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Human-computer interaction is beginning to permeate all aspects of our lives. As

we develop more and more interactive computer systems, it is important to develop

proper tools and frameworks for making this interaction more efficient. These types

of interactive systems can also increase the safety of everyday tasks. We propose

a human attention and intent analysis system based on a probabilistic framework

using visual cues to help increase the efficiency and safety of everyday tasks. We will

specifically look at the driving task. By combining cues about the vehicle interior

and driver, the vehicle state, and the vehicle surround, we can make estimates of

the driver’s focus of attention and intent. Research contributions will be made in

the areas of head pose and facial affect analysis, lane detection and tracking, fusing

multiple cues to generate estimates of both attention and intent, and overall system
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integration. A Bayesian framework allows us to effectively combine multiple modal-

ities of cues from visual information as well as other sensors to generate estimates

which take into account the uncertainty of both the observations and the underlying

process as well as prior knowledge about the parameters we are estimating. This

can help us assess critical situations and feedback information faster and more effi-

ciently than systems that do not take into account the driver’s attention or intent.

We will also show statistical results demonstrating the accuracy of such a system in

real-world conditions using data collected from a 28 different drivers.
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Chapter I

Introduction

As computers become more and more pervasive in our lives, it is increas-

ingly important to develop tools for improved interaction between man and machine.

One tool useful for such interaction is attention and intent analysis. The ability to

judge human state and attention gives a computer an invaluable input for assessing

the importance of various pieces of information as well as proper ways to display

that information. Predicting intent can help make computers more efficient and,

as we will discuss next, safer. One important area of research where more and

more human-computer interaction is being created is Intelligent Vehicles. Safety

systems that interact efficiently and predictively have the potential to make a skill

we perform daily much safer.

Far too often we are inclined to multitask while driving. This can include

finishing our morning hygiene regiment, carrying out a cell phone conversation, or

just becoming lost in thought. This driving task becomes so automated and routine

1
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in our minds that often we put ourselves on “autopilot” and have difficulty even

remembering the details of our drives. This inattention is quite evident in statistical

studies of vehicle accidents. Inattention was listed as a contributing factor in 35%

of an estimated 700,000 single vehicle off-roadway crashes; 65% of an estimated

300,000 rear-end collisions; and 50% of an estimated 100,000 lane-change related

collisions [1].

The repetitive nature of the driving task can also lead to reduced driver

vigilance and drowsiness. Aside from driver inattention, these types of situations can

also lead to errors in perception. Studies of crashes involving lane changes and lane

merges have shown that 91% of these types of crashes are due to perceptual errors [2].

This can include a misjudgement of an approaching vehicles speed, misjudgement

of a gap size between vehicles, or looking but failing to see a vehicle.

Based on these collision statistics, it is important to take into account the

driver’s attentive state and intentions in determining the criticality of the driver’s

situation. Knowing this information has the potential to generate earlier predictions

of hazardous situations with greater accuracy [3, 4]. For intended lane changes,

predicting the driver’s intent can allow for an earlier warning in certain critical

situations such a risky lane changes. The driver’s attentive state is also coupled

tightly with the driver’s intent. For example, by knowing that a driver is intending

to perform a lane change, we can infer that the driver’s attention is directed towards

the lane to which he is changing. If potentially critical situations arise in areas in

which the driver is not focused, it might be necessary to bring these areas to the
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driver’s attention. Monitoring driver attention can also help to predict unintended

actions. Vehicle maneuvers which deviate from the predicted driver’s intentions or

occur while the driver is in an inattentive state might require a warning to be given

to the driver.

It is therefore the focus of this dissertation to develop a system for predict-

ing driver attention and intent using a probabilistic framework that can incorporate

necessary cues from a variety of sensor modalities. By incorporating a wide vari-

ety of cues taken from rectilinear cameras, omnidirectional cameras, near-infrared

cameras, vehicle sensors, and global positioning system (GPS) sensors, this system

has the potential to provide robust and accurate predictions of the driver’s atten-

tive state and intentions. The specific cues we will be examining for this system

fall into one of three categories: Vehicle interior, vehicle state, and vehicle exterior.

Cues obtained from the vehicle’s interior can give us a wealth of information about

the driver and passenger’s in the vehicle. Head pose, facial affects, physiological

information, and body movements are important factors in predicting attention and

intent [3, 5]. The vehicle state is also equally important to capture. Steering and

pedal corrections can provide information about the driver’s attention to the driving

task [6]. Vehicle state information is also important for predicting the vehicle tra-

jectory. Information from the vehicles exterior such as lane trajectories and obstacle

maps are important for assessing critical situations and events which may require

the driver’s attention.
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I.A Problem Statement and Challenges

It is the focus of this dissertation to explore new algorithms and techniques

for analyzing human attention and intent. Because of the enormous amount of

activities and intents that we can partake in, for this dissertation we will focus on

those associated with the driving task. Specifically, we will be exploring the use of

a variety of robust visual cues for inferring driver attention and intent. Placed into

a Bayesian framework, we can infer the most probable attentive state or intended

action. The driving environment can be divided into the vehicle surround, the

vehicle state, and the vehicle interior. Each of these areas are important for attention

and intent monitoring and each present their own challenges in inferring driver

attention and intent.

Inside the vehicle we are focused mainly on the driver and occupant activ-

ities. Visual cues are extremely useful for inferring driver activities and from this

intent, but challenges such as sudden changes in lighting, hard shadows, camera jit-

ter, and occlusions make the analysis more difficult. To help solve these problems,

a variety of robust visual cues fused together to generate the most probable descrip-

tion of a scene are can be used. Near infrared (IR) cameras with IR illumination

can help in low light situations, but they preclude the use of color-based cues.

Outside the vehicle we are focused on the localization of the vehicle with re-

spect to the lane boundaries and other vehicles. Variations in lighting, environment

and weather conditions, variations in road surfaces and markings, and occlusions
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pose the largest challenges. Again these challenges can be mitigated using robust

visual cues and a probabilistic framework that allows for measurement error.

Along with challenges arising from visual cues, challenges posed from vari-

ations in driver behavior also add to the difficulties in analyzing driver attention

and intent. Specifically, different driver can perform the same action in different

ways, making generalization more difficult. These variations have an impact on the

sensing systems both inside and outside the vehicle. To help overcome this problem,

large databases of natural driving behavior must be created and analyzed. As we

will discuss in section A.C, the data collection itself presents its own challenges.

I.B Research Contributions

This dissertation presents research contributions in three key domains: the

concept domain, the algorithm domain, and the system architecture domain. In the

concept domain, we present a framework for inferring human attention and intent

and specifically apply this to the driving scenario. In conjunction with this, we also

present a framework for lane detection and tracking robust to real-world driving

conditions. A framework for facial feature and landmark tracking based on an

hierarchy of particle filters is also presented.

In the algorithm domain, key contributions include: algorithms for robust

road feature extraction, algorithms for fusion of multiple cues for facial feature

tracking, algorithms for inferring driver attention and intent, and algorithms for
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identifying critical situations based on real-world data.

In the system architectural domain, key contributions include: a holistic

system for driver assistance, a test bed for real-world data collection, new metrics

and experiments for driver attention and intent analysis based on real-world data.

I.C Outline of the Dissertation

This dissertation is separated into chapters based on the various compo-

nents of the overall driver assistance system we are presenting. Chapter II introduces

a system for robust road marking detection and tracking. Experimental results are

shown that demonstrate the system performance in a wide variety of environmen-

tal conditions including different daylight conditions, atmospheric conditions, road

conditions, and traffic conditions. Chapter III explores driver affect analysis and

the low level processing necessary to create a robust facial feature tracking and

analysis system. We show results based on various databases as well as in-vehicle

analysis. Chapter IV presents the overlying architecture for driver intent analysis.

In this chapter we also provide a wide variety of performance evaluations based

on receiver-operator-characteristics (ROC) curves for a variety of driving behaviors.

Each aspect of the system is trained and evaluated using an extensive database con-

taining real-world driving situations. Appendix A discusses requirements for and

design of an intelligent vehicle test bed.



Chapter II

Vehicle and Road Localization

II.A Introduction

Within the last few years, research into intelligent vehicles has expanded

into applications which work with or for the human user. Human factors research is

merging with intelligent vehicle technology to create a new generation of driver as-

sistance systems that go beyond automated control systems by attempting to work

in harmony with a human operator. Lane position determination is an important

component of these new applications. Systems which monitor the driver’s state [7],

predict driver intent [8, 9], warn drivers of lane departures [10], and/or assist in

vehicle guidance [11, 12] are all emerging [13]. With such a wide variety of sys-

tem objectives, it is important that we examine how lane position is detected and

measure performance with relevant metrics in a variety of environmental conditions.

There are three major objectives of this chapter. The first is to present a

7
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framework for comparative discussion and development of lane detection and posi-

tion estimation algorithms. The second is to present the novel “Video Based Lane

Estimation and Tracking” (VioLET) system designed for driver assistance. The

third is to present a detailed evaluation of the VioLET system by performing an

extensive set of experiments using an instrumented vehicle testbed. To this end

the paper is arranged in the following manner. In section II.B we will first explore

the system objectives, environmental variations, and sensing modalities involved in

creating a lane position tracker. In section II.C we will introduce a common frame-

work for lane position tracking systems which we will use to provide comparisons

between existing systems based on the objectives, conditions, and sensing systems

described in the introduction. Next, in section II.D, we will present the VioLET

system, a lane position detection and tracking system with its design based upon a

driver assistance system for use in a highway road environment. Finally, in section

II.E, we will evaluate the VioLET system with both (a) a wide variety of perfor-

mance metrics which are relevant to the system objectives and (b) a wide range of

environmental variations and driving contexts.

The contributions of this research extend to five areas:

1. The introduction of a fully integrated lane estimation and tracking system

with specific applicability to driver assistance objectives. By working closely

with human factors groups to determine their needs for lane detection and

tracking we developed a lane tracking system for objectives such as driver

intent inferencing [3] and behavioral analysis [14].
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2. The introduction of steerable filters for robust and accurate lane marking ex-

traction. As will be described in section II.D, steerable filters provide an

efficient method for detecting circular reflector markings, solid-line markings,

and segmented-line markings under varying lighting and road conditions. They

help to provide robustness to complex shadowing, lighting changes from over-

passes and tunnels, and road surface variations. Steerable filters are efficient

for lane marking extraction because by computing only three separable con-

volutions we can extract a wide variety of lane markings.

3. The incorporation of visual cues (lane markings and lane texture) and vehi-

cle state information to help generate robust estimates of lane curvature as

described in section II.D.3. By using the vehicle state information to detect

instantaneous road curvature, we can detect curvature in situations where

roadway lookahead is limited.

4. The experiment design and evaluation of the VioLET system. This experimen-

tation was performed using multiple quantitative metrics over a wide variety

of test conditions on a large test path using a unique instrumented vehicle. We

also present a justification for our choice of metrics based on our work with

human factors applications as well as extensive ground-truthed testing from

different times of day, road conditions, weather, and driving scenarios.

5. The presentation of an up-to-date and comprehensive analysis of the cur-

rent state-of-the-art in lane detection research. We present a comparison of a



10

wide variety of methods, pointing out the similarities and differences between

methods as well as for what objectives and environmental conditions various

methods are most useful.

II.B Lane Position Detection: Objectives, Envi-

ronments, and Sensors

II.B.1 System Objectives

(a) lane departure warning (b) driver attention monitoring

(c) vehicle control

Figure II.1: Illustrations of systems which require lane position and key performance
metrics associated with the system objectives.

In this chapter we will look at three main objectives of lane position de-

tection algorithms as illustrated in figure II.1. These three objectives and their
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distinguishing characteristics are:

• Lane Departure Warning Systems

For a lane departure warning system, it is important to accurately predict the

trajectory of the vehicle with respect to the lane boundary. [15,16]

• Driver Attention Monitoring Systems

For a driver attention monitoring system, it is important to monitor the drivers

attentiveness to the lane keeping task. Measures such as the smoothness of

the lane following are important for such monitoring tasks. [7]

• Automated Vehicle Control Systems

For a vehicle control system, it might be required that the lateral position

error at a specific lookahead distance, as shown in figure II.1c, be bounded so

that the vehicle is not in danger of colliding with any objects. [17]

For each objective it is important to examine the role that the lane position sensors

and algorithms will take in the system and design the system accordingly. Also,

evaluation of these sensors and algorithms must be performed using the proper

metrics. Components of lane position sensors and algorithms that work well for

certain objectives and situations might not necessarily work well in others. Examples

of these situations will be shown in section II.C.
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(a) A simple road with solid and segmented

line lane markings

(b) Circular reflectors and solid-line lane

markings with non-uniform pavement tex-

ture

(c) Dark on light lane markings with circular

reflectors

(d) A combination of segmented lines, circu-

lar reflectors, and physical barrier marking

lane location

(e) Highly cluttered shadows from trees ob-

scuring lane markings

(f) Freeway overpass causing extreme light-

ing changes and reducing road marking con-

trast

Figure II.2: Images depicting the variety of road markings and conditions for lane
position detection and tracking.
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Environmental Variability

In addition to the system objective in which the lane position detection will

be used, it is important to evaluate the type of environmental variations that are

expected to be encountered. Road markings and characteristics can vary greatly not

only between regions, but also over nearby stretches of road. Roads can be marked

by well defined solid lines, segmented lines, circular reflectors, physical barriers,

or even nothing at all. The road surface can be comprised of light pavement, dark

pavement, or even combinations of different pavements. An example of the variety of

road environments can be seen in figure II.2, all of the images in the figure were taken

from roads within a few miles of each other to show the environmental variability

within even small regions. In this figure, (a) shows a relatively simple scene with

both solid-line and segmented-line lane markings. Lane position detection in this

scene can be considered relatively easy because of the clearly defined markings and

uniform road texture. Item (b) shows a more complex scene in which the road

surface varies and markings consist of circular reflectors as well as solid lines. Item

(c) shows a road marked solely with circular reflectors. Item (d) shows a combination

circular marking and segmented-line marking as well as a physical barrier. Items (e)

and (f) show complex shadowing obscuring road markings. Along with the various

types of markings and road, weather conditions and time of day can have a great

impact on the visibility of the road surface, as seen in figures II.2e-f and II.3.
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Figure II.3: Images of the same stretch of road shown in the daytime and nighttime.

Sensing Modalities

Various sensors have been studied to perform lane position determination.

Examples of these include:

• camera and vision sensors

• internal vehicle state sensors

• line sensors

• LASER RADAR sensors

• global positioning system (GPS) sensors

While LASER RADAR sensors, line sensors, and GPS sensor can perform extremely

well in certain situations, vision sensors can be utilized to perform well in a wide

variety of situations. LASER RADAR sensors are useful in rural areas for helping

to resolve road boundaries [18], but fail on multi-lane roads without the aid of vision

data. Line sensors, while accurate for current lateral position, have no look-ahead
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and cannot be used well for trajectory forecasting, which is needed to compute met-

rics such as time to lane crossing (TLC) [15]. GPS, especially differential GPS, can

provide accurate position resolution, but this requires infrastructure improvements

to achieve these accuracies and rely on map data which may be outdated and inac-

curate. Vision sensors can provide accurate position information without the need

for external infrastructure or relying on previously collected map data. In the sit-

uations where vision sensors do not perform well (i.e. extreme weather conditions

or off-road conditions), the vision data can be fused with other sensor modalities to

provide better estimates. This makes vision sensors a good base on which to build a

robust lane position sensing system. Because of these reasons, this article will focus

mainly on vision sensors augmented by vehicle state information obtained from the

in-vehicle sensors.

II.C Survey of Lane Position Detection and Track-

ing Systems

In this section we will take a look at the current state of the art in lane

position detection and tracking as well as provide a critical comparison between

algorithms. Broad surveys of intelligent vehicles have examined many of the lane

position sensing algorithms available [19,20]. While these papers are useful for broad

examinations of vision research for intelligent vehicles, they are limited in the detail

they can provide on lane position sensing because of their broad nature. It is our
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intent to provide a more in-depth survey of the current methods for lane position

sensing. In order to cover such a large expanse of research which has taken place in

the last 15 to 20 years, we will group the algorithms discussed here into categories

related to the contributions of the algorithms.

Figure II.4: A generalized flow chart for lane position detection systems combining
multiple modalities an iterative detection/tracking loop and road and vehicle models.

After taking an extensive look at the types of lane position tracking al-

gorithms that have been developed, we have noticed similarities in the way that

they are structured. Namely, almost all lane position tracking algorithms follow a

similar flow. This common system flow is diagramed in figure II.4. First, a model

for the road and vehicle is proposed. This can be something as simple as straight

lines or more complex clothoid [21] or spline models [22]. Next, a sensing system
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is used to gather information about the vehicle’s environment. Others have used

GPS and other sensors to augment lane position estimates [23] and fuse the sensor

modalities to work in difficult-to-interpret situations like city driving [11]. However,

in this article we will focus on vision sensors combined with vehicle data for reasons

described in section II.B.1. Features are then extracted from the sensing system.

A few examples of these features are edges, motion vectors and textures. These

features are then used in combination with the road model to create an estimate of

the lane position. Finally, a vehicle model can then be used to refine these estimates

over time given the vehicle data and vision sensing data. This general flow can vary

slightly between systems as objectives of these systems change. For example, Taylor

et al. [17] propose various control strategies which are tightly coupled with the lane

position tracking. Certain exceptions to this flow also exist. Most notable is the

ALVINN system [24]in which the neural network directly incorporates the feature

detection into the control algorithm with no tracking feedback.

II.C.1 Road Modeling

Road modeling can greatly increase system performance by helping to elim-

inate false positives via outlier removal. A variety of different road modeling tech-

niques have been used. This variety of techniques stems from the wide variety of

roads. Bertozzi and Broggi [25] assumed that the road markings form parallel lines

in an inverse-perspective-warped image. Others have used approximations to flat

roads with piecewise constant curvatures [21, 26]. More recently, deformable con-
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tours such as splines have been used to parameterize roads [22,27]. Maps constructed

using differential GPS systems have also been used to provide detailed road models

in urban environments [11].

The best choice of road model depends on the type of system and intended

environment in which the lane position tracker will be used. For example, complex

road models such as spline-based road models might not be a suitable choice for a

lane position control system designed to work on highways, which have a relatively

simple structure. Furthermore, a stable control system might only require about a

10 meter lookahead [17], making a simple linear road model satisfactory. In a lane

departure warning system it is required to calculate the trajectory of the vehicle

a few seconds ahead. At freeway speeds, this can require accurate road modeling

for 30-40 meters or more ahead of the vehicle to catch TLC of around one second.

In this situation, a parabolic or spline-based road model would be better. This is

because an accurate curvature model is necessary for vehicle trajectory forecasting.

II.C.2 Road Marking Extraction

Road marking extraction is a key component to lane position detection.

Road and lane markings can vary greatly, making the generation of a single feature

extraction technique difficult. Edge based techniques can work well with solid and

segmented lines, and can even be extended to attempt to compensate for circular

reflectors [28]. However, edge based techniques can often fail in situations such as

those in figures II.2b, II.2e, and II.2f which contain many extraneous lines. Fre-
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quency based techniques, such as the LANA system [29], have been shown to be

effective in dealing with extraneous edges. However, they may still be confused by

complex shadowing as seen in figure II.2e. The LANA system in particular is re-

stricted to diagonal edges, limiting its effectiveness during lane change maneuvers

when the camera is directly above the lane. Other techniques, such as the RALPH

system [30], base the lane position on an adaptive road template. These methods

generally assume a constant road surface texture and therefore can fail in situations

such as in figure II.2b.

Similarly to road modeling, a good choice of a road marking detection also

depends greatly on the type of system and environment in which the lane position

detection is to be performed. If the system is to be used only on certain types of roads

only in specific regions, it might not be necessary to detect all possible variations of

road markings. For certain system scenarios, such as autonomous vehicle control, it

might not be necessary to find specific road markings at all as long as a safe path

or lead vehicle to follow [30] can be found.

II.C.3 Postprocessing

Postprocessing is necessary to improve estimates based on a priori knowl-

edge of the road and extracted features. One of the most common postprocessing

techniques used is the Hough transform [31, 32], but other techniques used include

enhancing or attenuating features based on orientation [28] or likelihood [26,29] and

culling features based on elevation using stereo vision [27]. Dynamic programming
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has also been used on extracted line segments to help remove outliers more effec-

tively than Hough transforms [33]. Apostoloff et al. [34] performed cue scheduling

to help determine which of multiple features should be extracted, processed, and

fed into the position tracking module.

In general, postprocessing is one of the most important steps as it ties

together the feature extraction stage with the tracking stage by generating a robust

estimate of actual lane position based on the extracted features. Most postprocessing

techniques make assumptions about the road and vehicle. We will examine these

assumptions later in section II.C.5

II.C.4 Vehicle Modeling and Position Tracking

The two most common tracking techniques used in lane position detection

systems are Kalman filtering [17, 21] and particle filtering [34, 35]. More complex

nonlinear systems have also been used with success [36]. In these systems, feature

extraction and position tracking are often combined into a closed loop feedback

system in which the tracked lane position defines an a priori estimate of the location

and orientation of the extracted features.

Similarly with road models, the choice of vehicle models can vary depending

on the primary system objective. For objectives such as vehicle control, complex

vehicle models might help to improve stability and perform precise movements.

Lane departure warning systems are often designed for high-speed, low-curvature

highways. In these situations, a linear approximation to the vehicle model does not
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significantly affect performance.

  

Figure II.5: Bicycle model parameterization commonly used to estimate and predict
vehicle dynamics

The most common model for the vehicle dynamics is the bicycle model [37].

In this model (Figure II.5, the system is simplified by assuming that the forces acting

on the vehicle are the same as those acting on a vehicle with two wheels separated

by a baseline l. Furthermore, it is assumed that only the front wheel is used to

steer the vehicle (parameterized by δ.) Often, only the two-dimensional planar case

and ignore pitch and roll angles. The continuous time, linearized dynamics of this

system are shown in equation II.1, where Cf and Cr represent the front and rear

cornering stiffness, Lf and Lr represent the lateral distance between the center of

mass and the front and rear tires, vx represents the vehicle speed, m represents the

vehicles mass, and Iz represents the vehicles inertia.
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II.C.5 Common Assumptions and Comparative Analysis

A significant improvement to the accuracy of lane position estimation can

be made by applying a few assumptions based on the structured nature of road
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surfaces. These assumptions include:

a) The road/lane texture is consistent.

b) The road/lane width is locally constant.

c) Road markings follow strict rules for appearance or placement.

d) The road is a flat plane or follows a strict model for elevation change.

Existing algorithms tend to use at least one or more of these assumptions. These

assumptions improve overall results; however, it is important to understand where

these assumptions might fail as the lane position tracking is likely to be used for

one of the objectives explored in section II.B.1. Any sort of critical failure in these

systems could prove disastrous.

The assumption of constant road texture can greatly improve results as

the entire road surface is usable as a feature rather than just road markings. In

situation in which road markings are scarce or missing, road texture can provide an

estimate for lane position [30]. As stated above, roads that have been modified to

add lanes or exits (as in figure II.2b) can cause erroneous position estimates.

The assumption that the road or lane width is locally constant can greatly

enhance performance by allowing the fusion of left and right hand side boundaries.

3D reconstruction can be performed based on a known constant road width [38].

This assumption is usually valid for most stretches of highway road. However, this

is generally not a good assumption for city driving or highways near merging lanes or
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off-ramps. Unfortunately, merging lanes often are often critical situations in which

you would like to have a robust lane position estimate.

Road markings are often assumed to be light solid lines on a dark road

surface. However, this is not always the case and as can be seen in figure II.2d, which

contains dark lines on a light road surface as well as circular reflectors. Making

assumptions about lane marking appearance can greatly degrade performance in

places where those assumptions about the road infrastructure are not valid.

Often it is assumed that the road surface is a flat plane or follows a constant

curvature elevation model. This is accurate most of the time and allows monocular

vision systems to easily transform points on the image plane to 3D points in world

coordinates. However, for situations such as changing elevations on curves, these

road model assumptions can lead to an incorrect estimation of road curvature. It

is important to examine the amount of error in curvature the system can handle

before choosing a road model.

Up to this point we have examined the various modules that make up a

lane position tracking system, previous research related to each of these modules,

and the importance of the modules and the assumptions made about them to the

primary objective of the system. It is also important to take a look at systems as a

whole and how they compare in performance based on their objectives, environments

and sensing systems. Table II.1 serves to help summarize and compare various lane

position detection and tracking algorithms in relation to the objectives of the system

in which they are deployed.
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The objectives of many systems, especially the earlier developed systems,

were geared towards autonomous vehicle control. The VaMoRs system [21] uses

multiple processors and both wide angle and telephoto lenses for vehicle guidance.

A linear vehicle model and 3D road model were used. The system was tested on

a rural road with hills. For autonomous control, the systems can adjust vehicle

speed allowing more time for computation; this is a valid assumption unique to the

autonomous control objective. The YARF system [39] uses multiple features and

robust estimation to help improve performance of the autonomous driving task. Dif-

ferences in the detected versus expected features are used to identify situations in

which the road structure is changing. Taylor et al. [17] show a vehicle control system

which they analyzed using a variety of control schemes. Using these different control

schemes, they tested their system on a oval test track and measured performance

based on the vehicles offset from the center line. The DARVIN system [11] fuses

dGPS information with vision information for supervised autonomous driving in an

urban environment. The use of higher accuracy GPS system provides the benefit of

having more exact knowledge of the road structure. Differential GPS also provides

a good a priori knowledge about the vehicle’s location which can be improved upon

using vision algorithms. However, the use of dGPS makes the system more reliant

on a constantly updating infrastructure system and only provides up-to-the-minute

knowledge on the vehicles position. Changes in the road structure, such as construc-

tion zones, would need to be relayed to the vehicle for the road model to retain it

accuracy. The GOLD system [25] combined lane position tracking with obstacle de-
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tection for autonomous freeway driving. A special function finds lane markings in an

inverse perspective road image based on brightness differences between a pixel and

its neighbors to the left and right. A 3000 Km test run was performed and images

were shown demonstrating robustness to occlusions and shadows. More recently

the Springrobot [31] used an adaptive, randomized Hough transform for processing

detected edges.

While the systems mentioned above have focused mainly on the autonomous

control objective, others have focused on the lane departure warning and driver assis-

tance objectives. Kwon and Lee [10] developed a system for lane departure warning

based on a modular architecture that allowed fusion of multiple features. The lane

position and rate of departure was then fed into a heuristic departure warning func-

tion. Testing was performed based on the overall system performance and quantified

in a number of metrics including the detection rate, false alarm rate, missed detec-

tion rate, and alarm triggering time. The LOIS system [40] was also used in a lane

departure warning system. In this system, edge magnitude and orientation was used

along with a maximum a posteriori estimator to provide lane position. They showed

results from a test run with a standard deviation of error of around 13cm. Risack et

al. [41] demonstrate a lane departure warning system based on the TLC measure.

As with most of the other systems, performance was measured for the system as a

whole with little quantitative results related to the lane position tracking.

Another major difference between the various systems that have been de-

veloped stems from the types of environments for which these systems were designed.
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Ma et al. [18] present a system which fuses RADAR information with vision to navi-

gate rural roads. The RADAR images improved performance for weather conditions

such as snow, which obstructs the camera view. The DARVIN system mentioned

above used GPS to allow navigation through urban areas. The vast majority of

systems however, are designed for highway environments. This is important for the

commercial sector in which a large amount of research has been performed [13].

This analysis and comparison of these systems with respect to their pri-

mary objective and intended environment enables us to see some of the merits and

deficiencies of these systems. We have seen that improvements to performance can

be made by applying feature extractors that use multiple cues or can be used to

extract multiple types of road markings. Assumptions about the road and vehicle

models have also been shown to greatly increase performance. However, care needs

to be taken that assumptions made about the road environment that are assumed

to apply to a wide range of environments are not actually limited only to specific

regions. Often testing is performed by the examination of a few key frames or sim-

ple tests taken in only a few environments. It was these realizations that led us to

develop a lane tracking system designed for driver assistance functions and capa-

ble of performing well under a wider variety of environments. It is also important

to provide a thorough evaluation of the system to enable a better comparison of

performance between various environments. This includes evaluating the system

at different times of the day with varying road markings and textures as well as

taking a close look at special case scenarios, such as tunnels, to get an accurate,
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quantitative measure of performance.
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II.D The Video Based Lane Estimation and Track-

ing (VioLET) System For Driver Assistance

Breaking down the design into the sections illustrated in figure II.4 helps

to create a lane position detection and tracking system focused on one or more of

the system objectives described in section II.B.1 and capable of handling a variety of

the environmental conditions explored in section II.B.1. By examining the system

one piece at a time and understanding how that choice might affect overall system

performance, we can optimize our system for our objective of driver assistance.

Figure II.6: System flow for VioLET, a driver assistance focused lane position esti-
mation and tracking system.

The primary objective of the VioLET system is driver assistance. This
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is a rather broad objective, so some clarification is necessary. It is our intention

for the system to provide accurate lateral position over time for the purposes of

lane departure warning and driver intent inferencing. The intended environment

for the lateral position detection is daytime and nighttime highway driving under a

variety of different roadway environments. These environments include shadowing

and lighting changes, road surface texture changes, and road markings consisting of

circular reflectors, segmented lines, and solid lines. The VioLET system follows a

similar flow to the generic system flow described in section II.C. The system specific

flowchart is diagramed in greater detail in Figure II.6. In this section we will describe

each of the system modules and the motivation behind their development.

II.D.1 Vehicle and Road Modeling

Figure II.7: Vehicle and road models used in the system. We are using a constant
curvature road model and linearized vehicle dynamics for use in a Kalman filter.

Our system objective requires a road and vehicle model that retains ac-

curacy for distances of at least 30-40 meters. This is required because, in critical

situations in which driver assistance systems are useful, a prediction of the vehicle
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trajectory at least one second ahead of the vehicle is necessary. A simple parabolic

road model, as shown in figure II.7, incorporates position, angle and curvature

while approximating a clothoid model commonly used in the construction of high-

way roads [21]. In the figure, Xs represents the lateral offset along the center of the

road, Zs represents the distance in front of the vehicle, φ represents lateral position,

θ represent the lane angle, C represents lane curvature, Ψ represents the steering

angle, and W represents the lane width. Equation II.2 describes the road down the

center of the lane while equation II.3 describes the road at the lane boundaries. l

takes the value of 1 for the left lane and -1 for the right lane. Lane width is assumed

locally constant, but is updated via a Kalman filter described in section II.D.5. The

vehicle dynamics are approximated using a bicycle model similar to that used in [17].

Xs(Zs) = φ + θZs + CZ2
s (II.2)

Xborder(Zs) = φ + θZs + CZ2
s +

lW

2(θ + CZs)2 + 2
(II.3a)

Zborder(Zs) = Zs −
lW (θ + CZs)

2(θ + CZs)2 + 2
(II.3b)

II.D.2 Road Feature Extraction

Road feature extraction is a difficult problem for a variety of reasons. For

our objective and intended environment, it is necessary to have a robust estimate of

road features given a variety of road marking types and road environments. Making
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the problem even more difficult is the necessity for fast algorithms for feature extrac-

tion. To this end, we have found features extracted by using steerable filters provide

robust results for multiple types of lane markings and are able to be decomposed

into simple convolutions and arithmetic capable of being implemented in a digital

signal processor.

Steerable filters have a number of desirable properties that make them

excellent for a lane position detection application. First, they can be created to

be separable in order to speed processing. By separating the filters into an X and

Y component, the convolution of the filter with an image can be split into two

convolutions using the X component and Y component separately. Second, a finite

number of rotation angles for a specific steerable filter are needed to form a basis

set of all angles of that steerable filter. This allows us to see the response of a filter

at a given angle and therefore to tune the filter to specific lane angles or look at

all angles at once. This property is useful because circular reflectors will have high

responses in all directions while line markings will have high responses in a single

direction.

The steerable filters used for the circular reflectors and lane detection are

based on second derivatives of two-dimensional Gaussians.

Gxx(x, y) =
∂2

dx2
e
−(x2+y2)

σ2 = −(
2x

σ2
− 1)

2

σ2
e
−(x2+y2)

σ2 (II.4)

Gxy(x, y) =
∂2

dxdy
e
−(x2+y2)

σ2 =
4xy

σ4
e
−(x2+y2)

σ2 (II.5)
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Gyy(x, y) =
∂2

dy2
e
−(x2+y2)

σ2 = −(
2y

σ2
− 1)

2

σ2
e
−(x2+y2)

σ2 (II.6)

It has been shown that the response of any rotation of the Gxx filter can be computed

using the equation II.7 [45].

G2θ(x, y) = Gxx cos2 θ + Gyy sin2 θ − 2Gxy cos θ sin θ (II.7)

Taking the derivative of equation II.7, setting it equal to 0, and solving for θ, we

can find the values of that correspond to the minimum and maximum responses.

These responses can be computed by the formulas given in equations II.8 and II.9.

θmin = arctan(
Gxx −Gyy − A

2Gxy

) (II.8)

θmax = arctan(
Gxx −Gyy + A

2Gxy

) (II.9)

where,

A =
√

G2
xx − 2GxxGyy + G2

yy + 4G2
xy (II.10)

G2θmin/max = Gyy −
2G2

xy

Gxx −Gyy ± A
(II.11)

Using the equations II.7, II.8, and II.9, we can find the values and angles of

the minimum and maximum responses, or the response at a given angle. This is use-

ful for detecting circular reflectors because, for small circular objects, the minimum

and maximum responses will be very similar. In order to detect circular reflectors,

we can therefore threshold the filtered image for minimum responses that are above

a certain value as well as within a certain range of the maximum value. These

minimum and maximum response values can be computed efficiently using equation
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II.11. For detecting lanes, the response in the direction of the lane should be near

the maximum, and the minimum response should be low. Also, applying a threshold

to the difference between the response in the direction of the lane marking and the

minimum response, we can detect lanes of a specific angle. Figure II.8a shows a

typical highway scene with lane markings consisting of both circular reflectors and

solid lines. Figure II.8b shows the image after being filtered and thresholded by the

minimum response value. Figure II.8c shows the response to lines in the orientation

of the current lane parameters. The filter kernel size was chosen to be roughly three

times the expected lane marker width. Filtering on the inverse perspective warped

image allows a single kernel size to be used over the entire area of interest.

These results show the usefulness of the steerable filter set for relatively

normal highway conditions. This filtering technique is also very useful for dealing

with shadowed regions of road. Figure II.9 below shows a road section that is

shadowed by trees and the filter response for the lane when it is tuned for that lane

angle.

The same technique can be applied to images that are transformed into

world coordinates using the inverse perspective equations described in equation II.12.

In this equation, T and R represent the transformation and rotation of the camera

respectively. The world coordinate Y is assumed zero because of the flat plane road

model. Example images of the inverse perspective warped image as well as results

for circular and lane marking detection are shown in figures II.10 and II.11. The

advantages to this technique include the ability to use a single filter size for a wider
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(a) A typical highway scene encountered during evaluation.

(b) Results of filtering for circular reflectors.

(c) Results from filter for a line tuned to the lane angle.

Figure II.8: Application of Steerable filter road marking recognition for circular
reflectors and solid lines on a highway.
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(a) A highway scene with complex shadowing from trees.

(b) Detection results for lines tuned to the lane angle.

Figure II.9: Filter results when lane markings are shadowed with complex shadows
and non-uniform road materials.

range of distances from the vehicle and the ability to easily modify the resolution of

the image to maintain a balance between the level of detail and processing time. We

will explore the utility of the inverse perspective image and transformation further

in the following sections.

ximage

yimage

 =

X/Z

Y/Z

 ,


X

Y

Z

 =

[
R T

]


Xworld

0

Zworld

1


(II.12)
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(a)

(b) (c) (d)

Figure II.10: Image from a road scene containing solid line markings with embedded
circular reflectors (a) as well as the image transformed using the inverse perspective
transformation (b), which is subsequently filtered for circular reflectors (c) and solid
line markings (d).
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(a)

(b) (c) (d)

Figure II.11: Image from a road scene containing circular reflector markings (a)
as well as the image transformed using the inverse perspective transformation (b),
which is subsequently filtered for circular reflectors (c) and solid line markings (d).
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II.D.3 Road Curvature Estimation

Some sections of road within our intended environment are marked solely

by circular reflectors as is seen in figure II.2f. These circular reflectors are too

small to be seen with the cameras used in our configuration at distances greater

than about 20 meters. In these situations an adaptive template is used to measure

curvature beyond the range of what is detectable by road markings alone. Cur-

vature detection is performed by matching a template of the current road to the

road ahead, then fitting the detected results to the lane model described in section

II.D.1. The adaptive template is generated per pixel using a weighted average of

the intensity values of the previous template and the intensity values of the lane

area for the current image. The intensity values for the lane area are found by

applying an inverse perspective warping to the image and cropping a rectangular

area centered on the current estimate of the lane position a few meters ahead of the

vehicle. The weighting can be adjusted to allow faster or slower response times and

is initialized using the intensity values of the initial frame. The template is then

matched to the road ahead by minimizing the squared error in intensity values of

the inverse perspective warped image. The error is minimized laterally at equally-

spaced distances ahead of the vehicle to get an estimate of the lateral position of

the road at specific distances ahead of the vehicle. The final curvature estimate is

generated by minimizing the squared error between the parabolic road model and

the measured road positions. While this method works well on most roads with little

traffic, template matching techniques such as these fail in cases of poor road texture
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and occlusion. For this reason, curvature is also estimated using the vehicles yaw

rate and the second derivative of position. These are estimated using the Kalman

filtering equations described in section II.D.5. This provides a robust estimate on

lane curvature by combining the vehicle state information with visual cues from the

lane tracking system to determine instantaneous curvature when road look-ahead is

not sufficient.

Figure II.12 shows the results of the curvature detection system. Figure

II.12a shows a forward looking view with the detected lane positions overlaid onto

the image. Figure II.12b shows aerial photography for that specific section of road.

The vehicles trajectory is depicted in this figure using a green curve for future

trajectory and a red curve for past trajectory. Figure II.12c shows the inverse

perspective warping of the forward looking camera with the detected lane points

shown as small white circles. The template is shown in the lower left hand corner

of figure II.12c.

II.D.4 Postprocessing and Outlier Removal

In order to perform robust tracking in situations such as in figures II.2

and II.3, post-processing on the filter results is performed. First, only the filter

candidates within the vicinity of the lanes are used in updating the lanes. This

removes outliers from other vehicles and extraneous road markings. Because the

algorithm uses a local search about the lanes for candidates, it requires initialization.

In testing, it was sufficient to initialize the lane tracker position and trajectory to
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(a) Detected lanes with curvature overlaid onto image

(b) Inverse perspective warping showing curvature detection (small white dots) and tem-

plate (lower left corner)

Figure II.12: Curvature detection in the VioLET lane tracking system.
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zero (corresponding to the center of the lane).

Furthermore, for each lane, the first and second moments of the point

candidates are computed. Straight lane markings should be aligned so that there

is a high variance in the lane heading direction and a low variance in the other

direction. Outliers are then removed based on the eigenvalues and eigenvectors

of the computed covariance matrix. The aspect ratio of the eigenvalues and the

direction of the eigenvector associated with the major axis of the concentration

ellipse are used to eliminate outliers.

For circular reflectors, the speed of the vehicle is used to calculate the

expected location of the reflector. This is performed using the inverse perspective

equations described in II.12. Circular reflector detections which do not move as

predicted by the ground plane are removed as they generally correspond to false

detections. These false detections commonly stem from things such as specular

highlights on vehicles and other small circular textures which do not move with the

ground plane.

II.D.5 Position Tracking

Position tracking for our objective of driver assistance is vitally important.

Position tracking can provide improved results in noisy situations and generate other

useful metrics important for the primary system objective. Kalman filtering provides

a way to incorporate a linearized version of the system dynamics to generate optimal

estimates under the assumption of Gaussian noise. Kalman filtering also provides
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estimates of state variables which are not directly observable, but may be useful

for the system. It is important to have metrics such as rates of change of position

robustly estimated not only from lane angles, which may contain errors for vehicle

pitch or camera calibration, but from lane position estimates over time.

xk+1|k = Axk|k (II.13)

yk = Mxk (II.14)

where

x = [φ, φ̇ ≈ Θ, Θ̇, Φ, W ]T (II.15)

A =



1 v∆t (v∆t)2

2
(v∆t)3

6l
0

0 1 v∆t (v∆t)2

2l
0

0 0 1 v∆t
l

0

0 0 0 1 0

0 0 0 0 1


(II.16)

M =



1 0 0 0 −0.5

1 0 0 0 0.5

0 1 0 0 0

0 0 0 1 0


(II.17)

The Kalman filter state variables are updated using the lane position and

angle estimates along with measurements of steering angle and wheel velocity. These

measurements are then used to update the discrete time Kalman filter for the road
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and vehicle state. I our system, we convert the linearized model presented in equa-

tion II.1 to a discrete time system and simplifying the system by assuming a rel-

atively large vehicle mass and inertia. We have also included the yaw rate Φ and

lane width W into the system. The system and measurement equations as well

as the Kalman update equations at time k are detailed in equations II.13 to II.17.

The variables used in these equations are the same as those described in section

II.D.1 and figure II.7. The measurements consist of the left and right lane marking

positions, the lane angle, and the yaw rate of the vehicle. Curvature is currently

calculated and filtered separately. This is calculated separately using the steering

angle and road curvature. The initial values for the estimation-error covariance

and state-noise covariance were determined by empirical testing. Adding a control

input to the Kalman equations allows us to effectively use steering and yaw rate

information from the vehicle similar to that described in Southall et. al. [35]

The measurement vector yk (equation II.14) consists of the vehicle posi-

tion, the lane angle, and the lane width. These measurements are found using a

combination of a Hough transform and the lane marker detection statistics. For

solid lane markings, the Hough transform provides a robust means of determining

the location and angle of individual lane markings. When a valid line cannot be

found using a Hough transform, as in the case of lanes marked with circular re-

flectors, the statistics of the lane markings are used to determine the position and

angle of the lanes. These statistic are described in section II.D.4. This estimation is

performed for both the left and right lane markings. These estimates are then used
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to determine estimates of the lane position, angle, and width using a weighted sum.

II.E Experiments and Performance Evaluation

Lane detection systems have been studied quite extensively and several

metrics for the evaluation of lane position error have been proposed [16, 46]. How-

ever, most proposed algorithms have shown limited numerical results or simply

selected images of the algorithm results. While these images provide information

on the performance on road marking extraction in specific contexts, they fail to

account for errors involved in transforming image coordinates to world coordinates

and cannot be used to quantitatively compare different algorithms. In order to ad-

equately measure the effectiveness of a lane position detection and tracking system

in a specific context or system, specific metrics must be used. In this section we

will explore the usefulness of a variety of performance metrics and show how the

algorithm described in this paper performs based on these metrics in a variety of

test conditions.

II.E.1 System Test-bed Configuration and Test Conditions

The video input to the system is taken from a forward looking rectilinear

camera for our test results, but can be taken from any number of cameras on our

test bed vehicle. The test bed is pictured in figure VI.1. Some of the key capabilities

of the LISA-Q intelligent vehicle test bed include:
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• Eight NTSC hardware video compressors for simultaneous capture.

• Controller-Area-Network (CAN) interface for acquiring steering angle, pedals,

yaw rate, and other vehicle information.

• Built-in 5 beam forward looking LASER RADAR range finder.

• WAAS enabled GPS.

• Integration into car audio and after-market video displays for feedback and

alerts.

More information on this test bed is provided in Chapter Appendix A. Information

about the vehicle’s state, including wheel velocities and steering angle, are acquired

from the car via the internal CAN bus.

Testing was performed on highways in southern California. These highways

contained road conditions shown in figures II.2 and II.3. Namely this includes:

• lighting changes from overpasses.

• circular lane markers, solid-line lane markers, and segmented-line lane markers.

• shadowing from trees and vehicles.

• changes in road surface material.

A camera directed downwards at the road on the side of the vehicle pro-

vided a good view for generating positional ground truth data. The cameras used in

the system were calibrated for their intrinsic parameters using the Matlab Camera

Calibration Toolbox [47].
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Figure II.13: Detected lateral position in meters (solid black) superimposed on
ground truth (dashed grey) plotted vs. frame number with dashed lines marking
the position of lane boundaries for an 11,000 frame (slightly over 6 minute) sequence.

Figure II.14: Detected departure rate in m/s (solid black) superimposed on ground
truth (dashed grey) plotted vs. frame number with dashed line marking the abscissa
for the same sequence shown in figure II.13.



52

II.E.2 Choice of Metrics For Objective Specific Performance

Evaluation

One of the most common metrics for lane position performance evaluation

is mean absolute error. While this provides a good estimate of the performance of

a lane position tracker for system objectives such as control and driver intent, it

lacks usefulness in quantifying the accuracy for other objectives like road departure

warning in which the TLC and rate of approach to the road boundary are impor-

tant. For this reason it is important to use a variety of performance metrics when

evaluating a system rather than just one.

Other statistical metrics have been proposed which are based on examining

the distribution of the detected markings [16]. These include the Angular Deviation

Entropy and Angular Deviation Histogram Fraction and their magnitude-weighted

counterparts. While these serve as good online metrics for evaluating relative system

performance for different stretches of road, they are not as useful for determining

system performance relative to a known ground truth.

Several metrics have been proposed to evaluate the performance of driver

lane change intent and road departure warning systems. These systems are related

because they deal with forecasting the vehicles trajectory. Most of these involve

looking at the system as a whole and measuring false positives, false negatives, or

the time it takes to trigger an alarm [8,10,46]. However, because the systems involve

the collection of data other than just lateral position, it is difficult to decouple the
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lane position performance from the system performance using these types of metrics.

In order to generate an accurate prediction of performance in a trajectory forecasting

objective, it is necessary to examine the accuracy of the parameters used to generate

this forecast. In this situation, we expect the metrics of error distribution of the rate

of change of lateral position to provide good indicators of system performance. The

rate of change of lateral position metric was chosen over the time-to-lane-crossing

metric for two reasons. First, the rate-of-change metric has been shown to be useful

in driver assistance [44] and driver intent [3] applications. Second, the time-to-

lane-crossing metric is prone to large errors stemming from small errors in vehicle

position and lateral velocity. Furthermore, generating a ground truth for the time

to lane crossing is complicated by the need for a well known road and vehicle model

for the entire stretch of road on which the testing is being performed.

II.E.3 Evaluation and Quantitative Results

In order to provide a more complete test of our system, we chose to quantify

the error using three different metrics. The three metrics we chose are mean absolute

error in position, standard deviation of error in position, and standard deviation of

error in rate of change of lateral position.

Results were analyzed according to the metrics discussed in section II.E.2

under the environmental variations described in section II.E.1. More specifically,

data was collected from portions of the roughly 65 kilometer route at four different

times of the day: dawn, noon, late afternoon/dusk, and night. Scenes from each
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Figure II.15: The 65Km route in San Diego used in the evaluation. The route is
overlayed on aerial photography. Points A, B, C, and D are sections of road used in
the evaluation (photography courtesy USGS).
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Figure II.16: Scenes from dawn (row 1), daytime (row 2), dusk (row 3), and night-
time (row 4) data runs for each of the four sections of road. These scenes show
the environmental variability caused by road markings and surfaces, weather, and
lighting.
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of these corresponding to the points A, B, C, and D in figure II.15 along with an

aerial view of the individual points are shown in figure IV.21. Section A consists of

solid-line and segmented-line markers, while sections B and C contained a mixture

of segmented lines and circular reflectors. Section D is marked by circular reflectors.

Ground truth for one-thousand frame sequences was found for each of these locations

on the route and each of the four times of day, making a total of sixteen thousand

testing frames covering many different highway types heading in different directions

at different times of the day. These results are shown in shown in tables II.2, II.3,

and II.4. Per frame outputs and ground truth for selected data sets can be seen in

figures II.19-II.21.

After examining the results, it is interesting to note that the system actu-

ally performs better at night and dawn than during day and dusk. At night, this

can be attributed to the larger contrast in road markings due to their reflective na-

ture as well as the lack of complex shadows formed by trees and vehicles during the

daytime. complex shadows hampers the systems ability to detect circular reflectors

in scenes such as that shown in figure II.9. At dawn, a morning fog reduced contrast

somewhat, but also helped eliminate shadows. The low contrast of the dawn run

required a change in the thresholds used in feature extraction. Future work will

include making the system more adaptive to general lighting changes.

Furthermore, the difference in departure rate performance between daytime

and nighttime driving would point to increased number of successful detections

(i.e. those not eliminated by outlier removal). The comparatively smaller gain
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Table II.2: Results from the Standard Deviation of Error performance metric eval-
uated under various lighting and road conditions.

Standard Deviation of Error (cm)
Dawn Noon Dusk Night Total

Set A 4.5400 11.5700 8.1062 7.9710 8.4221
Set B 8.6041 14.8687 7.9457 3.8871 9.6612
Set C 11.1815 13.5135 29.9347 23.2722 20.8885
Set D 5.1547 10.7514 12.1687 8.3031 9.4761

Totals 7.8460 12.7784 17.1246 13.1261 13.1377

Table II.3: Results from the Mean Absolute Error performance metric evaluated
under various lighting and road conditions.

Mean Absolute Error (cm)
Dawn Noon Dusk Night Total

Set A 3.6497 8.6429 5.5313 6.4720 6.0740
Set B 6.8463 10.6362 5.6768 3.0417 6.5503
Set C 8.1815 10.8677 20.4727 12.9471 13.1173
Set D 4.1713 8.4701 9.8390 6.5232 7.2509

Totals 5.7122 9.6542 10.3800 7.2460 8.2481

Table II.4: Results from the departure rate performance metric evaluated under
various lighting and road conditions.

Standard deviation of error in
departure rate metric (cm/s)

Dawn Noon Dusk Night Total
Set A 0.11107 0.31885 0.18453 0.20120 0.21710
Set B 0.21364 0.32725 0.24030 0.06224 0.23149
Set C 0.26277 0.29709 0.70780 0.39743 0.45173
Set D 0.10842 0.29767 0.19349 0.21076 0.21344

Totals 0.18627 0.31049 0.39693 0.24836 0.29595
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in standard deviation performance over mean absolute error might suggest that

the tracking at night performed better overall, but still contained cases where the

tracking was off. This is because the mean absolute error metric is less influenced

by the small amounts of data points which contain a larger amount of error.

Comparing performance for different type of lane markings, we can see that

section A, which contained solid and segmented line markings, performed better

than the other sections, which at points were marked only with circular reflectors.

However, this difference is less noticeable than the variations caused by lighting and

traffic.

As the system’s intended use is in a driver safety system, it is critical that

we analyze the situation in which the lane tracking did not perform well. Section

C can be seen to be the most difficult section of road based on the results. Looking

deeper into the cause of these errors we can see points where the tracking is lost

for a period of time and then catches back on again. An example of one of these

events occurs near frame 82,900 of figure II.20. Figure II.17 shows this tracking error

resulting from occlusion of the road by a vehicle. This section of road is near the

intersection of three different freeways and therefore generally contains more traffic

and more people merging and changing lanes. In most of the situations where the

tracking was lost, vehicles changed lanes directly in front of the test bed. The

specular highlights and lines of the vehicles caused false positives in the feature

extraction. Another important event occurred near frame 24,650 of figure II.19. At

this point the video signal was lost due to saturation of the CCD while exiting a
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tunnel causing the vertical sync to be misaligned. It is also important to note that

while these types of failures might be critical for a autonomous vehicle, whereas a

driver assistance system can warn the driver when the current lane detections do

not fit well with previous data and the system is not functioning properly.

Figure II.17: Error due to occlusion of the road by a vehicle on the dusk dataset on
road segment C.

II.E.4 Lane Keeping vs. Lane Changing Performance

Furthermore, the different driving scenarios require different performances

for different types of driving. Specifically, lane departure warning systems need

to accurately detect when the driver is close to the edge of the lane. This makes

it important to test the performance during lane changes. Lane keeping control

systems might require good performance only near the center of the lane, where the

system is designed to operate. We therefore also measured performance during lane

change maneuvers and compared this with performance during lane keeping.

Table II.5 show the results for the lane keeping driving context versus
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Table II.5: Results from various metrics associated with lane keeping vs. lane
changing.

Metrics
Std. Dev. Absolute Std. Dev. of Error in
of Error Mean Error Rate of Change

(cm) (cm) (cm/s)

Lane Keeping 10.4263 8.2661 0.1625
Lane Changing 16.0634 12.4149 0.4653

Combined 13.0060 9.9446 0.3639

the lane changing driving context.This is an important distinction because some

systems, such as lane departure warning systems, are required to operate well during

lane changing situations. The data samples used in this evaluation were collected

during the day and include circular reflector markings, dash line markings, clear

roads, shadowed roads, and overpasses. This data is shown in figures II.13 and II.14.

From the table we can see that there is performance degradation when changing

lanes. This is also evident in the relative higher errors at the peaks and troughs of

figure II.14 which correspond to higher lateral velocities during lane chages. These

types of errors are possibly associated with errors in the vehicle model, errors in

yaw rate sensing, and delays associated with Kalman filtering.

II.E.5 Special Case Scenario Testing

Often it is the case that the situations which can be considered the most

critical are less likely to occur. Figure II.18 shows cutscenes from a situation in

which the road surface is obfuscated by complex shadows and a tunnel sequence

that contains tight quarters and extreme lighting changes. In this section we will
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Table II.6: Results for the special case scenarios of tunnels and complex shadows.
Error Metrics

Std. Dev. Absolute Std. Dev. of Error in
of Error Mean Error Rate of Change

(cm) (cm) (cm/s)

Tunnel 22.7438 17.8740 0.51141
Complex Shadows 10.3869 15.4488 0.45682

analyze the performance of our lane position tracker in these two situations.

First we will examine the performance while traveling through tunnels.

Unfortunately, tunnels are not common in the area where testing was performed so

only one tunnel in a more urban setting was used in the testing. The results from

the evaluation are quantified in table II.6. At the end of the tunnel was a sharp left

hand turn for which tracking failed as our road model was not designed for such

use. Figure II.21 shows the detected position superimposed on ground truth.

The second special case was traveling through complex shadows. Often

trees, overpasses, cars, and other object can cast shadows with sharp edges and

complex shapes. These can pose problems for lane tracking systems because they

form extraneous edges, obscure the road texture, and otherwise complicate feature

detection. The results from the evaluation can be seen in table II.6. This obscuring

of the lane markings by complex shadows only slightly degrades performance.

II.F Conclusion

In this chapter we have presented a detailed analysis of the use of lane

position in a variety of system objectives, road environments, and sensing systems.
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Figure II.18: Scenes from the special case scenarios of complex shadowing (top row)
and tunnels (bottom row). These scenes highlight the extreme variability that can
occur within short sections of road.

We then presented a framework for comparative discussion and evaluation of exist-

ing lane tracking systems. This led to our presentation of the novel VioLET lane

tracking system. A system designed for driver assistance vehicles operating in a

wide range of environments. The VioLET system introduces steerable filters to the

lane detection and tracking problem by allowing greater robustness to complex shad-

owing and lighting changes, while at the same time maintaining a computational

simplicity necessary for fast implementations. Using both vehicle state information

as well as visual cues (lane markings and lane texture) we created robust estimates

of lane curvature both with and without lookahead visibility. Finally we provided a

detailed analysis of our system with an extensive set of experiments using a unique

instrumented vehicle test bed. This evaluation allowed us to compare performance

between different types of road markings at different times of the day, different types

of driving situations, and special case scenarios that can be critical points in driver

assistance systems.
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Along with providing metrics for evaluating system performance, it is also

important to note the dependence of various driver assistance systems to the metrics

provided by the underlying sensing algorithms. An example of this is providing the

departure rate to a lane departure warning system can enhance the performance of

such systems. Systems have been designed to provide good performance based on a

subset of data than is required to accurately predict the exact motion of the vehicle

within the lane [44]. With this in mind, we plan on identifying and exploring further

the types of metrics useful for various driver assistance systems. An example of this

work can be seen in [7] and [3].

Specific examples of the types of system objectives that this lane position

tracker was designed to be used are those described in Huang et al. [48], Gandhi

et al. [49], and Trivedi et al. [50]. These systems are designed to capture the com-

plete vehicle context including vehicle surround, vehicle state, and driver state. By

capturing the complete vehicle context, we open the possibility of developing driver

assistance systems focused on the driver and his or her intended actions [3].

The text of Chapter II, in part, is a reprint of the material as it appears

in: J. McCall and M. M. Trivedi, “Video based lane estimation and tracking for

driver assistance: Survey, system, and evaluation,” IEEE Transactions on Intelli-

gent Transportation Systems, vol. 7, no. 1, March 2006. I was the primary researcher

of the cited material and the co-author listed in this publication directed and su-

pervised the research which forms a basis for this chapter.
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Figure II.19: Lateral position (top) and rate of departure (bottom) for road section
A at noon.
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Figure II.20: Lateral position (top) and rate of departure (bottom) for road section
C at dusk.
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Figure II.21: Lateral position (top) and rate of departure (bottom) for the special
case scenario of traveling through a tunnel. High road curvature at the end of the
tunnel results in a loss of tracking.



Chapter III

Driver Affect Analysis

III.A Introduction

Analysis of facial expressions by machine vision systems is an important

research area for many applications. Applications ranging from user interfaces to

intelligent vehicles and spaces can be greatly enhanced with the incorporation of

expression analysis [51]. It has been shown that there are six universally common

facial expressions for displaying the emotions of Anger, Disgust, Fear, Happiness,

Sadness, and Surprise [52]. However, A more descriptive alphabet of human emotion

can be constructed by looking at individual components of facial expressions; specif-

ically, we implore facial action units as presented by Ekman et al [53] as a method

for identify emotion and mental state. We will help to identify these facial action

units by examining the motion of individual facial landmarks such as corners of the

eyes, mouth, eyebrows, etc. Classifying individual action units allows us to explore

67
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other areas of human computer interactions by broadening the number of emotional

states that can be captured. This thereby expands the contexts in which such sys-

tems can be used. As an example, intelligent vehicle systems for driver departure

warning can be enhanced with the ability to predict fatigue and attentiveness [51].

Facial expression and affect analysis is something we instinctively perceive;

however, many factors contribute to the difficulty in machine identification of facial

actions and expressions. These factors include difficulties imposed by lighting con-

ditions, varying emotional factors that lead to facial expressions, variations in the

expressions between persons, head poses and head movements [54].

In this chapter we propose a novel framework that integrates the prob-

lem of face and facial landmark detection and tracking using a variety of cues. By

constructing a probabilistic model based on a hierarchical pyramid of facial region

trackers, we can more robustly predict individual facial landmark locations while at

the same time provide robustness to occlusion. In our pyramid of facial region track-

ers, we first detect and track faces in a given image. Using this observed knowledge

of the location of faces within the image, we can more easily and accurately detect

smaller regions of the face. This continues until we have identified specific facial

landmarks. We will discuss this approach in more detail in section III.B. The track-

ing mechanisms used in each layer of the hierarchy are constructed using particle

filtering [55]. Particle filtering provides a method for tracking complex distributions

over time in an efficient manner as well as combining observations from a variety of

cues. By fusing multiple cues we can create robustness to a variety of environmental
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and lighting conditions. For example, changes in lighting might cause cues such as

facial motion to yield poor results as algorithm assumptions are violated, but cues

retrieved from facial structure are often more robust to such conditions.

III.A.1 Related Research in Facial Affect Analysis

In order to robustly identify facial actions, one must first identify the sub-

jects face as well as properly register the location of specific facial landmarks. From

this point on a variety of techniques can be employed to analyze facial expressions

and facial action codes.

Bassili [56] has shown the humans are capable of identifying expressions

when presented simply with points placed at facial landmarks. Optical flow and

facial motion has also been shown to be useful in the automatic identification of

facial affects and expressions [57–59]. However, these methods often break down

when rigid body motion, due to head movement, is present. Attempts to solve this

problem of separating the rigid motion from the non-rigid motion have been made

using model-based estimation [57].

Non-rigid feature tracking has been explored in a variety of ways ranging

from methods based purely on optical flow and probabilities, to methods involv-

ing the construction detailed facial models and perturbing them according to facial

landmark movement. Black and Yacoob parameterized various facial feature mo-

tions with affine and similar transformation models [60]. Another approach to solve

this problem is to input more complex feature vectors into classification systems.



70

Systems developed using Graph Matching [61], Neural Networks [62], and Support

Vector Machines [63] have been shown to be effective, but require more complex

classification schemes.

Appearance cues have also been shown to be very important for facial

affect identification. Active appearance models [64] use a linear combination of

detailed 3-dimensional models to estimate head pose and appearance. The fitting

is performed by aligning a model generated image with the input image. Generic

appearance-based object detectors based on Haar wavelets and boosted classifiers

have also been shown to be useful in detecting faces [65] and facial features [66].

These types of single frame detectors have also been included as observations to

tracking systems [67].

Particle filtering provides a robust method for tracking objects and features

by estimating the probability of the object’s current state given previous states and

observations [55]. It accomplishes this by using Monte Carlo sampling techniques to

approximate probability density functions without any assumptions of Gaussianity.

Others have used combinations of particle filters for tracking facial features and

constraining them to fit particular models of facial movement [68].

In our work, we build upon this previous research by developing a hierarchi-

cal structure of particle filters which operate on a variety of different observations.

This hierarchy allows for the coarse to fine tracking of facial landmarks. Region

tracking results obtained from coarser levels of detail are used to condition the prob-

ability estimates of the finer detailed face regions. The observations at each level



71

of the particle filter hierarchy include structural information, relative orientations,

locations, and sizes to other filters in the hierarchy; general appearance informa-

tion, generated by Haar wavelet based object detection; and specific appearance

information, generated by adaptive templates of facial regions and landmarks.

III.B Real-time Affect Analysis using Hierarchi-

cal Particle Filtering

In this section we will introduce the components that make up our Real-

Time Affect Analysis System (RAAS). This system is composed of multiple levels of

particle filters related through a hierarchical structure that allows the propagation

of landmark location estimates from a coarse resolution to a fine resolution. Figure

III.2 consists of a diagram showing the structure of this system. The individual

components will be described in the next two sections of this chapter.

III.B.1 Particle Filtering Overview

Particle filtering is a convenient method for estimating the probability den-

sity of the current state of an object given the object’s previous states as well as

current and past observations. This is expressed mathematically as p (xt|x0:t−1, y0:t),

where xt is the object state at time t and y0:t are the observations from times 0

through t. This distribution can be estimated using a properly weighted sample dis-

tribution. By choosing a transition prior of p (xt|xt−1), the weight update procedure
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1: If Resampling, generate new samples st from the samples st−1 using a multino-

mial distribution with coefficients corresponding to the weights wt−1. Reset

weights wi,t−1 = 1
N
∀i ∈ {1, ..., N}.

2: Update each sample i using the transition prior such that

s′t,i = p (xt|xt−1 = st,i)

3: Re-weight the samples based on the current observations using the equation

wt,i = wt−1,ip (yt|xt,i = s′t,i)

Figure III.1: Particle Filtering Algorithm

for each sample, indexed by i at time t, simply becomes wt,i = wt−1,i · p (yt|xt,i) [69].

The filtering algorithm used in each of the levels of our system is the same as that

presented in [55] and shown in figure III.1.

III.B.2 Creating a Hierarchy of Particle Filters

One limitation of particle filtering is its susceptibility to the “curse of di-

mentionality,” [70] where the number of samples required for an accurate estimation

grows exponentially with the dimension of the state space. For facial features, the

dimensionality for the complete characterization of facial motions is quite large, re-

quiring the state space to be split into multiple filters which can be constrained based

on a facial model. Others have done this by separating facial landmarks into groups

and then tracking the groups individually under a constrained facial model [68].

By using a dynamic Bayesian network framework, we can condition the

finer detailed tracking on results achieved from tracking regions at a coarse level.
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Figure III.2: Bayesian network for facial landmark tracking. The structure for
the right eye landmark tracking is emphasized. The associated probabilities are
propagated in time using particle filtering to make the network dynamic.
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The structure of our Bayesian network is shown in figure III.2. Each node in the

network is made dynamic by propagating the probabilities in time using particle

filtering. Each node also has it’s own observations as we will describe later. As an

example, the subset of the network for location of eye region landmarks highlighted

in the figure is expressed in mathematical terms in Equation III.1. Where EB,

E, ER, F are the parameterizations for the eyebrow, eye, eye region, and face

respectively.

p (EB,E, ER, F ) = p (EB|ER) p (E|ER) p (ER|F ) (III.1)

Using this framework, we can adjust the particle filtering mechanism in

each of the nodes by conditioning them on their respective parent nodes. Our

particle filter now tries to find the probability p (xt|x0:t−1, y0:t, zt) where zt represents

the parent node’s parameters. This effectively adds an additional observation to the

nodes particle filter. Equation III.2 expresses the sample re-weighting step (step 3

in figure III.1) using this modified filter.

wt,i = wt−1,i · p (zt, yt|xt−1,i) (III.2)

The parameters we chose to represent each node consists of the x and y

image coordinates of the region, the size of the region, the aspect ratio of the region,

and the rotation of the region along the image axis. Our state transition probability

was chosen to model additive noise with zero mean. The variance was set to account

for non-linear facial movements and was determined through empirical testing. More
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complex models could be trained from facial motion data. In the next section we

will explain the node observations in more detail.

III.C Fusion of Multiple Observations

Particle filtering provides a useful probabilistic framework for incorporating

multiple observations. Using the “naive” Bayesian assumption that the observations

are independent of each other, the observation probability density function can be

factored into the product of each of the density functions of the observations o

contained in the set of all observations Obs. Strictly, the naive Bayesian assumption

doesn’t hold; however, in practice systems based on this assumption have been

shown to work quite well [71]. This density function is shown in equation III.3.

p (yt|xt) =
∏

o∈Obs

po (yt,o|xt) (III.3)

The manner in which we choose these probability density functions can

provide flexibility and robustness to the system. For example, certain observations,

such as those generated from adaptive templates, initially might not provide good

information. In this case, we can assign a high variance Gaussian distribution or

even a uniform distribution to the density function so that it has little or no impact

on the sample re-weighting. We can perform similar adjustments in cases where

certain features are occluded by relying on structural information and observational

outputs of the other filters in the current and higher levels in our particle filter
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hierarchy.

The observations at each level of the particle filter hierarchy include general

appearance information, generated by Haar wavelet based object detection; person-

specific appearance information, generated by adaptive templates of facial regions

and landmarks; and global structure cues; generated by the higher order filter of

the hierarchy. In the sections below we will describe these cues currently used in

the RAAS system.

III.C.1 Haar Wavelet Based Cues

Object detection using a cascade of boosted Haar wavelet based classifiers

has been shown to provide highly accurate results with little false positives [65].

Others have used the output of Haar wavelet classifiers in filtering systems [67].

Similarly, in our system, we construct the observation probability by constructing a

mixture of equally weighted Gaussian distributions centered on each detected object.

The classifier cascades were trained on faces sampled from the FERET database

[72] which we hand labeled with the locations of individual facial landmarks. The

cascades for the top level particle filter were trained against randomly selected non-

face background images obtained from the internet. The cascades for lower level

particle filters were trained against background images of facial regions excluding

the region or landmark being detected.

To deal with occlusion of regions of the face, multiple Haar wavelet ob-

servers can be combined a la the “naive” Bayesian assumption stated earlier at
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Figure III.3: Face Detection Results with Occlusion

each level of our hierarchy. For example, the top level face detection filter uses Haar

wavelet detectors for the eye region, nose region, and mouth region separately, allow-

ing for partial occlusion of the face and providing more robustness to false positives

generated by any single detector. Figure III.3 demonstrates this robustness to oc-

clusion. This approach of using a naive Bayesian classifier on different facial regions

is similar to that developed by Schneiderman and Kanade [73]. This is expressed

mathematically in equation III.4.

p (yt,face|xt) = p (yt,eyes|xt)

p (yt,nose|xt)

p (yt,mouth|xt)∏
o∈Obs

po (yt,o|xt) (III.4)
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III.C.2 Adaptive Template Cues

Person-specific appearance cues can also be used rather than relying solely

on appearance models generated from facial database which might not include the

current observed subject. In our system, we construct adaptive templates based

on a IIR filtering of the detected facial regions and landmarks. These appearance

models are initialized using the average appearance of the corresponding facial re-

gions and landmarks seen in the FERET database used in constructing the general

appearance cues. After each frame, the template is updated by taking a weighted

sum of the current region or landmark appearance and the adaptive template itself.

The weighting represents the responsiveness of the template to change.

The observation density function for the adaptive template is assumed to

be a zero-mean Gaussian in the sum-of-squared pixel error between the sample and

the template. By measuring the minimum of the sum-of-squared error over all of

the samples, we can get a measure of the performance of the adaptive template.

This is useful in determining the variance of the observation probability. Higher

variances will place less emphasis on the associated observations. This is because

the higher the variance, the greater the entropy of the observation function and the

closer the density gets to uniform over the samples. Observations having a uniform

distribution over all of the samples have no impact on the weight updates as all of

the weights are updated by the same value. Figure III.4 shows the initial templates

for a few of the face regions and landmarks.
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(a) (b) (c)

(d) (e) (f) (g) (h)

Figure III.4: Face Region Templates: (a) Mouth Region, (b) Nose Region, (c) Eye
Region, (d) Right Eye, (e) Left Eye, (f) Right Mouth Corner, (g) Left Mouth Corner,
(h) Nose Bridge

III.C.3 Higher Level Cues

As demonstrated in equation III.2, we can view the information from the

higher level regions as observation to the lower regions. Assuming conditional inde-

pendence between the various node observations and the higher level observations,

we can write our node observation density function (step 3 in figure III.1) as

p (zt, yt|xt) = p (zt|xt)

p (yt,haar|xt)

p (yt,template|xt) (III.5)

where zt represents the parameters of the higher level region. The density function

p (zt|xt) is assumed gaussian and learned from training data associated with the

relative location of the higher level region to the currently tracked region.
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III.D Thin-plate Splines for Robust Feature Ex-

traction

Thin-plate splines provide a good method to parameterize a warping trans-

formation based on a set of fixed points. It effectively generates a minimal energy

solution to a point constrained warping. This lends itself quite nicely to facial af-

fect analysis because the facial affects can be thought of as the deviation of facial

action units from a neutral zero-energy position. We show that by selecting land-

mark points that correspond to separate action unit areas, a good statistic for affect

analysis can be generated. The thin-plate spline model is also easily separated into

an affine portion that describes rigid head movement and a nonlinear portion that

describes the warping induced by facial expressions. The classifier then does not

need to train for rigid body head motion, allowing for reduced training sets and

simplified classification systems. The formulation of the thin-plate spline model

shows this separation of the affine from the nonlinear. We used the same derivation

as Bookstein in his paper on principle warps [74]. This model is initialized from the

location of the facial feature points in the neutral position.

Z = −U = −r2 log r2 (III.6)

r2 = x2 + y2 (III.7)

If = arg min
f

∫∫
R2

(
∂2f

∂x2

)2

+

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2

(III.8)
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Using equations III.6 and III.7, it can be shown that the function f (equation III.9)

is a solution to the minimization problem shown in equation III.8

f = t1 + axx + ayy +
N∑

i=1

wiU


∣∣∣∣∣∣∣∣
 xm,i

ym,i

−
 x

y


∣∣∣∣∣∣∣∣
 (III.9)

In equation III.9, xm,i and ym,i are the respective ith x and y coordinates

from our model. The warping parameters W, T,and A can be calculated by equation

III.10 [74]. [
W T A

]
= L−1Y (III.10)

where L, P, and K are defined as follows and Y contains the current posi-

tions of the tracked points padded with zeros.

L =

K P

P T 0

 (III.11)

P =



1 xm,1 ym,1

1 xm,2 ym,2

...
...

...

1 xm,n ym,n


(III.12)

Ki,j = U


∣∣∣∣∣∣∣∣
xm,i

ym,i

−
xm,j

ym,j


∣∣∣∣∣∣∣∣
 (1− δi,j) (III.13)

Since P and K are computed from the neutral model, L-1 only needs to be

computed once when the neutral face is initialized. This allows for the fast calcula-

tion of the nonlinear warping parameters W as well as the affine warping parameters
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A. It is also important to note that even though the affine warping parameters have

been separated from the nonlinear parameters, the nonlinear parameters are still

dependent on the affine parameters. This can be corrected easily calculating the

inverse of the linear portion of the affine transform and multiplying it with the non-

linear warping parameters W. This effectively removes the dependence on the affine

transformation from the nonlinear parameters. This calculation to remove the affine

dependency from W in solution S is shown in equation III.14.

S = A−T W (III.14)

Thus thin-plate splines provide us with an efficient model for facial affect

characterization by providing a closed form solution to the minimum energy warping

separated into affine and nonlinear portions. This method does not require iterative

techniques or lengthy operations; simply two matrix multiplications and one 2x2

matrix inverse calculation (the inverse of L is precomputed) is sufficient to generate

a result. The figures below show examples of the tracked points undergoing a thin-

plate spline warping.

Affine warping can give a good approximation for rigid head motion under a

perspective projection for points in a plane. The error in this approximation is only

due to the amount of error stemming from a perspective rather than orthogonal

projection. This error can be minimized by a proper choice of camera and lens.

By removing this affine component from the feature vector and by selecting facial

feature points that are nearly coplanar, we can achieve invariance to rigid body
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(a) neutral (b) happy (c) sad

(d) angry (e) surprised (f) disgusted

Figure III.5: Facial expression feature points (blue Xs) and grid to illustrate warping
for neutral, happiness, sadness, anger, surprise, and disgust
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Figure III.6: Fifteen successive frames showing a transition from neutral to happi-
ness

transformations such as head rotations and translations. A measure of the strength

of a particular expression can also be calculated from the thin-plate spline warping

parameters. This allows us to not only to distinguish that an expressions is being

performed, but also how strong the expression is. The bending norm serves this

purpose and is calculated by the equation III.15.

B = trace
(
WKW T

)
(III.15)

Figure III.6 shows the first 15 frames from a happy expression while figure

III.7 shows a graph of the bending norm values versus time for this sequence.

III.E Facial Action Code Detection

As discussed in the previous section, thin-plate splines provide a good

feature vector for facial expression classification. This method also works well with
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Figure III.7: A plot of the bending norm showing the strength of the expression for
each frame.
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our system in that the tracked landmarks can be used for control points in the

thin-plate spline warping. Thin-plate splines furthermore have the usefulness of

parameterizing the warping into affine and non-linear portions which is useful for

creating robustness to rotation and translation. In our system, we generate a feature

vector based on this non-linear warping and input this feature into an AdaBoost

classifier [75] using a decision stump as the weak learner.

III.F Results for Facial Action Code Detection

Figure III.8: Tracking results for the eye region and subregions. The lighter boxes
denote subregions of the eye region.
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Testing of the system was performed using the Cohn-Kanade AU-Coded

Facial Expression Database [76]. The database consists of 97 subjects each perform-

ing a variety of coached facial expressions. Because of the difficulty in generating

natural facial expression in a laboratory setting, it is easier to test system perfor-

mance using Facial Action Codes (FACS) [77]. As described in section III.A, FACS

can also be considered the building blocks for facial expressions as they can be at-

tributed to specific muscles or muscle groups within the face. The database contains

ground truth information about the specific FACS which are present in each of the

sequences. Figure III.8 shows the results of the tracking on one of the test subject

performing the surprised expression.
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Of the 97 subjects in the database, the system successfully initialized on

all but one subject. Table III.1 shows the results for some of the FACS associated

with the upper portion of the face. The results were obtained by training on a

randomly generated set of sequences and testing on the remaining set of sequences.

This procedure was repeated 100 times and the results were averaged. A sequence

is considered a positive sequence if the specific action unit is expressed in any part

of the sequence, a negative sequence otherwise. The metrics shown in the table

include the overall accuracy (percentage of correct test sequences), the detection rate

(percentage of positive sequences detected), and the false alarm rate (percentage of

negative sequences incorrectly identified). All sequences (both training and testing)

were tracked using the method described in this chapter to generate the feature

vectors for classification.

Others have achieved higher recognition rates ( 88.5% for AUs 1, 2, 4, 5,

6, 7 tested above [78]) using additional cues beyond just landmark locations for

classifying facial actions. However, we believe that our system provides a better

framework for incorporating the additional cues directly into the facial action code

classification and provides more robustness in difficult environments as will be shown

in the next section.
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III.G Driver Awareness and Attention Analysis

There is often a large discrepancy in performance between systems tested

in laboratory settings and systems tested in real-world environments. This is due to

a wide array of difficulties found in complex real-world environments. Specific to the

driving environment, complexities such as drastic lighting changes, hard shadows,

camera movement, reduced constraints on the subject, vibrations, and occlusions

can all reduce system performance. It is therefore important to test systems in real-

world situations to get a sense for their performance under conditions not easily

simulated in the laboratory.

Furthermore, it is important to look at specific facial actions that are

important to understanding the driver’s attention and awareness. Important cues

for inferring driver fatigue include eye blinks and yawns. Important cues for inferring

driver attention and intent include head movement and head pose.

III.G.1 Results for Driver Awareness and Attention Analy-

sis

Examples of the system operating under a large variety of the conditions

described above can be seen in figure III.9.
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Figure III.9: Scenes showing facial feature tracking in a real-world environment.



92

III.H Conclusions

In this chapter we have shown a novel framework for detecting and tracking

faces and facial features. Using a hierarchy of filters, we can create robustness

to noise and occlusion. Facial landmark tracking is improved by using the prior

information of more coarse levels of details, such as the location of the face or

specific facial regions. Finally we demonstrated the value of this framework by

applying it to facial action code recognition using a standard database for facial

expressions. We further tested the system in a real-world environment exploring

facial actions relevant to the specific task of understanding driver awareness and

attention. This type of framework has far reaching interest in articulated body

tracking and human-computer interface applications.

The text of Chapter III, in part, is a reprint of the material as it appears

in: J. McCall and M. M. Trivedi, “Facial Action Coding Using Multiple Visual Cues

and a Hierarchy of Particle Filters,” in Proceedings of IEEE Workshop on Vision

for Human Computer Interaction in Conjunction with CVPR 2006, New York, New

York, June 2006, and J. McCall and M. M. Trivedi, “Pose invariant affect analysis

using thin-plate splines,” in Proceedings of International Conference on Pattern

Recognition, August 2004, pp. 958–964. I was the primary researcher of the cited

materials and the co-author listed in these publication directed and supervised the

research which forms a basis for this chapter.



Chapter IV

Driver Attention and Intent

Analysis

IV.A Introduction

In order to develop effective counter measures for enhancing safe and

smooth operation of an automobile in traffic, it is helpful to examine the full context

in which driving occurs. There are three main components of the overall driving

context:

• Environment: including roadway infrastructure and the dynamic climatic

situations,

• Vehicle: including ever increasing telematic devices and infotainment gad-

getry, and

93
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• Driver: an essential part of the human-vehicle system which needs to be

maneuvered safely in the environment.

The complex dynamics of various events and interaction of various entities

in the above tripartite “EVD” system components affect the overall safety of a vehi-

cle as well as the condition of the traffic flow. For instance, properly designed roads,

traffic signs, traffic regulations and policies have all been recognized as important

factors in making traffic safer on the US Interstate Highways. Improved design of

vehicles and safety systems, such as seat belts, brakes, and airbags are key factors

in reducing injuries. The vehicle based safety systems are typically viewed as one of

the two kinds. The first one is termed as “Passive”. The purpose here is to minimize

the severity of injuries sustained in case of accidents. Examples of these are seat

belts, airbags, collapsible steering columns, and shatter resistant windshields. The

second kind is “Active,” which are supposed to prevent vehicular accidents. Good

examples of these are anti-locking brakes. Obviously, it is more desirable to prevent

an accident rather than reduce the severity of injuries. However, active safety sys-

tems pose lot more difficult and challenging problems. One of the key requirements

in the design of an active safety system is the ability to accurately, reliably, and

very quickly identify the conditions which would lead to an accident and to force

corrective actions so that the accident can be prevented.

An active safety system has three parts. The front end of an active safety

system is a sensing subsystem, which needs to provide an accurate description of the

dynamic state of the EVD system. The second important subsystem is an analysis
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subsystem which needs to analyze the EVD dynamic state using a model based

approach to compute some sort of a measure of safety underlying that particular

EVD state. If this measure falls under a predefined threshold of margin of safety,

then the analysis module needs to direct the active safety control unit to initiate a

corrective course of action so that the vehicle can always operate within the margins

of accident-free safety zone. There are some very challenging problems involved in

each of the above three subsystems of an active safety system.

IV.A.1 Recent Research in Driver Behavior Analysis

Due to the importance of driver behavior to vehicle safety, many researchers

have attempted to model drivers behaviors. Probabilistic models have been used to

analyze driver behavior and recognize driver actions. Kuge et al. [9] used Hidden

Markov Models (HMMs) to analyze driver behavior. Broadhurst et al. [79] present

a probabilistic framework for determining the motion of objects in a scene and from

that detecting the probability of a collision. They use Monte Carlo sampling to es-

timate the probability distributions. Other systems have also been developed using

cognitive architectures and mental models. Goodrich and Boer [80] use mental mod-

els of drivers based to create human-centered automated systems with augmented

dynamics, control, and perception based on driver’s perceptions and behaviors.

Along with recognizing specific driver behaviors, others have focused on

recognizing driver intent to generate advanced predictions of driver behavior. Prob-

abilistic methods such as HMMs [81], dynamic Bayesian networks (DBNs) [82], and
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sparse Bayesian learning [3] have proven to be quite useful for such situations.

Oliver and Pentland [81] used Coupled HMMs to recognize specific driver

behaviors and intents. Their data set included video, face and gaze detection, car

and lane detection, and internal vehicle sensor data from 70 drivers. Various HMMs

were trained on subsets of the different feature vectors and performance of these

models was subsequently compared. Accuracy of the system for behavioral recogni-

tion as well as prediction were shown.

Sparse Bayesian learning [83] has been show to be effective in creating

robust classifiers for driver intent analysis [3]. Lane change intent analysis was per-

formed using information from a camera viewing the driver, the internal vehicle

sensors, and the lane position and trajectory. It was shown that including informa-

tion about the driver’s head movements increased classifier performance such that

equivalent prediction accuracy was achieved a half of a second sooner than only

using the lane and vehicle information.

Salvucci [84] has employed knowledge-based cognitive architectures to model

strategic “behavioral trajectories,” which allow intelligent systems to behave sim-

ilarly to human drivers or predict the future actions and cognitive load of human

drivers. This type of model has also proven useful for studying driver behavior under

secondary cognitive loads [85, 86] and for detecting driving maneuvers such as lane

changes in real time [87].

Other systems have been developed to monitor the state of the driver. Sys-

tems such as those proposed by Ji et al. [88], solve the problem of determining driver
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fatigue using DBNs. Cheng, Park and Trivedi [89] present a driver activity hierar-

chy to break down interactions into actions, gestures, and poses. A vision system

is used to generate operation triplets of 〈agent-motion-target〉. These Operation

triplets describe driver actions and are incorporated into a DBN to probabilistically

identify driver-vehicle interactions such as adjusting the radio, turning, and shifting

gears.

Bergasa et al. [90] recently proposed a real-time system for monitoring

driver vigilance using fuzzy systems. Smith et al. [91] developed a system for cap-

turing driver visual attention using Finite State Automata.

Table IV.1 contains a summary of the key concepts of a variety of the above

mentioned work.
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IV.B Attention and Intent Analysis for Lane De-

parture Warning

At its core, driver intent inference presents a challenging classification prob-

lem; namely, given a diverse array of multi-modal features, how can we infer or

classify driver intentions. While certainly we may pose a large number of candi-

date intentions, as already mentioned, we will focuss on two: lane changing (either

right or left) and lane keeping. This dichotomous problem is well-known to be of

far-reaching significance in the realm of intelligent vehicle support systems [9].

In designing our DIIS classifier, we have at our disposal the following types

of variables: Vehicle State variables, including gas pedal position, brake pedal de-

pression, longitudinal acceleration, vehicle speed, steering angle, yaw rate, and lat-

eral acceleration; Environment Variables, including road curvature metric, head-

ing, lateral lane position, lateral lane position 10m ahead, and lateral lane position

20m ahead; and Driver State Variables, including side-to-side head movement and

up/down head movement.

Given that each of these variables is a time series, the set of possible

candidate features is considerably large. As such, we would like to have a method

for judiciously selecting a small subset of features that are useful in classifying driver

intents. Moreover, we would like our model to output class-membership probabilities

rather than simply class labels. An extremely effective paradigm for this task is

sparse Bayesian learning as described next.
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IV.B.1 Sparse Bayesian Learning

Sparse Bayesian learning (SBL) is a powerful approach recently introduced

into the machine learning literature for solving regression and classification problems

[83]. The methodology relies on a parameterized prior that encourages models with

few nonzero weights. As such, SBL is especially adept at pruning features, even

when the number of candidates is extremely large. Moreover, the sound probabilistic

underpinnings of SBL allow us to estimate class-membership probabilities as desired.

The basic form of the actual SBL discriminant functions we considered is

given by

y(x) =
M∑
i=1

wiφi(x) (IV.1)

where x is an input feature vector (described below), the wi’s are learned model

weights, and the φi(·)’s are flexible basis functions. y(x) is then applied to a sig-

moidal link function and a Bernoulli distribution is assumed for the probability of

class C, given x, i.e., P (C|x). If we choose φi(·) = K(·, xi), where K(·, ·) is a

kernel function (or feature space mapping) and xi is a training example, we obtain

the relevance vector machine (RVM), a Bayesian competitor to the popular support

vector machine (SVM). However, the SBL framework is much more general in that

we can consider overcomplete representations, i.e., the case where M is greater than

the number of training examples. This allows us to employ multiple (complete)

kernels and bases simultaneously while still controlling for overfitting. The sparsity

of w is enforced by the use of prior knowledge of the parameters being inferred.

Specifically, SBL models the weights as Gaussian random variables and enforces
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a prior distribution of the parameterization of the weights. The “most probable”

weights are obtained using maximum likelihood. A more comprehensive description

of SBL can be found in [83]. For our purposes, we only need to think of SBL as

a principled way of learning a robust mapping from large candidate feature sets to

class-membership probabilities.

At any given time t, it seems reasonable that effective driver intent inference

must be based on current and previous values of the observable variables. To this

end, the actual SBL algorithm is presented with temporal blocks from each of the

different variables (e.g., steering angle, speed, etc.). In other words, at time t, the

effective feature vector x(t) becomes

x(t) = [ LateralPos(t), . . . , LateralPos(t−N + 1);

Heading(t), . . . , Heading(t−N + 1);

etc. ], (IV.2)

where N represents the number of past values of each variable that have been

stored internally. For our purposes, we selected N such that the feature vector

represented a one second long sliding window of data. Thus, each feature of our

feature vector x(t) represents a specific feature of our input modalities sampled at a

specific time within our temporal block. The SBL algorithm then computes a sparse

representation using these features to estimate the probability of an imminent lane

change. This is followed by a quantile filter to smooth the result. Embedded in this
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formulation is the fact that temporal variations in maneuver execution are handled

implicitly by SBL. This is due to the fact that the SBL approach creates a maximally

sparse weighting vector that only emphasizes the features at specific times before

the event that are important for the classification problem. SBL effectively discovers

the temporal ordering in adjusting the weights for specific features at specific times.

SBL is particularly well suited for computer vision applications for a num-

ber of reasons. First, the SBL methodology naturally facilitates the assimilation

of multiple modalities of sensor information. By sifting through numerous, possi-

bly overcomplete, candidate inputs, SBL prunes irrelevant or redundant features to

produce highly sparse representations. From a practical standpoint, this frugal rep-

resentation facilitates robust, real-time, frame-by-frame driver intent classification

using limited on-board hardware. Moreover, these sparse expansions permit greater

interpretability, which is important as we investigate which sensor modalities are

essential and which are expendable.

IV.B.2 Evaluation Metrics

Appropriate evaluation metrics are an important component of any DIIS

system. Previous systems have relied heavily on classification error or similar such

measures. In principle, we might like to simply report the classification accuracy

over a large sample of continuous driving. Unfortunately, there are many problems

with such an approach. First, there is the problem of deciding when a “true” lane

change event occurs, i.e., when does it begin, end etc. While we may logically choose
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to define the specific lane change instant as the time when the vehicle center crosses

the lane boundary, it is unclear how far in advance of this time we should consider

an acceptable horizon to label as a true lane change. Additionally, this procedure

ignores significant information present in the probabilistic outputs afforded by our

SBL-based system. This information allows us to weigh the relative importance of

maximizing the detection probability with the desire to avoid false alarms.

In addressing these issues, we developed the following performance metric.

First, we created a large data set where no attempt was made to change lanes, i.e.,

a strict lane keeping data set. Next, we collected a second data set containing nu-

merous lane changes maneuvers. Now because our DIIS outputs a bounded number

between zero and one at every time instant t, i.e., P (C|x (t)) where C represents

the class “lane change”, we may always pick some threshold T and then decide:

IF P (C|x(t)) > T → lane change is occurring

ELSE → lane keeping

By varying T from zero to one, we may create plots of the following:

X - Probability of a false alarm at any given sample in the lane keeping data set.

Y - Probability of detection n seconds before LC in the lane change data set.

These modified receiver-operator-characteristic (ROC) curves provide sub-

stantially more information than current metrics presented in the literature. A

system designer, using the information from this metric, can then decide the spe-

cific point on the ROC curve the system should operate. This metric provides
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information necessary to evaluate the trade-offs between higher false alarm rates

and increased detection accuracy. Moreover, it naturally solves the problems raised

above and, as discussed next, it addresses specific DIIS ideological concerns.

IV.B.3 Ideological Issues

The goal of our driver intent inference system is to predict when a driver

knowingly or intentionally is about to change lanes. We would like to distinguish

this from cases where a driver unknowingly or capriciously drifts over or near lane

boundaries.

While at a high level we are distinguishing between two classes, lane keep-

ing and lane changing, there are actually four implicit classes to consider:

i Intentional decision to change lanes followed by an actual lane change execu-

tion (common).

ii Alert lane keeping (common).

iii Intentional decision to change lanes, but the decision is modulated by traffic

patterns or other concerns and the actual maneuver execution is delayed or

abandoned (less common).

iv Capricious lane keeping where a driver unintentionally drifts near or across a

lane boundary (less common).

With this taxonomy in place, several questions immediately come to mind

with regard to existing algorithms/evaluation procedures. First, most previous
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works have assumed that all intended lane changes are axiomatically followed by

immediate crossing of the lane boundary. But what about case (iii)? In actual

driving environments, these cases will likely be labeled as false alarms even though

they really are not. Our evaluation metric outlined above circumvents this problem

by using a known, pure lane keeping file (i.e., no case (i) or case (iii) examples) and

a separate file with numerous lane changes, either type (i) or (iii). By focussing only

on the lane changes in the latter, we need not worry about falsely categorizing the

type (iii) cases.

Secondly, suppose now that no examples of case (iii) exist, i.e., all lane

change decisions are promptly followed by an actual lane change maneuver. Thus,

we only need consider (i), (ii), and (iv). A robust DIIS should separate (i) from (ii)

and (iv), which are both lane keeping events; however, a trajectory-forecasting-based

approach will often separate (i) and (iv) from (ii). Moreover, the algorithms will

incur a small penalty for this mistake since case (iv) is a relatively rare occurrence.

While type (iv) events may be rare in practice, they are of paramount con-

cern in vehicle support systems.1 Fortunately, we have found that including driver

state information (e.g., head position data), facilitates bridging the gap between

trajectory forecasting and driver intent inference.

1Of course the severity of this problem is determined by how the DIIS will ultimately be used.
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IV.B.4 DIIS Results

To test our full DIIS system and compute the evaluation statistics described

above, we collected significant lane keeping and lane changing datasets per the

requirements set forth above. These data were collected from three drivers over

large stretches of significantly curved highways. Significant curvature helps to create

more type (iv)-like cases, allowing us to better see the distinction between trajectory

forecasting and intent inference. Results are shown below in Figures IV.1 and IV.2

which reflect prediction accuracy with respect to various times before lane change

occurrence. In both cases, Area refers to the area under the ROC curve while DP

(for discrimination power) represents the point along the curve at which 1−X = Y .

We note that as the prediction horizon becomes larger, prediction fidelity decreases.

In contrast, when we exclude driver state information, results are signifi-

cantly worse as expected. This is displayed in Figures IV.3 and IV.4. This is most

likely because the curved nature of the highway made ideal lane keeping difficult,

rendering trajectory forecasting alone insufficient for predicting driver intentions.

From these ROC curves, we can see that the classifier performance when

including head movement at 3.0 seconds before the lane change is about equivalent

to the classifier performance when we do not include the lane change at 2.5 seconds.

We, therefore, can provide an accurate estimate earlier when head movement data

is included in the feature vector. This is further illustrated by looking at a time

series of lane change maneuvers. Figure IV.5 shows the lane position vs. frame

number in the top graph and the lane change probability vs. frame number in
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Figure IV.1: ROC curve obtained from 2.5 seconds before a lane change.

the bottom graph. The solid blue line represents the lane change probability when

head movement is included and the dashed red line represents the lane change

probability when head movement is not included. The graph shows the performance

gain acquired when using head movement. However, in some situations, the head

movement does not provide added information as is the case of the lane changed

performed in combination with a previous lane change (figure IV.5, frame 12,300).

In this situation, the classifier performs only slightly better than the classifier that

ignores head movement. Figure IV.6 shows some frames taken from this video.

Notice the significant increase in the estimated probability of a lane change using

the head data apparent in frame 12132 (figure IV.6d).
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Figure IV.2: ROC curve obtained from 3.0 seconds before a lane change.
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Figure IV.3: Using no driver state information (i.e., pure trajectory forecasting),
ROC curve obtained from 2.5 seconds before a lane change.
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Figure IV.4: Using no driver state information (i.e., pure trajectory forecasting),
ROC curve obtained from 3.0 seconds before a lane change.
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Figure IV.5: Lane position vs. frame number (top) and the probability of a lane
change vs. frame number (bottom) for a driving sequence containing lane changes.
In the bottom graph, the solid blue line is the probability of a lane change using
head movement data and the dashed red line is the probability of a lane change
without using head movement data.
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(a) frame 12060 (b) frame 12090

(c) frame 12120 (d) frame 12132

(e) frame 12180 (f) frame 12210

Figure IV.6: Frames from the video analyzed in figure IV.5. (a) shows a normal lane
keeping intent. As the driver looks to the next lane in (b) and (c), the probability of
a lane change intent is increased. (d) shows the lane change probability using head
movement is significantly higher than classifying the driver’s intent without head
movement. In (e), the lane change has occurred and the probabilities have peaked
at 100%. (f) shows a completed lane change and the probabilities have returned to
near zero.
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IV.C Driver Behavior Analysis Using Naturalis-

tic Driving Data

In the preceding section we classified driver lane change intent prediction

using a data set designed to help distinguish between intended and unintended de-

partures. This was done by including lane keeping data that included purposeful

drift to the edge of the lane to try to mimic unintended lane departures. While this

can be thought of as a good approximation to unintended lane departure, there are

certain side effects that are undesirable. These undesirable effects include condition-

ing on the data because the driver is knowledgeable of the task being monitored.

Creating a system which is trained using solely natural driving data also

poses some difficulties. The main difficulty being that unintended lane departures

occur infrequently, requiring an enormous amount of data to capture. Aside from

collecting such a database, sifting through this data to find such instances would

require an enormous undertaking. To solve this problem, we must then divide the

problem into more tractable problems. We do so using a Bayesian framework.

IV.C.1 A Bayesian Network for Assessing the Criticality of

Driving Situations

In order to asses the criticality of the situation, we condition the probability

of a critical situation on the need for action to be performed and the intended action

of the driver. In our context action can be either applying the brakes or changing
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lanes. The equations describing this probabilistic network are

P
(
C|Bs, Bd, O

)
=

P
(
Bs, Bd|C, O

)
P (C, O)∑

c∈C P
(
Bs, Bd|C = c, O

)
P (C = c, O)

(IV.3)

where C represents the criticality of the system, O represent our input observations,

Bs represents the need for action based on the vehicle and surround sensors, and

Bd represents the probability that the driver does not intend to begin an intended

action. Furthermore, assuming conditional independence, the relationship between

Bs and Bd can be described by (IV.4). While this “naive” Bayes assumption does

not necessarily hold, in practice, this assumption can greatly simplify the system and

provide good results [92]. We can simply the equations further by assuming that the

driver’s observable responses are conditioned solely on the driver’s intended actions.

P
(
Bs, Bd|C, O

)
= P (Bs|C, O) P

(
Bd|O

)
(IV.4)

Using this framework, we can train these probabilities using naturalistic

driving data because we have simplified the problem. Driver intended actions are

therefore decoupled from the surround. Assuming that the data set contains a

wide range of driver behavior, including some inattention, we can create a better

estimate of the driver’s true intended actions. This effectively eliminates the need

to specifically look for sequences which contain critical situations because of this

decoupling of driver intent from surround.
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Histogram composed from 251 lane changes
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Figure IV.7: A histogram image in which each pixel’s brightness represents the
frequency of the observed lane position (y-axis) according to the relative time to the
lane change event (x-axis.

IV.C.2 Lane Change Intent Inference From Observed Driver

Behavior

Using the same sparse Bayesian learning methodology as described in the

previous section, we can then train the probability of driver’s intent to change lane

using a significantly larger database of natural driving behavior. Before we do so,

it is helpful to examine the typical patterns inherent in certain actions. Figure IV.7

shows a histogram image in which each pixel’s brightness represents the frequency

of the observed lane position (y-axis) according to the relative time to the lane

change event (x-axis.) The lane positions are all normalized to lane width. From
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Histogram composed from 251 lane changes
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Figure IV.8: A histogram image in which each pixel’s brightness represents the
frequency of the observed lateral velocity (y-axis) according to the relative time to
the lane change event (x-axis.

this figure and a similar histogram for lateral velocity (figure IV.8 we can see that

typical lane changes begin somewhere around two seconds before the crossing of the

lane boundary, but can be initiated as late as one and a half seconds before the

lane crossing. This is in contrast to the relatively limited data of the preconditioned

intent analysis. One might then expect to observable driver behavior indicative of

a lane change anywhere from about 5-6 seconds before the event up to the event

itself.

We trained the probability of lane change intent using a data set of over

250 lane change instances and over 1000 lane keeping or not intending a lane change

events occurring in natural driving situations. The data was separated into training
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Figure IV.9: Receiver-operator-characteristic curve for lane change intent classifica-
tion at 1.0, 2.0, and 3.0 seconds before the lane crossing
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sensor modalities
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Figure IV.11: Receiver-operator-characteristic curve for lane change intent classi-
fication at 1 second before the lane crossing comparing different combinations of
sensor modalities

and testing set with no overlap. Results for lane change prediction using driver head

movement alone can be seen in figure IV.9. The results were obtained using a one

second sliding window. We can see a degradation of the performance at one second

before the lane crossing event. This is due to the fact that the observable intent

is generally present before the lane change event and not always during the event.

Results comparing lane change prediction using combinations of different modalities

can be seen in figure IV.11.
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IV.D Attention and Intent Analysis for Rear-end

Collision Avoidance

In this section we will focus on the development of a specific active safety

system, that of brake assistance. This will utilize sensor subsystem to extract infor-

mational cues about the vehicle, vehicle surround, as well as driver state. A novel

analysis module will consider these inputs to access the need for braking and situ-

ational criticality, and will provide signals which can trigger appropriate alarms or

can even be used to initiate automatic braking.

IV.D.1 The Importance of Driver Behavior to Collision Avoid-

ance

Data from accident reports in the United States show that most vehicle

accidents are at least partially caused by driver inattention. It therefore makes

sense to focus advanced safety systems on mitigating the root cause of these acci-

dents: driver behavior. Human factors studies have shown that reaction times are

influenced by secondary tasks such as cell phone usage [85] or in-vehicle navigation

system usage [93]. National crash surveys have also shown that driver drowsiness is

also a major factor in vehicle collisions [94].

It is also important to examine how information is given to the driver

in the case of warnings. Psychologists have shown the driver’s respond to certain

modalities of stimulus (e.g. aural, visual, or haptic) differently depending on their
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current cognitive load and sensory stimulation. For example, the central bottleneck

theory proposes that certain brain functions and responses can be performed in

parallel while certain functions such as reasoning is performed serially [95]. It is

therefore important to be able to selectively alert the driver based on the driver’s

state and the surrounding situation. Examples of how a system might adjust its

warning and corrective actions based on various situations are shown in Figures

IV.12 through IV.14. In each of the figures, an intelligent vehicle is approaching a

slow moving truck with different levels of awareness of the driver. The red (darker)

area behind the truck represents a critical region where braking is required. The

yellow (lighter) area represents the region in which the driver should be warned

if they are not aware of the situation. Figure IV.12 demonstrates a situation in

which the driver is unresponsive. In this case the system first warns the driver, but

then applies brakes automatically when the driver does not respond. Figure IV.13

demonstrates a situation in which the driver is inattentive or distracted. The system

first warns the driver. When the driver responds by initiating a braking action or

or other corrective maneuver, the system recognizes the drivers actions and allows

the driver to control the vehicle. Figure IV.14 demonstrates a situation in which

the driver is aware. When the vehicle enters a potentially dangerous situation, the

vehicle recognizes the drivers intent to brake and does not distract the driver any

further.

Another important factor when considering vehicle safety systems is user

acceptance of the system. A recent National Highway and Traffic Safety Administra-
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Figure IV.12: System response to an unresponsive driver. The red (darker) area
behind the truck represents a critical region where braking is required. The yellow
(lighter) area represents the region in which the driver should be warned if he/she
is not aware of the situation.
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Figure IV.13: System response to an initially inattentive driver that becomes alert
after being warned by the system.
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Figure IV.14: System response to an fully aware and responsive driver.
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tion (NHTSA) report [96] determined that alerts the driver believed were unneces-

sary contributed significantly to negative perceptions of a collision avoidance system.

Similarly, they found that many of the imminent alerts were actually false alarms

and also contributed to a decrease in driver acceptance. It is therefore important

to take into account what the driver’s planned actions are (to prevent unnecessary

alerts) as well as how driver’s typically react in similar situations (to determine the

importance of the warning.)

IV.D.2 Related Research

Recent Research in Braking Assistance Systems

An estimated 309,000 rear end collisions occurred in 2000 according to the

General Estimates System (GES) crash database [1]. Of these, 65% were listed with

inattention as the leading contributing factor. Additionally, 40% of these crashes

occurred under adverse environmental conditions such as wet road surfaces or poor

lighting conditions. It follows that systems which recognize dangerous situations or

inattentive and work to warn the driver could help mitigate a large portion of these

accidents.

Longitudinal vehicle control and braking assistance systems have been

studied extensively in recent years. Vahidi et al. [97] provide an extensive summary

of such efforts. Many of these systems are designed for either autonomous vehicle

control or Adaptive Cruise Control (ACC) and based on metrics such as the dis-

tance to the lead vehicle. Sun et al. [98] proposed a fuzzy decision making algorithm
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and vision perception to ascertain the “degree of exceeding safe distance.” Time-

to-Collision has also been used to assess danger in intelligent vehicles. Labayrade

et al. [99] fused sensor data from stereo cameras and a LASER scanner in building

a collision mitigation system. The system generates warnings and brakes according

to preset thresholds.

Others have based their systems on learned driver behavior. Hillenbrand

et. al [100] demonstrate a system that takes into account the driver’s braking

action by classifying braking into either normal braking or emergency braking. No

predictive or direct information beyond that obtained from the vehicle is used. Biral

et al. [101] examined user preferences and safety margins to generate cost-function

for an optimal controller.

Systems have been proposed which attempt to address the issue of user

acceptance by only intervening when absolutely necessary (e.g. when the system

parameters are outside of certain satisfactory levels [102].) Further gains can be

made using systems the recognize drivers intent to perform certain actions. Detect-

ing situations in which the driver is alert and indicating through actions or body

language that he intends to take corrective action can prevent the system from is-

suing unnecessary alerts or corrections. The system we will describe in the next

section is based on this principle.
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IV.D.3 Human-Behavioral Based Predictive Braking Assis-

tance

In this section we present a situation-aware predictive braking assistance

system that identifies not only the need for braking action, but also whether or not a

braking action is being planned by the driver. Our system uses a Bayesian framework

to determine the criticality of the situation by assessing (1) the probability that

braking should be performed given observations of the vehicle and surround and (2)

the probability that the driver intends to perform a braking action. To do so, we will

use the framework described in the previous section. As we will describe in Section

IV.D.3, these density functions are learned from the sensory inputs described in

Section IV.D.3. This model is depicted graphically in fig. IV.15.

Sparse Bayesian Learning for Probability Estimation

Tipping [83] has shown that sparse Bayesian learning (SBL) is an effective

technique for classification and regression on a variety of data sets. The discriminant

function used in our system is shown in (IV.5). By enforcing sparsity in the learning

of the feature weights (wi) of the basis functions (Ki), both robustness to over-fitting

and pruning of spurious features is obtained. Because we are examining data from

a large variety of sources over a time window, we get a rather large feature vector.

This makes the enforcing sparsity in our learning algorithm a very desirable trait.

Furthermore, its underlying Bayesian framework allows for probabilistic outputs,
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Figure IV.15: Bayesian framework to determine the criticality of the situation by
assessing (1) the probability that braking should be performed given observations of
the vehicle and surround and (2) the probability that the driver intends to perform
a braking action.

fitting well into our Bayesian network.

P (B|O = x) ≈ σ (y (x)) = σ

(
M∑
i=1

wiKi(x)

)
(IV.5)

where

σ (y) =
1

(1− e−y)
(IV.6)

and B represents the random variable for which we are estimating the density func-

tion (i.e. either Bs or Bd). In our implementation we choose to use a radial basis

function for Ki.
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Sensory Inputs

The framework we have just described presents us with natural classes

of sensory inputs: sensors that convey information about the vehicle state and

surround and sensors that convey information about the driver’s intended actions.

Note that certain sensors such as steering wheel positions and pedal actions can

provide information about both the vehicle and the driver and therefore belong

to both classes of sensory inputs. All data was collected from real-world driving

using a intelligent vehicle test bed outfitted with a variety of on-board sensors, color

cameras, near-infrared (NIR) cameras, and LASER RADAR.

Vehicle and Surround Sensors

Onboard vehicle sensors obtained from the CAN data bus include:

• steering angle

• wheel speed

• longitudinal acceleration

• lateral acceleration

• yaw rate

• brake pedal pressure

• accelerator pedal position
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In addition to these sensors, a LASER RADAR range finder is also installed in the

vehicle giving information on the distance and relative velocity of the lead vehi-

cle. Information provided by LASER RADAR “cut-in” sensors provide information

about the relative distance to vehicles on the periphery of the current lane. For

illustration, a time series of selected signals is shown in fig. IV.16.

Figure IV.16: Time series of data collected from the vehicles CAN bus. From top the
graphs depict speed, acceleration, brake pressure, and accelerator pedal position.

Driver Behavioral Sensors

In order to capture information about the driver’s actions, we have installed

a color camera observing the driver’s head and a NIR camera observing the driver’s
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feet. Example images from these sensors can be seen in fig. IV.17.

Figure IV.17: Images from the data set displaying a wide variety of driver behavior
and environmental conditions. A total of 28 different subjects comprising of over 22
hours of data were used in this study.

Driver head and facial movement are then estimated using optical flow

around the area of the driver’s head. Also, a face detector provides information on

whether or not the driver is looking forward. In this way we can capture information

about the driver’s head movements, lip and facial feature movements, and whether

their attention is on the road ahead of them. Driver foot movements are captured

using a combination of the pedal positions and pressures as well as tracking the

“hovering” of the foot in anticipation of a braking action. We do so by building an

overcomplete basis representation of the image motion using Haar-wavelets. This

basis set is then used to generate observation vectors for the density estimation. The

SBL classifier then creates a sparse weighting vector which eliminates those features

which are not important to classification.
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Model Training

In training our model, we first need to make an assumption about the

probability distributions used. For our experiments, we have chosen to model the

criticality of the situation as binomial (i.e. either critical, requiring system inter-

vention, or non-critical). We also assume the prior, P (C), is uniform, thereby

simplifying (IV.3) to

P
(
C|Bs, Bd, O

)
= kP

(
Bs, Bd|C, O

)
(IV.7)

where k is a scale factor derived from the denominator in (IV.3) and P (C). Com-

bining this with (IV.4), we can see that we need to learn the probabilities P (Bs|C, O)

and P
(
Bd|C, O

)
. However, our system further simplifies if we assume that P

(
Bd|C, O

)
,

or the driver’s inattentiveness, is situationally independent, yielding

P
(
Bd|C, O

)
= P

(
Bd|O

)
= (1− P (Bca|O)) (IV.8)

where P (Bca|O) represents the probability that the driver is planning corrective

action, given the current observations. This assumption is necessary in order to

ensure that that the prediction of the driver’s intended actions is based solely on

the driver’s attentiveness and not biased by the actions of attentive drivers in various

situations.

To learn the density function P (Bs|C, O), we look at the braking profiles

for situations that are deemed critical. For our system, we labeled all situations en-

countered in driving which required heavy braking while the time-to-collision (TTC)

metric is smaller then threshold TTTC . We then separated our vehicle and vehicle
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surround training data into two classes (critical and non-critical) and used them to

train the expected braking profiles (thereby representing the need of the situation

for braking). In the density function P (Bs|C, O), O = Ovs where Ovs represents

the observations taken from the vehicle and surround. Driving behavior can also

vary greatly between drivers, making predicting comfortable safety margins between

drivers difficult. To help relieve this problem, it is also possible to specify the density

functions based on the safety margins computed from the TTC and vehicle dynam-

ics. This would allow a more rigid definition of a critical event, but would remove

the learned driving behavior from the estimation. Combining these two types of

classifier yields a classifier in which a learned behavior classifier with a low false

positive rate is used until a specific safety margin limit is reached.

We can apply a similar technique for learning P (Bca|Odb) using the input

observations from the driver behavioral sensors, represented by Odb. Again we split

the data into classes of “planning a braking action” and “normal driving without

braking”. Observational data is taken from a time window preceding the actual

braking action.

IV.D.4 Data Collection and Results

Because our system is focused mainly on collecting natural driving behav-

iors of a common driving action (braking), we chose to collect real-world data for our

system. This data collection was performed using the Laboratory for Intelligent and

Safe Automobiles Infinti Q45 (LISA-Q) test bed [103]. The test bed collects data
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from up to 8 video sources, the vehicle CAN bus, a GPS sensor, the turn signals,

and the LASER RADAR system. The signal sources captured and used for our

system are described in section IV.D.3. Signals from each of the data sources are

collected and synchronized on a main capture computer in the trunk of the vehicle.

All cameras in the cockpit were designed to be as unobtrusive as possible to create

a more natural driving environment.

Data was collected from 28 different drivers on varying routes of about 40

minutes to an hour each. In total, over 22 hours of driving data was used in the

analysis. All The drives were performed on city and highway roads; badly congested

traffic was avoided. The drivers were not told that they were being monitored for

braking behavior in order to create as natural of a driving environment as possible.

Results for Predicting the Need for Braking in Real Driving Scenarios

As discussed above, estimating and accurately classifying driver behavior

from the vehicle dynamics and surround is difficult because of the large variations in

driver behavior. Certain drivers are more comfortable with shorter time-to-collision

before initiating a braking maneuver. Fig. IV.18 shows a receiver operating charac-

teristic (ROC) curve for predicting braking from vehicle and surround observations

in real driving scenarios. This plot helps us understand the discriminative power of

the classifier and the amount of variation in the safety margins of different drivers.

By predicting situations in which driver’s would normally start braking, we can issue

earlier warnings should the driver be distracted or inattentive.
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Figure IV.18: ROC curve for predicting the need for braking from vehicle and
LASER RADAR data.
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Results for Advanced Prediction of Driver Intent

One of the most important parts of our system is the estimation of the

P (Bca|Odb) density function. An accurate prediction of braking behavior before

any braking action has occurred can inform the system that the driver is aware and

in control of the situation. We tested the accuracy of this part of our system using

the data set as described in Section IV.D.3 by looking at the driver’s behavior before

any braking action has occurred. This allows our system not only to determine when

the driver is braking by examining the pedal positions, but also predict in advance

the intention of the driver to initial a braking maneuver. Because of our method of

data collection, certain false alarms can be caused by drivers preparing a braking

action but aborting before applying any pedal pressure. An extensive hand labeling

of the data would be required to eliminate these types of false alarms.

Comparing the importance of information from different modalities

It is also important to examine the importance of each modality of infor-

mation. Comparing performance based on specific modalities can help system de-

signers choose which modality is the most cost effective given their specific system

constraints. Figure IV.20 shows a comparison of the classifier performance using the

following: pedal and steering information only; pedal, steering, and foot movement

information; and pedal, steering, foot movement, and head movement information.

The prediction is performed 1.0 seconds before the braking event. We can see that

the system performance increases significantly at low false alarm rates when foot
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Figure IV.19: ROC curve for predicting driver braking behavior from driver behav-
ioral sensors. The classifier was trained to predict braking action at one half second,
one second, and one and a half seconds before the braking occurs.
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movement information is added. However, the gain from additionally adding head

movement information is relatively small. Another measure of classifier performance

is the area under the ROC curve.
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ROC curve for predicting braking behavior from driver behavioral
data at various times before the braking event.
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Figure IV.20: ROC curve for predicting driver braking behavior from driver be-
havioral sensors. The classifier was trained to predict braking action using pedal
and steering information (CAN only), pedal, steering, and foot movement infor-
mation (CAN+foot), and pedal, steering, foot and head movement information
(CAN+foot+head).

Results of Case Studies

To help demonstrate the system, we will show the results of generated

during a specific braking maneuver and analyze the system performance. For this
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study we have trained the classifier to detect driver intent to brake one second before

braking. The probabilities of the driver’s intent to brake and the need for braking

based on the vehicle data are shown in fig. IV.22 and fig. IV.23, respectively. The

combined probability of a critical event requiring system intervention is shown in fig.

IV.24. The system first identifies the need for a braking action about 5.5 seconds

before the braking takes place. When the driver’s intentions to brake are observed

by the system, at about 2.8 seconds before the braking action, the criticality of

the situation is reduced. Cut-scenes from this sequence are shown in figure IV.21.

Figures IV.21a-c show the driver accelerating around a truck towards a slow moving

vehicle. The need for braking increases as the vehicle moves around the truck.

Once the driver remove his foot from the accelerator and moves towards the brake

(Figures IV.21d-f), the system recognizes his actions and reduces the criticality of

the situation. Figure IV.26 depicts a driver approaching a car after exiting a freeway.

As the foot is lifted from the accelerator and moved to the brake, the probability of

the driver’s intent to brake increases.

IV.E Interpretation of driver intent ROC curves

Interpretation of the ROC curves is extremely important for the design of

a driver assistance system that interacts with the driver. One of the most important

goals for such system is to reduce the occurrence of incorrect warnings as much as

possible. This means that the amount of situations in which the driver intents an
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(a) (b) (c)

(d) (e) (f)

Figure IV.21: Selected video frames from the foot camera, head camera, and the
forward viewing camera as well as situation, driver, and alert probabilities during a
braking action. Subfigures a-c show the driver accelerating around a truck towards a
slow moving vehicle. The need for braking increases as the vehicle moves around the
truck. Once the driver remove his foot from the accelerator and moves towards the
brake (Subfigures d-f), the system recognizes his actions and reduces the criticality
of the situation.
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Figure IV.22: Probability of Driver Intent to Brake vs. Time Relative to Initial
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Figure IV.23: Probability of Required Braking vs. Time Relative to Initial Braking
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Figure IV.24: Probability of Critical Situation (i.e. system action needed) vs. Time
Relative to Initial Braking
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Figure IV.25: Foot Movement vs. Time Relative to Initial Braking
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(a) (b)

(c) (d)

Figure IV.26: A scene showing a driver approaching a car after exiting a freeway.
As the foot is lifted from the accelerator and moved to the brake (subfigures b-d),
the probability of the driver’s intent to brake increases.
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action but this action is not recognized by the system must be kept to a minimum.

It is therefore important to minimize the missed detections or equivalently maxi-

mize the detection rate of the system. According to the ROC curves, this can occur

at the expense of a higher false detection rate. A false positive detection also has

severe consequences in a driver assistance system. While for a large majority of

the time these false positives will not effect the situation, a false positive during a

critical situation would cause the system to augment it behavior because it incor-

rectly recognized the driver’s intent (e.g. reducing the priority of a warning because

the driver was classified as making an evasive maneuver.) To help optimize this

interaction, a driver assistance systems could be designed to use varying levels of

alerts, each using the a point on the ROC curve corresponding to an empirically

determined user acceptance of false alerts.

IV.F conclusions

In this chapter we have presented a complete system for lane departure

and rear-end collision avoidance based on driver attentiveness. First we introduced

a method of detecting lane departures and assessed the performance of the system

using information about the driver and vehicle. Following this we introduced a brake

assistance system that similarly compares the drivers actions to the vehicle surround.

By analyzing the driver’s intended action based solely on his observable actions, we

can find discrepancies between the predicted driver’s intent and the predicted vehicle
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trajectory. This allows us to using real-world training data, containing only a few

critical events, to attempt to assess the criticality of the situation.

Another key aspect of any driver assistance system is its interface with

the driver itself. While we have shown the observational portion of the system,

the types of warnings purveyed to the driver are no less important. One benefit

of the probabilistic framework on which our system is based is that the interaction

with the driver can be manipulated based on fuzzy indications of how critical the

situation is. The modality and intensity of the alert can then be augmented based

on the driver and his/her surroundings. An example of this might be that at higher

speeds, where collisions could prove more severe, the system might warn the driver at

lower probabilities of critical situations. Another useful possible application of this

continuous valued criticality parameter would be in tailoring the system to specific

users. If a user is known to respond poorly to certain modalities (by entering critical

situations despite being warned) or become annoyed by false alerts, the system could

adjust the modality or thresholds for warnings accordingly.

However, determining the optimal warning levels, the modality used in

warning the driver (aural, visual, haptic), and the proper times in which to warn the

driver require much more controlled studies. While data collection and behavioral

observations can be made using a real vehicle in real driving scenarios, simulator

studies would allow the system to be evaluated in more critical situations.

The text of Chapter IV, in part, is a reprint of the material as it appears

in: J. McCall and M. M. Trivedi, “Driver Behavior and Situation Aware Brake As-
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sistance for Intelligent Vehicles,” in Proceedings of the IEEE, submitted for review,

and J. McCall, D. Wipf, M. M. Trivedi, and B. Rao, “Lane change intent analysis

using robust operators and sparse bayesian learning,” IEEE Transactions on Intel-

ligent Transportation Systems, in press. I was the primary researcher of the cited

materials.



Chapter V

Conclusions

In this dissertation we have introduced a novel method for fusing predicted

driver behavioral information with vehicle and surround information. We have pro-

vided a framework for creating a driver support system using visual cues from the

sensor level to the attention and intent interpretation level. The framework allows

for the assessment of the criticality of the current situation and the need for inter-

vention by an intelligent vehicle safety system. Data for training and testing of the

system was compiled from real-world driving scenarios, thereby tuning the system

to common braking behaviors. By using sensors that capture the driver’s intended

actions as well as the vehicle and surround information, we can create systems that

are more complementary to the driver’s actions and less prone to annoy the driver.

Individual components of the system were evaluated and a demonstration of the

system as a whole was shown.

The major contributions of this research include: a framework for training

145
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and analyzing driver intent based on real-world data; a framework for analyzing sit-

uation criticality based on the surround situation and driver intent (this framework

allows for the use of training data that may or may not contain any actual critical

events;) algorithms for robust extraction and tracking of visual cues for lane mark-

ings; algorithms for fusion and tracking of facial features in noisy environments;

and a system design and methodology for real-world data collection in an intelligent

vehicle. These combined systems therefore form the basis of a complete human-

centered driver assistance system with the exclusion of the feedback interface to the

driver. By looking at each of these elements combined into a real-world system, we

can get a better understanding of the performance, challenges, and strengths of such

systems.

V.A Future Research Directions

Future extensions of this work include the possibility of creating a more

complex dynamic Bayesian network for intent and attention analysis. By further

conditioning the data in such a model, smaller amounts of training data could be

needed to accurately classify certain intents. A more complex model of the inter-

action between intent and attention could be used, providing more insight into the

relevance of specific input modalities. For example, a hidden Markov model tracking

the focus of the drivers attention might provide better insight into how head pose

factors into the braking task. Similarly, we could determine the probability that the
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Figure V.1: A dynamic Bayesian network in which driver intent and attention are
assumed conditionally independent of the situation criticality.

driver is focused on the radio or center console and use this as an observation of the

drivers intent that is conditionally independent of the other observed cues. Figure

V.1 depicts a possible network based on these ideas.

Other extensions would be to include the driver feedback into the system,

thereby closing the loop of the human-machine interface. This would help under-

stand better how drivers react to specific types of alerts and what the best feedback

modalities are based on the wide variety of situations one encounters while driving.



Appendix A

The Lisa-Q Intelligent Vehicle

Test Bed

A.A Introduction

Many researchers are currently working on the problem of making our

highways safer for driving. One method of providing this safety is to examine the

link between the driver and the automobile to see what modifications can be made

to the automobile to assist the driver. This includes advanced warning systems

and improved user interfaces. In order to warn the driver of potentially dangerous

situations such as vehicle cut-ins, driver distraction, driver drowsiness, problems

with the vehicle, and unintended lane departures, a complete vehicle context is

required. This complete vehicle context includes the vehicle surroundings, vehicle

interior, and vehicle state. At the backbone of this research is the creation of a

148
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human-centered intelligent vehicle that captures this complete context and interacts

with its occupants to inform or warn the driver of potentially dangerous situations.

In order for this research to progress, an intelligent vehicle test bed must be created

to accomplish the tasks of 1) collecting data on driver behavior in order to best

respond to various situations and better understand the drivers intent, 2) testing

algorithms for sensing the vehicle context, including its interior, and feeding that

back into the vehicle’s user interface, and 3) collecting complete surround data

(both interior and exterior) in order to create an annotated ground truth data set

for training of intelligent systems.

Figure VI.1: The LISA-Q intelligent vehicle test bed. Inset are close up views of
the front camera (left inset) used for detection and tracking and side camera (right
inset) used for generating ground truth.

The system described in this chapter, the Laboratory for Intelligent and

Safe Automobiles - Q45 (LISA-Q) test bed, based on an Infiniti Q45 car model

(Figure VI.1), is the first intelligent vehicle system that fully accomplishes these
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tasks. The LISA-Q test bed focuses on creating a system capable of collecting large

amounts of data from a variety of modular sensing systems and processing that data

in order to be fed back to the human occupant. Sensor systems include rectilinear

cameras, wide field-of-view camera systems, GPS and navigation systems, internal

automobile vehicle state sensors, as well as other sensor systems useful for study in

intelligent vehicles. The system contains an array of computers that serve for data

collection as well as real-time processing of information.

A.A.1 Related Research and Test Bed Vehicles

There have been many other vehicle test-beds that have been built for

research into intelligent vehicles. These vehicles are mostly built for autonomous

driving and or data collection with one specific purpose or algorithm in mind, or

only capture a portion of the vehicles context, both interior and exterior. In our

approach we intend to fill in the gaps between various data modalities and algo-

rithms by creating a test bed that has complete sensor coverage of the surround,

the interior, and the vehicle itself. Active research has been performed in using var-

ious sensors to create automated vehicles. One popular way to detect objects and

navigate is through rangefinder sensors and GPS. Carnegie Mellon’s NAVLAB [104]

offers solutions for curb and people detection by using SIIC sensors and video for

driver feedback. At the University of Minnesota, GPS is being used exclusively to

guide busses on shoulder lanes of freeways. Other researchers have used vision-based

systems to help develop research in this area. Nissan Motor Co. has developed a
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test bed [105] that uses both vision and embedded magnetic lane markers for lane

keeping and collision avoidance (both from obstacles and lane departure). Uni-

versity of Parma’s ARGO [106] used its stereo camera pair to do lane detection

and localization of obstacles. The Australian National University Intelligent Vehicle

Project used camera based lane tracking and obstacle detection. At the Institut

fuer Systemdynamik und Flugmechanik, MarVEye, a camera array unit, is tested

in VaMoR [21], a truck. It was used to autonomously drive the vehicle on rural

roads. The University of Michigan Transportation Research Institute equipped a

Honda accord with lane tracking and driver monitoring cameras in order to perform

human factors research [107]. Other such systems and algorithms can be found in a

recent survey by V. Kastrinaki et al. [19].

A.B The Laboratory for Intelligent Vehicles In-

finiti Q45 Test Bed

The LISA-Q attempts to go beyond these systems by providing a system

for complete synchronized context capture. This allows the LISA-Q test-bed to be

used not only for surround analysis such as lane detection and obstacle detection,

but also for monitoring driver behavior and state [7] as well as the vehicle state.

By using the complete context of the vehicle surround, vehicle interior, and vehicle

state, we can develop driver assistance systems that are more human centered.
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A.B.1 Vehicle and Surround Information Capture

The LISA-Q information capture system is designed to obtain complete

coverage of the vehicle surround, the vehicle interior, and the state of the vehicle for

extended periods of time. This is achieved by a variety of sensor systems including

rectilinear cameras, omnidirectional cameras, laser radar, microphones, and internal

vehicle sensors. Figure VI.2 shows the LISA-Q information capture system

Figure VI.2: The LISA-Q Information Capture System
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Vehicle Surround Capture

One of the requirements of an intelligent vehicle is to have information of

the vehicles surround. For our test bed we have divided the vehicle surround into

six sections, in front of the vehicle, to the rear of the vehicle, and both a front side

and rear side for both the driver and passenger side of the vehicle. We can then

choose sensors to get full coverage of the sections and assign importance to sections

in building a surround map of the vehicle. For instance, the front section should

include an area at least 80 meters in front of the vehicle, while the side sections

need only extend 15-20 meters in order to capture lanes adjacent to the vehicle.

Rear surround might contain less important data to the intelligent vehicle there by

reducing the necessary resolution or coverage area.

To attain the external surround coverage, many types of sensors are used.

The wide field of view camera (omnidirectional vision sensor) covers the short range

(approximately 15-20 meters) in every segment. Front is further covered by a stereo

pair of rectilinear cameras and a five beam laser range finder. Two rectilinear

cameras cover the rear side left, rear, and rear side right. Figure VI.3 shows the

layout and field of views of these sensors.

Vehicle Interior Capture

In order to provide driver/occupant analysis, the interior of the vehicle

must also me captured (Figure VI.4). This is important for human behavior study

in order to get information on the driver’s state and decision making processes. The
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Figure VI.3: External Surround Sensors (Laser Radar, Front Rectilinear cameras,
Omnidirectional Vision Sensors, Rear Rectilinear cameras)

Figure VI.4: Top left: head cam capture; Top right: rear cam capture; Bottom left:
Foot cam (note floating foot over brake pedal); Bottom right: Face Cam
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interior context also plays an important part in many intelligent vehicle systems

[48, 108]. In order for the interior capture system to be useful in these applications

it must be unobtrusive so that it does not affect the behavior of the driver. Therefore

cameras visible to the driver must be small or partial hidden from view. To attain

internal coverage discretely, several video sensor types are used. To estimate current

sight attention, a rectilinear headband camera (dubbed the subcam) is used. For

capturing foot movement and hovering over each pedal, a near infrared sensitive

black and white rectilinear camera with infrared illuminators is used. These video

feeds are important for behavioral analysis studies because they provide information

on the driver’s actions. These combined with the vehicle surround and vehicle state

help build a complete context for understanding driver behavior.

2.3 Vehicle State Capture The vehicle state can contain information valu-

able to determining human behavior and driver intent. Furthermore, vehicle state

variable such as vehicle speed, steering angle, and so on can be useful for tracking

ego-motion [109] and other algorithms for surround capture. Positional data ob-

tained from GPS is also useful for determining the surround context based on maps.

This is important for both the behavioral studies to get the drivers context as well

as surround analysis algorithms to provide more information on the vehicles context

(i.e. Highway, city streets, intersections, etc.) This information is available on the

Infiniti Q45 CAN data bus. CAN capture is accomplished using LabView and a

National Instruments NI-CAN capture card. The CAN bus data provides vehicle

information including but not limited to speed, acceleration, braking, yaw rate, and
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distance to lead vehicle information from the Laser Radar system. The output of

this system is time-stamped with the system time in milliseconds for synchronization

with other sensor streams. GPS is captured using a Garmin GPS system connected

to the data capture computer’s serial port. The serial port is accessed and the data

is parsed using software written explicitly for the LISA-Q data capture.

A.B.2 LISA-Q High-Bandwidth Sustained Data Capture Sys-

tem

In order to collect data for use in behavioral studies, the LISA-Q test-bed

must be capable of collecting multiple video and data streams for periods of about

1 hour. The LISA-Q system addresses the problem of sustained high-bandwidth

synchronized data capture by using real-time hardware compression and an inte-

grated computer system for data capture (See Figure VI.2). In order to capture

the complete vehicle context we require at least 4 full frame NTSC video streams

as well as CAN bus data, GPS data, and audio data. Some of the video streams

which are used for behavioral studies analysis but not algorithmic development can

be combined into a quad stream.Using one quad stream allows us to obtain 7 video

streams in the same bandwidth as 4 full frame video streams. Four full frame video

streams in uncompressed RGB format take roughly 120 Megabytes/sec of band-

width. Collecting data for a typical 1 hour run would then require 428 Gigabytes of

data storage. This is too much bandwidth and capacity to make an uncompressed

system feasible. Because of this, in the LISA-Q, we pipe the video streams through
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high quality DV converters to compress the data in real time while still preserving

image quality. The result is a 25 megabit/sec bandwidth per video stream that will

allow us to expand the capture system to 8 full frame video streams and beyond.

This allows multiple data streams to be collected for long periods of time, thereby

allowing extended off-line testing of algorithms and behavioral analysis studies.

A.C Real-World Versus Simulator Data Collec-

tion

Collecting data sets for driver behavior recognition in real-world environ-

ments is problematic for a variety of reasons:

• Interesting and often important events only occur occasionally, requiring large

data sets.

• Events such as collisions are even less frequent and hazardous to the test

subject and data collection system.

• The test subjects’ knowledge of the test is prone to alter their behavior unless

they are acclimated to the test vehicle over a large period of time.

However, certain events (commonly performed functions such as lane changing,

braking, turning, etc.) can be extracted from these data sets and analyzed. A

variety of intelligent vehicle test beds have been created to fulfill this data collection

task [103,110,111]
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Others have tried to avoid the above problems by using simulator studies.

Simulator studies provide a convenient means of generating repeatable situations in

which all vehicle and environmental parameters are accessible. Simulators require

less time to capture data about very specific events, allowing for more subjects and

tests to be conducted. While these studies solve many of the problems concerning

rare events and dangerous situations by creating a tightly control environment, they

also have some possibly undesirable aspects. Examples of these aspects are:

• Tightly controlled environment requires sensor noise and vehicle dynamics to

be modeled and generated by the system. The model assumptions are not

always similar to real-world conditions and systems.

• Driver behavior may vary due to the known artificiality and lack of conse-

quences.

• Extremely complex simulators can be very difficult and expensive to build and

maintain.

• Observing driver behavior using common techniques such as vision systems

is quite different in a controlled environment than a real vehicle. Sensor and

system design might not be optimal for real-world situations.

A large variety of simulator systems have been developed and used for testing;

such as the National Advanced Driving Simulator [112] and the Virtual Test Track

Experiment (VIRTTEX) at Ford Research Laboratory.
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