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Abstract of the Dissertation

Patient-Specific Interactive Ultrasound Image

Simulation with Soft-Tissue Deformation

by

Kresimir Petrinec

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2013

Professor Demetri Terzopoulos, Chair

Ultrasound imaging systems provide a low-cost, real-time, noninvasive and safe

way to examine soft tissues inside the human body. Yet the ability of medical

practitioners to understand and mentally register two-dimensional (2D) ultra-

sound image slices within the three-dimensional (3D) anatomy is a difficult task,

so training is needed. Current ultrasound training methods are expensive, ineffi-

cient, and pose a major obstacle to the wide deployment of ultrasound imaging

systems in routine clinical practice. In this thesis, we present a new approach

to ultrasound training, where complex and expensive phantoms are replaced by

a 3D virtual patient model, which represents the anatomy of any desired body

part or organ and is simulated on a standard laptop computer. The advantage of

our system is not only its cost effectiveness, but also its ability to emulate differ-

ent disease states or conditions in different virtual patients and to visualize the

underlying body structures of interest through different examination procedures

with a virtual ultrasound probe.

Conventional 3D models of the human body are purely geometric and do not

model soft-tissue mechanics and deformation, which is an important factor in the

practice of clinical ultrasound imaging. To address this limitation, we introduce

real-time interactive soft tissue simulation in our 3D patient model. For this
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purpose, we adapt and evaluate two well-known deformable model simulation

methods: mass-spring-damper systems (MSDS) and the finite element method

(FEM) with a quasistatic solution of isotropic linear elastic materials with Cauchy

strain. We apply these methods to the simulation of ultrasound in soft tissues.

The soft tissue model in its undeformed state is determined by static real-patient

data captured by applying a linear ultrasound probe on the neck and on the left

upper arm. A visual tracking system is used to control the virtual probe. We

achieve real-time interactive simulation rates by carefully adapting the code to

run efficiently on multicore personal computers.

Our real-time, interactive simulation of a 3D virtual patient with deformable

soft tissues enables cheaper, more efficient, and more effective ultrasound training.

Our ultrasound training system promises to facilitate the broader use of ultrasound

in healthcare and reduce the number of medical procedure complications.
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CHAPTER 1

Introduction

1.1 Motivation

Ultrasound imaging systems provide a low-cost, real-time, noninvasive and safe

way to examine soft tissues inside the human body. The quality and applicability

of ultrasound imaging has been increasing for the last decade so that, coupled

with its non-invasive features, non-ionizing radiation, and declining price, it is the

preferred imaging modality for a rapidly growing range of procedures, including

diagnostic imaging and image-guided interventional procedures. However, the

technician’s and clinician’s ability to understand and mentally register 2D image

slices within the 3D anatomy is a difficult task and it presents a huge barrier to

the widespread use of ultrasound imaging in daily clinical practice. Consequently,

the demand for ultrasound training is expanding.

Current ultrasound training methods are expensive and inefficient. Training

requires expert diagnostic medical sonographers to teach clinicians to use ultra-

sound machines that are shared with clinical practices and require physical patient

models or tissue phantoms. This conventional approach to training healthcare

providers suffers from a number of limitations, including a) lack of exposure to

an appropriate range of disease and injury cases, b) inability to relate ultrasound

imagery directly to underlying patient anatomy, and c) inability to widely de-

ploy training systems independent of access to ultrasound machines and physical

patient or phantom models.
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Typical computer-based training systems use expensive tissue phantoms equipped

with complex systems for the tracking of ultrasound probe positions and orien-

tations. They display ultrasound brightness scans (B-scans), which are either

sampled from three-dimensional (3D) data, or synthesize an approximation of

ultrasound data directly from computed tomography (CT) scans. The sampled

B-scans suffer from a small range of motion due to the inability to capture large

ultrasound volumetric data, and the synthesized B-scans are not able to truly

replicate ultrasound, because ultrasound speckles, which are caused by the inter-

ference of the signal reflected by tissue micro-inhomogeneities, such as capillaries

or blood cells, are below the resolution of the CT scan.

In practice, when the ultrasound probe is pressed against the skin, the defor-

mation of soft tissues (e.g., tendons, ligaments, fascia, skin, fat, muscles, nerves,

blood vessels, etc.) has a large diagnostic value. A good example is ultrasound-

guided central venous catheter (CVC) placement (Fig. 1.1), where the difference

between vein and artery can be easily determined by compressibility and shape.

However, traditional blind techniques, which rely on anatomical landmarks to

estimate the location of vessels, result in a high rate of complications. What

makes the traditional landmark approach problematic is that many factors, such

as intravenous drug use, cardiac arrest, or even body type (e.g., underweight or

overweight), can alter the usual anatomic relationship, so physicians require mul-

tiple attempts to cannulate the vessel of interest. On the other hand, ultrasound

allows for the real-time imaging of vessels during CVC placement, making it safer,

faster, and easier, and it is not surprising that ultrasound guided CVC placement

is becoming a standard. Another good example where ultrasound compression is

useful is in the diagnosis of deep vein thrombosis (DVT). For example, when the

probe is pressed against the skin of a normal patient, the veins collapse easily and

the deformation is instantly visible in the ultrasound image. If the veins do not

deform under pressure, which can also be clearly visible in the ultrasound image,

2



Figure 1.1: Ultrasound guided central venous catheter (CVC) placement.

that may indicate a positive finding for venous occlusion (Crisp et al., 2010).

Real-time interactive ultrasound simulation with soft-tissue deformation poses

a difficult problem. Most methods suitable for the simulation of soft tissue are

computationally intensive and run slowly on large data sets. Our motivation is to

bring the training to a higher level and develop an interactive ultrasound training

system capable of simulating ultrasound B-scans of tissue under compression.

The availability of such training would result in the wider use of ultrasound in

healthcare and reduce the number of medical procedure complications.

1.2 Thesis Contributions

In this thesis, we present a new approach to ultrasound training. Our work draws

on multiple disciplines and combines them in order to achieve real-time interac-

tive ultrasound simulation with soft-tissue deformation. Knowledge of ultrasound

physics is essential for ultrasound reconstruction, human anatomy and medicine

for volume alignments and grasping major issues involved in ultrasound imaging

of various organs and pathologies, structural engineering and mathematics for
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soft-tissue simulation, software engineering for good design and architecture, and

computer science to achieve robust, stable and efficient algorithms.

In particular, this thesis makes the following contributions:

• We develop a laptop-based ultrasound simulator with real-patient, case-

specific data registered with a virtual patient model. This contribution

has been published in (Petrinec et al., 2011). The simulator has become a

commercial product of SonoSim, Inc.1

• We propose a model for the real-time interactive simulation of ultrasound in

deformable tissue based on real-patient data. The focus is on the simulation

of vessel compression in the body. In this model we embed 3D ultrasound

data in a tetrahedral mesh, and simulate the deformation of the mesh using

either the finite element method or mass-spring-damper systems. We also

show how to sample slices efficiently from the deformed tissue in order to

synthesize and display ultrasound B-scans.

• To handle large deformable tissue volumes, we introduce parallel deforma-

tion simulation on multiple sub-volumes and real-time volume stitching.

• For better visualization, we propose an interactive deformation of the skin of

the virtual body model when in contact with the virtual ultrasound probe,

and an interactive visualization of how the segmented surfaces (vessels) de-

form under compression applied to the tissue.

• We develop a pipeline for real-patient data acquisition and data processing,

where we (i) acquire timestamped 2D ultrasound images, (ii) reconstruct

3D volumetric ultrasound images using a pixel-based method, and (iii) seg-

ment 3D data with vascular structures using a semi-automatic method. The

1See http://sonosim.com.
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Figure 1.2: A virtual patient—the Ultimate Human Model, male cgCharacter.

method utilizes a shape-morphing algorithm, which allows for a quick seg-

mentation from parallel B-scans.

• To track the orientation of the ultrasound probe, we propose a robust visual

tracking system with ID-based fiducial markers.

The following sections overview the aforementationed contributions in greater

detail.

Ultrasound Simulator with Real-Patient Data

We present a new approach to ultrasound training—a laptop-based ultrasound

simulator with real-patient, case-specific data aligned with a virtual patient (Fig. 1.2).

The simulator provides interactive simulation of ultrasound brightness scan im-

ages displayed on the screen simultaneously with the virtual patient and virtual

probe. An external probe with a motion tracker embedded in the probe housing

controls the orientation of the virtual probe. The user can select a number of real

cases from a case list and experience the feel of a real ultrasound examination.

The simulator has been commercialized by SonoSim, Inc. It plays a major role

in the SonoSim R© Ultrasound Training Solution called “Hands-On Scanning”, in

5



conjunction with didactic courses and knowledge assessment modules. SonoSim

claims that the Solution improves ultrasound performance measures for basic scan-

ning procedures and diagnostic window interpretation and that it is more effective

than a live instructor in teaching users how to perform diagnostic ultrasound win-

dow interpretation.

Simulation of Ultrasound Compression

We develop a real-time interactive simulation of ultrasound compression. Ultra-

sound compression is useful in many procedures, such as ultrasound-guided central

venous catheter (CVC) placement or the diagnosis of deep vein thrombosis (DVT).

To simulate ultrasound in soft tissues in our 3D patient model, we adapt and eval-

uate two well-known deformable model simulation methods—mass-spring-damper

systems (MSDS) and the finite element method (FEM) with a quasistatic solution

of isotropic linear elastic materials with Cauchy strain. The soft tissue model in

its undeformed state is determined by static real-patient data.

For slice sampling from a deformable mesh, we present an efficient new method.

Real-time interpolation of slices (or slice sampling) from the mesh is very chal-

lenging because there is no linear mapping between slice position/orientation and

data embedded in a tetrahedral mesh. A naive approach samples the deformed

state for every pixel, which is time inefficient.

Our virtual patient model, shown in Fig. 1.2, consists of the skin and bones.

Muscles are excluded because they make it difficult to see veins, arteries, nerves

and bones. Veins and nerves are patient-specific and they are dynamically created

in the simulation. They deform as the user interacts with the system.

6



Figure 1.3: Vessels segmented using our semi-automatic segmentation method.

Ultrasound Data Acquisition and Processing Pipeline

We develop a data processing pipeline for our ultrasound simulator. First, we

acquire real-patient data using a two-dimensional ultrasound probe with a three

degree-of-freedom motion tracker attached to it. Second, we reconstruct volu-

metric data using a pixel-based reconstruction method. Third, we segment the

reconstructed data with a semi-automatic segmentation method. Finally, we man-

ually align the processed data with our virtual human model.

Our tool for semi-automatic segmentation allows for a quick segmentation of

3D ultrasound volumes with vessels, nerves, and bones (Fig. 1.3).

Interactive Skin and Visualization of Deformable Isosurfaces

Conventional 3D models of the human body are purely geometric and do not

model soft-tissue mechanics and deformation, which is an important factor in the

practice of clinical ultrasound imaging. To address this limitation, we introduce

real-time interactive deformation of the virtual body skin when in contact with

the virtual ultrasound probe. The skin deformation is simulated using MSDS. In

addition, we introduce real-time interactive deformation of segmented isosurfaces,

7



Figure 1.4: Vessels in the soft tissue mesh under the skin.

such as veins, arteries, and nerves. We achieve the deformation by embedding the

isosurfaces into the soft tissue simulation mesh.

A snapshot of our simulator in Fig. 1.4 shows the skeleton of our virtul body,

a virtual ultrasound probe, a mesh with the embedded isosurfaces of vessels and

nerves, and a simulated ultrasound B-scan. The probe applies pressure on the

skin and soft-tissue, and the embedded vein is compressed. Simultaneously, the

resulting simulated 2D ultrasound B-scan shows vein deformation.

Simulation of Large Volumes with Volume Stitching

We propose a real-time method suitable for simulating the deformation of large

volumes of soft tissues that are partially anchored to a rigid structure such as bone.

We divide the soft-tissue volume into smaller overlapping volumes, simulate the

smaller volumes in parallel, and reconnect them.

8



Visual Motion Tracking

We present a visual motion tracking scheme that employs unique ID-based markers

attached to the faces of a dodecahedron. Such an arrangement of makers enhances

the visibility of multiple markers and enables more robust marker tracking in

single-camera visual motion tracking systems.

1.3 Thesis Outline

The remainder of the dissertation is organized as follows: Chapter 2 provides an

introduction to ultrasound image formation, data acquisition and reconstruction,

techniques for modeling soft tissue, and related work. Chapter 3 presents our

ultrasound training simulator with static volumetric data. Chapter 4 presents

our ultrasound training simulator with the simulation of soft tissue. Chapter

5 presents volume stitching. Finally, Chapter 6 concludes the dissertation and

summarizes our work. Appendix A reviews the relevant mathematical basis of the

theory of elasticity. Appendices B and C review the FEM and FVM, respectively.

Appendix D describes different ways to track motion and introduces our optical

tracking system.
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CHAPTER 2

Background and Related Work

In this chapter, we will first cover the basics of ultrasound image formation and

of real-patient ultrasound data acquisition and processing. We will then review

related work on ultrasound training and training systems. Finally, we will review

deformable modeling techniques, which will be useful in the subsequent develop-

ment of our ultrasound training system.

2.1 Ultrasound Image Formation

Ultrasound, ultrasonography, or ultrasound imaging is a technique that uses high

frequency sound waves and their echos to determine the structure of an object

or a body. High frequency sound waves are sent into a body and, as they travel

through, some are reflected at the interfaces between tissues. The ultrasound

image is formed using the intensity and depth of reflected waves, where the depth

is computed from the return time of reflected waves.

Ultrasound imaging is performed with a hand-held ultrasound probe, which is

also called transducer. The transducer sends a sequence of repetitive ultrasonic

pulses into a body. When waves propagate, waves lose energy (attenuation) to the

medium of propagation and cause weak local heating. The absorption of energy

depends mostly on the density of tissue (the higher the density, the more absorp-

tion), and on the frequency of the ultrasound beam (the higher the frequency,

the more absorption). Echos (wave reflections) from different target objects and

10



Table 2.1: The velocity of sound in tissue.

Material Speed [m/s]

Air at STP 330

Blood 1570

Bone 4080

Fat 1450

Kidney 1560

Liver 1570

Water 1480

boundaries are received and amplified.

The reflection depends on the difference in impedance of the two tissues. Ba-

sic imaging by ultrasound uses only the amplitude information in the reflected

signal—the reflected signal is sampled continuously. As the velocity of sound in

tissue is fairly constant (Table 2.1), the time between the emission of a pulse and

the reception of a reflected signal is dependent on the distance; i.e., the depth of

the reflecting structure. Different structures will reflect different amounts of emit-

ted energy. The time before a new pulse is sent out is dependent of the maximum

desired image depth.

The reflecting structures, also called scatterers, do not only reflect directly

back to the transmitter, but scatter the ultrasound in other directions. It is

important to realize that the actual amount of energy that is reflected back to

the probe—i.e., the amplitude of the reflected signal—is not only dependent on

the reflection coefficient, but also on the direction of the reflected signal. Thus,

an irregular scatterer will reflect only a portion back to the probe, and a more

regular scatterer will reflect more if the reflecting surfaces are perpendicular to

the ultrasound beam. Thus, the apparent density of the tissue on the ultrasound

11



image is also dependent on the fiber direction.

An ultrasound brightness scan (B-scan) image is the result of a rather com-

plicated set of physical phenomena, namely, the insonification and resulting ab-

sorption, reflection, and coherent scattering from a tissue medium of pulsed radio

frequency ultrasonic pressure waves, and the electronic detection of the backscat-

tered or echo pulses for display as an image. The resulting pictures have a granular

structure variously described, as above, by the terms “texture” or “speckle”.

Signal processing in an ultrasound scanner begins with the shaping and delay-

ing of excitation pulses applied to each element of the array to generate a focused,

steered and apodized pulsed wave that propagates into the tissue. Echoes re-

sulting from the scattering of the sound by tissue structures are received by all

elements within the transducer array. Processing of these echo signals routinely

begins at the individual channel (element) level with the application of apodiza-

tion (window) functions, and dynamic focusing or steering delays.

2.1.1 Ultrasound Image Synthesis

Ultrasound B-scans can be synthesized either by accurately replicating the prop-

agation of ultrasonic waves through the tissue, or by interpolating B-scans from a

volume formed from pre-acquired images. The former, also known as the genera-

tive approach, requires accurate models of tissue scatterers, the probe, and wave

interaction. Jensen and Nikolov (2000) use linear acoustics and apply fully syn-

thetic aperture imaging to an artificial kidney model and corresponding optical

images. Dillenseger et al. (2009) synthesize abdominal ultrasound images from

CT data. Reichl et al. (2009) synthesize ultrasound images from CT data on the

Graphics Processing Unit (GPU), resulting in significantly decreased algorithm

run time. The generative approach relies on very accurate models, which in prac-

tice are not possible to acquire or synthesize in real-time, so the synthetic images
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Figure 2.1: Comparison between two real 3.5 MHz ultrasound images (left) and

the synthetic ones (right), from Dillenseger et al. (2009)

lack important fine details and have an artificial look, as shown in Fig. 2.1.

The later approach, also known as 3D ultrasound reconstruction, projects pre-

acquired images into a regular 3D grid (volume). A thorough description and

grouping of the various freehand 3D reconstruction algorithms can be found in

(Solberg et al., 2007), where 3D volume reconstruction is classified into three

categories based on implementation: Voxel-Based Methods (VBM), Pixel-Based

Methods (PBM), and Function-Based Methods (FBM).

2.2 Ultrasound Data Acquisition and Processing

Data acquisition and processing in the context of three-dimensional (3D) ultra-

sound comprises the following steps: (i) determining the position and orientation

of a sensor attached to the ultrasound probe, (ii) collecting ultrasound images,

and (iii) timestamping all data collected for later post processing of each dataset,

including the primary post processing action of volumetric reconstruction.
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2.2.1 Acquisition

Methods for constructing ultrasound volumes from collected images, needed for

ultrasound real-time simulation, can be classified in the following categories:

1. Constrained sweeping techniques

2. 3D probes

3. Sensorless techniques

4. Freehand techniques

Constrained sweeping techniques translate or rotate a 2D ultrasound probe over

an area of interest by using an actuator (motor) (Shipley et al., 2005). A 3D

probe head contains either a 2D phased array of transducers, or mechanically or

electronically steered 1D phased array of transducers. Sensorless techniques es-

timate the 3D position and orientation of a probe by analyzing speckle noise in

the ultrasound images using decorrelation or linear regression (Prager et al., 2003;

Rohling et al., 1998). Freehand techniques use tracking devices to track the ul-

trasound probe, permitting unconstrained movement (Barry et al., 1997; Sanches

and Marques, 2002; Huang et al., 2005, 2009). This approach is more flexible than

other methods, because data volume size is not limited by the mechanical design

of the probe and the user has full control over the scanning direction (Gee et al.,

2003).

2.2.2 Sensor Tracking

There are four common ultrasound sensor tracking technologies (Mercier et al.,

2005):

1. Mechanical
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2. Acoustical

3. Electromagnetic

4. Optical

Mechanical localizers, or articulated arms track angles of joints. The tips position

and orientation are computed by solving a direct (forward) kinematic problem.

Acoustical position trackers use detectors (microphones) to detect emitters (speak-

ers) which emit ultrasound waves. Their position and orientation is computed by

measuring the propagation time (time of flight) of sound waves or by measur-

ing the phase difference to compute relative distance. Electromagnetic systems

measure the electrical current that is induced when a sensor is moved within a

magnetic field generated by either an alternating current (AC) or a direct current

(DC) transmitter. Optical trackers detect markers placed on a rigid structure by

using multiple cameras, where the structure geometry is known in advance.

2.2.3 Ultrasound Image Segmentation

Manual segmentation of two-dimensional (2D) ultrasound images is time consum-

ing and labor intensive process with unrepeatable results; i.e., there is always a

large variation between results, even among expert sonographers. On the other

hand, fully automatic segmentation of ultrasound images is a very challenging

task (if not impossible) not only because of low (degraded) image quality due

to speckle noise, shadows and reflections, but also because of boundaries which

may appear discontinuous due to the amplitude of echo, which depends on the

orientation of the reflecting structure.

For that reason, most segmentation methods which are widely used for CT and

MRI data fall apart on ultrasound data; for example, gray-level thresholding or

region growing. Only in some cases when the target is known (e.g., the heart), the

highly specialised segmentation algorithms can be applied and provide robust and
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reliable results. Noble and Boukerroui (2006) provide a survey of ten influential

papers in the ultrasound segmentation literature.

Semi-automatic methods provide the best of manual and automatic segmen-

tation. Typically, the user guides automatic boundary detection to what appears

to be the real boundary. The mostly used semi-automatic methods are active

contours, and intelligent scissors algorithms.

Active contours, also known as “snakes”, were introduced by Kass et al. (1988).

Snakes are energy-minimizing parametric curves, whose energy depends on their

shape and position within image. Snakes consist of abstract materials which make

them resist stretching and bending. They are constrained to lie in the potential

surface, which corresponds to image gradients, under the action of constant grav-

itational force. The snakes energy functional is the sum of internal energy due

to stretching and bending, image potential energy, and external force energy.

Depending on the energy, image forces can attract a snake to edges, lines, or

terminations.

The intelligent scissors, also known as “live-wire”, method was introduced by

Mortensen and Barrett (1995, 1998). It defines a boundary via dynamic program-

ming and formulates it as graph search for an optimal path. It allows the user

to interactively select a start pixel (a seed point) and the most suitable bound-

ary from a set of all optimal boundaries estimating from a seed point. On-the-fly

training causes the boundary to adhere to the specific type of edge currently being

followed.

Levienaise-Obadia and Gee (1999) present a semi-automated adaptive segmen-

tation method which uses locally on-the-fly trained statistical models along the

boundary to attract an active contour. They split the boundary in a number of

spline segments and for each segment compute intensity gradients and first and

second order grey level texture statistics along normal lines inside and outside the

boundary. They train a classifier on one frame and apply it to the boundary in
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other frames with small user interventions.

2.2.4 Ultrasound Volume Image Processing

Medical volumetric datasets, such as Computed Tomography (CT), Magnetic Res-

onance Imaging (MRI), or 3D/4D ultrasound, are typically stored in the Digital

Imaging and Communications in Medicine (DICOM) standard format. Actual

volumetric data inside a DICOM file are stored as arrays of samples, also called

voxels, which lie on a regular spaced 3D grid. Voxels can be visualized directly

by volume rendering, or by the extraction of isosurfaces. Volume rendering is a

computationally intensive task where every voxel must be projected into screen

plane. On the other hand, the isosurface is a surface which represents points of

a constant value within a volume, so it can be rendered much faster than volume

rendering due to small polygon count. For example, the isosurface may represent

a bone in CT scan.

In this thesis we visualize segmented regions of vessels, nerves and bones with

isosurfaces. We use isosurface rendering instead of volume rendering for two

reasons—rendering isosurfaces is faster, and we need surfaces for the simulation

of deformation.

A common technique for isosurface extraction is marching cubes (Lorensen and

Cline, 1987). The algorithm ‘marches’ from cube to cube inside a volume, where

each cube is formed from eight neighbor voxels, and creates tringles where the

surface corresponding to a user-defined value intersects the cube. There are 256

ways a surface can intersect a cube. The algorithm enumerates those cases and

stores them in a lookup table. By exploiting rotational and reflective symmetry,

the table is reduced to 15 unique cases.

Later, it was discovered that the algorithm produces holes. Chernyaev (1995)

showed that there is actually 33 topologically different configurations, and pre-
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sented an algorithm which does not create holes. Schlei (2012) presents the

volume-enclosing surface extraction (VESTA) technique which automatically de-

tects and resolves potential topological ambiguities, and compares it to the march-

ing cubes algorithm.

Isosurfaces produced by the marching cubes algorithm appear faceted. Gaus-

sian filtering is often used to reduce the faceting. The new position of each vertex

is computed as weighted average of the current vertex position and its first or-

der neighbors (vertices which share an edge with the current vertex). However,

Gaussian smoothing produces shrinkage because the convolution with a Gaussian

kernel attenuates all frequencies (except the zero frequency). Taubin (1995) pro-

poses a solution to this problem by alternating Gaussian steps with positive and

negative scale factors computed in a such a way that they produce a low-pass

filter effect as a function of the natural frequencies of the shape.

2.3 Ultrasound Training Methods and Systems

The majority of current ultrasound training methods use real ultrasound machines

on either phantoms or patients (other students, patient volunteers, or hired patient

models). On the other hand, computer-based training systems are used only for

the simulation and visualization of ultrasound images that correspond to probe

position and orientation, and of phantoms equipped with complex systems for the

tracking of probe positions and orientations (Terkamp et al., 2003; Maul et al.,

2004; Ehricke, 1998; Heer et al., 2004; Varandas et al., 2004; Jensen, 1996).

Some previous ultrasound simulators synthesize an approximation of ultra-

sound data directly from computed tomography (CT) scans instead of from real-

patient ultrasound data (Reichl et al., 2009; Hostettler et al., 2005; Dillenseger

et al., 2009). However, those systems are not able to truly replicate ultrasound

images, because ultrasound speckles, which come from interference of the signal
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Figure 2.2: Ultrasound trainer.

reflected by tissue micro-inhomogeneities, such as capillaries or blood cells, are

below the resolution of the CT scan (Dillenseger et al., 2009).

In (Petrinec et al., 2011), we present a new approach to ultrasound training.

Complex and expensive phantoms are replaced with a virtual three-dimensional

(3D) model, simulated on a standard laptop computer and representing the anatomy

of any desired body part or organ, as shown in Fig. 2.2. The advantage of such a

system is not only its lower price, but also its ability to simulate different proce-

dures and disease states or conditions on different virtual patients and to visualize

underlying body structures. Thus, the system enables quicker learning and helps

improve hand-eye coordination required in ultrasound procedures. In addition to

the virtual model, the system displays simulated ultrasound as well as CT or mag-

netic resonance imaging (MRI) B-scans, all based on real-patient data. The image

on the trainer corresponds to a B-scan of the virtual probe placed on the virtual

model. The image also corresponds to the peripheral probe, with an embedded

orientation sensor, which is the primary user input device to the simulator. As

the user moves the peripheral probe, the virtual probe moves accordingly and the

image on the laptop (trainer) shows the image that would have been acquired in

a real scan.
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2.4 Deformable Models

Deformable models and related simulation techniques, which we review in this sec-

tion, will provide the basis for simulating soft-tissue deformation in our augmented

ultrasound training system.

2.4.1 The Theory of Elasticity

The theory of elasticity is a branch of continuum mechanics that studies the

physics of continuous materials. More specifically, elasticity is a part of solid

mechanics, which studies the physics of continuous materials with a defined rest

shape, and which recover their rest shape after an applied stress is removed. Solid

materials that permanently deform after a sufficient applied stress (greater than a

yield value) are studied under plasticity. Another branch of continuum mechanics

is fluid mechanics, which studies the physics of continuous materials that take the

shape of their container.

The theory of elasticity is based on Hooke’s law, which states that the defor-

mation x of an object is proportional to the deforming force F . Simple linear

springs obey Hooke’s law: F = kx, where k is the spring constant. In continuum

mechanics, multidimensional deformation (density) is characterized by strain ε,

force (density) is characterized by stress σ, and material properties are character-

ized by moduli of elasticity, such as Young’s modulus E. Appendix A reviews the

mathematical formulation of these concepts.

The most commonly used methods for simulating deformable solids are the

finite difference method (FDM), the finite element method (FEM), the boundary

element method (BEM), and the finite volume method (FVM). When speed is

more crucial than accuracy, a useful alternative is mass-spring-damper systems

(MSDS).
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2.4.2 Mass-Spring-Damper Systems

Mass-spring-damper systems (MSDS) are the most intuitive and simplest to im-

plement deformable models. They comprise point masses connected together with

massless springs and dampers—viscoelastic elements, also called Voigt elements

(Fig. 2.3). The force acting on each mass is computed due to its spring connec-

tions with its neighbors, along with external forces. The motion (acceleration) of

each particle is governed by Newton’s second law. The force exerted by the Voigt

element is

F = k (x0 − x) − γ
dx

dt
, (2.1)

where k is the spring constant, x0 is the original (rest) length of the spring, x is

the current length, and γ is damping constant. There are two categories of forces

in MSDS—internal forces due to the tensions of springs and external forces due to

gravity, collision, friction, etc. In equilibrium, the net force acting on every point

mass is zero. The velocities and positions of the N point masses are computed by

numerically solving a system of Lagrange equations of motion, the N second-order

ordinary differential equations (Terzopoulos and Waters, 1990):

mi
d2xi
dt2

+ γi
dxi
dt

+ gi = fi; i = 1, . . . , N, (2.2)

where mi is the mass of i-th point mass, gi is total spring force, and fi is total

external force on point mass i. These differential equations can be simulated by

applying explicit, semi-implicit, or implicit techniques for numerical integration.

A simple technique for numerical integration, albeit limited in terms of stabil-

ity, is the explicit Euler method:

ati =
1

mi

(
f ti − γiv

t
i − gti

)
, (2.3)

vt+∆t
i = vti + ∆tati, (2.4)

xt+∆t
i = xti + ∆tvt+∆t

i , (2.5)
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Figure 2.3: Voigt model.

where starting from given initial positions x0
i and velocities v0

i at time t = 0,

accelerations ai, velocities vi, and positions xi of point masses are computed at

every time step t = 1,∆t, 2∆t, . . .

The spring constants in MSDS are often chosen arbitrarily, and little can be

said about the material being modeled. Although generalized springs may be

employed to preserve areas and volumes, it is difficult to incorporate continuous

material properties (Nealen et al., 2006). Even though they are not as accurate

as other methods, MSDS are acceptable for many CGI applications in motion

pictures and games. They have been successfully employed in various applications,

such as cloth animation, facial animation, simulation of soft materials, and organic

active bodies (Baraff and Witkin, 1998; Terzopoulos et al., 1991; Terzopoulos and

Waters, 1990; Miller, 1988).

2.4.3 The Finite Element Method

The Voigt model can be regarded as a discrete (beam) “element” with which one

can assemble deformable truss structures. In elastic continua, however, it does

not suffice to apply the displacement method of analysis of beam and truss struc-

tures. Zienkiewicz and Taylor (2000) summarize the displacement formulation

introduced by Clough (1960) which, approximates the continuum with “finite

elements”, such that the continuum is idealized as an assemblage of individual

structural elements (Fig. 2.4); i.e., the structure is divided into small sections
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Figure 2.4: An example of a plane stress region divided into triangular-shaped

finite elements.

represented by appropriate elements, such as beams, plates, shells, or solids. The

elements are assumed to be interconnected at a discrete number of nodal points,

as shown in the figure.

A set of (usually polynomial) functions is chosen to uniquely define the state of

displacement within each element and on its boundaries in terms of its nodal dis-

placements. On each element, the physical behavior is described with the element

stiffness matrix Ke. The individual element stiffness matrices are assembled into a

global stiffness matrix K. The displacement u of elements is characterized through

the equilibrium equation, Ku = f , where f indicates nodal forces acting on the

elements. After imposing boundary conditions, numerically solving the equilib-

rium equation for the system yields the element nodal displacements. The nodal

displacements are then used in structural analysis to compute the stress within

elements. For the relevant mathematical basis of the theory, see Appendix B.

Goksel and Salcudean (2009) used the FEM with linear-strain quasi-static

elements to simulate the deformation of tissue mimicking a gelatin phantom with

a soft cylindrical inclusion. For fixed nodes, they applied boundary conditions to

the precomputed stiffness matrix by zeroing its corresponding rows and columns.

They modeled probe interaction (indentation) as displacement constraints on the
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Figure 2.5: Simulated (upper) and acquired (lower) images with 0, 5, and 10 mm

indentations for the probe tilted at 15 degrees; from (Goksel and Salcudean, 2009).

closest surface nodes. The mesh with 493 nodes and 1921 tetrahedra elements

is generated by using off-the-shelf software. Real-time simulation of ultrasound

images is achieved by mapping the 2D slice pixels back to the normal undeformed

volume using their algorithm for fast image synthesis. An example of synthetic

ultrasound images is shown in Fig. 2.5. In this example, in the FEM, the Young’s

moduli for the tissue and the cylinder were set to 15 KPa and 5 KPa, respectively,

and a Poisson’s ratio of 0.48 was used for all the elements.

2.4.4 Other Deformable Modeling Techniques

The FDM discretizes the problem’s domain into a uniform grid of a finite num-

ber of points, and it approximates the derivative expressions in the differential
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equations using finite differences (Strang, 1986). The solution (a pointwise ap-

proximation) is obtained using explicit, semi-implicit, or fully implicit schemes.

Terzopoulos et al. (1987) in their seminal computer graphics work use the FDM

to discretize continuous variational derivative of defined deformation energy func-

tionals, and use semi-implicit integration to obtain the solution.

The BEM finds a solution to the system of governing equations which may

be represented with boundary integral equations (BIEs). The boundary of the

problem’s domain is piecewise discretized into so-called boundary elements (El-

Zafrany, 1993). The BEM is well-suited to the simulation of linear elastic isotropic

and homogeneous materials (for which there exists a Green function) when the

mesh topology remains fixed. Oftentimes in linear problems, the dimensionality

of the problem is reduced by one, which results in data and CPU time reduction.

In fact, the BEM has the important advantage over the FEM of not requiring the

construction of a volumetric mesh, but is not well suited to simulating cutting.

The FVM was introduced to the computer graphics community by Teran et al.

(2003). The method divides a continuum, in deformed configuration, into discrete

regions around nodes. Nodal forces are computed from the surface integral, which

reduces to the sum of simple products of element face area, stress tensor, and

face normal, where the stress tensor is constant within an element when linear

shape functions are used. The FVM relies on a geometrical framework, so it is

intuitive and simple to understand. The relevant mathematical basis of the theory

is reveiwed in Appendix C.

A comprehensive review of other deformable models, such as mesh-free and

reduced deformation methods, can be found in Nealen et al. (2006).
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2.4.5 Mesh Generation

Mesh generation represents the first step of any finite element method that engi-

neers have to implement when the theoretical analysis of the problem is complete

(Ciarlet and Lions, 1996). The mesh is responsible for the accuracy of the solu-

tion, so it is very important to capture the geometry of the domain and carefully

approximate the boundaries of the domain. The definition of a mesh consists of

connectivity between vertexes, its topology and of the coordinates of vertexes.

A mesh can either be structured (also referred as a grid), or unstructured—its

topology must be explicitly defined using a connectivity matrix.

Finite element solvers require a conforming mesh (without overlapping or in-

tersecting elements and with some continuous properties at element interfaces).

Ciarlet and Lions (1996) classified mesh generation methods in two main classes,

and outlined the most popular methods accordingly. The first class corresponds to

the algorithm complexity while the second corresponds to the field of applications

in terms of the geometry to which the algorithms apply.

Automatic mesh generation (i.e., without user intervention) may be achieved

with quadtree/octee type methods (Yerry and Shephard, 1985), advancing-front

methods (Peraire et al., 1987) and Voronoi type methods (George et al., 1991).

Molino et al., motivated by crystallography, use a body-centered cubic (BCC)

mesh to generate a mesh whose connectivity is suitable for large deformations

(Molino et al., 2003). The method is successfully applied in Teran et al. (2003).

In medical imaging, mesh generation typically requires image segmentation

and labeling (marking voxels as inside or outside of some anatomical structure)

(Archip et al., 2006). Goksel and Salcudean (2010) present variational modeling

approach, which is more appropriate for soft tissue domains. They group voxels

of similar intensities into elements while maintaining good element quality for the

FEM. An example of optimized structured mesh overlaid on a synthetic phantom

26



Figure 2.6: Synthetic phantom mesh optimized using λ = 0.05 (left column) and

λ = 0.3 (right column), shown as meshes’ overlaid in the image (top row) and the

corresponding image approximations (bottom row); from (Goksel and Salcudean,

2010).

is shown in Fig. 2.6.
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CHAPTER 3

The Ultrasound Training Simulator

In this chapter, we will review the commercialized version of our simulator and

discuss how we acquire and process real-patient-based simulation data.

3.1 The Simulator

Our simulator, has been commercialized by SonoSim, inc., and is a part of the

SonoSim R© Ultrasound Training Solution product. The SonoSim R© Personal Solu-

tion consists of hands-on scanning (the simulator), didactic courses, and knowl-

edge assessment. Fig. 3.1 shows the SonoSim R© laptop-based Turnkey Solution

that delivers an expansive array of courses, assessments, and hands-on training

cases.

The hands-on scanning of the SonoSim R© Ultrasound Solution provides the

following basic feature set (Fig. 3.2):

1. Vitual human body

A photorealistic three-dimensional human body model that accurately de-

picts anatomical structures.

2. Virtual ultrasound probe under interactive control and array beam

This feature accurately depicts how the array beam traverses anatomical

structures to create the ultrasound image in the display window.

3. Functional ultrasound unit display window
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Figure 3.1: SonoSim R© Turnkey Solution. Copyright SonoSim, Inc.

Figure 3.2: The SonoSimulator R© features. Copyright SonoSim, Inc.
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The ultrasound display window simulates a real ultrasound unit, including

the ability to modify image gain and depth, save and review obtained images,

and measure anatomic structures.

4. Ultrasound beam array penetration correleated with underlying layers of

anatomy

Anatomic Layers can be removed to reveal underlying anatomy, allowing

the user to correlate the ultrasound image to relevant anatomic structures.

5. Appropriate ultrasound probe-type (i.e., physical footprint) and array beam

This helps the user recognize which transducer to use when performing an

actual scan.

6. Moving probe along different points of the body

The navigation button allows a user to move along different regions or more

discrete points along the body.

7. Teaches exact probe motion required for optimal ultrasound window acqui-

sition

The ultrasound display window depicts images that correspond to probe

movements with extremely high fidelity and real-time performance.

8. Optimal ultrasound window acquisition guidance

Probe-positioning assistance, for Longitudinal and Transverse window ac-

quisition, allows for virtual hand-holding during image acquisition.

9. Apply compression over structures of interest

The up and down compression buttons will allow you to compress or de-

compress the structure immediately beneath the transducer (e.g., compress

a vein).

10. Vast library of real patient-based SonoSim R© Cases
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The Case List button provides immediate access to a wide-ranging and ever-

growing SonoSim Case Library.

11. Individualized SonoSim R© Case narrated tutorials

The Findings button provides immediate, expert feedback. A narrated ver-

sion of the original ultrasound clip describes what users should recognize

while scanning a corresponding SonoSim R© Case.

Recording patient-specific cases requires quick action. From the moment a

patient arrives to a hospital for an exam there is very limited time when data

acquisition can be performed. In addition, examination rooms are in most cases

very small with no space for additional and cumbersome equipment such as con-

ventional 3D ultrasound systems. Therefore, data acquisition must be performed

using small and portable ultrasound systems. The image quality of portable sys-

tems nowadays is of comparable quality to standard ultrasound systems, but they

lack the ability to capture 3D ultrasound. To overcome this problem, a very com-

mon approach is to track the position and orientation of the ultrasound probe

using magnetic or optical motion trackers, and to reconstruct the volume offline.

Magnetic motion trackers utilize sensors placed on the body to measure the

low-frequency magnetic field generated by a transmitter source. The sensors and

source are cabled to an electronic control unit that correlates their reported lo-

cations within the field. They have limited working space and are very sensitive

to magnetic fields. Optical trackers are sensitive to lightning conditions and re-

quire a clear line of sight between the camera and markers, which is hard to

achieve in small exam rooms. Both magnetic and optical motion trackers require

sophisticated calibration. The role of calibration is to find the mathematical

transformation that converts the 2D coordinates of pixels in the ultrasound image

into 3D coordinates in the frame of reference of a position sensor attached to the

ultrasound probe (Mercier et al., 2005).
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Figure 3.3: Compression of vessels (vein and artery) in the soft tissue.

On the other hand, 3-DOF motion trackers, such as the InterSense iCube3

motion tracker based on gyros and electromagnetic sensors, provide robust and

precise orientation. It is small in size and easy to mount on any conventional ultra-

sound probe, and transmits data to PC via USB without any additional hardware

box, all of which makes it suitable for data acquisition. The lack of information

about the probe position can be compensated by introducing a scanning protocol

where the sonographer is instructed to do a fan swipe by maintaining the position

as much as possible, while the patient is instructed to hold his/her breath. How-

ever, the surface of the body is slippery and soft, so small movement is inevitable.

The virtual body and ultrasound data in our initial simulator are static and

behave as a rigid object; i.e., the system does not model soft-tissue mechanics and

deformation. This is very important in many medical care procedures, such as

ultrasound guided central venous catheter (CVC) placement which is becoming a

standard (Rothschild, 2001). The difference between a vein and an artery can be

determined by compressibility and shape. While veins are completely compress-

ible, have thinner walls, and ovoid shape, arteries are difficult to compress, have

thicker walls, and are circular in shape (Fig. 3.3). Veins can collapse completely

and may be difficult to identify if the patient is upright. Blind techniques which

simply rely on anatomical landmarks to estimate location of vessels result in a

complication rate of more than 15 percent (McGee and Gould, 2003).
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3.2 Data Acquisition

In our system (Petrinec et al., 2011) the ultrasound volume is constructed using the

freehand method. In other words, the ultrasound volume is acquired by sweeping

a conventional 2D probe over the area of interest, and formed by stacking up the

resulting brightness scans (B-scans). The data acquisition system consists of the

following components (Fig. 3.4):

• SonoSite R© M-Turbo
TM

portable ultrasound system with C60 5-2 MHz curved

array transducer,

• InertiaCube3
TM

(InterSense, Inc.) motion tracker with three degrees of free-

dom (3-DOF),

• a laptop computer, and

• a digital camera.

The motion tracker is attached to the ultrasound probe and connected to

a laptop computer through a USB port. The tracker detects a full 360 degree

range of motion about each of 3 axes (roll, pitch, and yaw). Furthermore, a

180 Hz update rate virtually eliminates tracker-induced latency. Calibration is

required to establish the rigid body transformation between the sensor and the B-

scan. The rotational components of the transformation can be reduced to zero by

attaching the axis of motion tracker parallel to the image of B-scan. In that case,

the transformation consists of translation only, which can be manually measured.

The motion of the probe is constrained to the rotation around a pivoting point

preferably creating a fan scan, which is ideal for scanning through small acoustic

windows such as the ribcage.

33



Figure 3.4: A view from camera which is used in data acquisition. A sonographer

holds an ultrasound probe with motion tracker mounted on it. The ultrasound

machine in the background shows captured B-scans. A laptop, which is not visible

in the image, simultaneously captures the timestamps. Camera-captured video is

used for the temporal registration of images and timestamps.

3.2.1 Data collection using a freehand fan scan method

The probe is moved steadily by hand, maintaining a constant contact pressure

throughout the scan, with the extent of motion estimated by the user observation

of the ultrasound B-scan screen until the region of interest is covered. An example

of such a scan over the left upper quadrant (LUQ), capturing the left kydney and

the spleen, is shown in Fig. 3.5. The computer asynchronously reads and stores

the orientation of the probe and adds a timestamp, denoting the time at which the

orientation is obtained. At the same time, ultrasound B-scans are being captured

and stored in the Digital Imaging and Communications in Medicine (DICOM)

standard format. The acquisition of ultrasound imagery and timestamps is started

approximately at the same time. The precise delay between the two starts is

determined from the video taken by the camera and used later for the precise

registration of the dataset probe orientation and ultrasound imagery data streams.

One must keep in mind that there are many potential sources of error in the
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Figure 3.5: Visualization of a fan scan captured on PC using a motion tracker.

freehand 3D ultrasound system. Treece et al. (2003) divided errors in five groups:

1) errors in the B-scan images themselves, 2) the readings from the position sensor,

3) temporal matching of B-scans and positions, 4) location of the B-scan relative

to the position reported by the sensor, and 5) errors in 3D reconstruction of B-

scans. In addition to those errors, the final reconstruction may be distorted by

the motion of internal structures of the body, such as breathing or heart beating

when the sweep motion is not fast enough to capture the moving structure in a

small approximately still period of time.

3.2.2 Data collection using a freehand linear scan method

Despite many potential sources of error, the fan scan method previously described

results in high quality 3D volumes when the sources of error are avoided. However,

the size and shape of the volume are inadequate for the simulation of deformation

when the virtual probe has to move away from the pivoting point. Then, instead

of fanning around a fixed point, the 3D volume can created from a linear scan.

For 3D reconstruction from the linear scan, it is not enough to know the position

and orientation of sensor, but also the sensor must be calibrated; i.e., the position

and the exact rigid body transformation between the sensor and the B-scan must
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be known. Prager et al. (1998) use a cross-wire phantom of known geometry

filled with water. First, they scan the crossing from multiple probe positions and

orientation. Then they detect the position of the crossing in the acquired B-scans.

Finally, they find the transformation matrix by solving an overdetermined system

of nonlinear homogeneous equations using the Levenberg-Marquardt algorithm

(More, 1978).

Calibration processes require calibration rigs and are labor intensive and time

consuming. However, rectangular 3D volumetric data can be acquired even with-

out a sensor attached to the probe, and many ultrasound machines have that

functionality embedded. This requires strict and precise probe motion; i.e., a

linear scan must be acquired by sweeping linearly across the skin while making

sure that 1) the orientation of the probe beam is perpendicular to the direction

of probe, 2) the motion is in a straight line, 3) that the velocity of the motion

is constant, and 4) the velocity of the motion tracker is such that the distance

between acquired 2D ultrasound images is approximately equal to the resolution

of the images. The latter constraint simply means that the scan must be slow

enough to ensure good quality of slices sampled in the direction orthogonal to the

direction of the linear scan.

Fig. 3.6 shows several slices from a linear scan acquired across the vessels,

nerves and muscles of the left upper arm. The scan is acquired using a GE Logiq

E9 machine with a linear transducer ML 6-15. The probe beam is 5 cm wide

and the depth is set to 4.5 cm. The linear scan is 10 cm long and consists of 136

images.

3.3 Reconstruction of the Volumetric Data

In our approach, data reconstruction is based on the Pixel-Based Methods (PBM)

described in (Solberg et al., 2007), and it consists of four stages:
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(a) Image 10. (b) Image 30. (c) Image 50.

(d) Image 70. (e) Image 90. (f) Image 110.

Figure 3.6: Images from a linear sweep scan applied across the left upper arm.
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1. Preprocessing of images and timestamps. A number of scaling, alignment,

offset, and image modifications are applied to provide a consistent and or-

ganized baseline for further processing. This results in unique timestamps

for each preprocessed image and an identified region of interest (ROI).

2. Volume size computation. The geometric relationship between the ROI and

source data geometric parameters, including pivot points and orientation

angles, is used to compute an affine transformation per image, which is then

applied to each image to project it as the boundary of a slice in 3D Cartesian

space in voxel units.

3. Pixel-based reconstruction. Two blocks of memory are utilized in the recon-

struction process: one for volume, and the other for a mask which will keep

track of which voxels were set and how many times each voxel was visited.

For all images, two adjacent images are taken and projected into the vol-

ume by applying corresponding transformations to all image pixels. Also,

all voxels on the line between corresponding pixels of the two images are

linearly interpolated (Fig. 3.7). Voxels visited multiple times are averaged.

4. Iterative reconstruction. After pixel-based reconstruction there may be vox-

els that were not masked. Those voxels are set to the average value of

adjacent voxels and the process is iterated until all voxels are assigned val-

ues.

In the simulation of ultrasound B-scans from 3D volumes, the virtual probe is

positioned at the origin of the reconstructed 3D volume. Given the yaw, pitch, and

roll angles of the probe, which are received from a motion tracker embedded in the

peripheral probe held by the simulator user, the corresponding transformation is

computed and applied to the coordinates of pixels in an image, which results in the

coordinate of the corresponding voxel. The coordinate falls inside a voxel cube.
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Figure 3.7: PBM reconstruction method. 3D voxel grid is shown as 2D grid

symbolizing the centers of the voxels. 2D input images are illustrated as lines

where the pixel centers are marked with circles.

To obtain the voxel intensity, trilinear interpolation is used, and the corresponding

pixel is set to the value of that voxel.

Our approach naturally yields realistic ultrasound images, because images are

sliced from volumes created from case-specific (real-patient) data. A comparison

of an original and a simulated image is shown in Fig. 3.8.

An example of two slices, one in the scaning plane and the other in the or-

thogonal plane, from volumetric data reconstructed from the linear scan is shown

in Fig. 3.9(a) and 3.9(b), respectively. Fig. 3.9(a) corresponds to Fig. 3.6(d). The

orthogonal reconstructed slice in Fig. 3.9(b) demonstrates that high quality volu-

metric data can be acquired even using a sensor-less freehand linear scan method;

i.e., without motorized transducers or probes equipped with 6-DOF sensors.

3.4 Segmentation

We will later need to quickly segment arteries, veins, nerves, and bones in vol-

umetric ultrasound data. Vessels, nerves, and bones appear as smooth tubular
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Figure 3.8: B-scans of Morison’s pouch. Comparison of an original scan used in

volume reconstruction (left) and a scan simulated from a reconstructed volume

(right).

(a) Slice from reconstructed volume. (b) Orthogonal slice from reconstructed

volume.

Figure 3.9: An example of 3D reconstruction from a linear scan of the left upper

arm. Visible structures: basilic vein (1), median nerve (2), brachial veins (3),

brachial artery (4), and the humerus (5).
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Figure 3.10: Shape morphing.

structures mostly parallel to the skin, and cross-sections of those structures do not

change abruptly from slice to slice. Driven by those two observations, we created

a tool which allowed us to speed up segmentation simply by skipping slices and

interpolating them. In another words, the idea is that the user draws a curve on

the boundary of a vessel in one slice, then skips several slices, draws a curve on

the boundary of the same vessel in another slice, and then the tool automatically

interpolates curves on slices between.

Given the two curves, a source curve and a destination curve, the interpolation

is done as follows. First, we subdivide (resample) both curves into the same

number of segments. Then, we find the center of curves and select the same

starting points (points at the same arbitrary angle with respect to the center).

Then, for each point in the starting curve, we find a corresponding point in the

destination curve and use linear interpolation to find points for all in-between

curves. Fig. 3.10 shows an example of shape morphing. A red triangle is morphed

into a green square. Piecewise linear contours (polygons) represent interpolated

shapes (irregular convex hexagons) where one of them in the middle is filled.

Fig. 3.11 shows another example of shape morphing. A red shark is morphed into

a green cat.

More sophisticated curve (shape) morphing, also known as shape blending, can

be applied. For example, Yang and Feng (2009) interpolate the path along the
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Figure 3.11: Morphing a cat into a shark.

curve based on feature correspondence. Similarly to our method, they resample

the source and destination curves, but then they detect feature points which de-

limit each curve into meaningful parts of the curve. The algorithm automatically

establishes one-to-one correspondence between feature points and computes the

trajectory of corresponding features.

Fig. 3.12 illustrates our tool for semi-automatic segmentation. The user can

draw a curve on the boundary of vessel in one slice, then skip slices that appear

similar or change slowly, and then draw a curve on the boundary of a vessel in

another slice. Then, when the user releases the mouse, all skipped slices are

automatically filled in by using linear curve morphing (curve interpolation).

Using our method vascular structures can be quickly segmented from 3D ultra-

sound data. Fig. 3.13 shows three orthogonal slices from a 3D ultrasound image

of the neck artery and vein. The veins are segmented in less than 10 minutes.

The 3D reconstructed surface reveals branching of the vein.

3.5 Surface Reconstruction

We have applied the marching cubes algorithm to a synthetic volumetric data of

size 101×101×101 with an embedded sphere. Fig. 3.14(a) shows the isosurface of

a sphere extracted from 3D volumetric data using the marching cubes algorithm.

Initially the rough surface is refined by using Gaussian filtering (Fig. 3.14(b)).

After 10 iterations the surface is still not entirely smooth. To obtain a smoother

surface, more filtering iterations are necessary. However, the more iterations that

42



(a) First boundary drawn by the user.

(b) Second boundary drawn; in-between slices auto-interpolated.

(c) Interpolated slice.

Figure 3.12: An example of our semi-automatic segmentation with shape morph-

ing. Two orthogonal slices from a 3D ultrasound data.

43



Figure 3.13: An example of the neck artery (red) and vein (blue) segmented using

our semi-automatic segmentation with shape morphing. Three orthogonal slices

from a 3D ultrasound data and 3D surface reconstruction.
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(a) No filtering (b) 10 iterations of filtering

Figure 3.14: Isosurface of a sphere extracted from a 3D volumetric data without

and with Gaussian filtering.

are applied, the smaller the surface becomes. The shrinkage is demonstrated on

two overlapping spheres in Fig. 3.15. After 5000 iterations, the two spheres are

barely visible.

Fig. 3.13 demonstrates the application of marching cubes and 10 iterations of

filtering to the 3D reconstructed surface of the blood vessels of the neck (internal

jugular vein and carotid artery).
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(a) No filtering (b) 10 iterations of filtering

(c) 100 iterations of filtering (d) 1000 iterations of filtering

(e) 2000 iterations of filtering (f) 3000 iterations of filtering

(g) 4000 iterations of filtering (h) 5000 iterations of filtering

Figure 3.15: Surface shrinkage with Gaussian filtering.
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CHAPTER 4

Simulation of Ultrasound Compression

In this chapter, we will present our approach for the simulation of ultrasound

compression and discuss the system components related to this functionality. We

will also compare two deformable model simulation methods that we use for the

simulation. Finally, we will present our results.

4.1 Introduction

To develop a model for real-time simulation of ultrasound compression, we need

to make a series of decisions. We need to decide on a geometric description of

the object, a mathematical model of the elastic deformation, and a fast solution

algorithm. We need a robust model with consistent and predictable behavior,

and realistic simulation with visually pleasing results. To achieve those goals, we

first evaluate two well-known deformable model simulation methods: mass-spring-

damper systems (MSDS), and the finite element method (FEM) with a quasistatic

solution of isotropic linear elastic materials with Cauchy strain.

The finite element method, which is described in Appendix B, is a well-known

method for the simulation of volumetric solid soft bodies. Instead of reinventing

the wheel, we use OpenTissue, an open-source library for physics-based animation.

OpenTissue contains a collection of algorithms and data structures written in an

object oriented style and optimized for interactive modeling and simulation. The

interactive speed of the simulation is achieved by using quasi-static stress-strain
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Figure 4.1: System block diagram.

simulation; i.e., by using an iterative solver with the conjugate-gradient method.

A comprehensive evaluation of other open-source interactive physics engines for

simulation systems and game development is presented in Boeing and Bräunl

(2007).

Mass-spring-damper systems, described in Section 2.4.2, are easy to imple-

ment and have a low computational complexity. We use explicit Euler numerical

integration, which is fast, but unstable for large time steps. To ensure stability,

we choose relatively small time steps and we overdamp the MSDS; i.e., we set

the spring and damping constants so that the system remains stable even when a

large external force is applied.
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4.2 System Integration

The ultrasound training system for the simulation of compression is illustrated by

the block diagram shown in Fig. 4.1. The system consists of six major components:

1. Database of real-patient volumetric ultrasound data

The database contains a number of data sets acquired either with a 3D

ultrasound probe, or data reconstructed from 2D ultrasound B-scans. The

data, which is typically stored in the Digital Imaging and Communications in

Medicine (DICOM) standard format, is preprocessed in such a way that only

raw 3D data with spacial information is preserved. All other information,

such as patient ID, name, age, or pathology, is stripped from the data sets.

In addition to real-patient data, each data set contains segmentation data

created using the semi-automated segmentation method described in 3.4.

2. Deformation of volumetric data simulator

The simulator encapsulates two deformable model simulation methods: mass-

spring-damper systems (MSDS), and the finite element method (FEM) with

a quasistatic solution of isotropic linear elastic materials with Cauchy strain.

A unique interface created for the simulation libraries permits the real-time

switching and comparison of the methods. The simulator takes the position

and orientation of a collider, handles the collision, and computes the new

state of the nodes in the mesh.

3. Slice interpolation module

The slice interpolation module samples and interpolates the ultrasound im-

age over the deformed mesh. It takes the probe position and orientation,

probe beam parameters, volumetric data, and mesh in the undeformed and

deformed state, to create a 2D ultrasound image that is displayed on the

screen.
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4. Skin deformation simulator

The skin deformation simulator uses a mass-spring-damper system (MSDS)

to simulate a visually pleasing surface deformation. The edges of the trian-

gular mesh are replaced with springs. To provide resistance and to ensure

that surface returns to initial position when the collider is removed, all nodes

of the mesh are anchored with zero-length springs.

5. Interactive user interface

The user interface consists of an interactive 3D display with a deformable

virtual body, virtual probes, and a simulated ultrasound slice; and dialogs

for setting the FEM, MSDS, and simulation parameters (Figs. 4.2, 4.3, and

4.4). The user can rotate or zoom in/out the display, or rotate and move

the probe with a mouse. The user can also select a case using a case list

dialog.

The deformable virtual body has a rigid skeleton, deformable skin, and sim-

ulated deformable structures embedded into the tissue (isosurfaces of vessels

and nerves). The triangular mesh of the skin deforms when the virtual probe

(collider) attempts to penetrate, and returns back to its original shape when

the collider is not in contact. Isosurfaces of the segmented regions of real-

patient data are embedded into the mesh and follow the deformation of the

mesh. The user can look under the skin and examine how segmented struc-

tures move. For example, unlike arteries, veins under pressure will deform

and even completely collapse.

6. Motion tracking system

The motion tracking system controls the position and orientation of the

virtual probe. Different systems may be used to control the probe; for

example, a single camera optical tracking system, a 6-DOF mouse, or a

haptic device. Our optical tracking system, which uses a single camera to
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Figure 4.2: Settings dialog for the FEM parameters.

track the positon and orientation a dodecahedron with unique patterns, is

described in Appendix D.

The arrows in the block diagram (Fig. 4.1) show the flow of information. The

motion tracker moves the virtual probe which interacts with the tissue deformation

simulator and the skin deformer. The probe, approximated by a sphere, applies

force to mesh nodes in the collision volume (inside the sphere). The (un)deformed

meshes are passed to the slice interpolator. In addition to the tissue mesh, the

interpolator also takes the probe position and orientation from the motion tracker,

and case-specific real-patient data from a data base. Then it projects slice pixels

into the deformed mesh, takes corresponding points in the undeformed state, and

sets pixels intensities to voxel intensities interpolated from the volumetric real-

patient data. The interpolated slice is shown in the graphical user interface display

as a 2D image. The skin deformer modifies the nodes and surface normals of the

skin mesh.

4.3 Simulation of Skin Deformation

In our initial implementation, we embedded the skin of the virtual patient directly

into the soft-tissue deformation mesh. When we applied pressure to the mesh, it
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Figure 4.3: Settings dialog for the MSDS parameters.

Figure 4.4: Settings menu for the simulation parameters.
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caused the skin to bulge on the edges where the skin intersected the mesh. Even

though the deformation of the skin inside the mesh looked satisfactory, the abrupt

changes in the skin exposed the rectangular shape of the mesh, which was not

visually pleasing.

To prevent sudden and unnatural skin deformation around the intersection

with the tissue mesh, we decided to simulate the skin separately from the tissue.

The skin is simulated as a MSDS with a single-layer mesh. We use the same

collision model for both systems; i.e., when the probe is in contact, the collider,

which approximates the shape of the probe, applies a repulsion force to the nodes

of both meshes—the skin and the soft-tissue mesh. As a result, the skin is nicely

deformed under contact with the probe, and there are no visually unpleasing

deformations where the skin crosses the tissue mesh.

4.4 Comparison between FEM and MSDS

In real-time soft-tissue simulations, the speed of deformation simulation algo-

rithms is more important than accuracy. Rather than having scientifically ac-

curate soft-tissue simulation which may take minutes or hours per frame, we are

more interested in less accurate methods which can run in real-time and which can

provide visually pleasing results. The FEM with a quasistatic solution of isotropic

linear elastic materials with Cauchy strain is often used in real-time systems, as

well as the MSDS method.

In order to evaluate the two methods for ultrasound simulation in deformable

tissue, we must make sure that both simulations have approximately the same

dynamic response. Thus, the problem is how to achieve similar dynamic response

with the two fundamentally different systems.

To achieve similar dynamic response, we create FEM and MSDS of the same

size with the same number of nodes as follows: First, we create an FEM system
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and set its material properties to produce a stable, over-damped dynamic response.

Then we apply the following algorithm to create an MSDS with a similar dynamic

response:

Algorithm FEMToMSDS(tets,springs)

Inputs:

- tets: List of FEM tetrahedra

Outputs:

- springs: List of MSDS springs

Algorithm:

1. For all tetrahedra T in tets

2. For all edges E in T

3. Let pA and pB be the vertex coordinates of edge E

4. Let SE be a spring between pA and pB
5. Set the spring constant of SE: ks (SE) := Tyoung ∗ 0.002

6. Set damping factor of SE: kd (SE) := 0.1 ∗ ks (SE)

7. Find the spring Q in springs

8. If Q does not exist in springs then

9. Add SE to springs

10. Else

11. Update the spring constant of Q: ks (Q) := ks (Q) + ks (SE)

12. Update the damping constant of Q: kd (Q) := kd (Q) + kd (SE)

13. EndIf

14. EndFor

15. EndFor

The algorithm converts all the edges of the FEM mesh tetrahedra into springs.

Spring constants are set to the Young modulus of the tetrahedra multiplied by

a constant value, which we empirically found to yield similar dynamic response.

Damping constants are set to the spring constant multiplied by an empirically

found constant which results in stable, over-damped dynamic response. Duplicate

springs are merged by summing spring and damping constants. Fig. 4.5 illustrates

the process on two adjacent tetrahedra with connected faces.
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(a) (b) (c)

(d) (e)

Figure 4.5: Converting FEM into mass-spring-damper system.

In addition to yielding a similar dynamic response, the algorithm creates an

MSDS of the same topology as the FEM, with the same number of nodes, and

preserves the size.

4.5 Slicing the Deformed Mesh

Given a regular mesh and volumetric data embedded in the mesh, the challenge

is to synthesize 2D images (slices) from the deformed mesh in real-time. For

example, Fig. 4.6(a) shows a regular 5× 5× 5 mesh in undeformed configuration.

It comprises 125 nodes and 320 conforming tetrahedrons. Fig. 4.6(b) shows the

mesh deformed when a probe applies pressure on the top side of mesh. A slice

plane cuts a number of tetrahedrons in the deformed mesh. The cut consists of

triangles and rectangles, as shown in various colors in Fig. 4.6(c).

For each pixel in the slice, we can easily find the corresponding voxel intensity.

First, we must find the exact 3D position of the pixel in the deformed mesh. One

can precompute the slice transformation and apply it to the pixel. Then, one

must find which tetrahedron contains the pixel, compute barycentric coordinates,
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(a) Undeformed mesh. (b) Mesh deformed by probe.

(c) Slice cut from de-

formed mesh.

Figure 4.6: Slice cutting.
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and use these barycentric coordinate to find a 3D coordinate in the undeformed

mesh. Finally, one must sample the volumetric data to obtain the voxel intensity

and set the pixel to that intensity.

Doing this for every pixel is inefficient and too slow for real-time applications.

Goksel and Salcudean (2009) proposed an algorithm for fast ultrasound image

simulation. They exploit the fact that mesh tetrahedrons are much bigger than

image pixels, so numerous image pixels are enclosed by a tetrahedra cut by the

image. They build a data structure where for each pixel they store the index

of the tetrahedron which intersects the image. In the first pass, they look for all

intersections of faces with the image. A pixel may be intersected by multiple faces

of the tetrahedra. To assign the correct element to the pixel, they topologically

sort all tetrahedra cross sections, top to bottom, or column-by-column. Subse-

quently, they use a scan-line approach to find tetrahedra of pixels with unassigned

tetrahedra.

Our approach

In our approach, we first create a list of tetrahedrons which intersect bounding

boxes of deformed tetrahedrons. Then, we process slice pixels row-by-row. In

each row, we take a pixel Pa at the far left and Pz at the far right. If they fall

into same tetrahedron, then we linearly sample voxels from interval [Pa, Pz] in

the undeformed configuration. Otherwise, we take a pixel Pm in the middle and

recursively apply the same to intervals [Pa, Pm−1] and [Pm, Pz] while a < z − 1.

To speed up the search for tetrahedrons, we split the slice into M regions, and

for each region we create a list of tetrahedrons crossing the region. We analyzed

the trade-off between the number of regions and the speed of algorithm, and we

empirically found that we achieve the best results when M equals 32.

To summarize, the major differences between our approach and the approach
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of Goksel and Salcudean (2009) is that we scan and set the image pixels row-by-

row, and we use row subdivision to find and set pixels inside the same tetrahedron.

Moreover, our approach is more simple and easier to implement because it does

not require topological sorting.

4.6 Deformable skin

Pressing the ultrasound probe against the skin may cause significant and visible

deformation to the skin and underlying tissue. In order to make the simulation

of compression as realistic as possible, it is desirable that the skin of the virtual

body also be deformable.

The skin of the virtual body is a surface which consists of a number of trian-

gular faces. The faces share edges and vertices with adjacent faces. We simulated

the deformation using MSDS. Vertexes of the triangles are represented with par-

ticles, and edges of the triangles are represented with springs. The virtual probe,

when in contact with the surface, applies external force to particles in collision,

forcing them to move away. However, this forces the whole surface to drift away

from its initial state if it is not properly constrained.

One way to prevent the drift is by anchoring the surface to the skeleton with

a mesh of springs. Terzopoulos and Waters (1990) create a physically-based 3D

model of the human face with three layers of mass-spring elements representing the

muscle layer and two layers of skin (dermis and epidermis). The bottom surface

of the muscle layer is fixed in bone. Facial expressions are controlled by muscle

contraction. A benefit of this approach is that the surface deforms together with

the skeleton and muscles; e.g., when the skeleton (jaw) moves, the skin (face)

follows it.

In our work, the skeleton is rigid and the muscles are not active, so modeling

the skin with an underlying mesh fixed in bone would introduce unnecessary
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Figure 4.7: A cross-section of a surface (black) deformed by a sphere (green).

External forces (blue) are applied to nodes in collision. Zero-length springs (red)

pull the surface back to its initial shape (horizontal dashed line).

complexity and take more processing time. Instead, we prevent the remainder

of the skin from drifting by anchoring the entire surface to the initial position

by attaching zero-length springs to all particles. Zero-length spring consumes

no space initially, but can stretch. This allows the surface to move away from

a colliding object and ensures that the entire surface returns to its initial state

when the external forces are removed. For bodies with rigid skeletons, this results

in realistic simulation and allows for simple and efficient implementation.

Fig. 4.7 demonstrates the interaction between a sphere and a surface. An

external (repulsion) force is applied to the surface particles that are in collision

with the sphere. Zero-length springs resist the external forces, causing the surface

to deform away from the sphere. This is also demonstrated in Fig. 4.8. A part

of the surface stays in contact. The large repulsion force will push away the

surface from the sphere surface, but may cause unstable behavior (oscillations or

divergence).
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Figure 4.8: A 3D example of the interaction between the skin and a spherical

object.

4.7 Simulation Results and Discussion

All the results described in this section were simulated and rendered in real-time

on a laptop with a 2.8 GHz Intel R© Core
TM

2 Duo CPU, and an nVidia R© GeForce R©

9600 M GT graphics card. We generated the tetrahedral regular meshes for the

FEM and MSDS off-line. To create the surfaces of vessels and nerves, we used the

approach described in Sections 3.4 and 3.5.

The experiment was in two parts. In both parts we used the MSDS and

FEM, for the integration and we used a time-step of 0.01 seconds, and we ran

20 iterations per frame; i.e., the FEM ran 20 conjugate gradient iterations per

frame, and the MSDS ran 20 explicit Euler iterations per frame. The parameters

of the MSDS were empirically set to match the dynamics of the FEM as described

in Section 4.4. We empirically found that similar dynamics is achieved when the

spring constant is set to 0.002 times the Young modulus of the corresponding

tetrahedron material and when the spring damping constant is set to 0.1 times

the spring constant.
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Table 4.1: Simulation times.

Mesh 20x10x10 24x12x12 28x14x14 32x16x16

Number of nodes 2000 3456 5488 8192

Number of tetrahedra 7695 13915 22815 34875

Simulation using MSDS (FEM) [ms] 30 (85) 50 (180) 80 (380) 130 (550)

Collision detection [ms] 0.3 0.4 0.6 0.9

Volume sampling [ms] 40 56 65 90

In the first part of the experiment, we simulated ultrasound images in de-

formable tissue using the MSDS and FEM. We measured the average time to

simulate mesh deformation, to respond to collision, and to sample the B-scan

image against four different mesh sizes, as shown in Table 4.1. The results show

that the deformation simulation time grows linearly with the number of nodes in

the mesh for both the MSDS and the FEM. The collision detection and response

took less than one percent of the time and it is negligible. The volume sampling

time also increases with the mesh size, but the ratio of the volume sampling time

versus the deformation simulation time declines as the number of nodes increases.

In the second part of the experiment, we investigated how the visualization of

segmented data (e.g., vessels, nerves, bones, etc.) affects the overall simulation

time. Similarly as in the first part, we simulated ultrasound images in deformable

tissue using the MSDS and FEM, but we measured the number of frames per

second (fps) versus four different mesh sizes, and against the simulation with and

without visualization of the segmented data (Fig. 4.10). Fig. 4.9 shows an example

of isosurfaces of nerves, vessels, and bone in the upper arm, which we used in the

simulation. It took about 4 seconds to create five isosurfaces with a total of 243224

triangles. The isosurfaces are embedded in the mesh and they deform when the

mesh deforms. The results in Table 4.2 show average simulation frame rates with
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Figure 4.9: Isosurfaces of ultrasound data roughly aligned with the skeleton of the

virtual model.

Table 4.2: Simulation frame rates, in frames per second (FPS).

Mesh 20x10x10 24x12x12 28x14x14 32x16x16

Without vessels using MSDS (FEM) 7.6 (5.8) 6.4 (3.5) 5.9 (1.9) 4.1 (1.4)

With vessles using MSDS (FEM) 4.6 (3.6) 4.2 (2.8) 3.5 (1.6) 2.9 (1.3)

and without the visualization of vessels (Figs. 4.11, and 4.12).

In both parts, we ran simulations on a laptop with a 2.8 GHz Intel R© Core
TM

2 Duo CPU, and an nVidia R© GeForce R© 9600 M GT graphics card. The results

demonstrate our method yields visually pleasing simulation of soft-tissue defor-

mation in real-time; i.e., the simulation of a system with approximately 22000

tetrahedra runs at more than 5 frames per second.
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Figure 4.10: Comparison of simulation times: mass-spring-damper system vs. the

finite element method.

63



Figure 4.11: Comparison of frame rates in the simulation without vessels:

mass-spring-damper system vs. the finite element method.
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Figure 4.12: Comparison of frame rates in the simulation with vessels:

mass-spring-damper system vs. the finite element method.
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CHAPTER 5

Volume Stitching

Ultrasound scans of body parts, such as arms or legs, always have rigid areas, such

as bones, which do not deform under pressure. As a consequence, nodes of the

finite element mesh that fall inside those areas can be fixed. Moreover, external

force or pressure applied to one part of the body typically does not deform other

parts of body when the skeleton is fixed. For example, a small pressure applied to

the upper arm deforms the skin and soft tissue of the upper arm, but affects tissue

negligibly in the lower arm, so it seems natural to simulate deformation only in

areas where the external force is applied.

5.1 Volume Stitching Idea

The idea behind volume stitching is simple: We divide a large mesh into smaller

overlapping meshes, attach zero-length springs to the overlapping nodes, and sim-

ulate deformations on the smaller meshes in parallel. Fig. 5.1 illustrates the idea

on a 2D mesh, which consists of 70 nodes arranged in a square grid with 14

columns and 5 rows. Nodes are connected with springs in horizontal, vertical, and

diagonal directions (Fig. 5.1(a)). First, the mesh is split in two parts, left and

right (Fig. 5.1(b)). The last two columns of the left part overlap with the first

two columns of the right part. Then, the overlapping nodes are connected with

zero-length springs (Fig. 5.1(c)). Note that we overlap two columns instead of one

in order to preserve continuity.
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The purpose of zero-length springs is to attract separated nodes. When two

overlapping nodes connected with a zero-length spring are separated, then the

zero-length spring applies a force proportional to the distance between the nodes.

The farther the nodes are, the bigger attraction (stitching) force.

The simulation of deformation with volume stitching is done in two alternating

steps:

1. Simulation of deformation

2. Recalculation of stitching forces

The deformation of meshes can be simulated sequentionally (mesh-by-mesh), or

in parallel (in multiple threads). Each mesh deformation is simulated iteratively

by using the FEM or the MSDS. In the odd step, run several iterations of the

mesh deformation simulation. In the even step, compute stitching forces and set

them as external forces acting on overlapping nodes. Then, repeat the steps.

At equilibrium, the sum of internal, external, and stitching forces acting on

the overlapping nodes is zero. As a result, overlapping nodes will not fully overlap

when the external force is applied to the mesh. This is illustrated in Fig. 5.2(a),

where a spherical collider is forcing the right mesh to deform, and zero-length

springs are pulling the meshes together. The bottom nodes of both meshes are

anchored. There is a gap between the meshes because the stitching force is not

strong enough to pull the meshes together. A stronger force will pull the meshes

closer, but never to zero distance, because of linear dependence on the distance.

The gap can be removed by displaying nodes in the middle; i.e., mid-points of the

overlapping nodes, as illustrated in Fig. 5.2(b).

For a large number of meshes, we can automatically disable the simulation

of meshes where no external force or force from zero-length springs is applied,

and that can significantly reduce the simulation time. We can also select inactive

meshes at random and allow them to come to fully to steady-state.
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(a) Oginal mesh with 14 x 5 nodes.

(b) Original mesh divided in two with 8 x 5 nodes each.

(c) Meshes connected with zero-length springs.

Figure 5.1: Volume stitching.
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(a) Gap between meshes

(b) Gap removed by using mid-points

Figure 5.2: Volume stitching gap fix.
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5.2 Results and Discussion

The volume stitching algorithm described in this chapter has been implemented

and tested on a laptop with a 2.8 GHz Intel R© Core
TM

2 Duo CPU, and an nVidia R©

GeForce R© 9600 M GT graphics card.

In our first test, we first simulated a uniform mesh using the FEM and MSDS.

The size of the mesh was 52×52×12. As shown in Table 5.1, the FEM simulation

took 2200 ms, and the MSDS simulation took 500 ms. Then, we divided the mesh

into 25 overlaping meshes, each of size 12 × 12 × 12, arranged in a 5 by 5 grid.

When we applied an external force to one mesh, then at most nine neighbors had

to be updated in each iteration step, and only one of the rest was simulated per

step, resulting in the simulation of a total of 10 out of 25 meshes. As a result, the

total simulation time for the 25 meshes was 800 ms for the FEM and 220 ms for

the MSDS simulation.

Even though the total number of nodes and tetrahedra in the stitched meshes

was much larger than the number of nodes and tetrahedra in a single large mesh,

the simulation time of stitched meshes was 2 to 3 times smaller.

It the test, we selected the 10th mesh at random. A better strategy is to find

the maximum stitching force between pairs of overlapping volumes and select the

volume with the largest maximum stitching force.

In our second test, we interactively increased the number of meshes, as shown

in Fig. 5.3, and measured the FEM and MSDS simulation times with and without

volume stitching. Table 5.3 compares the simulation step times with and without

selective stitching. Without selective stitching, the simulation step time increased

with the number of meshes. On the other hand, the simulation step time with

selective stitching increased until the number of stitched meshes was 10, and then

remained constant above 10. The FEM simulation took 3-4 times longer than the

MSDS simulation.
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Table 5.1: Simulation times with and without volume stitching. 25 meshes of size

12 × 12 × 12 are compared with one equivalent 52 × 52 × 12 mesh.

Mesh 25 x (12x12x12) 52x52x12

Total number of nodes 43200 32448

Total number of tetrahedra 166375 143055

Sim. time using FEM [ms] 800 2200

Sim. time using MSDS [ms] 220 500

Table 5.2: Simulation time with (and without) selective volume stitching. Each

volume mesh size is 12 × 12 × 12. Simulation using FEM and MSDS.

Number of volumes 1 4 9 16 25

Total number of nodes 1728 6912 15552 27648 43200

Total number of tetrahedra 6655 26620 59895 10648 166375

Sim. time using FEM [ms] 90 335 755 800 (1300) 800 (2080)

Sim. time using MSDS [ms] 25 90 190 220 (340) 220 (530)

Table 5.3: Simulation time with (and without) selective volume stitching. Each

volume mesh size is 15 × 15 × 15. Simulation using FEM and MSDS.

Number of volumes 1 4 9 16 25

Total number of nodes 3375 13500 30375 54000 84375

Total number of tetrahedra 13720 54880 123480 219520 343000

Sim. time using FEM [ms] 140 590 1900 2200 (2950) 2200 (4600)

Sim. time using MSDS [ms] 50 180 380 450 (650) 450 (1250)
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Figure 5.3: Interactive adding and stitching volumes. Adding volume meshes of

size 12×12×12 into a 5×5 grid (left). Overlapped meshes form one 52×52×12

mesh (right).
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CHAPTER 6

Conclusion

6.1 Summary

In this dissertation, we developed an advanced real-time interactive ultrasound

simulator with soft-tissue deformation. First, we presented a new approach to

ultrasound training—laptop-based ultrasound simulation with static real-patient,

case-specific data registered with a virtual patient. We developed our simulation

system, which is currently being sold as a commercial product, and argued that

it enables realistic and cost-effective ultrasound training. Next, to augment the

realism of our ultrasound training system, we focused on the simulation of soft-

tissue deformation. We applied mass-spring-damper systems (MSDS) and the

finite element method (FEM) to the simulation of ultrasound compression and

evaluated their performance.

In our system, we separated the simulations of skin and soft-tissue in order

to avoid artifacts and achieve visually pleasing, real-time performance on laptops

with realistic simulation of skin deformation. The skin of the virtual body model

deforms at interactive rates when in contact with the virtual ultrasound probe,

and the user can visualize in real-time how the vessels deform under compression

applied to the skin.

To handle large soft-tissue volumes, we presented a technique that simulates

multiple sub-volumes in parallel while performing real-time volume stitching. We

also presented our data acquisition and processing pipeline, which includes a semi-
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automatic segmentation method. Finally, we demonstrated that real-time inter-

active simulation is possible by carefully adapting the algorithms and the code to

run efficiently on multicore personal computers.

6.2 Future work

In our work to date, we assumed that the skeleton is static; however, skeletal

motion is an important factor in ultrasound examination. For example, in the

musculoskeletal (MSK) ultrasound examination of the hand, the hand’s motion

can be used to detect a defect, a break, a cause of pain, or it can be used to identify

structures such as tendons and ligaments. In our future work, we plan to simulate

ultrasound imaging in deformable tissues coupled to a skeleton with mobile joints.

This would be of immediate benefit to the training of MSK ultrasound of the hand,

the knee, and the elbow, among other jointed structures of the body.
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APPENDIX A

The Theory of Elasticity

A body subjected to external load may deform. If the relative position of any two

points within the body is changed, then the body is said to be strained (Ugural

and Fenster, 2003). Let (x, y, z) be the standard Cartesian coordinates. The

displacement at every point within the body can be represented by u, v and w in

the x, y, and z coordinate directions, respectively, as shown in Fig. A.1. Hence,

the displacement constitutes a displacement field, u = u(x, y, z), v = v(x, y, z),

and w = w(x, y, z). For linearly elastic materials, the displacement field is a linear

function of the loads that produce it.

Normal strains, denoted by εx, εy, and εz, and shearing strains, denoted by

γxy, γyz, and γzx, are defined by

εx = ∂u
∂x
, εy = ∂y

∂y
, εz = ∂w

∂z
,

γxy = ∂u
∂y

+ ∂v
∂x
, γyz = ∂v

∂z
+ ∂w

∂y
, γzx = ∂w

∂x
+ ∂u

∂z
.

(A.1)

By examining (A.1) it may be deduced that γxy = γyx, γyz = γzy, and γzx = γxz,

meaning that shearing strains are symmetric.

The infinitesimal strain-displacement relationships in (A.1) can be summarized

as

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = x, y, z, (A.2)

where ux = u, uy = v, uz = w, xx = x, xy = y, and xz = z. Equation (A.2) is
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Figure A.1: A two-dimensional case of displacement and strain in a deformable

body, where a = [u(xA, yA), v(xA, yA)]T and b = [u(xB, yB), v(xB, yB)]T .

also known as Cauchy strain tensor. In 3D the strain matrix is given as

[ε] =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 =


εx

1
2
γxy

1
2
γxz

1
2
γxy εy

1
2
γyz

1
2
γxz

1
2
γyz εz

 . (A.3)

The Cauchy strain tensor is a first-order approximation to the Green strain tensor

ε =
1

2

(
∂u

∂xi

∂u

∂xj
+
∂ui
∂xi

+
∂uj
∂xi

)
, i, j = x, y, z (A.4)

The Green strain tensor contains a nonlinear quadratic term, which complicates

analysis of large displacements. Fortunately, the quadratic term becomes negligi-

ble if the displacements are small; consequently, the Cauchy strain tensor can be

used.

If we consider a small area element within a still body subjected to an external

load distributed through the body, then the force applied in that area is called

stress. For relatively small deformations, most materials behave elastically and

linearly according to Hooke’s Law. To be precise, stress is directly proportional

to strain

σx = Eεx, (A.5)
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where σx and εx denote stress and strain, respectively, both acting in the x direc-

tion, and E is called the modulus of elasticity, or Youngs modulus.

Similarly, the elasticity of shear follows Hooke’s law in shear:

τ = Gγ, (A.6)

where G is the shear modulus of elasticity, or the modulus of rigidity. For all

components, τxy = Gγxy, τyz = Gγyz, and τzx = Gγzx. Both E and G are

constant for a given material, and are associated by

G =
E

2 (1 + υ)
. (A.7)

It was experimentally found that axial stress, say in the x direction, is propor-

tional to lateral strain, in the y and z direction:

εy = εz = −υσx
E
. (A.8)

Here υ is known as Poisson’s ratio, which can range from approximately 0 for cork

to approximately 0.5 for rubber. Negative Poisson’s ratio indicates an auxetic

material, which becomes thicker perpendicular to the applied stretching force.

The stress state at each point in the body can be represented by an infinitesimal

cube with three stress components on each of its six sides (one direct component

and two shear components). Since each point in the body is under static equilib-

rium, only nine stress components from three planes are needed to describe the

stress. These nine components can be organized into matrix form, as follows:

[σ] =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 , (A.9)

which is called stress tensor (or stress matrix). The stress tensor is a second-order

tensor,1 and it can be shown that τyx = τxy, τzx = τxz and τzy = τyz; i.e., that this

matrix is symmetrical.

1A second-order tensor S is a linear mapping that associates a given vector u with a second
vector v as v = Su.
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In other words, the strain and stress are defined uniquely in terms of displace-

ment functions.

78



APPENDIX B

The Finite Element Method

The term “finite element method” was coined by Clough in a 1960 paper on plane

elasticity problems (Clough, 1960); however, the ideas of finite element analy-

sis have roots in applied mathematics, physics, and engineering. For example,

Courant used the term “elements” in 1943 for piecewise continuous functions de-

fined over triangular domains to find approximate upper and lower bounds for

eigenvalues (Courant, 1943).

The finite element method can be formulated in many different ways. For the

solution of practical problems, the displacement-based finite element method is

considered to be the most important, mainly because of its simplicity, general-

ity and good numerical properties. Other formulations include the “strong” or

classical and “weak” or variational. An example method based on the variational

formulation is (Bubnov-) Galerkin’s approximation method of obtaining approxi-

mate solutions to boundary-value problems, which is a type of so-called weighted

residual method (Bathe, 1982).

Displacement u at any point within a finite element e can be approximated as

a vector û, as follows:

u ≈ û =
nen∑
k=1

Nka
e
k = Nae, (B.1)

where e is defined by the number of nodes nen, ae represents element nodal dis-

placements, and components of N are prescribed functions of position called shape

functions.
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Strain ε at any point within the element is given by

ε ≈ ε̂ = Su, (B.2)

where S is a second order tensor, which can be approximated as

ε ≈ ε̂ = Ba, (B.3)

B = SN. (B.4)

The linear Cauchy strain matrix in (A.2) and (A.3) is symmetric, and in 3D its

independent components can be written as (Erleben et al., 2005)

ε =



ε11

ε22

ε33

γ12

γ13

γ23


=



∂u1
∂x1

∂u2
∂x2

∂u3
∂x3

∂u1
∂x2

+ ∂u2
∂x1

∂u1
∂x3

+ ∂u3
∂x1

∂u2
∂x3

+ ∂u3
∂x2


=



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

∂
∂x3

0 ∂
∂x1

0 ∂
∂x3

∂
∂x2




u1

u2

u3

 = Su, (B.5)

where γij = 2ε12, and the components of the strain ε measure stretching and

shearing.

Due to the symmetry of the stress matrix in (A.9), just as for the linear Cauchy

strain matrix, the nine components can be reduced to six, written in vector form

as

σ =
[
σxx σyy σzz τxy τxz τyz

]T
, (B.6)

which can be related to the strain ε by Hooke’s Law generalized to elastic solids

as

σ = Dε. (B.7)
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Matrix D is called the isotropic elasticity matrix and it is defined as

D =
E

(1 + υ) (1 − 2υ)



1 − υ υ υ 0 0 0

υ 1 − υ υ 0 0 0

υ υ 1 − υ 0 0 0

0 0 0 1−2υ
2

0 0

0 0 0 0 1−2υ
2

0

0 0 0 0 0 1−2υ
2


, (B.8)

where E is Young’s modulus and υ is the Poisson’ ratio.

The Principle of Virtual Displacement

Assume that the external forces acting on the body are given and that we want to

find resulting displacements, strains and stresses. Then the body response can be

calculated by establishing the governing differential equations of the equilibrium,

subject to boundary and compatibility conditions. An equivalent approach is to

use the principle of virtual displacement (Bathe, 1982). This principle states that

the equilibrium of the body requires that the total internal virtual work is equal

to the total external virtual work for any small virtual displacement imposed

onto the body; i.e., external virtual work is equal to internal virtual work when

equilibrated forces and stresses undergo unrelated but consistent displacements

and strains. Thus, we have∫
Ω

WσdV = Wq +

∫
Γ

WtdA. (B.9)

This equation is also known as static equilibrium, or the work balance equation,

where Γ represents the surface of a finite element, Ω represents points inside the

surface, Wσ is the internal work performed by stress forces, Wq is the external work

performed by the nodal forces qe, and Wt represents the external work performed

by the external distributed load t. Assuming a virtual displacement δue of the
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nodes of finite element e, such that (ue)′ = ue + δue, then the displacement and

strain for every point inside e can be found using linear interpolations (B.1) and

(B.2) as

δu = Nδue, (B.10)

δε = Bδue. (B.11)

From this the internal and external work equations are given as:

Wσ = (δε)Tσ, (B.12)

Wq = (δue)T qe, (B.13)

Wt = (δu)T t. (B.14)

Substituting (B.10) and (B.11) into (B.12), (B.13), and (B.14), and then the result

into (B.9) gives: ∫
Ω

(Bδue)TσdV = (δue)T qe +

∫
Γ

(Nδue)T tdA. (B.15)

After rearrangement, we obtain

(δue)T
∫
Ω

BTσdV = (δue)T

qe +

∫
Γ

NT tdA

. (B.16)

This must hold for any virtual displacement δue, so we can conclude that∫
Ω

BTσdV = qe +

∫
Γ

NT tdA. (B.17)

To evaluate the terms under integrals, we substitute (B.7) followed by (B.3) to

find: ∫
Ω

BTDBuedV = qe +

∫
Γ

NT tdA. (B.18)

The nodal displacement ue as well as the matrices B and D are constant w.r.t.

integration; thus, we obtain

BTDBue
∫
Ω

dV = qe +

∫
Γ

NT tdA. (B.19)
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This results in

BTDBueV e = qe +

∫
Γ

NT tdA, (B.20)

where V e is the volume of finite element. Now, this may be written as a simple

matrix equation,

Keue = qe + f e, (B.21)

where

Ke = BTDBV e, (B.22)

and

f e =

∫
Γ

NT tdA. (B.23)

The term Ke is the element stiffness matrix, ue is the nodal displacement, qe is

the nodal force, and f e is the element surface force.

The element matrix equation (B.21) describes the characteristics of an element

in the system, and, in general, it can be written in the standard form:

Keue = F e, (B.24)

where the superscript e denotes the local coordinate space.

Assembly of Elements

The next step in the finite element method is to combine all the element equations

into a complete set governing the element composite. The assembly procedure is

based on compatibility at the element nodes; i.e., on the balance of all forces that

act upon a node in static equilibrium. If we impose this equilibrium condition at

a particular node i, we find that the sum of all the nodal forces in one direction

equals the resultant external load applied at the node. This process will assem-

ble all the local stiffness matrices into one global stiffness matrix, and the final
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equation will have the form

Ku = f, (B.25)

where u is nodal displacement vector, and f is a vector of external forces. The K

matrix is banded, sparse, and usually symmetric and positive definite (uTKu > 0

for any nonzero vector u). Moreover, the element stiffness matrix and the assem-

bled stiffness matrix, are always singular (their determinants are zero and they

have no inverses). Luckily, K becomes invertible after applying boundary condi-

tions to (B.25), which reduces the number of nodal unknowns and the number of

equations to be solved.

Huebner et al. (2001) describe four ways of imposing boundary conditions.

The easiest way to implement on a computer is to multiply by a large number

the diagonal term of K, which is associated with a specified nodal variable, and

replace the corresponding term in f by the product times the specified nodal

variable, as shown in the following example:

k11 k12 k13 k14 k15

k21 k22 × 1015 k23 k24 k25

k31 k32 k33 k34 k35

k41 k42 k43 k44 k45

k51 k52 k53 k54 k55 × 1015





u1

u2

u3

u4

u5


=



F1

β2k22 × 1015

F3

F4

β5k55 × 1015


, (B.26)

where β2 and β5 are constraints on u2 and u5, respectively. It is easy to verify

that u2 = β2 under assumption that k22 · 1015 � k2j, j = 1, 3, 4, 5. Similarly, it

can be shown that u5 = β5.

Solution of the Stiffness Equations

The nodal displacement u can be found from the system of linear equations in B.25

with imposed boundary conditions. Since the matrix K is usually symmetric and

positive definite, a unique solution is guaranteed and can be found by applying
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the matrix decomposition method. The matrix K is decomposed into a lower-

triangular matrix L with unit diagonal elements and a diagonal matrix D, such

that K = LDLT . First we solve the linear system Ly = F , where y = DLT , and

then we find u from LTu = D−1y.

Another way to solve (B.25) with imposed boundary conditions is to use an

iterative solver. A widely used iterative solver is the preconditioned conjugate

gradient (PCG) method. The conjugate gradient method computes the solution

from an initial guess that is updated through a successive approximation and error

reduction approach. Convergence is faster with the addition of an appropriate

preconditioner matrix. The preconditioner may require more calculations, but

will likely reduce the number of iterations enough to improve the overall cost of

computing the solutions. Jacobi, incomplete factorization, multigrid, and domain

decomposition are some of the most popular preconditioning methods. Special

care must be taken in the selection of the convergence criterion in order to be able

to handle a variety of problems with minimal user intervention.
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APPENDIX C

The Finite Volume Method

The Finite volume method starts from a mesh, where each node in the mesh is

surrounded by a discrete region as shown in Fig. C.1. The internal force per unit

area with respect to a plane can be found as

f = σn, (C.1)

where σ is the stress tensor and n is normal vector to the plane. Thus, the force

on the node xi surrounded by the region Ω can be found as

f i =

∫
∂Ω

σndS. (C.2)

The boundary ∂Ω of the region transects all elements incident to node xi. With

linear basis shape functions, the stress tensor σ is constant within elements. Using

the divergence theorem, Teran et al. (2003) showed that the integral of σn can

be replaced with an integral over the edges (or faces in three spatial dimensions)

incident to the node xi. Then, the nodal forces in the tetrahedral mesh can be

found simply by looping through all element faces and adding one sixth of −σ

times the cross product of the two edges.

When the first or second Piola-Kirchoff stresses are considered in the FVM,

the number of multiplications and storage requirements are reduced by a factor

of five compared to the FEM. Furthermore, there are no storage requirements in

the Cauchy stress case. In order to illustrate the FVM technique, Teran et al.

simulated a bouncing torus using simple isotropic linear elasticity to calculate the

stress (Teran et al., 2003), as shown in Fig. C.2.
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Figure C.1: An example of FVM integration regions.

Figure C.2: Deformable torus simulated with FVM, from Teran et al. (2003).
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APPENDIX D

Motion Tracking

A very important aspect of ultrasound scanning is hand-eye coordination. A

sonographer presses the probe onto the body and must be able to map a 2D

ultrasound image to corresponding human anatomy. Moving the probe along the

body towards patient’s left side with the probe indicator pointing to the left will

produce completely different images when the probe indicator is pointing towards

the patient’s head. In fact, sonographers are trained to follow certain conventions

that depend on the procedure they are performing or on the body part they are

scanning. For example, in ultrasound examination of the heart parasternal long

axis view, they must aim the probe indicator down towards the patient’s left elbow

in order to find the optimal window.

In order to closely imitate the interaction in a simulation environment, it

is necessary to use a motion tracking device. There are many motion tracking

devices, which may be categorized into mechanical, optical (also called visual),

inertial, and acoustical.

Visual tracking

Estimation of the position and orientation of objects placed in a scene is a difficult

problem. It is often solved, especially in augmented reality applications, using

fiducial markers. In augmented or virtual reality, the fiducial markers, which are

designed to be easily identifiable in the picture, are often manually applied to
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objects. For example, a marker can be a red light emitting diode, or a black circle

on a white background.

ARToolKit is a widely used computer vision library for maker tracking in aug-

mented reality. It uses square markers with manually defined patterns to track

the relative camera position and orientation in real-time. Poorly chosen patterns

have a negative impact on tracking performance. Flohr and Fischer (2007) present

a method for the automatic generation of a large number of markers, which are

ID-based and consist of large monochrome patches. The markers are easily iden-

tifiable even in poor lightning conditions, which yields an improved recognition

rate and tracking performance.

Compared to standard markers, the use of ID-based markers leads to improved

marker recognition as long as the angle between the camera and the marker is

approximately between 10 and 80 degrees (zero degrees corresponds to a marker

side view, and 90 degrees to a marker top view). When the angle approaches

90 degrees, unstable calculations occur (jittering) due to an algorithm which uses

four points to compute camera-marker affine transformation. Slight improvements

are made by using image information from the previous frame. This gives stable,

but not necessarily accurate results.

This limited range of motion is acceptable for some augmented reality applica-

tion, but not for the simulation of ultrasound training where the range of motion

may be up 180 degrees for yaw, pitch, and roll angels. To overcome this limitation,

ID-based markers can be applied to sides of a cube. Only six unique markers are

required to cover all sides of the cube. In addition to markers, five affine trans-

formations must be defined do describe the relative position and orientation of

the markers. A simple cube with six markers can be made out of paper. Markers

must be carefully placed on a flat surface that will fold into a unit cube. Fig. D.1

shows an example of a cube net with six unique markers and the corresponding

cube folded out of paper.
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(a) Cube net. (b) Folded cube.

Figure D.1: An example of a cube with six unique markers.

Although the detection of markers on the cube yields a full range of motion,

the problem of jittering remains when the camera directly faces one side of the

cube. In this situation, other markers are not visible and the problem of tracking

multiple markers is reduced to a single marker detection.

One way to overcome this problem is to put markers on a convex polyhe-

dron. In order to ensure that two or more faces are visible at all times, the angle

between faces (dihedral angle) must be more than 90 degrees. One polyhedron

which satisfies that requirement is the regular dodecahedron. It is composed of 12

regular pentagonal faces, and the dihedral angle is approximately 116.565 degrees.

Another good characteristic of the dodecahedron is that at least three faces are

always visible with an angle greater than 10 degrees (Fig. D.2(a)). In the sit-

uation where the cube with markers fails; i.e., when the camera directly faces

one side of the cube, the six sides of the dodecahedron are visible simultaneously

(Fig. D.2(b)). This ensures a full range of motion.

Choice of patterns

In low lighting conditions, markers may be incorrectly identified. The selection

of markers such that they differ as much as possible may increase the detection
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(a) Good visibility of three faces. (b) Good visibility of six faces.

Figure D.2: Visibility of faces of a dodecahedron. At least three faces have good

visibility.

rate, simply by pruning outliers. For example, if two markers differ by only one

patch, then an incorrect reading of that one patch gives us a valid marker ID

and incorrect estimated position and orientation of the marker. On the other

hand, if two markers differ by two or more patches, then the incorrect reading

of one patch results with an invalid marker ID and that one is pruned from the

estimation of position and orientation. Further improvements are possible by

checking which marker ID may be visible simultaneously. Markers on opposite

sides of the dodecahedron cannot be seen at the same time, so if such markers are

detected then one of them must be ignored.

We want as large marker patches as possible and as many combinations as

possible. With 2-by-2 marker patches it is possible to generate 24 = 16 combina-

tions, but only 3 are unique because ambiguous (which look the same when 90,

180, or 270 degree rotation is applied) must be excluded. Similarly, with 3-by-3

patches, it is possible to generate 29 = 512 combinations, but only 120 unique ones

(Fig. D.3). With 4-by-4 patches, it is possible to generate 65536 combinations,

out of which 16320 are unique.

The next challenge is to select markers which are least similar. For a dodec-

91



Figure D.3: 120 unique 3-by-3 patterns.

ahedron, we must select 12 out of 120 unique 3-by-3 patterns. There is a total

of C(n, k), or “n choose k” k-combinations, where n = 120 and k = 12, which

is approximately 1016. Testing all combinations would take too much time. One

could try random sampling, but finding the best combination is very unlikely even

after 2 billion trials.

However, if we split unique patterns in two groups, positives (Fig. D.4) and

negatives (Fig. D.5), then instead of C(120, 12) we have C(60, 6) = 50, 063, 860

k-combinations. In that case, the best combination can be found in a reasonable

amount of time on a standard computer. The observation is that a positive and

corresponding negative are least similar so if we find a set of six least similar

positives, then they will form a set of twelve least similar patterns when we include

their negatives.

In order to find the least similar 3-by-3 patterns, first we create a 120-by-120

similarity matrix, M . The value in row r and column c, M (r, c), corresponds

to the similarity between patterns r and c shown in Figs. D.4 and D.5. A zero

value indicates that patterns are equal, and one or more that patterns differ in
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Figure D.4: Positives of 120 unique 3-by-3 patterns.

Figure D.5: Negatives of 120 unique 3-by-3 patterns.

one or more patches. We make sure that marker r is compared with not only

marker c but also with all other possible orientations of marker c (90, 180 and 270

degrees). A marker rotated by 90 degrees is still equal to a non-rotated marker so

the similarity is zero. As a consequence, the similarity matrix is symmetric with

zero diagonal elements, and all other elements positive integer values.

Then, we run all C(60, 6) k-combinations. For each combination, which is a six-

dimensional vector of the positives, we add the indexes of corresponding negatives,

forming a 12-dimensional vector v. Then we create a 12-by-12 similarity matrix,

S. Each element S(i, j) in matrix S is set to a precomputed corresponding value

S(i, j) = M (v(i), v(j)) in matrix M . Then we find a minimum non-diagonal

value mS and sum of elements sS. We keep combinations with largest mS and

largest sS. One such combination is: 53, 40, 13, 12, 6, 3, 113, 100, 73, 72, 66, 63.

The smallest similarity of that combination is 2 (all patterns differ by at least two

patches), and the sum is 568.
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(a) Dodecahedron net. (b) Folded dodecahedron.

Figure D.6: An example of a dodecahedron with 12 unique markers.

Finally, we print the best combination markers on the dodecahedron net as

shown in Fig. D.6(a). The net is automatically generated, with markers centered

on each face of dodecahedron, the net is printed on paper, and the dodecahedron

is folded out of the paper (Fig. D.6(b)).

Results

Results show improved marker detection and range of motion—we can track yaw,

pitch, and roll angles with a full range of motion.
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Figure D.7: Cube tracking. The top left corner of each image shows the pattern

detected and the detection confidence.
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Figure D.8: Dodecahedron tracking. The top left corner of each image shows the

pattern detected and the detection confidence.
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