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The combination of using loss functions that are both Bayes consistent and

margin enforcing has lead to powerful classification algorithms such as AdaBoost

that uses the exponential loss and logistic regression and LogitBoost that use the

logistic loss. The use of Bayes consistent margin enforcing losses along with efficient

optimization techniques has also lead to other successful classification algorithms

such as SVM classifiers that use the hinge loss function. The success of boosting

and SVM classifiers is not surprising when looked at from the standpoint of Bayes

consistency. Such algorithms are all based on Bayes consistent loss functions and

so are guaranteed to converge to the Bayes optimal decision rule as the number of

training samples increases. Despite the importance and success of Bayes consistent

loss functions, the number of such known loss functions has remained small in the

literature. This is in part due to the fact that a generative method for deriving

such loss functions did not exist. Not having a generative method for deriving

Bayes consistent loss functions not only prevents one from effectively designing

loss functions with certain shapes, but also prevents a full analysis and taxonomy

of the possible shapes and properties that such loss function can have. In this the-

sis we solve these problems by providing a generative method for deriving Bayes

consistent loss functions. We also fully analyze such loss functions and explore the

design of loss functions with certain shapes and properties. This is achieved by
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studying and relating the two fields of risk minimization in machine learning and

probability elicitation in statistics. Specifically, the class of Bayes consistent loss

functions is partitioned into different varieties based on their convexity properties.

The convexity properties of the loss and associated risk of Bayes consistent loss

functions are also studied in detail which, for the first time, enable the derivation

of non convex Bayes consistent loss functions. We also develop a fully construc-

tive method for the derivation of novel canonical loss functions. This is due to a

simple connection between the associated minimum conditional risk and optimal

link functions. The added insight allows us to derive variable margin losses with

explicit margin control. We then establish a common boosting framework, canoni-

cal gradientBoost, for building boosting classifiers from all canonical losses. Next,

we extend the probability elicitation view of loss function design to the problem

of designing robust loss functions for classification. The robust Savage loss and

corresponding SavageBoost algorithm are derived and shown to outperform other

boosting algorithms on a set of experiments designed to test the robustness of the

algorithms to outliers in the training data. We also argue that a robust loss should

penalizes both large positive and large negative margins. The Tangent loss and the

associated TangentBoost classifier are derived with the desired robust properties.

We also develop a general framework for the derivation of Bayes consistent cost

sensitive loss functions. This is then used to derive a novel cost sensitive hinge loss

function. A cost-sensitive SVM learning algorithm is then derived. Unlike previ-

ous SVM algorithms, the one now proposed is shown to enforce cost sensitivity

for both separable and non-separable training data, independent of the choice of

slack penalty. Finally, we present a novel framework for the design of cost-sensitive

boosting algorithms. The proposed framework is used to derive cost-sensitive ex-

tensions of AdaBoost, RealBoost and LogitBoost. Experimental evidence, over

different machine learning and computer vision problems is presented in support

of the new algorithms.

xix
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Introduction
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I.A Bayes consistent loss functions for classification

When dealing with classification problems, the Bayes decision rule is con-

sidered optimal in the sense that it minimizes the average probability of error [28].

Implementing the Bayes decision rule requires estimating the posterior probability

distribution for the classes. Estimating a probability distribution can be difficult

and unreliable especially when the true form of the distribution is not know, many

parameters need to be estimated or when only limited amounts of high dimensional

training data is available. Under such circumstances, an arguably better approach

could be to learn the classifier decision function directly. In this method a decision

function is learned directly so as to minimize the average error over the training

set. Obviously a decision function that minimizes the probability of error would

be directly implementing the Bayes decision rule by definition.

In the more general case, the average loss over the training data can be

minimized, where the loss function can be chosen depending on the problem. The

average loss is customarily called the risk. Under this setting, the average error

is a special case of minimizing the average loss when the zero one loss function is

used where a unit value of loss is assigned to any misclassified data point and zero

loss is assigned to any correctly classified data point. Using a loss function other

than the zero one loss function is desirable because the zero one loss function

is non-differentiable and can lead to a difficult optimization problem. On the

other hand not just any differentiable function can be used as the loss function to

overcome this problem. We still require that the loss function be such that we arrive

at the optimal Bayes decision rule function after minimizing the associated risk.

When the resulting classifier converges asymptotically to the Bayes decision rule,

as training samples increase, the loss is said to be Bayes consistent [35, 17, 119, 57].

For example the zero one loss is a Bayes consistent loss function by definition.

Other known examples of Bayes consistent loss functions include the hinge

loss, the exponential loss, and the logistic loss. Apart from being differentiable,
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these losses assign a penalty to examples classified correctly but close to the bound-

ary. This guarantees a classification margin, and improved generalization when

learning from finite datasets [98]. Such loss functions are called margin enforcing.

This is unlike the zero one loss which is neither differentiable nor margin enforcing.

The combination of using loss functions that are both Bayes consistent

and margin enforcing has lead to powerful classification algorithms such as Ad-

aBoost that uses the exponential loss [33, 35] and logistic regression and Logit-

Boost that use the logistic loss [35]. The use of Bayes consistent margin enforcing

losses along with efficient optimization techniques has also lead to other success-

ful classification algorithms such as SVM classifiers [22] that use the hinge loss

function [119, 59].

Boosting and SVM classifiers, based on Bayes consistent loss functions,

have been successfully applied to countless classification problems. For example,

major advances have been achieved in computer vision tasks that can be formulated

as classification problems. The AdaBoost algorithm alone has found multiple ap-

plications in vision, e.g. real-time object detection [105, 102, 103, 38, 58], tracking

[7], and segmentation [109]. Traditional machine learning problems such as fraud

detection [37, 59, 100], text filtering [87], natural language processing [21, 40] and

medical diagnosis [65] have also made use of classification algorithms such as boost-

ing [85] and SVMs. Even seemingly unrelated fields such as biotechnology have

successfully used SVM classifiers in their work [73, 72]. The success of boosting

and SVM classifiers is not surprising when looked at from the standpoint of Bayes

consistency. Such algorithms are all based on Bayes consistent loss functions and

so are guaranteed to converge to the Bayes optimal decision rule as the number of

training samples increases.

Despite the importance and success of Bayes consistent loss functions,

the number of such known loss functions has remained small in the literature.

This is in part due to the fact that a generative method for deriving such loss

functions did not exist. One would ideally prefer to custom tailor the loss function
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based on the intended application of the classifier. For example in a cost sensitive

classification problem such as fraud detection where the cost of misclassifying one

class is much higher than the other, one would like to have a cost sensitive loss

function that could enforce cost sensitive results. When dealing with noisy and

outlier ridden data as in the case of many computer vision datasets, one would

like to have a robust loss function with tapered growth and non convex shape

that could disregard outliers and lead to a robust classifier. When dealing with

classification problems with limited training data, one would also like to know the

relationship between Bayes consistency and the margin enforcing properties of the

loss function, and if variable margin Bayes consistent loss function are available

that could possibly improve the classification performance.

I.B Contributions of the thesis

Not having a generative method for deriving Bayes consistent loss func-

tions not only prevents one from effectively designing loss functions with certain

shapes, but also prevents a full analysis and taxonomy of the possible shapes and

properties that such loss function can have. In this thesis we provide a generative

method for deriving Bayes consistent loss function. We also fully analyze such loss

functions and explore the design of loss functions with certain shapes and prop-

erties. finally we demonstrate the application of custom tailored loss functions to

specific classification problems such as cost sensitive classification or robust clas-

sification and show improved performance on a variety of training datasets from

the machine learning and computer vision literature. The main contributions of

the thesis are as follows.
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I.B.1 Generative formula and analysis of Bayes consistent loss func-

tions

We present a new framework for the design and analysis of Bayes con-

sistent loss functions. This is achieved by studying and relating the two fields of

risk minimization in machine learning and probability elicitation in statistics. The

added insight provided by the probability elicitation view allows us to obtain a

generative formula for deriving novel Bayes consistent loss functions. In particu-

lar, the class of margin enforcing composite losses are considered and it is shown

that the classical progression from loss to risk is overly restrictive: once a loss is

specified, both the optimal link, and the functional form of the minimum risk are

immediately pined down. This is, however, not the case in our progression: it is

shown that any functional form of the minimum conditional risk, which satisfies

some mild constraints, supports many link and loss function pairs. Hence, once

the risk is selected, one degree of freedom remains: by selecting a class of link func-

tions, it is possible to tailor the loss, so as to guarantee classifiers with desirable

traits.

Next, a special class of canonical loss functions are studied under this

setting where a simple relationship exists between the link and minimal conditional

risk. These canonical loss functions are fully considered and analyzed. We then

move on to study the general case of non canonical loss functions. The class of

Bayes consistent loss functions is partitioned into four varieties based on their

convexity properties. The convexity properties of the loss and associated risk of

Bayes consistent loss functions are also studied in detail which, for the first time,

enable the derivation of non convex Bayes consistent loss functions . Notable results

of our analysis are that all loss functions found from our generative formula are

margin enforcing and that the loss and associated conditional risk are quasiconvex.

We also show that the risk and empirical risk have a unique minimum that can

be found in practice with functional gradient descent algorithms. The margin

enforcing property makes such loss functions well suited for classification problems
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and the properties of the risk greatly simplifies the optimization problem associated

with minimizing the risk by ensuring that the minimization will not get stuck in

local minima. Finally a taxonomy of Bayes consistent loss functions is provided

based on their shape and boundedness properties. A large number of novel Bayes

consistent losses are derived with different shapes and properties. Also, a series of

recipes are provided that can be used as a guide for designing and deriving other

novel loss functions that are specially tailored for certain classification problems.

I.B.2 Canonical variable margin Bayes consistent losses

In general, it is difficult to anticipate the properties, and shape, of a loss

function that results from combining a certain minimal risk with a certain link

function. We address this problem for the class of canonical risks. We derive a

complete characterization of the relationships between loss, optimal link, and mini-

mum risk, and also characterize the properties of the loss whenever the optimal link

is in the family of inverse sigmoid functions. We then present a general method for

deriving canonical loss functions with explicit control of the classification margin.

This is applied to deriving variable margin loss functions from existing minimum

risks and novel loss functions derived from cumulative distribution functions. This

result shows how the set of canonical loss functions is at least as large as the set of

zero mean symmetrical pdf functions and how each can be derived from the other.

The practical importance of these results are studied by establishing a

common boosting framework, canonical gradientBoost, for all canonical losses,

which enables a direct comparison of the impact of the loss on classifier perfor-

mance. This in turn allows us to directly study the relationship between the

margin properties of the loss function and its Bayes consistent properties on a se-

ries of classification problems. A number of novel variable margin Bayes consistent

loss functions are derived and shown to have higher classification accuracy when

compared to their fixed margin counterparts.
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I.B.3 Bayes consistent losses for robust classification

We present a new framework for the design of robust Bayes consistent loss

functions. These are loss functions that are well suited for classification problems

that involve training sets with noise, outliers, ambiguity or lack of labels. In

this context, an issue of particular concern is a well known limitation of most

current margin-enforcing losses: their unbounded growth with negative margins

which leads to poor performance on training sets with noise and outliers. We

address this problem by deriving a novel robust Bayes consistent loss, denoted

as Savage loss and an associated SavageBoost algorithm . Unlike all previous

Bayes consistent loss functions, the Savage loss is bounded for strongly negative

values. This is akin to robust loss functions proposed in the statistics literature to

reduce the impact of outliers. We demonstrate the robust properties of the Savage

loss on a series of experiments involving outliers and show that the SavageBoost

boosting algorithm is indeed more outlier resistant than classical methods, such as

AdaBoost, RealBoost, and LogitBoost.

Next, we argue that robustness requires a more subtle constraint on the

loss than simply bounding its growth for large negative margins: in addition to

this, robustness also requires penalizing large positive margins. We present a sim-

ple classification problem that demonstrates this point, and show how all existing

methods (including SavageBoost) fail in this case. We then derive a set of neces-

sary conditions that any Bayes consistent loss function must satisfy, in order to

guarantee a bounded penalty for both large negative and positive margins. These

conditions are used to derive a novel robust loss, which we denote by Tangent

loss, and an associated boosting algorithm, denoted TangentBoost . Experiments

involving various computer vision problems, including scene classification, object

tracking, recognition, and MIL show that the proposed algorithm consistently out-

performs previous methods.
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I.B.4 Bayes consistent losses for cost sensitive classification

We lay the theoretical foundation for cost sensitive loss function design.

The derivation of the new cost-sensitive loss functions draw on the connections

between risk minimization and probability elicitation and such connections are

generalized to the case of cost-sensitive classification. This theory is then used to

develop cost-sensitive extensions of state-of-the-art machine learning techniques.

Specifically, we extend the SVM hinge loss, and derive the optimal cost-

sensitive learning algorithm as the minimizer of the associated risk. The new

hinge loss is minimized by an SVM that 1) implements the cost-sensitive Bayes

decision rule, and 2) approximates the cost-sensitive Bayes risk. The resulting SVM

algorithm avoids the shortcomings of previous methods, producing cost-sensitive

decision rules for both cases of separable and inseparable training data.

We also present a general framework for the cost-sensitive extension of

boosting algorithms and consider the problem of how to extend loss functions used

in boosting algorithms, based on the theory of cost sensitive loss function design

so as to achieve optimal cost-sensitive decision rules. We introduce cost-sensitive

versions of the exponential and logistic losses, which underlie AdaBoost, Real-

Boost, and LogitBoost. Cost-sensitive extensions of the algorithms are derived,

and shown to satisfy the necessary conditions for cost-sensitive optimality.

Finally, the performance of the proposed cost-sensitive algorithms is also

evaluated through experiments on a variety of cost sensitive machine learning and

computer vision problems such as fraud detection, medical diagnosis, business

decision making, face detection and car detection.

I.C Organization of the thesis

The rest of the thesis is organized as follows. In Chapter II, we present a

new framework for the design and analysis of Bayes consistent loss functions. This

is achieved by studying and relating the two fields of risk minimization in machine
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learning and probability elicitation in statistics. This chapter is the theoretical

back bone of the thesis and all other chapters use the fundamental theorems de-

veloped in this chapter. In Chapter III we further expand the theory of Bayes

consistent loss function design for the special case of canonical loss functions with

explicit control of the classification margin. This is applied to deriving variable

margin loss functions from existing minimum risks and novel loss functions derived

from cumulative distribution functions. In Chapter IV we present a new framework

for the design of robust Bayes consistent loss functions. We address classification

problems that involve training sets with noise and outliers by deriving and analyz-

ing the novel robust Bayes consistent Savage and Tangent loss functions and their

associated SavageBoost and TangentBoost algorithms. In Chapter V we present

a new framework for the design of cost sensitive Bayes consistent loss functions.

This general theory is then used to derive a novel cost sensitive SVM classifier.

In Chapter VI we present a general framework for the cost sensitive extension of

loss functions used in boosting algorithms. We introduce cost-sensitive versions of

the exponential and logistic losses, and derive cost sensitive extensions of the Ad-

aBoost, RealBoost and LogitBoost algorithms. Finally, conclusions are provided

in Chapter VII.



Chapter II

The design of Bayes consistent

loss functions

10
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II.A Classification and risk minimization

We start by briefly reviewing the principles of classification, risk mini-

mization, and large-margin classifier design.

II.A.1 Risk minimization

A classifier is a mapping g : X → {−1, 1} that assigns a class label

y ∈ {−1, 1} to a feature vector x ∈ X , where X is some feature space. This

mapping is of the form

g(x) = sign[p(x)], (II.1)

for some predictor p : X → R. If feature vectors are drawn with probability density

PX(x), PY (y) is the probability distribution of the labels y ∈ {−1, 1}, and L(x, y)

a loss function, the classification risk is

R = EX,Y [L(p(x), y)]. (II.2)

For any non-negative loss, the risk is minimized by minimizing the conditional risk

EY |X[L(p(x), y)|X = x] for every x ∈ X . Denoting by η(x) = PY |X(1|x) this can

be written as

C(η, p) = ηL(p, 1) + (1− η)L(p,−1), (II.3)

where we have omitted the dependence of η and g on x for notational convenience.

For simplicity of the presentation, we will 1) use this omission in the remainder

of this work, and 2) denote the conditional risk as simply the risk . It is useful to

express p as a composition of two functions

p(x) = f(η(x)), (II.4)

where f : [0, 1] → R is a link function. η maps feature vectors into posterior

class probabilities, and f maps these probabilities into predictions on the real line.

Note, however, that p(x) is usually not linear in x. The use of a link function is

referred to as probability calibration in the machine learning literature [75, 50, 112].
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For example, a well known method for learning f−1 given p, using a sigmoidal

nonlinearity, is presented in [75].

II.A.2 The 0-1 loss

A popular loss for classification is the zero-one loss which can be written

as

L0/1(f, y) =
1− sign(yp)

2
=

1− sign(yf)

2
(II.5)

=







0, if y = sign(f);

1, if y 6= sign(f),

leading to

C0/1(η, f) = η
1− sign(f)

2
+ (1− η)

1 + sign(f)

2

=







1− η, if f ≥ 0;

η, if f < 0,
(II.6)

It follows that the risk C(η, f) is minimized by f ∗ if f ∗ ≥ 0 when η > 1/2 and

f ∗ < 0 when η < 1/2.

There are usually many f ∗(η) that satisfy this condition, e.g., f ∗(η) =

2η − 1, f ∗(η) = log η
1−η

or any other f ∗ such that

sign[f ∗(η)] = sign[η − 1/2]. (II.7)

Any of these f ∗ will produce a classifier equivalent to the optimal Bayes decision

rule

g∗ = sign[f ∗(η)] with f ∗(η) = 2η − 1. (II.8)

The minimum risk

C∗
0/1(η) = η

(

1

2
− 1

2
sign(2η − 1)

)

+ (1− η)

(

1

2
+

1

2
sign(2η − 1)

)

= EY |X

[

1− yg∗(x)

2

∣

∣

∣

∣

X = x

]

= PY |X[y 6= g∗(x)|X = x]
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is the probability of classification error for x, also known as the Bayes error rate

for x.

II.A.3 Large-margin classification

Since L0/1(η, f) does not penalize small positive values of yf , it does not

encourage the creation of a classification margin [98]. This is known to compromise

the generalization ability of the decision rule when learning is based on finite

training samples [98]. A number of alternative margin-enforcing losses have been

proposed in the machine learning literature [35]. Like the zero-one loss, they have

the form

Lφ(p, y) = φ(yp), (II.9)

but rely on functions φ(v) which are convex upper-bounds of that - φ(v) = (1 −
sign(v))/2 - used in (II.5). We refer to these φ functions as the losses used for

classifier design by the different large-margin methods. They are listed in Table

II.1. Each loss defines a risk

Cφ(η, f) = ηφ(f) + (1− η)φ(−f), (II.10)

which is minimized by any functions f ∗ such that

f ∗
φ(η) = arg min

f
Cφ(η, f). (II.11)

These functions are denoted as optimal links for the loss φ. The minimum risk is

C∗
φ(η) = min

f
Cφ(η, f) = Cφ(η, f ∗

φ(η)). (II.12)

The loss φ and link f are denoted the components of the risk Cφ(η, f). The loss φ

and optimal link f ∗
φ are denoted the components of the minimum risk C∗

φ(η).

In all cases of Table II.1, f ∗
φ(η) satisfies (II.7), and the associated decision

rule is asymptotically equivalent to the Bayes decision rule. Whenever this holds,

the risk is said to be Bayes consistent . As shown in Figure II.1 a) all losses of

Table II.1 are also margin enforcing. This leads to classifiers that generalize better
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Table II.1 Machine learning algorithms progress from loss φ, to inverse link func-

tion f ∗
φ(η), and minimum conditional risk C∗

φ(η).

Algorithm φ(v) f ∗
φ(η) C∗

φ(η)

Least squares (1− v)2 2η − 1 4η(1− η)
Modified LS max(1− v, 0)2 2η − 1 4η(1− η)

SVM max(1− v, 0) sign(2η − 1) 1− |2η − 1|
Boosting exp(−v) 1

2
log η

1−η
2
√

η(1− η)

Logistic Regression log(1 + e−v) log η
1−η

-η log η − (1− η) log(1− η)
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Figure II.1 Loss function φ(v) (left) and minimum conditional risk C∗
φ(η) (right)

associated with the different methods discussed in the text.

than those designed with the 0-1 loss, for finite training samples. The minimum

risks Cφ(η) are plotted in Figure II.1 b), along with the Bayes error rate.

II.A.4 Properties of risk minimization

It has been shown that any convex loss φ(v), differentiable at the origin,

such that φ′(0) = 0 is Bayes consistent [11]. The following lemma lists some

general properties of the minimum risk and its components. These properties do

not require convexity of φ(·).
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Lemma 1. Let f ∗
φ(η) be defined as in (II.11) and C∗

φ(η) as in (II.12). Then,

f ∗
φ(η) = −f ∗

φ(1− η) (II.13)

ηφ′(f ∗
φ) = (1− η)φ′(−f ∗

φ) (II.14)

C∗
φ(η) = C∗

φ(1− η) (II.15)

[C∗
φ]′(η) = φ(f ∗

φ(η))− φ(−f ∗
φ(η)). (II.16)

[C∗
φ]′′(η) =

1

1− η
[f ∗

φ]′(η)φ′(f ∗
φ(η)). (II.17)

Furthermore, if f ∗
φ is invertible, then

[f ∗
φ]−1(v) = 1− [f ∗

φ]−1(−v) (II.18)

φ(v) = C∗
φ{[f ∗

φ ]−1(v)}+ (1− [f ∗
φ]−1(v))[C∗

φ]′{[f ∗
φ ]−1(v)}. (II.19)

Proof. By definition, f ∗
φ(η) is the function which minimizes Cφ(η, f). Since the

conditional risk has the symmetry

Cφ(η, f) = ηφ(f) + (1− η)φ(−f) = Cφ(1− η,−f) (II.20)

it follows that if f ∗
φ(η) minimizes C(η, f) then −f ∗

φ(1− η) minimizes C(1− η,−f).

Hence, f ∗
φ has the symmetry of (II.13). Setting derivatives of (II.20) to zero,

ηφ′(f ∗
φ)− (1− η)φ′(−f ∗

φ) = 0.

and (II.14) follows. From the definition of C∗
φ(η),

C∗
φ(η) = Cφ(η, f ∗

φ(η)) (II.21)

= ηφ(f ∗
φ(η)) + (1− η)φ(−f ∗

φ(η)) (II.22)

= Cφ(1− η,−f ∗
φ(η))

= Cφ(1− η, f ∗
φ(1− η))

= C∗
φ(1− η)
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where we have used the symmetry of (II.13). From (II.22),

[C∗
φ]′(η) = φ(f ∗

φ(η))− φ(−f ∗
φ(η)) + ηφ′(f ∗

φ(η))[f ∗
φ]′(η)

−(1− η)φ′(−f ∗
φ(η))[f ∗

φ]′(η)

= φ(f ∗
φ(η))− φ(−f ∗

φ(η)) + [f ∗
φ ]′(η){ηφ′(f ∗

φ(η))− (1− η)φ′(−f ∗
φ(η))}

= φ(f ∗
φ(η))− φ(−f ∗

φ(η)),

where we have used (II.14). Furthermore,

[C∗
φ]′′(η) = φ′(f ∗

φ(η))[f ∗
φ]′(η) + φ′(−f ∗

φ(η))[f ∗
φ]′(η),

= [f ∗
φ]′(η){φ′(f ∗

φ(η)) + φ′(−f ∗
φ(η))}

= [f ∗
φ]′(η)φ′(f ∗

φ(η)){1 +
η

1− η
}

=
1

1− η
[f ∗

φ]′(η)φ′(f ∗
φ(η))

If f ∗
φ is invertible, let η = [f ∗

φ]−1(v). It follows from (II.13) that

−v = f ∗
φ(1− η)

1− η = [f ∗
φ]−1(−v)

η = 1− [f ∗
φ]−1(−v)

[f ∗
φ]−1(v) = 1− [f ∗

φ]−1(−v).

From (II.12),

C∗
φ{[f ∗

φ]−1(v)} = [f ∗
φ]−1(v)φ(v) + (1− [f ∗

φ]−1(v))φ(−v)

= φ(−v) + [f ∗
φ]−1(v)(φ(v)− φ(−v))

and, from (II.16),

(1− [f ∗
φ]−1(v))[C∗

φ]′{[f ∗
φ]−1(v)} = (1− [f ∗

φ]−1(v))(φ(v)− φ(−v))

= φ(v)− φ(−v)− [f ∗
φ]−1(v)(φ(v)− φ(−v)).

Adding the two equations leads to (II.19).



17

Figure II.2 Relationship between the risk, link and loss function.

Property (II.19) has an interesting geometrical interpretation. Let

∇C∗
φ(η, η0) = C∗

φ(η0) + (η − η0)[C
∗
φ]′(η0) (II.23)

be the linearization of C∗
φ(η) around η = η0. It follows from (II.19) that

φ(v) = ∇C∗
φ(1, [f ∗

φ ]−1(v)). (II.24)

This defines a geometric relationship between the minimum risk C∗
φ(η), the optimal

link f ∗
φ(v), and the loss φ(v), which is illustrated in Figure II.2.

II.B Classifier design and probability elicitation

Table II.1 shows that the difficulty of learning the predictor p(x) follows

from the need to estimate the posterior probability η(x). Given the latter, p(x)
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can be computed with the given optimal links f ∗
φ(η). It must be the case, then,

that the learning algorithms are estimating η(x).

II.B.1 Estimation of posterior probabilities

This has indeed been shown to be the case by Zhang [119], who proved

the following results.

Theorem 2. (Zhang) The minimum conditional risk of (II.12) has the following

properties.

1. C⋆
φ(η) is a a concave function η ∈ [0, 1].

2. If f ∗
φ is differentiable, then C∗

φ(η) is differentiable and, for any η̂,

Cφ(η, f ∗
φ(η̂))− C∗

φ(η) = B−C∗
φ
(η, η̂), (II.25)

where

BF (η, η̂) = F (η)− F (η̂)− (η − η̂)F ′(η̂). (II.26)

is the Bregman divergence of the convex function F .

Proof. See [119].

The second property implies that the search for the f̂(η(x)) which min-

imizes (II.10) is equivalent to the search for the probability estimate η̂(x) of

minimum Bregman divergence with η(x), for the Bregman divergence defined by

−C∗
φ(η). This view of classifier design places a lot less emphasis on the loss function

φ(v) than the traditional machine learning view of the problem. For example, two

losses φ1, φ2 of equal minimum risk C∗
φ1

(η) = C∗
φ2

(η) lead to the minimization of

the same Bregman divergence. They should thus be identically good for classifier

design. What matters for the quality of the probability estimation is the form of

the minimum risk, and associated Bregman divergence. This raises the question

of whether minimizing a cost of the form of (II.10) is the best way to elicit the

posterior probability η(x).



19

II.B.2 Probability elicitation

The problem of probability elicitation has been extensively studied in

statistics. In particular, Savage studied the design of reward functions that en-

courage probability forecasters to make accurate predictions [82]. He formalized

this problem as the study of calibrated rewards.

Definition 1. Consider a binary problem with two events y ∈ {−1, 1}. Let

• I1(η̂) be the reward for the prediction η̂ when the event y = 1 holds,

• I−1(η̂) be the reward for the prediction η̂ when the event y = −1 holds.

The expected reward

I(η, η̂) = ηI1(η̂) + (1− η)I−1(η̂). (II.27)

is calibrated if it achieves its maximal value when η̂ = η,∀η, i.e.

I(η, η̂) ≤ I(η, η) = J(η), ∀η (II.28)

with equality if and only if η̂ = η. J(η) is the maximal expected reward.

For simplicity, we will refer to I(η, η̂) as the reward , to J(η) as the maxi-

mal reward , and to I1(η), I−1(η) as the conditional rewards. The definition implies

that calibrated rewards are maximized when there is no probability estimation

error. Savage asked the question of which conditional rewards lead to a calibrated

reward, and showed that the following holds.

Theorem 3. (Savage) The reward I(η, η̂) of (II.27) is calibrated, with maximal

reward J(η) = I(η, η), if and only if

1. J(η) is strictly convex,

2. I1(η) and I−1(η) satisfy

I1(η) = J(η) + (1− η)J ′(η) (II.29)

I−1(η) = J(η)− ηJ ′(η). (II.30)
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In this case, for any pair (η, η̂) there is a reward loss of

I(η, η)− I(η, η̂) = BJ(η, η̂). (II.31)

Proof. See [82].

When (II.29) and (II.30) hold, we refer to I(η, η̂) as the reward derived

from J(η). The theorem shows that every calibrated reward is derived from some

strictly convex maximal reward J(η). For any η, the calibrated prediction η̂ is the

one of minimum Bregman divergence BJ(η, η̂) with η. The similarities between

Theorems 2 and 3 are quite striking. They suggest that the negative of the risk

could be a calibrated reward.

This is investigated in the next section. For now, we note that Savage

investigated a related problem, by studying the set of convex functions J(η) that,

when used in (II.29)-(II.30), lead to Bregman divergences of certain forms. In

particular, he showed that for divergences of the form BJ(η, η̂) = H(h(η)− h(η̂)),

with H(0) = 0 and H(v) > 0, v 6= 0, and h(v) any function, only two cases are

possible. In the first h(v) = v, i.e. the loss only depends on the difference η − η̂,

and the admissible J are

J1(η) = kη2 + lη + m, (II.32)

for some integers (k, l,m). In the second h(v) = log(v), i.e. the loss only depends

on the ratio η/η̂, and the admissible J are of the form

J2(η) = m + lη − k log η. (II.33)

II.B.3 Risk minimization as probability elicitation

In this section, we consider the more general question of the equivalence

between (negative) risks defined by losses of the form of (II.9) and calibrated

rewards. We start by denoting the set of calibrated rewards by C and the set of

negative risks by R. The following result shows that R ⊂ C.
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Theorem 4. Let Cφ(η, f) be the risk defined by a loss φ(v) as in (II.9). Then

I(η, η̂) = −Cφ(η, f ∗
φ(η̂))

is a calibrated reward, of maximum J(η) = −C∗
φ(η). The estimate η̂ = η simul-

taneously minimizes the risk and maximizes the reward. The maximal reward has

the symmetry

J(η) = J(1− η). (II.34)

Proof. By definition

Cφ(η, f ∗
φ(η̂)) = ηφ(f ∗

φ(η̂)) + (1− η)φ(−f ∗
φ(η̂)),

and

I(η, η̂) = −ηφ(f ∗
φ(η̂))− (1− η)φ(−f ∗

φ(η̂)).

Defining

I1(η) = −φ(f ∗
φ(η)) (II.35)

I−1(η) = −φ(−f ∗
φ(η)) (II.36)

it follows that

I(η, η̂) = ηI1(η̂) + (1− η)I−1(η̂)

is a reward of the form of (II.27), with maximum J(η) = −C∗
φ(η). To show that

this reward is calibrated, we need to verify that the conditions of Theorem 3 hold.

The convexity of J(η) follows from the concavity of C∗
φ(η). Using (II.16) and the

fact that C∗
φ(η) = Cφ(η, f ∗

φ(η)),

J(η) + (1− η)J ′(η) =

= −C∗
φ(η)− (1− η)[C∗]′φ(η)

= −ηφ(f ∗
φ(η))− (1− η)φ(−f ∗

φ(η))− (1− η){φ(f ∗
φ(η))− φ(−f ∗

φ(η))}

= −φ(f ∗
φ(η)) = I1(η),
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and

J(η)− ηJ ′(η) =

= −C∗
φ(η) + η[C∗]′φ(η)

= −ηφ(f ∗
φ(η))− (1− η)φ(−f ∗

φ(η)) + η{φ(f ∗
φ(η))− φ(−f ∗

φ(η))}

= −φ(−f ∗
φ(η)) = I−1(η).

Hence, (II.29)-(II.30) also hold and −Cφ(η, f ∗
φ(η̂)) is a calibrated reward. Fi-

nally,the joint optimality of η = η̂ follows from (II.28), (II.31), and the symmetry

of (II.34) from (II.15).

II.B.4 Probability elicitation as risk minimization

We have so far shown that the minimization of the risk of (II.10) is a

calibrated form of probability elicitation. The converse question is whether all

calibrated probability elicitation procedures can be expressed as risk minimization.

Or, more formally, whether C ⊂ R. For this, we seek conditions on the set of J(η)

that, when used in (II.29)-(II.30), results in a calibrated reward such that

I1(η) = −φ(f ∗
φ(η)) (II.37)

I−1(η) = −φ(−f ∗
φ(η)) (II.38)

for some loss φ(·), and optimal link f ∗
φ(η). We start by showing that this set does

not include all strictly convex J(η).

Lemma 5. Consider the strictly convex function

J(η) = − log η (II.39)

associated with the Bregman divergence

BJ(η, η̂) =
η

η̂
− log

η

η̂
− 1

commonly referred to as the Itakura-Saito distortion [66]. Consider the calibrated

reward I(η, η̂) with conditional rewards I1(η), I−1(η) derived from J(η) with (II.29)-

(II.30). There is no pair of (φ(·), f ∗
φ(η)) such that (II.37)-(II.38) hold.
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Proof. Assume that there is a pair (φ(·), f ∗
φ(η)) such that (II.37)-(II.38) hold.

Then

C(η, f ∗
φ(η̂)) = −I(η, η̂)

= ηφ(f ∗
φ(η̂)) + (1− η)φ(−f ∗

φ(η̂))

is a risk defined by a loss of the form of (II.9). By Theorem 4, it follows that

C(η, f ∗
φ(η̂)) has minimum C∗

φ(η) = −J(η), and

C∗
φ(η) 6= C∗

φ(1− η).

This contradicts (II.15).

The lemma shows that not all Bregman divergences BJ(η, η̂) can be min-

imized by minimizing a risk of the form of (II.10). In fact, any Cφ(η, f) for which

this is true must satisfy all properties of Lemma 1, with C∗
φ(η) = −J(η). It fol-

lows that (II.13)- (II.17) (with C∗
φ(η) = −J(η)) are necessary conditions for the

equivalence between probability elicitation and risk minimization. We next show

that these conditions are redundant. We start by deriving the set of necessary and

sufficient conditions for the conditional rewards to have the form of (II.37)-(II.38).

Theorem 6. Let J(η) be a strictly convex and continuously differentiable function,

I1(η) = J(η) + (1− η)J ′(η) (II.40)

I−1(η) = J(η)− ηJ ′(η), (II.41)

and f(η) any invertible function with symmetry

f−1(−v) = 1− f−1(v). (II.42)

Then there is a function φ(v) such that

I1(η) = −φ(f(η)) (II.43)

I−1(η) = −φ(−f(η)) (II.44)
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if and only if

J(η) = J(1− η). (II.45)

Proof. Assume that (II.45) holds, let v = f(η) and define φ(v) as

φ(v) = −I1(f
−1(v)) = −J(f−1(v))− (1− f−1(v))J ′(f−1(v)).

From the symmetry of f and J , and the fact that J ′(η) = −J ′(1 − η), it follows

that

φ(−v) = −J(f−1(−v))− (1− f−1(−v))J ′(f−1(−v))

= −J(1− f−1(v))− f−1(v)J ′(1− f−1(v))

= −J(f−1(v)) + f−1(v)J ′(f−1(v))

= −I−1(f
−1(v)).

Hence, there is a φ(v) such that (II.43) and (II.44) hold. To prove the converse, as-

sume that (II.43), and (II.44) hold and let v = f(η). Then, from (II.43) and (II.44)

I1[f
−1(v)] = −φ(v) (II.46)

I−1[f
−1(v)] = −φ(−v),

and

I−1[f
−1(v)] = I1[f

−1(−v)].

Using (II.42)

I−1[f
−1(v)] = I1[1− f−1(v)],

and

I−1(η) = I1(1− η).

From (II.40) and (II.41), this implies that

J(η)− ηJ ′(η) = J(1− η) + ηJ ′(1− η)
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or

J(η)− J(1− η) = η[J ′(η) + J ′(1− η)]. (II.47)

This implies that J(0) = J(1). For η 6∈ {0, 1}, take derivatives on both sides of

(II.47). Then

J ′(η) + J ′(1− η) = J ′(η) + J ′(1− η) + η[J ′′(η)− J ′′(1− η)],

from which it follows that

J ′′(η) = J ′′(1− η).

This implies that

J ′(η) = −J ′(1− η) + k

for some constant k. Since, from (II.47), J ′(1/2) = 0 it follows that k = 0. This

implies that

J(η) = J(1− η) + k

for some constant k. From J(0) = J(1) it follows that k = 0, showing that (II.45)

holds.

Note that, from Theorem 3, the reward with components I1(η) and I−1(η)

is calibrated. Hence, Theorem 6 implies that any calibrated reward derived from

a J(η) with the symmetry of (II.45) is a negative risk. This proves the following

theorem.

Theorem 7. Let I(η, η̂) be a calibrated reward derived from a maximal reward of

symmetry

J(η) = J(1− η).

Then for any invertible link f ∗
φ(η) with symmetry

[f ∗
φ]−1(−v) = 1− [f ∗

φ]−1(v)

there is a loss φ(v) of the form of (II.9) such that

I(η, η̂) = −Cφ(η, f ∗
φ(η̂)).
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The risk has minimum C∗
φ(η) = −J(η), and the estimate η̂ = η simultaneously

minimizes the risk and maximizes the reward. The link and loss are related by

φ(v) = −J{[f ∗
φ]−1(v)} − (1− [f ∗

φ]−1(v))J ′{[f ∗
φ]−1(v)}. (II.48)

Note that (II.48) follows from C∗
φ(η) = −J(η) and (II.19).

II.B.5 Discussion

Theorems 4 and 7 establish an equivalence relationship between risks

derived from losses of the form of (II.9) and calibrated rewards derived from convex

maximal rewards with the symmetry of (II.45). In particular, all such risks are

(negative) calibrated rewards and vice-versa. From Theorems 2 and 3 it follows

that the optimization carried out by all machine learning algorithms is equivalent

to Savage’s procedure for probability elicitation. Both procedures reduce to the

minimization of the Bregman divergence

η̂∗ = arg min
η̂

BJ(η, η̂), (II.49)

where J(η) = −C∗
φ(η) is a convex function such that J(η) = J(1 − η). In both

cases, the predictions η̂∗ are calibrated.

Here it is necessary to make an important caveat. While the previous

theorems are suitable for generating Bayes consistent losses, they do not necessarily

lead to so called proper losses and calibrated reward functions [82, 17] unless an

additional condition is satisfied. The required additional condition is that the

domain of f ∗
φ(η) be restricted to [0 1]. Under this condition (f ∗

φ)−1(v) will have

a range of [0 1] and can be used to recover the estimates η which can now be

interpreted as true probabilities given that their values are confined to [0 1]. Thus,

it should be understood that whenever the terms proper loss and calibrated score

function are used, the additional condition on f ∗
φ(η) is implied.
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For example, the logistic loss is a Bayes consistent and proper loss function

because the domain of f ∗
φ(η) = η

1−η
is [0 1]. On the other hand, the least squares

loss is Bayes consistent but not a proper loss function since f ∗
φ(η) = 8η − 4 does

not have a domain of [0 1]. Yet, the least squares loss can be made to be partially

proper by restricting the domain of its link function to [0 1], which would in turn

alter the loss and restrict its domain to [−4 4].

Given that we are mainly concerned with classification problems, we will

not restrict ourselves to proper losses. This will be of particular use when deal-

ing with outliers which do not necessarily have a probabilistic interpretation (see

Chapter IV), or when dealing with the SVM classifier which uses the hinge loss

function which is not a proper loss function (see Chapter V).

While explicit minimization of (II.49) requires access to the probability

estimates η̂, these are not directly observable in machine learning problems. Hence,

learning algorithms attack the problem indirectly. They operate in the space of ob-

servations x, and start from the loss φ(yf(x)). This defines the risk Cφ(η(x), f(x))

which is minimized with respect to f(x) to obtain an estimate p(x) of f ∗
φ(η(x))

and the associated minimum risk C∗
φ(η(x)). Upon convergence of p(x) to f ∗

φ(η(x)),

the probability η(x) can be recovered by simple application of

η(x) = ([f ∗
φ]−1 ◦ p)(x), (II.50)

whenever f ∗
φ is invertible. On the other hand, Savage’s procedure operates directly

on the space of probability estimates, maximizing (with respect to η̂) the reward

I(η, η̂), derived from J(η). The optimal solutions of the two procedures are never-

theless identical if J(η) = −C∗
φ(η). In fact, this relation makes it possible to express

the learning algorithms in “Savage form”, i.e. as procedures for the maximization

of (II.27), by deriving the reward functions associated with each of the C∗
φ(η) in

Table II.1. This is done by using (II.29) and (II.30) with J(η) = −C∗
φ(η), and

the results are shown in Table II.2.

A second fundamental difference has to do with the degrees of freedom

of risk minimization vs. probability elicitation. On one hand, the minimization
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Table II.2 Probability elicitation form for various machine learning algorithms,

and Savage’s procedure. In Savage 1 and 2 m′ = m + k.
Algorithm I1(η) I−1(η) J(η)

Least squares −4(1− η)2 −4η2 −4η(1− η)
Modified LS −4(1− η)2 −4η2 −4η(1− η)

SVM sign[2η − 1]− 1 −sign[2η − 1]− 1 |2η − 1| − 1

Boosting −
√

1−η
η

−
√

η
1−η

−2
√

η(1− η)

Log. Regression log η log(1− η) η log η + (1− η) log(1− η)
Savage 1 −k(1− η)2 + m′ + l −kη2 + m kη2 + lη + m
Savage 2 −k(1/η + log η) + m′ + l −k log η + m′ m + lη − k log η

Table II.3 Probability elicitation form progresses from minimum conditional risk,

and link function (f ∗
φ)−1(η), to loss φ. f ∗

φ(η) is not invertible for the SVM and

modified LS methods.
Algorithm J(η) (f ∗

φ)−1(v) φ(v)

Least squares −4η(1− η) 1
2
(v + 1) (1− v)2

Modified LS −4η(1− η) NA max(1− v, 0)2

SVM |2η − 1| − 1 N/A max(1− v, 0)

Boosting −2
√

η(1− η) e2v

1+e2v exp(−v)

Logistic Regression η log η + (1− η) log(1− η) ev

1+ev log(1 + e−v)

of the risk Cφ(f, η) leaves no degree of freedom for the selection of either the link

function f ∗
φ(η) or the minimum risk (maximum reward) C∗

φ(η). They are simply the

ones that result from the optimization. On the other, Theorem 7 shows that the

specification of a maximum reward (minimum risk) does not uniquely define either

the loss φ(v) or link f ∗(η). Given a C∗
φ(η), there could be multiple pairs (φ, f ∗

φ)

for which (II.48) holds. Some intuition for this can be obtained from Figure II.2.

The main fact to note is that f ∗
φ(η) is determined by φ, according to (II.11). Then,

given φ(v) and f ∗
φ(η), C∗

φ(η) is uniquely defined. However, a given C∗
φ(η) can be

consistent with multiple pairs of (φ(v), f ∗
φ(η)). Selecting a particular φ only “pins

down” f ∗
φ, from the set of all f ∗

φ that are compatible with Bayes decision rule.

Similarly, choosing a f ∗
φ “pins down” φ. This is the case of the algorithms in

Table II.1, for which the associated inverse link functions are presented in Table

II.3. From these, and (II.48) it is possible to recover φ(v), also shown in the table.
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II.C Canonical risk minimization

In general, due to the multiplicity of φ and f ∗
φ that satisfy (II.48) for a

given J(η) = −C∗
φ(η), it is impossible to completely characterize the loss function

responsible for a given minimum risk. In this section, we study an exception to

this rule.

II.C.1 Canonical risks

We start with a lemma that relates the symmetry conditions, on J(η)

and f ∗
φ(η), of Theorem 7.

Lemma 8. Let J(η) be a strictly convex and differentiable function such that

J(η) = J(1− η). Then J ′(η) is invertible and

[J ′]−1(−v) = 1− [J ′]−1(v). (II.51)

Proof. From the strict convexity of J(η) it follows that J ′(η) has positive derivative

for all η . Hence, J ′(η) is invertible. From the symmetry of J(η),

J ′(η) = −J ′(1− η)

and, for any v such that η = [J ′]−1(v),

v = −J ′(1− [J ′]−1(v))

[J ′]
−1

(−v) = 1− [J ′]−1(v).

The lemma shows that the equivalence between risks and calibrated re-

wards requires the derivative of J(η) to have the same symmetry as the optimal

link f ∗
φ(η). This suggests that the former can be used as the latter. When this

is the case, the conditional risk is in canonical form, and (f ∗, J) are said to be a

canonical pair [17] .
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Definition 2. Let J(η) be a maximal reward, and C∗
φ(η) = −J(η) a minimum

risk. If the optimal link associated with C∗
φ(η) is

f ∗
φ(η) = J ′(η) (II.52)

the risk Cφ(η, f) is said to be in canonical form. f ∗
φ(η) is denoted a canonical link

and φ(v), the loss given by (II.19), a canonical loss.

For example, as shown in Table II.3, the risk of logistic regression is

derived from the convex and symmetric J(η) = η log(η) + (1− η) log(1− η). This

has derivative J ′(η) = log( η
1−η

) and, from Table II.1, J ′(η) = f ∗
φ(η). It is also

possible to show that (II.19) holds. Hence, the risk of logistic regression is in

canonical form.

II.C.2 Constructing canonical risks from J(η)

By introducing a one-to-one relationship between J(η) and f ∗(η) (up to

an additive constant), (II.52) removes the ambiguity about the f ∗(η) and φ(v)

associated with a particular minimum risk/maximal reward. In particular, us-

ing (II.52) in Theorem 7 leads to the following result.

Theorem 9. Let I(η, η̂) be a calibrated reward derived from a convex maximal

reward of symmetry

J(η) = J(1− η).

Then

I(η, η̂) = −Cφ(η,−[C∗
φ]′(η̂)).

where Cφ(η, f) is the risk derived from the loss

φ(v) = −J{[J ′]−1(v)} − (1− [J ′]−1(v))v. (II.53)

The risk is in canonical form and has minimum C∗
φ(η) = −J(η). The estimate

η̂ = η simultaneously minimizes the risk and maximizes the reward.
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Hence, for canonical risks, there is a one-to-one relationship between loss,

minimum risk, and optimal link (up to an additive constant). Note that this is not

necessarily true for all risks in common use, which are not necessarily in canonical

form. For example, the risk of boosting is derived from the convex, differentiable,

and symmetric J(η) = −2
√

η(1− η). Since this has derivative

J ′(η) =
2η − 1

√

η(1− η)
6= 1

2
log

η

1− η
= f ∗

φ(η), (II.54)

the risk is not in canonical form. What the theorem shows is that it is possible

to derive a canonical risk for each maximal reward J(η). For example, it is pos-

sible to derive a canonical form for the J(η) of boosting, J(η) = −2
√

η(1− η).

From (II.52)

f ∗
φ(η) =

2η − 1
√

η(1− η)
(II.55)

and, from (II.52) and (II.53)

φ(v) = −J{[f ∗
φ ]−1(v)} − (1− [f ∗

φ]−1(v))v

= 2
√

[f ∗
φ]−1(v)[1− [f ∗

φ]−1(v)]− [1− [f ∗
φ]−1(v)]v

Using η = [f ∗
φ]−1(v) in both sides of (II.55),

v =
2[f ∗

φ ]−1(v)− 1
√

[f ∗
φ]−1(v)[1− [f ∗

φ]−1(v)]
(II.56)

and

φ(v) = 2
√

[f ∗
φ ]−1(v)[1− [f ∗

φ]−1(v)]−
[1− [f ∗

φ]−1(v)][2[f ∗
φ]−1(v)− 1]

√

[f ∗
φ]−1(v)[1− [f ∗

φ]−1(v)]

=
2[f ∗

φ]−1(v)[1− [f ∗
φ]−1(v)]− [1− [f ∗

φ]−1(v)][2[f ∗
φ]−1(v)− 1]

√

[f ∗
φ ]−1(v)[1− [f ∗

φ]−1(v)]

=

√

1− [f ∗
φ]−1(v)

[f ∗
φ]−1(v)

(II.57)

Finally, solving (II.56) for [f ∗
φ]−1(v),

[f ∗
φ]−1(v) =

1

2
± 1

2

v√
4 + v2

.
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Of the two solutions, one is monotonically increasing (+ in between the two terms)

with v, and the other decreasing (−). Enforcing the constraint of an increasing

link function leads to

[f ∗
φ]−1(v) =

1

2
+

1

2

v√
4 + v2

,

and

φ(v) =

√√
4 + v2 − v√
4 + v2 + v

.

Figure II.3 presents a comparison of these loss and link functions and

those associated with logistic regression and boosting. Note that the canonical

version of boosting is much closer to logistic regression than to boosting itself.

One would thus expect a boosting algorithm derived from the canonical boosting

loss to behave very similarly to logitBoost [35]. This procedure can be used to

derive canonical versions of the algorithms associated with any J(η) in Table II.3,

since all of these satisfy the symmetry condition of Theorem 9. The top of Table

II.4 presents the canonical loss and inverse link for each of such J(η).

Also, Table II.4 includes novel J(η) that can be used to derive canonical

loss functions. For example the novel J(η; a) = cosh
[

a
(

1
2
− η
)]

− cosh(−a
2

) can be

used to derive the canonical hyperbolic cosine loss as

J(η; a) = cosh

[

a

(

1

2
− η

)]

− cosh(
−a

2
) (II.58)

[f ∗
φ]−1(v; a) =

1

2
− 1

a
sinh−1(

−v

a
) (II.59)

φ(v; a) = − cosh

(

sinh−1

(−v

a

))

− cosh(
−a

2
) (II.60)

−
(

1

2
+

1

a
sinh−1

(−v

a

))

v.

where a ∈ {−∞ ∞} is a shape parameter.

II.C.3 Constructing canonical risks from f ∗
φ(η)

It is also possible to design a canonical risk from any invertible optimal

link f ∗
φ(η) with the symmetry of (II.42). The first step is to derive the correspond-

ing maximal reward J(η), using (II.52). This guarantees that (II.45) holds and
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Figure II.3 Loss (left) and link functions (right) of canonical boosting, boosting,

and logistic regression.

allows the derivation of the loss φ(v) using Theorem 9, as was done in the the

previous section. For example, the hyperbolic tangent tanh v = e2v−1
e2v+1

is a com-

monly used non-linearity in the neural network literature [12]. It can be mapped,

by converting its range from [−1, 1] to [0, 1], into the link function

[f ∗
φ]−1(v) =

1

2
+

1

2
tanh v, (II.61)

which is identical to that of boosting (e2v/(e2v + 1)). The inverse link is

f ∗
φ(η) =

1

2
log

η

1− η
,

which is the canonical inverse link for the maximal expected reward

J(η) =
1

2
[η log η + (1− η) log(1− η)].

The associated canonical loss is

φ(v) =
1

2
log(1 + e−2v).

Note that, once again, the components J(η) and φ(v) of the canonical risk are

much closer to those of logistic regression than to those of boosting.

II.C.4 Properties of the canonical form

While canonical risks can be easily designed from either J(η) or f ∗
φ(η), it

is much less clear how to design a loss φ(v) that guarantees a canonical risk. The
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Table II.4 Canonical groupings of maximal reward J(η), link function (f ∗
φ)−1(η),

and loss φ. The top of the table shows the components of the canonical risk derived

from the maximal reward shown in the second column. The bottom of the table

shows those derived from the link function in the third column.
Algorithm J(η) (f ∗

φ)−1(v) φ(v)

Canonical Least Squares −4η(1− η) 1
8
(v + 4) 1

16
(4− v)2

Canonical Boosting −2
√

η(1− η) 1
2

+ 1
2

v√
4+v2

√√
4+v2−v√
4+v2+v

Logistic Regression η log η + (1− η) log(1− η) ev

1+ev log(1 + e−v)

Canonical Hyperbolic Cosine cosh(a(1
2
− η))− cosh(−a

2
) 1

2
− 1

a
sinh−1(−v

a
) (II.60)

Canonical Secant sec(a(1
2
− η))− sec(−a

2
) 1

2
− 1

a
sin−1(a−

√
a2+4v2

2v
) (II.75)

Canonical tanh link 1
2
[η log η + (1− η) log(1− η)] e2v

1+e2v log
√

1 + e−2v

Canonical arctan link − 1
a
log
(

cos[(η− 1
2
)a]

cos a
2

)

1
2

+ 1
a
arctan v (II.71)

following lemma solves this problem by relating φ(v) to J(η) and f ∗
φ(η).

Lemma 10. Let Cφ(η, f) be the canonical risk derived from a convex and symmet-

ric reward J(η), as in Theorem 9. Then

φ′(v) = −[J ′]−1(−v) = [f ∗
φ]−1(v)− 1. (II.62)

Proof. The lemma follows from taking derivatives on both sides of (II.53),

φ′(v) = −J ′{[J ′]−1(v)}{[J ′]−1}′(v)− (1− [J ′]−1(v)) + {[J ′]−1}′(v)v

= −v{[J ′]−1}′(v)− (1− [J ′]−1(v)) + {[J ′]−1}′(v)v

= −(1− [J ′]−1(v))

= −[J ′]−1(−v),

where we have also used (II.51). The equality with [f ∗
φ]−1(v) − 1 follows from

(II.52).

The lemma has various interesting consequences. First, it specifies the

one-to-one mapping (up to additive constants) between the three components (loss,

link, and maximal reward/minimum risk) of a canonical risk. This is illustrated

in Figure II.4, the equivalent of Figure II.2 for a canonical risk. Note that,
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Figure II.4 Relationship between the canonical optimal risk, link and loss function.

in Figure II.4, the specification of φ(v) no longer leaves [f ∗
φ]−1(v) unconstrained.

Instead, it makes [f ∗
φ]−1(v) equal to 1 + φ′(v). J([f ∗

φ]−1(v)) is then constrained

by (II.24). Second, the lemma establishes a necessary condition for the canonical

form that is easy to verify. For example, logistic regression has −[J ′]−1(−v) =

[f ∗
φ]−1(v) = 1

1+e−v and φ′(v) = − e−v

1+e−v = [f ∗
φ]−1 − 1, while boosting has [f ∗

φ]−1 =

1
1+e−2v and φ′(v) = −e−v 6= [f ∗

φ]−1−1. This (plus the symmetry of J and f ∗
φ) shows

that the former is in canonical form but the latter is not. Finally, (II.62) leads to

the following precise characterization of the set of canonical losses.

Theorem 11. Let Cφ(η, f) be the conditional risk of the loss φ, as defined in (II.10).
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Cφ(η, f) is a canonical risk if and only if

φodd(v) = −v

2
, (II.63)

where

φodd(v) =
φ(v)− φ(−v)

2
(II.64)

is the odd component of φ(v),

Proof. Consider J(η) as in Theorem 9. Then, from Lemmas 8 and 10, Cφ(η, f) is

a canonical risk if and only if

φ′(v) = −[J ′]−1(−v)

= [J ′]−1(v)− 1

= −φ′(−v)− 1.

In this case, from (II.53),

φ(v) = −J{[J ′]−1(v)} − (1− [J ′]−1(v))v

= −J{−φ′(−v)} − (1 + φ′(−v))v.

It follows that

φ(−v) = −J{−φ′(v)}+ (1 + φ′(v))v

and

φ(v)− φ(−v) = J{−φ′(v)} − J{−φ′(−v)} − (2 + φ′(v) + φ′(−v))v

= J{−φ′(v)} − J{1 + φ′(v)} − v.

Using the symmetry of J(η), this is equivalent to

φ(v)− φ(−v) = −v

and the theorem follows.
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This theorem states that all canonical losses are of the form

φ(v) = −v

2
+ Ψ(v) (II.65)

where Ψ(v) is an even function. Using Lemma 10 it can be easily shown that the

associated link functions are of the form

[f ∗
φ]−1(v) =

1

2
+ Ψ′(v), (II.66)

where Ψ′(v) is an odd function. If Ψ′(v) is invertible it also implies that

J ′(η) = f ∗
φ(η) = [Ψ′]−1(η − 1/2). (II.67)

Hence, up to constants, all the degrees of freedom of φ(v) are consumed by the

specification of either J(η) or f ∗
φ(η). The next theorem shows that this results in

a number of properties for the loss, link, and minimum of a canonical risk.

Theorem 12. Let Cφ(η, f) be a canonical risk of loss φ(v), with optimal link f ∗
φ(η),

and maximal reward J(η) = −C∗
φ(η). Then, φ(v) has the following properties

1. φ(v) is 1) convex and 2) strictly convex if J(η) is bounded

2. φodd(v) = −v/2

3. φ′(v) + φ′(−v) = −1

4. φ′(0) = −1/2

5. φ′′(v) = φ′′(−v).

The following properties hold for f ∗
φ(η)

1. f ∗
φ(η) is monotonically increasing

2. f ∗
φ(η) = −f ∗

φ(1− η)

3. f ∗
φ(1/2) = 0

4. [f ∗
φ]−1(v) exists and is monotonically increasing
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5. [f ∗
φ]−1(v) = 1− [f ∗

φ]−1(−v)

6. [f ∗
φ]−1(0) = 1/2.

The following properties hold for J(η)

1. J(η) is strictly convex

2. J(η) = J(1− η).

The following properties hold for the relationship between φ(v), f ∗
φ(η), and J(η).

1. J ′(η) = f ∗
φ(η)

2. J ′′(η) = 1/φ′′[f ∗
φ(η)]

3. [f ∗
φ]−1(v) = 1 + φ′(v)

4. φ′[f ∗
φ(η)] = η − 1

5. J ′[1 + φ′(v)] = v

6. J [1 + φ′(v)] = vφ′(v)− φ(v).

Finally, Cφ(η, f) is Bayes consistent.

Proof. We start by proving the relationships between φ(v), f ∗
φ(η), and J(η). Prop-

erty 1 follows from the definition of canonical risk. Property 3 follows from

Lemma 10. Property 4 follows from Property 3, using v = f ∗
φ(η). Property 2

follows from taking derivatives on both sides of (II.67) (The invertability of Ψ

follows from the invertability of [f ∗
φ]−1 and (II.66).)

J ′′(η) =
1

Ψ′′{[Ψ′]−1(η − 1/2)} ,

differentiating twice both sides of (II.65)

φ′′(v) = Ψ′′(v)

and using (II.67). Property 5 follows from using η = [f ∗
φ]−1(v) and Property 3 in

Property 1. Property 6 follows from (II.53) and Property 5 ([J ′]−1(v) = 1+φ′(v)).
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We next consider the properties of φ(v). Property 1 follows from J ′′(η) =

1/φ′′[f ∗
φ(η)] and the strict convexity of J(η). Property 2 follows from Theorem 9.

Properties 3 and 5 follow from differentiating once or twice, respectively, the two

sides of Property 2. Property 4 follows by setting v = 0 in Property 3.

With respect to the properties of f ∗
φ, Properties 2 and 5 follow from

Lemma 1, Property 3 from Property 2 with η = 1/2, and Property 6 from Property

5 with v = 0. From the strict convexity of J(η) and f ∗
φ(η) = J ′(η) it follows that

[f ∗
φ]′(η) > 0,∀η. Hence, f ∗

φ(η) is monotonically increasing and invertible. Since

(

[f ∗
φ]−1

)′
(v) =

1

[f ∗
φ]′(η)

∣

∣

η=[f∗
φ ]−1(v)

,

it follows that
(

[f ∗
φ]−1

)′
(v) > 0 for all v ∈ (−∞,∞), and [f ∗

φ]−1(v) is monotonically

increasing. Finally, from the monotonicity of f ∗
φ(η) and Property 3 it follows that

f ∗
φ(η) satisfies (II.7) and the risk is Bayes consistent.

We have already seen two canonical risks, derived from either J(η) or

f ∗
φ(η), whose loss functions and link functions are very similar to those of logistic

regression. The theorem suggests that this will be the case for many canonical

risks. Note that, like the logistic loss, all canonical losses are concave, have a

derivative of −1/2 at the origin, derivative symmetry of φ′(v) + φ′(−v) = −1, and

odd-symmetric curvature. Also, all optimal canonical links share the symmetry

of the sigmoidal link of logistic regression. A natural question is then whether all

canonical losses and links are really just like those of logistic regression. We next

investigate this question.

II.C.5 Canonical loss behavior

We start by considering a family of losses inspired by (II.66), namely the

canonical losses derived from inverse link functions of the form

[f ∗
φ]−1(v; a) =

1

2
+

1

a
arctan v. (II.68)
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Figure II.5 Loss (left) and link functions (right) of canonical boosting, boosting,

and logistic regression.

This family is parametrized by a ∈ (0, π) and can be shown to have canonical risk

components

f ∗
φ(η; a) = tan

[(

η − 1

2

)

a

]

(II.69)

J(η; a) = −1

a
log

(

cos[(η − 1
2
)a]

cos a
2

)

(II.70)

and loss

φ(v; a) = −1

a
log
[

cos
(a

2

)√
1 + v2

]

−
(

1

2
− 1

a
arctan v

)

v. (II.71)

Figure II.5 presents plots of the link and loss functions for various values

of the parameter a. The behavior of these functions changes dramatically as a

goes from π/16 to 15π/16. For large a, the loss and link functions are indeed very

similar to those of logistic regression. This is made clear in the bottom plots, where
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the functions obtained when a = 15π/16 are compared to those of boosting and

logistic regression. Note, once again, the similarity with the latter. In particular,

as a increases, the loss function exhibits the traits typical of the classification

losses of Figure II.1: it is margin enforcing and zero for most positive values

of its argument. Similarly, the optimal link function also becomes one typical

for classification, exhibiting a sigmoidal shape of value 1/2 at the origin, and

saturating at 0 and 1. A very different behavior emerges for small a, where the

loss function becomes approximately quadratic and the inverse link function is

approximately linear. These characteristics are very similar to those of canonical

least squares, and more suitable for regression problems. For intermediate values

of the parameter a the loss and link are somewhere between functions suitable for

classification and regression.

This behavior is not restricted to the family of losses of (II.71). For

example, it also holds for the canonical risks derived from the following family of

maximum reward functions

J(η; a) = sec

[

a

(

1

2
− η

)]

− sec(
−a

2
) (II.72)

parameterized by a ∈ (0, π). The resulting canonical links and losses are

J(η; a) = sec

[

a

(

1

2
− η

)]

− sec(
−a

2
) (II.73)

[f ∗
φ]−1(v; a) =

1

2
− 1

a
sin−1

(

a−
√

a2 + 4v2

2v

)

(II.74)

φ(v; a) = − sec

(

sin−1

(

a−
√

a2 + 4v2

2v

))

+ sec(
−a

2
) (II.75)

−
(

1

2
+

1

a
sin−1

(

a−
√

a2 + 4v2

2v

))

v

Figure II.6 presents the plots of the loss and link for this family, as a

varies between 0 and π. Note how the loss eventually increases for large positive

margins. These maximal rewards, canonical link and loss functions are summarized

by Table II.4. The bottom portion of the table reports to risks derived from an

inverse link function, and the top portion to risks derived from a maximal reward.
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Figure II.6 J(η) (left), link functions (right) and canonical secant loss functions

for varying values of a ∈ (0 π).

Regression losses that have this behavior are defined as

Definition 3. A loss function φ(v) is denoted as a regression loss if it has the

following two properties

1. limv→∞ φ(v) =∞

2. limv→∞ φ′(v) > 0

The following theorem specializes Theorem 12 to the case of canonical

regression losses.

Theorem 13. Let Cφ(η, f) be a canonical risk of loss φ(v), with optimal link f ∗
φ(η),

and maximal reward J(η) = −C∗
φ(η). If φ(v) is a regression loss, the properties of

Theorem 12 are complemented as follows. For the link f ∗
φ(η)

1. limv→∞[f ∗
φ]−1(v) > 1
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2. limv→−∞[f ∗
φ]−1(v) < 0.

For the loss

1. limv→−∞ φ′(v) < −1

2. φ(v) is decreasing up to the point v = f ∗
φ(1) and increasing from then on-

wards.

3. φ(v) is margin enforcing.

Proof. We start with the properties of [f ∗
φ]−1. From Theorem 12

[f ∗
φ]−1(v) = 1 + φ′(v).

Hence, Property 1 follows from the second property of regression losses. Combining

this with the symmetry

[f ∗
φ]−1(v) = 1− [f ∗

φ]−1(−v)

leads to Property 2. We next consider the properties of the loss φ(v). Property

1 follows from φ(v) + φ(−v) = −1 and the first property of regression losses.

Property 2 follows from the facts that

φ′(v) = [f ∗
φ]−1(v)− 1,

[f ∗
φ]−1(v) is a monotonically increasing function, and the limit properties of [f ∗

φ]−1(v)

above such that φ′(v) = 0 when 1 = [f ∗
φ]−1(v) . Property 3 (φ(0) > 0) is proven in

the most general case in Theorem 21.

Figure II.4 shows the relationship between regression losses and their

optimal inverse link functions.

II.C.6 Classification losses

We start by defining classification losses.
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Table II.5 Relation between J(η), J ′(η) and f ∗
φ(η)

Name J(η) J ′(η) = f ∗
φ(η)

LS −4η + 4η2 −4 + 8η

Exp −2
√

η(1− η) −(1−2η)√
η(1−η)

Log η log(η) + (1− η) log(1− η) log( η
1−η

)

Sec sec(a(1
2
− η))− sec(−a

2
) −a sec(a(1

2
− η)) tan(a(1

2
− η))

Cosh cosh(a(1
2
− η)) −a sinh(a(1

2
− η))

Log-Cos − 1
a
log
(

cos[(η− 1
2
)a]

cos a
2

)

tan(a(η − 1
2
))

Table II.6 Canonical link functions and their range.

Name f−1(v) = η Range
LS v+4

8
[−∞ +∞]

Exp (1
2

+ 1
2

v√
4+v2 ) [0 1]

Log ev

1+ev [0 1]

Sec 1
2
− 1

a
sin−1(a−

√
a2+4v2

2v
) [1

2
− π

2a
1
2

+ π
2a

]
Cosh 1

2
− 1

a
sinh−1(−v

a
) [−∞ +∞]

Log-Cos 1
a
tan−1(v) + 1

2
[1
2
− π

2a
1
2

+ π
2a

]

Table II.7 J(η) functions and their valid domains.

Name J(η) Domain
LS −4η + 4η2 [−∞ +∞]

Exp −2
√

(η(1− η)) [0 1]
Log η log(η) + (1− η) log(1− η) (0 1)
Sec sec(a(1

2
− η))− sec(−a

2
) [1

2
− π

2a
1
2

+ π
2a

]
Cosh cosh(a(1

2
− η)) [−∞ +∞]

Log-Cos − 1
a
log
(

cos[(η− 1
2
)a]

cos a
2

)

[1
2
− π

2a
1
2

+ π
2a

]
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Definition 4. A loss function φ(v) is denoted as a classification loss if it has the

following two properties

1. vanishing loss: limv→∞ φ(v) = 0

2. vanishing derivative: limv→∞ φ′(v) = 0

The following theorem specializes Theorem 12 to the case of canonical

classification losses.

Theorem 14. Let Cφ(η, f) be a canonical risk of loss φ(v), with optimal link f ∗
φ(η),

and maximal reward J(η) = −C∗
φ(η). If φ(v) is a classification loss, the properties

of Theorem 12 are complemented as follows. For the link f ∗
φ(η)

1. limv→∞[f ∗
φ]−1(v) = 1

2. limv→−∞[f ∗
φ]−1(v) = 0.

For the loss

1. limv→−∞ φ′(v) = −1

2. φ(v) is monotonically decreasing;

3. φ(v) is margin enforcing.

For the maximal reward

1. J(1) = J(0) = − limv→∞ v[f ∗
φ]−1(−v).

Proof. We start with the properties of [f ∗
φ]−1. From Theorem 12

[f ∗
φ]−1(v) = 1 + φ′(v).

Hence, Property 1 follows from the vanishing derivative property of the classifica-

tion loss. Combining this with the symmetry

[f ∗
φ]−1(v) = 1− [f ∗

φ]−1(−v)
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leads to Property 2. We next consider the properties of the loss φ(v). Property 1

follows from φ(v) + φ(−v) = −1 and the vanishing derivative property. Property

2 follows from the facts that

φ′(v) = [f ∗
φ]−1(v)− 1,

[f ∗
φ]−1(v) is a monotonically increasing function, and the limit properties of [f ∗

φ]−1(v)

above. Property 3 (φ(0) > 0) is proven in the most general case in Theorem

21. φ(v) is monotonically decreasing, it has limit 0 as v → ∞, and derivative

φ′(0) = −1
2
. Finally, taking the limit of

φ(v) = −J{[f ∗
φ ]−1(v)} − (1− [f ∗

φ]−1(v))v

and using J(η) = J(1− η), it follows that

J(0) = J(1) = − lim
v→∞

(1− [f ∗
φ]−1(v))v

= − lim
v→∞

v[f ∗
φ]−1(−v)

Figure II.7 shows the relationship between classification losses and their

optimal inverse link functions.

II.D Non canonical loss functions

In the non canonical case, it is tempting to assume that any link function

can be paired with any valid J(η) and used to derive a novel Bayes consistent loss

function. This is only true if care is taken to make sure that the range of the used

link function is compatible with the domain of the used J(η). We have presented

the range of each link function in Table II.6 and we also include the domain of each

J(η) in Table II.7. (Note that the domain of sec(a(1
2
− η)) and − 1

a
log
(

cos[(η− 1
2
)a]

cos a
2

)

are purposely restricted to ensure convexity and symmetry of J(η).)
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Figure II.7 Classification losses and their optimal inverse link functions.

For example, the pairing of the LS canonical link function f−1(v) = v+4
8

and J(η) = sec(a(1
2
− η)) is not correct. The range of η = f−1(v) = v+4

8
is

η ∈ [−∞ +∞] which is incompatible with the domain of J(f−1(v)) = J(η) =

sec(a(1
2
− η)) which is η ∈ [1

2
− π

2a
1
2

+ π
2a

].

Theorem 15. Let f−1(v) be a link function as defined in Theorem-7 with Range

Rf−1, and J(η) a convex and symmetric function as defined in Theorem-7 with Do-

main DJ . Equation-(II.48) can be used to derive a Bayes consistent loss function

φ(v) if Rf−1 ⊆ DJ .

In summary in order to have a valid pairing of functions the range of the

link function must be a subset of the domain of J(η) such that the convexity and

symmetry of J(η) is preserved.

Table II.8 presents a list of 24 valid pairings of J(η) (from Table II.7)

and link functions (from Table II.6) and the resulting loss functions. Among these

loss functions only three were previously known (marked by ∗) and the rest are

novel. In the following sections we will further explore in detail some of these novel

Bayes consistent loss functions and their properties.
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II.E Non convex Bayes consistent loss functions

It is interesting to note that many of the novel Bayes consistent loss

functions derived from Theorem 7 in Table II.8 are not convex, violating what

has been a hallmark of the φ functions used in the literature. The convexity of

φ is, however, not important. What matters is that the risk of (II.10) have some

notion of convexity, given that the risk is being minimized and not the loss. This

is made clear by the probability elicitation view and (II.28) which states that the

expected reward function must have a global maximum at η̂ = η. This in turn

does not even require that I(η, η̂) = −C(η, f ∗(η̂)) be a concave function of η̂. In

fact we show that the risk of (II.10) is not necessarily convex on η̂ but provably

quasi convex on η̂.

Theorem 16. The conditional risk of (II.10) is quasi convex with respect to η̂

irrespective of the convexity of the loss φ.

Proof. Noting that I(η, η̂) = −C(η, f ∗(η̂)) we can write

C(η, f ∗(η̂)) = −I(η, η̂) = −J(η̂) + J ′(η̂)(η̂ − η) (II.76)

taking the first derivative with respect to η̂

C ′(η, f ∗(η̂)) = J ′′(η̂)(η̂ − η) (II.77)

taking the second derivative with respect to η̂

C ′′(η, f ∗(η̂)) = J ′′′(η̂)(η̂ − η) + J ′′(η̂). (II.78)

Given the fact that J ′′(η̂) > 0, the first derivative (II.77) changes sign and is zero

only at η̂ = η thus proving that the risk is quasi convex on η̂. On the other hand,

the second derivative (II.78) is not necessarily positive for all values of η and η̂

meaning that the risk is not necessarily convex over the probability estimates η̂.

In fact this is made clear by (II.28) which requires that η̂ = η only be the global

maximum of the reward I(η, η̂), concavity is not required.
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Using the probability elicitation view and Savage’s main theorem, we

have shown that the conditional risk of a loss function φ will be quasi convex

with respect to η̂ irrespective of the convexity of φ itself. But we have not shown

that the transformation of variable performed by the link function will preserve the

quasi convexity of the conditional risk such that it is still at least quasi convex with

respect to f . In general, a transformation of variable does not preserve convexity

or quasi convexity. Yet, it is important to have some notion of what happens to

the conditional risk in terms of f since in practice many learning algorithms such

as boosting and SVM’s work directly in the f space and proceed to minimize the

risk over the space of f decision functions.

Here we show that the conditional risk is quasi convex with respect to f

(irrespective of the convexity of φ) and thus has a unique minimum at f ∗.

Theorem 17. The conditional risk of (II.10) is quasi-convex with respect to f

irrespective of the convexity of the loss φ.

Proof. We take the derivative of C(η, f(η̂)) with respect to f and show that it

changes sign and is zero only at f = f ∗.

C = ηφ(f(η̂)) + (1− η)φ(−f(η̂)) = ηφ(v) + (1− η)φ(−v) (II.79)
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where v = f(η̂). taking the derivative of C(η, f) with respect to f we have

∂C

∂v
= η

∂φ(v)

∂v
+ (1− η)

∂φ(−v)

∂v
=

η
∂[−J(f−1(v))− (1− f−1(v))J ′(f−1(v))]

∂v

+(1− η)
∂[−J(f−1(v)) + f−1(v)J ′(f−1(v))]

∂v
=

−η
∂J(f−1(v))

∂v
− η

∂J ′(f−1(v))

∂v

+η
∂f−1(v)

∂v
J ′(f−1(v)) + ηf−1(v)

∂J ′(f−1(v))

∂v

−∂J(f−1(v))

∂v
+

∂f−1(v)

∂v
J ′(f−1(v)) + f−1(v)

∂J ′(f−1(v))

∂v

η
∂J(f−1(v))

∂v
− η

∂f−1(v)

∂v
J ′(f−1(v))− ηf−1(v)

∂J ′(f−1(v))

∂v
=

(f−1(v)− η)
∂J ′(f−1(v))

∂v
+

∂f−1(v)

∂v
J ′(f−1(v))− ∂J(f−1(v))

∂v
=

(f−1(v)− η)
∂J ′(f−1(v))

∂v
+

∂f−1(v)

∂v
J ′(f−1(v))

−∂J(f−1(v))

∂(f−1(v))

∂f−1(v)

∂v
=

(f−1(v)− η)
∂J ′(f−1(v))

∂v
+

∂f−1(v)

∂v
J ′(f−1(v))

−∂f−1(v)

∂v
J ′(f−1(v)) =

(f−1(v)− η)
∂J ′(f−1(v))

∂(f−1(v))

∂f−1(v)

∂v
=

(f−1(v)− η)J ′′(f−1(v))
∂f−1(v)

∂v

Since J ′′(f−1(v)) > 0 and ∂f−1(v)
∂v

> 0 the above changes sign and is zero only at

f−1(v) = η and hence C(η, f) is quasi convex over f .

We have shown above that the conditional risk is quasi convex with re-

spect to f . We also need to explore the properties of the risk and empirical risk

with respect to f , because in practice we are trying to minimize the empirical

risk. We need to show that the empirical risk does not have local minimum which

would prevent the effective minimization of the empirical risk. If we show that
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the empirical risk does not have any local minimum, then in practice we can do

functional gradient descent (such as boosting) to minimize the empirical risk and

have a working classification algorithm.

Before we proceed any further we first prove that φ(v) is itself quasi

convex. Meaning that all Bayes consistent loss functions found from our approach

are quasi convex functions.

Theorem 18. The Bayes consistent loss functions derived from

φ(v) = −J(f−1(v))− (1− f−1(v))J ′(f−1(v)) are quasi convex with respect to f .

Proof.

∂φ(v)

∂v
=

∂[−J(f−1(v))− (1− f−1(v))J ′(f−1(v))]

∂v

= −∂J(f−1(v))

∂v
− ∂J ′(f−1(v))

∂v

+
∂f−1(v)

∂v
J ′(f−1(v)) + f−1(v)

∂J ′(f−1(v))

∂v

= −∂f−1(v)

∂v
J ′(f−1(v))− ∂J ′(f−1(v))

∂v

+
∂f−1(v)

∂v
J ′(f−1(v)) + f−1(v)

∂J ′(f−1(v))

∂v

= −∂J ′(f−1(v))

∂v
+ f−1(v)

∂J ′(f−1(v))

∂v

=
∂J ′(f−1(v))

∂v
(f−1(v)− 1)

=
∂J ′(f−1(v))

∂(f−1(v))

∂f−1(v)

∂v
(f−1(v)− 1)

= J ′′(f−1(v))
∂f−1(v)

∂v
(f−1(v)− 1)

Again since J ′′(f−1(v)) > 0 and ∂f−1(v)
∂v

> 0 the above changes sign and is zero

only at f−1(v) = 1 and hence φ(v) is quasi convex.

The above theorem can in fact be generalized to all Bayes consistent loss

functions using the theorem below.

Theorem 19. Any Bayes consistent loss function φ(v) (in the form of (II.9)) is

quasi convex with respect to f .
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Proof. From (II.19) we can write

φ(v) = C∗{[f ∗]−1(v)}+ (1− [f ∗]−1(v))[C∗]′{[f ∗]−1(v)} (II.80)

taking the derivative

φ′(v) = −[C∗]′′{[f ∗]−1(v)}∂[f ∗]−1(v)

∂v
([f ∗]−1(v)− 1) (II.81)

Since [C∗]′′{[f ∗]−1(v)} < 0 (Theorem-2) and ∂[f∗]−1(v)
∂v

> 0 ([f ∗]−1(v) is monotoni-

cally increasing given that it is invertible and Bayes consistent) the above changes

sign and is zero only at [f ∗]−1(v) = 1 and hence φ(v) is quasi convex.

Th above theorems allow us to categorize Bayes consistent loss functions

into four shape varieties.

Theorem 20. Bayes consistent loss functions are of four basic shape varieties.

(1) Convex and nondecreasing, (2) quasi convex and nondecreasing, (3) convex

and nondecreasing up to a point and then non increasing from then on (4) quasi

convex and nondecreasing up to a point and then non increasing from then on.

Proof. From Theorem 18 we know that

∂φ(v)

∂v
= −[C∗]′′{[f ∗]−1(v)}∂[f ∗]−1(v)

∂v
([f ∗]−1(v)− 1) (II.82)

Again since [C∗]′′{[f ∗]−1(v)} < 0 and ∂[f∗]−1(v)
∂v

> 0 the above changes sign and is

zero only at f−1(v) = 1. This means that if the link is such that f−1(v) < 1 for all

v (as in the case of the logit link), then all loss functions derived from this link will

be nondecreasing (such as the exp loss), if the link is such that it can be f−1(v) > 1

for some v, then we get losses that are nondecreasing up to a point and then non

increasing from then on (such as the LS loss). So if a link f−1(v) < 1 for all v is

used to derive a loss function, the resulting loss will be of variety (1) or (2) i.e. a

nondecreasing loss. for example the exp and log loss functions that use the logistic

link fall into this category. If a link f−1(v) > 1 for some v, is used to derive a loss

function, the resulting loss will be of variety (3) or (4) i.e. nondecreasing up to a
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point and then non increasing from then on. For example the least squares loss

falls into this category. So the choice of f−1(v) can be used to design the shape of

the loss, defining whether it is of variety (1) and (2) or of (3) and (4). designing a

loss to be convex or quasi convex, i.e designing it to be of variety (1) as apposed

to (2) is more complicated. It requires that we compute the second derivative of

the loss. defining the first derivative of the loss to be φ′(v), the second derivative

can be written as

∂φ′(v)

∂v
(II.83)

=
∂[J ′′(f−1(v))∂f−1(v)

∂v
(f−1(v)− 1)]

∂v
(II.84)

= J ′′′(f−1(v))(
∂f−1(v)

∂v
)2f−1(v) + J ′′(f−1(v))(

∂(∂f−1(v)
∂v

)

∂v
)f−1(v) (II.85)

+J ′′(f−1(v))(
∂f−1(v)

∂v
)2 − J ′′′(f−1(v))(

∂f−1(v)

∂v
)2 (II.86)

−J ′′(f−1(v))(
∂(∂f−1(v)

∂v
)

∂v
) (II.87)

Ensuring convexity of the loss would require that the above equation be positive.

This cannot be simply characterized and depends on the third derivative of J as

well as the range of f−1(v). In summary, by simply checking if f−1(v) < 1 for all v

or not, we can design a loss that is of variety (1) and (2) or (3) and (4). Choosing

between (1) and (2) (or (3) and (4)) is not as easy and requires that the second

derivative of the loss (above formula) be derived and checked.

Theorem 21. All Bayes consistent loss functions derived from φ(v) = −J(f−1(v))−
(1− f−1(v))J ′(f−1(v)) are margin enforcing ( i.e. have a minimum at v > 0).

Proof. From Theorem 18 we know that φ(v) is quasi-convex and so has a unique

global minimum. From Theorems 20 we also know that if the loss is of varieties

(1) or (2), then the loss has a minimum at v = ∞ > 0 thus proving the theorem.

If the loss is of types (3) or (4) then from the proof of theorem 18 we know that

the minimum is at a v such that f−1(v) = 1. Also since f−1(v) is invertible and
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f−1(v) > 0.5 for v > 0, then v must be greater than zero (v > 0) when f−1(v) = 1

at the minimum.

The above theorem is not surprising given that we would expect a mean-

ingful loss function to assign minimum loss to data points that have been classified

correctly meaning that minimum loss should be at v > 0.

Now we prove that the empirical risk does not have local minimum and

can be effectively minimized by a functional gradient descent algorithm.

Theorem 22. The risk and empirical risk function

R(g(xi)) =
n
∑

i=1

φ(yig(xi))

=
n
∑

i=1

−J(f−1(yig(xi)))− (1− f−1(yig(xi)))J
′(f−1(yig(xi)))

has a single point of minimum in functional space (no local minimum) and can be

minimized by functional gradient descent.

Proof. The first order variation of the empirical risk at point g(xi) along the di-

rection h(xi) (also known as the Gateaux variation [91]) is

d

dǫ
R(g(xi) + ǫh(xi))|ǫ=0 =

d

dǫ

[ n
∑

i=1

−J(f−1(yi{g(xi) + ǫh(xi))}))

−(1− f−1(yi{g(xi) + ǫh(xi))}))J ′(f−1(yi{g(xi) + ǫh(xi))}))
]

ǫ=0

=

[ n
∑

i=1

−∂J(f−1(v))

∂(f−1(v))

∂f−1(v)

∂v

∂v

∂ǫ
− ∂J ′(f−1(v))

∂(f−1(v))

∂f−1(v)

∂v

∂v

∂ǫ

+
∂f−1(v)

∂v

∂v

∂ǫ
J ′(f−1(v)) + f−1(v)

∂J ′(f−1(v))

∂(f−1(v))

∂f−1(v)

∂v

∂v

∂ǫ

]

ǫ=0

=

[ n
∑

i=1

J ′′(f−1(v))
∂f−1(v)

∂v

∂v

∂ǫ
(f−1(v)− 1)

]

ǫ=0

=

n
∑

i=1

J ′′(f−1(yig(xi))) ·
∂f−1(yig(xi))

∂(yig(xi))
· (yih(xi)) · (f−1(yig(xi))− 1)
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where we have set v = yi{g(xi) + ǫh(xi))}.
Here we consider two cases. The first case is when we have a nondecreas-

ing loss function (loss variety 1 or 2). In this case (f−1(yig(xi))− 1) < 0. We also

know that J ′′(f−1(yig(xi))) > 0 given that J is strictly convex and ∂f−1(v)
∂(v)

> 0 for

all −∞ < v < ∞. This means that for any yi, xi and g(xi) a direction h(xi) 6= 0

exists (for example by setting h(xi) = yi) such that the above variation is negative.

This is the direction of descent and by moving in that direction the empirical risk

can be further reduced. In other words, since a direction of descent always exists

for any choice of yi, xi and g(xi), the empirical risk does not get stuck in a local

minimum and can be minimized by gradient descent.

The second case we consider is when the loss is nondecreasing up to a

single point and then non increasing (loss varieties 3 and 4). In this case the

single point g∗(xi) can be found such that f−1(yig
∗(xi)) = 1 for all yi and xi

(note that this follows directly from the fact that f−1(v) is monotonic, otherwise

multiple g∗(xi) could exists that would make f−1(yig
∗(xi)) = 1). At this single

point the above variation will be equal to zero for any choice of h(xi). This means

that the empirical risk has no variation at the point g∗(xi) and so g∗(xi) is either

an extremum or a saddle point. Next we take the second order variation of the

empirical risk at the point g∗(xi) and show (see below) that the second order

variation is positive for any choice of h(xi) meaning that g∗(xi) is a minimum.

Since g∗(xi) is the only point that makes the first order variation zero for any

choice of h(xi) 6= 0, and the second order variation is always positive at that point,

then g∗(xi) is the only minimum. For any point other than g∗(xi), the first order

variation will not always be zero (for any choice of h(xi) 6= 0) and a direction h(xi)

can be found such that the first order variation is negative. This in turn means

that a direction of descent exists for any point in functional space other than the

minimum at g∗(xi).

Note that we make no claims of convexity or quasi convexity for the

empirical risk, in fact they are not generally convex or quasi convex. What we
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have shown is that the minimum of the empirical risk can always be found by

gradient descent and that we will not get stuck in local minimum or saddle points.

Nevertheless, the proof was a direct result of the loss being quasi-convex. If the

loss where to have more than one minimum and were not quasi convex, then the

above argument could not be made and the empirical risk would also have multiple

local minimum where a gradient descent algorithm could get stuck.

The second order variation at the point g(xi) in the direction of h(xi) is

d2

dǫ2
R(g(xi) + ǫh(xi))|ǫ=0 =

d2

dǫ2

[ n
∑

i=1

−J(f−1(yi{g(xi) + ǫh(xi))}))

−(1− f−1(yi{g(xi) + ǫh(xi))}))J ′(f−1(yi{g(xi) + ǫh(xi))}))
]

ǫ=0

=

[ n
∑

i=1

[
∂J ′′(f−1(v))

∂(f−1(v))

∂f−1(v)

∂v

∂v

∂ǫ
]
∂f−1(v)

∂v
(yih(xi))f

−1(v)

+J ′′(f−1(v))[
∂ ∂f−1(v)

∂v

∂v

∂v

∂ǫ
](yih(xi))f

−1(v)

+J ′′(f−1(v))
∂f−1(v)

∂v
[
∂f−1(v)

∂v

∂v

∂ǫ
](yih(xi))

−[
∂J ′′(f−1(v))

∂(f−1(v))

∂f−1(v)

∂v

∂v

∂ǫ
]
∂f−1(v)

∂v
(yih(xi))

−J ′′(f−1(v))[
∂ ∂f−1(v)

∂v

∂v

∂v

∂ǫ
](yih(xi))

]

ǫ=0

=

n
∑

i=1

J ′′′(f−1(yig(xi)))(
∂f−1(yig(xi))

∂(yig(xi))
)2(yih(xi))

2f−1(yig(xi))

+J ′′(f−1(yig(xi)))(
∂f−1(yig(xi))

∂(yig(xi))
)(yih(xi))

2f−1(yig(xi))

+J ′′(f−1(yig(xi)))(
∂f−1(yig(xi))

∂(yig(xi))
)2(yih(xi))

2

−J ′′′(f−1(yig(xi)))(
∂f−1(yig(xi))

∂(yig(xi))
)2(yih(xi))

2

−J ′′(f−1(yig(xi)))(
∂f−1(yig(xi))

∂(yig(xi))
)(yih(xi))

2

(II.88)

where we have again used v = yi{g(xi) + ǫh(xi))}. The second order variation at
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point g∗(xi) where f−1(yig
∗(xi)) = 1 is

n
∑

i=1

J ′′′(f−1(yig
∗(xi)))(

∂f−1(yig
∗(xi))

∂(yig∗(xi))
)2(yih(xi))

2

+J ′′(f−1(yig
∗(xi)))(

∂f−1(yig
∗(xi))

∂(yig∗(xi))
)(yih(xi))

2

+J ′′(f−1(yig
∗(xi)))(

∂f−1(yig
∗(xi))

∂(yig∗(xi))
)2(yih(xi))

2

−J ′′′(f−1(yig
∗(xi)))(

∂f−1(yig
∗(xi))

∂(yig∗(xi))
)2(yih(xi))

2

−J ′′(f−1(yig
∗(xi)))(

∂f−1(yig
∗(xi))

∂(yig∗(xi))
)(yih(xi))

2 =

=
n
∑

i=1

J ′′(f−1(yig
∗(xi)))(

∂f−1(yig
∗(xi))

∂(yig∗(xi))
)2(yih(xi))

2 > 0

(II.89)

Given that J is strictly convex then J ′′ > 0 and the above is always positive for

any h(xi) 6= 0.

A very similar proof can be made for the risk itself by simply replacing

summations with the integral.

In summary, the above series of proofs show that (1) Bayes consistent loss

functions need not be convex but are restricted to being quasi convex, (2) Although

the loss is not necessarily convex, but the conditional risk is quasi convex. (3) the

risk and empirical risk have a unique minimum that can be found in practice with

functional gradient descent algorithms.

II.F Bounded Bayes consistent loss functions

In Section-II.E we showed that there are only four varieties of Bayes

consistent loss functions. These varieties were based on the convexity or quasi-

convexity properties and monotonicity of the loss function. Unfortunately, the

four varieties do not give much information when one is trying to design loss

functions with certain shapes and properties. For example no information is given
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Table II.8 Table of Bayes consistent loss functions.(*) Previously known loss func-

tions.
# Type J(η) f−1(v) φ(v)
1∗ I LS LS 1

16
(v − 4)2

2 V I LS Exp 1− 2v√
4+v2 + v2

4+v2

3 V I LS Log 4
(1+ev)2

4 I LS Cosh 1 + 4
a
sinh−1(−v

a
) + 4

a2 (sinh−1(−v
a

))2

5 V LS Sec 1 + 4
a
sin−1(a−

√
a2+4v2

2v
) + 4

a2 sin−1(a−
√

a2+4v2

2v
)2

6 V LS Log-Cos ( 2
a
tan−1(v)− 1)2

7∗ III Exp Log e
−v
2

8 III Exp Exp
√√

4+v2−v√
4+v2+v

= 1
2
(
√

4 + v2 − v)

9∗ III Log Log log(1 + e−v)
10 III Log Exp − log(1

2
+ v

2
√

4+v2 )

11 V I Sec Log sec(0.5a(1−ev)
1+ev )[−1 + ( a

1+ev ) tan(0.5a(1−ev)
1+ev )]

12 V I Sec Exp − sec( av
2
√

4+v2 )[1 + a(1
2
− v

2
√

4+v2 ) tan( av
2
√

4+v2 )]

13 I Sec Sec − sec(sin−1(a−
√

a2+4v2

2v
))− (1

2
+ 1

a
sin−1(a−

√
a2+4v2

2v
))v

14 I Sec Log-Cos − sec(tan−1(v))[1 + a(1
2
− 1

a
tan−1(v))v]

15 I Cosh LS − cosh(−av
8

) + a(4−v
8

) sinh(−av
8

)

16 V I Cosh Log − cosh(0.5a(1−ev)
1+ev ) + a( 1

1+ev ) sinh(0.5a(1−ev)
1+ev ))

17 V Cosh Sec − cosh(sin−1(A)) + (1
2

+ 1
a
sin−1(A)) sinh(sin−1(A))

A = a−
√

a2+4v2

2v

18 I Cosh Cosh − cosh(sinh−1(−v
a

))− (1
2

+ 1
a
sinh−1(−v

a
))v

19 V I Cosh Exp − cosh( av
2
√

4+v2 )− a(1
2
− v

2
√

4+v2 ) sinh( av
2
√

4+v2 )

20 V Cosh Log-Cos − cosh(A)− (1
2
− A) sinh(A)

A = 1
a
tan−1(v)

21 V I Log-Cos Log 1
a
log(

cos(a( ev

1+ev − 1
2
))

cos( a
2
)

)− (1− ev

1+ev ) tan(a( ev

1+ev − 1
2
))

22 V I Log-Cos Exp 1
a
log(

cos( av

2
√

4+v2
)

cos( a
2
)

)− (1
2
− v

2
√

4+v2 ) tan( av
2
√

4+v2 )

23 I Log-Cos Sec 1
a
log( cos(−A)

cos( a
2
)
)− (1

2
+ 1

a
A) tan(−A)

A = sin−1(a−
√

a2+4v2

2v
)

24 I Log-Cos Log-Cos − 1
a
log(cos(a

2
)
√

1 + v2)− (1
2
− 1

a
tan−1(v))v
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Figure II.8 Example of loss function shapes that are not possible.

on the boundedness properties of the loss function. Quasi convexity does not define

boundedness since it is both possible to have a loss function that is quasi convex

and unbounded as well as a loss function that is quasi convex and bounded. Also

the four varieties are very loose in terms of the restrictions they impose on the

shape of the loss. For example they do not deny the possibility of having loss

functions with the shapes seen in Figure II.8, i.e. a loss that is bounded on the

negative side and unbounded on the positive side. Yet, in this section we will

show that such loss functions are not possible and will fully analyze and limit the

possible loss function shapes, restricting them to seven types. Furthermore, we will

provide simple conditions for designing and deriving each of the seven loss types.

Definition 5. A loss function is said to have negative boundedness if φ(−∞) <∞
and positive boundedness if φ(∞) < ∞. Conversely, a loss function is said to be

negatively unbounded if φ(−∞) =∞ and positively unbounded if φ(∞) =∞

It is easy to verify that the well known exponential, logistic and least

squares loss functions are all negatively unbounded. Such unbounded loss functions

will be more sensitive to outliers as such points will introduce an infinite loss.

Having defined boundedness for a loss function, we must note that boundedness

is not equivalent with having a zero derivative at infinity. A bounded function

has zero derivative at infinity φ′(∞) = 0, but a function with zero derivative

at infinity φ′(∞) = 0 is not necessarily bounded. For example the log function
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log(x) has zero derivative at infinity since limx→∞
1
x

= 0 but is unbounded since

limx→∞ log(x) =∞.

We also define boundedness for link functions.

Definition 6. A link function is said to be bounded if f−1(−∞) = b > −∞.

Conversely, a link function is said to be unbounded if f−1(−∞) = −∞.

Obviously for a bounded link function, using the symmetry property of

equation (II.18), we can equivalently write f−1(∞) = 1 − b < ∞. Table II.6

shows the range of different link functions. The Exp, Log, Sec, and Log-Cos link

functions are all bounded whereas the LS and Cosh link functions are unbounded.

The following theorem limits the possible shapes a Bayes consistent loss

function can have in terms of boundedness.

Theorem 23. If a Bayes consistent loss function is negatively bounded, then it

must also be positively bounded .

Proof. Given that the loss function is negatively bounded we can write

φ(−∞) = −J [f−1(−∞)]− (1− f−1(−∞))J ′[f−1(−∞)] = a. (II.90)

Also from equation (II.16) we can write

J ′(f−1(−∞)) = φ(∞)− φ(−∞) = φ(∞)− a. (II.91)

or

φ(∞) = J ′(f−1(−∞)) + a. (II.92)

Two cases are possible given that J(η) is convex and J ′(f−1(−∞)) < 0. The first

case is when J ′(f−1(−∞)) = c > −∞. In which case φ(∞) = c + a is positively

bounded thus proving the theorem.

The second case is when J ′(f−1(−∞)) = −∞. In which case we can

write

φ(∞) = J ′(f−1(−∞)) + a = −∞. (II.93)
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which again proves that φ(∞) = −∞ <∞ is positively bounded.

The converse of this theorem is obviously not correct and a positively

bounded loss is not necessarily negatively bounded. Loss functions such as the

exponential or logistic loss are examples of such loss functions that are negatively

unbounded but positively bounded. Theorem 23 shows that a loss function such as

the one in Figure II.8 is not possible, since it is negatively bounded yet positively

unbounded.

The following theorem restricts the possible shapes a Bayes consistent

loss function can take in terms of boundedness to seven different types.

Theorem 24. The shape of a Bayes consistent loss function is restricted to seven

types in terms of boundedness.

I: φ(−∞) = ∞, φ(∞) = ∞ and nondecreasing up to a point and then non in-

creasing.

II: φ(−∞) = ∞, φ(∞) = c and nondecreasing up to a point and then non in-

creasing.

III: φ(−∞) =∞, φ(∞) = c and nondecreasing .

IV: φ(−∞) =∞, φ(∞) = −∞ and nondecreasing .

V: φ(−∞) = c1, φ(∞) = c2 and nondecreasing up to a point and then non in-

creasing.

VI: φ(−∞) = c1, φ(∞) = c2 and nondecreasing .

VII: φ(−∞) = c, φ(∞) = −∞ and nondecreasing .

Proof. From theorem 20 we know that the loss cannot be non increasing. This

means that φ(−∞) 6= −∞, thus restricting φ(−∞) to φ(−∞) =∞ or φ(−∞) = c.

On the other hand φ(∞) can equal φ(∞) 6= ∞, φ(∞) 6= c or φ(∞) 6= −∞. From
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theorem 20 we also know that the loss can be (1) either nondecreasing or (2)

nondecreasing up to a point and then non increasing. Theorem 23 excludes the

case of

φ(−∞) = c, φ(∞) =∞. (II.94)

This coupled with the fact that the loss is either convex or quasi convex (theorem

20) leaves only the seven possibilities mentioned in the theorem.

The following theorems provide simple recipes for deriving each of the

seven types of loss functions. These recipes are not restrictive but rather only

constructive, meaning that certain loss types can be derived in more than one

manner, sometimes involving complex interplay between the risk and link function.

Rather, we provide simple recipes for deriving each of the loss types, ensuring that

a loss is of a certain type without having to resort to trial and error.

Theorem 25. A loss will be of Type-I if f−1(v) and J(η) are a canonical pair and

f−1(v) > 1 for some v .

Proof. Since the loss is canonical we know from Theorem 12 that the loss will be

convex. Also, given that f−1(v) > 1 for some value of v, Theorem 20 tells us that

this loss will be nondecreasing up to a point and then non increasing. The loss is

thus unbounded on both sides and is a Type-I loss.

Theorem 26. A loss will be of Type-II if f−1(∞) = c > 1, J(f−1(∞)) = ∞,

J ′(f−1(∞)) =∞ and −J(f−1(∞))− (1− c)J ′(f−1(∞)) = a .

Proof. We can write

φ(∞) = −J(f−1(∞))− (1− c)J ′(f−1(∞)) = a (II.95)

thus φ(v) is positively bounded. From equation II.16 we can also write

φ(−∞)− φ(∞) = J ′(f−1(∞)) (II.96)
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or

φ(−∞) = a + J ′(f−1(∞)) =∞ (II.97)

thus proving that φ(v) is negatively unbounded. The fact that f−1(∞) = c > 1

means that from Theorem 20 we know that it will be nondecreasing up to a point

and then non increasing. The loss is thus of Type-II.

Theorem 27. A loss will be of Type-III if f−1(v) and J(η) are a canonical pair,

f−1(∞) = 1 and c + J(1) = limv→∞−(1− f−1(v))v.

Proof. Since the loss is canonical we know from Theorem 12 that the loss will

be convex. given that φ(v) is convex and nondecreasing we can conclude that

φ(−∞) =∞. We can also write

φ(∞) = lim
v→∞
−J(f−1(v))− (1− f−1(v))v = c (II.98)

where we have used the fact that −J(f−1(∞)) = J(1) and c+J(1) = limv→∞−(1−
f−1(v))v, thus showing that φ(v) is of Type-III.

Theorem 28. A loss will be of Type-IV if f−1(v) and J(η) are a canonical pair,

f−1(∞) = b < 1 .

Proof. Since the loss is canonical we know from Theorem 12 that the loss will

be convex. given that φ(v) is convex and nondecreasing we can conclude that

φ(−∞) =∞. Also, given that f−1(∞) = b < 1 we can write

φ′(∞) = b− 1 6= 0 (II.99)

which means that the φ(−∞) = −∞. Also since f−1(∞) = b < 1 we know that

the loss will be nondecreasing and thus of Type-IV.

Theorem 29. A loss will be of Type-V if f−1(−∞) = b > 1 and J(b) = k1 < ∞
and J ′(b) = k2 > −∞.
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Proof.

lim
v→−∞

φ(v) = lim
v→−∞

−J(f−1(v))− (1− f−1(v))J ′(f−1(v)) (II.100)

= −J(b)− (1− b)J ′(b) = −k1 − (1− b)k2

which shows that φ(v) is negatively bounded. we can also write

lim
v→∞

φ(v) = lim
v→∞
−J(f−1(v))− (1− f−1(v))J ′(f−1(v)) (II.101)

= −J(1− b)− (1− (1− b))J ′(1− b) = −J(b) + bJ ′(b) = −k1 + bk2

which shows that the loss is also positively bounded and we have used the equalities

f−1(v) = 1 − f−1(−v), J(η) = J(1 − η) and J ′(η) = −J ′(1 − η). Given that

f−1(−∞) = b > 1, means that from Theorem 20 the loss will be nondecreasing up

to a point and then non increasing and thus of Type-V.

Theorem 30. A loss will be of Type-VI if f−1(−∞) = b ≤ 1 and J(b) = k1 <∞
and J ′(b) = k2 > −∞.

Proof.

lim
v→−∞

φ(v) = lim
v→−∞

−J(f−1(v))− (1− f−1(v))J ′(f−1(v)) (II.102)

= −J(b)− (1− b)J ′(b) = −k1 − (1− b)k2

which shows that φ(v) is negatively bounded. we can also write

lim
v→∞

φ(v) = lim
v→∞
−J(f−1(v))− (1− f−1(v))J ′(f−1(v)) (II.103)

= −J(1− b)− (1− (1− b))J ′(1− b) = −J(b) + bJ ′(b) = −k1 + bk2

which shows that the loss is also positively bounded and we have used the equalities

f−1(v) = 1 − f−1(−v), J(η) = J(1 − η) and J ′(η) = −J ′(1 − η). Given that

f−1(−∞) = b ≤ 1, means that from Theorem 20 the loss will be nondecreasing

and thus of Type-VI.

Theorem 31. A loss will be of Type-VII if f−1(−∞) = c > 0 and J(f−1(−∞)) =

∞ and J ′(f−1(−∞)) = −∞. and −J(f−1(−∞))− (1− c)J ′(f−1(−∞)) = a.
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Proof. We can write

φ(−∞) = −J(f−1(−∞))− (1− c)J ′(f−1(−∞)) = a (II.104)

thus φ(v) is negatively bounded. From equation II.16 we can also write

φ(∞)− φ(−∞) = J ′(f−1(−∞)) (II.105)

or

φ(∞) = a + J ′(f−1(−∞)) = −∞. (II.106)

The fact that f−1(−∞) = c > 0 means that f−1(∞) = 1 − c < 1 for all v and

thus from Theorem 20 we know that it will be nondecreasing. The loss is thus of

Type-VII.

The 24 Bayes consistent loss functions presented in Table II.8 are cate-

gorized into the seven different types.

Type-1 losses include functions such as the well known Least Squares (loss

#1) or the novel losses #13 and #14 which are convex and novel non convex losses

such as losses #4 and #23 . Figure II.9-A plots a number of such losses. These

loss functions might penalize correct classifications (positive margin) heavily and

as much as incorrect classifications (negative margin) thus making then unsuitable

for classification applications. This happens to be the case for the LS loss function

which is not typically used for classification. Nevertheless these loss functions

can be made to resemble Type-III, VI and even Type-V loss function with the

correct choice of parameters as is the case with loss #23 which is unbounded and

non convex and has an interesting shape making it similar to Type-VI or Type-V

losses.

Type-III losses include the well known exponential loss #7 and Logistic

loss #9 or the canonical losses of #8 and #9 which by Theorem 27 fall into

this category. These type of losses are generally well suited for classification but

can suffer from being sensitive to outliers. This comes from the unbounded loss
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assigned to the negative margin. Figure II.9-B plots a number of such losses which

can be both convex and non convex in shape.

Type-VI loss functions are also generally well suited for classification

problems especially when outliers are present in the data. The bounded nature

of these loss functions assigns a bounded loss to outliers thus deemphasizing their

affect. Figure II.9-C plots a number of such losses.

Finally, Type-V loss functions will not only be resistant to outliers but will

also be robust to over training because a nonzero (yet bounded) loss is assigned

to points that are classified ”too correctly”. Such loss functions are especially

suitable for situations where the data is contaminated with noise and we would like

to prevent the classification algorithm from learning the noise and over training.

Figure II.9-D plots a number of such losses. Different values of the parameter

a change the ratio between the positive margin bound and the negative margin

bound, thus controlling how much loss is assigned to being ”too correct” in relation

to being ”too wrong”.

Examples of loss functions of Type II, IV and VII are not present in

Table II.8 because we currently do not know of any closed form functions J(η)

and f−1(v) that satisfy the general symmetry requirements and also satisfy the

requirements of Theorems 26, 28 or 31.

In summary, Table II.8 can be used as a reference for choosing different

loss functions to use based on the particular problem and understanding of the data

at hand and desired performance characteristics such as robustness to outliers and

noise. Also, previously stated theorems can be used as a guide for designing and

deriving other novel loss functions that are specially tailored for certain problems.

II.G Summary and discussion

In this chapter, we have presented a new framework for the design and

analysis of Bayes consistent loss functions. The two fields of risk minimization
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Figure II.9 Examples of (A) Type-I (B) Type-III (C) Type-VI (D) Type-V Loss

functions.

in machine learning and probability elicitation in statistics were related. The

probability elicitation view allowed us to obtain a generative formula for deriving

novel Bayes consistent loss functions. Specifically, margin enforcing composite

losses were considered. We showed that any functional form of the minimum

conditional risk, which satisfies some mild constraints, supports many link and

loss function pairs. Hence, by selecting a class of link functions, it is possible to

tailor the loss, so as to guarantee classifiers with desirable traits.

Next, canonical loss functions were fully considered and analyzed. The

general case of non canonical loss functions was also studied and the class of Bayes

consistent loss functions were partitioned into four varieties based on their con-

vexity properties. The convexity properties of the loss, risk and empirical risk
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of Bayes consistent loss functions were also studied in detail which, for the first

time, enable the derivation of non convex Bayes consistent loss functions. Finally

a taxonomy of Bayes consistent loss functions was provided based on their shape

and boundedness properties.
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III.A Introduction

Optimal classifiers minimize the expected value of a loss function, or

risk. Losses commonly used in machine learning are upper-bounds on the zero-one

classification loss of classical Bayes decision theory. When the resulting classifier

converges asymptotically to the Bayes decision rule, as training samples increase,

the loss is said to be Bayes consistent. Examples of such losses include the hinge

loss, used in SVM design, the exponential loss, used by boosting algorithms such

as AdaBoost, or the logistic loss, used in both classical logistic regression and

more recent methods, such as LogitBoost. Unlike the zero-one loss, these losses

assign a penalty to examples correctly classified but close to the boundary. This

guarantees a classification margin, and improved generalization when learning from

finite datasets [98]. Although the connections between large-margin classification

and classical decision theory have been known since [35], the set of Bayes consistent

large-margin losses has remained small. The design of such losses has been studied

in Chapter II. By establishing connections to the classical literature in probability

elicitation [82], we introduced a generic framework for the derivation of Bayes

consistent losses. The main idea is that there are three quantities that matter in

risk minimization: the loss function φ, a corresponding optimal link function f ∗
φ,

which maps posterior class probabilities to classifier predictions, and a minimum

risk C∗
φ, associated with the optimal link.

While the standard approach to classifier design is to define a loss φ, and

then optimize it to obtain f ∗
φ and C∗

φ, we showed in Chapter II that there is an

alternative: to specify f ∗
φ and C∗

φ, and analytically derive the loss φ. The advan-

tage is that this makes it possible to manipulate the properties of the loss, while

guaranteeing that it is Bayes consistent. The main limitation of the framework

in Chapter II is that it is not totally constructive. It turns out that many pairs

(C∗
φ,f ∗

φ) are compatible with any Bayes consistent loss φ. Furthermore, while there

is a closed form relationship between φ and (C∗
φ,f ∗

φ), this relationship is far from
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simple. This makes it difficult to understand how the properties of the loss are

influenced by the properties of either C∗
φ or f ∗

φ. In practice, the design has to

resort to trial and error, by 1) testing combinations of the latter and, 2) verifying

whether the loss has the desired properties. This is feasible when the goal is to en-

force a broad loss property, e.g. that a robust loss should be bounded for negative

margins [57], but impractical when the goal is to exercise a finer degree of control.

In this chapter, we consider one such problem: how to control the size

of the margin enforced by the loss. We start by showing that, while many pairs

(C∗
φ,f ∗

φ) are compatible with a given φ, one of these pairs establishes a very tight

connection between the optimal link and the minimum risk: that f ∗
φ is the deriva-

tive of C∗
φ. We refer to the risk function associated with such a pair as a canonical

risk , and show that it leads to an equally tight connection between the pair (C∗
φ,f ∗

φ)

and the loss φ. For a canonical risk, all three functions can be obtained from each

other with one-to-one mappings of trivial analytical tractability. This enables a

detailed analytical study of how C∗
φ or f ∗

φ affect φ. We consider the case where

the inverse of f ∗
φ is a sigmoidal function, i.e. f ∗

φ is inverse-sigmoidal , and show

that this strongly constrains the loss. Namely, the latter becomes 1) convex, 2)

monotonically decreasing, 3) linear for large negative margins, and 4) constant

for large positive margins. This implies that, for a canonical risk, the choice of

a particular link in the inverse-sigmoidal family only impacts the behavior of φ

around the origin, i.e. the size of the margin enforced by the loss. This quantity is

then shown to depend only on the slope of the sigmoidal inverse-link at the origin.

Since this property can be controlled by a single parameter, the latter becomes

a margin-tunning parameter, i.e. a parameter that determines the margin of the

optimal classifier.

The requirements of 1) a canonical risk, and 2) an inverse-sigmoidal link

are shown not to be unduly restrictive for classifier design. In fact, approaches

like logistic regression or LogitBoost are special cases of the proposed framework.

Furthermore, it is shown that a canonical loss can be derived from any cumulative
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distribution function associated with a symmetric probability density of zero mean.

This guarantees that the family of margin controllable losses is at least as large

as the family of zero mean symmetric probability densities. Overall, this work

establishes a number of approaches to the derivation of canonical loss functions

with explicit control of the classification margin: 1) variable margin extensions of

existing losses, by reparametrization of their link functions, 2) derivation of new

losses from the minimum risks associated with existing non-canonical losses, and 3)

derivation of new losses from cumulative distribution functions. These possibilities

are illustrated through the design of four new margin controllable losses.

The design of boosting algorithms, based on canonical losses is then con-

sidered. Starting from the gradientBoost framework of [36], it is shown that the

choice of loss only impacts the weight mechanism of the resulting boosting al-

gorithm. More precisely, the weighting function is shown to be the complement

of the sigmoidal inverse link associated with the loss. This has two interesting

consequences. First, it establishes a common boosting framework for all canonical

losses, which is denoted canonical gradientBoost. Since all canonical gradientBoost

algorithms are equivalent up to example weighting, this framework enables a direct

comparison of the impact of the loss on classifier performance. Second, it guar-

antees that all canonical gradientBoost algorithms have a weighting mechanism

with sensible properties, namely a saturating weight function that reduces the im-

pact of outliers, guaranteeing robust classification. A number of experiments are

conducted to verify these properties, and study the effect of margin-control on

the classification accuracy of the four proposed variable-margin losses. These are

shown to outperform the fixed-margin counterparts used by existing algorithms.

Finally, it is shown that cross-validation of the margin parameter leads to clas-

sifiers with the best performance on all datasets tested, and that the impact of

margin tuning is most significant as training set size decreases.

This chapter is organized as follows. Section III.B briefly reviews the

problem of classifier design by risk minimization, and its connections to probability
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elicitation. Canonical risks and canonical risk minimization are introduced in

Section III.C, which establishes mathematical relationships between loss, link, and

minimum risk. The properties of canonical losses associated with inverse-sigmoidal

links are then discussed in Section III.D, and used to derive the four proposed

variable margin losses in Section III.E. The canonical gradientBoosting framework

is then introduced in Section III.F. An experimental study of the algorithms

derived from the proposed variable-margin losses are reported in Section III.G.

Finally, a summary is provided in Section III.H.

III.B Loss functions for classification

We start by briefly reviewing the theory of Bayes consistent classifier

design. See [35, 17, 119, 57] for further details. A classifier h maps a feature vector

x ∈ X to a class label y ∈ {−1, 1}, according to

h(x) = sign[p(x)], (III.1)

where p : X → R is denoted as the classifier predictor. Feature vectors and

class labels are drawn from probability distributions PX(x) and PY (y) respectively.

Given a non-negative loss function L(x, y), the classifier is optimal if it minimizes

the risk

R = EX,Y [L(h(x), y)]. (III.2)

This is equivalent to minimizing the conditional risk

EY |X[L(h(x), y)|X = x] (III.3)

for all x ∈ X . It is useful to express p(x) as a composition of two functions,

p(x) = f(η(x)), (III.4)

where η(x) = PY |X(1|x), and f : [0, 1] → R is a link function. Classifiers are

frequently designed to be optimal with respect to the zero-one loss

L0/1(f, y) =
1− sign(yf)

2
=







0, if y = sign(f);

1, if y 6= sign(f),
(III.5)
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where we omit the dependence on x for notational simplicity. The associated

conditional risk is

C0/1(η, f) = η
1− sign(f)

2
+ (1− η)

1 + sign(f)

2
=







1− η, if f ≥ 0;

η, if f < 0.
(III.6)

The risk is minimized if


















f(x) > 0 if η(x) > 1
2

f(x) = 0 if η(x) = 1
2

f(x) < 0 if η(x) < 1
2
.

(III.7)

Examples of optimal link functions include

f ∗ = 2η − 1 and f ∗ = log
η

1− η
. (III.8)

The associated optimal classifier h∗ = sign[f ∗] is the well known Bayes decision

rule (BDR), and the associated minimum conditional (zero-one) risk is

C∗
0/1(η) = η

(

1

2
− 1

2
sign(2η − 1)

)

+ (1− η)

(

1

2
+

1

2
sign(2η − 1)

)

. (III.9)

A loss which is minimized by the BDR is Bayes consistent . A number

of Bayes consistent alternatives to the 0-1 loss are commonly used. These include

the exponential loss of boosting, the log loss of logistic regression, and the hinge

loss of SVMs. They have the form

Lφ(f, y) = φ(yf) (III.10)

for different functions φ. These functions assign a non-zero penalty to small pos-

itive yf , encouraging the creation of a margin, a property not shared by the 0-1

loss. The resulting large-margin classifiers have better generalization than those

produced by the latter [98]. The associated conditional risk

Cφ(η, f) = ηφ(f) + (1− η)φ(−f). (III.11)

is minimized by the link

f ∗
φ(η) = arg min

f
Cφ(η, f) (III.12)
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Table III.1 Losses φ, optimal link f ∗
φ(η), optimal inverse link [f ∗

φ]−1(v) , and

minimum conditional risk C∗
φ(η) for popular learning algorithms.

Algorithm φ(v) f ∗
φ(η) [f ∗

φ]−1(v) C∗
φ(η)

SVM max(1− v, 0) sign(2η − 1) NA 1− |2η − 1|
Boosting exp(−v) 1

2
log η

1−η
e2v

1+e2v 2
√

η(1− η)

Logistic Regression log(1 + e−v) log η
1−η

ev

1+ev -η log η − (1− η) log(1− η)

leading to the minimum conditional risk function

C∗
φ(η) = Cφ(η, f ∗

φ). (III.13)

Table III.1 lists the loss, optimal link, and minimum risk of some of the most

popular learning methods.

Conditional risk minimization is closely related to classical probability

elicitation in statistics [82]. Here, the goal is to find the probability estimator η̂

that maximizes the expected reward

I(η, η̂) = ηI1(η̂) + (1− η)I−1(η̂), (III.14)

where I1(η̂) is the reward for prediction η̂ when event y = 1 holds and I−1(η̂) the

corresponding reward when y = −1. The functions I1(·), I−1(·) should be such

that the expected reward is maximal when η̂ = η, i.e.

I(η, η̂) ≤ I(η, η) = J(η), ∀η (III.15)

with equality if and only if η̂ = η. The conditions under which this holds are as

follows.

Theorem 32. [82] Let I(η, η̂) and J(η) be as defined in (III.14) and (III.15).

Then 1) J(η) is convex and 2) (III.15) holds if and only if

I1(η) = J(η) + (1− η)J ′(η) (III.16)

I−1(η) = J(η)− ηJ ′(η). (III.17)
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Hence, starting from any convex J(η), it is possible to derive I1(·), I−1(·)
so that (III.15) holds. This enables the following connection to risk minimization

from Chapter II.

Theorem 33. [57] Let J(η) be as defined in (III.15) and f a continuous function.

If the following properties hold

1. J(η) = J(1− η),

2. f is invertible with symmetry

f−1(−v) = 1− f−1(v), (III.18)

then the functions I1(·) and I−1(·) derived with (III.16) and (III.17) satisfy the

following equalities

I1(η) = −φ(f(η)) (III.19)

I−1(η) = −φ(−f(η)), (III.20)

with

φ(v) = −J [f−1(v)]− (1− f−1(v))J ′[f−1(v)]. (III.21)

Under the conditions of the theorem, I(η, η̂) = −Cφ(η, f). This estab-

lishes a new path for classifier design [57]. Rather than specifying a loss φ and min-

imizing Cφ(η, f), so as to obtain whatever optimal link f ∗
φ and minimum expected

risk C∗
φ(η) results, it is possible to specify f ∗

φ and C∗
φ(η) and derive, from (III.21)

with J(η) = −C∗
φ(η), the underlying loss φ. The main advantage is the ability to

control directly the quantities that matter for classification, namely the predictor

and risk of the optimal classifier.The only conditions are that C∗
φ(η) = C∗

φ(1 − η)

and (III.18) holds for f ∗
φ.
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III.C Canonical risk minimization

In general, given J(η) = −C∗
φ(η), there are multiple pairs (φ, f ∗

φ) that

satisfy (III.21). Hence, specification of either the minimum risk or optimal link

does not completely characterize the loss. This makes it difficult to control some

important properties of the latter, such as the margin. In this chapter, we consider

an important special case, where such control is possible. We start with a lemma

that relates the symmetry conditions, on J(η) and f ∗
φ(η), of Theorem 33.

Lemma 34. Let J(η) be a strictly convex and differentiable function such that

J(η) = J(1− η). Then J ′(η) is invertible and

[J ′]−1(−v) = 1− [J ′]−1(v). (III.22)

Proof. From the strict convexity of J(η) it follows that J ′(η) has positive derivative

for all η . Hence, J ′(η) is invertible. From the symmetry of J(η),

J ′(η) = −J ′(1− η)

and, for any v such that η = [J ′]−1(v),

v = −J ′(1− [J ′]−1(v))

[J ′]
−1

(−v) = 1− [J ′]−1(v).

Hence, under the conditions of Theorem 33, the derivative of J(η) has

the same symmetry as f ∗
φ(η). Since this symmetry is the only constraint on f ∗

φ,

the former can be used as the latter. Whenever this holds, the risk is said to be

in canonical form, and (f ∗, J) are denoted a canonical pair [17] .

Definition 7. Let J(η) be as defined in (III.15), and C∗
φ(η) = −J(η) a minimum

risk. If the optimal link associated with C∗
φ(η) is

f ∗
φ(η) = J ′(η) (III.23)
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the risk Cφ(η, f) is said to be in canonical form. f ∗
φ(η) is denoted a canonical link

and φ(v), the loss given by (III.21), a canonical loss.

Note that (III.23) does not hold for all risks. For example, the risk

of boosting is derived from the convex, differentiable, and symmetric J(η) =

−2
√

η(1− η). Since this has derivative

J ′(η) =
2η − 1

√

η(1− η)
6= 1

2
log

η

1− η
= f ∗

φ(η), (III.24)

the risk is not in canonical form. What follows from (III.23) is that it is possible

to derive a canonical risk for any maximal reward J(η), including that of boosting

(J(η) = −2
√

η(1− η)). This is discussed in detail in Section III.E.

While canonical risks can be easily designed by specifying either J(η) or

f ∗
φ(η), and then using (III.21) and (III.23), it is much less clear how to directly

specify a loss φ(v) for which (III.21) holds with a canonical pair (f ∗, J). The

following result solves this problem.

Theorem 35. Let Cφ(η, f) be the canonical risk derived from a convex and sym-

metric J(η). Then

φ′(v) = −[J ′]−1(−v) = [f ∗
φ]−1(v)− 1. (III.25)

Proof. Given that Cφ(η, f) is a canonical risk and (III.23), the loss function of

(III.21) can be simplified into

φ(v) = −J{[f ∗
φ]−1(v)} − (1− [f ∗

φ]−1(v))J ′{[f ∗
φ]−1(v)}

= −J{[J ′]−1(v)} − (1− [J ′]−1(v))J ′{[J ′]−1(v)}

= −J{[J ′]−1(v)} − (1− [J ′]−1(v))v. (III.26)



79

The proof follows from taking derivatives on both sides,

φ′(v) = −J ′{[J ′]−1(v)}{[J ′]−1}′(v)− (1− [J ′]−1(v)) + {[J ′]−1}′(v)v

= −v{[J ′]−1}′(v)− (1− [J ′]−1(v)) + {[J ′]−1}′(v)v

= −(1− [J ′]−1(v))

= −[J ′]−1(−v),

where we have also used (III.22). Furthermore, using (III.23),

φ′(v) = −(1− [J ′]−1(v)) (III.27)

= −(1− [f ∗]−1(v)) (III.28)

= [f ∗]−1(v)− 1. (III.29)

where we have also used the symmetry of (III.18).

This theorem has various interesting consequences. First, it establishes

an easy-to-verify necessary condition for the canonical form. For example, logistic

regression has

[f ∗
φ]−1(v) =

1

1 + e−v
and φ′(v) = − e−v

1 + e−v
= [f ∗

φ]−1(v)− 1, (III.30)

while for boosting

[f ∗
φ]−1(v) =

1

1 + e−2v
and φ′(v) = −e−v 6= [f ∗

φ]−1(v)− 1. (III.31)

This, plus the symmetry of J and f ∗
φ, shows that the former is in canonical form

but the latter is not. Second, it makes it clear that, up to additive constants,

the three components (φ, C∗
φ, and f ∗

φ) of a canonical risk are related by one-

to-one relationships. Hence, it is possible to control the properties of the three

components of the risk by manipulating a single function (which can be any of the

three). Finally, it enables a very detailed characterization of the losses compatible

with most optimal links of Table III.1.
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III.D Inverse-sigmoidal links

Inspection of Table III.1 suggests that the classifiers produced by boost-

ing, logistic regression, and variants have sigmoidal inverse links [f ∗
φ]−1. Due to

this, we refer to the links f ∗
φ as inverse-sigmoidal (IS).

Definition 8. An invertible link function f(η) is inverse sigmoidal if its inverse,

f−1(v), has the following properties

1. [f ∗
φ]−1(v) ∈ (0, 1)

2. [f ∗
φ]−1(v) is monotonically increasing

3. limv→−∞[f ∗
φ]−1(v) = 0

4. limv→∞[f ∗
φ]−1(v) = 1

5. limv→±∞([f ∗
φ]−1)(n)(v) = 0, n ≥ 1,

6. [f ∗
φ]−1(0) = .5

where f (n) is the nth order derivative of f .

The following theorem shows that, when the risk is in canonical form and

f ∗
φ is IS, the loss φ is strongly constrained.

Theorem 36. Let Cφ(η, f) be a canonical risk associated with a canonical loss

φ and optimal link f ∗
φ. f ∗

φ is inverse sigmoidal if and only if the loss φ has the

following properties

1. φ(v) is monotonically decreasing

2. φ(v) is convex

3. limv→−∞ φ′(v) = −1

4. limv→∞ φ′(v) = 0

5. limv→±∞ φ(n+1)(v) = 0, n ≥ 1



81’ = 1’ ’ = 0 ( v )
’ = 0’ ’ = 0 v’ = 0 . 5

1

[ f * ] 1 ( v )
0.5 v

Figure III.1 Canonical losses compatible with an IS optimal link.

6. φ′(0) = −.5

where φ(n) is the nth order derivative of φ.

Proof. The theorem follows from the definition of IS link and (III.25), from which

the following equivalences can be trivially derived

[f ∗
φ]−1(v) ∈ (0, 1) ⇔ φ(v) monotonically decreasing

[f ∗
φ]−1(v) monotonically increasing ⇔ φ(v) convex

lim
v→−∞

[f ∗
φ]−1(v) = 0 ⇔ lim

v→−∞
φ(1)(v) = −1

lim
v→∞

[f ∗
φ]−1(v) = 1 ⇔ lim

v→∞
φ(1)(v) = 0

lim
v→±∞

([f ∗
φ]−1)(n)(v) = 0, n ≥ 1 ⇔ lim

v→±∞
φ(n+1)(v) = 0, n ≥ 1

[f ∗
φ]−1(0) = .5 ⇔ φ(1)(0) = −.5.

The theorem shows that, as illustrated in Figure III.1, the optimal link

is IS if and only if the loss φ(v) is convex, monotonically decreasing, linear (with

slope −1) for large negative v, constant for large positive v, and has slope −.5

at the origin. The set of losses compatible with an IS link is, thus, strongly
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constrained. The only degrees of freedom are in the behavior of the function

around the origin. This is not surprising, since the only degrees of freedom of

the sigmoid itself are in its behavior within this region. What is interesting is

that these are the degrees of freedom that control the margin characteristics of the

loss φ. Hence, by controlling the behavior of the IS link around the origin, it is

possible to control the margin of the optimal classifier. In particular, the margin

is a decreasing function of the curvature of the loss at the origin, φ(2)(0). Since,

from (III.25), φ(2)(0) = {[f ∗
φ ]−1}′(0), the margin can be controlled by varying the

slope of [f ∗
φ]−1 at the origin.

III.E Variable margin loss functions

In this section we use the results above to derive families of canonical

losses with controllable margin.

III.E.1 Canonical boosting loss

In Section III.C, we have seen that the boosting loss is not canonical,

but there is a canonical loss for the minimum risk of boosting. We consider a

parametric extension of this risk,

J(η; a) =
−2

a

√

η(1− η), a > 0. (III.32)

From (III.23), the canonical optimal link is

f ∗
φ(η; a) =

2η − 1

a
√

η(1− η)
(III.33)

and it can be shown that

[f ∗
φ]−1(v; a) =

1

2
+

av

2
√

4 + (av)2
, (III.34)

which is an IS link. Using (III.21), the corresponding canonical loss can be shown

to be

φ(v; a) =
1

2a
(
√

4 + (av)2 − av). (III.35)
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Figure III.2 Canonical link (top) and loss (bottom) for various values of a. (Left)

canonical logistic, (right) canonical boosting.

See Appendix A for complete derivations. Because it shares the minimum risk

of boosting, we refer to this loss as the canonical boosting loss . It is plotted in

Figure III.2, along with the inverse link, for various values of a. Note that the

inverse link is indeed sigmoidal, and that the margin is determined by a. Since

φ(2)(0; a) = a
4
, the margin increases with decreasing a.

III.E.2 Variable margin extensions of existing losses

It is also possible to derive variable margin extensions of existing canonical

losses. For example, consider the parametric extension of the minimum risk of

logistic regression

J(η; a) =
1

a
η log(η) +

1

a
(1− η) log(1− η). (III.36)
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From (III.23),

[f ∗
φ](v; a) =

1

a
log

η

1− η
[f ∗

φ]−1(v; a) =
eav

1 + eav
. (III.37)

This is again a sigmoidal inverse link and, from (III.25),

φ(v; a) =
1

a
[log(1 + eav)− av] . (III.38)

See Appendix B for complete derivations. We denote this loss the canonical logistic

loss . It is plotted in Figure III.2, along with the corresponding inverse link for

various values of a. Since φ(2)(0; a) = a
4
, the margin again increases with decreasing

a.

Note that, in (III.35) and (III.38), margin control is not achieved by

simply rescaling the domain of the loss function, e.g. just replacing log(1 + e−v)

by log(1 + e−av) in the case of logistic regression. This would have no impact

in classification accuracy, since it would just amount to a change of scale of the

original feature space. While this type of re-scaling occurs in both families of

loss functions above (which are both functions of av), it is localized around the

origin, and only influences the margin properties of the loss. As can be seen in

Figure III.2 all loss functions are identical away from the origin. Hence, varying a

is conceptually similar to varying the bandwidth of an SVM kernel. This suggests

that the margin parameter a could be cross-validated to achieve best performance.

We will explore this possibility in Section III.G.

III.E.3 Canonical loss functions from cumulative distribution functions

One classical result in probability and statistics is that the cumulative

distribution function (cdf) associated with any symmetric probability distribution

function (pdf) of zero mean is a sigmoidal function. It follows from (III.25) that a

canonical loss can be derived from any continuous cdf.

Corollary 37. Let c(v) be a continuous cdf associated with a symmetric pdf p(v)

of zero-mean. Then

φ(v) =

∫

[c(v)− 1]dv (III.39)
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is a canonical loss and the risk Cφ(η, f) has the IS optimal link f ∗
φ(η) given by

[f ∗
φ]−1(v) = c(v). (III.40)

Proof. Let [f ∗
φ]−1(v) = c(v). Then, f ∗

φ is IS. Use (III.25) to derive φ(v).

Many canonical losses with the properties of Figure III.1 can be de-

rived from this result. Consider, for example, a Gaussian pdf with zero mean and

variance a2. The corresponding cdf is

c(v) =
1

2

[

1 + erf

(

v√
2a2

)]

(III.41)

where erf(·) is the Gaussian error function. Application of (III.39) produces a

novel Bayes consistent loss, which we denote by canonical Gaussian loss

φ(v) =
v

2

[

erf

(

v√
2a2

)

− 1

]

+
a√
2π

e−
v2

2a2 . (III.42)

The canonical risk associated with this loss has optimal link

f ∗
φ(η) =

√
2a2 · erf−1(2η − 1) (III.43)

and minimum risk

C∗
φ(η) = −

√
2a2

∫

erf−1(2η − 1)dη (III.44)

See Appendix C for complete derivations. The loss, inverse link (cdf), and under-

lying pdf are shown in Figure III.3, for different values of the margin parameter a

(Gaussian standard deviation). Note that the margin enforced by the loss increases

with this parameter.

A similar derivation can be performed for the Laplacian pdf, whose cdf is

c(v) =
1

2

[

1 + sign(v)
(

1− e−
|v|
a

)]

. (III.45)

Unlike the Gaussian, the optimal link f ∗
φ(η) and risk C∗

φ(η) can be derived in closed

form

f ∗
φ(η) = −a sign(2η − 1) log(1− |2η − 1|) (III.46)

C∗
φ(η) =

a

2
(1− |2η − 1|)[1− log(1− |2η − 1|)]. (III.47)
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The Canonical Laplacian Loss can then be shown to be

φ(v) =
1

2
[ae

−|v|
a + |v| − v]. (III.48)

See Appendix D for complete derivations.

The Canonical Laplacian Loss is plotted, along with the corresponding

inverse link (cdf) and pdf, in Figure III.3 for different values of the margin pa-

rameter a (variance of the Laplacian distribution). Note that the margin enforced

by the loss increases with a.

III.E.4 New pdfs

The procedure of the previous section can be used to derive a canonical

loss from any symmetric zero mean pdf. Interestingly, the reverse, i.e. that a

symmetric zero-mean pdf can be derived from any canonical loss, also follows

from (III.39) and (III.40). This observation can be used to derive novel pdfs from

losses commonly used in machine learning. For example, we have seen that the

canonical boosting loss of (III.35) has inverse link

[f ∗
φ]−1(v) =

1

2
+

av

2
√

4 + (av)2
. (III.49)

Using (III.40) and taking the derivative with respect to v leads to the canonical

boosting pdf

p(v) =
2a

(4 + (av)2)
3
2

(III.50)

with scaling parameter a. This pdf has some similarities to the Student-t distri-

bution but, to the best of our knowledge, has not been presented in the literature.

On the other hand, the canonical logistic loss of (III.38) has inverse link

[f ∗
φ]−1(v) =

eav

1 + eav
, (III.51)

leading to the pdf

p(v) =
aeav

(1 + eav)2
(III.52)

of variance π2

3a2 . This is the well known logistic distribution. The two pdfs are

plotted in Figure III.4, for different values of parameter a.
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III.F Variable margin boosting algorithms

Given a Bayes consistent loss function, a number of algorithms can be

used to minimize the associated empirical risk, and design a classifier. Boosting

algorithms accomplish this by gradient descent in the functional space spanned by

a set of weak learners. While there are many variants, in this chapter we adopt the

GradientBoost algorithm of [36]. This algorithm is especially attractive when the

goal is to compare losses, since the implementations derived with different losses

differ 1) uniquely and 2) explicitly in loss-dependent parameters. This is not the

case for all boosting procedures. GradientBoost is a gradient descent procedure

for determining the predictor F (x) that minimizes the empirical risk on a training

set D = {(x1, y1), . . . , (xN , yN)},

R(F ) =
N
∑

n=1

φ(ynF (xn)). (III.53)

The gradient direction at iteration t is given by the weak learner ft(x) that satisfies

ft(x) = arg max
f

N
∑

n=1

−ynφ
′(ynFt−1(xn))f(xn) (III.54)

= arg max
f

N
∑

n=1

ynwt(xn)f(xn) (III.55)

where

wt(xn) = −φ′(ynFt−1(xn)) (III.56)

is the weight of example xn at iteration t. For canonical losses, it follows

from (III.25) that

wt(xn) = 1− [f ∗
φ]−1(ynFt−1(xn)). (III.57)

We refer to the algorithm with these weights as canonical gradientBoost . It is

summarized in Algorithm 1.

Canonical gradientBoost has the interesting property of not requiring the

evaluation of the loss φ(v). Instead, it only requires evaluation of the optimal
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Algorithm 1 Canonical GradientBoost
Input: Training set D = {(x1, y1), . . . , (xn, yn)}, where yi ∈ {1,−1} is the class label of

example x, and number M of weak learners in the final decision rule.

Initialization: Set F (0)(xi) = 0 and w(1)(xi) = 1− [f∗

φ ]−1(yiF
(0)(xi)) ∀xi .

for m = {1, . . . ,M} do

choose weak learner

f(x) = arg max
f(x)

n
∑

i=1

yiw
(m)(xi)f(xi) (III.58)

update predictor F(x)

F (m)(x) = F (m−1)(x) + f(x) (III.59)

update weights w(x)

w(m+1)(xi) = 1− [f∗

φ ]−1(yiF
(m)(xi)) ∀xi (III.60)

end for

Output: decision rule h(x) = sgn[F (M)(x)].

inverse link [f ∗
φ]−1(v). Hence, it can be implemented with any IS link function, e.g.

any cdf, independently of whether the integration of (III.39) is tractable or not.

This has some interesting consequences. First, since many cdfs are non-trivial to

integrate, it leads to a much larger number of variants on the algorithm than would

be possible if the loss had to be computed. Second, it provides some assurances

with respect to robustness of the resulting algorithms. Robustness is a concern for

large-margin algorithms since, as illustrated in Figure III.1, the losses φ(yf) tend

to be unbounded for negative margins, i.e.

lim
yf→−∞

φ(yf) =∞. (III.61)

This is particularly problematic for algorithms such as AdaBoost [53, 25, 60, 57],

which are derived from a loss, φ(yf) = e−yf , which grows exponentially with the

negative margin. It has long been known that algorithms such as LogitBoost [35,

61, 49] have much less sensitivity to outliers, a fact that has been attributed to the

linear increase of the loss with the negative margin (as shown in Figure III.1). The
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Table III.2 Weighting function of the gradientBoost algorithm for different canon-

ical losses.

Loss w(x) = −φ′(yF (x))

Canonical Logistic e−ayF (x)

1+e−ayF (x)

Canonical Boosting 1
2

(1−(ayF (x)))√
4+(ayF (x))2

Canonical Gaussian 1
2
− 1

2
erf(yF (x)√

2a2
)

Canonical Laplacian 1
2
− 1

2
sign(yF (x))(1− e

−|yF (x)|
a )

discussion of the previous sections shows that this holds for all canonical losses.

The connection between robustness and loss is made more explicit by the derivation

of canonical gradientBoost. Note that, for non-canonical losses, the weights are

given by (III.56). For the exponential loss of AdaBoost φ′(v) = −φ(v) and

wt(xn) = e−ynFt−1(xn), (III.62)

i.e. outliers of large negative margin have a dominant weight in classifier design. On

the other hand, for canonical losses, the weights have the form of (III.57), i.e. one

minus a sigmoid. Hence, the weight function saturates for small negative margins,

and potential outliers are assigned the same weight as most other misclassified

examples. This is illustrated in Figure III.5, which shows the weight functions for

a number of canonical losses. The weight functions themselves are presented in

Table III.2. Again, the margin parameter a controls the behavior of the weights

in the neighborhood of the classification boundary, determining the extent of the

region of correctly classified examples that receive non-zero weight, i.e. the margin.

III.G Experiments

Various experiments were conducted to validate the theoretical results of

the previous sections. They were divided in three main groups. The first aimed to

determine how the importance of controlling the classification margin varied with

training set size. The second, based on 10 UCI datasets of relatively small size,
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aimed to compare the performance of the different losses studied above. Finally,

the third set relied on a larger and higher dimensional UCI dataset, and aimed to

compare the performance of the variable-margin losses against popular losses in

the literature.

III.G.1 Experiments on two Gaussian classes

All Bayes consistent losses produce classifiers that converge asymptoti-

cally to the Bayes decision rule. Hence, all losses discussed above should have

identical performance as training sets increase. On the other hand, since general-

ization is most important for small training sets, the margin parameter a should

have the greatest effect on classification error in this scenario. By measuring the

classification performance obtained with different values of a, as a function of train-

ing set size, it is possible to test this hypothesis explicitly. For this, we designed a

number of experiments involving a simple classification problem composed of two

Gaussian classes of identity covariance, Σ = I, on a two-dimensional space. The

means were set to (0, 0) and (0.7416, 0.7416), so as to produce a problem with

a Bayes error of 30%. Classifiers were learned with training sets of n examples

per class, where n ∈ {10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000, 5000, 10000},
and evaluated with a test set of 10000 examples. All classifiers were learned

with canonical gradientBoost, with histogram-based weak learners, for both the

canonical logistic and boosting losses, and 19 values of the margin parameter a,

a ∈ {0.1, 0.2, ..., 0.9, 1, 2, ..., 10}. 50 iterations of boosting were applied to each

training set.

Figure III.6 presents a plot of the average classification error, and its

standard deviation, as a function of the training set size. The average is taken over

the 19 values of the margin parameter, and 100 repetitions of the entire experiment.

As expected, the average error decreases as the training set size increases. While

none of the losses produces an error of 30%, the error approaches this lower bound

for the largest training sets. In this regard, the canonical logistic loss performs
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somewhat better than the canonical boosting loss. More interestingly, the standard

deviation of the error also decreases with the increase in training set size. In fact,

it is close to zero even for relatively small training sets (100 − 200 examples per

class). While this was not unexpected, given the simplicity of the problem, it is

clear that the classification performance is much more sensitive to the value of the

margin parameter for small training sets. For example, in the case of the canonical

logistic loss, a variation of as much as 2% in test error can result from varying

the margin parameter, for the smallest datasets considered (10 samples per class).

These results support the hypothesis that the margin parameter is most relevant

when the training data is scarce.

III.G.2 Experiments on small size high dimensional UCI datasets

We next performed a number of experiments that tested the importance

of controlling the loss shape and margin parameters. Given the findings of the

previous section, and to enable extensive comparisons, we selected ten binary UCI

data sets of relatively small size: (#1) sonar, (#2) breast cancer prognostic, (#3)

breast cancer diagnostic, (#4) original Wisconsin breast cancer, (#5) Cleveland

heart disease, (#6) tic-tac-toe, (#7) echo-cardiogram, (#8) Haberman’s survival,

(#9) Pima-diabetes, and (#10) liver disorder. The data was split into five folds,

four used for training and one for testing. This produced five training-test pairs

per dataset. The GradientBoost algorithm with histogram-based weak learners was

then used to design boosted classifiers which minimize all canonical losses discussed

in the previous sections, for various margin parameters. 50 boosting iterations were

applied to each training set, for 19 values of a ∈ {0.1, 0.2, ..., 0.9, 1, 2, ..., 10}. The

classification accuracy was then computed per dataset, by averaging over its five

train/test pairs.

Since popular algorithms in the literature, such as LogitBoost, are special

cases of the proposed losses, with a = 1, it is natural to inquire whether other values

of the margin parameter will achieve best performance. This question is addressed
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by Figure III.7, which presents the average rank of the classifier designed with

each loss and margin parameter a. To produce the plot, a classifier was trained on

each dataset, for all 19 values of a. The results were then ranked, with rank 1 (19)

being assigned to the a parameter of smallest (largest) error. The ranks achieved

with each a were then averaged over the ten datasets, as suggested in [24]. For

the canonical logistic loss, the best values of a are in the range 0.2 ≤ a ≤ 0.3.

Note that the average rank for this range (between 5 and 6), is better than that

(close to 7) achieved with the logistic loss of LogitBoost [35] (a = 1). In fact,

as can be seen from Table III.3, the canonical logistic loss with a = 1 did not

achieve rank 1 on any dataset, whereas canonical logistic losses with 0.2 ≤ a ≤ 0.3

were top ranked on 3 datasets (and with 0.1 ≤ a ≤ 0.4 on 6). For the canonical

boosting loss, there is also a range (0.8 ≤ a ≤ 2) that produces best results. For

the canonical Gaussian loss the best values of a are in the range 6 ≤ a ≤ 10, and

for the canonical Laplacian loss in the range 7 ≤ a ≤ 10. Note that in the case of

the canonical Gaussian and Laplacian losses, larger values of a correspond to larger

margins. This is in contrast to the canonical logistic and boosting losses, where

large margins are associated with smaller values of a. In general, the a values of

different losses are not directly comparable. This can be seen from Figure III.2

where, even when the comparison is restricted to the canonical logistic and boosting

losses, a = 0.4 produces a loss of much larger margin for the latter. Furthermore,

the canonical boosting loss has a heavier tail and approaches zero more slowly than

the canonical logistic loss. In any case, Figure III.7 shows that all canonical losses

display better performance at larger margins. This is sensible, given the relatively

small dataset sizes.

Although certain ranges of margin parameters seem to produce best re-

sults for all canonical loss functions, the optimal parameter value is likely to be

dataset dependent. This is confirmed by Table III.3 which presents the parameter

value of rank 1 for each of the ten datasets. Improved performance should thus

be possible by cross-validating the margin parameter a. Table III.4 presents the
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Table III.3 Value of the margin parameter a of rank 1, on each of the ten UCI

datasets.

UCI dataset# #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Canonical Log 0.4 0.5 0.6 0.3 0.1 2 0.5 0.1 0.2 0.2

Canonical Boost 0.9 6 2 2 0.4 3 0.2 4 0.2 0.9

Canonical Gauss 1 0.6 6 10 8 0.7 10 0.7 10 8
Canonical Laplace 0.7 0.3 9 5 0.8 0.6 10 10 8 8

Table III.4 Cross validated classification error for each loss function and UCI

dataset.

UCI dataset# #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Canonical Log 11.2 11.4 8 5.6 12.4 11.8 7 18.8 38.2 27

LogitBoost (a = 1) 11.6 12.4 10 6.6 13.4 48.6 6.8 21.2 39.6 28.4

Canonical Boost 12.6 11.6 21 18.6 17.6 7.2 6 21.8 37.6 28.6
Canonical Boost, a = 1 13.2 12.4 21 18.6 18.6 50.8 7.2 21.2 39.4 28.2

Canonical Gauss 13.6 14 9 6.4 13 10.2 6.8 18.4 38.8 29.8
Canonical Gauss, a = 1 14.8 15 9.2 6 14 21 7 21.2 40.2 29.6

Canonical Laplace 12 15 9 4.2 12.4 6.6 7.4 19.2 40.4 31.4
Canonical Laplace, a = 1 13 13.6 11.4 4.8 13.4 34.8 6.8 21 40 29.4

AdaBoost 11.4 11.4 9.4 6.4 14 28 6.6 21.8 41.2 28.2

5-fold cross validation test error (# of misclassified points) obtained for each UCI

dataset and canonical loss. The table also shows the results of AdaBoost, Logit-

Boost (canonical logistic, a = 1), and other canonical losses with a = 1. When

compared to the fixed margin (a = 1) counterpart, cross validating the margin

results in better performance for 9 out of 10 datasets for the canonical logistic

loss, 8 out of 10 datasets for the canonical boosting and Gaussian losses, and 6 out

of 10 datasets for the canonical Laplacian loss. When compared to the existing

algorithms, at least one of the margin-tunned classifiers is better than both Logit

and AdaBoost for each dataset. For several datasets (#3,#4, #5, #6, #8, and

#9) this holds for at least three of the four margin-tunned classifiers. In dataset

#6 (tic-tac-toe) the error of the worst margin-tunned classifier (canonical logistic

loss, 11.8) is less than half that of AdaBoost (28) and four times smaller than
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Table III.5 Classification error for each loss function and UCI dataset.

UCI dataset# #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Canonical Log, a = 0.2 13.2 15 8.4 5 11.2 56.2 6.8 24 39.8 25.8

Canonical Boost, a = 0.2 12.6 14.8 17.2 18.6 12 56.8 6.8 23.2 38.4 26.4

Canonical Gaussian, a = 8 13.4 17.4 7.4 4.6 11 56.4 6.6 24 40 26.6
Canonical Laplacian, a = 8 13.8 17.2 6 5.2 11 56.4 6.6 23.2 38.6 26.4

LogitBoost (a = 1) 12.4 15.4 8.6 5.6 11.4 46 7.2 25 40.4 26.4
AdaBoost 11.4 15.2 9.2 6 11.4 21.6 7.4 23.2 42.8 26.6

that of LogitBoost (48.9). The best of the margin-tunned classifiers (canonical

Laplace loss) further halves this error (6.6%). In summary, cross-validation of the

margin parameter leads to substantial improvements over the standard boosting

algorithms.

While, computationally, cross-validation of the margin parameter is not

different from, say, cross-validating the bandwidth of an SVM kernel, it may not be

possible or computationally feasible for some applications. Even in this case, it may

be better to use a value of a other than the standard a = 1. Table III.5 presents

results for the case where the margin parameter is fixed at a = 0.2 for the canonical

logistic and boosting losses and a = 8 for the canonical Gaussian and Laplacian

losses. Even in this case, there is at least one canonical loss that outperforms

LogitBoost on each dataset and at least one canonical loss which outperforms

AdaBoost in 7 of the ten datasets. Furthermore, canonical logistic and Laplacian

outperform both LogitBoost and AdaBoost in 7 of the ten datasets, and canonical

boosting and Gaussian in 5 of the ten datasets. The converse, i.e. AdaBoost

or LogitBoost outperforming all canonical losses only happens in 2 datasets. In

summary, even without the benefit of cross-validation, it is possible to find values

of the margin parameter for which the performance of the margin-tunned classifiers

is better than those learned with the standard boosting algorithms.
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III.G.3 Experiments on large scale datasets

To confirm the results of the previous section on experiments of larger

scale, we considered the ADULT, LETTER.p1 and LETTER.p2 datasets, which

are widely used for comparing ensemble methods [71, 18]. Missing values in the

ADULT training and testing sets were omitted, leading to 30,162 training exam-

ples, of which 7,508 are positive and 22,654 negative. The testing set consists of

15,060 examples, of which 3,700 are positive and 11,360 negative. The LETTER

data set was converted into two binary datasets, following the method outlined in

[18]. The LETTTER.p1 dataset treats the confusable letter ”O” as the positive

class, and the remaining 25 letters of the alphabet as the negative class, resulting

in a highly unbalanced classification problem. LETTER.p2 uses the first 13 letters

of the alphabet as the negative class and the last 13 as the positive class, result-

ing in a balanced but difficult problem. Both datasets consist of 4,000 training

and 16,000 test examples. As before, all classifiers were learned with gradient-

Boost, using histogram weak learners. The performance of the canonical logistic

and Laplacian losses were compared against that of the exponential loss, used by

AdaBoost. Each boosting algorithm was run for 100 iterations.

Table III.6 presents the smallest error achieved by each method, and the

corresponding margin parameter value. It can be seen that 1) the best performance

is never attained when the canonical logistic loss uses a = 1 (LogitBoost), 2) the

performance achieved with the best margin parameter can be substantially superior

to those of both AdaBoost and LogitBoost, and 3) both canonical losses outperform

the two standard boosting algorithms. This is in agreement with the findings of

the previous section. The case where a reduced number of training points are

available was also considered, by randomly subsampling the LETTER.p2 dataset

by a factor of 2 (DIV2) and 4 (DIV4). The size of the test set was not changed.

Table III.7 presents the maximum difference between the number of testing errors

produced by the exponential and variable margin losses, for each training set size.

For example, in the original training set (DIV1), canonical logistic produces 2831
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Table III.6 Smallest errors, and corresponding values of the margin parameter a,

for the three losses considered.

UCI dataset ADULT LETTER1 LETTER2
Canonical Log 2406 427 2831

a = 4 a = 3 a = 2
Canonical Laplacian 2680 411 2844

a = 0.9 a = 0.4 a = 0.6

Exponential 2696 529 2940
LogitBoost (a = 1) 2673 464 2867

Table III.7 Maximum difference between the exponential and canonical loss testing

errors, and corresponding values of the margin parameter a, for various fractions

of the LETTER.p2 training data.

LETTER.p2 DIV1 DIV2 DIV4
Canonical Log 109 179 260

a = 2 a = 0.6 a = 0.5
Canonical Laplacian 96 178 186

a = 0.6 a = 2 a = 4

and exponential 2940 errors (see Table III.6). Hence, the difference is 109 errors,

as reported in the table. Overall, the table confirms that 1) the benefits of tuning

the margin are larger for smaller training sets, and 2) they are obtained with values

of a that enforce larger margins.

III.H Summary and discussion

The probability elicitation approach to loss function design, introduced

in Chapter II, enables the derivation of new Bayes consistent loss functions. Yet,

because the procedure is not fully constructive, this requires trial and error. In

general, it is difficult to anticipate the properties, and shape, of a loss function that

results from combining a certain minimal risk with a certain link function. In this

chapter, we have addressed this problem for the class of canonical risks. We have
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shown that the associated canonical loss functions lend themselves to analysis, due

to a simple connection between the associated minimum conditional risk and op-

timal link functions. This analysis was shown to enable a precise characterization

of 1) the relationships between loss, optimal link, and minimum risk, and 2) the

properties of the loss whenever the optimal link is in the family of inverse sigmoid

functions. A number of approaches to the derivation of canonical loss functions

with explicit control of the classification margin was then introduced: 1) variable

margin extensions of existing losses, 2) derivation of new losses from the mini-

mum risks associated with existing non-canonical losses, and 3) derivation of new

losses from cumulative distribution functions. These possibilities were exploited

to design four parametric families of loss functions with explicit margin control.

The design of boosting algorithms based on canonical losses was also considered.

Starting from the gradientBoost framework, it was shown that the choice of loss

only impacts the weight mechanism of the resulting boosting algorithm, which was

itself shown to be sigmoidal. This has two interesting consequences. First, it es-

tablishes a common boosting framework, canonical gradientBoost, for all canonical

losses, which enables a direct comparison of the impact of the loss on classifier per-

formance. Second, it guarantees that all canonical gradientBoost algorithms have

some robustness to outliers. A number of experiments were conducted to verify

these properties, and study the effect of margin-control on the classification accu-

racy of the four proposed variable-margin losses. These were shown to outperform

the fixed-margin counterparts used by existing algorithms, such as AdaBoost and

LogitBoost.
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III.J Appendix

III.J.1 Appendix A: derivation of canonical boosting loss

Consider the parametric extension of the minimum risk of boosting.

J(η; a) =
−2

a

√

η(1− η), a > 0. (III.63)

From (III.23)

f ∗
φ(η; a) =

2η − 1

a
√

η(1− η)
(III.64)

and, from (III.21) and (III.23),

φ(v; a) = −J{[f ∗
φ]−1(v)} − (1− [f ∗

φ]−1(v))v

=
2

a

√

[f ∗
φ]−1(v)[1− [f ∗

φ]−1(v)]− [1− [f ∗
φ]−1(v)]v

Using η = [f ∗
φ]−1(v) in both sides of (III.64),

v =
2[f ∗

φ ]−1(v)− 1

a
√

[f ∗
φ]−1(v)[1− [f ∗

φ]−1(v)]
(III.65)

and

φ(v; a) =
2

a

√

[f ∗
φ]−1(v)[1− [f ∗

φ]−1(v)]−
[1− [f ∗

φ]−1(v)][2[f ∗
φ]−1(v)− 1]

a
√

[f ∗
φ]−1(v)[1− [f ∗

φ ]−1(v)]

=
2[f ∗

φ ]−1(v)[1− [f ∗
φ]−1(v)]− [1− [f ∗

φ]−1(v)][2[f ∗
φ]−1(v)− 1]

a
√

[f ∗
φ]−1(v)[1− [f ∗

φ]−1(v)]

=
1

a

√

1− [f ∗
φ]−1(v)

[f ∗
φ]−1(v)

(III.66)

Finally, solving (III.65) for [f ∗
φ]−1(v),

[f ∗
φ]−1(v; a) =

1

2
± 1

2

av
√

4 + (av)2
.
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Of the two solutions, one is monotonically increasing (+ in between the two terms)

with v, and the other decreasing (−). Enforcing the constraint of an increasing

link function leads to

[f ∗
φ]−1(v; a) =

1

2
+

1

2

av
√

4 + (av)2
,

and

φ(v; a) =
1

a

√

√

4 + (av)2 − av
√

4 + (av)2 + av
=

1

2a
(
√

4 + (av)2 − av).

III.J.2 Appendix B: derivation of canonical logistic loss

Consider the parametric extension of the minimum risk of logistic regres-

sion

J(η; a) =
1

a
η log(η) +

1

a
(1− η) log(1− η). (III.67)

From (III.23),

[f ∗
φ](v; a) =

1

a
log

η

1− η
(III.68)

[f ∗
φ]−1(v; a) =

eav

1 + eav
. (III.69)

From (III.26),

φ(v; a) = −J{[f ∗
φ]−1(v; a)} − (1− [f ∗

φ]−1(v; a))v

= −1

a
(

eav

1 + eav
) log(

eav

1 + eav
)

−1

a
(1− eav

1 + eav
) log(1− eav

1 + eav
)− (1− eav

1 + eav
)v

=
1

a
[log(1 + eav)− av] (III.70)

III.J.3 Appendix C: derivation of canonical Gaussian loss

Consider a Gaussian pdf with zero mean and variance a2. The corre-

sponding cdf is

c(v) =
1

2

[

1 + erf

(

v√
2a2

)]

(III.71)
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where erf(·) is the Gaussian error function. Application of (III.39) produces the

canonical Gaussian loss

φ(v) =

∫
[

1

2

[

1 + erf

(

v√
2a2

)]

− 1

]

dv

=

√
2a2

2

[

v√
2a2

erf(
v√
2a2

) +
1√
π

e
−( v√

2a2
)2
]

− 1

2
v

=
v

2

[

erf

(

v√
2a2

)

− 1

]

+
a√
2π

e−
v2

2a2 . (III.72)

The canonical risk associated with this loss has optimal link

f ∗
φ(η) = c−1(η) =

√
2a2 · erf−1(2η − 1). (III.73)

The minimum risk can be found directly from (III.23)

C∗
φ(η) = −

∫

f ∗
φ(η)dη = −

√
2a2

∫

erf−1(2η − 1)dη. (III.74)

III.J.4 Appendix D: derivation of canonical Laplacian loss

The Laplacian cdf (inverse link function) is

c(v) = [f ∗
φ]−1(v; a) =

1

2

[

1 + sign(v)
(

1− e−
|v|
a

)]

. (III.75)

Unlike the Gaussian, the optimal link f ∗
φ(η) and risk C∗

φ(η) can be derived in closed

form

f ∗
φ(η) =







a log(2η) if η < 0.5

−a log(−2η + 2) if η ≥ 0.5
(III.76)

= −a sign(2η − 1) log(1− |2η − 1|) (III.77)

C∗
φ(η) =

∫

f(η)dη

=







a [η log(2η)− η] if η < 0.5

−a [(η − 1) log(−2η + 2)− (η − 1)] if η ≥ 0.5
(III.78)

=
a

2
(1− |2η − 1|)[1− log(1− |2η − 1|)]. (III.79)
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The canonical Laplacian loss can be derived from (III.21), (III.77) and (III.79), as

φ(v) =

−a

2
[(1− |2A(v)− 1|)(log(1− |2A(v)− 1|)− 1)]− (1− A(v))v

= −a

2
[(e

−|v|
a )(log(e

−|v|
a )− 1)]− (

v

2
− v

2
sign(v) +

v

2
sign(v)e

−|v|
a )

= (
|v|
2

e
−|v|

a +
a

2
e

−|v|
a )− (

v

2
− |v|

2
+
|v|
2

e
−|v|

a )

=
1

2
[ae

−|v|
a + |v| − v]. (III.80)

where A(v) = c(v) = 1
2

[

1 + sign(v)
(

1− e−
|v|
a

)]

and we have used the equality

1− |2A(v)− 1| = 1− |sing(v)||1− e−
|v|
a | = 1− |1− e−

|v|
a | = e−

|v|
a . (III.81)

Alternatively, the loss can be derived from (III.39) and (III.75) as

φ(v) =

∫

[c(v)− 1]dv =

∫

1

2
[sign(v)(1− e

−|v|
a )− 1]dv

=







a
2
e

v
a − v if v < 0;

a
2
e

−v
a if v ≥ 0.

=
1

2
[ae

−|v|
a + |v| − v]. (III.82)
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Figure III.3 Canonical pdf (top), link (middle), and loss (bottom) for various

values of a. (Left) canonical Gaussian, (right) canonical Laplacian.
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Figure III.5 Weighting function of gradientBoost for various values of a. (Top-

left) canonical Logistic, (top-right) canonical Boosting, (bottom-left) canonical

Gaussian and (bottom-right) canonical Laplacian.
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the classification error as a function of training set size. (Top) canonical logistic

loss. (Bottom) canonical boosting loss.
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IV.A Introduction

Over the last decade, tremendous advances have been achieved in com-

puter vision tasks that can be formulated as classification problems. Examples

include object detection [105] and recognition [99], object tracking [7], image clas-

sification and retrieval [78, 77], among others. Much of this progress is due to

the widespread adoption of classification techniques, such as the support vector

machine (SVM) [98], boosting [33], or logistic regression [35], which minimize the

expected value of a margin enforcing loss. Such losses, see Figure IV.1 for exam-

ples, apply a large penalty to points with large negative margin (i.e. incorrectly

classified and far from the boundary), some penalty to points of small positive

margin (correctly classified but close to the boundary), and zero penalty to points

of large positive margin (correctly classified and far from the boundary). The as-

signment of non-zero loss to correct classifications close to the boundary is critical

to assuring a classifier of maximal margin. This, in turn, is critical to guarantee

good generalization [98].

While the positive impact of large margin classifiers is indisputable, they

do not overcome all challenges posed by computer vision. This is due to the

prevalence, in most vision applications, of noise, outliers, ambiguity, lack of labels,

small training sizes, and imbalance of positive/negative coverage by training sets.

For example, patch-based image classification usually involves much more negative

than positive examples per class, and is inherently outlier ridden: an image from

the buildings class invariably contains patches from the people, garden, or car

class [55]. Furthermore, patches are inherently ambiguous (e.g. the same circular

shape could correspond to a car wheel or a boat window) [78], and “noise” is

plentiful (in the form of shadows, occlusions, perspective distortions, etc.). In

applications such as tracking, where a classifier is incrementally learned from data

(as it is being classified), it is impossible to guarantee that there is no leakage

between the sets of positives and negatives used for training [7, 104, 54, 8]. While
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some of these problems can be mitigated by careful human labeling, human labeled

data can itself be error prone. In large-scale problems, where labeling is expensive,

there is frequently a need to resort to unlabeled datasets, or labels of low-quality.

In some cases, exact labels cannot even be assigned to every sample point, and

there is a need to resort to a multiple instance learning (MIL) formalism, where

labels only exist for bags of points [55, 26, 76, 118, 6].

Different areas of computer vision have taken varied approaches to dealing

with these problems. These include resorting to MIL algorithms for scene classi-

fication [55], object detection [104], or tracking [8], modeling context to reduce

ambiguity in scene analysis [95], adopting parts-based models of greater flexibility

with respect to occlusions and deformation [32, 31], etc. While such improvements

in representation robustness are necessary, they cannot completely eliminate the

ambiguity, noise, and outlier propensity of tasks such as image classification or

tracking. Hence, there is an equally important need for more robust classifiers.

In this context, an issue of particular concern is a well known limitation of most

current margin-enforcing losses: their unbounded growth with negative margins. In

statistics, this type of loss growth is classically known to produce inference pro-

cedures that are too sensitive to outliers [43, 80], a problem that has also been

extensively studied in computer vision [64, 13, 83]. This research has shown that,

for many vision applications, better results are obtained with losses of tapered

growth. However, most of these results only apply to regression problems, such as

surface fitting or optic flow estimation, and do not generalize to classification.

Robust classifier design has been studied in machine learning, namely in

the boosting literature. Boosting algorithms, such as AdaBoost [33], have found

multiple applications in vision, e.g. real-time object detection [105], tracking [7],

and segmentation [109]. Yet, Adaboost is known to be particularly sensitive to

noisy data [25], due to the exponential growth of its loss. Non-trivial improvements

are due to [35], which introduced losses that grow linearly with the negative margin.

The resulting boosting algorithms, e.g. LogitBoost, are known to be substantially
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more outlier resistant than AdaBoost [61]. Central to this contribution was the

establishment, by this work, of a formal connection between the large margin

approaches and classical decision theory. A number of other attempts to introduce

robust classification losses, e.g. the noisy-OR [104] or sigmoidal non-linearities [60],

lack this property. The resulting classifiers are not Bayes consistent, i.e. are not

guaranteed to converge to the optimal Bayes decision rule [28] as datasets increase.

In Chapter II we established a framework for the derivation of novel

Bayes consistent loss functions. In this chapter we first propose a new robust

Bayes consistent loss, denoted as Savage loss and an associated SavageBoost algo-

rithm . Unlike all previous Bayes consistent loss functions, the one now proposed

remains constant for strongly negative values of its argument and trades convexity

for boundedness. This is akin to robust loss functions proposed in the statistics

literature to reduce the impact of outliers. We derive a new boosting algorithm,

denoted SavageBoost, by combination of the new loss and the procedure used

by Friedman to derive RealBoost [35]. Experimental results show that the new

boosting algorithm is indeed more outlier resistant than classical methods, such as

AdaBoost, RealBoost, and LogitBoost.

Unfortunately, the added robustness of SavagaBoost does not make a

tremendous difference for all vision problems. We argue that this requires a more

subtle constraint on the loss than simply bounding its growth for large negative

margins: in addition to this, robustness requires penalizing large positive margins .

We present a simple classification problem that demonstrates this point, and show

how all existing methods (including SavageBoost) fail in this case. We then derive

a set of necessary conditions that any Bayes consistent loss function must satisfy, in

order to guarantee a bounded penalty for both large negative and positive margins.

These conditions are used to derive a novel robust loss, which we denote by Tangent

loss , and an associated boosting algorithm, denoted TangentBoost . Experiments

involving various computer vision problems, including scene classification, object

tracking, recognition, and MIL show that the proposed algorithm consistently



110

−6 −4 −2 0 2 4 6

0

2

4

6

8

v

φ(
v)

−6 −4 −2 0 2 4 6

0

5

10

15

v

φ(
v)

Savage (SavageBoost)
Tangent (TangentBoost)
Zero−One

Least Square
Hinge (SVM)
Exp (Ada,RealBoost)
Log (LogitBoost)
Zero−One

Figure IV.1 Loss functions used for classifier design in alternative to the non-

margin enforcing 0 − 1 loss. Top: classical non-robust losses. Bottom: robust

losses of SavageBoost and TangentBoost.

outperforms previous boosting algorithms. In fact, for some of these problems,

it is shown to achieve the best results reported to date on the literature.

IV.B Loss functions for classification

We start by briefly reviewing the theory of Bayes consistent classifier

design. See [35, 17, 119, 57] for further details.
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IV.B.1 Risk minimization

A classifier h maps a feature vector x ∈ X to a class label y ∈ {−1, 1}.
This mapping can be written as h(x) = sign[f(x)] for some function f : X → R,

which is denoted as the classifier predictor. Feature vectors and class labels are

drawn from probability distributions PX(x) and PY (y) respectively. Given a non-

negative loss function L(x, y), the classifier is optimal if it minimizes the risk

R(f) = EX,Y [L(h(x), y)]. This is equivalent to minimizing the conditional risk

EY |X[L(h(x), y)|X = x] for all x ∈ X . Classifiers are frequently designed to be

optimal with respect to the zero-one loss

L0/1(f, y) =
1− sign(yf)

2
=







0, if y = sign(f);

1, if y 6= sign(f),
(IV.1)

where we omit the dependence of f on x for notational simplicity. The associated

conditional risk is

C0/1(η, f) = η
1− sign(f)

2
+ (1− η)

1 + sign(f)

2

=







1− η, if f ≥ 0;

η, if f < 0

with η(x) = PY |X(1|x). Optimal predictors f ∗ that minimize this risk include

f ∗ = 2η − 1, f ∗ = log η
1−η

, or any other function such that f ∗ ≥ 0 if and only if

η ≥ 1
2
. The associated optimal classifier h∗ = sign[f ∗] is the well known Bayes

decision rule (BDR) and has minimum conditional risk

C∗
0/1(η) = η

(

1

2
− 1

2
sign(2η − 1)

)

+ (IV.2)

(1− η)

(

1

2
+

1

2
sign(2η − 1)

)

.

A loss which is minimized by the BDR is denoted as Bayes consistent.

A number of Bayes consistent alternatives to the 0-1 loss are commonly used in

machine learning. These include the exponential loss of boosting, the log loss of

logistic regression, and the hinge loss of SVMs, which are shown in the top of
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Table IV.1 Loss φ, predictor f ∗
φ(η), minimum conditional risk C∗

φ(η) and predictor

inverse [f ∗
φ]−1(v) for different machine learning algorithms.

Algorithm φ(v) f ∗
φ(η) C∗

φ(η) [f ∗
φ]−1(v)

Least squares (1− v)2 2η − 1 4η(1− η) 1
2
(v + 1)

SVM max(1− v, 0) sign(2η − 1) 1− |2η − 1| NA

Boosting exp(−v) 1
2
log η

1−η
2
√

η(1− η) e2v

1+e2v

Logistic Regression log(1 + e−v) log η
1−η

-η log η − (1− η) log(1− η) ev

1+ev

Figure IV.1. They have the form Lφ(f, y) = φ(yf), for different functions φ of the

margin yf . The non-zero penalty assigned to small positive margins encourages

the creation of a margin, a property not shared by the 0-1 loss. The resulting large-

margin classifiers have better generalization than those produced by the latter [98].

The associated conditional risk

Cφ(η, f) = ηφ(f) + (1− η)φ(−f) (IV.3)

is minimized by the predictor

f ∗
φ(η) = arg min

f
Cφ(η, f) (IV.4)

and has minimum C∗
φ(η) = Cφ(η, f ∗

φ). The φ(v), f ∗
φ(η), and C∗

φ(η) associated with

popular algorithms for classifier design are shown in Table IV.1. See [119] for their

derivations.

IV.B.2 Probability elicitation

Conditional risk minimization is closely related to classical probability

elicitation in statistics [82]. Here, the goal is to find the probability estimator η̂

that maximizes the expected reward

I(η, η̂) = ηI1(η̂) + (1− η)I−1(η̂), (IV.5)

where I1(η̂) is the reward for prediction η̂ when event y = 1 holds and I−1(η̂) the

corresponding reward when y = −1. The functions I1(·), I−1(·) must be such that

the expected reward is maximal when η̂ = η, i.e.

I(η, η̂) ≤ I(η, η) = J(η), ∀η (IV.6)



113

with equality if and only if η̂ = η. It can be shown [82] that (IV.6) holds if and

only if 1) the maximal reward function J(η) is strictly convex and 2)

I1(η) = J(η) + (1− η)J ′(η) (IV.7)

I−1(η) = J(η)− ηJ ′(η). (IV.8)

The connection between risk minimization and probability elicitation has been

studied in Chapter II. It was shown that if 1) J(η) = J(1 − η), and 2) the

predictor f is invertible and has symmetry f−1(−v) = 1 − f−1(v), the functions

I1(·) and I−1(·) of (IV.7) and (IV.8) satisfy the following equalities

I1(η) = −φ(f(η)) (IV.9)

I−1(η) = −φ(−f(η)), (IV.10)

for the loss

φ(v) = −J [f−1(v)]− (1− f−1(v))J ′[f−1(v)]. (IV.11)

In this case, probability elicitation by maximization of (IV.5) is equivalent to

risk minimization with (IV.3), and the minimum conditional risk is related to the

maximal expected reward through C∗
φ(η) = −J(η). This establishes a new path for

the design of learning algorithms. Rather than specifying a loss φ and minimizing

Cφ(η, f), so as to obtain whatever optimal predictor f ∗
φ and minimum expected

risk C∗
φ(η) results, it is possible to specify f ∗

φ and C∗
φ(η) and derive, from (IV.11)

with J(η) = −C∗
φ(η), the underlying loss φ. The only conditions are that C∗

φ(η) is

strictly concave, f ∗
φ is invertible, and

C∗
φ(η) = C∗

φ(1− η) (IV.12)

[f ∗
φ]−1(−v) = 1− [f ∗

φ](v). (IV.13)

IV.C The Savage loss

The main observation is that, under the customary specification of φ,

both C∗
φ(η) and f ∗

φ(η) are immediately set, leaving no open degrees of freedom.
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Figure IV.2 Loss function φ(v) (left) and minimum conditional risk C∗
φ(η) (right)

associated with the different methods discussed in the text.

In fact, the selection of φ can be seen as the indirect selection of a link function

(f ∗
φ)−1 and a minimum conditional risk C∗

φ(η). The latter is an approximation to

the minimum conditional risk of the 0-1 loss , C∗
φ0/1

(η) = 1 −max(η, 1 − η). The

approximations associated with the existing algorithms are shown in Figure IV.2.

The approximation error is smallest for the SVM, followed by least squares, logistic

regression, and boosting, but all approximations are comparable. The alternative,

suggested by the probability elicitation view, is to start with the selection of the

approximation directly. In addition to allowing direct control over the quantity

that is usually of interest (the minimum expected risk of the classifier), the selection

of C∗
φ(η) (which is equivalent to the selection of J(η)) has the added advantage

of leaving one degree of freedom open. It is further possible to select across φ

functions, by controlling the link function fφ. This allows tailoring properties of

detail of the classifier, while maintaining its performance constant, in terms of the

expected risk.

We demonstrate this point, by proposing a new loss function φ. We

start by selecting the minimum conditional risk of least squares (using Savage’s

version with k = −l = 1,m = 0) C∗
φ(η) = η(1 − η), because it provides the best

approximation to the Bayes error, while avoiding the lack of differentiability of the

SVM. We next replace the traditional link function of least squares by the logistic

link function (classically used with logistic regression) f ∗
φ = 1

2
log η

1−η
. When used
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in the context of boosting (LogitBoost [35]), this link function has been found less

sensitive to outliers than other variants [61]. We then resort to (IV.11) to find the

φ function, which we denote by Savage loss ,

φ(v) =
1

(1 + e2v)2
. (IV.14)

A plot of this function is presented in Figure IV.2, along with those associated

with all the algorithms of Table IV.1. Note that the proposed loss is very similar

to that of least squares in the region where |v| is small (the margin), but quickly

becomes constant as v → −∞. This is unlike all other previous φ functions,

and suggests that classifiers designed with the new loss should be more robust to

outliers.

It is also interesting to note that the new loss function is not convex,

violating what has been an hallmark of the φ functions used in the literature.

The convexity of φ is, however, not important, a fact that is made clear by the

elicitation view and elaborated upon in Chapter II.

IV.D SavageBoost

We have hypothesized that classifiers designed with (IV.14) should be

more robust than those derived from the previous φ functions. To test this we

designed a boosting algorithm based on the new loss, using the procedure proposed

by Friedman to derive RealBoost [35]. At each iteration the algorithm searches for

the weak learner G(x) which further reduces the conditional risk EY |X[φ(y(f(x) +

G(x)))|X = x] of the current f(x), for every x ∈ X . The optimal weak learner is

G∗(x) = arg min
G(x)

{

η(x)φw(G(x)) + (1− η(x))φw(−G(x))
}

(IV.15)

where

φw(yG(x)) =
1

(1 + w(x, y)2e2y(G(x)))2
(IV.16)
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Algorithm 2 SavageBoost

Input: Training set D = {(x1, y1), . . . , (xn, yn)}, where y ∈ {1,−1} is the class

label of example x, and number M of weak learners in the final decision rule.

Initialization: Select uniform weights w
(1)
i = 1

|D| ,∀i.
for m = {1, . . . ,M} do

compute the gradient step Gm(x) with (IV.18).

update weights wi according to w
(m+1)
i = w

(m)
i × eyiGm(xi).

end for

Output: decision rule h(x) = sgn[
∑M

m=1 Gm(x)].

and

w(x, y) = eyf(x) (IV.17)

The minimization is by gradient descent. Setting the gradient with respect to G(x)

to zero results in

G∗(x) =
1

2

(

log
Pw(y = 1|x)

Pw(y = −1|x)

)

(IV.18)

where Pw(y = i|x) are probability estimates obtained from the re-weighted training

set. At each iteration the optimal weak learner is found from (IV.18) and reweigh-

ing is performed according to (IV.17). We refer to the algorithm as SavageBoost ,

and summarize it in the inset.

IV.E Experimental results

We compared SavageBoost to AdaBoost [33], RealBoost [35], and Logit-

Boost [35]. The latter is generally considered more robust to outliers [61] and thus

a good candidate for comparison. Ten binary UCI data sets were used: Pima-

diabetes, breast cancer diagnostic, breast cancer prognostic, original Wisconsin

breast cancer, liver disorder, sonar, echo-cardiogram, Cleveland heart disease, tic-

tac-toe and Haberman’s survival. We followed the training/testing procedure out-

lined in [114] to explore the robustness of the algorithms to outliers. In all cases,
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Table IV.2 (number of wins, average error%) for each method and outlier percent-

age.

Method 0% outliers 5% outliers 40% outliers
Savage Loss (SavageBoost) (4,19.22%) (4,19.91%) (6,25.9%)

Log Loss(LogitBoost) (4, 20.96%) (4, 22.04%) (3, 31.73%)
Exp Loss(RealBoost) (2, 23.99%) (2, 25.34%) (0, 33.18%)
Exp Loss(AdaBoost) (0, 24.58%) (0, 26.45%) (1, 38.22%)

five fold validation was used with varying levels of outlier contamination. Fig-

ure IV.3 shows the average error of the four methods on the Liver-Disorder set.

Table IV.2 shows the number of times each method produced the smallest error

(#wins) over the ten data sets at a given contamination level, as well as the average

error% over all data sets (at that contamination level). Our results confirm pre-

vious studies that have noted AdaBoost’s sensitivity to outliers [25]. Among the

previous methods AdaBoost indeed performed the worst, followed by RealBoost,

with LogitBoost producing the best results. This confirms previous reports that

LogitBoost is less sensitive to outliers [61]. SavageBoost produced generally better

results than Ada and RealBoost at all contamination levels, including 0% con-

tamination. LogitBoost achieves comparable results at low contamination levels

(0%, 5%) but has higher error when contamination is significant. With 40% con-

tamination SavageBoost has 6 wins, compared to 3 for LogitBoost and, on average,

about 6% less error. Although, in all experiments, each algorithm was allowed 50

iterations, SavageBoost converged much faster than the others, requiring an aver-

age of 25 iterations at 0% cantamination. This is in contrast to 50 iterations for

LogitBoost and 45 iterations for RealBoost. We attribute fast convergence to the

bounded nature of the new loss, that prevents so called ”early stopping” problems

[120]. Fast convergence is, of course, a great benefit in terms of the computational

efficiency of training and testing.
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Figure IV.3 Average error for four boosting methods at different contamination

levels.

IV.F Robust loss functions for computer vision

Computer vision problems frequently deviate from the canonical classifi-

cation problem, due to the prevalence of noise, outliers, ambiguity, and imbalance

of positive/negative training set sizes, in many vision applications. In this context,

the losses shown at the top of Figure IV.1 are problematic in two ways. The first

is their unbounded growth with negative values of the margin yf . This type of

growth is well known to produce inference procedures that are too sensitive to out-

liers [43, 80]. For vision applications, better results are invariably obtained with

loss functions of tapered growth [64, 13]. The second is the null penalty assigned

to very large positive margins. This creates an incentive for the classifier to push,

as far as possible from the boundary, the maximum possible number of points.

Although less studied than the first problem, we contend that this can have an

equally nefarious effect in terms of sensitivity to outliers.
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We illustrate this point in Figure IV.4. The figure depicts the linearly

separable problem that motivates the design of large-margin classifiers. The data

come from two distributions that are uniform in the vertical direction and Gaus-

sian, with equal variance and means µ = ±3, in the horizontal direction. Given

these distributions, the BDR is the vertical line x = 0. Figure IV.4 (top) shows

ten data points sampled from each class and the decision boundary resulting from

the minimization of the (empirical) risk associated with each loss. All losses of

Figure IV.1 produce approximately the same boundary, close to the BDR.

Figure IV.4 (bottom) shows the impact of adding a single negative at

location (−2, 0). Both the classical losses and the robust Savage loss move the

boundary substantially, to the vicinity of x = −2.3. This is due to the fact that

this boundary classifies all points correctly, and the existing losses assign small

penalty to correctly classified points. The result in as unwarranted leverage on

the boundary by the outlier at (−2, 0), compromising the generalization ability of

the classifier. Also shown in the figure is the boundary produced by the loss (the

tangent loss) proposed in this chapter. This loss, which is derived in the following

sections, penalizes both large positive and large negative margins. The penalty

assigned to large positive margins discourages solutions where large numbers of

points are classified “too correctly”. The force to classify the outlier correctly is

countered by the force to avoid large numbers of points far away from the boundary.

In result, the boundary remains close to the BDR (x = −0.303).

IV.F.1 Robust losses

The discussion above suggests that a robust loss for classifier design

should have the following properties:

1. saturate for large margins: φ′(∞) = φ′(−∞) = 0;

2. bounded penalty for large negative margins: φ(−∞) = k1 <∞;

3. smaller positive penalty for large positive margins:
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Figure IV.4 Minimum risk decision boundary for different loss functions. Top:

outlier free problem. Bottom: impact of a single outlier.

0 < φ(∞) = k2 < k1;

4. margin enforcing: φ(0) > 0

where we use the simplified notation φ(∞) = limv→∞ φ(v). As usual, the loss

should be non-negative.

It can be shown, from (IV.11), that

φ′(v) = −[1− f−1(v)]× J ′′[f−1(v)]× [f−1]′(v) (IV.19)

From the strict convexity of J(η), and (IV.13), it follows that property 1 holds if

[f−1]′(∞) = [f−1]′(−∞) = 0. (IV.20)
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This implies that the optimal predictor saturates as v → ±∞. Furthermore, using

the fact that J(η) = J(1− η), J ′(η) = −J ′(1− η), and (IV.13),

φ(v)− φ(−v) = −J ′[f−1(v)]

(φ(v)− φ(−v))′ = −J ′′[f−1(v)]× [f−1(v)]′.

It follows from (IV.20) that |φ(v)−φ(−v)| is maximum as |v| → ∞. The condition

k2 < k1 requires that J ′ [f−1(∞)] > 0. From the convexity and symmetry of J(η)

(J ′(1/2) = 0) this holds whenever

f−1(∞) >
1

2
.

Defining γ(v) = f−1(−v) × J ′[f−1(−v)], k2 > 0 requires that −J [f−1(∞)] >

−γ(∞), or 0 < C∗
φ[f−1(∞)]+γ(∞). Similarly, k1 <∞ requires that C∗

φ[f−1(∞)]+

γ(−∞) <∞. Finally, from (IV.13), f−1(0) = 1
2

and, from (IV.11) and J ′(1/2) = 0,

it follows that φ(0) = −J(1/2) = C∗
φ(1/2) > 0. In summary, the four properties

are satisfied if

[f−1]′(∞) = [f−1]′(−∞) = 0 (IV.21)

f−1(∞) >
1

2
= f−1(0) (IV.22)

C∗
φ(1/2) > 0 (IV.23)

C∗
φ[f−1(∞)] + γ(∞) > 0 (IV.24)

C∗
φ[f−1(∞)] + γ(−∞) <∞ (IV.25)

IV.F.2 The Tangent loss

In this section we seek to design a loss with the four properties discussed

above, through the selection of a predictor f ∗
φ(η) and minimum risk C∗

φ(η) that

comply with conditions (IV.21)-(IV.25). We start by noting that some of these

conditions hold for any sensible choice of these functions. For example, (IV.22)

and (IV.23) are met by all methods of Table IV.1. On the other hand, (IV.21)

disqualifies the predictor of least squares, but leaves the sigmoidal predictors of
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boosting and logistic regression as potential solutions. This suggests that condi-

tions (IV.24) and (IV.25) are the most stringent. In fact, they fail to hold for all

methods of Table IV.1.

Consider any of the sigmoidal predictors. Since f−1(∞) = 1, for any of

the C∗
φ in the table, C∗

φ[f−1(∞)] = 0. This simplifies (IV.24) and (IV.25) into

γ(∞) = −f−1(−∞)× [C∗
φ]′[f−1(−∞)] > 0 (IV.26)

γ(−∞) = −f−1(∞)× [C∗
φ]′[f−1(∞)] <∞. (IV.27)

Since f−1(−∞) = 0, (IV.26) requires [C∗
φ]′(0) = −∞. In fact, because the sigmoid

converges to 0 exponentially fast, (IV.26) requires the derivative of [C∗
φ](η) to decay

to −∞ (as η → 0) at a (faster) exponential rate. This is not easy to guarantee,

and does certainly not hold for any of the risks of Table IV.1. In summary, it

appears that none of the predictors in the table is suitable for robust loss design.

What is needed is a predictor such that f−1(v) saturates at ±∞, so as to satisfy

(IV.21), but at a slower than exponential rate.

One possibility is the tangent

f(η) = tan(η − 0.5) (IV.28)

f−1(v) = .5 + arctan(v). (IV.29)

It has the symmetry of (IV.13), a quadratic decay rate ([f−1]′(v) = (1+x2)−1) and

is compatible for combination with the minimal conditional risk of least squares,

C∗
φ(η) = 4η(1− η), resulting in

C∗
φ[f−1(∞)] + γ(∞) = (1− π)2 > 0

C∗
φ[f−1(∞)] + γ(−∞) = (1 + π)2 <∞.

It can be easily verified that conditions (IV.21)-(IV.23) also hold. Using (IV.11)

it is possible to derive the φ function, which we denote by Tangent loss ,

φ(v) = (2 arctan(v)− 1)2. (IV.30)
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Figure IV.1 (bottom) shows that the Tangent loss is similar to the Savage loss

in the sense that it is non convex, and bounded for large negative margins. It,

however, also penalizes points of large positive margin. This penalty is, once

again, bounded and of smaller value than that assigned to large negative margins.

Overall, the Tangent loss is margin enforcing, and encourages all points to be

classified correctly. However, it discourages situations where a large number of

points are classified “too correctly”. We will see, in Section IV.H, that this leads

to superior performance for a number of vision problems.

IV.G The TangentBoost algorithm

In this section we derive a boosting algorithm based on the Tangent loss.

This consists of minimizing the empirical risk

R =
∑

i

φ(yf(x)) (IV.31)

by gradient descent on the space of linear combinations of weak learners. The fact

that this is a sum of squared values, suggests performing the minimization with

the Gauss algorithm. For a general sum of squares problem

S(x) =
N
∑

i=1

r2
i (x) (IV.32)

this has update step

xn+1 = xn +
−r(x)

∂r
∂x

(IV.33)

As in the case of LogitBoost [35], it is more convenient to work with the interme-

diate probability estimates η(xi) than the points xi. For the Tangent loss

r(η) = 2 arctan(yf(η))− 1 (IV.34)

the optimal solution is

f ∗ = arg min
f

N
∑

i=1

(2 arctan(yf(η(xi)))− 1)2. (IV.35)
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The Gauss update is

f(η)n+1 = f(η)n + ∆f(η) = f(η)n − r(η)
∂r
∂η

(IV.36)

= f(η)n − 2 arctan(yf(η))− 1
2y

1+f(η)2

= f(η)n − (2 arctan yf(η)− 1)(1 + f(η)2)

2y
.

Using the known form of the optimal predictor f(η) = tan(η− 0.5) and its inverse

η = arctan(f(η)) + 0.5 we redefine the above updates as follows. For y = 1,

z(η)1 = −(2 arctan(f(η))− 1)(1 + f(η)2)

2

= −(η − 1)(1 + tan2(η − 0.5)) (IV.37)

and for y = −1 as

z(η)−1 = −(−2 arctan(f(η))− 1)(1 + f(η)2)

−2

= −η(1 + tan2(η − 0.5)) (IV.38)

The linear regression model can now be used to approximate z(η), as is done in lo-

gistic regression. This leads to the TangentBoost algorithm described in Algorithm

1.

IV.H Experiments

In this section we describe several experiments designed to test the per-

formance of TangentBoost in classification problems involving outliers and noisy

data.

We start with a simple classification problem, which provides some insight

on the benefits of the Tangent loss. This problem involves the Letter-1 dataset,

from the UCI database. It addresses the classification of the highly confusable

letter ”O” from the other letters of the alphabet, resulting in an unbalanced prob-

lem with many outliers. Figure IV.5 shows the histogram of the positive margins
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Algorithm 3 TangentBoost
Input: Training set D = {(x1, y1), . . . , (xn, yn)}, where y ∈ {1,−1} is the class label of

example x, and number M of weak learners in the final decision rule.

Initialization: Set uniformly distributed probabilities η(1)(xi) = 1
2 ∀xi and f̂ (1)(x) = 0.

for m = {1, . . . ,M} do

compute the working responses z
(m)
i as in (IV.37) and (IV.38) and weights w

(m)
i =

η(m)(xi)(1− η(m)(xi)) .

for k = {1, . . . ,K} do

compute the solution to the least squares problem,

aφk
=
〈1〉w · 〈φk(xi)zi〉w − 〈φk(xi)〉w · 〈zi〉w
〈1〉w · 〈φ2

k(xi)〉w − 〈φk(xi)〉2w

bφk
=

〈

φk(xi)
2
〉

w
· 〈zi〉w − 〈φk(xi)〉w · 〈φk(xi)zi〉w

〈1〉w · 〈φ2
k(xi)〉w − 〈φk(xi)〉2w

where we have defined

〈q(xi)〉w
.
=
∑

i

w
(m)
i q(xi).

end for

select the direction of minimal regression error according to k∗ = arg mink

∑

i w
(m)
i (zi −

aφk
φk(xi)− bφk

)2 .

set f̂ (m+1)(xi) = f̂ (m)(xi) + (aφk
φk(xi) + bφk

).

update η(m+1)(xi) = arctan(f̂ (m+1)(xi)) + 0.5.

end for

Output: decision rule h(x) = sgn[f̂ (M)(x)].

on the test set (a very similar histogram exists on the train set), for classifiers

learned with TangentBoost and Adaboost. Note that the TangentBoost margins

are below 0.7 and much smaller than those of AdaBoost (largest margin greater

than 2.5). On the other hand, the number of classification errors on the test set

is 602 for TangentBoost and 3621 for AdaBoost. This shows that larger margins

do not necessarily lead to better classification when there are outliers. In its effort

to push points away from the boundary, AdaBoost sacrifices classification perfor-

mance. On the other hand, TangentBoost has a much cleaner margin distribution,

with no points of positive margin smaller than .25.

It should be noted that, while this problem is serious for AdaBoost, it
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Figure IV.5 Histogram of positive test margins for the TangentBoost (top) and

AdaBoost (bottom) algorithms on the Letter-1 dataset.

Table IV.3 Classification error of each boosting method on Letter-1.

Dataset Ada Real Savage Logit Tangent
LETT.1 3621 2681 647 616 602

affects most boosting algorithms in current use. Table IV.3 presents the error

rates achieved by some of these, after 1000 iterations of training. Adaboost and

Realboost, which employ the exponential loss, have disproportionately high error.

The bounded Savage loss and the linearly increasing loss of logistic regression

produce a dramatic improvement. Finally, TangentBoost has the best performance.

The benefits of employing a bounded loss function (Savage and Tangent) or a

gradually sloping loss (logistic) are evident.
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Table IV.4 MIL accuracy on the MUSK2 dataset.

Boosting Alg. Real Ada Logit Savage Tangent
MUSK2 67.25 82.69 84.07 85.19 85.39

MIL Alg. MI-NN[76] mi-SVM[6] DD [55] MI-SVM [6] EMDD [118] IAPR [26]
MUSK2 82.5 83.6 84 84.3 84.9 89.2

IV.H.1 The MUSK dataset

Various authors have formulated outlier ridden vision problems, such as

image classification [55], object detection [104], and tracking [8], as MIL problems.

Unfortunately, these formulations are not directly comparable, and some of the

datasets used are not in the public domain. An alternative is the MUSK [26]

dataset, which is the standard benchmark for the broader MIL research community

[26, 76, 118, 55, 26, 6]. It is a good dataset to evaluate outlier robustness, since

it is naturally contaminated with misclassified data points. We learned classifiers

with AdaBoost, RealBoost, LogitBoost, SavageBoost, and TangentBoost on the

MUSK2 dataset, using the training and testing protocol of [26]: 10-fold cross

validation, with the 10 dataset partitions defined by [26]. The test error achieved

by each classifier is reported in Table IV.4, which also includes results from various

MIL algorithms not based on boosting. Note that although SavageBoost and

TangentBoost do not fit the traditional MIL definition (don’t operate on bags of

points), they outperform this broad selection of state-of-the-art MIL procedures.

The only exception is IAPR [26] which is an algorithm specifically designed for the

MUSK dataset.

IV.H.2 Results on scene classification

We next considered the vision problem of scene classification on the 15-

class dataset of [47]. Here, label noise occurs naturally, as each picture can be

attributed to multiple scene categories (e.g. an image containing patches of both

highway and buildings). State-of-the-art results on this dataset were recently re-
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ported in [77, 78]. These methods represent images as points on a semantic space,

where each feature is the probability of the image belonging to one of the 15

classes. The two methods differ in the computation of these probabilities, one us-

ing Gaussian mixtures [77] and the other mixtures of Dirichlet distributions [78].

The probability vectors are fed to an SVM classifier, which we replaced by one

learned with TangentBoost.

Table IV.5 compares results to different methods reported in the litera-

ture. TangentBoost(A), learned from Gaussian mixture probabilities, achieved the

highest accuracy reported for this dataset in the literature, with 76.28%. Note that

this is 2% better than the accuracy achieved with Adaboost under the same set-

ting. This gain can only be attributed to the increased robustness of TangentBoost

to outliers and noise. Also reported are the results of TangentBoost(B), where we

have combined the Gaussian and Dirichelet mixture probabilities, by simply con-

catenating the 15 class features of both into a 30 dimensional vector. This further

increased performance to 76.74% accuracy. It is also interesting to note that the

greatest improvements in accuracy are achieved for the classes where [77] performs

worst. These are classes that 1) are easily confusable with other classes in the

dataset, and 2) contain many outliers. For example, the classification of scenes

of ”street”, ”highway”, and ”tall building” improves in accuracy by 21%, 12%,

and 10%. Similarly, the easily confused classes of ”mountain”, ”open country”,

”forest”, and ”coast” have relative increase in accuracy of 14%, 7%, 6%, and 6% .

Finally, ”bedroom” displays a 20% increase in accuracy.

IV.H.3 Results on object tracking

Discriminant tracking has recently been shown to be a very effective so-

lution to the object tracking problem [7]. It is also a prime domain for testing the

effectiveness of classifiers in the presence of noise and outliers. This arises from

the fact that the positive and negative training sets are collected from windows

centered at the location of the current detection. In challenging scenes, object
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Table IV.5 Classification accuracy for 15 scene categories.

Method Dimensions Accuracy%
TangentBoost(B) 30 76.74

TangentBoost(A) 15 76.28

AdaBoost 15 74.79

Rasiwasia et al. [78] 15 72.5
Rasiwasia et al. [77] 15 72.2

Liu et al. [52] 20 63.32
Liu et al. [52] 200 75.16

Lazebnik et al. [47] 200 72.2

boundaries are not necessarily well defined, and the target object can be subject

to occlusion, shadows, and others sources of “noise”. These cause drift, since a

poor localization of the target will contaminate the training data with outliers, i.e.

background features labeled as target and vice-versa.

The original ensemble tracker of [7] was based on AdaBoost. It has how-

ever been noted that, in the tracking context, AdaBoost is quite susceptible to the

outlier problem, and various approaches have recently been shown to outperform

it [54, 8]. We consider here the discriminant saliency tracker (DST) of [54], which

maps the video frames into a feature space where the target is salient compared

to the background. Tracking is implemented with a weak classifier, which simply

sums the saliency maps produced by each feature. Here, we investigate the use

of boosting to combine these saliency maps in a discriminant manner. We im-

plemented both AdaBoost and TangentBoost to achieve this combination. The

results of the boosted tracker, for 2 noisy clips used in [54], are shown in Table

IV.6. The error rates are measured as defined in [54]. It can be seen that the

tracker based on AdaBoost has substantially larger error, in fact losing the target

at some point in these sequences. On the other hand, TangentBoost produces a

tracker that does not loose the target, and has an overall low error rate. Two

representative frames of the process are shown in Figure IV.6.
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Table IV.6 Tracking error rates on two noisy sequences.

Clip AdaBoost TangentBoost
athlete 0.89 0.29

gravel 0.70 0.04

Figure IV.6 Frames comparing the performance of TangentBoost with AdaBoost

in conjunction with a discriminant saliency tracker. Red box: TangentBoost, blue

box: AdaBoost.

IV.I Summary and discussion

In this chapter, we have extended the probability elicitation view of loss

function design introduced in Chapter II to the problem of designing robust loss

functions for classification. The robust Savage loss and corresponding SavageBoost

algorithm was derived and shown to outperform other boosting algorithms on a set

of experiments designed to test the robustness of the algorithms to outliers in the

training data. We next argued that a robust loss should penalizes both large posi-

tive and large negative margins. A set of four properties were derived that a robust

loss function should have and the Tangent loss was introduced with the four prop-

erties discussed. Finally the associated TangentBoost algorithm was derived and

shown to outperform other boosting algorithms on a variety of test sets involving

various computer vision problems, including scene classification, object tracking,

recognition, and MIL problems. Empirical evidence confirms the importance of

using robust Bayes consistent loss functions when dealing with noise, outliers and

class ambiguity within the data.
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V.A Introduction

The most popular strategy for the design of classification algorithms is

to minimize the probability of error, assuming that all misclassifications have the

same cost. The resulting decision rules are usually denoted as cost-insensitive.

However, in many important applications of machine learning, such as medical

diagnosis, fraud detection, or business decision making, certain types of error are

much more costly than others. Other applications involve significantly unbalanced

datasets, where examples from different classes appear with substantially different

probability. It is well known, from Bayesian decision theory, that under any of these

two situations (uneven costs or probabilities), the optimal decision rule deviates

from the optimal cost-insensitive rule in the same manner. In both cases, reliance

on cost insensitive algorithms for classifier design can be highly sub-optimal. While

this makes it obviously important to develop cost-sensitive extensions of state-of-

the-art machine learning techniques, the current understanding of such extensions

is limited.

In this chapter we lay the theoretical foundation for cost sensitive loss

function design but mostly consider the support vector machine (SVM) [22] appli-

cation. The theory as applied to cost sensitive boosting algorithms is considered

in Chapter VI. Although SVMs are based on a very solid learning-theoretic foun-

dation, and have been successfully applied to many classification problems, it is

not well understood how to design cost-sensitive extensions of the SVM learning

algorithm. The standard, or cost-insensitive, SVM is based on the minimization

of a symmetric loss function (the hinge loss) that does not have an obvious cost-

sensitive generalization. In the literature, this problem has been addressed by

various approaches, which can be grouped into three general categories. The first

is to address the problem as one of data processing, by adopting resampling tech-

niques that under-sample the majority class and/or over-sample the minority class

[46, 20, 3]. Resampling is not easy when the classification unbalance is due to ei-



134

ther different misclassification costs (not clear what the class probabilities should

be) or an extreme unbalance in class probabilities (sample starvation for classes of

very low probability). It also does not guarantee that the learned SVM will change,

since it could have no effect on the support vectors. The second class of approaches

[4, 110, 111] involves kernel modifications. These methods are based on conformal

transformations of the input or feature space, by modifying the kernel used by the

SVM. They are somewhat unsatisfactory, due to the implicit assumption that a

linear SVM cannot be made cost-sensitive. It is unclear why this should be the

case.

The third, and most widely researched, approach is to modify the SVM

algorithm in order to achieve cost sensitivity. This is done in one of two ways. The

first is a naive method, known as boundary movement (BM-SVM), which shifts

the decision boundary by simply adjusting the threshold of the standard SVM

[45]. Under Bayesian decision theory, this would be the optimal strategy if the

class posterior probabilities were available. However, it is well known that SVMs

do not predict these probabilities accurately. While a literature has developed in

the area of probability calibration [75, 29], calibration techniques do not aid the

cost-sensitive performance of threshold manipulation. This follows from the fact

that all calibration techniques rely on an invertible (monotonic and one-to-one)

transformation of the SVM output. Because the manipulation of a threshold at

either the input or output of such a transformation produces the same receiver-

operating-characteristic (ROC) curve, calibration does not change cost-sensitive

classification performance. The boundary movement method is also obviously

flawed when the data is non-separable, in which case cost-sensitive optimality is

expected to require a modification of both the normal of the separating plane w and

the classifier threshold b. The second proposal to modify SVM learning is known

as the biased penalties (BP-SVM) method [9, 51, 23, 113, 19]. This consists of

introducing different penalty factors C1 and C−1 for the positive and negative SVM

slack variables during training. It is implemented by transforming the primal SVM



135

problem into

arg min
w,b,ξ

1

2
||w||2 + C



C1

∑

{i|yi=1}
ξi + C−1

∑

{i|yi=−1}
ξi





s.t. yi(w
T x + b) ≥ 1− ξi. (V.1)

The biased penalties method also suffers from an obvious flaw, which is converse

to that of the boundary movement method: it has limited ability to enforce cost-

sensitivity when the training data is separable. For large slack penalty C, the slack

variables ξi are zero-valued and the optimization above degenerates into that of

the standard SVM, where the decision boundary is placed midway between the

two classes (rather than assigning a larger margin to one of them).

In this chapter we propose an alternative strategy for the design of cost-

sensitive SVMs. This strategy is fundamentally different from previous attempts,

in the sense that is does not directly manipulate the standard SVM learning algo-

rithm. Instead, we extend the SVM hinge loss, and derive the optimal cost-sensitive

learning algorithm as the minimizer of the associated risk. The derivation of the

new cost-sensitive hinge loss draws on the connections between risk minimization

and probability elicitation as mentioned in Chapter II. Such connections are

generalized to the case of cost-sensitive classification.

It is shown that it is always possible to specify the predictor and condi-

tional risk functions desired for the SVM classifier, and derive the loss for which

these are optimal. A sufficient condition for the cost-sensitive Bayes optimality of

the predictor is then provided, as well as necessary conditions for conditional risks

that approximate the cost-sensitive Bayes risk. Together, these conditions enable

the design of a new hinge loss which is minimized by an SVM that 1) implements

the cost-sensitive Bayes decision rule, and 2) approximates the cost-sensitive Bayes

risk. It is also shown that the minimization of this loss is a generalization of the

classic SVM optimization problem, and can be solved by identical procedures. The

resulting algorithm avoids the shortcomings of previous methods, producing cost-

sensitive decision rules for both cases of separable and inseparable training data.
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Experimental results show that these advantages result in better cost-sensitive

classification performance than previous solutions.

This chapter is organized as follows. Section V.B briefly reviews the

probability elicitation view of loss function design as seen in Chapter II. Sec-

tion V.C then generalizes the connections between probability elicitation and risk

minimization to the cost-sensitive setting. In Section V.D, these connections are

used to derive the new SVM loss and algorithm. Finally, Section V.E presents an

experimental evaluation that demonstrates improved performance of the proposed

cost sensitive SVM over previous methods.

V.B Probability elicitation and the risk

A classifier h maps a feature vector x ∈ X to a class label y ∈ {−1, 1}.
This mapping can be written as h(x) = sign[f(x)] for some function f : X → R,

which is denoted as the classifier predictor. Feature vectors and class labels are

drawn from probability distributions PX(x) and PY (y) respectively. Given a non-

negative loss function L(x, y), the classifier is optimal if it minimizes the risk

R(f) = EX,Y [L(h(x), y)]. This is equivalent to minimizing the conditional risk

EY |X[L(h(x), y)|X = x] = PY |X(1|x)L(h, 1)

+(1− PY |X(1|x))L(h,−1), (V.2)

for all x ∈ X . Classifiers are frequently designed to be optimal with respect to the

zero-one loss

L0/1(f, y) =
1− sign(yf)

2

=







0, if y = sign(f);

1, if y 6= sign(f),
(V.3)
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where we omit the dependence on x for notational simplicity. The associated

conditional risk is

C0/1(η, f) = η
1− sign(f)

2
+ (1− η)

1 + sign(f)

2

=







1− η, if f ≥ 0;

η, if f < 0,
(V.4)

with η(x) = PY |X(1|x). This risk is minimized by any predictor f such that


















f(x) > 0 if η(x) > γ

f(x) = 0 if η(x) = γ

f(x) < 0 if η(x) < γ

(V.5)

and γ = 1
2
. Examples of optimal predictors include f ∗ = 2η − 1 and f ∗ = log η

1−η
.

The associated optimal classifier h∗ = sign[f ∗] is the well known Bayes decision

rule, and the associated minimum conditional (zero-one) risk is

C∗
0/1(η) = η

(

1

2
− 1

2
sign(2η − 1)

)

+

(1− η)

(

1

2
+

1

2
sign(2η − 1)

)

. (V.6)

A number of other losses have been proposed in the literature. Popular

examples include the exponential loss of boosting, binomial loss of logistic regres-

sion, or hinge loss of SVMs. These losses are of the form Lφ(f, y) = φ(yf), for

different functions φ(·). The associated conditional risk

Cφ(η, f) = ηφ(f) + (1− η)φ(−f). (V.7)

is minimized by the predictor

f ∗
φ(η) = arg min

f
Cφ(η, f) (V.8)

leading to the minimum conditional risk function C∗
φ(η) = Cφ(η, f ∗

φ).

Conditional risk minimization is closely related to classical probability

elicitation in statistics [82]. Here, the goal is to find the probability estimator η̂

that maximizes the expected reward

I(η, η̂) = ηI1(η̂) + (1− η)I−1(η̂), (V.9)
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where I1(η̂) is the reward for prediction η̂ when event y = 1 holds and I−1(η̂) the

corresponding reward when y = −1. The functions I1(·), I−1(·) should be such

that the expected reward is maximal when η̂ = η, i.e.

I(η, η̂) ≤ I(η, η) = J(η), ∀η (V.10)

with equality if and only if η̂ = η. The following theorem establishes the conditions

under which this holds.

Theorem 38. [82] Let I(η, η̂) and J(η) be as defined in (V.9) and (V.10). Then

1) J(η) is convex and 2) (V.10) holds if and only if

I1(η) = J(η) + (1− η)J ′(η) (V.11)

I−1(η) = J(η)− ηJ ′(η). (V.12)

It follows from the theorem that, starting from any convex J(η), it is

possible to derive I1(·), I−1(·) so that (V.10) holds. The next theorem as seen in

Chapter II and [57] connects this result to the problem of classifier design.

Theorem 39. Let J(η) be as defined in (V.10) and f a continuous function. If

the following properties hold

1. J(η) = J(1− η),

2. f is invertible with symmetry

f−1(−v) = 1− f−1(v), (V.13)

then the functions I1(·) and I−1(·) derived with (V.11) and (V.12) satisfy the fol-

lowing equalities

I1(η) = −φ(f(η)) (V.14)

I−1(η) = −φ(−f(η)), (V.15)

with

φ(v) = −J [f−1(v)]− (1− f−1(v))J ′[f−1(v)]. (V.16)
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This theorem connects (V.9) and (V.7), establishing a new path for the

design of learning algorithms. Rather than specifying a loss φ and minimizing

Cφ(η, f), so as to obtain whatever optimal predictor f ∗
φ and minimum expected

risk C∗
φ(η) results, it is possible to specify f ∗

φ and C∗
φ(η) and derive, from (V.16)

with J(η) = −C∗
φ(η), the underlying loss φ. The only conditions are that C∗

φ(η) =

C∗
φ(1 − η) and that (V.13) holds for f ∗

φ. Note that 1) the symmetry of (V.13)

guarantees that f meets the necessary conditions of (V.5) for predictor optimality

(see Theorem 41) and 2) the condition of C∗
φ(η) = C∗

φ(1− η) encodes the fact that

there is no preference for different types of errors since the risk, or expected loss,

is the same for any two x1 and x2 at the same distance from the boundary, where

distance is measured is units of posterior probability (|η(x)− 1/2|).

V.C Cost sensitive losses and classifier design

In this section we extend the connections between risk minimization and

probability elicitation to the cost-sensitive setting. We start by reviewing cost-

sensitive losses.

V.C.1 Cost-sensitive losses

The cost-sensitive extension of the zero-one loss is

LC1,C−1(f, y) =

1− sign(yf)

2

(

C1
1− sign(f)

2
+ C−1

1 + sign(f)

2

)

=



















0, if y = sign(f);

C1, if y = 1 and sign(f) = −1

C−1, if y = −1 and sign(f) = 1,

(V.17)



140

where C1 is the cost of a false negative, or miss, and C−1 that of a false positive.

The associated conditional risk is

CC1,C−1(η, f) =

C1η
1− sign(f)

2
+ (1− η)C−1

1 + sign(f)

2
=

=







C−1(1− η), if f ≥ 0;

C1η, if f < 0,
(V.18)

and is minimized by any predictor that satisfies (V.5) with γ = C−1

C1+C−1
. Examples

of optimal predictors include f ∗(η) = (C1 + C−1)η−C−1 and f ∗(η) = log ηC1

(1−η)C−1
.

The associated optimal classifier h∗ = sign[f ∗] is the cost-sensitive Bayes decision

rule, and the associated minimum conditional (cost-sensitive) risk is

C∗
C1,C−1

(η) = C1η

(

1

2
− 1

2
sign [f ∗(η)]

)

+

C−1(1− η)

(

1

2
+

1

2
sign [f ∗(η)]

)

(V.19)

with f ∗(η) = (C1 + C−1)η − C−1. To extend the other losses used in machine

learning to the cost-sensitive setting, we consider the following set of loss functions

Lφ,C1,C−1(f, y) = φC1,C−1(yf)

=







φ1(f), if y = 1

φ−1(−f), if y = −1.
(V.20)

The associated conditional risk

Cφ,C1,C−1(η, f) = ηφ1(f) + (1− η)φ−1(−f) (V.21)

is minimized by the predictor

f ∗
φ,C1,C−1

(η) = arg min
f

Cφ,C1,C−1(η, f) (V.22)

leading to the minimum conditional risk

C∗
φ,C1,C−1

(η) = ηφ1(f
∗
φ,C1,C−1

(η))

+ (1− η)φ−1(−f ∗
φ,C1,C−1

(η)). (V.23)
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V.C.2 Cost-sensitive learning algorithms

It is currently not known which loss functions φi(·) in (V.20) best extend

the ones used in the design of cost-insensitive algorithms, so as to produce cost-

sensitive extensions of boosting, or SVM classifiers. We address this problem by

extending the approach of Chapter II.

Theorem 40. Let g(η) be any invertible function, J(η) any convex function, and

φi(·) determined by the following steps:

1. use (V.11) and (V.12) to obtain the I1(η) and I−1(η), and let Cφ,C1,C−1(η, f)

be defined by (V.21).

2. set φ1(g(η)) = −I1(η) and φ−1(−g(η)) = −I−1(η).

Then g(η) = f ∗
φ,C1,C−1

(η) if and only if J(η) = −C∗
φ,C1,C−1

(η).

Proof. From 1. and Theorem 38, it follows that

ηI1(η̂) + (1− η)I1(η̂)

has maximum value J(η), when η̂ = η. From 2. the same holds for

−ηφ1(g(η̂))− (1− η)φ−1(−g(η̂))

and

J(η) = −ηφ1(g(η))− (1− η)φ−1(−g(η)).

It follows from (V.21)-(V.23) that, g(η) = f ∗
φ,C1,C−1

(η) if and only if J(η) =

−C∗
φ,C1,C−1

(η).

The theorem shows that any loss with components φi(·) designed ac-

cording to steps 1. and 2. satisfies (V.21)-(V.23), when g(η) = f ∗
φ,C1,C−1

(η)

and J(η) = −C∗
φ,C1,C−1

(η). This implies that it is possible to specify any pair
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f ∗
φ,C1,C−1

(η), C∗
φ,C1,C−1

(η) and derive the underlying loss. The next question is how

to choose the best pair of f ∗
φ,C1,C−1

(η), and C∗
φ,C1,C−1

(η).

The following theorem provides a sufficient condition for the Bayes opti-

mality of f ∗
φ,C1,C−1

(η).

Theorem 41. Any invertible predictor f(η) with symmetry

f−1(−v) =
2C−1

C1 + C−1

− f−1(v) (V.24)

satisfies the necessary and sufficient conditions for cost-sensitive optimality of

(V.5) with γ = C−1

C1+C−1
.

Proof. Assume that f(η) = v is monotonically increasing. Note that f−1(0) =

C−1

C1+C−1
which along with η = f−1(v) leads to f( C−1

C1+C−1
) = 0. If η > C−1

C1+C−1
then

from (V.24) we have f−1(−v) < C−1

C1+C−1
, applying (V.24) again it follows that

f(η) > C−1

C1+C−1
. Similarly, if η < C−1

C1+C−1
then f(η) < C−1

C1+C−1
.

Hence, the specification of f ∗
φ,C1,C−1

(η) as any predictor that satisfies

(V.24) guarantees that the conditional risk is minimized by the cost-sensitive Bayes

decision rule. The specification of C∗
φ,C1,C−1

(η) determines the risk of the optimal

classifier. The goal is to approximate as best as possible the cost-sensitive Bayes

risk, given in (V.19). The next theorem highlights some fundamental properties of

this risk.

Theorem 42. The risk of (V.19) has the following properties:

1. a maximum at η∗ = C−1

C1+C−1

2. symmetry defined by, ∀ǫ ∈
[

0, 1
C1+C−1

]

,

C∗ (η∗ − C−1ǫ) = C∗ (η∗ + C1ǫ) , (V.25)

Proof. Note that (V.19) can be written as

C∗
C1,C−1

(η) =







C−1(1− η), if f ∗ ≥ 0;

C1η, if f ∗ < 0,
(V.26)
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The two lines C−1(1−η) and C1η intersect and form the maximum at η = C−1

C1+C−1
.

When ǫ = 0 we have the trivial case of C∗
(

C−1

C1+C−1

)

= C∗
(

C−1

C1+C−1

)

.

When 0 < ǫ ≤ 1
C1+C−1

we have η = C−1

C1+C−1
− C−1ǫ < C−1

C1+C−1
in which

case from (V.5), f ∗ < 0 and

C∗
C1,C−1

(η) = C1η = C1

(

C−1

C1 + C−1

− C−1ǫ

)

=
C1C−1

C1 + C−1

− C1C−1ǫ (V.27)

When 0 < ǫ ≤ 1
C1+C−1

we also have η = C−1

C1+C−1
+ C1ǫ > C−1

C1+C−1
in which

case from (V.5), f ∗ > 0 and

C∗
C1,C−1

(η) = C−1(1− η) = C−1

(

1− C−1

C1 + C−1

− C1ǫ

)

=
C1C−1

C1 + C−1

− C1C−1ǫ (V.28)

Thus proving that

C∗
C1,C−1

(

C−1

C1 + C−1

− C−1ǫ

)

= C∗
C1,C−1

(

C−1

C1 + C−1

+ C1ǫ

)

=
C1C−1

C1 + C−1

− C1C−1ǫ (V.29)

As noted by the following lemma, property 2. is in fact a generalization

of property 1.

Lemma 43. Any concave function with the symmetry of (V.25) also has property

1. of Theorem 42.

Proof. Taking the derivative of (V.25) at ǫ = 0 leads to

C∗′
(

C−1

C1 + C−1

)

(−C−1) = C∗′
(

C−1

C1 + C−1

)

(C1) (V.30)

which is satisfied only when C∗′
(

C−1

C1+C−1

)

= 0. Given that C∗ is a concave function,

C∗ is maximum at η = C−1

C2+C−1
.
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Property 1. assigns the largest risk to the locations on the classifica-

tion boundary. This can be seen as a minimal requirement for consistency of any

C∗
φ,C1,C−1

(η) with Bayesian decision theory. Enforcing Property 2. further guar-

antees that the optimal risk has the symmetry of the cost-sensitive Bayes risk.

Theorem 42 hence suggests the following risk taxonomy.

Definition 9. A minimum risk C∗
φ,C1,C−1

(η) is of

1. Type-I if it satisfies property 1. but not 2. of Theorem 42.

2. Type-II if it satisfies both properties 1. and 2.

Risks of type-II are closer approximations to the cost-sensitive Bayes risk

than those of type I.

The combination of Theorems 40-42 leads to a generic procedure for the

design of cost-sensitive classification algorithms, consisting of the following steps

1. select a predictor f ∗
φ,C1,C−1

(η) that satisfies (V.24).

2. select a concave minimum conditional risk C∗
φ,C1,C−1

(η) of type-I or type-II,

which reduces to C∗
φ(η) when C1 = C−1 = 1.

3. use (V.11) and (V.12) with J(η) = −C∗
φ,C1,C−1

(η) to obtain I1(η) and I−1(η).

4. find φi(·) so that I1(η) = −φ1(f
∗
φ,C1,C−1

(η)) and I−1(η) = −φ−1(−f ∗
φ,C1,C−1

(η)).

5. derive an algorithm to minimize the conditional risk of (V.21).

We next illustrate the practical application of this framework by showing that the

cost-sensitive exponential loss [56, 58] can be derived from a minimal conditional

risk of Type-I. This loss function will later be used in Chapter VI to derive the

cost sensitive AdaBoost and cost sensitive RealBoost algorithms.
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V.C.3 Cost-sensitive exponential loss

We start by recalling that AdaBoost is based on the loss φ(yf) = exp(−yf),

for which it can be shown that

C∗
φ(η) = η

√

1− η

η
+ (1− η)

√

η

1− η

and f ∗
φ =

1

2
log

η

1− η
. (V.31)

A natural cost-sensitive extension is f ∗
φ,C1,C−1

(η) = 1
C1+C−1

log ηC1

(1−η)C−1
, which is

easily shown to satisfy (V.24). Noting that C∗
φ(η) = η exp(−f ∗

φ) + (1− η) exp(f ∗
φ),

suggests the cost-sensitive extension

C∗
φ,C1,C−1

(η) = η

(

ηC1

(1− η)C−1

)

−C1
C1+C−1

+

(1− η)

(

ηC1

(1− η)C−1)

)

C−1
C1+C−1

. (V.32)

This does not have the symmetry of (V.25) but satisfies property 1. of Theorem 42.

Hence, it is a Type-I risk. It is also equivalent to (V.31) when C1 = C−1 = 1.

Finally, steps 1. and 2. of Theorem 40 produce the loss

φC1,C−1(yf) =







exp(−C1f), if y = 1

exp(C−1f), if y = −1
(V.33)

proposed in [56, 58]. The resulting cost-sensitive boosting algorithm currently

holds the best performance in the literature and will be discussed in greater detail

in Chapter VI.

V.D Cost sensitive SVM

We next consider the case of the cost-sensitive SVM. We start by extend-

ing the hinge loss, using the framework of the previous section, and then derive

the cost-sensitive SVM optimization problem.
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V.D.1 Cost-sensitive hinge-loss

We start by recalling that the SVM minimizes the risk of the hinge loss

φ(yf) = ⌊1− yf⌋+, where ⌊x⌋+ = max(x, 0). This risk is minimized by [119]

f ∗
φ(η) = sign(2η − 1) (V.34)

leading to the minimum conditional risk

C∗
φ(η) = 1− |2η − 1|

= η⌊1− sign(2η − 1)⌋+ + (1− η)⌊1 + sign(2η − 1)⌋+.

Again, we replace the optimal cost-insensitive predictor by its

cost-sensitive counterpart

f ∗
φ,C1,C−1

(η) = sign((C1 + C−1)η − C−1). (V.35)

which is easily shown to satisfy (V.5). This suggests the cost-sensitive minimum

conditional risk

C∗
φ,C1,C−1

(η) = (V.36)

η⌊e− d · sign((C1 + C−1)η − C−1)⌋+ +

(1− η)⌊b + a · sign((C1 + C−1)η − C−1)⌋+,

which can be shown to satisfy (V.25) if and only if

d ≥ e a ≥ b and
C−1

C1

=
a + b

d + e
. (V.37)

After steps 1. and 2. of Theorem 40,

φC1,C−1(yf) =







⌊e− df⌋+, if y = 1

⌊b + af⌋+, if y = −1.
(V.38)

This loss has four degrees of freedom, which control the margin and slope of the

hinge components associated with the two classes: positive examples are classified

with margin e
d

and hinge loss slope d, while for negative examples the margin is b
a

and slope a.
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V.D.2 Cost-sensitive SVM learning

We consider the case where errors in the positive class are weighted more

heavily, leading to the inequalities b
a
≤ e

d
and d ≥ a. Choosing e = d = C1

normalizes the margin of positive examples to unity ( e
d

= 1). Selecting b = 1 then

fixes the scale of the negative component of the hinge loss, leading to a = 2C−1−1.

The resulting cost sensitive SVM minimal conditional risk is

C∗
φ,C1,C−1

(η) = (V.39)

η⌊C1 − C1 · sign((C1 + C−1)η − C−1)⌋+ +

(1− η)⌊1 + (2C−1 − 1) · sign((C1 + C−1)η − C−1)⌋+

with C−1 ≥ 1 and C1 ≥ 2C−1 − 1, so as to satisfy (V.37). Figure V.1 presents

plots of (V.39) and (V.38), for both C1 = 4, C−1 = 2 and the cost insensitive case

of C1 = 1, C−1 = 1 (standard SVM). Note that, for the cost-sensitive SVM, the

positive class has a unit margin, while the negative class has a smaller margin of

1
3
. Also, the slope of the positive component of the loss is 4 while the negative

component has a smaller slope of 3. In this way, the loss assigns a higher cost to

errors in the positive class when the data is not separable, while enforcing a larger

margin for positive examples when the data is separable.

Replacing the standard hinge loss with (V.38) in the standard SVM

risk [67]

arg min
w,b

∑

{i|yi=1}
⌊C1 − C1(w

T xi + b)⌋+ (V.40)

+
∑

{i|yi=−1}
⌊1 + (2C−1 − 1)(wT xi + b)⌋+ + µ||w||2,

leads to the primal problem

arg min
w,b

1

2
||w||2 + C



β
∑

{i|yi=1}
ξi + λ

∑

{i|yi=−1}
ξi



 (V.41)

s.t.(wT xi + b) ≥ 1− ξi; yi = 1

(wT xi + b) ≤ −κ + ξi; yi = −1
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Figure V.1 Left: concave C∗
φ,C1,C−1

(η) function and corresponding cost sensitive

SVM loss function, top: C1 = 4, C−1 = 2, bottom: C1 = C−1 = 1. Right: linearly

separable cost sensitive SVM.

with

β = C1 λ = 2C−1 − 1 κ =
1

2C−1 − 1
. (V.42)

This is a quadratic programming problem similar to that of the standard cost-

insensitive SVM with soft margin weight parameter C. In this case, cost-sensitivity

is controlled by the parameters β, λ, and κ. The parameter κ is responsible for

cost-sensitivity in the separable case. Under the constraints C1 ≥ 1, C1 ≥ 2C−1−1

of a type-II risk, it imposes a smaller margin on negative examples. On the other

hand, β and λ control the relative weights of margin violations, assigning more

weight to positive violations. This allows control of cost-sensitivity when the data

is not separable.

Obviously, this primal problem could be defined through heuristic argu-

ments. However, it would be difficult to justify precise choices for the parameters

of (V.42). Furthermore, the derivation above guarantees that the optimal classi-

fier implements the Bayes decision rule of (V.5) with γ = C−1

C1+C−1
, and its risk is a

type-II approximation to the cost-sensitive Bayes risk. No such guarantees would

be possible for an heuristic solution.

To obtain some intuition about the cost-sensitive extension, we consider
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the synthetic problem of Figure V.1, where the two classes are linearly separable.

The figure shows three separating lines. The green line is an arbitrary separating

line that does not maximize the margin. The red line is the standard SVM solution,

which has maximum margin and is equally distant from the nearest examples of

the two classes. The blue line is the solution of (V.41) for C1 = 4 and C−1 = 2

(the C parameter is irrelevant when the data is separable). It is also a maximum

margin solution, but trades-off the distance to positive and negative examples

so as to enforce a larger positive margin, as specified. Overall, an increase in

C−1 guarantees a larger positive margin. For a given C−1, increasing C1 (so that

C1 ≥ 2C−1 − 1) increases the cost of errors on positive examples, enabling control

of the miss rate when the classes are not separable.

Finally, the dual and kernelized formulation of the cost sensitive SVM

can be obtained with the standard procedures, leading to

arg max
αi

∑

i

αi

(

yi + 1

2
− yi − 1

2(2C−1 − 1)

)

− 1

2

∑

i

∑

j

αiαjyiyjK(xi, xj) (V.43)

s.t.
∑

i

αiyi = 0

0 ≤ αi ≤ CC1; yi = 1

0 ≤ αi ≤ C(2C−1 − 1); yi = −1.

This reduces to the standard SVM dual when C1 = C−1 = 1. Note that

the derivation of the cost-sensitive SVM from a suitable loss function leads to an

algorithm that performs regardless of the separability of the data and slack penalty,

unlike the previous BM-SVM and BP-SVM algorithms. The improved performance

of CS-SVM on real world data sets is demonstrated in the next section.

V.E Experimental results

The performance of the CS-SVM was evaluated with two sets of experi-

ments. The first was based on ten binary UCI data sets [69]: Pima-diabetes, breast

cancer diagnostic, breast cancer prognostic, original Wisconsin breast cancer, liver
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Table V.1 Total loss in $ for each method on the German Credit dataset.

Method CS-SVM BP-SVM SVM
Loss $ 550$ 878$ 878$

Table V.2 mean error for each UCI data set and cost sensitive SVM method.

Dataset Survive Liver Echo Pima Wisc Tic Heart Diag Prag Sonar
CS-SVM 195.8 163.8 40 313.2 33.2 536 68.4 33.8 107.2 65.6
BP-SVM 199.6 167.2 43 416 32.8 536 69.4 33.8 115.2 75.2
BM-SVM 201.8 169.2 45 416 32.8 538 73.2 33.8 126 76.4

disorder, sonar, echo-cardiogram, Cleveland heart disease, tic-tac-toe and Haber-

man’s survival. The goal was to learn the SVM of lowest total error rate, given a

target detection rate. In all cases, leave one out cross validation was used to find

the best cost estimate. We considered detection rates between 80% and 95%, with

increments of 2.5%, and set C, C1, C−1 and b (SVM threshold) for each method so

as to achieve the smallest false positive rate on the validation set. The total error

was computed for each detection rate, and the mean of these errors is reported

in Table V.2. Results are reported for the proposed CS-SVM, the BM-SVM [45]

and the BP-SVM [9, 51, 23, 113, 19]. While the table confirms the previous ob-

servation that the BP-SVM outperforms the BM-SVM [9, 51, 23, 113, 19], none of

them matches the CS-SVM. This is most interesting given the fact that CS-SVM

has the same computational complexity and number of tuning parameters as the

BP-SVM. Overall, CS-SVM has the smallest error on 7 of the 10 datasets, some-

times by a very substantial margin. CS-SVM and BP-SVM have equal error on 2

datasets, and BP and BM-SVMs have a slight advantage on Wisconsin.

The second set of experiments was based on the German Credit data

set [37, 69]. This dataset has 700 examples of good credit customers and 300

examples of bad credit customers. Each example is described by 24 attributes,

and the goal is to identify bad costumers, to be denied credit. This data set is

particularly interesting for cost-sensitive learning because it provides a cost matrix
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for the different types of errors. Classifying a good credit customer as bad (a false-

positive) incurs a loss of 1. Classifying a bad credit customer as good (a miss)

incurs a loss of 5. Hence, on this dataset, the leave one out cross validation of

CS-SVM and BP-SVM parameters was subject to the constraint C1

C−1
= 5. A cost

insensitive SVM was also trained. Table V.1 presents the loss achieved by each

method. Note that BP-SVM does not produce any improvement with respect to

the cost insensitive SVM. On the other hand, the loss achieved with CS-SVM is

328$ smaller, i.e. a substantial reduction of cost by 37.36%.

V.F Summary and discussion

In this chapter, we have extended the probability elicitation view of loss

function design introduced in Chapter II to the cost sensitive classification prob-

lem. This extension was applied to the SVM problem, so as to produce a cost-

sensitive hinge loss function. A cost-sensitive SVM learning algorithm was then

derived, as the minimizer of the associated risk. Unlike previous SVM algorithms,

the one now proposed enforces cost sensitivity for both separable and non-separable

training data, enforcing a larger margin for the preferred class, independent of the

choice of slack penalty. It also offers guarantees of optimality, namely classifiers

that implement the cost-sensitive Bayes decision rule and approximate the cost-

sensitive Bayes risk. Empirical evidence confirms its superior performance, when

compared to previous methods.
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VI.A Introduction

Classification problems such as fraud detection [101], medical diagnosis

[106], or object detection in computer vision [102, 97, 93, 81, 74, 88, 5, 79], are

naturally cost sensitive [29]. In these problems the cost of missing a target is much

higher than that of a false-positive, and classifiers that are optimal under symmet-

ric costs (such as the popular zero-one loss) tend to under perform. The design

of optimal classifiers with respect to losses that weigh certain types of errors more

heavily than others is denoted as cost-sensitive learning [29]. Current research

in this area falls into two main categories. The first aims for generic procedures

that can make arbitrary classifiers cost sensitive, by resorting to Bayes risk the-

ory or some other cost minimization strategy [115, 27]. The second attempts to

extend particular algorithms, so as to produce cost-sensitive generalizations. Of

interest to this work are classifiers obtained by thresholding a continuous func-

tion, here denoted as a predictor , and therefore similar to the Bayes decision rule

(BDR) [107, 28], which is well known to be optimal for both cost-insensitive and

cost-sensitive classification. In particular, we consider learning algorithms in the

boosting family [33, 15, 35]. These are algorithms that 1) learn a predictor by com-

bining weak classification rules (weak learners), and 2) use a sample re-weighting

mechanism to emphasize points that are difficult to classify.

In this chapter, we consider the problem of how to extend loss functions

used in boosting algorithms, based on the theory of cost sensitive loss function

design from Chapter V, so as to achieve optimal cost-sensitive decision rules. The

starting point is the observation, by Friedman et al. [35], that in the (asymptotic)

limit of infinite training data the predictor which minimizes the exponential loss

used by AdaBoost (and many other boosting algorithms) is the ratio of posterior

distributions that also appears in the BDR. Convergence to this optimal predictor

is, however, not guaranteed everywhere for finite training samples. It is, in fact,

well known that, in this case, boosting does not produce calibrated estimates of
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class posterior probabilities [63, 62, 71, 35, 44]. This is due to the emphasis of

sample reweighing on the classification boundary: while the boosted predictor

converges to the optimal predictor in a small neighborhood of this boundary, it

does not approximate the latter well away from it. This does not compromise

cost-insensitive classification performance, which only requires the two predictors

to have the same sign, but impairs cost-sensitive performance, which requires a

good approximation of the optimal predictor throughout the feature space.

Two conditions are identified as necessary for optimal cost-sensitive boost-

ing: 1) that the expected boosting loss is minimized by the optimal cost-sensitive

decision rule, and 2) that empirical loss minimization emphasizes a neighborhood of

the target cost-sensitive boundary, rather than that optimal in the cost-insensitive

sense. We propose that this is best accomplished by modifying boosting’s loss

function, so that boosting-style gradient descent can satisfy the two necessary con-

ditions above. This leads to a general framework for the cost-sensitive extension

of boosting algorithms. We introduce cost-sensitive versions of the exponential

and binomial losses, which underlie AdaBoost [33], RealBoost [35, 86], and Log-

itBoost [35]. Cost-sensitive extensions of the algorithms are derived, and shown

to satisfy the necessary conditions for cost-sensitive optimality. The new algo-

rithms are compared with various cost-sensitive extensions of boosting available

in the literature, including AdaCost [30], CSB0, CSB1, CSB2 [94] asymmetric-

AdaBoost [102] and AdaC1, AdaC2, AdaC3 [92]. All of these extensions are

heuristic, achieving cost-sensitivity by manipulation of AdaBoost’s weights and

confidence parameters. In most cases it is not clear if, or how, these manipulations

modify boosting’s loss. This is unlike the framework now proposed, which inher-

its all properties of cost-insensitive boosting, simply shifting boosting’s emphasis

from the neighborhood of the cost-insensitive boundary to the neighborhood of the

target cost-sensitive boundary.

The performance of the proposed cost-sensitive boosting algorithms is

also evaluated through experiments on synthetic problems, and datasets from the
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UCI repository [69] and computer vision face [105] and car [1] detection problems.

These experiments show that the proposed algorithms do indeed possess cost sensi-

tive optimality, and can meet target detection rates without (sub-optimal) weight

manipulation. They are also shown to outperform the previously available cost-

sensitive boosting methods, consistently achieving the best results in all experi-

ments. The chapter is organized as follows. In Section VI.B we review the main

principles of cost-sensitive classification. Section VI.C then presents a brief review

of the standard boosting algorithms and previous attempts at cost-sensitive ex-

tensions, discussing their limitations for optimal cost-sensitive classification. The

new framework for cost-sensitive boosting is introduced in Section VI.D, where

the extensions of AdaBoost, RealBoost, and LogitBoost, are also derived. Finally,

empirical evaluation is discussed in Section VI.E, and some conclusions are drawn

in Section VI.F.

VI.B Cost-sensitive classification

We start with the fundamentals of cost-sensitive classification. Most con-

cepts apply to multi-way classification, but here we only consider the problem of

binary classification, or detection.

VI.B.1 Detection

A detector, or binary classifier, is a function h : X → {−1, 1} that maps

a feature vector x = (x1, . . . , xN)T ∈ X ⊂ R
N into a class label y ∈ {−1, 1}. This

mapping is implemented as

h(x) = sgn[f(x)] (VI.1)

where f : X → R is a predictor, and sgn[x] = 1 if x ≥ 0, and sgn[x] = −1

otherwise. Feature vectors are samples from a random process X that is described

by a probability distribution PX(x) on X , and labels are samples from a random

variable Y of probability distribution PY (y), y ∈ {−1, 1}. The detector is optimal
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if it minimizes the risk R = EX,Y [L(x, y)], where L(x, y) is a loss function. We

consider losses of the form

L(x, y) =



















0, if h(x) = y

C2 if y = −1 and h(x) = 1

C1 if y = 1 and h(x) = −1

, (VI.2)

with Ci > 0. When C1 = C2 the detector is cost-insensitive, otherwise it is cost-

sensitive. The three scenarios accounted by L(x, y) are denoted as correct decisions

(h(x) = y), false positives (y = −1 and h(x) = 1), and false-negatives or misses

(y = 1 and h(x) = −1).

For many cost-sensitive problems, the costs C1 and C2 are specified from

domain knowledge. For example, in a fraud detection application, prior experience

dictates that there is an average cost of C2 dollars per false positive, while a false

negative (miss) will cost C1 > C2 dollars, on average. In this case, the costs are

simply C2 and C1. There are, nevertheless, problems in which it is more natural

to specify target detection or false-positive rates than costs. The two types of

problems can be addressed within a common optimal detection framework.

VI.B.2 Optimal detection

When C1 and C2 are specified, the optimal predictor is given by the

BDR [107, 28], i.e.

f ∗ = arg min
f

EX,Y [L(x, y)]

with

f ∗(x) = log
PY |X(1|x)C1

PY |X(−1|x)C2

. (VI.3)

An alternative specification is in terms of error rates, where the goal is to minimize

the false-positive rate of the classifier given a target detection rate. The optimal

solution can be obtained with recourse to the Neyman-Pearson Lemma [70]: for

any detection rate ξ, the optimal predictor is still (VI.3). However, for a given ξ,
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the constants (C1, C2) must be such that the specified detection rate is met, i.e.
∫

H
P (x|y = 1)dx = ξ (VI.4)

with

H =

{

x

∣

∣

∣

∣

P (y = 1|x)

P (y = −1|x)
>

C2

C1

}

.

The only difference is that, rather than specifying costs, one has to search for the

costs that satisfy (VI.4). This can be done by cross-validation. Since all that

matters is C1/C2, C2 can be set to one and the search is one-dimensional. In any

case, the optimal detector can be written as

h∗
T (x) = sgn [f ∗

0 (x)− T ] (VI.5)

where

f ∗
0 (x) = log

PY |X(1|x)

PY |X(−1|x)
, (VI.6)

is the optimal cost-insensitive predictor and

T = log
C2

C1

. (VI.7)

Hence, for any cost structure (C1, C2), cost-sensitive optimality differs from cost-

insensitive optimality only through the threshold T : all optimal cost-sensitive rules

can be obtained from f ∗
0 (x) by threshold manipulation. Furthermore, from (VI.4),

different thresholds correspond to different detection rates, and threshold manip-

ulation can produce the optimal decision rule at any detection (or false-positive)

rate. This is the motivation for the widespread use of receiver operating curves

(ROCs) [96, 39, 2], and the tuning of error rates by threshold manipulation.

VI.B.3 Practical detection

In practice, the probabilities of (VI.6) are unknown, and a learning algo-

rithm is used to estimate the predictor f̂(x) ≈ f ∗
0 (x), producing an approximately

optimal cost-sensitive rule

ĥT (x) = sgn[f̂(x)− T ]. (VI.8)
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This, however, does not guarantee good cost-sensitive performance for the partic-

ular cost-structure (C1, C2) associated with T . In fact, there are no guarantees of

the latter even when the cost-insensitive detector is optimal, i.e. when ĥ0(x) =

sgn[f ∗
0 (x)]. While the necessary and sufficient conditions for cost-insensitive opti-

mality are that

f̂(x) = f ∗
0 (x) = 0, ∀x ∈ C (VI.9)

sgn[f̂(x)] = sgn[f ∗
0 (x)], ∀x 6∈ C, (VI.10)

where

C =

{

x

∣

∣

∣

∣

log
PY |X(1|x)

PY |X(−1|x)
= 0

}

is the optimal cost-insensitive classification boundary, the optimality of (VI.8)

requires that

f̂(x) = f ∗
0 (x) = T, ∀x ∈ CT (VI.11)

sgn[f̂(x)− T ] = sgn[f ∗
0 (x)− T ], ∀x 6∈ CT (VI.12)

with

CT =

{

x

∣

∣

∣

∣

log
PY |X(1|x)

PY |X(−1|x)
= T

}

.

Hence, the necessary condition for cost-sensitive optimality of f̂ at any point x in

the boundary CT , f̂(x) = f ∗
0 (x), is much tighter than the sufficient condition for

cost-insensitive optimality of f̂ at that point, sgn[f̂(x)] = sgn[f ∗
0 (x)].

It follows that threshold manipulation can only produce optimal cost-

sensitive detectors for all values of T if f̂(x) = f ∗
0 (x),∀x ∈ X . Since this is a much

more restrictive constraint than the necessary and sufficient conditions, (VI.9) and

(VI.10), of cost-insensitive optimality there is, in general, no reason for a cost-

insensitive learning algorithm to enforce it. This is, in fact, Vapnik’s argument

against generative solutions to the classification problem: that there is no point in

attempting to learn the optimal predictor everywhere, when it is sufficient to do

so on the classification boundary [98].
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VI.C Boosting

This chapter addresses the cost-sensitive extension of boosting algorithms.

Such algorithms learn a predictor f(x) by linear combination of simple decision

rules, or weak learners [84], Gm(x)

f(x) =
M
∑

m=1

Gm(x). (VI.13)

Optimality is defined with respect to some risk, such as the expected exponential

loss

EX,Y [exp(−yf(x))], (VI.14)

or the expected negative binomial log-likelihood

−EX,Y [y′ log(p(x)) + (1− y′) log(1− p(x))] (VI.15)

where y′ = (y + 1)/2 ∈ {0, 1} is a re-parametrization of y and

p(x) =
ef(x)

ef(x) + e−f(x)
. (VI.16)

Learning is based on a finite sample D = {(xi, yi)}ni=1, empirical loss estimates, and

iterative selection of weak learners. At iteration m, a weight w
(m)
i is assigned to

example (xi, yi), reweighing D to amplify the importance of points that are poorly

classified with the current predictor. We next review some popular algorithms in

this family, whose cost-sensitive extensions will be later introduced. All of these

can be interpreted as gradient descent on a functional space of linear combinations

of weak learners, with respect to one of the losses above[60, 36, 117].

VI.C.1 AdaBoost

AdaBoost [33, 34] learns combinations of scaled binary classifiers

GAda
m (x) = αmgm(x), (VI.17)

where {αm}Mm=1 is a weight sequence and {gm(x)}Mm=1 a sequence of binary rules,

gm(x) : X → {−1, 1}, usually implemented with a decision stump gm(x) =
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sgn[φm(x)− tm], where φm(x) is a feature response (projection of x along a basis

function φm) and tm a threshold. The ensemble predictor of (VI.13) is learned

by gradient descent with respect to the exponential loss. The direction of largest

descent at the mth iteration is [41, 60]

gm(x) = arg min
g

(err(m)) (VI.18)

where

err(m) =
n
∑

i=1

w
(m)
i [1− I(yi = gm(xi))], (VI.19)

is the total error of gm(x) and I(·) the indicator function

I(y = x) =







1 y = x

0 y 6= x.
(VI.20)

The optimal step size in the descent direction has closed-form

αm =
1

2
log

(

1− err(m)

err(m)

)

, (VI.21)

and the weights are updated according to

w
(m+1)
i = w

(m)
i e−yiG

Ada
m (xi). (VI.22)

VI.C.2 RealBoost

RealBoost [35, 86] is an extension of AdaBoost that produces better es-

timates of f ∗
0 (x) by using real-valued weak learners in (VI.13) (in contrast with

binary-valued weak learners.) In this case, the direction of greatest descent of the

exponential loss is a (re-weighted) log-odds ratio

Greal
m (x) =

1

2
log

P
(w)
Y |X(1|φm(x))

P
(w)
Y |X(−1|φm(x))

, (VI.23)

where, as before, φm(x) is a feature response to x, and the superscript w indicates

that the probability distribution is that of the re-weighted sample. Weights are

updated according to

w
(m+1)
i = w

(m)
i e−yiG

real
m (xi). (VI.24)
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VI.C.3 LogitBoost

LogitBoost is motivated by the following observation, initially made by

Friedman et al. [35].

Lemma 44. (Statistical interpretation of boosting.)

The loss E[exp(−yf(x))] is minimized by the symmetric logistic transform

of PY |X(1|x),

f ∗
0 (x) =

1

2
log

PY |X(1|x)

PY |X(−1|x)
. (VI.25)

Proof. See [35].

This implies that both Ada and RealBoost are stage-wise procedures for

fitting an additive logistic regression model. Friedman et al. argued that this is

more naturally accomplished by stage-wise minimization of (VI.15). At the mth

boosting iteration, the optimal step is given by a weighted least squares regression

for the weak learner Glogit
m (x) that best fits a set of working responses

z
(m)
i =

y′
i − p(m)(xi)

p(m)(xi)(1− p(m)(xi))
,

where p(m)(x) is the probability of (VI.16) based on the predictor of (VI.13) after

m− 1 iterations. The weights are

w
(m)
i = p(m)(xi)(1− p(m)(xi)). (VI.26)

VI.C.4 Limitations for cost-sensitive learning

We have already seen that the optimal cost-insensitive detector does not

require the optimal predictor of (VI.25): it suffices that (VI.13) converges to any

function satisfying (VI.9) and (VI.10). While Lemma 44 guarantees that the min-

imization of the exponential or binomial losses are sufficient to obtain (VI.25),

these guarantees are asymptotic, and do not necessarily hold for finite samples.

In fact, the large-margin classification theory suggests that good out-of-sample
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generalization requires a greater accuracy of the approximation inside a neighbor-

hood of the optimal cost-insensitive boundary C than outside of it. For boosting,

the emphasis on the boundary is accomplished through the example re-weighting

of (VI.22), (VI.24), or (VI.26). This, however, usually implies that (VI.13) does

not converge to the optimal predictor everywhere, and is not necessarily a good

predictor for cost-sensitive detection.

To obtain some intuition, we consider a detection problem with a bounded

optimal predictor f ∗
0 (x). Assume a finite training sample D and that, as is common

in the large-margin literature, sample points from the two classes are separable,

i.e. the detector sgn[f ∗
0 (x)] has zero classification error on D (Note that the clas-

sification error does not have to be zero in general, only for the particular sample

D.) Define the neighborhood N (C) = {x; |f ∗
0 (x)| < ǫ}, where ǫ > 0 is such that

N (C) contains at least one positive and one negative example. Let f̂ (m)(x) be the

predictor learned by m iterations of boosting, and assume that

f̂ (m)(x) =



















f ∗
0 (x), ∀x ∈ N (C)

+∞, if f ∗
0 (x) > 0 and x 6∈ N (C)

−∞, if f ∗
0 (x) < 0 and x 6∈ N (C).

(VI.27)

For both Ada and RealBoost, a simple recursion shows that

w
(m)
i

w
(0)
i

= e−yi
∑m

k=1 Gk(xi) = e−yif̂
(m)(xi), (VI.28)

where we have also used (VI.13). Let the initial weight distribution be uniform,

w
(0)
i = 1/n, as is customary in boosting practice. Since yif̂

(m)(xi) ≥ 0,∀i ∈ D, it

follows that

nw
(m)
i = e−|f̂ (m)(xi)|. (VI.29)

Similarly, for LogitBoost,

w
(m)
i (xi) =

(

ef̂ (m)(xi) + e−f̂ (m)(xi)
)−2

(VI.30)

≈ e−2sgn[f̂ (m)(xi)]f̂
(m)(xi) = e−2|f̂ (m)(xi)|.
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Figure VI.1 Example of a detection problem where boosting produces the optimal

cost-insensitive detector but threshold manipulation does not lead to optimal cost-

sensitive detectors. The figure presents level-sets of both the optimal predictor

f ∗
0 (x) (solid line) and the boosted predictor f̂ (m)(x) (dashed line). While boosting

emphasizes the approximation of f ∗
0 (x) inN (C), optimal cost-sensitive rules require

a good approximation in other regions, e.g. N (CT ).

In either case, nw
(m)
i or w

(m)
i can be seen as a measure of the importance of

training point i (relative to the remainder of D). Inside the neighborhood N (C)
this importance is one for points along the cost-insensitive boundary C (where

f̂ (m)(x) = 0), and decreases exponentially with the distance to it. Outside N (C)
all points have zero importance (because |f̂ (m)(x)| = ∞). Hence, despite the

facts that 1) the predictor is already perfect in N (C) but 2) approximates f ∗
0 (x)

very poorly outside this neighborhood, all points outside N (C) are disregarded by

subsequent boosting iterations. This implies that the predictor will not get any

better in the sense of cost sensitive classification.

The example above turns out not to be a mathematical curiosity. Exten-

sive empirical studies show that, when the span of the space of weak learners is

rich enough to separate the training set into the two classes, and boosting is run

for enough iterations, all boosting algorithms produce a distribution of posterior
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probabilities PY |X(y|x) highly concentrated around 0 or 1, independently of the

true distribution [63, 62]. Note that this does not compromise cost-insensitive opti-

mality: f̂ (m)(xi) simply grows to∞ for positive, and to −∞ for negative examples.

But the boosted predictor has very poor cost-sensitive performance. This problem

cannot be addressed by early stopping. In the iterations before class separation,

boosting assigns exponentially decaying weight to points correctly classified by

previous iterations, in the cost-insensitive sense. Hence, points far from C are ex-

ponentially discounted as boosting progresses, creating a soft neighborhood N (C)
of nearby points that dominate the optimization. In result, boosting does not

produce accurate posterior estimates, even in this regime [71, 63, 62]. This is, in

fact, the reason for the popularity of post-processing boosting’s predictions with

probability calibration techniques, such as the method of Platt [75], or isotonic

regression [116], when posterior accuracy is important [71].

The lack of everywhere convergence to the optimal predictor is illustrated

in Fig. Figure VI.1, which depicts f ∗
0 (x) and f̂ (m)(x). Because f ∗

0 (x) increases

(decreases) monotonically to the left (right) of C, any f̂ (m)(x) with 1) C as a zero-

level set, and 2) the same monotonicity, satisfies (VI.9)-(VI.10). The emphasis on

N (C) guarantees that the zero-level set of f̂ (m)(x) closely approximates C, assuring

good cost-insensitive generalization. But the level sets of f̂ (m)(x) and f ∗
0 (x) are not

identical beyond N (C). In particular, the set f̂ (m)(x) = T can differ significantly

from f ∗
0 (x) = T , the optimal cost-sensitive boundary CT for the cost-structure of

threshold T in (VI.5). Hence, threshold manipulation on f̂ (m)(x) does not produce

the optimal cost-sensitive rule of (VI.5).

VI.C.5 Prior work on cost-sensitive boosting

This limitation is well known in the boosting literature, and motivated

various cost-sensitive algorithms [30, 94, 102, 92]. Since, for cost-sensitive learning,

the main problem is boosting’s reweighing emphasis on N (C), instead of N (CT ),

it has long been noted that good cost-sensitive performance requires a different
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reweighing mechanism. This also complies with the intuition that cost-sensitive

detection should weigh differently examples from different classes. A naive im-

plementation of this intuition would be to modify the initial boosting weights,

so as to represent the cost asymmetry. However, because boosting re-updates

all weights at each iteration, it quickly destroys the initial asymmetry, and the

predictor obtained after convergence is usually not different from that produced

with symmetric initial conditions. A second natural heuristic is to modify the

weight update equation. For example, the updated weight could be a mixture

of (VI.22), (VI.24), or (VI.26), and the initial cost-sensitive weights. We refer

to such heuristics as “weight manipulation”. Previously proposed cost-sensitive

boosting algorithms, such as AdaCost [30], CSB0, CSB1, CSB2 [94], Asymmetric-

AdaBoost [102], AdaC1, AdaC2, or AdaC3 [92], fall in this class. For example,

CSB2 [94] modifies the weight update rule of AdaBoost to

w
(m+1)
i = Ci · w(m)

i e−yiG
Ada
m (xi), (VI.31)

relying on (VI.21) for the computation of αm. While various justifications are

available for the different heuristic manipulations of the boosting equations, these

manipulations provide no guarantees of asymptotic convergence to a good cost-

sensitive decision rule. Furthermore, none of the cost-sensitive extensions can be

easily applied to algorithms other than AdaBoost. We next introduce a framework

for cost-sensitive boosting that addresses these two limitations.

VI.D Cost-sensitive boosting

The new framework is inspired by two observations. First, the differ-

ent boosting algorithms are gradient descent methods [60, 36, 117] for empirical

minimization of losses that are asymptotically minimized by the cost-insensitive

predictor of (VI.25). Second, the main limitation, for cost-sensitive learning, is

the emphasis of the empirical loss minimization on a neighborhood N (C) of the

cost-insensitive boundary, as shown in Figure VI.1. These two properties are in-
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terconnected. While the limitation is due to the weight-update mechanism, simply

modifying this mechanism (as discussed in the previous section) does not guar-

antee acceptable cost-sensitive performance. Instead, boosting involves a balance

between weight updates and descent steps which must be components of the min-

imization of the common loss. For cost-sensitive optimality, this balance requires

that the loss function satisfies two conditions, which we denote as the necessary

conditions for cost-sensitive optimality.

1. The expected loss is minimized by the optimal cost-sensitive predictor f ∗(x)

of (VI.3).

2. Empirical loss minimization leads to a weight-updating mechanism that em-

phasizes a neighborhood of N (CT ).

This suggests an alternative strategy for cost-sensitive boosting: to modify the

loss functions so that these two conditions are met . In what follows, we show

how this can be accomplished for Ada, Real and LogitBoost. The framework

could be used to derive cost-sensitive extensions of other boosting algorithms, e.g.

GentleBoost [35] or AnyBoost [60]. We limit our attention to the ones referred for

reasons of brevity, and their popularity.

VI.D.1 Cost-sensitive losses

We start by noting that the optimal cost-sensitive detector of (VI.5) can

be re-written as h∗
T = sgn[f ∗(x)] with f ∗(x) as in (VI.3). Since the zero level-set of

this predictor is the cost-sensitive boundary CT , boosting-style gradient descent on

loss functions asymptotically minimized by f ∗(x) should satisfy the two necessary

conditions for cost-sensitive optimality. The first is indeed met by the following

extensions of the exponential and binomial losses.

Lemma 45. The expected losses

EX,Y

[

I(y = 1)e−y.C1f(x) + I(y = −1)e−y.C2f(x)
]

, (VI.32)

−EX,Y [y′ log(pc(x)) + (1− y′) log(1− pc(x))] (VI.33)
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where I(·) is the indicator function of (VI.20) and

pc(x) =
eγf(x)+η

eγf(x)+η + e−γf(x)−η
, (VI.34)

with γ =
C1 + C2

2
, η =

1

2
log

C2

C1

,

are minimized by the asymmetric logistic transform of PY |X(1|x),

f(x) =
1

C1 + C2

log
P (y = 1|x)C1

P (y = y′′|x)C2

, (VI.35)

where y′′ = −1 for (VI.32) and y′′ = 0 for (VI.33).

Proof. See appendix VI.H.1.

Note that the cost sensitive extension of the exponential loss was also

independently derived in Chapter V.

We next derive cost-sensitive boosting extensions, by gradient descent on

empirical loss estimates, and later show that they shift the emphasis of boosting

weights from N (C) to N (CT ).

VI.D.2 Cost-sensitive AdaBoost

Theorem 46. (Cost-sensitive AdaBoost) Consider the minimization of the empiri-

cal estimate of the expected loss of (VI.32), based on a training sample {(xi, yi)}ni=1,

by gradient descent on the space, S, of functions of the form of (VI.13) and (VI.17),

and define two sets

I+ = {i|yi = 1} I− = {i|yi = −1}. (VI.36)

The weak learner selected at iteration m consists of an optimal step αm along the

direction gm of largest descent of the expected loss, and is given by

(αm, gm) = arg min
α,g

∑

i∈I+

w
(m)
i exp(−C1αg(xi)) (VI.37)

+
∑

i∈I−

w
(m)
i exp(C2αg(xi))
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with

w
(m+1)
i =







w
(m)
i e−C1αmgm(xi), i ∈ I+

w
(m)
i eC2αmgm(xi), i ∈ I−.

(VI.38)

The optimal step α(g) along a direction g is the solution of

2C1 · b · cosh(C1α) + 2C2 · d · cosh(C2α) = (VI.39)

C1 · T+ · e−C1α + C2 · T− · e−C2α

with

T+ =
∑

i∈I+

w
(m)
i T− =

∑

i∈I−

w
(m)
i (VI.40)

b =
∑

i∈I+

w
(m)
i [1− I(yi = g(xi))]

d =
∑

i∈I−

w
(m)
i [1− I(yi = g(xi))] (VI.41)

and the descent direction is given by

gm = arg min
g

[

(eC1α(g) − e−C1α(g)) · b + e−C1α(g)T+ (VI.42)

+(eC2α(g) − e−C2α(g)) · d + e−C2α(g)T−
]

Proof. See appendix VI.H.2.

For AdaBoost, possible descent directions are defined by a set of binary

classifiers {gk(x)}Kk=1. The gradient descent iteration cycles through these, for

each solving (VI.39). This can be done efficiently with standard scalar search

procedures. In our experiments, the optimal α was found in an average of 6

iterations of bisection search. Given α, the loss associated with the binary classifier

is computed and the best classifier selected by (VI.42). A summary of the cost-

sensitive boosting algorithm is presented in Algorithm 4. It is worth mentioning

that it is fully compatible with AdaBoost, in the sense that it reduces to the latter

when C1 = C2 = 1.
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Algorithm 4 Cost-sensitive AdaBoost
Input: Training set D = {(x1, y1), . . . , (xn, yn)}, where y ∈ {1,−1} is the class label of

example x, costs C1, C2, set of binary classifiers {gk(x)}Kk=1, and number M of weak learners

in the final decision rule.

Initialization: Select uniformly distributed weights for each class

wi =
1

2|I+|
,∀i ∈ I+, wi =

1

2|I−|
,∀i ∈ I−.

for m = {1, . . . ,M} do

for k = {1, . . . ,K} do

Compute (VI.40)-(VI.41) with g(x) = gk(x) and solve (VI.39) with respect to α.

Use (VI.42) to compute the loss of the weak learner (gk(x);αk) .

end for

select the weak learner (gm(x), αm) of smallest loss.

update weights wi according to (VI.38).

end for

Output: decision rule h(x) = sgn[
∑M

m=1 αmgm(x)].

VI.D.3 Cost-sensitive RealBoost

Theorem 47. (Cost-sensitive RealBoost) Consider the minimization of the empir-

ical estimate of the expected loss of (VI.32), based on a training sample {(xi, yi)}ni=1,

by gradient descent on the space, Sr, of predictors of the form of (VI.13) where the

weak learners Gm(x) are real functions. Given features {φ1(x), . . . , φK(x)}, the

direction of largest descent at iteration m has the form

Greal
m (x) = Gφk∗

(x) (VI.43)

where the optimal feature is determined by

k∗ = arg min
k

∑

i∈I+

w
(m)
i exp(−C1Gφk

(xi)) +

∑

i∈I−

w
(m)
i exp(C2Gφk

(xi)) (VI.44)

with weights given by

w
(m+1)
i =







w
(m)
i e−C1Greal

m (xi), i ∈ I+
w

(m)
i eC2Greal

m (xi), i ∈ I−,
(VI.45)
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Algorithm 5 Cost-sensitive RealBoost
Input: Training set D = {(x1, y1), . . . , (xn, yn)}, where y ∈ {1,−1} is the class label of

example x, costs C1, C2, and number M of weak learners in the final decision rule.

Initialization: Select uniformly distributed weights for each class

wi =
1

2|I+|
,∀i ∈ I+, wi =

1

2|I−|
,∀i ∈ I−.

for m = {1, . . . ,M} do

for k = {1, . . . ,K} do

compute the gradient step Gφk
(x) with (VI.46).

end for

select the optimal direction according to (VI.44) and set the weak learner Greal
m (x) according

to (VI.43).

update weights wi according to (VI.45).

end for

Output: decision rule h(x) = sgn[
∑M

m=1 Greal
m (x)].

and where

Gφ(x) =

{

1

C1 + C2

log
P

(w)
Y |X(1|φ(x))C1

P
(w)
Y |X(−1|φ(x))C2

}

. (VI.46)

P
(w)
Y |X(y|φ(x)), y ∈ {1,−1} are estimates of the posterior probabilities for the two

classes, after the application of the feature transformation φ(x) to a sample re-

weighted according to w
(m)
i .

Proof. See appendix VI.H.3.

The posterior probabilities P
(w)
Y |X(y|φm(x)), y ∈ {1,−1} of (VI.46) can be

estimated with standard techniques [28]. For example, using weighted histograms

of feature responses if the φk(x) are scalar features. Histogram regularization

should be used to avoid empty histogram bins. A summary of cost-sensitive Re-

alBoost is presented in Algorithm 5. This is fully compatible with RealBoost,

reducing to it when C1 = C2 = 1, and has identical computational complexity.
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VI.D.4 Cost-sensitive LogitBoost

Finally, we consider LogitBoost.

Theorem 48. (Cost-sensitive LogitBoost) Consider the minimization, by New-

ton’s method, of the empirical estimate of the expected binomial loss of (VI.33),

based on a training sample {(xi, yi)}ni=1, on the space Sr of predictors of the form

of (VI.13) with real-valued weak learners Gm(x). Given a dictionary of features

{φ1(x), . . . , φK(x)}, and a predictor f̂ (m)(x), the Newton step at iteration m has

the form

Glogit
m (x) =

1

2γ
Gφk∗

(x) (VI.47)

where Gφ(x) = aφφ(x) + bφ is the result of the weighted regression

(aφ, bφ) = arg min
aφ,bφ

∑

i

w
(m)
i (zi − aφφ(xi)− bφ)

2 (VI.48)

with

zi =
y′

i − p
(m)
c (xi)

p
(m)
c (xi)(1− p

(m)
c (xi))

(VI.49)

w
(m)
i = p(m)(xi)(1− p(m)(xi)), (VI.50)

where p
(m)
c (x) is the link function of (VI.34), and p(m)(x) that of (VI.16), with

f(x) = f̂ (m)(x). The optimal feature is determined by

k∗ = arg min
k

∑

i

w
(m)
i (zi − aφk

φk(xi)− bφk
)2. (VI.51)

Proof. See appendix VI.H.4.

A summary of cost-sensitive LogitBoost is presented in Algorithm 6. The

algorithm is fully compatible with LogitBoost, in the sense that it reduces to

the latter when C1 = C2 = 1 and has identical computational complexity. It

is instructive to compare it with Platt’s method for posterior probability calibra-

tion [75, 71, 50]. This procedure attempts to map the prediction f(x) ∈ [−∞, +∞]

to a posterior probability p(x) ∈ [0, 1], using the link function of (VI.34). The γ
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Algorithm 6 Cost-sensitive LogitBoost
Input: Training set D = {(x1, y

′

1), . . . , (xn, y′

n)}, where y′ ∈ {0, 1} is the class label of example

x, costs C1, C2, γ = C1+C2

2 , η = 1
2 log C2

C1

, I+ the set of examples with label 1, I− the set of

examples with label 0, and number M of weak learners in the final decision rule.

Initialization: Set uniformly distributed probabilities p
(1)
c (xi) = p(1)(xi) = 1

2 ∀xi and

f̂ (1)(x) = 0.

for m = {1, . . . ,M} do

compute the working responses z
(m)
i as in (VI.49) and weights w

(m)
i as in (VI.50).

for k = {1, . . . ,K} do

compute the solution to the least squares problem of (VI.48),

aφk
=
〈1〉w · 〈φk(xi)zi〉w − 〈φk(xi)〉w · 〈zi〉w
〈1〉w · 〈φ2

k(xi)〉w − 〈φk(xi)〉2w
(VI.52)

bφk
=

〈

φk(xi)
2
〉

w
· 〈zi〉w − 〈φk(xi)〉w · 〈φk(xi)zi〉w

〈1〉w · 〈φ2
k(xi)〉w − 〈φk(xi)〉2w

(VI.53)

where we have defined

〈q(xi)〉w
.
=
∑

i

w
(m)
i q(xi).

end for

select the optimal direction according to (VI.51) and set the weak learner Glogit
m (x) according

to (VI.47).

set f̂ (m+1)(x) = f̂ (m)(x) + Glogit
m (x).

end for

Output: decision rule h(x) = sgn[
∑M

m=1 Glogit
m (x)].

and η parameters are determined by gradient descent with respect to the binomial

loss of (VI.33), also used in cost-sensitive LogitBoost. The difference is that, in

Platt’s method, cost-insensitive boosting is first used to learn the predictor f(x)

and maximum likelihood is then used to determine the parameters γ and η that

best fit a cross-validation data set. On the other hand, cost-sensitive LogitBoost

uses the calibrated link function throughout the boosting iterations. Note that,

besides requiring an additional validation set, Platt’s method does not solve the

problem of Figure VI.1, since the emphasis of boosting remains on N (C), not on

N (CT ). We next show that all proposed cost-sensitive boosting algorithms solve

this problem.
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VI.D.5 Cost-sensitive weights

We have mentioned above that cost-sensitive boosting algorithms should

• converge asymptotically to the optimal predictor of (VI.3),

• emphasize a neighborhood of the cost-sensitive boundaryN (CT ), when learn-

ing from finite samples.

The first condition is guaranteed by the losses of (VI.32) and (VI.33). To investi-

gate the second we consider the weight mechanisms of the three algorithms. Let

f̂ (m) be the boosted predictor after m iterations. For both cost-sensitive Ada and

RealBoost, a simple recursion shows that, for correctly classified points,

w
(m)
i

w
(0)
i

= e−yiQif̂
(m)(xi) = e−Qi|f̂ (m)(xi)|,

where Qi = C1 if i ∈ I+ and Qi = C2 otherwise. For LogitBoost, the weight

w
(m)
i is a symmetric function of p(m)(xi), with maximum at p(m)(xi) = 1/2 or,

from (VI.16), at f̂ (m)(xi) = 0. As in the cost-insensitive case,

w
(m)
i (x) =

(

ef̂ (m)(xi) + e−f̂ (m)(xi)
)−2

≈ e−2|f̂ (m)(xi)|.

These equations are qualitatively identical to (VI.29) and (VI.30). The only differ-

ence is that, as f̂ (m)(x) converges to (VI.35), its zero-level set is the cost-sensitive

boundary CT . Hence, points along CT have unitary importance, while the impor-

tance of the remaining points decreases exponentially with their distance to CT .

This implies that all cost-sensitive boosting algorithms shift the boosting emphasis

from N (C) to a soft neighborhood of the cost-sensitive boundary N (CT ).

VI.E Experimental evaluation

To evaluate the proposed algorithms we started with a synthetic prob-

lem, of known BDR, which allows explicit comparison to the optimal cost-sensitive

detector. Comparisons against previous methods were then performed with data
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from the UCI repository and a large face detection dataset. Finally, we compared

cost-sensitive boosting and a number of state-of-the-art solutions to the computer

vision problem of car detection. Unless otherwise noted, all boosting algorithms

used decision stumps as weak learners, and all parameters were selected by cross-

validation. The data was divided into train and test sets, and the training set split

into five folds, four of which were used for training and one for validation. The

latter served to tune parameters (cost parameters and classifier threshold) so as

to minimize a classification cost. For car detection, this was the equal error rate

(EER), the quantity usually reported for the dataset adopted (UIUC). Elsewhere,

it was the number of false positives at a given detection rate. In this case, cross

validation was repeated for detection rates between 80% and 95%, with increments

of 2.5%. Cross validation was applied to all parameters of all methods. For ex-

ample, support vector machines (SVMs) required validation of kernel bandwidth,

margin/outliers trade-off parameter, and threshold.

VI.E.1 Synthetic datasets

We start with a synthetic binary scalar problem, involving Gaussian

classes of equal variance σ2 = 1 and means µ− = −1 (y = −1) and µ+ = 1

(y = 1). Ten thousand examples were sampled per class, simulating the scenario

where the class probabilities are uniform.

To test the accuracy of the cost-sensitive detectors we relied on the fol-

lowing observations. First, given a cost structure (C1, C2), a necessary condition

for the optimality of the boosted detector is that the asymmetric logistic transform

of (VI.35) holds along the cost-sensitive boundary, i.e. x∗ = f−1(0) where f(x) is

the optimal predictor of (VI.35) and x∗ the zero-crossing of the boosted predictor.

Second, from (VI.35), this is equivalent to

PY |X(1|x∗) =
C2

C1 + C2

. (VI.54)

It follows that, given C1, C2 and x∗, it is possible to infer the true class poste-

rior probabilities at x∗. This is equally valid for multivariate problems, where x∗
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Figure VI.2 a) True posterior class probability PY |X(y = 1|x), as a function of x,

and estimates by cost-sensitive Ada, Logit and RealBoost. b) Comparison of the

plots (x∗,−T
2
) and (x∗, x∗).

becomes a level set. Hence, if the boosting algorithm produces truly optimal cost-

sensitive detectors, the plots of C2

C1+C2
and PY |X(1|x∗), as functions of x∗, should

be identical. For the Gaussian problem considered,

PY |X(1|x) =
1

1 + e−2x
, (VI.55)

and (VI.54) implies that x∗ = −T/2, with T as in (VI.7). It is thus possible to

evaluate the accuracy of the cost-sensitive detectors, for the entire range of (C1, C2),

by either measuring the similarity between the plots (x∗, C2

C1+C2
) and (x∗, 1

1+e−2x∗ )

or the plots (x∗,−T
2
) and (x∗, x∗). These are shown on Figure VI.2 for detectors

learned with five iterations of cost-sensitive Ada, Real, and LogitBoost. In all

cases C2 = 1 and C1 was varied over a range of values. Both Real and LogitBoost

produce near optimal cost-sensitive detectors, but the restriction of the predictor

to a combination of binary functions creates difficulties for AdaBoost.

VI.E.2 Real datasets

To evaluate performance on real data, various algorithms were compared

on datasets from the UCI repository [69], and the face detection problem [105].
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Table VI.1 Average number of errors for each classifier and UCI dataset, across

five detection rates. The lowest average error achieved on each dataset is shown

in boldface. Rank indicates the average ranking of the classifier across datasets,

and #wins is the number of datasets on which a cost sensitive boosting algorithm

achieved lower error than all previous boosting methods.

pima liver wdbc sonar wpbc Wisc echo heart tic survival Rank #w
CS-Ada 205.6 143 26.4 52.2 128.4 37.2 44 61.4 433.8 172.8 4.84 6
CS-Log 248.6 146.4 25.8 67 85.6 35 40 74.6 463.2 178.6 5.35 5
CS-Real 256.2 144 32.4 56.8 101.2 35.4 54 69.6 110.4 96.6 5.35 4

CSB0 241.2 161 43.8 66.6 140.2 40.8 46 89 329.2 101.8 8.2
CSB1 384 175.8 30.8 65.8 121.8 89 65 100.8 415 188.6 10.95
CSB2 223 143.5 31 42.6 118.8 45.8 61 88.8 317.4 145.2 6.45
AdaC2 249.4 162.2 36 56 111.4 42.4 53 64.2 180 131.2 6.65
AdaC3 250.4 169 29.6 48.2 113.8 39.6 57 102.6 258.6 205.2 8.4

ADaCost 365 170 42.2 88 111 43.4 65 110 366 189 11.35

SVM-L 415.2 153.2 32.2 74 111.4 33 43 66.8 550.2 181.4 7.75
SVM-G 390 161.2 31 35.8 122 30.6 44 153.6 625 153.6 8.1

Ada 244.2 168 28.4 57.4 132.8 37.6 48 73.8 465.6 174.6 8.1
Real 263.8 154.6 32.4 67.2 104.8 35 47 67.6 119 152 6.4
Logit 263 154 26 68 120.6 33.2 41 68.2 545.8 184.6 7.1

UCI

Ten data sets were selected - Pima-diabetes, breast cancer diagnostic,

breast cancer prognostic, original Wisconsin breast cancer, liver disorder, sonar,

echo-cardiogram, Cleveland heart disease, tic-tac-toe, and Haberman’s survival. In

all cases, data points with missing values were ignored. The multi-class Cleveland

heart disease data was converted to the problem of detecting presence (classes

1, 2, 3, 4) vs. absence (value 0) of disease. We compared the performance of

the proposed cost-sensitive boosting algorithms (CS-Ada, CS-Real, and CS-Log),

their previously available counterparts (CSB0, CSB1, CSB2, AdaC2, AdaC3, and

AdaCost), and the combination of standard AdaBoost, RealBoost, or LogitBoost

with Platt calibration [75]. Note that, because Asymmetric-AdaBoost [102] and

CSB2 [94] are identical, we do not report results for the former. For completeness,

we have also tested SVMs with linear and Gaussian kernels, and Platt calibration.

In all cases, one point was first removed from the dataset and reserved for testing.
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The classifier was trained on the remaining data so as to meet a target detection

rate (all parameters cross-validated), and used to classify this test point. The

process was iterated, each point taking a turn as test set, and the total number of

classification errors recorded.

Table VI.1 presents the average number of errors for each classifier and

dataset, across the five detection rates considered. To simplify the comparison,

the table includes two overall statistics. The first is the number of datasets in

which each cost-sensitive boosting algorithm achieved lower error than all prior

cost-sensitive boosting algorithms. This is referred to as the number of wins . The

second is the classifier ranking of [24]: the algorithms were first ranked on each

dataset (rank one for lowest error) and the average rank of each classifier, across

datasets, is reported. The three cost-sensitive boosting algorithms achieve the

three smallest average ranks. From this point of view, only CSB2, AdaC2, and

RealBoost with Platt calibration can be seen as competitive with CS-Ada, CS-

Real, and CS-Logit. But the worse of the latter has an average rank 15% smaller

than the best of the former.

The average ranks, across datasets, for the five detection rates considered,

are presented in Table VI.2. While the overall conclusions are the same, note that

AdaBoost, RealBoost, and LogitBoost tend to rank lower (relative to their cost-

sensitive counterparts) as the detection rate increases. This follows from their cost-

insensitivity (despite Platt calibration and threshold tuning). On the other hand,

the ranks of CS-AdaBoost, CS-LogitBoost and CS-RealBoost improve relatively.

For example, while the difference in rank between AdaBoost and CS-AdaBoost is

7.25− 6.1 = 1.15 at 85% detection rate, it grows to 9.5− 5.2 = 4.3 at 95%. This

confirms our previous claim that threshold manipulation produces inferior results

as the distance between cost-sensitive and insensitive boundaries increases.

To investigate the impact of the choice of weak learners in these conclu-

sions, we performed the same experiments with decision trees [14] as weak learners.

Following [35], we used four terminal node trees. To enable a comparison to the
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Table VI.2 Average classifier rank, across ten UCI datasets, for five detection

rates.

Det% CSAda Ada CSLog Log CSReal Real CSB0 CSB1 CSB2 AdaC2 AdaC3 SVML SVMG
85% 6.1 7.25 5.6 6.65 5.3 5.75 8.85 10.35 6.7 7.8 7.85 8.15 7.45

87.5% 5.2 7.2 5.9 6.45 5.5 6.25 8.5 10.7 6.25 6.9 8.7 8.05 7.75
90% 5.45 7.55 5.65 7.5 4.3 6.6 7.9 12.1 6.9 6.6 8.55 7.8 7.7

92.5% 5.2 7.9 5.8 7.55 4.95 6.6 8.0 11.6 6.25 6.15 8.3 7.8 8.05
95% 5.2 9.5 5.25 7.85 5.05 5.2 7.95 10.65 7.25 6.0 8.15 8.55 7.9

results achieved with decision stump methods, we limited the total number of fea-

tures to 50. Since each tree contains three features, this implies 50/3 ≈ 17 weak

learners per classifier. The implementations of CS-AdaBoost and CS-RealBoost

relied on (VI.42) and (VI.44), respectively, as tree splitting criteria. All other as-

pects were identical to [35]. CS-Logit was not considered since it would require

the implementation of regression trees, instead of classification trees that we have

used. Table VI.3 and Table VI.4 compare the results obtained for the various cost

sensitive boosting algorithms, datasets, and detection rates. For completeness, we

also implemented a detector based on Random Forests [16] of 17 four terminal

node trees and Platt calibration, which did not prove competitive with the pro-

posed algorithms. There is no significant qualitative difference between the results

of Table VI.1-Table VI.2, and Table VI.3-Table VI.4, suggesting that the pro-

posed cost-sensitive boosting algorithms have superior performance independently

of the weak learner adopted. In summary, with either decision stumps or trees,

the proposed algorithms outperform the state-of-the-art in cost-sensitive boosting.

Face detection

UCI datasets are sometimes criticized as too small, or low-dimensional,

to allow meaningful conclusions. We repeated the comparisons above on the real,

large-scale, large-dimensional problem of face detection. This problem is also be-

coming an important area of application for cost-sensitive boosting, given the

widespread use of boosting for the design of detector cascades [105]. We empha-
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Table VI.3 Average number of errors for each classifier and UCI dataset, across

five detection rates using decision trees. The lowest average error achieved on each

dataset is shown in boldface. Rank indicates the average ranking of the classifier

across datasets, and #wins is the number of datasets on which a cost sensitive

boosting algorithm achieved lower error than all previous boosting methods.

pima liver wdbc sonar wpbc Wisc echo heart tic survival Rank #w
CS-Ada 230.6 129.4 42.2 63 95 37 46 49.4 343.8 129.6 2.2 6
CS-Real 252.2 148 47.2 62.6 95.4 33.2 51 80 297.8 145 3.2 3

CSB0 252 178 42.6 91.6 123.6 46.6 57 74.4 238.2 109 4.4
CSB1 313.4 176 50.4 88.6 112.8 40 62 138.4 490.2 161.6 6.4
CSB2 299.8 162.8 57.8 83 117 32 50 103 342.2 131.2 4.7
AdaC2 278.4 151.4 49.4 81 114.8 37.4 64 85.8 185.2 111.8 4.2
AdaC3 272 163 43 82.6 118 26.4 47 82.4 169.8 121.8 3.4
RForest 364.2 189 69.6 102.8 124.4 37.8 60 117.6 546 186 7.5

size, however, that the goal here is not to compete with algorithms for cascade de-

sign, but simply compare cost-sensitive boosting algorithms. While cost-sensitive

boosting can be used to design cascade nodes, the overall cascade design requires

the solution of additional problems, such as determining the optimal cascade ar-

chitecture (number of nodes and computation per node), whose solution is beyond

the scope of this work. Furthermore, cascade (or face detector) design frequently

involves steps, such as bootstrapping (automated collection of negative examples)

or manual tuning of classifier parameters, that make objective comparisons of al-

gorithms quite difficult. Our goal is simply to exploit the high-dimensionality of

the face detection data (50, 000 features) and the availability of a large dataset to

compare cost-sensitive boosting algorithms in a realistic scenario.

These experiments were based on the experimental protocol of [105]: a

face database of 9832 positive and 9832 negative examples, and weak learners based

on a combination of decision stumps and Haar wavelet features. 6000 examples

were used per class for training, and the remaining 3832 for testing, and all boosting

algorithms were trained for 100 iterations. Given the computational complexity

of these experiments, we restricted the comparison to CS-Ada and the previously
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Table VI.4 Average classifier rank, across ten UCI datasets, for five detection rates

using decision trees.

CS-Ada CS-Real CSB0 CSB1 CSB2 AdaC2 AdaC3 RForest
85% 2.3 2.55 4.85 6.25 4.2 4.6 4.0 7.25

87.5% 2.4 3.05 4.7 6.35 3.95 4.3 4.05 7.2
90% 2.65 3.6 4.05 6.5 4.9 4.4 2.7 7.2

92.5% 1.85 3.55 4.3 6.05 5.1 4.4 3.25 7.5
95% 2.2 4.55 4.25 6.0 4.8 3.9 3.1 7.2

Table VI.5 Face detection rate and number of false positives at various cross-

validation detection rates.
85% 87.5% 90% 92.5% 95%

Method Det% #FP Det% #FP Det% #FP Det% #FP Det% #FP
CS-Ada 85.2 22 87.44 28 90.37 34 92.64 52 95.25 113

CSB2 85.2 24 87.7 33 90.29 53 92.82 78 95.14 152
AdaC2 85.54 137 87.91 175 90.52 239 92.77 315 95.22 437
AdaC3 85.93 202 88.39 340 91.96 409 93.21 412 95.25 538
CSB0 86.01 276 88.12 325 90.63 418 92.95 592 97.57 933
CSB1 85.12 689 87.73 803 90.29 967 92.72 1142 95.12 1429

proposed cost-sensitive boosting algorithms (CSB0, CSB1, CSB2, AdaC2, AdaC3).

All classifier parameters were tunned with the cross validation procedure described

at the start of this section. The detection rate and number of false positives of

each method are shown in Table VI.5, for each of the cross-validation detection

rates. The number above each pair of columns is the target detection rate (used for

cross-validation), while the detection rate and number of false positives measured

on the test set are shown in the columns themselves. Note that all methods

maintain a test detection rate very similar to the target, CS-Ada achieves the best

performance, and only that of CSB2 is comparable. These results illustrate the

importance of choosing the confidence α optimally, at each iteration. Methods

that ignore α in the weight update rule (CSB0 and CSB1) have extremely poor

performance. Methods that update α but are not asymptotically optimal (AdaC2,

AdaC3) perform worse than CSB2, which relies on the α updates of AdaBoost.
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Table VI.6 Performance on UIUC car dataset, single scale test set. Left side of

the table presents methods that rigorously follow the experimental set up of [29]

† : Use variations of post-processing. ⋄ : Use extended training set. N.R: Not

Reported.

Method EER F-Measure Det% #FP Method EER F-Measure Det% #FP
CS-AdaBoost 93.5% 93.50% 93.5% 13 Mutch† [68] 99.94% N.R N.R N.R
Shotton [90] 92.8% N.R N.R N.R Wu⋄ [109] 97.5% N.R N.R N.R

Bar-Hillel [10] 92.4% N.R N.R N.R Leibe+MDL†⋄ [48] 97.5% N.R N.R N.R
Leibe[48] 91% N.R N.R N.R Schneidermann⋄ [42] 97% N.R N.R N.R
AdaBoost 90% 90.27% 90.5% 20 CS-AdaBoost† 95.5% 95.26% 95.5% 9
Fergus [32] 88.5% N.R N.R N.R Grabner†⋄ [38] 93% 93.5% N.R N.R
Agarwal [1] 79% 77.08% 76.5% 44 AdaBoost† 92.5% 92.23% 92.5% 15

VI.E.3 Car detection

We finish by investigating how the simple application of the proposed

cost-sensitive boosting algorithms fare against state-of-the-art object detection al-

gorithms in computer vision. For this, we selected the problem of car detection

on the popular UIUC Car dataset [1]. This is a dataset that precisely defines all

variables of the experimental evaluation, e.g. a rigorous procedure for counting

detections and false positives (which is not the case in [105]), and allows rigorous

comparisons to a large literature. It is also a challenging data set, in the sense

that only 500 positive and 500 negative examples are available for training. Un-

fortunately, not all results in the literature comply with the original protocol. For

example classifiers are sometimes trained with much larger datasets, and signif-

icant variations in error rate can be achieved by optimizing the post-processing

procedure (non-maximum suppression) to eliminate the false-positives that always

occur in the neighborhood of a correct detection. Hence, even for this thoroughly

standardized dataset, assessments of detector performance based on comparison of

published results have to be taken with caution. We will discuss these problems

in detail below.

We compared CS-Ada to both regular AdaBoost and a number of meth-

ods previously proposed in the literature.



182

All images were re-scaled to 20x50 pixels, and detection based on a pool

of 162, 000 Haar features [105]. CS-Ada was used to learn 300 feature detectors,

with the cross-validation procedure described at the start of this section. As is

advised for this dataset, the resulting detectors were tested with the neighborhood

suppression algorithm proposed in [1] and performance quantified by the EER.

For completeness, we also indicate the maximum F-measure and corresponding

detection and false-positive rates, although these statistics are not always reported

in the literature. The F-measure is the weighted harmonic mean of precision and

recall, summarizing the trade-off between these two statistics at each point of

the ROC curve. The maximum F-measure, and the reported detection and false-

positive rates, are those observed at the point where this trade-off is optimal. We

limited the comparison to the single scale test set, with the results of Table VI.6.

The left side of the table presents results of methods that rigorously

follow the experimental set up of [1]. Agarwal and AdaBoost classify rectan-

gular image patches and can be seen as template classifiers. However, because

they rely on highly localized features, they can also be seen as either learning

a rough object segmentation (object outline within the patch), or a representa-

tion of the object as a spatial configuration of features. Both ideas have been

explored in detail in the literature, with classifiers that explicitly segment the ob-

ject to detect [48, 90, 89, 109, 108], learn configurations of its parts [32, 10] or

both [90, 109]. Training such representations is manually intensive (e.g. requires

precisely segmented examples) and the resulting decision rules have far more com-

putation than those of the AdaBoost/Haar combination. Yet, at least when the

protocol of [1] is followed precisely (left half of table), there is little evidence that

they have benefits. On the contrary, simply replacing AdaBoost by CS-AdaBoost

produces the best overall performance.

There are a number of ways in which performance can be improved by

relaxing the experimental protocol. One popular modification is to improve the

post-processing of the detector output, so as to eliminate spatially adjacent detec-
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tions (non-maximum suppression). Methods that use variations of post-processing

are identified in the right-side of the table with a †. These variations can lead to

a dramatic performance increase. For example, Leibe et al. report an improve-

ment from 91% to 97% EER by introducing their MDL procedure [48]. For the

classifiers that we implemented, the simple extension of the suppression window

from 71 to 140 pixels (similar to [68] which used 111 pixels for their detector) led

to an improvement from 90% to 92.5% for Adaboost and from 93.5% to 95.5%

for CS-Adaboost. We have not attempted to optimize performance any further

in this way. Another popular performance enhancement strategy is to rely on an

extended training set. Variations range from adopting completely different sets

of positive and negative training examples [48], to extended sets of positives and

negatives (the dataset of [1] plus additional data) [109], to the same set of positives

but an extended set of negatives [38, 42]. Methods that rely on such extensions are

identified by a ⋄ in the table. Given the reduced size of the UIUC car dataset, any

of these extensions is likely to improve performance significantly. Unfortunately,

they also make it virtually impossible to compare the underlying classification

algorithms in an objective manner.

We emphasize that our claim here is not that the combination of CS-

AdaBoost and Haar features is the ultimate solution for object detection. In fact,

two of the top performing algorithms in each of the sides of Table VI.6 - Bar-

Hillel [10] and Wu [109] - rely on the combination of boosting and other image

representations (weak learners). It is likely that they could also benefit from the

cost-sensitive extensions proposed in this work. What our results show is that 1) for

object detection, CS-AdaBoost can lead to substantial performance improvements

over AdaBoost, and 2) the combination of CS-AdaBoost and Haar wavelets is

at least competitive with the state-of-the-art methods in the literature. This is

not insignificant, since most of these competitors involve special purpose features,

segmentation, or other vision operations which cost-sensitive boosting does not

have access to, and are expensive. On the other hand, the architecture used with
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cost-sensitive boosting is completely generic, e.g. identical to that used by [105]

for face detection.

VI.F Summary and discussion

We have presented a novel framework for the design of cost-sensitive

boosting algorithms. The framework is based on the identification of two neces-

sary conditions for the design of optimal cost-sensitive learning algorithms: that 1)

expected losses must be minimized by optimal cost-sensitive decision rules, and 2)

empirical loss minimization must emphasize the neighborhood of the target cost-

sensitive boundary. These enable the derivation of cost-sensitive boosting losses

which (similarly to the original cost-insensitive ones) can be minimized by gradient

descent, in the functional space of convex combinations of weak learners, to produce

boosting algorithms. The proposed framework was used to derive cost-sensitive ex-

tensions of AdaBoost, RealBoost and LogitBoost. Experimental evidence, derived

from a synthetic problem, standard data sets, and the computer vision problems

of face and car detection, was presented in support of the cost-sensitive optimal-

ity of the new algorithms. The performance of the latter was also compared to

those of various previous cost-sensitive boosting proposals (CSB0, CSB1, CSB2,

AdaC1, AdaC2, AdaC3 and AdaCost) as well as the popular combination of large

margin classifiers and probability calibration. Cost-sensitive boosting was shown

to consistently outperform all other methods tested.
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VI.H Appendix

VI.H.1 Proof of Lemma 45

To find the minimum of the cost-sensitive extension of the exponential

loss of (VI.32) it suffices to search for the the function f(x) of minimum expected

loss conditioned on x

le(x) = EY |X
[

I(y = 1)e−y.C1f(x) +I(y = −1)e−y.C2f(x)|x
]

= PY |X(1|x)e−C1f(x) + PY |X(−1|x)eC2f(x).

Setting derivatives to zero

∂le(x)

∂f(x)
= −C1PY |X(1|x)e−C1f(x) + C2PY |X(−1|x)eC2f(x)

= 0 (VI.56)

it follows that

C1PY |X(1|x)

C2PY |X(−1|x)
= e(C1+C2)f(x) (VI.57)

and

f(x) =
1

C1 + C2

log
PY |X(1|x)C1

PY |X(−1|x)C2

. (VI.58)

It is straightforward to show that the second derivative is non-negative, from which

the loss is minimized by f(x).

To find the minimum of the cost sensitive extension of the binomial loss

of (VI.33) it suffices to search for the the function f(x) of minimum expected loss

conditioned on x

lb(x) = −EY |X[y′ log(pc(x)) + (1− y′) log(1− pc(x))|x]

= −PY |X(1|x) log(pc(x))− PY |X(0|x) log(1− pc(x))

with pc(x) given by (VI.34). For this, we first compute the minimum with respect

to pc(x), which is given by

∂lb(x)

∂pc(x)
= −PY |X(1|x)

1

pc(x)
+ PY |X(0|x)

1

1− pc(x)
= 0 (VI.59)
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or

log
pc(x)

1− pc(x)
= log

PY |X(1|x)

PY |X(0|x)
.

Using (VI.34), this is equivalent to

2(γf(x) + η) = log
PY |X(1|x)

PY |X(0|x)
,

or

f(x) =
1

C1 + C2

log
PY |X(1|x)C1

PY |X(0|x)C2

.

Since ∂2lb(x)
∂pc(x)2

≥ 0 and pc(x) is monotonically increasing on f(x) this is a minimum.

VI.H.2 Proof of Result 46

From (VI.32) the cost function can be written as

J [f ] = EX,Y [I(y = 1) exp(−C1f(x)) + I(y = −1) exp(C2f(x))]

and the addition of the weak learner G(x) = αg(x) to the predictor f(x) results

in

J [f + αg] = EX,Y [ I(y = 1)w(x, 1) exp(−C1αg(x)) +

I(y = −1)w(x,−1) exp(C2αg(x))]

with

w(x, 1) = exp(−C1f(x)) w(x,−1) = exp(C2f(x)).

Since J [f + αg] is minimized if and only if the argument of the expectation is

minimized for all x, the direction of largest descent and optimal step size are the

solution of

(αm, gm(x)) =

arg min
α,g(x)

EY |X
[

I(y = 1)w(x, 1)e−C1αg(x)

+I(y = −1)w(x,−1)eC2αg(x)|x
]

.
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Noting that

EY |X
[

I(y = 1)w(x, 1)e−C1αg(x)

+I(y = −1)w(x,−1)eC2αg(x)|x
]

= EY |X
[

I(y = 1)I(g(x) = 1)w(x, 1)e−C1α+

I(y = 1)I(g(x) = −1)w(x, 1)eC1α +

I(y = −1)I(g(x) = 1)w(x,−1)eC2α +

I(y = −1)I(g(x) = −1)w(x,−1)e−C2α|x
]

= EY |X
[

I(y = 1)I(g(x) = −1)w(x, 1)(eC1α − e−C1α)

+I(y = 1)w(x, 1)e−C1α +

I(y = −1)I(g(x) = 1)w(x,−1)(eC2α − e−C2α)

+I(y = −1)w(x,−1)e−C2α|x
]

= PY |X(1|x)w(x, 1)I(g(x) = −1)(eC1α − e−C1α)

+PY |X(1|x)w(x, 1)e−C1α +

PY |X(−1|x)w(x,−1)I(g(x) = 1)(eC2α − e−C2α)

+PY |X(−1|x)w(x,−1)e−C2α

it follows that

(αm, gm(x)) =

arg min
α,g(x)

{

P
(w)
Y |X(1|x)I(g(x) = −1)(eC1α − e−C1α)

+P
(w)
Y |X(1|x)e−C1α

+P
(w)
Y |X(−1|x)I(g(x) = 1)(eC2α − e−C2α)

+P
(w)
Y |X(−1|x)e−C2α

}

where

P
(w)
Y |X(y|x) =

PY |X(y|x)w(x, y)
∑

y∈{1,−1} PY |X(y|x)w(x, y)
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are the posterior estimates associated with a sample reweighed according to w(x, y).

Hence, the weak learner of minimum cost is

(αm, gm) =

arg min
α,g

EX

{

P
(w)
Y |X(1|x)I(g(x) = −1)(eC1α − e−C1α) +

P
(w)
Y |X(1|x)e−C1α +

P
(w)
Y |X(−1|x)I(g(x) = 1)(eC2α − e−C2α) +

P
(w)
Y |X(−1|x)e−C2α

}

and, replacing expectations by sample averages,

(αm, gm) = arg min
α,g

[

(eC1α − e−C1α) · b + e−C1α · T+
+(eC2α − e−C2α) · d + e−C2α · T−

]

,

with the empirical estimates T+, T−, b and d of (VI.40) - (VI.41). Given g(x), and

setting the derivative with respect to α to zero

∂

∂α
= C1(e

C1α + e−C1α) · b− C1e
−C1α · T+ +

C2(e
C2α + e−C2α) · d− C2e

−C2α · T− = 0

the optimal step size α is the solution of

2C1 · b · cosh(C1α) + 2C2 · d · cosh(C2α) =

C1 · T+ · e−C1α + C2 · T− · e−C2α.

VI.H.3 Proof of Result 47

From (VI.32) the cost function can be written as

J [f ] = EX,Y [I(y = 1) exp(−C1f(x)) + I(y = −1) exp(C2f(x))]

and the addition of the weak learner G(x) to the predictor f(x) results in

J [f + G] = EX,Y [I(y = 1)w(x, 1) exp(−C1G(x)) +

I(y = −1)w(x,−1) exp(C2G(x))]



189

with

w(x, 1) = exp(−C1f(x)) (VI.60)

and

w(x,−1) = exp(C2f(x)). (VI.61)

Since J [f + G] is minimized if and only if the argument of the expectation is

minimized for all x, and assuming that the weak learners depend on x only through

some feature φ(x), the optimal weak learner is the solution of

Gφ(x) = arg minGEY |X[I(y = 1)w(x, 1) exp(−C1G(x))

+I(y = −1)w(x,−1) exp(C2G(x))|x]

= arg minGPY |X(1|φ(x))w(x, 1) exp(−C1G(x))

+PY |X(−1|φ(x))w(x,−1) exp(C2G(x))

= arg minGP
(w)
Y |X(1|φ(x)) exp(−C1G(x))

+P
(w)
Y |X(−1|φ(x)) exp(C2G(x))

where

P
(w)
Y |X(y|φ(x)) =

PY |X(y|φ(x))w(x, y)
∑

y∈{1,−1} PY |X(y|φ(x))w(x, y)

are the posterior estimates associated with a sample reweighed according to w(x, y).

Setting the derivatives of the cost to zero it follows that

Gφ(x) =
1

C1 + C2

log
P

(w)
Y |X(1|φ(x))C1

P
(w)
Y |X(−1|φ(x))C2

.

The optimal feature φ∗ is the one of smallest minimum cost

φ∗ = arg min
φ

J [f + Gφ]

= arg min
φ

EX,Y [I(y = 1)w(x, 1) exp(−C1Gφ(x)) +

I(y = −1)w(x,−1) exp(C2Gφ(x))]

= arg min
φ





∑

i∈I+

w(xi, 1) exp(−C1Gφ(xi))+

∑

i∈I−

w(xi,−1) exp(C2Gφ(xi))



 .
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Once Greal
m (x) is found, the weights are updated so as to comply with (VI.60)

and (VI.61), i.e.

w(x, 1)← w(x, 1) exp(−C1Gφ∗(x))

and

w(x,−1)← w(x,−1) exp(C2Gφ∗(x)).

VI.H.4 Proof of Result 48

Rewriting the negative log-likelihood as

lb[y
′, f̂ (m)(x)] = −EX,Y

[

y′ log
pc(x)

1− pc(x)
+ log(1− pc(x))

]

and using (VI.34), it follows that

lb[y
′, f̂ (m)(x)] = −EX,Y

[

2y′(γf̂ (m)(x) + η)− log
[

1 + e2(γf̂ (m)(x)+η)
]

]

.

This loss is minimized by maximizing the conditional expectation

−lb[y
′, f̂ (m)(x)|x] =

EY |X

[

2y′(γf̂ (m)(x) + η)− log
[

1 + e2(γf̂ (m)(x)+η)
]]

= 2EY |X[y′|x](γf̂ (m)(x) + η)− log
[

1 + e2(γf̂ (m)(x)+η)
]

for all x, i.e. by searching for the weak learner G(x) that maximizes the cost

J [f̂ (m)(x) + G(x)] = −lb[y
′, f̂ (m)(x) + G(x)|x].

The maximization is done by Newton’s method, which requires the computation

of the gradient

∂J [f̂ (m)(x) + G(x)]

∂G(x)

∣

∣

∣

∣

∣

G(x)=0

= 2γ(EY |X[y′|x]− pc(x))

and Hessian

∂2J [f̂ (m)(x) + G(x)]

∂G(x)2

∣

∣

∣

∣

∣

G(x)=0

= −4γ2pc(x)(1− pc(x))
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leading to a Newton update

G(x) =
1

2γ
EY |X

[

y′ − pc(x)

pc(x)(1− pc(x))

]

.

This is equivalent to solving the least squares problem

min
G(x)

EY,X

[

(

1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2
]

,

and the optimal weak learner can, therefore, be computed with

G∗ = min
G

∫

PX(x)
1
∑

y′=0

PY |X(y′|x)

(

1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2

dx

= min
G

∫

PX(x)
1
∑

y′=0

PY |X(y′|x)w(x)
∑1

j=0 PY |X(j|x)w(x)

(

1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2

dx

= min
G

∫

PX(x)
1
∑

y′=0

P
(w)
Y |X(y′|x)

(

1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2

dx

= min
G

E
(w)
Y,X

[

(

1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2
]

which is the weighted least squares regression of zi to xi using weights wi, as given

by (VI.49) and (VI.50). The optimal feature is the one of smallest regression error.
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In this thesis we have presented a new framework for the design of Bayes

consistent loss functions and developed a generative method for deriving such loss

functions. This has allowed us to effectively design a large number of loss functions

with certain novel shapes and properties that are custom tailored for certain clas-

sification problems. We have also provided a full analysis and taxonomy of such

loss functions. This was achieved by studying and relating the two fields of risk

minimization in machine learning and probability elicitation in statistics. Specif-

ically, The class of Bayes consistent loss functions were partitioned into different

varieties based on their convexity properties. The convexity properties of the loss

and associated risk of Bayes consistent loss functions were also studied in detail

which, for the first time, enabled the derivation of non convex Bayes consistent

loss functions.

We also developed a fully constructive method for the derivation of novel

canonical loss functions. This was due to a simple connection between the asso-

ciated minimum conditional risk and optimal link functions. The added insight

allowed us to derive 1) variable margin extensions of existing losses, 2) new losses

from the minimum risks associated with existing non-canonical losses, and 3) new

losses from cumulative distribution functions with explicit margin control. We then

established a common boosting framework, canonical gradientBoost, for building

boosting classifiers from all canonical losses. A number of experiments were con-

ducted to study the effect of margin-control on the classification accuracy of the

proposed variable-margin losses.

Next, we extended the probability elicitation view of loss function design

to the problem of designing robust loss functions for classification. The robust

Savage loss and corresponding SavageBoost algorithm was derived and shown to

outperform other boosting algorithms on a set of experiments designed to test

the robustness of the algorithms to outliers in the training data. We also argued

that a robust loss should penalizes both large positive and large negative margins.

The Tangent loss was derived with the desired robust properties. We then derived
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the associated TangentBoost classifier. This classification algorithm was shown to

outperform other boosting algorithms on a variety of test sets involving various

computer vision problems, including scene classification, object tracking, recogni-

tion, and MIL problems. Empirical evidence confirmed the importance of using

robust Bayes consistent loss functions when dealing with noise, outliers and class

ambiguity within the data.

We also extended the probability elicitation view of loss function design

to the cost sensitive classification problem. A general framework for the derivation

of Bayes consistent cost sensitive loss functions was developed. This was then used

to derive a novel cost sensitive hinge loss function. A cost-sensitive SVM learning

algorithm was then derived, as the minimizer of the associated risk. Unlike previous

SVM algorithms, the one now proposed was shown to enforce cost sensitivity for

both separable and non-separable training data, enforcing a larger margin for the

preferred class, independent of the choice of slack penalty.

Finally, we presented a novel framework for the design of cost-sensitive

boosting algorithms. The proposed framework was used to derive cost-sensitive

extensions of AdaBoost, RealBoost and LogitBoost. Experimental evidence, over

a synthetic problem, standard data sets, and the computer vision problems of face

and car detection, was presented in support of the cost-sensitive optimality of the

new algorithms and cost-sensitive boosting was shown to consistently outperform

all other methods tested.
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