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Abstract

The “brain signature of cognition” concept has garnered interest as a data-driven,

exploratory approach to better understand key brain regions involved in specific cog-

nitive functions, with the potential to maximally characterize brain substrates of

behavioral outcomes. Previously we presented a method for computing signatures of

episodic memory. However, to be a robust brain measure, the signature approach

requires a rigorous validation of model performance across a variety of cohorts. Here

we report validation results and provide an example of extending it to a second

behavioral domain. In each of two discovery data cohorts, we derived regional brain

gray matter thickness associations for two domains: neuropsychological and every-

day cognition memory. We computed regional association to outcome in 40 randomly

selected discovery subsets of size 400 in each cohort. We generated spatial overlap

frequency maps and defined high-frequency regions as “consensus” signature masks.

Using separate validation datasets, we evaluated replicability of cohort-based con-

sensus model fits and explanatory power by comparing signature model fits with

each other and with competing theory-based models. Spatial replications produced

convergent consensus signature regions. Consensus signature model fits were highly

correlated in 50 random subsets of each validation cohort, indicating high replicabil-

ity. In comparisons over each full cohort, signature models outperformed other

models. In this validation study, we produced signature models that replicated model

fits to outcome and outperformed other commonly used measures. Signatures in two

memory domains suggested strongly shared brain substrates. Robust brain signatures

may therefore be achievable, yielding reliable and useful measures for modeling sub-

strates of behavioral domains.
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1 | INTRODUCTION

The “brain signature of cognition” concept has garnered interest as a

data-driven, exploratory approach to better understanding key brain

regions involved in specific cognitive functions, with the potential to

maximally account for brain substrates of behavioral outcomes. It has

been characterized as discovering “statistical regions of interest”
(sROIs or statROIs) (Chen et al., 2010; Fletcher et al., 2013; Hua

et al., 2009) or brain “signature regions” associated with outcomes

(Arenaza-Urquijo et al., 2019; Dickerson et al., 2009; Fletcher, Gavett,

et al., 2021; Gross et al., 2012). For a variable of interest (in our study,

gray matter [GM] thickness), it computes areas of the brain that are

most associated to a behavior outcome of interest. To be a robust

brain measure, a signature requires validation, showing model fit to

outcome replicability in multiple datasets beyond the discovery set

where it was developed. If signatures are separately developed in two

discovery cohorts, they should also show consistent spatial selection

of the signature regions. These key properties are summarized as

model fit and spatial extent replicability.

The signature approach represents an evolution from theory-

driven or lesion-driven approaches that were feasible using smaller

datasets and lower computational power. Although those approaches

yielded many valuable insights into brain–behavior associations, they

may have missed subtler but significant effects, thus giving incom-

plete accounts of brain substrates of an outcome of interest. In recent

years, high-quality brain parcellation atlases have enabled a more

exploratory approach, seeking combinations of atlas regions of inter-

est (ROIs) that best associate to behaviors of interest. A shortcoming

of all approaches using predefined ROIs, however, is that brain-

behavior associations may cross ROI boundaries, recruiting subsets of

multiple regions but not using the entirety of a region. This may mean

that a combination of atlas ROIs cannot optimally fit an outcome of

interest (Jolly & Hampshire, 2021).

The signature approach aims to address these limitations. It

selects features associated to outcome in a data-driven manner.

When implemented at a fine-grained (e.g., voxel) level of feature

selection, it does not need predefined ROIs. The approach we use

here is direct computation of voxel-based regressions. However, other

recent implementations of exploratory feature selection have used

machine learning algorithms such as support vector machines (Fan

et al., 2005), support vector classification (Marek et al., 2022), relevant

vector regression (Caballero et al., 2016), and deep learning using con-

volutional neural nets (Dinsdale et al., 2020). Machine learning may be

especially promising when investigating complex multimodal brain

associations with behavioral or clinical outcomes (Lee et al., 2019).

Their challenge, however, is interpretability of the results, since

machine learning models can be like a black box (Bach et al., 2015).

This is starting to be addressed (Böhle et al., 2019). In any case, these

all represent alternative implementations of the data-driven approach.

Because it is based on data-driven exploration, the signature

approach has the potential to provide as complete an accounting of

brain-behavior associations as current technology will allow. How-

ever, approaching this ideal could require large data sets (Marek

et al., 2022; Masouleh et al., 2019) that are only recently becoming

available (e.g., U.K. Biobank, Sudlow et al., 2015). Both studies found

that replicability depended on discovery in large dataset sizes, with

(Marek et al., 2022) finding that sizes in the thousands were needed.

Pitfalls of using too-small discovery sets include inflated strengths of

associations and loss of reproducibility (Marek et al., 2022). Masouleh

et al. also found that replicability of model fit and consistent spatial

selection depended on cohort heterogeneity including a full range of

variability in brain pathology and cognitive function, the outcome

domain of interest, and size of discovery set.

An algorithm that can meet these challenges by generating repro-

ducible brain signatures is thus a worthwhile goal. In our recent work

(Fletcher, Gavett, et al., 2021), we described a method for computing

brain GM signatures of episodic memory in cognitively diverse popu-

lations and validated it across three independent cohorts. We found

promising support for fit and spatial reproducibility. However, in-dis-

covery-set versus out-of-set performance bias was still evident, and

we did not investigate whether signature models generated in differ-

ent cohorts would perform comparably across many different valida-

tion sets. Since then, following (Masouleh et al., 2019), we

hypothesized that by implementing the discovery phase of our earlier

algorithm in parallel across many randomly selected subsets and then

aggregating, we could overcome the pitfalls and produce a reproduc-

ible and useful brain signature phenotype.

The present study therefore has two aims. The first is to rigor-

ously test the replicability and explanatory properties of the method

in our previous effort, now augmented to leverage multiple discovery

set generation and aggregation. The second is to extend the method

to another behavior domain: everyday memory function, measured by

the Everyday Cognition scales (ECog), an informant-based scale for

measuring subtle changes in day-to-day function of older participants

(Farias et al., 2008). We hypothesized that this could serve to illustrate

the usefulness of validated signatures for discerning and comparing

brain substrates of different behavioral domains.

2 | MATERIALS AND METHODS

2.1 | Imaging cohorts

We used discovery and validation sets drawn from two imaging

cohorts. For discovery, we used 578 participants from the UC Davis

(UCD) Alzheimer's Disease Research Center Longitudinal Diversity

Cohort and 831 participants from the Alzheimer's Disease Neuroim-

aging Initiative Phase 3 cohort (identified in the following as ADNI 3),

downloaded from the ADNI site (adni.loni.usc.edu). All subjects had

neuropsychological and everyday function (ECog) evaluations and one

MRI scan taken near the time of evaluation. For validation, we used

cohorts consisting of an additional 348 participants drawn from UCD

and 435 participants from ADNI Phase 1 (ADNI 1). All UCD partici-

pants had both ECog and neuropsychological measures, but in ADNI

1, consisting of an earlier series, the ECog data were not complete.

The validation cohorts were separate from the discovery cohorts.
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One of the aims of the UCD ADRC cohort is to explore heteroge-

neity of cognitive trajectories in aging associated with a mixture of

pathologies among an ethno-racially diverse group of older adults.

The ADNI project was launched as a public–private partnership

in 2003 by the National Institutes of Aging, the National Institute

of Biomedical Imaging and Bioengineering, the Food and Drug

Administration, private pharmaceutical companies, and nonprofit

organizations. The primary goal of ADNI is to test whether serial

MRI, PET, other biomarkers, and clinical and neuropathological

assessment can be combined to measure progression of MCI and

early Alzheimer's disease (AD). The principal investigator is Michael

Weiner, MD, VA Medical Center and University of California,

San Francisco. For current information on ADNI, see www.adni-

info.org.

2.2 | Cognitive and everyday function assessment

Cognitive assessments of episodic memory were based on the Span-

ish and English Neuropsychological Assessment Scales (SENAS)

(Mungas et al., 2004; Mungas, Reed, Tomaszewski Farias, &

DeCarli, 2005) within the UCD ADRC cohort. SENAS is a composite

measure based on a 15 item verbal list learning test incorporating per-

formance across five learning trials and immediate recall. The memory

composite from the ADNI cohort (ADNI-Mem) (Crane et al., 2012)

was based on similar items from a list learning test as well as memory

items from the Alzheimer's Disease Assessment Scale-Cognitive Sub-

scale (ADAS-Cog) and the Mini-Mental State Examination (MMSE).

Both are sensitive to individual differences across the full range of

episodic memory performance. The Everyday Memory domain from

the ECog (ECogMem) (Farias et al., 2008; Farias et al., 2013) was used

to measure everyday memory for both cohorts. The ECog is an

informant-rated measure of several domains relevant to cognition as

it applies to daily function. It was designed to address functional abili-

ties of older adults, particularly focusing on subtle changes in every-

day function spanning preclinical AD to moderate dementia (Farias

et al., 2008).

2.3 | MRI image processing

We used single MRI scans in each cohort from the UCD and ADNI

3 cohorts.

Whole head structural T1 MRI images were processed by in-

house pipelines developed in our laboratory and described previously

(Fletcher et al., 2014). The first pipeline step produced brain extrac-

tions based on convolutional neural net recognition of intracranial

cavity followed by human quality control (Fletcher, Decarli,

et al., 2021). This was followed by affine and B-spline registration

(Rueckert et al., 2006) of the intracranial cavity image to a structural

template image, then native-space tissue segmentation into gray

(GM) white (WM) and CSF (Fletcher et al., 2012) and white matter

hyperintensities with the aid of each subject's coregistered native T1

and FLAIR images (Decarli et al., 2013). Our template was constructed

in-house as a minimal deformation age-appropriate template

(Kochunov et al., 2002) with voxel sizes 0.977, 1.5, and 0.977 in the x,

y, and z directions.

2.4 | Gray matter density quantification

We quantified brain cortical GM by GM density measures, performed

at the voxel level in each native space image using the DiReCT diffeo-

morphic algorithm (Das et al., 2009) applied to the segmented

GM. DiReCT is a “volume-based” or 3D algorithm (i.e., it assigns a

density measure to each GM voxel) as opposed to the method

employed in the commonly used Freesurfer package, which is “sur-
face-based” (calculating vertex-wise distances between inner and

outer 2D GM surface meshes) (Fischl & Dale, 2000). We used a voxel-

based measure because this is required by our method and translating

from vertex to voxel values would be cumbersome and imprecise.

There have also been some reports that the volume-based methods

are superior in some prediction situations (Schwarz et al., 2016;

Tustison et al., 2014). Resulting native-space GM density maps were

deformed to template space using the affine and B-spline parameters

previously computed in our pipeline.

F IGURE 1 Discovery and validation of signature models. Top-
level schematic of discovery-validation steps for both models.
Signature models undergo parallel discovery steps followed by cross-
validation in two independent validation cohorts.
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2.5 | Signature variable analyses

This paragraph gives a high-level outline of our process (Figure 1). We

computed signature models in each discovery cohort. We first gener-

ated signature masks of GM thickness association to outcome in each

of 40 randomly selected discovery sets (N = 400 for each discovery

set) within each cohort (top row in Figure 1). Separate masks were gen-

erated at each of three levels of association using regression β coeffi-

cient t-value thresholds (t = 3, 5, 7). Next, for each of the t levels, we

combined all 40 signature masks into cohort-specific overlap frequency

maps. From frequency maps, we selected cohort “consensus” masks

consisting of voxels contained within at least 70% of the 40 signature

masks (middle row of Figure 1). For convenience, we designate the

consensus masks as TsROIs (for t-level signature ROI) in the sequel.

The 70% threshold was motivated by the maximal frequencies of loca-

tions selected in the previous report (Masouleh et al., 2019). In the vali-

dation steps, we tested cohort consensus signature models by

comparing their performances with each other in each of 50 random

subsets of each validation cohort (bottom row of Figure 1). Finally, we

also compared consensus signature models with other, competing

models of outcome in the full UCD and ADNI validation cohorts.

2.5.1 | Discovery of consensus models

Consensus models were based on discovery steps followed by aggre-

gation. Here we provide a detailed description of this method, follow-

ing Figure 2.

F IGURE 2 Detail of discovery and validation steps. Breakdown of analyses across randomly chosen subsets for both discovery and validation,
and for validation, also including the full cohort.
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2.5.2 | Discovery step 1. Leveraging random
subsets to generate variability

This step is summarized in Figure 2, top row. To augment the limited

variability in a discovery cohort that is smaller than several thousand

as recently recommended (Marek et al., 2022), we used 40 randomly

generated subsets of size 400, consistent with size recommendations

in the earlier use of this method (Masouleh et al., 2019). These sub-

sets had pairwise nonzero overlaps, larger in UCD than in ADNI

because our UCD cohort was smaller, but they also provided quasi-

independent, parallel learning of regional brain masks associated to

outcome in each discovery subset.

Mask generation was extensively described in our previous work

(Fletcher, Gavett, et al., 2021) and will be briefly summarized here. This

had two steps. First, we generated t-maps of association to outcome.

Regressions were performed at each template-space voxel with out-

come domain as the dependent variable, GM density as the indepen-

dent variable of interest, and controlling for age, gender, and

education. The resulting GM maps of voxel-based t-values (i.e., the t-

value of regression β coefficient for GM density) indexed the strength

of association of GM at every voxel. Second, we aggregated the t-maps

into clusters of significant association corresponding to a t-value

threshold. We performed nonparametric t-threshold cluster size com-

putations (Nichols & Holmes, 2001) using 2000 iterations separately

for t-thresholds of 3, 5, and 7. This computed an empirical distribution

of cluster sizes under the null hypothesis of no association between

brain and behavior outcome. Clusters from the original regressions

with size in the top 5% (95th percentile) of this distribution were

retained as significant. In practice, most regions of interest selected for

signature masks were in the highest 0.05% (i.e., they were the largest

clusters over the 2000 repetitions). Each discovery set thus produced

three significant clusters, corresponding to the three t-value thresholds,

for each outcome domain. These were the signature masks for a dis-

covery set, TsROIi for i = 1, 2, 3, corresponding to t-values of 3, 5, 7.

2.5.3 | Discovery steps 2 and 3. Frequency maps
and consensus signatures

These steps are shown in Figure 2, Frequency and Consensus maps

boxes. We computed overlap frequency maps of TsROI masks from

all 40 discovery subsets. We then defined our consensus signature

masks at each level of t = 3, 5, 7 as the set of voxels in template GM

that were contained in at least 70% of the 40 TsROI masks at the

given t value. Consensus signature models for an outcome then con-

sisted of GM means in each of the three consensus TsROI masks for

each participant in the target set.

For the tests we conducted, it was convenient to use regressions

involving a single “signature variable” S. S was the set of predicted

values from the regression

Y¼ β0þβ1 TsROI1þβ2 TsROI2þβ3 TsROI3 ð1Þ

in a target set of interest. Here, Y is an outcome of interest (one of

the domains considered in this paper, neuropsychological or ECog

memory), and the TsROI variables represent mean values for GM

thickness in each TsROI mask (i = 1, 2, 3 corresponding to t-value

thresholds of 3, 5, 7).

2.5.4 | Validating signature models

Validation was performed for each signature model in two separate

validation sets. This corresponds to the bottom row of Figure 2.Vali-

dation sets do not overlap discovery sets. Validation first compared

performance of the UCD and ADNI signature models across randomly

selected subsets of each validation cohort. Then we evaluated the

two signature models compared to other commonly used models of

outcome in each of the entire validation cohorts.

2.5.5 | Testing replicability for two signature
models

In each of 50 validation subsets from a validation cohort, we com-

puted the fit of each consensus signature model to outcome, control-

ling for age, gender, and education (Equation 1). Overall fit was

measured by adjusted R2.

Y¼ β0þβ1 Sþβ2 ageþβ3 genderþβ4 education ð2Þ

For comparison, we also computed explanation of variance by

demographics alone:

Y¼ β0þβ1 ageþβ2 genderþβ3 education ð3Þ

2.5.6 | Testing optimal performance of signature
models

We compared the fit performances of the consensus signatures

against those of other brain variables within each of the entire ADNI

and UCD validation cohorts. From a GM cortical parcellation atlas

(https://mindboggle.info/), augmented by in-house delineations of

hippocampus, amygdala and caudate, we selected four regions most

heavily overlapped by each of the consensus masks in at least one

cohort. The Mindboggle Atlas (Klein et al., 2017; Klein &

Tourville, 2012) is a current and commonly accepted update of the

Desikan-Killiany-Tourville cortical parcellation scheme (Desikan

et al., 2006) used in Freesurfer (Gross et al., 2012). The Mindboggle

regions are defined on the ICBM-152 template (https://www.bic.mni.

mcgill.ca/ServicesAtlases/ICBM152NLin2009) and were transformed

to our in-house template using a nonlinear deformation followed by a

voting scheme to resolve boundary ambiguities. The regions we

selected were the amygdala, entorhinal cortex, hippocampus, and
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caudate. We regressed an outcome on each of these variables in turn,

controlling for age, gender, and education, and tabulated the adjusted

R2 fit measures. In addition to these single-ROI models, we made a

multivariate model incorporating all these ROIs model as predictors

(the “FourROIs” model).

2.5.7 | Evaluating significant differences in
model fit

We estimated confidence intervals of adjusted R2 fit differences

between signature models and fits of the two highest fitting nonsigna-

ture models (i.e., models consisting of demographic variables alone or

demographics plus pre-selected brain ROIs, not computed by the sig-

nature approach we describe). We used bootstrap sampling

(i.e., sampling with replacement) over 10,000 iterations, generating a

range of values for the differences adjusted RS
2 � adjusted RM

2,

where S is the signature model and M another model of interest. We

used the R boot package (https://cran.r-project.org/web/packages/

boot/boot.pdf) in R version 3.5.1 to estimate confidence intervals for

this difference at levels of 80%, 90%, 95%, and 99%. If a confidence

interval was entirely above 0, we took this as evidence of better sig-

nature performance at that level of significance.

3 | RESULTS

3.1 | Discovery and validation data cohorts

Participant and scanner characteristics of our discovery and validation

cohorts are presented in Table 1. The validation and discovery cohorts

were mutually disjoint.

In the discovery cohorts, ADNI was significantly younger

(p < .001) than UCD. Age ranges were 55–90.6 for ADNI and 52–95

for UCD. Scatterplots of each outcome versus age revealed significant

associations but relatively small cubic polynomial fit R2 values (0.11 for

UCD neuropsychological memory and less than 0.06 for all others). The

best fitting cubic polynomial in each case was approximately linear for

the ages between 60 and 90 (see Figure S1). This supports our inclu-

sion of age as linear controlling variable. ADNI ECog Mem and neuro-

psychological memory were both significantly better than in UCD

(p < .001 for both domains). Domain scores were significantly corre-

lated in both cohorts (p < .001). The correlation is negative because

higher ECog Mem scores indicate worse outcomes, while higher neuro-

psychological scores are better. ADNI was significantly less female

(p < .001) and had significantly more education (p < .001) than UCD.

ADNI was almost entirely non-Hispanic/Latino, whereas UCD had

about 50% white and almost one-quarter each of African American and

Hispanic/Latino. For clinical diagnosis, UCD had a significantly greater

proportion of normal (CN) than ADNI (p = .008 via likelihood ratio) as

well as significantly more participants with dementia (p < .001). In

ADNI, the clinical diagnoses are principally in the Alzheimer's spectrum,

whereas the UCD demented category included vascular as well as

TABLE 1 Demographic profiles of the (a) discovery and (b)
validation cohorts.

ADNI 3 UCD

(a) Discovery cohorts

n 815 576

Age, years (mean [SD]) 71.4 (7.3) 76.8 (7.0)

Gender (percent female) 52 60

Education, years (mean

[SD])

16.5 (2.5) 13.9 (4.1)

Race/ethnicity (percent) Hispanic/Latino 4 Asian 3

Not Hispanic/

Latino 95

African American 23

Hispanic/Latino 21

White 50

Other 2

Clinical diagnosis (percent) CN 50 CN 56

MCI 27 MCI 26

AD 10

Not available 13

Demented 17

ECog Mem (mean [SD]) 1.85 (0.91) 2.11 (0.96)

Neuropsych Mem (mean

[SD])

0.60 (0.86) �0.23 (0.99)

Correlation of ECog and

Neuropsych Mem

Domains

�0.65 �0.53

Scanner field strength

(Percent 3T)

99.9 22

ADNI 1 UCD

(b) Validation cohorts

n 435 348

Age, years (mean [SD]) 75.6 (7.1) 76.8 (7.8)

Gender (percent female) 42 62

Education, years (mean

[SD])

15.5 (3.0) 13.2 (4.3)

Race/ethnicity (percent) Hispanic/Latino 2 Asian 3

Not Hispanic/

Latino 97

African American 31

Hispanic/Latino 24

White 41

Other 1

Clinical diagnosis (percent) CN 20 CN 51

MCI 47 MCI 28

AD 33 Demented 21

Not available 13

ECog Mem (mean [SD]) Not available 2.20 (1.04)

Neuropsych Mem (mean

[SD])

�0.169 (0.85) �0.223 (1.02)

Correlation of ECog and

Neuropsych Mem

domains

N/A �0.569

Scanner field strength

(Percent 3T)

0 51

Abbreviations: AD, Alzheimer's disease; CN, cognitively normal; MCI, mild

cognitive impairment.
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Alzheimer's disease dementias. Our last measure of scanner field

strengths shows that ADNI consisted of almost entirely 3T scanners

(in fact there was just one 1.5T), whereas UCD was about 78% 1.5T.

In the validation cohorts, the ages were not significantly different.

ADNI was significantly less female than UCD (p < .001), and with sig-

nificantly more education (p < .001). ADNI was almost entirely non-

Hispanic/Latino, whereas UCD was about 41% white. For clinical diag-

nosis, UCD had a significantly higher proportion of normal and signifi-

cantly smaller proportions of MCI and Demented than ADNI. For field

strengths, ADNI was entirely 1.5T while UCD was 51% 3T. ADNI and

UCD were not significantly different for neuropsychological memory.

From each discovery cohort we selected 40 randomly chosen sub-

sets of size 400 each, without replacement. In the ADNI discovery

cohort (N = 815), the average pairwise intersection of subsets was

about 178 participants or about 22% of the full cohort. In the UCD dis-

covery cohort (N = 576), the average pairwise overlap of subsets was

about 283 or about 49% of the full cohort. In each validation cohort,

we selected 50 subsets of size 200. In the ADNI validation cohort

(N = 415), the average pairwise overlap was about 92 participants or

about 22% of the full cohort. In UCD validation cohort (N = 348), the

corresponding numbers were 115 participants and 33%.

3.2 | Replication of spatial selection: Overlap
frequency maps

Figure 3 displays overlap frequency maps for cognitive memory-

association clusters in each cohort. ECog memory (not shown)

exhibited similar patterns, with one exception: the caudate was not

selected by UCD ECog signatures. Maps in each cohort show consen-

sus overlaps (purple: 100%) for medial temporal, amygdala, and hippo-

campal locations. More dorsally, there was overlap in the caudate,

though with somewhat smaller extent of the 100% regions than in the

temporal slices. We also note small areas of high-frequency overlaps

in the precuneus and PCC for both ADNI and UCD (rightmost slices in

each cohort).

3.3 | Discovery cohort consensus signature models

For neuropsychological memory, consensus masks in ADNI and UCD

show a reasonable convergence, each cohort having extensive associ-

ations at levels t = 3, 5, and 7 within temporal regions (leftmost

images), and associations at t = 3 within the caudate (rightmost

images). Each similarity metric for UCD versus ADNI (Table 2) exceeds

its counterpart reported in our previous work (Fletcher, Gavett,

et al., 2021). For both domain signatures in Figure 4, the UCD spatial

extents appear noisier than ADNI in the t = 3 range, which may

weaken the similarity scores. Noisiness in UCD could be due to

greater pairwise overlap between the random discovery subsets, and

next to 78% of the images being acquired on 1.5T scanners. In any

case, our η2 scores lie between ranges previously characterized as

“reasonably similar” and “very similar” (Bakkour et al., 2013).
For ECog memory, the cohort consensus TsROIs are also reason-

ably convergent in the two cohorts, except that the UCD TsROIs do

not show any association of caudate with ECog outcome. We also

F IGURE 3 Percentage overlap of significant gray matter cluster associations at t = 3 to memory over 40 random trials in each cohort.
Percentage frequency coding ranges from light green (2.5%, i.e., 1/40) through blue (60% or 24/40), to purple (100%, i.e., 40/40).
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note that in each cohort, the signature TsROIs for neuropsychological

memory and ECog memory are similar, except for the absence of cau-

date in the UCD ECog memory signature. In sum, consensus signature

masks show decent resemblances for ADNI vs. UCD by outcome

domain, and strong similarities (high Dice and η2 scores) between out-

come domains by cohort of origin.

3.4 | Numerical similarity evaluation of discovery
cohort regions of interest

Table 2 provides numerical similarity measures for the signature maps.

Dice scores (Dice, 1945) measure the ratio of volumes in pairwise inter-

sections to unions of the two masks: DICE = 2 � jM1 \ M2j/jM1 [ M2j.
The maximum score is 1 when the two masks coincide. We performed

pairwise Dice measurements for color-coded regions of Figure 4

(i.e., t ≥ 3). η2 is a voxelwise measure similar to cross-correlation but

preferable in this instance because it is sensitive to local and global dif-

ferences in voxel-based magnitude (Cohen et al., 2008). Unlike the Dice

measure in this context, η2 gives a summary of the degree of overlaps

of individual color-coded levels (t = 3, 5, 7). It takes values from 0 to

1, with 1 indicating identical images.

3.5 | Overlaps of signature regions with brain atlas
parcellations

Table 3 shows the percent overlap of selected brain atlas regions

by consensus signature masks (t ≥ 3), in other words by all the col-

ored regions displayed in Figure 4. All four signature maps over-

lapped three medial temporal structures (amygdala, entorhinal

cortex, and hippocampus), at consistently high percentages of

those structures (roughly 60%–95%) and except for the two UCD

ECog signatures, around 45% of the caudate. The parahippocampal

gyrus was overlapped at mid-40% levels by the UCD signatures but

also consistently at lower percentages by the ADNI signatures.

Similar patterns are seen for the fusiform and inferior temporal

regions.

3.6 | Validation of signature model performance

Performance validation entailed the use of two additional data sets

that were disjoint from the discovery sets (see Table 1—(b) Validation

Cohorts). Fits were measured from adjusted R2 of regressions includ-

ing age, gender, and education as covariates (Equation 1). We first

examined the comparative performance of the ADNI and UCD signa-

ture models in 50 randomly chosen subsets of size 200 within each of

the ADNI and UCD validation sets. We then compared the model fits

of both signature models with fits from other commonly used predic-

tors of outcome in the full ADNI and UCD validation sets.

3.7 | Signature performance comparisons from
repeated trials in subsets of each validation set

Signature models generated from the ADNI and UCD discovery

phases were each evaluated in every subset of each validation cohort,

with model fit measured by adjusted R2. The results are plotted in

Figure 5. Scatterplot coordinates are x = R2 for the ADNI-derived sig-

nature models (R2ADNI) and y = corresponding R2 fit for the UCD sig-

nature models (R2UCD), yielding 50 points per plot. Complete ECog

memory data were not available in our ADNI 1 data consisting of

older scans, so we display only results for memory in that cohort.

The scatterplots reveal tight correlations of signature model fits

lying very close to the identity line (y = x with slope 1). Thus, although

there is a range of R2 values across the 50 trial subsets, fits of both sig-

nature models follow each other closely across the trials. This suggests

not only strong correlation but also good agreement. A Bland–Altman

analysis of the differences R2UCD � R2
ADNI versus (R2UCD + R2ADNI)/2

for neuropsychological memory, using 95% confidence intervals (CI),

showed a slight differential bias in favor of the ADNI-derived signature

model. In the ADNI validation set, the bias was 0.0015 but was not sig-

nificant. In UCD validations, the bias was 0.004 and barely significant.

Limits of agreement were slightly wider in ADNI but in both validation

cohorts most differences of model fits fell within a range of the bias

value ±0.02. Compared to the range of R2 values all above 0.2, this

suggests very good agreement between the signature measurements.

TABLE 2 Numerical pairwise
similarity scores for consensus regions.

ADNI_ECogMem UCD Mem UCD ECogMem

Dice pairwise similarity scores

ADNI Mem 0.812 0.535 0.446

ADNI ECogMem 0.553 0.464

UCD Mem 0.582

η2 pairwise similarity scores

ADNI Mem 0.926 0.804 0.756

ADNI ECogMem 0.809 0.761

UCD Mem 0.809

Note: Top: Dice, for single mask t ≥ 3. Bottom: η2 taking into account correspondence of t-value

locations.
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3.8 | Signature performance comparisons with
other models in the full validation sets

We examined the fit performances of each cohort consensus model in

each full cohort. Again, ECog memory data were incomplete for the

ADNI cohort, and those results are not shown. We compared signa-

ture model performances to those of brain regions figuring promi-

nently in the consensus models (see Table 2): entorhinal cortex,

amygdala, hippocampus, and caudate, and finally a model incorporat-

ing all four of these regions as predictors (FourROIs). To demonstrate

F IGURE 4 Consensus signature TsROI regions for memory (top) and ECog Mem (bottom) computed in each cohort. Based on 70% overlap
“consensus” at each of three t-levels of association: t = 3 (red), 5 (orange), and 7 (yellow).
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a baseline level of predicted variance from demographic factors alone,

we included fits for the model incorporating age, gender, and educa-

tion but no brain predictors. Results are displayed in Figure 6.

We note two main points. First, performances of the ADNI- and

UCD-derived signature models are almost identical in two

independent validation cohorts. This is consistent with the small

amount of differential bias found in the 50 repeated trials (Figure 5).

Our consensus models thus may have reduced within-discovery-set

versus out-of-set bias in performance, unlike the performances of sig-

nature models in our previous work (Fletcher, Gavett, et al., 2021),

TABLE 3 Top 15 regional atlas overlaps for consensus masks corresponding to t ≥ 3, sorted for the UCD memory signature overlaps.

ADNI 3 UCD

ECogMem Memory ECogMem Memory

Amygdala 0.94 0.93 0.91 0.98

Entorrhinal 0.72 0.74 0.78 0.77

Hippocampus 0.59 0.63 0.65 0.64

Parahippocampal 0.34 0.29 0.46 0.46

Caudate 0.47 0.43 0.03 0.44

Isthmus cingulate 0.19 0.12 0.12 0.29

Fusiform 0.14 0.13 0.31 0.26

Inferior temporal 0.10 0.07 0.49 0.22

Medial orbitofrontal 0.09 0.05 0.13 0.21

Insula 0.04 0.07 0.16 0.19

Pars orbitalis 0.0 0.0 0.06 0.18

Superior temporal 0.15 0.11 0.17 0.13

Lateral orbitofrontal 0.02 0.01 0.10 0.13

Transverse temporal 0.0 0.0 0.0 0.13

Middle temporal 0.03 0.02 0.21 0.12

Note: Entries show percentage overlaps of atlas anatomical regions by signatures.

F IGURE 5 Validation of signature model fits to outcome over 50 randomly selected subsets of size 200 in each validation cohort. Validation
cohorts are each disjoint from both discovery cohorts in which the signature models were computed. See the text and Table 1 for validation
cohort characteristics. Models of outcome are regressions on signature models, controlling for demographics (Equation 1). Plots are the adjusted
R2 fits. The x-coordinate of each point is the R2 value for the ADNI-signature model in a single validation subset and the y-coordinate is the R2

value for the UCD-signature in the same subset. Thus, for example, in the “ADNI Validation Cohort” panel, the leftmost blue point indicates that
the ADNI-derived signature has an adjusted R2 fit of about 0.21 to memory outcome, while the UCD signature has a fit of 0.22 in the same
validation subset. The dashed dark blue line is the identity y = x. Blue memory points show higher outcomes in UCD than the red for ECog
Memory, and higher than blue ADNI memory fits, due to demographics explaining less of the outcome variance in the latter two models (see
Figure 6). Complete ECogMem values were not available for the ADNI validation cohort, so only memory outcomes are shown in ADNI
validation.
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while also improving slightly on overall fit performance. Second, the

signature models performed better than all other models tested,

including the “FourROIs” model that used four atlas-based regions

most heavily overlapped by the signature regions. Also of interest,

the demographic models explained less of each outcome than all

other models, and their level of fit varied noticeably for different out-

comes and cohorts. Statistically significant differences of the signa-

ture performance with FourROIs varied, perhaps dependent on the

amount of contribution from the demographic variables. We tested

this next.

3.9 | Statistical significance of optimal
performance in validation sets

To test statistical significance of signature vs. FourROIs and entorhinal

model performance, we computed bootstrapped CIs for adjusted R2

differences of these two models in the full validation cohorts. For

models incorporating demographic covariates in the UCD validation

cohort, both the signature neuropsychological memory models were

better than FourROIs at the 80% CI level, and better than FourROIs

for ECog memory at the 90% level. Meanwhile in the ADNI validation

cohort, both signature models for memory were better than FourROIs

at the 99% level. The next highest performing model after FourROIs

was entorhinal. All signature models were significantly higher than

entorhinal at the 99% level. We then tested the hypothesis that

higher demographic variability in UCD (Table 1(b) Validation Cohorts)

was reducing the effects of the signature models. We performed

bootstrapping of other model differences in which one demographic

variable was removed. Removing age or education produced signifi-

cantly better signature performances at the 95% level. Removing gen-

der gave better performance at the 99% level.

3.10 | Interactions of signature variables with
diagnosis in validation sets

We performed regressions of outcome on demographic and signature

variables as in Equation (2), but now adding diagnosis (normal, mild

cognitive impairment, or dementia) and its interaction with signature

variables. In the UCD validation set, for each outcome of neuropsy-

chological and everyday memory, there were significant main effects

of diagnosis (p < .001) and each signature variable (p < .001) but no

significant interactions. In ADNI 1, there were significant main effects

of diagnosis and each signature variable (p < .001 in all instances) but

no significant interactions in models of neuropsychological memory.

ECog memory was not tested in ADNI.

3.11 | Comparisons with signature models derived
from discovery sets of different sizes

We compared the spatial extent of signature masks and model fit per-

formances for neuropsychological memory as outcome, using consen-

sus models generated by 40 random discovery subsets at sizes

100, 200, and 300 in each of the ADNI and UCD discovery cohorts.

Spatial extents, color-coded by t-levels of significant association, are

seen in Figure 7. Plots of adjusted R2 model performance are dis-

played in Figure 8.

From Figure 7, we note that spatial extents of consensus regions

show up first (at discovery size N = 100) in regions entirely contained

in the regions at larger N, and that these appear to expand outward

with increasing N. Regional selection thus appears to be spatially con-

sistent from low to high N, consisting largely of outward growth from

already selected regions. Meanwhile, regions appearing at lower

N values start to develop larger t-values with increasing N. Thus, from

F IGURE 6 Performance comparisons over full validation cohorts. “FourROIs” designates the model incorporating amygdala, entorhinal
cortex, hippocampus and caudate as multivariate predictors. “Demographic” is the model incorporating age, gender and education with no brain
variables. Fits of pure demographic models are shown for comparison and vary across outcomes and cohorts. All other models incorporated the
demographic variables plus brain variables as indicated. ECog memory outcome data for the ADNI validation cohort were not available.

3104 FLETCHER ET AL.



F IGURE 7 Consensus signature TsROI regions derived as in Figure 4, but using variable discovery set sizes (40 subsets at each size
level = 100, 200, and 300) in each discovery cohort. Top: ADNI discovery cohort. Bottom: UCD discovery. t-Levels of association: t = 3 (red),
5 (orange), and 7 (yellow). Compare these with the top two rows, second panels of Figure 4.

F IGURE 8 Performance comparisons for model fit of neuropsychological memory over full validation cohorts for signature models generated
by discovery subsets of sizes as indicated. Compare these with the neuropsychological memory components of Figure 6.
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size 300 to 400, very little new extent is added but t-levels of associa-

tion increase within regions already present at 300 and lower N. In

the larger ADNI cohort we also implemented models at N = 500 and

600. These corroborated this pattern (data not shown).

In Figure 8, performances are uniformly high at all discovery sizes,

although N = 100 model fits are the lowest. Interestingly, all consen-

sus models here (even N = 100) outperform any competing nonsigna-

ture model (Figure 6). For other set sizes, the performances are very

close to N = 400, and surprisingly, slightly higher than N = 400 in

some models at size 200 or 300. At all set sizes, consensus models

derived from UCD and ADNI discovery perform very similarly in both

validation cohorts, suggesting minimal bias due to overlearning in the

cohort where derived.

4 | DISCUSSION

4.1 | Summary of method and results

This project had two aims. First, we conducted a rigorous statistical

validation, based on multiple tests of replicability, of the exploratory

voxel-based signature approach documented in our recent publication

(Fletcher, Gavett, et al., 2021). Second, we aimed to extend the

exploratory approach beyond neuropsychological memory to the out-

come domain of everyday cognition (Farias et al., 2008; Farias

et al., 2013), investigating similarities in brain GM substrates for these

outcomes. By these, we aimed to show that reproducible brain signa-

ture phenotype generation was feasible using discovery from moder-

ately large datasets.

4.2 | Spatial and model fit replicability

In each of two cognitively heterogeneous discovery cohorts, 40 inde-

pendent computations of ROIs associated to outcome showed high

spatial replicability (Figure 3), allowing us to designate consensus

regions by cohort (Figure 4). Signature models computed from cohort

consensus regions achieved model fits of outcome that were highly cor-

related across 50 randomly chosen subsets in validation cohorts disjoint

from the discovery cohorts (Figure 5). We thus leveraged spatial replica-

bility across multiple trials to create consensus signature models having

high model fit replicability, suggesting validation of these signature

regions as useful brain measures. Finally, we found that these signature

models achieved better explanations of outcome variance than other

plausible and standardly used models (Figure 6), while also reducing in-

set vs. out-of-discovery-set performance bias (Marek et al., 2022) that

was present in our previous work (Fletcher, Gavett, et al., 2021).

4.3 | Minimizing discovery set bias

A crucial issue in data-driven approaches is the tendency to overlearn

the training set, leading to inflated estimates of model performance

within the training set and poorer estimates in other sets. Although

the discovery and validation sets in our experiments were disjoint,

they nonetheless shared educational and racial/ethnic representation

of the imaging cohort from which they were drawn, and these differed

between UCD and ADNI (Table 1). Racial/ethnic categories can have

significant effects on cognitive outcomes, perhaps because they

encompass multiple factors that are difficult to account for individu-

ally (Gavett et al., 2018). Thus, we might expect a signature model

trained in one cohort to perform better than the model trained in the

other cohort, when explaining outcomes within its own cohort. How-

ever, our results indicated similar performance of both signature

models in both cohorts (Figure 6), suggesting that the consensus step

succeeded in reducing overlearning and supporting generalizability.

4.4 | Brain GM substrates of neuropsychological
and everyday memory

Brain GM consensus regions for neuropsychological memory strongly

overlap structures already known to be associated with this domain

(Table 3). Structures most strongly overlapped were amygdala, ento-

rhinal cortex, hippocampus, and caudate. These are structurally and

functionally connected (Fjell et al., 2015; Fjell et al., 2016). The hippo-

campus and entorhinal cortex are part of a network dedicated to

memory and spatial function (Rolls, 2015) and the amygdala is

involved in memory-related emotion (Catani et al., 2013; Rolls, 2015).

The caudate nucleus, on the other hand, is involved in memory-

related navigation strategies alternative to those using the hippocam-

pus (Aumont et al., 2019; Bohbot et al., 2007; Bohbot et al., 2011).

Therefore, while these are not new findings of the signature approach,

they do suggest a validation in established theory, supporting confi-

dence that our approach can be used to accurately delineate brain

substrates of other behavioral domains.

Application to another domain was our second aim, leading to our

signature model for ECog memory. We note similarities of neuropsy-

chological memory and ECog memory brain signatures (Figure 4 and

Table 2), with one exception of missing caudate for the UCD ECog

signature. This may suggest shared brain GM substrates, including

medial temporal regions for both memory outcomes (Figure 4), and

lesser but consistent overlaps with isthmus cingulate (Table 3). Overall

signature similarities exist between both outcome domains despite

the fact that neuropsychological memory (Mungas et al., 2004; Mun-

gas, Reed, Haan, & Gonzalez, 2005) and ECogMem (Farias

et al., 2008) are evaluated by different metrics (the version of ECog

used here relies on third-person informant reports). Earlier research

has found correlations of ECog memory with brain measures (hippo-

campal and total brain volume, dorsolateral prefrontal cortex) and

neuropsychological memory (Farias et al., 2013). Our findings for sig-

nature regions of ECog memory are roughly consistent with the previ-

ously found regional associations, suggesting a validation for these

findings. A potentially new finding, therefore, is that neuropsychologi-

cal memory and ECog memory share similar brain GM substrates, with

about the same strengths of association to these substrates.

3106 FLETCHER ET AL.



Our findings are relevant to questions of brain substrates for

memory-related cognitive decline and Alzheimer's disease. The initial

stages of Alzheimer's-related decline show brain atrophy patterns sim-

ilar to normal aging but of higher magnitude, suggesting a “normalcy-

pathology homology” (Fjell et al., 2014). Early stages of AD involve

atrophy in memory-related temporal lobe structures (Fletcher

et al., 2018), spatially resembling atrophy patterns of healthy normal

aging that are known to accompany normal decline of memory (Fjell

et al., 2013). Our signatures of brain memory substrates may there-

fore also be useful as signatures of incipient AD. Work is currently

underway to test this concept for predicting MCI-AD conversion.

4.5 | Fit performance and spatial comparisons for
consensus models derived from different discovery set
sizes

The spatial results (Figure 7) suggest an accretion outward with

increasing discovery size N, while regions that are present earlier

develop larger t-values. Thus, various N values do not produce funda-

mentally inconsistent consensus regions. The lowest size N = 100

selects regions that are highly associated to outcome, and those are

both confirmed (by higher t values) and accreted outward with subse-

quent N. Accretion appears to slow down at higher N. We were unable

to perform experiments using N > 400 in UCD, because of limits of

our overall discovery cohort sizes. We hypothesize, however, that

these might show a convergence to a relatively stable set of selected

regions, with t growing stronger within existing regions, while continu-

ing growth outward is small. This is consistent with observation that t-

values grow at a rate of √N in regions of high association between

brain and output (Marek et al., 2022; Schönbrodt & Perugini, 2013),

but at slower rates in regions of lower associations. The idea of spatial

convergence is consistent with findings that correlations begin to sta-

bilize at sample sizes around 250 (Schönbrodt & Perugini, 2013).

For model fit performance, we expected that the lowest fits

would occur at N = 100. This was true, but surprisingly, those fits still

outperformed other competing models (see Figure 6). More surprising

was that some model fits at N = 200 or 300 were better than at

400 (Figure 8). We expected a monotonic increase with N, perhaps

approaching an asymptote. We hypothesize that higher model perfor-

mance (if only by a small amount) may result from discovery subsets

that overlap less at N = 200 or 300 than at higher N in our discovery

cohorts. With less overlap, there may have been more variability and

less overlearning of the same features, leading to increased ability to

generalize in test sets. This would suggest a limitation imposed by the

size of the overall discovery cohort.

In sum, low discovery size selects consensus regions that are still

highly associated to outcome, and these appear to grow outward with

increasing N, with regions and model fit performance both tending

toward a stable state. Deviations from this pattern may occur at a

threshold imposed by the overall discovery cohort size, such that

values of N beyond the threshold may result in overlearning of

repeated patterns and reduced generalizability to new sets. In this

analysis, drawing from imaging cohorts of much larger size could

enable discovery sets of greater N before excessive overlap causes

diminishing returns. Our method might then converge toward a more

stable consensus, explaining more of the brain-outcome association

by further reducing the effects of incidental noise, while delineating

more clearly the contributions of nonbrain factors.

Our model thus appears to work well with discovery cohorts of

the sizes we used. It may work better with larger cohorts. It would be

interesting to see results from using a very large dataset like the

U.K. Biobank (Littlejohns et al., 2020; Sudlow et al., 2015), enabling

discovery subsets of sizes in the thousands with very little mutual

overlaps.

4.6 | Relations to previous signature models

In the signature models of our previous study (Fletcher, Gavett,

et al., 2021), cross-validation was performed in each of three indepen-

dent cohorts. In this work, we found consistency and replicability over

50 randomly selected sets in two independent validation cohorts, and

over those full cohorts as well. Comparative whole-cohort model fits

displayed in Figure 6 are in line with those found in our previous work,

although our current adjusted R2 are somewhat higher overall. This

suggests that the consensus step introduced here may have enhanced

the model fits of our previous work, while also providing verification

of replicability.

The recent empirical examination of signature replicability

(Masouleh et al., 2019) suggested the multiple trials approach we fol-

lowed. That work reported little replicable association between brain

and behavior in a cognitively normal cohort, but found some regions

selected by more than 70% of the trials for brain GM associations

with short-term memory in a cognitively mixed, clinical cohort. Reas-

suringly, many of their selected regions in the clinical cohort appear

similar to our consensus signature TsROIs. We thus may have corrob-

orated their results for a cognitively mixed cohort, and with even

stronger associations, perhaps due to our use of larger discovery set

sizes, consistent with the recommendations of that work.

4.7 | Relations to brain atlases and theory-driven
models

High quality brain image parcellation atlases, for example, (Klein

et al., 2017; Manera et al., 2020) have many benefits. They may be

used directly in arbitrary study cohorts to implement “theory-driven”
models based on accumulated findings on the relationship of brain

structures to behavior. They do not require computational search pro-

cedures or verification of replicability. They constitute a form of “data
reduction” that is valuable for constructing tractable models. On the

other hand, atlas regions do not necessarily align with networked

locations that underlie behavioral outcomes of interest (Jolly &

Hampshire, 2021) and this may explain why their explanatory perfor-

mance is generally lower than that attained by signature models, seen
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in Figure 6. Recent efforts have incorporated both atlas and explor-

atory concepts by searching lists of atlas ROIs for a subset that opti-

mally explains an outcome of interest (Epelbaum et al., 2018; Schwarz

et al., 2016). However, using predefined atlas regions may not accu-

rately reflect the association of ROI subregions, rather than full ROIs,

with an outcome of interest. The FourROIs model (Figure 6) is a case

in point. Though it incorporates the four atlas regions most heavily

overlapped by our signature masks, its fit performance was still lower

than the signatures. The exploratory signature approach may there-

fore achieve greater precision and sensitivity (i.e., selecting only rele-

vant regions that communicate with each other for behavioral

outcomes) (Genon et al., 2018; Jolly & Hampshire, 2021).

4.8 | Strengths and limitations

An important strength of the signature approach is that it proposes

hypothesis-free, exploratory computation of brain regional measures

maximally associated to outcome (Bakkour et al., 2009; Dickerson

et al., 2009; Fletcher, Gavett, et al., 2021; Jolly & Hampshire, 2021).

However, achieving this promise necessarily incurs conceptual and

technical issues that must be addressed. First, a definitive brain signa-

ture of an outcome may not even exist, due to inter-individual vari-

ability and the lack of repeatability even within individuals regarding

brain-behavior relations (Genon et al., 2018). Second, poor replicabil-

ity and lack of association between brain and outcome, especially in

healthy populations, may challenge the achievability of the signature

concept (Masouleh et al., 2019). Third, behavioral outcomes depend

on multifactorial arrays of brain and nonbrain factors that are difficult

to fully account for (Habes et al., 2020).

These considerations suggest that there could be a ceiling for

how much behavioral variance can be explained by brain models.

However, the exploratory signature approach may be useful here,

since rigorously derived signatures could indicate where that ceiling

lies. A relevant example is cognitive reserve (CR), a construct explicitly

aimed at quantifying differences between observed behavioral vari-

ance and predictions by brain models (Reed et al., 2010; Stern, 2012;

Stern et al., 2018; Zahodne et al., 2013). By generating improved esti-

mates for outcome variance explainable by brain measures (thereby

putting more accurate limits on what is not CR), the signature

approach could refine the quantification of CR, leading to more pre-

cise hypotheses of what other factors may be associated with it.

Given the many brain factors relevant to behavioral outcomes, an

appropriate implementation of the signature approach may come from

machine learning. This approach is capable of accounting for interac-

tions between many more factors than human-constructed models

could incorporate (Dinsdale et al., 2020). Machine learning entails its

own challenges, including the need for very large data sets (Fletcher,

Decarli, et al., 2021) and an opacity of output that may not be readily

interpretable or accessible to human understanding (Böhle

et al., 2019). But it may be a feasible path toward more powerful

models. Future research from our group will aim to implement this

approach.

One aim of our current effort has been to address the spatial and

fit replicability issues raised by (Masouleh et al., 2019). A limitation of

the randomly selected subset technique is the tradeoff between lack

of independence (degree of overlap) of subsets and the need for

larger discovery sizes to facilitate better learning. From tests of three

levels (30, 50, and 70 percent of the full cohort), Masouleh et al. found

the best spatial replicability in discovery subsets of the largest size, at

70% of the full cohort or about 326 participants. In other words,

larger discovery size outweighed greater overlap of discovery sets.

Our ADNI discovery cohort subsets were less than 50% of the total

cohort and therefore had smaller overlaps, while our UCD discovery

subsets were 70% of the UCD cohort, with the same overlaps as in

Masouleh et al. Thus, using discovery subsets of equal or smaller pair-

wise overlaps, and larger absolute size (N = 400 each), our results

appear to be stronger than theirs, both for spatial replication of

selected regions and for fit replication in separate validation sets.

Nonetheless, there remain unexplained spatial differences between

signatures generated in different cohorts (Figure 4 and Tables 2 and

3), and further work with larger sample sizes may help clarify this

issue.

The role of demographic variables also raises issues for further

work. Pure demographic models explained different amounts of out-

come across outcome and cohorts (Figure 6). This probably contrib-

uted to varying signature model fits by outcome and validation set.

Furthermore, demographic variables “diluted” the explanatory power

of the signature variables in UCD, so that signatures were significantly

better than the next best model in ADNI but not in UCD. These

observations may be due to ADNI cohorts being more demographi-

cally homogeneous (Table 1), with less demographic variance to

explain outcome than in UCD. Brain associations with behavioral out-

comes are known to differ by racial/ethnic group (Gavett et al., 2018).

Other nonbrain variables than age, education and gender may also be

relevant in models of outcomes. These suggest future lines of

research aimed at exploring the interactions between brain signatures

and other variables.

5 | CONCLUSION

We have conducted a refinement and rigorous validation of our previ-

ously described method, along with extending it to a second behav-

ioral domain. First, our results support the feasibility of generating

behavior-related brain signatures that depend minimally on discovery

set and can be used as robust GM brain phenotypes. Remaining dif-

ferences in spatial and fit replicability suggest further investigation

with larger datasets, to explore cohort-based differences in signature

models and develop signatures incorporating multiple brain measures

beyond GM. Second, we found that GM brain substrates for neuro-

psychological and everyday function memory are convergent. This is a

new finding that warrants further exploration.
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