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Abstract

Our understanding of repair outcomes after Cas9-induced DNA cleavage is still limited, especially 

in primary human cells. We sequence repair outcomes at 1,656 on-target genomic sites in primary 

human T cells and use these data to train a machine learning model, CRISPR Repair OUTcome 

(SPROUT). SPROUT accurately predicts the length, probability, and sequence of nucleotide 

insertions and deletions and will facilitate SpCas9 guide RNA design in therapeutically-important 

primary human cells.

Primary T cells are a promising cell type for therapeutic genome editing, as they can be 

engineered efficiently ex vivo and adoptively transferred to patients1. However there lacks 

detailed information about the genomic outcomes of Cas9-dependent editing in primary 

human cells. Here, we systematically characterize Streptococcus pyogenes Cas9 (SpCas9) 

repair outcomes in primary T cells from 18 healthy blood donors (Supplementary Fig. 1).

Targeted sequencing was applied to 1,656 unique genomic locations within 559 genes in 

primary CD4+ T cells. Guide RNAs were combined with SpCas9 to assemble 

ribonucleoprotein complexes (RNPs) and electroporated into T cells2,3. DNA was isolated 

from cells after 6 days of recovery and expansion, and a 180–260 base pair (bp) region 

around each site was PCR amplified and sequenced (Fig. 1). We quantified the distribution 

of repair outcomes at each target site from the generated amplicon library using 

CrispRVariants4 (Fig. 1). In total, 31% of reads contained deletions centered around the cut 

site with an average deletion length of 13 bps. We also found that 20% of the reads had 

insertions at the cut site, and 95% of these insertions were of exactly one nucleotide 

(Supplementary Fig. 2). Only 0.008% of reads contained both an insertion and deletion.

There was an average of 98 discrete repair outcomes per target site that were observed at a 

frequency greater than 1 in 1000 reads, and different sites were highly variable in the 

proportion and length distribution of insertions and deletions. The repair outcomes from 

each target site were similar between donors, but very different across target sites (Fig. 2A). 

Comparisons of repair outcomes between all sites showed that replicate editing experiments 

from individual target sites were significantly more similar to each other than to outcomes 

from different sites (Fig. 2B, Supplementary Fig. 3).

We hypothesized that the variation in repair outcomes across cut sites was largely due to 

sequence variation near the cut site5–7. To test this, we developed a machine learning model, 

SPROUT, to predict SpCas9 repair outcomes (Fig. 1). The model takes as input the 20 

nucleotides of the spacer sequence plus the PAM, and it uses gradient boosting to train an 

ensemble of decision trees over the nucleotides. At each target site, the model predicted the 

fraction of indel mutant reads with an insertion (Fig. 2C) and deletion (1 - fraction of 

insertions) and the average length of insertions and deletions (Fig. 2D). We included fraction 
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of both indel mutant reads and total reads in order to separate the dependency on the edit 

efficiency. On an independent set of 304 target sites in primary T cells, SPROUT was able to 

accurately predict the fraction of indel mutant reads with an insertion (R2 = 0.59, Spearman 

Rank = 0.81) and the fraction of total reads with an insertion (R2 = 0.40, Spearman Rank = 

0.68, Fig. 2C, Supplementary Fig. 4, Supplementary Fig. 5). SPROUT was also able to 

predict if a target has high (greater than 60%), medium (40%−60%) or low (less than 40%) 

fraction of frame-shift repair outcomes with accuracy of 0.6 (Fig. 2D).

SPROUT can also be used for in silico guide design. For each of the 532 genes with multiple 

guides, we used SPROUT’s predictions to rank the targets in a gene from the most likely to 

have frame-shift repair outcomes to the least likely. SPROUT correctly identified the best 

performing frame-shift guide in 54% of the genes, and it correctly predicted the complete 

ranking in 38% of the genes (Supplementary Fig. 6). We further investigated whether 

SPROUT could correctly select which SpCas9 target site in a gene was the most likely to 

have an enrichment of insertions over deletions. For each gene, we used SPROUT’s 

prediction to rank the target sites by their predicted fraction of indel mutant reads with an 

insertion. For 73% of the genes, SPROUT correctly chose the top sgRNA, and for 60% of 

genes it correctly predicted the complete ranking of all the candidate guides by their 

insertion proportion, significantly above random guessing (Supplementary Fig. 6, p < 

10−10).

The prediction signal was primarily localized in the three nucleotides immediately to the left 

and right of the cut site. The −1 position (immediately to the 5’ end of the cleavage site) was 

the most influential (Fig. 2E and Supplementary Fig. 7). This is consistent with previous 

observations where this nucleotide is duplicated at many cut sites, which has been suggested 

to be the result of repair of single-base overhangs generated by Cas97. The presence of a G 

or C nucleotide at this position decreased the insertion proportion: 7% and 10% of indel 

mutant reads were insertions, respectively. Comparatively, the presence of A or T nucleotide 

at this position increased this proportion to 23% and 26%, respectively. The +3 position is 

also important in determining the proportion of outcomes as insertions or deletions 

(Supplementary Fig. 7). A or G nucleotides at this position increase the insertion proportion 

to 25% and 23% respectively, compared with 16% and 15% for C and T. The presence of 

homopolymers (a run of two or more identical nucleotides) adjacent to the cut site increased 

the proportion of deletions (p < 0.02). For example, targets with G homopolymers abutting 

the cut site have deletions in 92% of the indel mutant reads, compared to 77% deletions 

when there is no homopolymer at the cut site (Supplementary Fig. 8), which could be a 

reflection of microhomology mediated end joining8.

Next, we assessed the robustness of the algorithm to sequence- and cell-specific features by 

using the SPROUT model trained on the T cell data to predict SpCas9 repair outcomes in 

other human cell types. We re-analyzed published targeted sequencing data from 96 unique 

target sites tested in HEK293, K562, and HCT116 cells5. These 96 targets were distinct 

from the 1,521 sites that were used to train SPROUT, and hence constitute new test data. 

SPROUT achieved an accuracy of R2 = 0.40 in predicting the fraction of indel mutant reads 

with an insertion and an R2 = 0.23 in predicting the fraction of total reads with an insertion. 

The relatively high cross-cell-type performance of SPROUT further suggests that the 
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primary factor influencing the repair outcomes after SpCas9 cleavage within dividing cells is 

the nucleotide sequence context near the cut site.

We systematically compared SPROUT with two recently developed methods for predicting 

SpCas9 repair outcomes, inDelphi and FORECasT9,10. The methods were compared on 

tasks that all three algorithms perform—predicting the fraction of repair outcomes with 

frameshift, the repair precision (defined as one minus the indel diversity), and the fraction of 

indel reads that are insertions. To rigorously compare the algorithms, we generated three 

new SpCas9 repair datasets collected after all three models have been trained. We collected 

two new primary T cell SpCas9 repair outcome data: first for 32 sites tiled across the 

CXCR4 gene and next for 182 unique sites from 91 immune related genes. Each site was 

replicated across multiple donors. These sites are distinct from the T cell sites used to train 

SPROUT, and hence act as independent validation. At these sites, SPROUT substantially 

outperforms both InDelphi and FORECasT in the repair prediction tasks (Supplementary 

Fig. 9, p < 0.01). We also collected repair data from the same CXCR4 sites when edited in 

human induced pluripotent stem cells (iPSC). SPROUT was not trained on these sites nor 

had it seen data from iPSC, and this constitutes a strong test in another therapeutically-

relevant cell type. Again SPROUT was more accurate than inDelphi and FORECasT on the 

iPSC data for each of the three prediction tasks (p < 0.05, Supplementary Fig. 9). These 

results demonstrate that SPROUT is state-of-the-art in predicting SpCas9 editing outcomes 

in both T cells and iPSCs, two cell types in which concerted efforts are underway to harness 

CRISPR for engineered cellular therapies.

In 90% of the T-cell SpCas9 target locations we discovered long (>25 base pairs) DNA 

insertions in the repair outcome sequencing data. Across sites, 40% of the long insertions 

aligned to the human genome, and they correspond to 0.07% of indel-containing reads. 

Among the aligned long insertions, 36% aligned to the same chromosome as the SpCas9 

target site, with 27% aligning to within 1kb of the target (Supplementary Fig. 10). The 

remaining insertions aligned to locations on different chromosomes which are enriched for 

HiC interaction with the target sites (p < 10−5, Supplementary Figs. 11–13). These findings 

suggest a possible model whereby genomic regions physically proximal to the cut site could 

be inserted during the DNA repair process. Recent reports have indicated that cells may 

undergo genomic rearrangements in response to SpCas9 cleavage11,12, although these 

should be interpreted cautiously given the cell types used and other variables. The potential 

therapeutic applications of CRISPR in primary T cells and other human cells motivate 

further investigations into the mechanisms and prevalence of insertions and other 

rearrangements during genome editing.

Online Methods

T cell Editing

Lyophilized crRNA and tracrRNA (Dharmacon) was resuspended at a concentration of 160 

μM in 10 mM Tris-HCL (7.4 pH) with 150 mM KCl. Cas9 ribonucleoproteins (RNPs) were 

made as previously described by combining 5μL of 160μM crRNA with 5μL of 160μM 

tracrRNA for 30 min at 37°C, followed by incubation of this 80μM gRNA product with 

10μL of 40μM Cas9 (UC Macrolab) to form RNPs at 20μM13. Five 3.5μL aliquots were 

Leenay et al. Page 4

Nat Biotechnol. Author manuscript; available in PMC 2020 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



frozen in lo-bind 96-well V-bottom plates (E&K Scientific) at −80°C until used. All crRNA 

guide sequences were designed by Dharmacon for gene knockout.

T cell editing was conducted according to published protocols14. Briefly, peripheral blood 

mononuclear cells (PBMC) were isolated from whole blood (numeric donors, under a 

protocol approved by UCSF Committee on Human Research, CHR #13–11950) or de-

identified residuals from leukoreduction chambers after Trima Apheresis (alphabetic donors, 

from Blood Centers of the Pacific) from healthy human donors by Ficoll centrifugation with 

SepMate tubes (STEMCELL, per manufacturer’s instructions). CD4+ T cells were then 

isolated from PBMCs with magnetic negative selection (STEMCELL), cultured at 1 million 

cells/mL in complete RPMI (RPMI-1640 with 20 IU/mL IL2, 10% FBS, 50 μg/mL Pen/

Strep and 5mM HEPES) and activated with plate-bound anti-CD3 (OKT3) and anti-CD28 

(CD28.2) antibodies.

After three days of culture on stimulating antibodies at 37°C / 5% CO2, cells were 

resuspended and counted before editing. Approximately 3.5 × 105 cells were edited per 

blood donor per guide. Immediately before electroporation, cells were centrifuged at 400xg 

for 5 minutes, supernatant was aspirated, and the pellet resuspended in 20 μL of room-

temperature Lonza electroporation buffer P3 (Lonza). The cell suspension was then gently 

mixed with thawed RNP and carefully aliquoted into 96-well electroporation cuvette for 

nucleofection with the 4D 96 well shuttle unit (Lonza) using code EH-115. Immediately 

after electroporation, 80 μL of pre-warmed media without IL2 were added to each well and 

cells were allowed to rest for at least one hour in a 37°C cell culture incubator. Subsequently 

cells were moved to 96-well flat-bottomed culture plates pre-filled with 100 μL warm 

complete media with IL2 at 40 IU/mL (for a final concentration of 20 IU/mL) and anti-CD3/

anti-CD2/anti-CD28 beads (T cell Activation and Stimulation Kit, Miltenyi Biotec) or anti-

CD3/anti-CD28 dynabeads (ThermoFisher) at 1:1 bead:to:cell ratio.

Cells were then cultured at 37°C / 5% CO2 in a dark cell culture incubator for a further 6 

days, and were supplemented with IL2-containing complete media on days 3 and 5 of 

culture. On day 6 of culture, one eighth of each culture, approximately 35 μL, was reserved 

for genomic DNA analysis by 1:1 mixing with QuickExtract buffer (EpiCentre) in a 96-well 

plate, sealing carefully with foil and heating to 65°C for 20 min followed by heating to 98°C 

for 5 minutes on a thermocycler. Genomic DNA extracts were stored at −20°C until use.

For the validation set across 91 immune genes (New T Cells II, Supplementary Fig. 9), 

editing was conducted in a similar manner with the following exceptions: bulk T cells were 

isolated instead of CD4+ T cells (STEMCELL, magnetic negative selection per 

manufacturer’s instructions.) These cells were edited after two, not three, days of stimulation 

with anti-CD3/anti-CD28 beads (ThermoFisher) and were not given additional stimulation 

beads.

RNP editing for iPSC cells was performed in a very similar manner. AltR guides (IDT) 

suspended in IDT nuclease free TE were incubated at 37oC for 15 minutes to form crRNA 

trRNA complex (2=1:1 ratio). The crRNA:trRNA complex was then incubated with spCas9-

NLS (UC-Berkeley MacroLab) at 37oC for 15 minutes in a 2:1 ratio, forming a final RNP 
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concentration of 10 μM. iPSCs were treated with ROCK inhibitor Y-276932 at 10 μM 

(STEMCELL Technologies CN# NC0791122) for 2 hours prior to nucleofection and were 

dissociated with Accutase (STEMCELL Technologies CN# 07920) to single cells 

suspension prior to nucleofection. 200K cells were nucleofected in the Amaxa 96 well 

shuttle using 18 μL P3 buffer and 2 μl RNP (1μM final concentration), using nucleofection 

code DS-138. Cells were rescued into 96 well culture plates and maintained on growth 

factor-reduced Matrigel (Corning Life Sciences CN# CB-40230C) in feeder-free media 

conditions (Gibco Essential 8 Flex Media) supplemented with ROCK inhibitor Y-276932 

(10 μM) for 72 hours before harvesting gDNA for analysis with QuickExtract (Lucigen).

PCR amplification of cut sites

PCR primers were designed using an in-house Python wrapper around Primer3 (github.com/

czbiohub/Primer3Wrapper)15. Primers were designed to amplify a 180 to 260 nucleotide 

region, ensuring that the cut site was at least 50 nucleotides from the end of each primer, as 

well as 15 nucleotides from the center of the read to ensure there was enough sequence to 

accurately quantify larger indels. Sequencing adapters (Forward: 5’-

CTCTTTCCCTACACGACGCTCTTCCGATCT-3’ and Reverse 5’-

CTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’) were appended to the designed 

primers, and a homodimer and heterodimer filter was applied to ensure no secondary 

structure existed between primers. Sites were amplified using between 4,000 and 10,000 

genomic copies, 0.5 μM of each primer, and Q5 hot start high-fidelity 2x master mix (NEB). 

PCR was performed using the standard protocol: 98°C for 30 seconds; then 35 cycles of 

98°C for 10 seconds, 60°C for 30 seconds, and 72°C for 30 seconds; followed by a final 

extension at 72°C for 2 minutes (NEB). Samples were diluted 1:100 and individually 

indexed in a second, 12-cycle PCR using index primers containing Illumina sequencing 

adapters and 8 base barcodes, under the same conditions as the first PCR. After the second 

PCR, indexed samples were pooled and purified using a 0.7x SPRIselect purification and 

sequenced on an Illumina NextSeq 500.

Repair outcome pre-processing pipeline

Fastq sequencing files were first merged using FLASH16, then subjected to adapter and 

quality trimming with trimmomatic17. These merged reads were then initially aligned to the 

hg38 genomic contig using bwa mem18, creating individual .bam files. Each sample was 

individually analyzed using the CrispRVariants bioconductor package in R4, which performs 

a secondary alignment and quantifies each unique insertion and deletion per sequencing 

read. Repair outcomes were then further parsed using embedded CrispRVariants packages to 

quantify individual DNA repair outcomes, the insertion sequences, mutation efficiencies, 

and SNVs. Sites where the total number of reads was less than 1,000 were considered 

dropouts and filtered from all analysis. There were 1,521 unique target sites from 549 genes 

that passed this filtering, and 1,361 of these sites were replicated in two or more donors. The 

subsequent analyses focus on these 1,521 sites. The average number of reads per site, after 

filtering, is approximately 59,000. Fewer than 1% of the reads contained single nucleotide 

variation (SNV) but no indel, some of which may be attributable to sequencing error, and we 

chose to focus our analysis on reads containing at least one insertion or deletion.
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T cell and iPSC data summary

This study involved 3,989 DNA repair profiles from T cells isolated from 18 patients. These 

outcomes targeted 1,521 unique sites within 549 genes in the human genome. Guides were 

chosen targeting genes encoding for HIV-interacting proteins. The top three guides from the 

Dharmacon Edit-R Predesigned knockout library were selected for each gene. Three distinct 

non-targeting controls chosen from the Edit-R library were included on every plate, as well 

as three validated, custom-designed guides known to knock out the genes CXCR4, CDK9 
and LEDGF with high efficiency. The RNP knockouts were repeated on average 2 times, 

each across unique primary T cells from different blood donors (Supplementary Fig. 1). The 

repair outcomes were averaged over the repeats across the blood donors, and DNA repair 

outcome data from each target site has been deposited on figshare.

Two additional validation datasets were generated by designing guides tiling along the 

CXCR4 gene, which were repeated in biological triplicate in both new primary T cell and 

iPSC donors. After filtering for quality, repair outcome sequencing data were analyzed for 

32 new guides in primary T cells and 30 new guides in iPSC using the same process as was 

done for the original T cell data. A third additional validation dataset was generated on 

primary T cells using guides targeting 182 distinct loci close to the start codons in 91 

immune related genes. Each guide was tested on 6 unique donors. All of the target sites in 

these new validation experiments are distinct from the sites used to train SPROUT.

HCT116, HEK293, and K562 data summary

Published sequencing data7 from three other cell types (HEK293, K562, and HCT116; 

BioProject PRJNA326019) were analyzed according to the same procedure as the T cell data 

and used for validation of the machine learning model. The dataset we used from the 

manuscript comprised the RNP knockouts, after 48 hours, from 96 unique cut sites on the 

human genome.

Statistical analysis

We use the gradient boosting algorithm to train SPROUT. Gradient boosting is an 

aggregation model which iteratively learns a weighted ensemble of base classifiers. 

SPROUT uses decision trees as the base classifiers. The depth and number of the trees are 

hyperparameters of the algorithm which we set by cross validation. In SPROUT, typically 20 

to 200 decision trees are utilized each of which are 3 to 20 layers deep depending on the 

prediction task. A complete list of all features that were assessed for inclusion in SPROUT 

can be found in Supplementary Fig. 14.

We used five-fold cross-validation to train SPROUT. We randomly split the unique cut sites 

in T cells (a total of 1,521) into 5 folds and trained SPROUT on four of the five folds. We 

then tested the performance of SPROUT on the remaining unseen fifth fold (304 cut sites). 

We repeated the random data split procedure 10 times and report the average and standard 

deviation of the prediction performance over the 10 random repeats. We performed the 

training using varying sizes of the training set and the performance of SPROUT appears to 

saturate with our current data size on T cells (Supplementary Fig. 15). We evaluated the 

prediction performance of regression tasks, i.e., predicting the fraction of total or indel 
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mutant reads with insertion or deletion and the edit efficiency, using the coefficient of 

determination (R2). We also evaluated the prediction performance of classification tasks, i.e., 

predicting if the average insertion or deletion length or the diversity is larger/smaller than the 

median of the distribution, using the accuracy of the classifier. Repair diversity is defined as 

the entropy of the distribution of repair outcomes in the reads. High diversity suggest that 

the repair outcome at the site is more variable. A naive (or random) guess would be 50% 

accurate in predicting the correct output labels.

For the models evaluated on three other cell types (HCT116, HEK293, and K562), we 

trained SPROUT on the full T cell data (1,521 cut sites) and tested the performance of the 

model on the other cell types. We did not fine-tune SPROUT using features specific to these 

other cell types in order to quantify the robustness of the model. For the classification tasks, 

we used the median of the cell type distributions to set the threshold. Additional detail is in 

Supplementary Note.

Comparison to InDelphi and FORECasT

We compared SPROUT with InDelphi and FORECast on four benchmark datasets: 1) held-

out T cell test data that was not used during SPROUT training; 2) a primary T cell data set of 

32 SpCas9 target sites tiled across CXCR4; 3) a primary T cell data set of 182 SpCas9 target 

sites in 91 immune related genes; and 4) a new data set from iPSC detailed in the main text. 

The data sets 2, 3 and 4 were collected after SPROUT had been developed, and they consist 

of new genomic loci and new donors that were not seen during SPROUT training.

We used the trained inDelphi model provided at the website http://

indelphi.giffordlab.mit.edu/ to test the performance of this method on the benchmark 

datasets. U2OS was set as the input cell type (the closest outcome found to T cells among 

the provide cell types). Frameshift and precision was directly downloaded from the website 

graphical interface. We used the definition of the repair precision proposed in the inDelphi 

paper, which is one minus the entropy of the distribution of the deletion lengths frequency. 

We downloaded the repair outcome for each experiment and used a script to find the fraction 

of reads with an insertion. We used the website https://partslab.sanger.ac.uk/FORECasT to 

evaluate the frameshifts in the FORECasT method. To measure precision and fraction of 

reads with insertions we used the batch mode of the trained model provided at https://

github.com/felicityallen/SelfTarget and a post processing script. For frameshift and precision 

we thresholded the predicted values and binned them into “high” and “low” categories and 

reported the percentage of the method predicted the categories correctly. For fraction of 

insertion we reported the R2 value.

Nucleotide feature interpretations extracted from SPROUT

To measure the importance of individual features in the gradient boosting model, the 

information gain concept was used. The information gain associated to a feature measures 

the decrease in entropy after a dataset is split based on that particular feature. A higher 

information gain corresponds to a more predictive feature. We also determined the influence 

of each feature (enrichment or depletion) from the sign of the coefficients of a linear 

regression model trained on the data. Note that the algorithm was completely blind to the 
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actual location of the cut site. Additionally, the feature importance for nucleotides (e.g., ‘G’) 

showed an alternating pattern. We speculate that one reason for the enrichment of alternating 

pattern for an insertion outcome and thus depletion for a deletion outcome is the 

homopolymer effect. It has been observed that homopolymers – the repetition of one base 

creating long runs of the same nucleotide – favor a deletion outcome5,8.

Ranking guides based on a desired repair outcome

We evaluated SPROUT in ranking the guides based on fitness to produce a desired repair 

outcome. Two outputs were used to train the regression: the fractions of indel reads, and the 

fractions of total reads. After training on 400 genes, the model was used to predict the 

fraction of insertions and deletion of a hold-out set of guides targeting 149 different genes. 

We assessed the ranking performance of the guides on only the genes that have more than 

one guide in our datasets (142 test genes out of 149 genes total). The guides were then 

ranked within each gene based on the insertion and deletion fractions, and the rank 

correlation between the observed result and predicted ranking was evaluated.

The performance was measured using Kendall’s tau ranking coefficient and the percentage 

of completely correct predictions. Kendall’s tau ranking coefficient measures the difference 

between the observed result and the predicted rankings. The Kendall’s tau coefficient is a 

ranking measure between −1 and 1, where 1 indicates that rankings match exactly, 0 means 

that there is no ranking correlation, and −1 means that there is complete reverse ranking 

correlation. Supplementary Fig. 6 summarizes the ranking results for guides in hold-out 

genes from T cells and guides from the three other validation cell types (HCT116, HEK293, 

and K562).

Extracting and aligning long insertion data from the repair outcomes

To obtain the insertion data, the repair outcomes of all 1,521 cut sites were parsed and reads 

with an inserted sequence of length at least 25 bp were selected, totaling 22,495 unique 

insertions which centered on the cleavage site. All insertions were aligned to the human 

genome with the BLAST algorithm (blastn command, https://blast.ncbi.nlm.nih.gov/

Blast.cgi) under default conditions and input parameters. For the cases with more than one 

alignment, the site with the highest alignment score was selected. A total of 8,946 unique 

insertions aligned to the human genome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the method. (A) Primary T cells were isolated, activated, and electroporated 

with Cas9/crRNA/tracrRNA RNPs in 96-well plates. After 6 days of expansion, genomic 

DNA was isolated from each well, amplified and sequenced. (B) The CrispRVariants R 

package4 was used to quantify each SpCas9 RNP knockout. An example alignment is 

plotted here, with quantification shown for two blood donors. Each site has this same unique 

plot, all of which can be found on figshare. (C) A gradient boosting machine learning 

algorithm was trained to predict multiple DNA repair outcomes given the guide RNA 

sequence, flanking nucleotides and additional features.
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Figure 2. 
SPROUT predicts DNA repair outcomes. (A) The DNA repair outcomes resulting from RNP 

activity in T cells derived from different blood donors were compared for control guides 

targeting CDK9, CXCR4, and LEDGF, analyzing the top 20 indels at each site. These 

guides were used in every blood donor. Jaccard similarity is calculated for each guide site 

across donors. (B) Jaccard similarity of DNA repair outcomes for 18 randomly chosen 

guides, again using the top 20 indels. Jaccard coefficients are plotted comparing outcomes 

from different guide RNAs and between blood donors. (C) The trained model was used to 

predict DNA repair indel fractions in a hold-out (un-seen) portion of the T cell dataset. The 

model was also evaluated on previously published data5 obtained from immortalized cell 

lines to test generalization performance for other cell types and experimental conditions. (D) 
Accuracy of the trained model in predicting the average insertion and deletion length, indel 

diversity and whether a target has high, medium or low fraction of frame-shift outcomes on 

both T cells and previously published data5. (E) The importance that SPROUT assigns to 

nucleotides at each position relative to the cut site. Larger text indicates that the presence of 

a particular nucleotide at a position has greater importance in determining the likelihood of 
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insertion versus deletion. Bootstrap mean and standard deviation are shown in each table. 

This study assayed 1,656 genomic sites in T cells.
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