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RESEARCH ARTICLE

Who Is Who Matters—The Effects of Pseudoreplication in Stable Isotope
Analyses

ROGER MUNDRY* AND VICKY M. OELZE
Max Planck Institute for evolutionary Anthropology, Leipzig, Germany

Stable isotope analysis in free-ranging primates is a promising new avenue in reconstructing feeding
niches and temporal dietary variation. Particularly, the large sample sizes obtained from non-
invasively collected hair and fecal samples from nests of great apes offer great potential. However,
analyzing repeated observations of the same individuals without controlling for potential differences
among them means to “pseudoreplicate” and can lead to a greatly inflated probability of erroneous
significance. We here test the effects of pseudoreplication in stable isotope data of great ape hair by
means of simulations. We show that pseudoreplication can severely affect the probability of erroneous
significance as well as non-significance. We suggest several strategies to avoid pseudoreplication in
primate isotope ecology. First, if applicable, information on individual identity should be included in
statistical analyses. Second, if samples derive from unhabituated animals, sampling at far apart
locations or territories should avoid resampling of the same animal. In great apes, sampling of
independent nests within nest groups can ensure that each sample derives from a different individual.
Third, we encourage the combination of genetic surveyswith sampling for isotope analyses to ensure the
(genetic) identification of individuals. Am. J. Primatol. © 2015 Wiley Periodicals, Inc.
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INTRODUCTION
The investigation of stable isotope ratios in

primate ecology has gained increased popularity in
recent years [Blumenthal et al., 2012; Crowley et al.,
2014; Fahy et al., 2013; Loudon et al., 2014; Oelze
et al., 2011, 2014]. The first studies in this field have
used measurements in bulk hair samples from
unhabituated populations to make broad estimates
of feeding behavior, including the consumption of
C4-plants in savanna chimpanzees and the feeding
niche of arboreal primates [Schoeninger et al., 1997,
1999; Sponheimer et al., 2006]. More recently, the
application to habituated primate populations could
relate the isotopic response measured in primate
tissue samples (hair or dung) to observational data on
focal communities to infer about dietary sex differ-
ences, the frequencies ofmeat consumption and inter-
annual dietary variation. So far, these studies have
been limited to habituated groups of great apes and to
mouse lemurs [Blumenthal et al., 2012;Crowleyet al.,
2014; Fahy et al., 2013; Oelze et al., 2011].

Only very recently stable isotope analysis has
been extended to semi- and unhabituated great apes
to reconstruct feeding niche and temporal variation
in feeding behavior. Oelze et al. [2014] investigated
the hair isotope ratios in sympatric gorillas and
chimpanzees fromGabon and found isotopic evidence

for feeding niche separation that was varying
between seasons. Such investigations in unhabitu-
ated and, thus, elusive primates are very appealing
because they have the potential to infer, for instance,
feeding niches, niche partitioning, hunting and meat
consumption, insectivory, dietary sex differentiation
and the relevance of specific plant foods such as
C4-plants, legumes, terrestrial herbaceous vegeta-
tion or gum [Blumenthal et al., 2012; Crowley et al.,
2014; Fahy et al., 2013; Oelze et al., 2014; Schoe-
ninger et al., 1999], as well as human-primate
conflicts such as crop raiding [Loudon et al., 2014].
Particularly hair is a convenient sample matrix, as it
is not prone to degradation or contamination but
records and retains an isotopic signature related to
the diet over long periods of time [Cerling et al., 2009;
Oelze et al., 2011; Schwertl et al., 2005]. For example
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in apes, one hair sample can shed light on the feeding
behavior of a single individual over a period of 6–10
months [Oelze et al., 2014]. At the same time,
sampling of hair can be conducted strictly non-
invasively or minimal invasively [Oelze, This vol-
ume]. Particularly in great apes, hair samples can be
obtained in sufficient amounts from sleeping nests in
the absence of the study subjects. As great apes
commonly build a new nest on a daily basis and nest-
reuse is rare [Fruth & Hohmann, 1996], each hair
sample collected in a nest represents a single
individual and its recent isotopic profile. However,
for hair (or dung) samples taken from free-ranging,
unhabituated individuals the identity of the sampled
individual will be unknown. As a consequence, a
corresponding study might suffer from “pseudorepli-
cation” [Hurlbert, 1984].

Pseudoreplication refers to treating data points
in a statistical analysis as if they were independent
although, in fact, they are not [Hurlbert, 1984]. In
this study, we focus on scenarios with repeated
observations of the same individuals and treating
them in the statistical analysis as if they were
independent (i.e., from different individuals). Most
studies dealing with the consequences of pseudor-
eplication addressed the case of having repeated
observations of the same individuals and ignoring
them in an analysis of the effects of a predictor which
varies between individuals (e.g., species or sex), and
these publications found that pseudoreplication can
lead to a greatly inflated type I error rate (i.e.,
increased probability of erroneous significance [e.g.,
Hurlbert, 1984; Machlis et al., 1985; Mundry &
Sommer, 2007]). Pseudoreplication is now widely
recognized as an issue in research fields as diverse as
ecology, medical research and linguistics (to mention
just a few). On the other hand, still today some
ignorance toward pseudoreplication issues can
be found in the published literature, and it is still
quite common in certain research fields (see Waller
et al. [2013] for the example of animal communica-
tion research).

Basically, there are two ways of accounting for
pseudoreplication.Thefirst is toaverage themeasures
per individual (or whatever the source of non-
independence is), an option only applicable when the
keypredictorvariesbetween individualsandwhenthe
sample sizewith regard to thenumberof individuals is
sufficiently large. The other approach is to control for
subject identity in the statistical analysis. This is only
possible in habituated communities of primates, for
which individuals can be identified during direct
observations or nest to nest follows [see Oelze, This
volume]. Classical statistical tools controlling for
individual identity are procedures for “paired” or
“related” data (e.g., Wilcoxon matched pairs-, Fried-
man-, McNemar-, Cochran’s Q- and paired samples
t-test, as well as repeated measures ANOVA [e.g.,
Quinn&Keough, 2002; Siegel &Castellan, 1988; Zar,

1999]). Recently, Mixed Models [e.g., Baayen, 2008;
Bolker et al., 2008; Gelman&Hill, 2007] have rapidly
gained popularity in primate ecology research and
other fields. Mixed Models greatly outperform the
aforementioned classical tools because of their far
superiorflexibilitywithregard to thedatadesigns that
can be analyzed and the assumptions about the data
(or precisely, “residuals,” i.e., deviations of the
observations from the model).

In stable isotope studies of wild animal popula-
tions, pseudoreplication is probably a common risk
because researchers might frequently not know from
which particular individuals the samples they collect
originate. Also, due to the logistical constraints of
working in remote regions difficult to access,
sampling will usually take place in a small area,
increasing the risk of sampling from the same
individuals repeatedly. In this paper we treat the
consequences of pseudoreplication with a particular
focus on stable isotope analyses in free-ranging
primates, particularly great apes. More specifically,
we deal with the effects of pseudoreplication on the
results for predictorswhich vary between individuals
(e.g., species, sex, or age) as well as on the level of
predictors which vary within individuals (e.g.,
temporal variation in food availability or, more
generally, “seasonality”). We address these issues
by simulating pseudoreplicated data and then
analyzing them while ignoring pseudoreplication
as well as using methods accounting for the non-
independence of the data and then comparing the
results. Since Mixed Models are an essential tool for
analyzing pseudoreplicated data we also give a very
brief introduction toMixedModels.We concludewith
recommendations for future study designs.

METHODS
Since no live animals served as subjects in this

study (i.e., all simulated data sets were based on
already published stable isotope data [Fahy et al.,
2013; Oelze et al., 2011]). The current study did not
require reviewbyan institutional animal care anduse
committee (IACUC) or its equivalent. The research
protocols of thestudies fromwhich thedataoriginated
met the legal requirements of the countries in which
the studies were conducted, and adhered to the
American Society of Primatologists Principles for
the Ethical Treatment of Nonhuman Primates.

We used simulations to assess the impact of
pseudoreplication on type I and type II error rate.
Making a type I error means to incorrectly reject a
true null-hypothesis, whereas making a type II error
means failing to detect an effect although it is
present. The advantage of using simulations is that
one knows exactly which effects do and do not exist,
and, hence, can evaluate a model’s reliability by
comparing its results with what one knows about the
data. For instance, one can simulate data with no
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differences between sexes and then determine the
probability for a model to reveal significant sex
differences despite their absence, and how this
probability is affected by pseudoreplication.

All data were generated in R (version 3.x; R Core
Team, 2014; http://www.r-project.org/). Throughout,
we simulateddata consisting of “hair section samples”
(hereafter “hairs”) sampled from “individuals”. We
systematically varied the number of hairs sections
sampled per individual, the amount of variability in
the response (stable carbon and nitrogen isotope
ratios) that is due to differences between individuals
and between hair sections sampled from the same
individual, and the residual variance (i.e., random
fluctuationsandmeasurementerror in isotoperatios).
We analyzed the simulated data using pseudorepli-
cated analyses (ignoring individual identity) and also
conducted analyses appropriately accounting for
individual identity and compared the results. We
focused our assessments of model reliability on a
between subjects factor (“sex”) and a within-subjects
factor (“season”). In simulation 1 we generated data
with no impacts of sex or season in order to assess how
type I error rates for a between- and awithin-subjects
predictor are influenced by pseudoreplication. In
simulation 2 we focused on the impact of pseudor-
eplication on the type I error rate obtained for the
within-subjects effect of season, this time simulating-
temporal autocorrelation of isotope ratios within
hairs (simulation 2a) and within individuals (simu-
lation 2b) but no overall effect of season. In
simulation 3, we focused on type II error rate,
this time simulating effects of season that act on
different individuals and hairs in the same way. In
the final simulation we assessed how our results
could be affected by imbalanced sampling (i.e.,
varying numbers of hairs sampled per individual).

Simulated data were based on published stable
isotope data from habituated (and thus identified to
individual level) great apes (see ethics statement
above). These included data from free-ranging
bonobos from Salonga National Park [Oelze et al.,
2011] and western chimpanzees from Ivory Coast
[Fahy et al., 2013]. In these datasets dietary
differences between the sexes were investigated
and temporal variation in the isotope signatures
was described. From these datasets we extracted
the following data settings: We set the average
isotope ratios of individuals (after controlling for
differences between hair sections) to be normally
distributed with a standard deviation of sdind, the
average isotope ratios of hairs to be normally
distributed (after controlling for differences be-
tween individuals) with a standard deviation of
sdhair, and the residuals to be normally distributed
(after controlling for differences between individu-
als and hairs) with a standard deviation of sderror.
In the most simple version of the simulation the
response was then generated by adding three

random numbers drawn from three normal distri-
butions, that is,

response ¼ random normalðsdindÞ
þ random normalðsdhairÞ
þ random normalðsderrorÞ ð1Þ
Aresponse generatedaccording toEq. (1) does not

vary between sexes nor does it show any seasonal
variation and hence no effects of these two predictor
variables should be detected by a corresponding
statistical model. More precisely, across a number of
simulated data sets, the proportion of models reveal-
ing significance for, e.g., sex should roughly equal
0.05, the expected type I error rate. If pseudoreplica-
tion were no issue, the type I error rate should be
unaffected by whether the analysis accounts for
pseudoreplication or not, but if pseudoreplication is
an issue, an analysis not accounting for it should
reveal an elevated type I (or type II) error rate.

Simulation 1: Type I Error Rates
In the first simulation we aimed to address the

impact of pseudoreplication at the level of the
individual on type I error rate. We therefore
simulated data sets in which individuals provided
repeated hairs.We systematically varied the number
of hairs per individual from 2 to 8 (increment 2)
which is realistic according to previous studies on
great apes.We also systematically varied sdind from0
(i.e., no differences between individuals) to 1 (with an
increment of 0.2). We also systematically varied the
values of sdhair and sderror from 0.2 to 1 (with an
increment of 0.2). We generated the response
according to Eq. (1). The particular values for sdind,
sdhair, and sderror were chosen because amixedmodel
testing for differences between two species (bonobos
and chimpanzees) and sexes indicated them to be
roughly in this order of magnitude. The number of
simulated individuals was set to 50.

After the response was generated, we simulated
two predictors to be tested, namely sex and season.
The predictor of sex we generated by randomly
allocating each individual to either sex. For
simulating the predictor season we first assigned
each hair a sampling date by randomly drawing
numbers from a uniform distribution with a
minimum of 1 and a maximum of 365. Note that
this means that hairs of the same individual were
sampled independently with regard to date. The
individual sections of the hairs we then assumed to
each correspond to 1 month of growth [Oelze, This
volume], and each section was assigned a date
according to its midpoint. The number of sections
(i.e., months) per hair we randomly sampled from
an empirical distribution encompassing values
between 1 and 9 (Appendix Fig. S1). We then
tested each of the simulated data sets using a model
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ignoring individual identity and one that does
appropriately account for it (see below for details).
If pseudoreplication is no issue, we would expect the
proportion of significant P-values obtained from
these tests to be 0.05, regardless of the particular
combination of simulation settings and whether the
model controls for pseudoreplication or not.

Simulations 2a and b: Type I Error Rates in
the Presence of Autocorrelation

The first simulation addressed type I error rates
in the complete absence of any effects of the within-
(season) and between-subjects (sex) predictor. How-
ever, it seems plausible that consecutive measures
taken from the same hair show some trend or
autocorrelation. Thus, we conducted the second
simulation to assess whether such a temporal non-
independence (within hairs, simulation 2a; and
within individuals, simulation 2b) could affect type I
error rates for the effect of season. The key aspect of
simulation 2a was that we added temporal autocorre-
lation within hairs. Such temporal autocorrelation
could, for instance, happen when individuals go
through periods of physiological stress and when
the period of growth is unknown for the individual
hairs or when the physiology of hair growth affects
hair isotope ratios. We simulated such temporal
autocorrelation by adding the sine of the date
corresponding to the midpoint of the respective hair
section (as a circular variable). So the response
generating function for this simulation was

response ¼ random normalðsdindÞ
þ random normalðsdhairÞ
þ d� cac � sineðsection midpointÞ
þ random normalðsderrorÞ ð2aÞ

where cac is an “autocorrelation” parameter that we
systematically varied from 0.2 to 1 (increment 0.2) in
the simulation and d is either -1 or 1 (randomly
chosen for each hair) having the effect that the
resulting curve begins with an increase or decrease,
respectively. It is important to note that the sine
function was determined relative to the length of the
hair but not related at all to an absolute periodicity
being parallel across hairs. So an overall effect of
seasonalitywas not created (since each hairwas later
assigned a sample date by randomly drawing an
integer from the interval between 1 and 365).

While each hair showed a pattern of temporal
autocorrelation in simulation 2a thatwas by definition
independent to that of other hair samples, even from
the same individual, in simulation 2b we set hair
samples of the same individual to show the same
annual periodicity in the sense that each individual
went through its own annual periodicity. Specifically,
eachhairwasassignedadatewhen itwas sampledand

different hairs of the same individual then followed the
same periodic pattern with a period duration of 1 year.
Hence,periodicities of different individuals showed the
same period duration of 1 year but were not “parallel”
in the sense that peaks and valleys did not fall on the
same period of a year. Specifically, the response
generating function for simulation 2b was

response ¼ random normalðsdindÞ
þ random normalðsdhairÞ
þ d� cac � sineðindividual phase
þ hair start dayþ hair section midpointÞ
þ random normalðsderrorÞ ð2bÞ

where individual phase and hair start daywhere both
integer numbers randomly chosen from the interval
from 1 to 365, and individual phase was the same for
all hairs of a given individual, and hair start day was
the same for all sections of a given hair. The value of d
was again either -1 or 1 (randomly chosen), but this
time the same for all hairs of a given individual.

Simulations 2a and b additionally differed from
simulation 1, as we varied the number of individuals
from 10 to 50 (increment: 10), the number of hairs per
individual where 1, 2, 4, 6, or 8, and the value of cac
(Equation 2a and 2b) we varied from 0.2 to 1
(increment: 0.2). We set the other three parameters
(sdhair, sdind, and sderror) to a fixed value of 0.5 each.
The models implemented were the same as in
simulation 1, with the exception that here we did
not include a fixed effect of sex. As in simulation 1, if
pseudoreplication would have no effect we would
expect the proportion of significant P-values obtained
fromthese tests tobe0.05 (regardless of theparticular
combination of simulation settings and whether the
model controls for pseudoreplication or not).

Simulation 3: Type II Error Rates When
Testing Seasonality

Simulation 3 addressed whether pseudoreplica-
tion at the level of individual can affect theprobability
of detecting an effect of a predictor that actually has
an effect and varies within subjects. The response
generating function was almost identical to that used
for simulation 2,with the exception that in simulation
3 we implemented a “real” seasonal effect, namely

response ¼ random normalðsdindÞ
þ random normalðsdhairÞ
þ cseason � sineðhair start day
þ section midpointÞ
þ random normalðsderrorÞ ð3Þ

where hair start day was drawn from a uniform
random distribution with a minimum of 1 and a
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maximum of 365. Note that this simulation reveals a
response actually varying seasonally in a parallel
fashion across individuals. The key question in this
simulation was whether or to what extend the
model’s ability to detect such a seasonal variation
depends on the relative magnitude of seasonal
variation, the magnitude of differences between
individuals, the number of hairs per individual and
the lengths of the individual hair samples. Hence, we
systematically varied the value of cseason from 0.2 to 1
(increment: 0.2) and the value of sdind from 0 to 1
(increment: 0.2). Furthermore, we systematically
varied the number of hairs per individual from 2 to 8
(increment: 2) and the lengths of the individual hairs
from 1 to 10 (unit: sections; increment: 1). The values
of sdhair and sderror we set to fixed values of 0.5.

Other than in simulations 1 and 2 we this time
expected that season would reveal significance for a
considerable proportion of models, and, if pseudor-
eplication on the level of individual were no issue,
that these proportions would not be affected by
whether it is controlled for or not and also not by the
parameters we systematically varied (cseason, sdind,
number of hairs per individual, lengths of the
individual hairs). The models fitted for data from
this simulation were identical to those models fitted
for simulation 2 (see below for details).

Simulation 4: Unbalanced Sample Sizes
Until now our simulations assumed equal

numbers of hairs per individual as we focused on
the effects of pseudoreplication. However, realistic
data sets from free-ranging primates would most
likely vary in the number of samples obtained from
each individual. In order to assess to what extend
such unbalanced contributions of individuals affect
type I and type II error rateswe repeated simulations
1 and 2b from above but with unbalanced contribu-
tions of individuals. Sample sizes per individual were
determined by randomly sampling from a population
of 50 individuals, but varying the total number of
samples drawn from 20 to 100 (increment: 10).
Throughout these simulations we set each of the
values of sdind, sdhair, and sderror to a fixed value of
0.5 and in the simulation replicating simulation 2b
also cac. Apart from that we used the same methods
as described for the respective simulations above. In
these simulations a few models did not converge
which we excluded from the evaluation of the results.

Implementation
We simulated the data in R (version 3.x; R Core

Team, 2014; http://www.r-project.org/) using the
functions “runif” and “sample.” In each simulation
we generated 1,000 data sets per combination of
values of the respective parameters varied (e.g.,
sdind, sdhair, and sderror in simulation 1).

How simulation parameters translate into stable
isotope ratios can be directly inferred from the values
simulated (e.g., sdind, sderror, etc.). For instance, the
simulated difference between sexes in simulation 1
and the simulated effects of season in simulation 1
and 2 were all zero, meaning that isotope values did
not differ at all between sexes or vary seasonally. The
simulated changes in isotope ratios from the low to
the high season in simulation 3 equaled twice the
value of cseason (i.e., ranged from 0.4 to 2). Obviously,
these numbers can only be interpreted in relation to
the magnitude of variation between individuals
(sdind), hairs of the same individual (sdhair) and
sections of the same hair (sderror) or also the
magnitude of the effect of autocorrelation within
hairs or individuals (sdind; simulation 2a and b,
respectively). Using simulation 2b as an example in
which sdhair, sderror, and sdind were all set to a fixed
value of 0.5, a value of cac being 0.2 means that the
within individuals magnitude of change in stable
isotope ratios per half a year that is due to
autocorrelation is roughly corresponding to the
standard deviations of the means per individual,
means per hair within individuals and individual
sections within hair.

Statistical Analysis
After a data set was generated using the above

simulations we analyzed it by running a Linear
Mixed Effects Model with sex (simulation 1 and 4)
and season (sine and cosine of date converted into
a circular variable) as fixed effects and hair ID as a
random intercept as well as random slopes [Barr
et al. 2013; Schielzeth & Forstmeier, 2009] of
season within hair ID. As an overall test of the
combined effects of the two test predictors season
and sex (simulations 1; [Forstmeier & Schielzeth,
2011; Mundry, 2014]) we compared this model with
a null model comprising only the random effects
(intercept and slopes) using a likelihood ratio test
[Dobson, 2002]. Furthermore, we derived individ-
ual P-values for season and sex by comparing the
full model with two respective reduced models
lacking either the fixed effect of sex or the two fixed
effects representing season [Barr et al., 2013].
Since such a model does not account for potential
differences between individuals it represents a
pseudoreplicated analysis.

If pseudoreplication had no effect we would
expect the proportion of significant full-null model
comparisons and full-reduced model comparisons
obtained from these tests to be 0.05 in simulations 1,
2, and 4 (since in these we simulated the response
disregarding any effects of sex (simulations 1 and 4)
or season), regardless of the number of hairs per
individual or the different values of sdind, sdhair, cac
(only simulation 2), and sderror. To determine
whether an appropriate analysis would lead to a
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correct type I or type II error rate we ran a
corresponding additional set of models into which
we also included the random effect of subject ID as
well as random slopes of season within subject.
Throughout the analyses, we did not include the
correlations among random slopes and intercepts in
our models, in order to reduce computation time and
because neglecting them does not obviously affect
type I error rate [Barr et al., 2013]. Hence, in R
annotation, the models implemented were

isotope ratio � sexþ sinðseasonÞ þ cosðseasonÞ
þ ð1jhairÞ þ ð0þ sinðseasonÞjhairÞ
þ ð0þ cosðseasonÞjhairÞ

in case of the pseudoreplicated analyses and

isotope ratio � sexþ sinðseasonÞ þ cosðseasonÞ
þ ð1jhairÞ þ ð0þ sinðseasonÞjhairÞ
þ ð0þ cosðseasonÞjhairÞ þ ð1jindividualÞ
þ ð0þ sinðseasonÞjindividualÞ
þ ð0þ cosðseasonÞjindividualÞ

in case of the not pseudoreplicated analyses (note
that sex was not included in models fitted in the
course of simulations 2 and 3).

We analyzed the data in R (version 3.x; R Core
Team, 2014; http://www.r-project.org/). Simula-
tions were based on the functions “runif” and
“sample” and data were analyzed using the
function “lmer” of the package lme4 [Bates D,
Maechler M, Bolker B, Walker S. 2014. lme4:
Linear mixed-effects models using Eigen and S4. R
package version 1.1–7, http://CRAN.R-project.org/
package=lme4]. The models were fitted with
Gaussian error structure and identity link. In all
models we tested for the effect of season by
including the sine and cosine of Julian date
(divided by 365 and then multiplied by 2 and p)
as fixed effects into the model. For the analysis of
the results of simulation 3 we used a Wilcoxon
signed-ranks matched pairs test (Siegel & Castel-
lan 1988). We considered two-tailed P-values and
those smaller than or equal to 0.05 as significant.

Mixed Models
Linear Mixed Effects Models (thereafter

“Mixed Model”) are an extension of the general
(e.g., regression, ANOVA and ANCOVA; [e.g.,
Aiken & West, 1991; Cohen & Cohen, 1983]) and
Generalized Linear Model (e.g., logistic and Pois-
son regression; [e.g., McCullagh & Nelder, 1989])
that allow for the analysis of data comprising a
mixture of predictors having fixed and random

effects [e.g., Baayen, 2008; Bolker et al., 2008;
Gelman & Hill, 2007]. A fixed effects predictor can
be a factor (i.e., categorical] or covariate (i.e.,
quantitative) whereby covariates are always as-
sumed to be fixed effects predictors. A fixed effects
factor is one of which all of its possible levels (i.e.,
particular cases) are represented in the study,
whereas a random effects factor is one of which
only a few of its potential levels are represented in
the data. Typical fixed effects factors are “species,”
“sex,” or “experimental condition” whereas typical
random effects factors are “individual” or “social
group.” For a fixed effects predictor a Mixed Model
estimates how much the response changes when
the predictor changes by one unit, and for a
random effects predictor it estimates the variation
in the response being due to differences between
its levels (“random intercepts”) and also how much
the impact of fixed effects predictors on the
response varies among its levels (“random slopes”
[Barr et al., 2013; Schielzeth & Forstmeier, 2009]).
A more thorough introduction to Mixed Models is
beyond the scope of this paper, but is detailed in,
for example, Bolker et al. [2008], Baayen [2008],
and Gelman and Hill [2007].

RESULTS
Simulation 1: Type I Error Rates

As expected, we found an increased type I
error rate for the between subjects fixed effect (i.e.,
“sex”), and this elevation of type I error rate
increased with an increasing number of replicates
(i.e., hairs) per individual and also with an
increasing magnitude of differences between
individuals (Fig. 1). The increase of the type I
error rate was slightly weakened when the
magnitude of the residual variance increased,
but never to such an extent that the effect of
pseudoreplication disappeared. In fact, the only
scenario in which the type I error rate was at the
nominal level of 5% was when there were no
isotopic differences between individuals at all.
Considering the full-null model comparison we
found that the average type I error rate for both
predictors combined was slightly smaller (average
type I error rate across all parameter combina-
tions: 0.142) as compared to the type I error rate of
the reduced model only comprising the factor sex
(0.188), but the overall pattern was very similar
(appendix, Fig. S2). Regarding the within-subjects
effect (i.e., “season”) the type I error rate was
0.045 (pooled across all parameter combinations)
and, hence, very close to the nominal level of 0.05.
When we controlled for repeated observations of
the same individual by including the respective
random effect into the model (and also random
slopes of season within individual), type I error
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rates fell close to the expected 0.05 (full model:
0.044; sex: 0.054; season: 0.040; pooled across all
parameter combinations).

Simulation 2: Type I Error Rates in the
Presence of Autocorrelation

Autocorrelation within hair samples (simulation
2a) did not obviously affect type I error rate, and this

was the case regardless of the number of hair sections
per individual, the number of individuals, or the
magnitude of autocorrelation (Fig. 2). However,
autocorrelation within individuals (simulation 2b)
strongly affected type I error rate whereby type I
error rates increased with the number of hair
samples per individual and the magnitude of within
individual autocorrelation (Fig. 3). The number of
individuals did not strongly affect type I error rates.
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Fig. 1. Rate of erroneously significant results (y-axis within plots) for differences between sexes (simulation 1) at different rates of
pseudoreplication (number of replicates per individual; x-axis within plots), different magnitudes of variation between individual hairs
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Accounting for non-independence by fitting the
appropriate model with random effects of individual
and randomslopes of seasonwithin individual lead to
type I error rates close to the nominal level of 0.05
(Fig. 3).

Simulation 3: Type II Error Rates When
Testing Seasonality

The majority of the simulated data sets
revealed significance for the within-subjects

predictor of season, obviously because we simu-
lated strong seasonal effects. However, when
considering only those 54 combinations of param-
eters where the proportion of significant findings
differed between the pseudoreplicated and the
appropriately controlled analysis, we found that
the power of the non-pseudoreplicated analysis
was on average larger (Wilcoxon test: Tþ¼ 1132.5,
N¼54, P< 0.001; Fig. 4). While the difference in
power was usually not very large, certain simu-
lations revealed the proportion of significant
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Fig. 2. Type I error rates for the effect of season when measures show temporal autocorrelation within hairs but no seasonal variation
(simulation 2a). Indicated are type I error rates (y-axis within plots) for different numbers of hairs per individual (x-axis within plots),
strength of within hair autocorrelation (left to right across plots), and numbers of individuals (bottom to top across plots). Filled circles
show type error rates for analyses pseudoreplicating at the level of individual, and open circles show type error rates for analyses
appropriately accounting for individual. Each pair of dots depicted on top of one another within the same plot is based on the same set of
1,000 simulated data sets. Note that type I error rate was invariably close to the nominal level of 0.05 (top edge of gray boxes).
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results to increase by up to 0.25 when accounting
for pseudoreplication.

Simulation 4: Unbalanced Sample Sizes
Repeating simulations 1 and 2b with more

realistic, unbalanced, contributions of individuals
to the data sets revealed elevated type I error rates,
too. Error rates were higher for the between-
subjects fixed effect of sex and for sex as well as

for the within-subjects effect of season increased
with sample size (Fig. 5). When accounting for
pseudoreplication, type I error rates were close to
the nominal level of 0.05 (although slightly elevated
at small sample sizes). Determining the number of
individuals sampled at least once and the average
number of samples per individual revealed that
even small sample sizes (e.g., 20 to 40 hairs of 50
individuals) resulted in pseudoreplication although
at a very moderate level (appendix, Fig. S3).
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Fig. 3. Type I error rates when measures show temporal autocorrelation within individuals (simulation 2b). Indicated are type I error
rates (y-axiswithin plots) for different numbers of hairs per individual (x-axiswithin plots), strength ofwithin individual autocorrelation
(left to right across plots), andnumbers of individuals (bottom to top across plots). Filled circles show type error rates for analyses pseudo-
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Nevertheless, even such moderate levels lead to
elevated type I error rates.

DISCUSSION
Our simulations revealed that pseudoreplicated

analyses can lead to greatly inflated probabilities to
detect effects in stable isotope ratios of hair which do
not exist (simulations 1, 2, and 4). As such they are in
line with many other studies which investigated the
effects of pseudoreplication, which revealed the exact
same findings [e.g., Machlis et al., 1985; Mundry &
Sommer, 2007]. However, most studies investigating
the effects of pseudoreplicating on the level of
individual investigated the effects of between subjects
predictors whereas we also investigated whether
pseudoreplication can also affect the probability of
erroneous significance for within-subjects predictors.
Our findings with regard to this part of the study
revealed that, indeed, pseudoreplication can also lead
to greatly inflated type I error rates for a within-
subjects predictor (simulation 2b). Finally, we also
investigated type II error probabilities for a within
subjects predictor variable and found that pseudor-
eplication can lead to greatly inflated probabilities of
erroneous non-significances, that is, missing to detect
an actual effect in stable isotope ratios of hair. Hence,
our findings are largely in line with those of other
investigations of the effects of pseudoreplication by
finding elevated type I error rates for within-subjects
predictors but, to our knowledge, expand them by
finding elevated type II error rates for within-subjects
predictors (but see Barr et al., 2013). Importantly, our
findings arenot drivenbydifferences in sample size as
can be seen from the fact that models appropriately
accounting for individualdifferenceswerenotaffected
by pseudoreplication.

It is also important to emphasize that, despite
assuming replicate observations of the same individ-
uals to occur in the form of different “hair samples” of
the same animal, our results are not specific to hair
keratin samples. Instead we are confident that the
results would equally hold for whichever are the
specific samples taken, be it hairs or fecal samples
from unidentified individuals, or whatever else.

While ourfinding of elevated type I error rates for
between-subjects predictors is concordant with those
of other studies of the effects of pseudoreplication in
the sense that they lead to an elevated type I error
rate, our results regarding the effects of pseudor-
eplication for the assessment of the significance of
within-subjects predictors (here tested for the case of
temporal autocorrelation/seasonality of isotope val-
ues within hair samples) are, to our knowledge, novel
(but see Barr et al., 2013) and somewhat worrisome.
In fact, we found that for such predictors pseudor-
eplication can lead to false significance as well as to
erroneous non-significance, and that the probabili-
ties of these two types of errors depend on various

factors such as the magnitude of variation between
individuals, themagnitude of the effect of the within-
subjects predictor and autocorrelation, or the num-
ber of observations per individual. As a consequence,
and since these different sources of variation will
usually be unknown for samples from unhabituated
primates, results obtained for a within-subjects
predictor will most likely be uninterpretable since
significance as well as non-significance can either be
real or an artefact of pseudoreplication. This is in
sharp contrast to results obtained for a between-
subjects predictor, which can be an artefact of
pseudoreplication when they indicate significance,
but, to our knowledge, not when they indicate non-
significance [see also Machlis et al., 1985].

We here based our investigation on inference
based on P-values. The question may arise whether
other ways of drawing inference (e.g., Bayesian or
information theory based inference)may alleviate the
issue and provide alternative means of hypothesis
testing.Unfortunately, this is not the case. In fact, the
assumption of independence of data (or residuals) is
fundamental to all statistical approaches currently
existing [e.g., Burnham&Anderson, 2002;McCarthy,
2007], and with regard to the consequences of
pseudoreplication the only difference between the
three statistical philosophies is how it manifests:
while in null-hypothesis significance testing pseudor-
eplication manifests in the form of wrong P-values
(and wrong standard errors of estimates as well as
confidence intervals), in information theory based
inference it leads to wrong values of the information
criterion used (e.g., Akaike’s Information Criterion),
and in Bayesian inference it leads to wrong posterior
probabilities. This similarity is due to the fact that all
three approaches are based on a largely identical
mathematicalmachinery toassesshowwell themodel
fits the response.

Given the severe consequences of pseudoreplica-
tion it might be worth assessing the probability of
sampling any given individual repeatedly. Of course,
this probability depends to a large extend on the
sampling schema in relation to the life style (e.g.,
social organization and home range size) of the
investigated species. For instance, when sampling
in an area being considerably smaller than the usual
home range of the individuals, the probability of
having replicate samples of the same individual(s)
will be large (ascomparedtowhensampling inanarea
being considerably larger than the usual home range
size of the target species), and this probability will
further increase with increasing sample size. The
probability of having at least one individual sampled
more than once (thus violating the assumption of
independence) is equivalent to the “birthdayproblem”

[e.g., Frey, 2006] and equals 1� ð
Yn�1

i¼0

ðn� iÞÞ=Nn

where N is the size of the population and n is the
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number of samples taken from it. The probabilities of
having at least one individual sampled more than
once can be surprisingly large, even for few samples
taken from large populations (Table I).

Since pseudoreplication has such adverse con-
sequences for the interpretation of the results, the
question arises how it can be avoided. The only
isotope study using hair samples from largely
unidentified individuals of great apes could at least
partly test for the effect of “individual” on stable
isotope differences between gorillas and chimpan-
zees as well as on the effect of season. At least one
semi-habituated silverback gorilla was identified
and sampled repeatedly and the results of three
different models comprising the full dataset, the
dataset without the identified silverback and a
dataset only comprising the identified silverback
(only testing for season) could be compared and did
not reveal any contradicting results [Oelze et al.,
2014]. While this was an attempt to find a
workaround solution, we here suggest that more
rigid steps should be considered during study
design.

For future stable isotope studies in primates we
mainly see two options to control for individual
in statistical analyses: a) adjusting the sampling
strategy in the field to avoid re-sampling of individu-
als and/or b) genotyping of hair and other tissue
samples for isotope analyses. The first option,
adjusting the sampling strategy, implies to space
sampling locations such that the distances between
them clearly exceed the typical home range diameter
of a given primate community. For animals like great
apes, which each day build new night nests and
different individuals frequently nest in close vicinity
to one another, hair (and dung) samples collected
from different fresh nests of the same nest group will
certainly derive from different individuals. Poten-
tially one can even sample from more than one nest
group in a given territory if it can be assured that
these where build by different communities or
foraging groups in the same night. Nevertheless,
this attempt may be logistically demanding. As hair
samples of great apes commonly cover a time period
of 6–10 months [Oelze, This volume], temporal
variation and thus seasonality can only be assessed
within this given time frame. In case of such
sampling schema, nest, sampling location (GPS
coordinates) or nest group identification need to be
included as a random effect into the respective model
in case repeated samples taken from the same nest,
location or nest group, respectively, are included into
the analysis. The other option is to genetically
sequence hair samples, for instance using the root
of the hair or fresh feces commonly found in or under
the night nests of great apes [Morin et al., 2001].
Genetic monitoring of endangered primate species,
for example, via capture-recapture techniques, is
an important approach in primate research and

conservation [Arandjelovic et al., 2010, 2011]. Com-
bined efforts in the field can aid the collection of hair
and fecal samples.

In summary, we demonstrated that pseudor-
eplication can severely affect type I and type I
error rates. Therefore, statistical analyses of data
likely comprising repeated observations of individ-
uals but not accounting for this fact bear a large
risk of producing erroneous findings. Such errone-
ous findings can manifest as false significances (in
case of between- and within-subjects predictors) as
well false non-significances (in case of a within-
subjects predictor), and they are fairly likely to
happen, even at very moderate levels of pseudor-
eplication. Hence, every effort must be taken to
ensure independent samples or to identify the
individuals from which samples were obtained. If
this is not possible results may be artefacts of
pseudoreplication and lack interpretability.
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