implies the filtration

0 ⊂ C2⇒C3 ⊂ C2⇒C4 =: E2,

showing that E2 = (C2⇒C3)⊕ (0⇒C).
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The first bending of γ2 is similar to γ1. Thus we obtain [G1
1,(2,3)(C5⇒C6)→M]

by Proposition 7.4.1. The second bending over a general point ω2 ∈ d2 yields a

term in

1ss(ω2)−1 ? [G1
1,(2,3)(C5⇒C6)→M]A(7,−6) ? 1ss(ω2).

Write G = [G1
1,(2,3)(C5⇒C6)→M]. As we only need degree 1 in this case, we only

consider

GA(7,−6) ? [GL1(0⇒C)→M]− [GL1(0⇒C)→M] ? GA(7,−6). (7.4.12)

After commuting A(7,−6) and BGm(0⇒C), the first term becomes

GA(7,−6) ? [BGm(0⇒C)→M]

=Gqdim Hom(0⇒C,C5⇒C6)[BGm(0⇒C)→M]A(7,−6)

=G ? 1Dss(1, ω2)A(7,−6)

The product consists of diagrams

0 (C2⇒C3) (C2⇒C4) (0⇒C) 0

(C5⇒C6)

(7.4.13)

where the map (C2⇒C4)→(C5⇒C6) extends the map (C2⇒C3)→(C5⇒C6).

Note that Ext1(0⇒C,C2⇒C3) = 0. Thus the term C2⇒C4 in the exact

sequence above is actually (0⇒C)⊕ (C2⇒C3). In Section 7.4.2, we obtained the

space [
Hom(0⇒C,C5⇒C6/C2⇒C3)

GL1(0⇒C)

]
after fixing (C2⇒C3)→(C5⇒C6). Applying the integration map, we have

χ(

[
Hom(0⇒C,C5⇒C6/C2⇒C3)

GL1(0⇒C)

]
) =

qh

q − 1
,

where h = dim Hom(0⇒C,C5⇒C6/C2⇒C3).

The second term BGL1(0⇒C) ? GA(7,−6) gives

0 (0⇒C) (C2⇒C4) (C2⇒C3) 0

(C5⇒C6)

(7.4.14)
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which yields
[
Ext1(C2⇒C3,0⇒C)

GL1(0⇒C)

]
and

χ(

[
Ext1(C2⇒C3, 0⇒C)

BL1(C5⇒C6)

]
) =

qe

q − 1
,

where e = dimExt1(C2⇒C3, 0⇒C). Combining together, we have

qh

q − 1
− qe

q − 1
= qe

qh−e − 1

q − 1
= qe

(
h− e

1

)
q

.

This is saying the moduli space S2 has the same Poincaré polynomial as

A1 ×
(
Gr
(
1,Hom(0⇒C,C5⇒C6/C2⇒C3)− Ext1(C2⇒C3, 0⇒C)

))
.

Furthermore, note that our stability function is

Z(F ) = −(−1,−2) · F + i(2, 1) · F

By calculating, we have Z(2, 3) = 8 + 7i and Z(0, 1) = 2 + i. Thus

φ(F ) = 1
π

argZ(F ) is decreasing. Hence the filtration

0 ⊂ C2⇒C3 ⊂ C2⇒C4

is Harder-Narasimhan.

Remark 7.4.2. At the end of this example, we would like to repeat the calculation

about the terms in (7.4.12) so as to illustrate our future steps. The main difference

between the two calculations is that we first fix the maps to the ambient space

C5⇒C6 in Section 7.4.2 then we went back to include the terms from first bending.

Now we would like to include the inclusion maps C2⇒C3 in the Hall algebra

multiplication. We again calculate the two terms in (7.4.12) separately. Following

the same commutative relation, the first term is G ? 1Dss(1, ω2)A(7,−6) and we have

the same exact sequence (7.4.13)

0 (C2⇒C3) (C2⇒C4) (0⇒C) 0

(C5⇒C6)

ι

We will now need to consider the map ι. Note that Ext(0⇒C,C2⇒C3) = 0. Thus

the middle term (C2⇒C4) in the above exact sequence is (0⇒C)⊕ (C2⇒C3).
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There are two case for ι: (1) injective; (2) non-injective. If ι is injective, then

moduli space is Gr((0⇒C)⊕ (C2⇒C3),C5⇒C6). Hence it is the Grassmannians

which fibers over Gr(1,Hom(C2⇒C3,C5⇒C6) with fiber

Gr(1,Hom(0⇒C, (C5⇒C6)/(C2⇒C3)).

We are having 1 here as we take one copy of 0⇒C in this example.

If ι is not injective, let us write the space S as

[maps (C2⇒C3)⊕ (0⇒C)→(C5⇒C6) with kernel 0⇒C].

The kernel of ι does not contain C2⇒C3 since ι is an extension of the map

(C2⇒C3)→(C5⇒C6). And by our calculation in the first bending, this map

(C2⇒C3)→(C5⇒C6) would not contain any kernel proportional to C2⇒C3.

Now we move to the second term BGL1(0⇒C) ?GA(7,−6) which gives us the

same exact sequence (7.4.14):

0 (0⇒C) (C2⇒C4) (C2⇒C3) 0

(C5⇒C6)

ν

Again as we do not fix the map (C2⇒C3)→(C5⇒C6), there is a composed map

ν : (C2⇒C4)→(C5⇒C6). We again have two cases: (C2⇒C4) is (a) split; (b)

non-split.

If C2⇒C4 split in the exact sequence (7.4.14), then the map ν represents

the same space S

[maps (C2⇒C4)→(C5⇒C6) with kernel 0⇒C].

as in the first term G ? 1Dss(1, ω2)A(7,−6) in (7.4.12).

If C2⇒C4 does not split, then the map ν is actually

(C⇒C2)2→(C5⇒C6)

with image C2⇒C3. Hence we are considering [Gr(1,Hom(C2⇒C3,C5⇒C6)] with

fiber Gr(1,Ext1(0⇒C,C2⇒C3)).
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Putting the two calculations together, we have the space S cancelled, and

we still obtain the same space S2 which has the same Poincaré polynomial as

[Gr
(
1,Hom(0⇒C, (C5⇒C6)/(C2⇒C3))− Ext(0⇒C,C2⇒C3)

)
].

fiber over Gr(1,Hom(C2⇒C3,C5⇒C6)).

In this calculation, we can see there is a ‘secret’ space S which got canceled

out but it does appear in the Hall algebra calculation. This suggests that when

we talked about Hall algebra broken lines as in Section 6.4, there are more Hall

algebra broken lines then usual broken lines. We are working to understand the

Hall algebra broken lines better.



Appendix A

Notations

In this thesis, we have adopted set up from numerous papers and so there is

a confusion of notations. For clarity, let us clarify some confusing notations in this

section.

First of all, our cluster variables are denoted as A1, . . . , An instead of what

Fomin-Zelevinsky did in [FZ02]. And we denote
∏
Amii as Am instead of zm in

most mirror symmetry papers.

In most of the papers about scattering diagrams, e.g. [GHKK14], the path-

ordered product (in 4.1.2) is denoted by θ. However, as too many different forms

of θ is being used. We switch it to p.

Similay, in most papers, when broken line is mentioned, the endpoints are

denoted as Q. While in [CGM+15], we denote q as endpoints. To avoid confusion

quiver Q, and q in Hall algebra, we set Q as the endpoints of the broken lines to

express the lack of symbols.

As noted above, θ has been heavily used, we denote the general stability

condition as ω instead of θ in [Bri15]. Continuing about the difference from [Bri15],

our broken lines go from negative chamber to positive chamber. This is the opposite

direction in the set up of [Bri15]. For theta function with initial slope m, we use ϑm

instead of ϑm. And as A commonly stands for cluster algebra, we take out the use

of A = rep(Q). In this article, we will simply use rep(Q) as the abelian category of

finite dimensional representations of a quiver Q without further shorthanded.

Our quiver is 1⇒2 instead of 1 ⇔ 2.
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A.1 Skew-symmetric form

In this article, χ(·, ·) denoted the Euler form defined in 3.2.1. We further

define E(d) = χ(·, d) the functional. And it is defined in 3.2.2. In some papers,

the Euler form is written as 〈·, ·〉. We switch it here because we do not want to

confuse the form with the usual inner product. {·, ·} here stands for the skew-

symmetric form used to define scattering diagram. We define the matrix ε with

entries εij = {ei, ej}. First note that the matrix ε is the transpose to the exchange

matrix B in the definition of cluster algebras in Section 3.1.

To link up with the quiver theory, we can associate an arrow by setting εi,j

to be the number of arrows from i to j (negative means opposite direction). Note

that

{e, f} =
∑
i,j

εi,jeifj =
∑
i→j

eifj −
∑
j→i

eifj

While in some other paper, e.g. [Kel10], there is a notion of skew-symmetric form

〈·, ·〉a = χ(e, f) − χ(f, e). Note it is denoted as {, } in some other papers, e.g.

[Rei10],

〈e, f〉a = χ(e, f)− χ(f, e) = −
∑
i→j

eifj +
∑
i→j

fiej

Therefore we have

{e, f} = −〈e, f〉a = −(χ(e, f)− χ(f, e)) (A.1.1)

If you consider it is not confusing enough, note that 〈e, f〉a is 〈e, f〉 in [Bri15].

At the same time, χ(X) denotes the Euler characteristic for the space X. A

similar map on the Hall algebra defined in 6.3.2 is denoted as χ. It should be clear

from the content to distinguish these two.
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