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Abstract

Baroclinic Critical Layers and Zombie Vortex Instability in Stratified Rotational Shear
Flow

by

Meng Wang

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Philip S. Marcus, Chair

Without instabilities, the gas in the protoplanetary disk around a forming protostar
remains in orbit rather than falling onto the protostar and completing its formation into a
star. Moreover without instabilities in the fluid flow of the gas, the dust grains within the
disk’s gas cannot accumulate, agglomerate, and form planets. Keplerian disks are linearly
stable by Rayleighs theorem because the angular momentum of the disk increase s with
increasing radius. This has led to the belief that there exists a large region in protoplanetary
disks, known as the dead zone, which is stable to pure hydrodynamic disturbances. The dead
zone is also believed to be stable against magneto-rotational instability (MRI) because the
disks’ cool temperatures inhibit ionization and therefore prevent the MRI. A recent study [15]
shows the existence of a new hydrodynamic instability called the Zombie Vortex Instability
(ZVI), where successive generations of self replicating vortices (zombie vortices) may fill
the disk with turbulence and destabilize it. The instability is triggered by finite amplitude
perturbations, including weak Kolmogorov noise, in stratified (with Brunt-Väisälä frequency
N) flows, rotating with angular velocity Ω and shear σ. So far there are no observational
evidences of the Zombie Vortex Instability and there are very few laboratory experiments
of stratified plane Couette flow with background rotation in the literature. We perform
systematic simulations exploring existence of Zombie Vortex Instability in terms of control
parameters (Reynolds number Re, σ/f and N/f). We present a parameter map showing
two regimes where ZVI occurs, and interpret the physics that determines the boundaries of
the two regimes. We also discuss the effects of viscosity and the existence of a threshold for
Re. Our study on viscous effect, parameter map and its underlying physics provide guidance
for designing practical laboratory experiments in which ZVI could be observed.
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Chapter 1

Introduction

Protoplanetary disk (PPD) is an astrophysical model, where there is a young star in the
center and the dust and grains are rotating around the young star. Ninety percent of the
mass in the PPD are concentrated in the young star. Under law of gravity, the dust and
grains are rotating around the center star in orbits. The high pressure above and below the
disk result into a pancake like structure of the disk, meaning most of the majority of the
dust and grains are concentrated above and below a few pressure height of the middle plane.
The accretion disk is a large scale astronomical system whose diameter is around 10 AU. AU
represents the astronomical unit which equals the distance from the earth to the sun. The
disk diameter is around 1012 meters.

Figure 1.1: Observation of accretion disk of HL Tauri
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1.1 From the accretion disk

PPD is the model constructed in fifty years ago by astrophysicists to model the star formation
process. It has been recently observed by an image of HL Tauri, a young star which is around
450 light years away from the earth. The central problem in the accretion disk is how they
accrete and grow. In another words, what makes the dust and grains fall and collapse into
the young star such that the star can aggregate and mature. It has been verified by the
astrophysics community that it must be the turbulence existing the disk that drives the
collapsing of the dusts. The reason is because, as we know, for the young star to grow, the
dust and grains must fall into the star, which brings in a momentum from the boundary to
the center of the disk. If we consider the accretion disk as an isolated system, by isolation I
mean, the external forces from other star or galaxy is approximately zero due the distance
between them is so large. From the conversation laws, we know that for isolated system,
the mass, momentum and energy much be balanced. Without external forces, there must
be some physics existing inside the disk that transfers the momentum from the center of
the disk to the boundary, in order to balance the inward momentum flux by the falling of
the dusts. After careful examination of the physics in the disk, people claim it is only the
turbulence generated by the viscosity that is efficient enough to transport such amount of
the momentum from the center to the boundary [3]. Thus this leads to the next question,
what generates turbulence in the accretion disk?

Since then, people has been looking for the turbulence generating mechanism in the ac-
cretion disk. There are several theories have been come up based on different assumptions.
One of them, which considers the magnetic filed of the accretion disk, called Magnetorota-
tional Instability(MRI) has been quite popular recently. It arises when the angular velocity
of a conducting fluid in a magnetic field decreases as the distance from the rotation cen-
ter increases. It is also known as the Velikhov-Chandrasekhar instability or Balbus-Hawley
instability in the literature [2]. However, MRI requires the existence of the magnetic field.
The magnetic fields only exists in the area close to the young star. For the area where the
distance from the young star is larger than 1 AU, the disk is so cool that the temperature
of the disk is close to the absolute zero. The area is called the “dead zone”. In dead zone,
the temperature is too low for the particles to be ionized. Thus the magnetic effect in the
dead zone is very small. MRI may not be a good candidate in this area. The existence of
dead zone and the absence of the magnetic field in dead zone lead researchers to look for
other kinds of turbulence generating mechanism which are purely driven by physics of the
particles and plasma instead of magnetic effect, in another words, a purely hydrodynamic
instability mechanism.

Previously, astrophysicists believe the pure hydrodynamic instability can not exist in the
accretion disk, because they believe the accretion disk is hydrodynamically stable. Their
argument is briefly phased as following. First, the dust and grains are rotating at the young
star at certain orbits r, where is r is the distance from the center of the disk. The angular
velocity of the dust and grains rotating around the star Ω(r) can be derived easily by the
balance of the gravity and centrifugal forces. The result gives us the form of angular velocity
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Ω(r) ∼ r−3/2 (1.1)

In the area of the hydrodynamic instability, there is a famous law called the Rayleigh’s
Stability Criterion saying that, for the invsicid and non-stratified fluid, a necessary and suffi-
cient condition for stability to axisymmetric disturbances is that the square of the circulation
does not decrease anywhere ([8] [22]). If we check the accretion disk, we could easily see that
the change of the square of the circulation on the radial direction increases

d(r2Ω)2

dr
∼ dr

dr
∼ 1 (1.2)

Thus by Rayleigh’s criteria, the accretion disk is hydrodynamically stable! Unfortunately
this argument has been proven to be wrong. The reason is because Rayleigh’s criteria only
works for the inviscid nonstratified fluid system, but the accretion disk is not such kind
of system. Although small, viscosity does exit in the accretion disk. More importantly,
the accretion disk is a stratified system, meaning the density of the disk is not a constant.
In fact, the density of the disk varies in the vertical direction. Remember when we first
introduce accretion disk, we mention that the disk has a pancake shape meaning the mess
are concentrated around the mid-plane, thus brings in the stratification.

1.2 Instabilities in accretion disk

For the stratified fluid system, a new linear instability, called the StratoRotational Instability
(SRI) [26] has been found analytically beyond the Rayleigh’ criteria. The instability are
found under the assumptions that wave-numbers are very small, the gap between the two
rotating cylinders are small compared with the radius of the cylinder, and the assumption
that the stratification in the system is very strong. Under those assumptions, it is reported
analytically and numerically that there exists a linear growing mode in the area where
Rayleigh’s criteria predicts to be stable. They shows that the new boundary for linear
stability or the modified Rayleigh’s criteria for stratified fluid shall be as following

d(rΩ)2

dr
≥ 0 (1.3)

This work is further extended by [21] and [19]. The main extensions come from the remove
of the constrains on SRI when firstly discovered. This include the small gap approximation
and small wave numbers. Later on, people considered the viscous effect on SRI. SRI has
been shown to be robust in those cases. Beyond the analytic work, SRI has been observed
experimentally by [9]. The main discovery of the experimental work is that they verified the
stability boundary predicted by SRI in equation 1.3. The observation of SRI is claimed to be
the appearance of two traveling waves on the vertical direction. Those two traveling waves
are traveling in opposite directions. From the experimental work, it seems the observations
agrees very well with other on the stability boundary. Furthermore, they also verified that
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(a)

(b)

Figure 1.2: SRI experiment by [9];Left:Experiment set up showin the apperance of SRI
modes; Right:Comparison of experiments and analytic result for SRI stability regime; Red
cross means unstable blue circle shows stable; Dashed line are the SRI stability boundary

SRI can only be observed when the wave number are small, saying the small wave number
approximation has to be valid for the experimental observations. Numerical work for SRI
with initial value simulation can be found in [10].

Beyond SRI, there are some other kind of linear instabilities have also been reported
to be relevant to accretion disk. During the exploration of stratified plain Couette flow
with background rotation, the gravity-wave-like instability has also been reported [25]. This
kind of instability is claimed to be formed from the linear resonances between waves with
oppositely singed wave momenta, for example, Kelvin wave and inertia-gravity wave existing
in the system. The relationship between SRI and the gravity-wave-like instability is very
clear yet. However, both of them claim the instability is excited due to the resonances of
the linear traveling waves trapped by the boundary. Another instability called the Radiative
Instability [11] has been reported. In radiative instability, the linear normal mode of column
vortex in inviscid stratified flow becomes unstable. This is believed to be the emission of the
internal waves from the vortex.

Linear instabilities discovered above seem like great candidates to excite turbulence in
the accretion disks. They are linear instability, which shall exist with all sorts of initial
conditions. They purely depend on the stratification and rotation of the system, thus they
shall survive in the dead zone where there is no magnetic field. However, there is one problem
that makes linear instabilities less appealing as they should. All those linear instabilities
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claimed to be excited by the coupling of the waves, requires the existence of solid boundaries,
since it is the trapping of the waves on the boundary that leads to coupling of the waves that
excite the instability. None of these instabilities have been reported to have the capacity
to exist without any solid boundaries. However, in the accretion disk where the domain is
so large, there is no well-posed boundaries existing in the accretion disk such that so waves
can be easily trapped. An infinite boundary conditions sound more reliable to model the
accretion disk, instead of one or two solid walls.

Despite the existence of the several instability in stratified rotational shear flow, a new
finite-amplitude instability, called the self-replicating “Zombie” Vortex Instability(ZVI) has
also been discovered [15]. ZVI is believed to exist in the system that contains horizontal
shear, background rotation and vertical stratification. ZVI comes from the formation of a
thin layer structure, called the critical layers. Critical layers are mathematical singularities in
the fluid system. Those critical layers observed in ZVI have the capacity to spawn vortex on
top of themselves. Those newly formed vortex created on the critical layers will excite their
own critical layers, which we call it next generation of critical layers, in order to distinguish
them from the original critical layers that spawn the vortex. The next generation critical
layers will behave exactly like the original critical layers. They will spawn vortex on top
of themselves. Those new created vortex will excite more critical layres and so on, until
the whole field is occupied by those vortex and critical layers. Due to the self-replication
property of those vortex, we call them ”Zombie “ vortex and this self-replication vortex
instability, Zombie Vortex Instability.

There are several points which makes ZVI a great candidate for the turbulence generating
mechanism in accretion disk. First, like the linear instabilities, it is excited purely by the
hydrodynamic ingredients, which means they can be excited in the dead zone where there
is no magnetic filed. Secondly, unlike other instabilities, ZVI does not require the existence
of the physical boundaries. The infinite boundary condition works perfectly for ZVI. Third,
ZVI seems more robust than other instabilities. The amplitude of ZVI is observed to be
bigger than the amplitude of other linear instabilities.

Despite those nice properties of ZVI, what we know about such instability is very limited.
There are lots of points remains unknown to us. For exmple, how does ZVI excite? Under
what conditions ZVI will be excited and under what condition they will not? What are
critical layers and what is the relationship between critical layers and the instability? Most
importantly, can we observe ZVI in the laboratory experiments?

To answer those equestions above, a thorough exploration on both the analytic part of
ZVI and numerical work of ZVI have been done. This is what I have been doing for the past
a few years, to have a clear understanding of such instability, from how it is excited, under
what conditions it will be excited, to how to analytically explain the relationship of critical
layers and the instability, and finally how we could build up experiments to observe ZVI in
the laboratory experiments.
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1.3 Structure of the thesis

After years of work on this problem, those questions we have above have mostly answered
and our experiments for ZVI is currently being conducted with our collaborators in Marseille
France. In this thesis work, I will report and document all the finds I have on ZVI, from
the theory analysis to numerical simulations, from mathematical deductions to physical
explanations. The thesis structured as following,

Chapter 2 talks about the mathematical modeling of accretion disk. I will talk about
how we build up the governing equations from the physics of the accretion disk. Then the
linear normal mode analysis will be implemented to the system to have a understanding of
the linear instability of the system.

Chapter 3 will focus on the inviscid regime. The key questions we want to answer in
this chapter is, without considering of the viscous effect, under what condition, ZVI will
be triggered. When they are triggered, what does it look like? A parameter map will be
provided on this chapter, in terms of the physical ingredients in the system, denoting where
to look for such instability.

Chapter 4 will focus on the numerical exploration on how viscous affects the instability,
where a critical Reynolds number will be provided to guide the laboratory experiments.

Chapter 5 will focus on the numerical algorithm designed specifically for the stratified
rotational shear flow, especially for the viscous case. A second order accurate algorithm with
semi-analytic method is designed for such a problem. This work is a collaboration with my
colleague Nelson Chen.

Chapter 6, I will summarize the work we have done on ZVI and provide my insights on
the instability. Existing problems and what to continue on such instability will be discussed.
A discussion on the instability in the general fluid system that contains horizontal shear,
background rotation and vertical stratification will also be provided.

The analytic work on the critical layers are collaborated with Professor Patrick Huerre.
The numerical work on the inviscid map and viscous effect are collaborated with my col-
leagues, Dr. Suyang Pei, Dr. Chung-Hsiang Jiang and Dr. Giulio Facchini. The numerical
simulations on the titled vortex is collaborated with Dr. Pedram Hassanzadeh. The design
and test of the numerical algorithm on the semi-analytic method is collaborated with Mr.
Nelson Chen. Professor Philip Marcus provides insights and ideas in all of above.
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Chapter 2

Mathematical Modeling and Normal
Mode Analysis

In order to have a systematic investigation of the turbulence generating mechanism in ac-
cretion disk, we need to build up the mathematical models. If we focus on the large scale
physics in the disk, i.e. not consider the quantum models, the governing equations shall come
from the conservation laws, such as mass conservation, momentum conversation(Newton’s
second law) and the energy conservation.

2.1 Mathematical modeling of the system

Before we consider the mathematical equations, let us think about the physical ingredients
existing in the accretion disk. There are four important physical ingredients, the horizontal
shear, the background rotation, the stratification and the viscosity. Shear force or shear
stress is the force whose direction is parallel to the surface. For example, the wind blowing
on the surface of the lake can be regarded as a shear force, since the direction of the wind
or wind force is parallel to the surface of the lake. Another famous example of the natural
phenomena governed by the shear is the Great Red Spot(GRS) on Jupiter. GRS is a large
scale rotation cloud on the Jupiter’s atmosphere. The diameter of GRS is around three
times the diameter of the earth. GRS has been existing for more than two hundred years,
since human’s first observation in 19th century. On the atmosphere of Jupiter, there exists
several belts of clouds moving at different velocity. Those moving belts of the clouds are
called the zonal winds are perfect example of shear. Since the force acting on the interfaces
of the zonal winds are parallel to the interface. GRS is located on the interface of the zonal
winds and has been believed to be strongly affected by the shear of the zonal winds.

Since the dust and grains are rotating around the young star, if we put ourselves in the
rotating frame, there will be the centrifugal force and the Coriolis force in the rotating frame.
The centrifugal force balances with the gravity between the dust and the young star, which
results into the Kepler’s law. We also need to consider the Coriolis force. The Coriolis force
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Figure 2.1: Coordinates transformation from the (r, θ, z) to a local Cartesian box (x, y, z)

is due to the self-rotation of the system. For example, the earth is rotating with angular
velocity one over 24 hours. The famous natural phenomena governed by the Coriolis force
is the hurricanes. Hurricanes are large scale rotating atmospheric movement. It is totally
governed by the pressure gradient from the center to the boundary of the hurricane and the
Coriolis effects. The governing equations formed by these two terms are the famous thermal
wind equations, which are usually used to estimate the radius and pressure at the center of
the hurricanes.

As we have discussed before, the density in the vertical direction of the disk is not
constant. We have to take into account the vertical stratification of the system. One example
of stratification is the ocean water. As we know, due to the change of the temperature and
the salinity, the density of the ocean is not constant. The deeper we go, the heavier it is.
The stratification of the system brings in the buoyancy force in the system. The last physical
ingredients we need to consider is the viscosity. Viscosity can be regarded as the friction of
the particles in the system. The bigger the viscosity is, the stronger the interaction between
the fluid particles will be, by which we call them more viscous.

For the system like accretion disk, the polar coordinates (r, θ, z) will come in handy, where
r is the radius where the particles locates at, θ is the angle on the horizontal plane and z
is the height of the particle from the mid-plane of the disk. However, since the length scale
of the disk is too large to be directly modeled, typically people will build the mathematical
models in a small Cartesian box at certain location (R0, θ0, z0). Inside the Cartesian box,
the coordinates are (x, y, z). The x is the direction where the particles are moving at. We
call this streamwise direction. y is radius direction and we call it cross-stream direction. z is
the vertical direction. With the assumption that the size of the Cartesian box is very small
compared with the radius R0, z0, i.e. Lx � R0, Ly � R0 and Lz � z0, we could linearize
the physical ingredients in the system.

For mass conservation, we need to think about whether the compressiblibility of the
system. Since the Mach number is accretion disk is small Ma 0.1, we consider our system to
be incompressible. For incompressible system, the mass conservation comes in form as the
volume change of the particles are zero.

The second group of equations shall come from the momentum equations, which is the
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Newton’s second law. Newton’s second law tells us the change of the momentum in the sys-
tem is due to the external forces acting on the system. In order to construct the momentum
equations, we need to consider what kinds of forces there are in the accretion disk. Typically,
there are two kinds of forces, body force and surface force. As we have discussed, the forces
existing in the system are, gravity from the center of the star, the pressure, buoyancy due
to stratification, centrifugal force and Coriolis force by rotation, shear force and the viscous
force. Among those, the centrifugal force can be rewritten into gradient of a scalar, thus it
can be combined together with pressure and gravity into a total pressure term.

The last one comes from the conservation of energy. In our case, if we do not consider the
energy source or sink. We could easily rewrite the energy equations in terms of the density
terms.

As we mentioned, we linearzie all the physical ingredients in our local Cartesian box, such
that the shear velocity is linear, the background rotation is rotating at a constant angular
velocity Ω and the background stratification is linear in vertical direction. We could rewrite
our total velocity utotal as two parts, the background shear velocity and perturbation, i.e.
utotal = U + u(x, y, z, t). The background shear velocity U(y) = −σyx̂ with −σ as the shear
rate. We also separate our density into two parts, the background linear stratification and
the density fluctuations, i.e. ρ(x, y, z, t) = ρ(z)+ ρ̃(x, y, z, t), with ρ(z) = ρ0(1− N2

ρ0g
z) For our

stratification, we use the Boussinesq approximation that ρ̃/ρ0 � 1, where g is the gravity

and N is called the Brunt Väisälä frequency N2 = − g
ρ0

dρ̄(z)
dz

. Since the angular velocity of
the system rotation is Ω, we use the Coriolis term f = 2Ω to represent the Coriolis effects.
The kinematic viscosity of the fluid is ν and thermal difussivity is κ, we could write our
equations as

0 =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
(2.1)

∂u

∂t
= − (u · ∇)u− U (y)

∂u

∂x
− ∂P

∂x
+ (f + σ) v + ν∇2u (2.2)

∂v

∂t
= − (u · ∇) v − U (y)

∂v

∂x
− ∂P

∂y
− fu+ ν∇2v (2.3)

∂w

∂t
= − (u · ∇)w − U (y)

∂w

∂x
− ∂P

∂z
− ρ̃

ρ0

g + ν∇2w (2.4)

∂ρ̃

∂t
= − (u · ∇) ρ̃− U (y)

∂ρ̃

∂x
+
ρ0N

2

g
w + κ∇2ρ̃ (2.5)

The mathematical models include five partial differential equations with five variables,
velocity on three direction u, v, w, density ρ̃ and total pressure P . A close form solution
seems quite difficult. We have to implement some simplifications if we would like to move
on analytically. Then the linear normal mode analysis comes in handy.
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2.2 Linear normal mode analysis

Linear normal mode analysis assumes that the physical quantities are linear in temporal
space, linear in some but not all of the spacial space. For linear relations, we know that it
can expressed as the exponential form with a normal mode. Thus if we would like to focus
on the physics of the cross-stream direction y and assume that the physical quantities are
linear in the temporal and spatial space. The physical quantities shall have the formula
q(t, x, y, z) = q̂(y)e−iωteikxx+ikzz, where kx and kz are the wave numbers for streamwise
direction x and vertical direction z correspondingly. If we rewrite the temporal frequency
ω = ωr + iωi. The imaginary part ωi determines the linear stability state of the system. If
ωi is positive(negative), the system is linearly unstable(stable). For the cases where ωi = 0,
the system is defined to be neutrally stable.

After making the linear normal mode assumptions, the partial differential equations all
become ordinary differential equations, we could actually further simplify the group of equa-
tions to one ordinary differential equations. One example of this is in the two-dimensional
plan Couette flow or pure shear flow, we could get the famous Rayleigh’s equation for the
inviscid case and the Orr-Sommerfeld equation for the viscous case. We would like to im-
plement the exactly same technique and get the Rayleigh like equation for the inviscid case
and the Orr-Sommerfeld-like equation for the viscous case.

Rayleigh like equations

First, let us further simplify the governing equations by assuming the flow field is inviscid
and non-diffusive, i.e. ν = 0 and κ = 0. Then the governing equations (2.1) to (2.5) are
simplified as following,

ikxû+
dv̂

dy
+ ikzŵ = 0 (1)

iΩû = −ikxP̂ + (f + σ)v̂ (2)

iΩv̂ = −fû− dP̂

dy
(3)

iΩŵ = − ρ̂

ρ0

g − ikzP̂ (4)

iΩρ̂ =
ρ0N

2

g
ŵ (5)

where c = ω/kx, Ω is a function of y and defined as Ω(y) = kx(U − c), and
dΩ

dy
= −σkx.

N is the Brunt-Vaisala frequency which is a real constant number. For our convenience,
the hat sign will be dropped from now on.
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First Equation, relation between w and P

We get the first equation by eliminating ρ in equation (4) and (5). First, rewrite equation
(5) as following,

ρ =
ρ0N

2

igΩ
w (5)

and insert equation (5) into equation (4)

iΩρ = − g

ρ0

· ρ0N
2

igΩ
w − ikzP = −N

2

iΩ
w − ikzP

rewrite the equation above as,

P =
N2 − Ω2

Ωkz
w (6)

Second Equation, relation between v and P

We get the second the equation by eliminating u in equation (2) and (3). We multiply
equation (2) with f on each side, we have

iΩfu = −ikxfP + f(f + σ)v (7)

Multiply equation(3) by iΩ on each side, we have

iΩfu = Ω2v − iΩdP
dy

(8)

Eqution(7) minus equation(8), we have the second equation we want,

iΩ
dP

dy
− ikxfP = [Ω2 − f(f + σ)]v (9)

Eliminate P , from the first and second equation

Before we plug equation (6) into equation (9), we need to compute the term
dP

dy
, let compute

it first. We start by taking the derivative of y on equation (6)

dP

dy
=
N2 − Ω2

Ωkz

dw

dy
+ (

d

dy

N2 − Ω2

Ωkz
)w =

N2 − Ω2

Ωkz

dw

dy
+

1

kz
· −2ΩΩ′Ω− Ω′(N2 − Ω2)

Ω2
w

With Ω′ = −σkx, we have

dP

dy
=
N2 − Ω2

Ωkz

dw

dy
+
σkx
kz
· N

2 + Ω2

Ω2
w (10)
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Then plug equation(6) and equation(10) into equation(9), we will have

iΩ(
N2 − Ω2

Ωkz

dw

dy
+
σkx
kz
· N

2 + Ω2

Ω2
w)− ikxf(

N2 − Ω2

Ωkz
w) = [Ω2 − f(f + σ)]v

Simplify it, we get as following,

i
N2 − Ω2

kz

dw

dy
+ i

kx[N
2(σ − f) + Ω2(σ + f)]

Ωkz
w = [Ω2 − f(f + σ)]v (11)

We want to use equation (11) to eliminate the term
dv

dy
in the continuity equation, so we

have to compute the
dv

dy
in terms of w. This is probably the most complicated term in this

whole process. Let us start by taking the derivative of y on both sizes of equation (11)

i
N2 − Ω2

kz

d2w

dy2
+ i(

d

dy

N2 − Ω2

kz
)
dw

dy
+ i

kx[N
2(σ − f) + Ω2(σ + f)]

Ωkz

dw

dy
+

ikx
kz

(
d

dy

N2(σ − f)

Ω
+

d

dy
(σ + f)Ω)w = [Ω2 − f(f + σ)]

v

dy
+ 2ΩΩ′v (12)

Remember that Ω′ = −σkx, plug it in equation(12), we have

i
N2 − Ω2

kz

d2w

dy2
+ i

2σkxΩ

kz

dw

dy
+ i

kx[N
2(σ − f) + Ω2(σ + f)]

Ωkz

dw

dy
+

i
σk2

x

kz
[(σ − f)

N2

Ω2
− (σ + f)]w = [Ω2 − f(f + σ)]

dv

dy
− 2Ωσkxv (12)

One more step of simplification, we have

i
N2 − Ω2

kz

d2w

dy2
+ i

kx[N
2(σ − f) + Ω2(3σ + f)]

Ωkz

dw

dy
+

i
σk2

x

kz
[(σ − f)

N2

Ω2
− (σ + f)]w = [Ω2 − f(f + σ)]

dv

dy
− 2Ωσkxv (12)

Get the final equation

Our goal is to write all the terms in the continuity equation to w, we have the term
dv

dy
, we

only have to worry about the term ikxu. We will eliminate this term with equation (2). We
multiply equation (1) by Ω and will get

iΩkxu = −Ω
dv

dy
− ikzΩw (13)
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Next, we multiply kx on both side of equation (2)

iΩkxu = −ik2
xP + kx(σ + f)v (14)

From equation (13) and (14), we will have

ik2
xP = kx(σ + f)v + Ω

dv

dy
+ ikzΩw (15)

Next step is to eliminate dv
dy

term from equation (12) and (15). We multiply equation

(12) with Ω,

iΩ
N2 − Ω2

kz

d2w

dy2
+ i

kx[N
2(σ − f) + Ω2(3σ + f)]

kz

dw

dy
+

iΩ
σk2

x

kz
[(σ − f)

N2

Ω2
− (σ + f)]w = Ω[Ω2 − f(f + σ)]

dv

dy
− 2Ω2σkxv (16)

Then we multiply equation (15) with [Ω2 − f(f + σ)]

ik2
x[Ω

2−f(f+σ)]P = kx(σ+f)[Ω2−f(f+σ)]v+Ω[Ω2−f(f+σ)]
dv

dy
+ ikzΩ[Ω2−f(f+σ)]w

(17)
Eliminate dv

dy
from equation (16) and (17)

iΩ
N2 − Ω2

kz

d2w

dy2
+ i

kx[N
2(σ − f) + Ω2(3σ + f)]

kz

dw

dy
+ iΩ

σk2
x

kz
[(σ − f)

N2

Ω2
− (σ + f)]w

−ik2
x[Ω

2 − f(f + σ)]P = −kx[(3σ + f)Ω2 − f(f + σ)2]v − ikzΩ[Ω2 − f(f + σ)]w (18)

Plug in equation (6) and (11), we have the final equation

Ω2(N2−Ω2)
d2w

dy2
+4ΩσkxN

2dw

dy
+[N2k2

x(σ
2+f 2−Ω2)+Ω2k2

x(Ω
2−(σ+f)2)+Ω2k2

z(Ω
2−f(f+σ))]w = 0

(19)

Equation for P

The goal is to replace every term in continuity equation to pressure P . We have the relation

between w and P from equation (6). The rest two terms are
dv

dy
and u

First, we get dv
dy

from equation (9). Take the derivative on both side of equation (9), we
will have

[Ω2 − f(σ + f)]
dv

dy
= 2σkxΩv + iΩ

d2P

dy2
− ikx(σ + f)

dP

dy
(20)



CHAPTER 2. MATHEMATICAL MODELING AND NORMAL MODE ANALYSIS 14

Then replace v with equation (9), we will have

[Ω2−f(σ+f)]2
dv

dy
= iΩ[Ω2−f(σ+f)]

d2P

dy2
+ikx[Ω

2(σ−f)+f(σ+f)2]
dP

dy
−2iσfk2

xΩP (21)

Secondly, we could get the relation between u and P by eliminating v in equation (2)
and (3)

[Ω2 − f(σ + f)]u = (σ + f)
dP

dy
− kxΩP (22)

Plug equation (6), (21) and (22) into equation (1), we will have the
Rayleigh-like equation

Ω(N2 − Ω2)[Ω2 − f(σ + f)]
d2P

dy2
+ 2(N2 − Ω2)σkxΩ

dP

dy
+

Ω4(k2
x + k2

z)− Ω2[2k2
zf(σ + f) + k2

xN
2 + k2

xf(f − σ)] + k2
xN

2f(f − σ)P = 0 (2.6)

2.3 Singularities for Rayleigh-like equation

When the coefficients of the highest derivative terms goes to zero, it will generates singu-
larities in the system. As we can see clearly in Rayleigh-like equation 2.6, there are three
coefficients in front of the highest derivative terms. We could see clearly that these three
points are all regular singular points. Thus, if any of them goes to zero, we will have a
singular points.

Ω = 0⇒ Barotropic critical layer, y∗ =
ω

σkx

Ω2 −N2 = 0⇒ Baroclinic critical layer, y∗ =
ω ±N
σkx

Ω2 − f(σ + f) = 0⇒ Inertial critical layer, y∗ =
ω ±

√
f(f + σ)

σkx
The first singularity barotropic critical layer only depends on the background shear. It is

exactly the same as the critical layer reported in 2d shear flow ([8]). We call it barotropic
because it has nothing to do with the stratification.

The second kind comes from the background stratification and shear. We call it baroclinic
critical layers to distinguish it from the barotropic ones.

The third kind, which depends on the background rotation and the shear. We can prove
that actually this inertial critical layer is not a singular point at all. The way we prove it is
by calculating the coefficients of other terms, instead of the pressure P . If the singularity
exists, it should exist for all the physical quantities, not just for one quantity. Thus if it does
not appear for any physical quantity, we know that it is not a singular point for the whole
system.
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Verification of singularities

This section describes the normal mode linear analysis on the critical layers in the stratified
rotational shear flows. The barotropic and baroclinic critical layer have been described
above. But we noticed the potential existence of a new kind of critical layer, the inertial
critical layer as we call it above, which shows up in the coefficient of the second derivative of
Pressure equation, along with the barotropic and baroclinic critical layers. This section will
show that such kind of critical layer only shows up in the pressure equation, which make it
spurious in the rotational stratified shear flow.

First Equation

Let us start wit the momentum equation

∂u

∂t
= −(u · ∇)u− ∇P

ρ0

− ρ̃

ρ0

gẑ + fu× ẑ (1)

where ρ̃ = ρ− ρ(z) and ρ(z) = ρ0(1− N2

g
z)

We take curl of the previous equation, and we will have the vorticity equation ω = ∇×u.

∂ω

∂t
= −(u · ∇)ω + (ω · ∇)u− g

ρ0

∇× ρ̃ẑ + f
∂u

∂z
(2)

Linearize around the background shear flow U(y) or ω = −∂U
∂y
ẑ, i.e. u = U(y)x̂+ εu′ and

ω = ωẑ + εω′ and ρ = ρ(z) + ρ̃+ ερ′, at the order of ε, we have the linearized equation,

∂ω′

∂t
= −U ∂ω

′

∂x
+ v′

∂σ(y)

∂y
ẑ − u′∂u

′

∂z
+ ω′yu

′(y)x̂− g

ρ0

∇× ρ̃′ẑ + f
∂u′

∂z
(3)

notice that ω′ and u′ are perturbations while u′(y) = ∂U(y)
∂y

. We rewrite u′(y) = σ(y), the
perturbed equation is written as following

∂ω′

∂t
= −U ∂ω

′

∂x
+ v′

dσ(y)

dy
ẑ − σ(y)

∂u′

∂z
+ ω′yσ(y)x̂− g

ρ0

∇× ρ′ẑ + f
∂u′

∂z
(4)

Let us look at the normal modes of the perturbations A′(x, y, z, t) = a(y)eist+ikxx+ikzz,
the equation is as following

isω = −U(y)ikxω +
dσ(y)

dy
vẑ + ikz[f − σ(y)]u+ σ(y)ωyx̂−

g

ρ0

∇× ρẑ (5)

Notice that s = −ω for our previous definition. Define Ω = s+U(y)kx, we look at Equ(5)
on the cross-stream ŷ direction, here is what we have

iΩωy = ikz(f − σ)v + ikx
g

ρ0

ρ (6)

Divide by i on each side of the equation, we end up the first equation between v, ωy, ρ

Ωωy = kz(f − σ)v +
kxg

ρ0

ρ (7)
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Second Equation

Take curl of Equ(4), we have

∂∇× ω′

∂t
= − ∂

∂x
(∇×Uω′)+∇×v′dσ(y)

dy
ẑ− ∂

∂z
∇×σ(y)u′+∇×ω′yσ(y)x̂− g

ρ0

∇×∇×ρ′ẑ+f
∂∇× u′

∂z
(8)

Notice that we have

∇× ω = ∇×∇× u = ∇(∇ · u)−∇2u = −∇2u (9)

So we look at the ŷ component of Equ(8) with its normal modes, we shold check Equ(8)
term by term

ŷ · ∂∇× ω
′

∂t
= −is∇2v

ŷ · − ∂

∂x
(∇× Uω′) = ikxU(y)∇2v

ŷ · ∇ × v′dσ(y)

dy
ẑ = −ikx

dσ

dy
v

ŷ · − ∂

∂z
∇× σ(y)u′ = −ikzσ(y)ωy

ŷ · ∇ × ω′yσ(y)x̂ = σ(y)ikzωy

ŷ · − g

ρ0

∇×∇× ρ′ẑ = − g

ρ0

ikz
dρ

dy

ŷ · f ∂∇× u
′

∂z
= ikzfωy

Sum the above terms up, we will have the second equation between v, ωy, ρ

Ω∇2v = kx
dσ(y)

dy
v +

g

ρ0

kz
dρ

dy
− kzfωy (10)

Third Equation

Start with the density equation

∂ρ̃

∂t
= −(u · ∇)ρ̃+ ρ0

N2

g
w (11)

The linearized normal mode equation is

isρ = −ikxU(y)ρ+ ρ0
N2

g
w (12)
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Now we need to replace w with some combination of v, ωy, this can be easily done by
toroidal and poloidal decomposition. If we rewrite the velocity u in terms of poloidal and
toroidal,

u = ∇×Ψŷ +∇×∇× Φŷ (13)

Define k2 = k2
x + k2

z , We could easily see the following

v = k2Φ

ωy = k2Ψ

w = ikxΨ + ikz
dΦ

dy

We will have

w = ikx
ωy
k2

+ ikz
dv/k2

dy
=

i

k2
(kxωy + kz

dv

dy
) (14)

Plug Equ(14) back to Equ(12), we will have the third equation with v, ωy, ρ

Ωρ =
ρ0N

2

gk2
(kxωy + kz

dv

dy
) (15)

Deduce to one equation

Equ(7), (10) and (15) are three equations with three components v, ωy, ρ, from where we
could eliminate wy, ρ and deduce the second order ODE for v, let us put them together

Ωωy = kz(f − σ)v +
kxg

ρ0

ρ (16)

Ω∇2v = kx
dσ(y)

dy
v +

g

ρ0

kz
dρ

dy
− kzfωy (17)

Ωρ =
ρ0N

2

gk2
(kxωy + kz

dv

dy
) (18)

Eliminate ρ from Equ(16) and (18)

Times Ω on each side of Equ(16)

Ω2ωy = Ωkz(f − σ)v +
kxg

ρ0

Ωρ (19)

Plug in Equ(18)

(Ω2 − k2
x

N2

k2
)ωy = Ωkz(f − σ)v + kxkz

N2

k2

dv

dy
(20)
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Eliminate ρ in Equation (17)

From Equ(18),we calculatedρ
dy

dρ

dy
=
ρ0N

2

gk2

d

dy

[
1

Ω
(kxωy + kz

dv

dy
)

]
(21)

Plug Equ(21) to Equ(17), we have

Ω∇2v = kx
dσ(y)

dy
v − kzfωy +

g

ρ0

kz ·
ρ0N

2

gk2

d

dy

[
1

Ω
(kxωy + kz

dv

dy
)

]
= kx

dσ(y)

dy
v − kzfωy + kz

N2

k2

d

dy

[
1

Ω
(kxωy + kz

dv

dy
)

]

d

dy

[
1

Ω
(kxωy + kz

dv

dy
)

]
= − 1

Ω2

dΩ

dy
(kxωy + kz

dv

dy
) +

1

Ω
(kx

dωy
dy

+ kz
d2v

dy2
)

= −σk
2
x

Ω2
ωy −

σkxkz
Ω2

dv

dy
+
kx
Ω

dωy
dy

+
kz
Ω

d2v

dy2

Ω∇2v = kx
dσ(y)

dy
v − kzfωy + kz

N2

k2

d

dy

[
1

Ω
(kxωy + kz

dv

dy
)

]
= kx

dσ(y)

dy
v − kzfωy −

σkzk
2
xN

2

Ω2k2
ωy −

σkxk
2
zN

2

k2Ω2

dv

dy
+
kxkz

Ω

N2

k2

dωy
dy

+
k2
zN

2

Ωk2

d2v

dy2

Check the coefficients

Finally, we have

Ω∇2v = kx
dσ(y)

dy
v−kzfωy−

σkzk
2
xN

2

Ω2k2
ωy−

σkxk
2
zN

2

k2Ω2

dv

dy
+
kxkz

Ω

N2

k2

dωy
dy

+
k2
zN

2

Ωk2

d2v

dy2
(22)

with Equ(20)

ωy =
Ωkz(f − σ)v + kxkz

N2

k2
dv
dy

(Ω2 − k2
x
N2

k2 )
(23)
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Let us check the second derivative coefficients first, the second derivative come from the

terms Ω∇2v, kxkz
Ω

N2

k2

dωy

dy
, and k2

zN
2

Ωk2
d2v
dy2 . So the coefficient for the second derivative is

Coefficient of
d2v

dy2

= Ω− k2
zN

2

Ωk2
− kxkzN

2

Ωk2
·

kxkzN2

k2

Ω2 − k2
xN

2

k2

= Ω− k2
zN

2

Ωk2
− k2

xk
2
zN

4

Ωk2(k2Ω2 − k2
xN

2)

=
Ω2k2(k2Ω2 − k2

xN
2)− k2

zN
2(k2Ω2 − k2

xN
2)− k2

xk
2
zN

4

Ωk2(k2Ω2 − k2
xN

2)

=
Ω4k4 − Ω2N2k2k2

z − Ω2N2k2k2
x

Ωk2(k2Ω2 − k2
xN

2)

=
Ω4k4 − Ω2k4N2

Ωk2(k2Ω2 − k2
xN

2)

=
Ω(Ω2 −N2)

Ω2 − k2
x

k2N2

As we could see, that Ω = 0 correspond to the baroctropic critical layer and Ω2 = N2

is the baroclinic critical layer. There is no the inertial critical layer which is Ω = f(f − σ)
show up.

The terms that contribute to the first derivative of the v are −kzfωy, σkzk
2
xN

2

Ω2k2 ωy,
σkxk2

zN
2

k2Ω2
dv
dy

,
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and kxkz
Ω

N2

k2

dωy

dy
. Thus, we have

Coefficient of
dv

dy

= (kzf +
σkzk

2
xN

2

Ω2k2
) ·

kxkz
N2

k2

Ω2 − k2
x
N2

k2

+
σkxk

2
zN

2

k2Ω2
− kxkz

Ω

N2

k2

Ωkz(f − σ)

Ω2 − k2
x
N2

k2

− N2kxkz
Ωk2

N2kxkz
k2

[
d

dy

1

Ω2 − k2
x
N2

k2

]

= (
Ω2k2kzf +N2k2

xkzσ

Ω2k2
)

N2kxkz
k2Ω2 −N2k2

x

+
σkxk

2
zN

2

k2Ω2
− N2k2

zkx(f − σ)

k2Ω2 − k2
xN

2
− N4k2

xk
2
z

Ωk4

−2Ωkxσ

(Ωk2 − k2
xN

2)2

=
Ω2N2k2k2

zkxf +N4k3
xk

2
zσ +N2k2

zkxσ(k2Ω2 − k2
xN

2)− Ω2N2k2k2
zkx(f − σ)

k2Ω2(k2Ω2 − k2
xN

2)
+

2N4k3
xk

2
zσ

(Ω2k2 − k2
xN

2)2

=
2Ω2N2k2k2

zkxσ

k2Ω2(k2Ω2 − k2
xN

2)
+

2N4k3
xk

2
zσ

(Ω2k2 − k2
xN

2)2

=
2N2k2

zkxσ

k2Ω2 − k2
xN

2
+

2N4k3
xk

2
zσ

(Ω2k2 − k2
xN

2)2

=
2N2k2

zkxσ(Ω2k2 −N2k2
x +N2k2

x)

(Ω2k2 −N2k2
x)

2

=
2N2Ω2k2k2

zkxσ

(Ω2k2 −N2k2
x)

2

The terms that contribute to the v terms are, Ω∇2v, ky
dσ(y)
dy

v, kzfωy,
σkzk2

xN
2

Ω2k2 ωy,
kxkz

Ω
N2

k2

dωy

dy
.

Then we have

Coefficient of v = −k2Ω−kx
dσ(y)

dy
+(kzf+

σkzk
2
xN

2

k2Ω2
)·Ωkz(f − σ)

Ω2 − k2
x
N2

k2

−kxkz
Ω

N2

k2
[
d

dy

Ωkz(f − σ)

Ω2 − k2
x
N2

k2

]

Notice we have

Ω(y) = s+ U(y)kx,
dΩ

dy
= kxσ

Now let us calculate the derivative term

d

dy

Ωkz(f − σ)

Ω2 − k2
x
N2

k2

=
kz(f − σ)dΩ

dy
(Ω2 − k2

x
N2

k2 )− 2ΩdΩ
dy

Ωkz(f − σ)

(Ω2 − k2
x
N2

k2 )2

=
kxkzσ(f − σ)(Ω2 − k2

x
N2

k2 )− 2Ω2kxkzσ(f − σ)

(Ω2 − k2
x
N2

k2 )2

=
kxkzσ(f − σ)(−Ω2 − k2

x
N2

k2 )

(Ω2 − k2
x
N2

k2 )2

=
k2kxkzσ(σ − f)(Ω2k2 + k2

xN
2)

(Ω2k2 − k2
xN

2)2
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Plug the derivative back to the coefficient of v, we have

Coefficient of v

= −k2Ω− kx
dσ(y)

dy
+ (kzf +

σkzk
2
xN

2

k2Ω2
) · Ωkz(f − σ)

Ω2 − k2
x
N2

k2

− kxkz
Ω

N2

k2
[
d

dy

Ωkz(f − σ)

Ω2 − k2
x
N2

k2

]

= −k2Ω− kx
dσ(y)

dy
+ (kzf +

σkzk
2
xN

2

k2Ω2
) · Ωkz(f − σ)

Ω2 − k2
x
N2

k2

− kxkz
Ω

N2

k2

k2kxkzσ(σ − f)(Ω2k2 + k2
xN

2)

(Ω2k2 − k2
xN

2)2

= −k2Ω− kx
dσ(y)

dy
+

Ω2k2kzf + σkzk
2
xN

2

k2Ω2
· k

2Ωkz(f − σ)

Ω2k2 − k2
xN

2
− N2k2

xk
2
zσ(σ − f)(Ω2k2 + k2

xN
2)

Ω(Ω2k2 − k2
xN

2)2

= −k2Ω− kx
dσ(y)

dy
+
k2
z(f − σ)(Ω2k2f +N2k2

xσ)

Ω(Ω2k2 − k2
xN

2)
+

k2
z(f − σ)

Ω(Ω2k2 − k2
xN

2)

N2k2
xσ(Ω2k2 + k2

xN
2)

Ω2k2 − k2
xN

2

= −k2Ω− kx
dσ(y)

dy
+

k2
z(f − σ)

Ω(Ω2k2 − k2
xN

2)2
[(Ω2k2f +N2k2

xσ)(Ω2k2 − k2
xN

2) +N2k2
xσ(Ω2k2 + k2

xN
2)]

= −k2Ω− kx
dσ(y)

dy
+

k2
z(f − σ)

Ω(Ω2k2 − k2
xN

2)2
[Ω4k4f + Ω2N2k2k2

xσ − Ω2N2k2k2
xf +N2Ω2k2k2

xσ)]

= −k2Ω− kx
dσ(y)

dy
+

k2
z(f − σ)

Ω(Ω2k2 − k2
xN

2)2
[Ω4k4f + Ω2N2k2k2

x(2σ − f)]

Put the three terms together

Coefficient of
d2v

dy2
=

k2Ω(Ω2 −N2)

Ω2k2 − k2
xN

2

Coefficient of
dv

dy
=

2N2Ω2k2k2
zkxσ

(Ω2k2 −N2k2
x)

2

Coefficient of v = − k2Ω− kx
dσ(y)

dy
+

Ωk2k2
z(f − σ)

(Ω2k2 − k2
xN

2)2
[Ω2k2f +N2k2

x(2σ − f)]

The coefficients of d2v
dy2 gives us the position of the critical layers. For linear shear U(y) =

σ(y)y = −σy

Ω = 0⇒ Barotropic critical layer, y∗ =
ω

σkx

Ω2 −N2 = 0⇒ Baroclinic critical layer, y∗ =
ω ±N
σkx

Inertial critical layer does not exist

It seems we have a new regular singular point at Ω = ±kx
k
N . But notice that this

singularity only shows up in v, we never notice it in the vertical velocity equation, which is
analogical to inertial one which only shows up in the Pressure equation.
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From above, we have proved that there are only two kinds of critical layers, the batrotropic
critical layer and the baroclinic critical layer.

2.4 Orr-Sommerfeld-like equations

Inspired by the technique with Toroidal and Poloidal to explore the existence of the inertial
critical layer in inviscid rotational shear flow, we apply the toroidal and poloidal to deduce
the Orr-Sommerfeld-like equation for viscous rotational shear flows. Our goal is not get the
six order ODE for one parameter, instead, our goal is to reduce the governing equations to
three equations contains the velocity and vorticity on the cross-stream direction, and the
density perturbation, or we could further reduced them to two equations contain only the
stream-wise velocity and vorticity, which is similar to the Orr-Sommerfeld-Squire equations
in shear flow. We stick with our notation that x is the streamwise, y is the cross-stream and
z is the vertical direction.

First Equation

Let us start with the momentum equation

∂u

∂t
= −(u · ∇)u− ∇P

ρ0

− ρ̃

ρ0

gẑ + fu× ẑ + ν∇2u (1)

where ρ̃ = ρ− ρ(z) and ρ(z) = ρ0(1− N2

g
z)

We take curl of the previous equation, and we will have the vorticity equation ω.

∂ω

∂t
= −(u · ∇)ω + (ω · ∇)u− g

ρ0

∇× ρ̃ẑ + f
∂u

∂z
+ ν∇2ω (2)

Linearize around the background shear flow U(y) or ω = −∂U
∂y
ẑ, i.e. u = U(y)x̂+ εu′ and

ω = ωẑ + εω′ and ρ = ρ(z) + ρ̃+ ερ′, at the order of ε, we have the linearized equation,

∂ω′

∂t
= −U ∂ω

′

∂x
+ v′

∂σ(y)

∂y
ẑ − u′∂u

′

∂z
+ ω′yu

′(y)x̂− g

ρ0

∇× ρ̃′ẑ + f
∂u′

∂z
+ ν∇2ω′ (3)

notice that ω′ and u′ are perturbations while u′(y) = ∂U(y)
∂y

. We rewrite u′(y) = σ(y), the
perturbed equation is written as following

∂ω′

∂t
= −U ∂ω

′

∂x
+ v′

dσ(y)

dy
ẑ − σ(y)

∂u′

∂z
+ ω′yσ(y)x̂− g

ρ0

∇× ρ′ẑ + f
∂u′

∂z
+ ν∇2ω′ (4)

Let us look at the normal modes of the perturbations A′(x, y, z, t) = a(y)eist+ikxx+ikzz,
the equation is as following

isω = −U(y)ikxω +
dσ(y)

dy
vẑ + ikz[f − σ(y)]u+ σ(y)ωyx̂−

g

ρ0

∇× ρẑ + ν(
d2

dy2
− k2)ω (5)
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Look at the cross-stream direction of the previous equation, we have

∂ωy
∂t

= ikz(f − σ)v + ikx
g

ρ0

ρ+
[
ν∇2 − ikxU(y)

]
ωy (6)

Define Ω = s + U(y)kx, we look at Equ(5) on the cross-stream ŷ direction, here is what
we have

iΩωy = ikz(f − σ)v + ikx
g

ρ0

ρ+ ν(
d2

dy2
− k2)ωy (7)

Multipy i on each side of the equation and rewrite the equation above in order of the ωy,
we end up the first equation between v, ωy, ρ

iν
d2ωy
dy2

+ (Ω− iνk2)ωy = kz(f − σ)v +
kxg

ρ0

ρ (8)

Second Equation

Take curl of Equ(4), we have

∂∇× ω′

∂t
= − ∂

∂x
(∇× Uω′) +∇× v′dσ(y)

dy
ẑ − ∂

∂z
∇× σ(y)u′

+∇× ω′yσ(y)x̂− g

ρ0

∇×∇× ρ′ẑ + f
∂∇× u′

∂z
+ ν∇2∇× ω′ (9)

Notice that we have

∇× ω = ∇×∇× u = ∇(∇ · u)−∇2u = −∇2u (10)

So we look at the ŷ component of Equ(8) with its normal modes, we shold check Equ(8)
term by term

ŷ · ∂∇× ω
′

∂t
= −is∇2v

ŷ · − ∂

∂x
(∇× Uω′) = ikxU(y)∇2v

ŷ · ∇ × v′dσ(y)

dy
ẑ = −ikx

dσ

dy
v

ŷ · − ∂

∂z
∇× σ(y)u′ = −ikzσ(y)ωy

ŷ · ∇ × ω′yσ(y)x̂ = σ(y)ikzωy

ŷ · − g

ρ0

∇×∇× ρ′ẑ = − g

ρ0

ikz
dρ

dy

ŷ · f ∂∇× u
′

∂z
= ikzfωy

ŷ · ν∇2∇× ω′ = −ν∇4v = −ν(
d4

dy4
− 2k2 d

2

dy2
+ k4)v
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Sum the above terms up, we will have the second equation between v, ωy, ρ

∂∇2v

∂t
= ikx

dσ(y)

dy
v + i

g

ρ0

kz
dρ

dy
− ikzfωy +

[
ν∇4 − ikxU(y)∇2

]
v (11)

or

Ω∇2v = kx
dσ(y)

dy
v +

g

ρ0

kz
dρ

dy
− kzfωy − iν∇4v (12)

Third Equation

Start with the density equation

∂ρ̃

∂t
= −(u · ∇)ρ̃+ ρ0

N2

g
w (13)

The linearized normal mode equation is

isρ = −ikxU(y)ρ+ ρ0
N2

g
w (14)

Now we need to replace w with some combination of v, ωy, this can be easily done by
toroidal and poloidal decomposition. If we rewrite the velocity u in terms of poloidal and
toroidal,

u = ∇×Ψŷ +∇×∇× Φŷ (15)

Define k2 = k2
x + k2

z , We could easily see the following

v = k2Φ

ωy = k2Ψ

w = ikxΨ + ikz
dΦ

dy

We will have

w = ikx
ωy
k2

+ ikz
dv/k2

dy
=

i

k2
(kxωy + kz

dv

dy
) (16)

Plug Equ(16) back to Equ(14), we will have the third equation with v, ωy, ρ

∂ρ

∂t
= i

ρ0N
2

gk2
(kxωy + kz

dv

dy
)− ikxU(y)ρ (17)

or

Ωρ =
ρ0N

2

gk2
(kxωy + kz

dv

dy
) (18)
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Matrix form for three equations

There are several ways we could write as matrix form. First we put equation (6), (11), (17)
together.

∂ωy
∂t

= ikz(f − σ)v + ikx
g

ρ0

ρ+
[
ν∇2 − ikxU(y)

]
ωy

∂∇2v

∂t
= ikx

dσ(y)

dy
v + i

g

ρ0

kz
dρ

dy
− ikzfωy +

[
ν∇4 − ikxU(y)∇2

]
v

∂ρ

∂t
= i

ρ0N
2

gk2
(kxωy + kz

dv

dy
)− ikxU(y)ρ

Write them as matrix form

∂

∂t

 ∇2

I
I

 v
ωy
ρ

 =

 ν∇4 − ikxU(y)∇2 + ikx
dσ(y)
dy

−ikzf ikz
g
ρ0

d
dy

ikz(f − σ) ν∇2 − ikxU(y) ikx
g
ρ0

ikz
ρ0N2

gk2
d
dy

ikx
ρ0N2

gk2 −ikxU(y)


 v

ωy
ρ


Notice this matrix form could be used to calculate the eigen-vectors, instead of using five

prime parameters, we only have three here.
The other form come from equations (8), (12), (18)

Ωωy = kz(f − σ)v +
kxg

ρ0

ρ− iν∇2ωy (19)

Ω∇2v = kx
dσ(y)

dy
v +

g

ρ0

kz
dρ

dy
− kzfωy − iν∇4v (20)

Ωρ =
ρ0N

2

gk2
(kxωy + kz

dv

dy
) (21)

Deduce to two equation

Equ(8), (12) and (18) are three equations with three components v, ωy, ρ, from where we
could eliminate ρ and deduce the two equations for v, ωy, let us put them together

Ωωy = kz(f − σ)v +
kxg

ρ0

ρ− iν∇2ωy (22)

Ω∇2v = kx
dσ(y)

dy
v +

g

ρ0

kz
dρ

dy
− kzfωy − iν∇4v (23)

Ωρ =
ρ0N

2

gk2
(kxωy + kz

dv

dy
) (24)
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Eliminate ρ from Equ(22) and (24)

Times Ω on each side of Equ(22)

Ω2ωy = Ωkz(f − σ)v +
kxg

ρ0

Ωρ− iνΩ∇2ωy (25)

Plug in Equ(24)

(iνΩ∇2 + Ω2 − k2
x

N2

k2
)ωy = Ωkz(f − σ)v + kxkz

N2

k2

dv

dy
(26)

Eliminate ρ in Equation (23)

From Equ(24),we calculatedρ
dy

dρ

dy
=
ρ0N

2

gk2

d

dy

[
1

Ω
(kxωy + kz

dv

dy
)

]
(27)

Plug Equ(27) to Equ(23), we have

Ω∇2v = kx
dσ(y)

dy
v − kzfωy +

g

ρ0

kz ·
ρ0N

2

gk2

d

dy

[
1

Ω
(kxωy + kz

dv

dy
)

]
− iν∇4v

= kx
dσ(y)

dy
v − kzfωy + kz

N2

k2

d

dy

[
1

Ω
(kxωy + kz

dv

dy
)

]
− iν∇4v

d

dy

[
1

Ω
(kxωy + kz

dv

dy
)

]
= − 1

Ω2

dΩ

dy
(kxωy + kz

dv

dy
) +

1

Ω
(kx

dωy
dy

+ kz
d2v

dy2
)

= −σk
2
x

Ω2
ωy −

σkxkz
Ω2

dv

dy
+
kx
Ω

dωy
dy

+
kz
Ω

d2v

dy2

Ω∇2v = kx
dσ(y)

dy
v − kzfωy + kz

N2

k2

d

dy

[
1

Ω
(kxωy + kz

dv

dy
)

]
− iν∇4v

= kx
dσ(y)

dy
v − kzfωy −

σkzk
2
xN

2

Ω2k2
ωy −

σkxk
2
zN

2

k2Ω2

dv

dy
+
kxkz

Ω

N2

k2

dωy
dy

+
k2
zN

2

Ωk2

d2v

dy2
− iν∇4v
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Then we have

(iν∇4+Ω∇2)v = kx
dσ(y)

dy
v−kzfωy−

σkzk
2
xN

2

Ω2k2
ωy−

σkxk
2
zN

2

k2Ω2

dv

dy
+
kxkz

Ω

N2

k2

dωy
dy

+
k2
zN

2

Ωk2

d2v

dy2

(28)
with Equ(26)

(iνΩ∇2 + Ω2 − k2
x

N2

k2
)ωy = Ωkz(f − σ)v + kxkz

N2

k2

dv

dy
(29)

Write as matrix form(
iν∇4 + Ω∇2

iνΩ∇2 + Ω2

)(
v
ωy

)
=(

k2
zN

2

Ωk2
d2

dy2 − σkxk2
zN

2

k2Ω2
d
dy

+ kx
dσ(y)
dy

kxkz
Ω

N2

k2
d
dy
− kzf − σkzk2

xN
2

Ω2k2

kxkzN2

k2
d
dy

+ Ωkz(f − σ) k2
xN

2

k2

)(
v
ωy

)
The equations above are the Orr-Sommerfeld equations for linear horizontal shear, lin-

early stratified flow with background rotation.
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Chapter 3

Zombie Vortex Instability in Inviscid
Regime

The exploration of the instability in stratified, rotational flow with horizontal shear has drawn
great attention in recent years, due to the long lasting interests in the pursuit of turbulence
generating mechanism in accretion disk. For the study of stratified Taylor-Couette system,
a new linear instability, called the StratoRotational Instability (SRI) [26] has been found
analytically beyond the Rayleigh’ criteria, under the small wave-number approximation, thin-
gap approximation and the strong stratification assumption. This work is further extended
by [21] and [19]. SRI has been observed experimentally by [9] and numerically verified
with initial value simulation [10]. During the exploration of stratified plain Couette flow
with background rotation, the gravity-wave-like instability has also been reported [25]. This
instability is believed to be relevant to SRI and it is form to the linear resonances between
waves with oppositely singed wave momenta, for example, Kelvin wave and inertia-gravity
wave.

Despite the existence of the several instability in stratified rotational shear flow, a new
finite-amplitude instability, called the self-replicating “Zombie” Vortex Instability(ZVI) has
also been discovered in such system[15]. Unlike other instabilities, ZVI exists in the pa-
rameter regime where all three physical parameters are on the same order. During the ZVI
process, baroclinic critical layers are excited by initial vortex at certain locations, on which
new generation of vortex are spawn. Those new generated vortex will excite their own crit-
ical layers and thus leads to the self-replicating mechanism that destabilize the system. In
this paper, we provide a better understanding of how to detect ZVI numerically and under
what condition that ZVI will be observed.

In this paper, we will systematically explore the existence of Zombie Vortex Instability
under the physical parameters. In part 2, the key features such as critical layers, zombie
vortex will be discussed in details. The whole progress of ZVI that determines whether
it is stable or not will be shown as a guidance for our further exploration. Detailed in our
numerical set-up will also be reported in this part. In part 3, all the parameters, including the
physical parameters and numerical one are discussed. A parameter map is presented in part
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4, as well as discussions on the regimes on the map. Physical explanation and interpretation
will be provided. In the last part, we will discuss how to set up in the laboratory to observe
such instability.

3.1 Problem Set-up

Governing equations, boundary conditions and numerical methods

Zombie Vortex Instability (ZVI) happens in vertically stratified, horizontal shear flow with
background rotation. In order to fully understand the basic mechanism of ZVI, we need to
figure out what the role of each of physical ingredients, i.e. shear, stratification and rotation,
and how the instability will react if any of the these three parameter changes. In this paper,
we define our background shear velocity U(y) = −σyx̂ on the horizontal direction, where σ
is the shear rate, x̂ is the stream-wise direction and ŷ is the cross-stream direction. Notice
that the vorticity associated with the background shear velocity field is σ. So if σ and f
have the same(different) sign, the vorticity associated with the background shear will rotate
in the same(different) direction of the background rotation. Thus we call our flow filed
cyclonic(anti-cyclonic) based on the sign of σ/f . On the vertical direction ẑ, we assume our

fluid is Boussinesq linearly stratified. The BruntVäisälä frequency N2 = − g
ρ0

dρ̄(z)
dz

is defined
as a measurement of stratification, where g is the gravity, ρ0 is the background density at the
reference height and ρ̄(z) is the background stratification. Notice N is a constant for linear
stratification. The background rotation on the vertical direction is represented by the Coriolis
parameter f = 2Ω where Ω is the angular velocity of the system. If we separate the our total
flow field as two parts, the background shear velocity and perturbation, i.e. utotal = U+u. We
also separate our density into two parts, the background linear stratification and the density
fluctuations, i.e. ρ(x, y, z, t) = ρ(z) + ρ̃(x, y, z, t). After neglecting the viscous dissipation
and thermal diffusion, the governing equations for the perturbations can be easily derived
as following,

0 =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

∂ux
∂t

= − (u · ∇)ux − U (y)
∂ux
∂x
− ∂P

∂x
+ (f + σ)uy

∂uy
∂t

= − (u · ∇)uy − U (y)
∂uy
∂x
− ∂P

∂y
− fux

∂uz
∂t

= − (u · ∇)uz − U (y)
∂uz
∂x
− ∂P

∂z
− ρ̃

ρ0

g

∂ρ̃

∂t
= − (u · ∇) ρ̃− U (y)

∂ρ̃

∂x
+
ρ0N

2

g
uz
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As you might have noticed, in the equations, the terms associated with linear shear veloc-
ity U(y) break the autonomy of the equations and thus triply periodic boundary conditions
are not valid. In order to enforce the periodicity, without loss of generality, we could transfer
our coordinates to the shearing sheet coordinates. The shearing sheet coordinate is a Galileo
transformation of our frame to a moving frame where the observer(origin of the system) is
moving with the background shear velocity. One of the advantage of applying such system is
that, in the shearing sheet coordinates, the terms that break the autonomy of the equations
will vanish and thus periodic boundary conditions are valid. Mathematically, the relation-
ship between our shearing sheet system (x′, y′, z′, t′) and the original coordinates (x, y, z, t)
is (x′, y′, z′, t′) = (x + σyt, y, z, t). After some simple algebra, the governing equations in
shearing sheet coordinates can be expressed as

0 =
∂ux
∂x′

+ (
∂

∂y′
+ σt′

∂

∂x′
)uy +

∂uz
∂z′

∂ux
∂t′

= − (u · ∇′)ux + σt′uy
∂ux
∂x′
− ∂P

∂x′
+ (f + σ)uy

∂uy
∂t

= − (u · ∇′)uy + σt′uy
∂uy
∂x′
− (

∂

∂y′
+ σt′

∂

∂x′
)P − fux

∂uz
∂t

= − (u · ∇′)uz + σt′uy
∂uz
∂x′
− ∂P

∂z′
− ρ̃

ρ0

g

∂ρ̃

∂t
= − (u · ∇′) ρ̃+ σt′uy

∂ρ

∂x′
+
ρ0N

2

g
uz

After the transformation, the triply periodic boundary conditions will be applied in the
system.

We use fractional step methods to compute the different terms in the equations. The
second-order accurate Adam-Bashforth method is used for nonlinear terms, Crank-Nicholson
method for the pressure gradient and the semi-analytical method for the rest linear terms
associated with shear, rotation and stratification. The idea for semi-analytic method is that
we could compute the linear terms explicitly and precisely with its analytic formula. Details
of such method and the shearing sheet transformation can be found in [4].

The process for ZVI

ZVI can be triggered by gaussian vortex and 3d random noise with Kolmogorov spectrum.
The details on the initial conditions will be discussed in next section, here let us focus on the
process we observed in ZVI, when triggered by a gaussian vortex. There are typically several
stages we have observed during ZVI process, which are described in details as following. The
corresponding figures are plotted in Fig.3.2.

a) the formation of baroclinic critical layers : Critical layers are mathematical singular-
ities which are smoothed either by nonlinear effects or viscous/thermal dissipation. The
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classical work on critical layers have been reported and extensively studied in the parallel
shear flow [8]. We call the critical layers in plain-Couette flow barotropic critical layers
since it is purely triggered by horizontal shear. In stratified rotational shear flow, we can
find and derive the locations of critical layers by applying the linear normal mode analysis
into the governing equations described above, by assuming that the amplitude of the per-
turbation are small compared with the background shear and stratification, and any prime
variables q(x, y, z, t) in the system could be expressed in terms of the sum of normal modes
q(x, y, z, t) =

∑
kx

∑
kz
q̃(y)exp(−ωt + ikxx + ikzz),where kx and kz are the wave numbers

on the stream-wise x and vertical direction z correspondingly (See [15] for details). There
are two kinds of singularities that are both mathematically and physically valid: The first
kind is the barotropic critical layers. It is the same kind as shown in parallel shear flow,
which is only associated with shear rate σ and stream-wise wave number kx; The second
kind is the baroclinic critical layer. It is linearly neutral mode which is excited not only
by the horizontal shear, but also the vertical stratificaiton. To distinguish from the clas-
sical barotropic critical layers, we call such critical layers baroclinic critical layer. Similar
to barotropic critical layers who locations can be determined by the linear normal mode
analysis, the location of baroclinic critical layers y∗ could also be determined by the physical
parameters that excited such sigulirty, i.e. horizontal shear rate σ, vertical stratification
N and the stream-wise wave number kx. Since the excitement of barotropic critical layers
requires the second derivative of the background shear velocity on the cross-stream direction
to be valid, in our numerical simulations with linear shear velocity, they have never been
excited nor observed. Only baroclinic critical layers have been excited and observed. With
careful linear normal mode analysis, the locations of the baroclinic critical layers y∗ are

y∗ = ± N

σkx
(3.1)

If we further define kx = 2πm
Lx

and m = 0, 1, 2.... Equation above can be rewritten as

y∗

Lx
= ± N

2πσm
(3.2)

As we can see from the equation and Fig.4.2, critical layers show up in groups, each of
which is associated with one particular wave number. The lower the wave number is, the
further away it is located from y = 0. In our simulations, the baroclinic critical layers are
excited in the flow at very early stage(less than 12 1/f time) and they are typically the first
phenomenon we observe in the simulations. The baroclinic critical layers can be observed
in the numerical simulation in terms of vertical velocity uz and vertical vorticity ωz clearly.
As demonstrated in Fig.4.2(a), the critical layers have either shear-like or jet-like structures.
Such structures will provide a mean-flow vorcity jump or a vortex sheet structure, which can
be observed clearly in Fig.3.2(b). The vorticy jump or vortex sheet structure provided by
the critical layers are very unstable and could result into a vortex by linear instability such
as Kelvin-Helmoltz instability. The process of how vortex sheet would produce vortex under
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Figure 3.1: Plot of vertical velocity uz at 72 1/f time for Case N/f = 1.0 σ/f = −0.75;
Dash line shows the critical layers location predicted by linear normal mode analysis

the effect of linear instability could be found in [14] and [24]. Indeed, we do observe the
growing of vortex on the vortex sheet shown in Fig.3.2(c). Careful readers may question why
the shape of the critical layers are not straight line along vertical z direction. The reason
is due to the internal gravity waves which will be discussed in later session. Baroclinic
critical layers have also been observed in the laboratory experiments during the research of
instability of a vertically titled vortex in stratified fluid [5].

b) the formation of the vortex sheet : After the critical layers formed, the critical layers
of the vertical vorticity get connected and the structure of vortex sheet is clearly formed.
The vortex sheet contains two stripes next to each other, with one layer anti-cyclonic and
the other layer cyclonic. The magnitude of anti-cyclone and cyclone are on the same order.

c) the formation of zombie vortex : Vortex sheet is unstable structure. Under the effect
of linear instability, the anti-cyclonic(cyclonic) stripes of the vortex will roll up to vortex, if
our flow is anti-cyclonic(cyclonic), while the cyclonic(anti-cyclonic) stripes remains.

d) self-replication of the zombie vortex : Process a) to c) are repeated based on the zombie
vortex, i.e. the critical layers of the zombie vortex are generated and they are located at y∗

from the location of the zombie vortex; vortex sheet formed on the critical layers; Due to
the instability of the vortex sheet, a new generation of zombie vortex generated therefore.

e) the formation of zombie turbulence: Self-replication process continues until the whole
flow field are filled up with critical layers and zombie vortex. The flow field reaches to
a quasi-equilibrium fully developed turbulent state, where we could still see the stripes of
critical layers separated the flow. We call this state zombie turbulence.

Those several stages of ZVI could also be clearly explained in terms of the vertical kinetic
energy Ek,z defined as
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Figure 3.2: Plot of vertical vorticity ωz at z/Lx = 0.25 for different stages for Case N/f = 1.0
σ/f = −0.75; Color blue(red) represents anti-cyclonic(cyclonic); Green on the background
represents zero;

Ek,z =
1

2

∫
ρ0u

2
zdV (3.3)

Fig.3.3 shows a typical observation of the Ek,z versus time. The vertical kinetic energy is
a very good indication of ZVI process, since it is zero initially and becomes nonzero when
the critical layers on the vertical velocity shows up. It can be viewed as measurement of
how many critical layers and how strong they are. As we could see in Fig.3.3, the vertical
kinetic energy is zero at the first beginning, this is due to the fact no critical layers have
been excited at the first beginning and the vertical velocity of the flow field is zero. Then
the baroclinic critical layers are excited and the Ek,z starts to grow. During this period, we
observe the critical layers on roll up to vortex layers and the next generation vortex start
to form. Around 10001/σ time, due to the duplication of the zombie vortex and thus the
duplication of the critical layers, Ek,z has a sharp increases. This is corresponding to the
stage(d) in ZVI process. Until 2000 1/σ time, the flow field is totally destabilized and reaches
a statistically turbulent equilibrium state.
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Figure 3.3: Vertical kinetic energy for unstable case N/f = 1, σ/f = −3/4 shows clearly the
several stages of ZVI process when initialized with vortex

Initial condition and criteria for ZVI

ZVI was first observed by initializing with Gaussian elliptical Vortex [15]. The reason we
would like to use a vortex as initial condition are, first, the strong self-rotation property of
vortex is famous for mass and momentum concentration. Secondly, the gaussian shape pro-
vides nonzero perturbations for all wave modes on three directions and mathematically, the
fourier transform of a gaussin shape function remains gaussian shape for all wave numbers.
The mathematical formula for gaussian vortex perturbation is

! = ω0exp(−
x2

a2
− y2

b2
− z2

H2
) (3.4)

ω0 is the vorticity at the origin. a and b represents the horizontal length scale on streamwise
x and cross-stream direction y while H represents the vertical length scale of the vortex.

Compared with other initial conditions such as random noise(which will be described
later), the advantage of gaussian vortex is that the flow field are very clean such at we could
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Figure 3.4: An anti-cyclonic Gaussian vortex as initial condition

see clearly the whole process and the structure of the ZVI, which has been demonstrated in
the previous part. The disadvantage of the gaussian vortex is that the gaussian vortex is
not the equilibrium state. Since it has been noticed and demonstrated that it takes roughly
1000 1/σ time or equivalently 100 physical years for the critical layers, vortex sheet and
self-replicating vortex to form and start to duplicate. It takes another roughly 1000 1/σ
time or equivalently 100 physical years to fully destabilize the system. During the vortex
sheet and self-replicating vortex formation period, the vortex itself may become unstable
or destroyed by the shear or stratification at the early stage. Indeed, we have observed
the gaussian vortex was stretched and destroying due to strong shear or split vertically
under strong stratification. In order to maintain our vortex stably existing long enough as
a perturbation source to excite critical layers, we would like to initialize it as close to the
equilibrium state. We already know that for two dimensional pure shear flow, the Moore-
Saffman vortex introduced by [18] which satisfies the following equation, is the equilibrium
vortex state

ω0

σ
=
χ+ 1

χ− 1

1

χ
(3.5)

χ = a
b

is the horizontal aspect ratio of the elliptical vortex and ω0 is the amplitude of the
vortex. We also know that, for the stratified fluid with rotation, the equilibrium vortex
satisfies a certain vertical aspect ratio [1]. The physical interpretation for the vortex in the
stratified rotational flow is that, the background rotation would prefer a column vortex due
to Taylor-Proudman theorem while the stratification effect would prefer a pancake like vortex
shape. A balance between those two effects result into the vortex equilibrium solution. In
conclusion, when initializing the vortex, we require our vortex satisfies the Moore-Saffman
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vortex shape on the horizontal direction and also adjust the vertical aspect ration of the
vortex when stratification and rotation are changed.

However, since the vortex is not an equilibrium. When simulations starts, there will
be a period where the vortex self-adjust itself to the fluid system and the behavior of the
vortex can not be predicted. For example, we have observed several cases that when the
stratification is dominant, the vortex may be split to several vortex vertically. Or for strong
shear fluid, the vortex might be stretched out directly by the strong horizontal shear. As
we have demonstrated, ZVI require a certain amount of time for the critical layers becomes
unstable. If the vortex gets destroyed at early stage, the lack of critical layers may lead to
no zombiefication, in which case we can not determine that ZVI does not happen is due to
it is a stable case or the destruction of the vortex. Thus, we shall use a more general initial
condition which is the three dimensional Kolmogorov random noise.

The noise is initialized with isotropic random amplitude on three directions. The kinetic
energy spectrum is proportional to k−5/3 where k =

√
k2
x + k2

y + k2
z . The mathematical

formula and deduction on the velocity can be found in [16]. The very important observations
about ZVI initialized by random noise are, after the simulation starts, there will be small
vortex generated and observed in the flow field. Those vortex could be regarded as the seeds
to excite their own critical layers and replicate themselves to trigger the instability. The idea
is instead of putting a non-equilibrium vortex(like gaussian vortex) as initial condition, we
initialize the flow field with noise and let the flow filed to generate the vortex it preferred.
Since those vortex are generated by the flow field, they could survive long enough in the
flow field to excite critical layers and replicate themselves. Under such assumption, once the
small vortex are generated in the flow field, the process shall has no differences with what
we have observed when initializing with Gaussian vortex, i.e. the five stage process shall
appear for each vortex seed. Further more, when the flow filed become fully destabilized, the
turbulence shall reach to the same statistical state regardless of the initial condition. Indeed,
we did have observe the convergence of the kinetic energy of the flow field when initialized
with several initial conditions.

The advantage of the initial noise is that, our concerns that ZVI may be effected by the
initial conditions has been eliminated. Even if the equilibrium state of vortex still remains
unknown for our flow field, the right kind of vortex that could survive the flow field will
be generated and ZVI shall be triggered under the right kind of parameters setup, which is
crucial to our next discussion on how the physical parameters, instead of initial conditions
affect the physics of ZVI. Compared with a clean gaussian vortex, the disadvantage of random
noise is that, due to the fact the flow filed is all filled up with noise, we can not see the
structure and the process of ZVI, which limits our capacity to determine which stage the
flow filed is in. The criteria we use to determine if it is a stable case is that, the Ez,k start to
increase and saturate later on and the flow field has showed clearly the zombie turbulence.
Fig2. shows a plot of a typical cases where we initialize with noise and it becomes unstable.
At the very beginning we observe a sharp decrease of the vertical kinetic energy. This is due
to the fact that the energy spectrum of the noise are at every wave number, and our hyper-
viscosity will damp out those energy at high wave numbers very quickly to avoid numerical
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Figure 3.5: 3D random noise with Kolmogorov energy spectrum

blow-up problem. Then we will see the noise reaches to a stable period and then starts to
increases due to ZVI.

Based on the discussion about the process of ZVI when initialized with Gaussian vortex
and random noise, our criteria to determine whether ZVI was triggered or not is, first we
initialized the flow field with Gaussian vortex, which allows us to quickly determine whether
ZVI is triggered or not, by observing the flow field and the vertical kinetic energy. Once
we observe ZVI is triggered, then we could conclude under such group of parameter, ZVI
will be triggered without running simulations initialized noise. If ZVI was not observed
with Gaussian vortex or Gaussian vortex is destroyed that it can not excite critical layers,
simulations under the same group of parameters initialized with random noise will be run
to check whether this is a stable case or not. If none of those simulations show no sign or
patter of ZVI, for example, vertical kinetic energy decreases after long time simulations, we
claim this is a stable case.

In summary, by implementing both Gaussian vortex and 3D random noise, the effect
of initial conditions on ZVI has been eliminated. It is purely determined by the physical
parameter whether ZVI will exit or not. In another words, it is the physical ingredients, the
horizontal shear, the vertical stratification and the background that control the instability
mechanism in the fluid system.

3.2 Parameters for ZVI

Physical parameters and dimensionless numbers

The goal of this paper is to present map of parameters, on which stable and unstable cases
are marked. Before we talk about the parameter map, we need to consider how many control
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parameters in the physical system. There are viscosity, horizontal shear, stratification and
rotation. We neglect the viscous effect by assuming the viscosity is too small that Re
goes infinity. This leads us to a system with three physical parameters, horizontal shear σ,
stratification N and background rotation f , all of which have the unit one over time. By
dimensional analysis, three physical parameters lead to two dimensionless parameters, σ/f
and N/f .

In the literature, σ/f is typically regarded as the Rossby number Ro since physically
and mathematically it can be viewed as the ratio between the vorticity associated with the
background shear velocity and the background rotation, which is the definition of Rossby
number. Comparing with the instabilities in the Taylor-Couette system, it is analogous to
the relative strain rate defined in Strato-Rotational Instability(SRI). It is the ratio between
the horizontal shear and the background shear, which determines the horizontal shape of the
zombie vortex by Equ(2.5).

On the other hand, N/f is the ratio between the stratfication and rotation, which de-
termines the vertical structure of the zombie vortex. It can be reviewed as the half of the
inverse of the Froude number Fr = f/2N , which is the ratio between the angular velocity Ω
and BruntVäisälä frequency N . As the readers may question, there are definitely other ways
to represent the dimensionless number, for example, N/σ, f/σ or σ/N, f/N . The reasons we
use rotation as the dimensionless parameter is, our original interest of this problem comes
from the physics of the Protoplanetary Disk(PPD). Compared with shear and stratification,
background rotation is considered to be more persistent in the system. Secondly, previous
explorations of the instability in stratified shear flow with background rotation are also using
the similar dimensionless numbers as we mentioned above.

Numerical parameters

After we determine the physical parameters existing in this problem, let us take a look at
the numerical parameters, i.e. the computational domain size Lx, Ly, Lz, the use of hyper-
viscosity and boundary damping.

Our numerical experiments are set up in the Shearing Sheet coordinates, which is a
Galileo transformation of the inertial frame to the frame moving with the background shear.
In the moving frame, the shear terms in the governing equations which breaks the autonomy
of the governing equations disappears and we could use the periodic boundary conditions
in the shearing frame which is computationally efficient comparing with one-direction non-
periodic. One of the problem for using this coordinates is that by assuming periodicity, our
computational domains may contaminated by its neighboring domain. For example, our
critical layers are located on cross-stream y direction. Once ZVI is triggered, duplicated
critical layers will be excited on the cross stream direction and keep expanding on that
direction. If our domain size is too small, the critical layers excited by the neighboring
domain may show up in our computational domains. As we have discussed by linear normal
mode analysis, the position of critical layers are determined by Equ(2.2). If we rewrite the
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equation with the replacement of stream-wise wave number kx = 2πm
Lx

where m is integer.
We have the distance of the critical layers of wave number m is

y∗ = ± NLx
2πσm

(3.6)

As we can see, the critical layers are straight lines on the cross-stream direction ŷ and
the critical layer with the smallest wave number m = 1 is the farthest from the center of the
perturbation. We call this distance ∆ = NLx

2πσ
. Since zombie vortex will be generated on the

critical layers, in order to observe the generation of zombie vortex, we need to make sure
our domain size on the cross-size direction Ly are big enough to hold the critical layer of the
new generations, i.e. 2∆ ≤ Ly/2. This provides us a restriction on our domain size

Ly
Lx
≥ 2

π

N

σ
(3.7)

When we are exploring the parameter map with different value of N/σ, we have to
adjust our domain size ratio accordingly. The problem when we use too small Ly are, in
shearing coordinates, it is periodic on the cross-stream direction. When Ly is too small,
we may observe the critical layers of the neighboring computational box appearing in our
computational domain, which may interact with the critical layers of the computational box
we are looking at. For vertical domain size, zombie vortex will show up on certain height.
Since the zombie vortex will not duplicate on the vertical direciton, we typically use Lz = Ly
in our simulations.

Since we have no dissipation in our problem, we have to use hyper-viscosity to avoid
numerical blow-up with limited computational allocation points. The hyper-viscosity is
tuned such that kinetic energy spectrum is damped only at high wave numbers. As we have
discussed in the previous part, the key point of why critical layers roll up to vortex is that,
the nonlinearity of the baroclinic critical layers provide the vorticity jump(vortex sheet).
Under the effect of linear instability such Kelvin-Helmholtz instability, the vortex sheet rolls
up to vortex. The existence of any type viscosity, including hyperviscosity, will lead to the
dissipation of the critical layes. Compared with purely inviscid case, the viscous dissipation
of critical layers by hyperviscosity will make ZVI more difficult to form. Thus if ZVI is
observed with hyperviscostiy under a group of parameters, it will be absolutely observed in
a purely inviscid case with enough resolution and the same group of parameters! Secondly,
for stable cases, we calculated the kinetic energy loss due to hyperviscosity. The amount
of energy loss due to hyperviscosity is on the order of 0.1% compared with total kinetic
energy in perturbations such as the vortex and critical layers. The reason it is so small is
because the hyperviscosity parameter is tuned such that it only damps the high wave number
phenomenons. However in our fluid system, the main physics such as the zombie vortex and
the critical layers are around mid wave number range. Thus the energy contained in the
high wave numbers are very small. Even if those energy in high wave numbers are mostly
damped out by hyperviscosity, the total energy loss is neglectable. Therefore the using of
hyperviscosity has no effect on the physics of our fluid system.
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Figure 3.6: Stability diagram of the Zombie Vortex Instability(ZVI) in (N/f , σ/f) parameter
plane. Symbol© represents for ZVI unstable and × represents for ZVI stable; 4 means the
marginal stable

In order to avoid the reflection of the internal waves from the upper and lower boundary,
boundary damping is implemented on the vertical direction. The damping conditions are
simple Rayleigh damping.

3.3 Inviscid Parameter Map

We present a parameter map, in terms of dimensionless numbers σ/f and N/f . As we
have discussed in previous session, the left half part of the map where σ/f is negative, is
anti-cyclonic while the right half part of the map where σ/f is positive, we call it cyclonic
regime, depending on whether the vorticity of the background shear velocity have the same
sign with the background rotation or not.

The map is divided into four parts, a linear unstable regime where σ/f < −1, the ZVI
unstable regime on both anti-cyclonic and cyclonic regime, the marginal stable regime and
the stable regime. We will explain in details the observations in those regimes and provide
our explanations.



CHAPTER 3. ZOMBIE VORTEX INSTABILITY IN INVISCID REGIME 41

Linear Unstable Regime σ/f < −1

During our exploration of ZVI on the map, we also found the existence of linear instability
area on the map, which is σ/f < −1. Since we are mainly interested in ZVI which is a
finite-amplitude instability, we shall avoid the linear unstable regime on the map. In the
following session, we shall prove the existence of the linear instability both analytically and
numerically. Since we are not interested in the linear stability of the flow, we will not give
a fully linear analysis of the flow field. Instead we show the existence of a linear growing
mode under certain conditions by linear normal mode analysis. Secondly, we will numerically
verify the linear eigen-mode and eigen-functions.

Analytic analysis We will show a special cases where σ+f < −1 and there exist linear
growing mode. The special case is when the perturbation is independent of the stream-wise
direction, i.e. kx = 0.

If we linearize the equations and look at the normal modes of primary variables, i.e.
q(t, x, y, z) = q̃(y)e−iωteikxx+ikzz. For the special case kx = 0 with the viscosity neglected.
The linearized normal mode equations are

0 =
dũy
dy

+ ikzũz

−iωũx = (f + σ)ũy

−iωũy = −dP
dy
− fũx

−iωũz = −ikzP̃ −
ρ̃g

ρ0

−iωρ̃ =
N2

g
ũz

The boundary conditions are non-slip boundary on the cross-stream direction. One could
get the second-order ordinary differential equation by simplifying the equations above,

(ω2 −N2)
d2ũy
dy2

= k2
z

[
ω2 − f(σ + f)

]
ũ(y)) (3.8)

Using the technique by [12], d/dy is approximately iky in the spectrum space, we will
have the dispersion relation

ω2 =
k2
z

k2
y + k2

z

f(σ + f) +
k2
y

k2
y + k2

z

N2 (3.9)

If we further assume that kz >> ky, the frequency ω ' f(σ + f). Since the rotation
f = 2Ω is always positive, when σ + f < 0. there exists the linear growing mode ω =
−i
√
|f(σ + f)|



CHAPTER 3. ZOMBIE VORTEX INSTABILITY IN INVISCID REGIME 42

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Real ω

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im
ag

 ω

(a) σ/f = −2, N/f = 1, linear unstable case
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(b) σ/f = −0.75, N/f = 1, linear stable case

Figure 3.7: numerical eigenvalue ω plotting on complex space with kx = 0, kz � ky

in figure 3.7, We have verified the analytic work using numerical eigen-value solvers to look
for the growing modes for stratified rotational shear flow, with the assumption that kx = 0
and kz >> ky. In order to be consistent with our numerical simulations for the parameter
map, the eigenvalue calculation is computed in a box with Lx = Ly = Lz = 8, with periodic
boundary conditions on stream-wise(x̂) and vertical direction (ẑ). Chebyshev polynomials
are applied on the cross-stream direction(ŷ) for the non-slip boundary conditions. The
computational grid size is 128 × 257 × 128. The plot of frequency ω is shown for σ + f =
−2, N = f = 2. Since this is the text for special case, kx = 0, kz = 2πm/Lx and we use
m = Nz/4 for the assumption of big kz.

We could see clearly the existence of the linearly unstable modes in the regime σ+f < 0.
A more rigorous argument is that σ/f = −1 separate the map from linearly stable and
unstable, i.e. σ/f < −1 is linearly unstable while σ/f > −1 is linearly stable. The interpre-
tation of σ/f = −1 is that it is the Rayleigh criteria [22] in corresponding Cartesian system.
It can be easily proved by corresponding parameter transformations from the cylindrical
coordinates to the Cartesian system in Appendix. B

ZVI unstable regime

For the area where σ+ f ≥ 0, it is all linearly stable. On our parameter map, linearly stable
area is divided into three parts, ZVI unstable, marginal stable and stable. We will explain
each area one by one. First let us focus on the unstable area.
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ZVI in cyclonic regime

The first thing to notice for the unstable area is that, although ZVI was first discovered for
the Keplerian shear case in the anti-cyclonic regime where σ/f ≤ 0, it has also been found
in the cyclonic regime when the background rotation and the vorticity associated with the
background shear has the same sign. Similar to anti-cyclonic cases, they can be triggered by
either Gaussian vortex, where the Moore-Saffman relation still satisfies, or by 3D random
noise with Kolmogorov spectrum.

As we have shown in the previous session, the process for ZVI in the anti-cyclonic regime
has clearly five stages, when triggered by vortex. When initialized with random noise, small
anti-cyclonic vortex seeds will be generated by the flow field and thus trigger the ZVI process
for each of the vortex seeds. Not surprisingly, similar patterns for cyclonic cases are observed.
When initialized with cyclonic Gaussian vortex, we observed the same five stages: at first,
the baroclinic critical layers are excited for the vertical velocity and vorticity, and their
locations can still be predicted with Equ.(2.2). Secondly, vortex sheet structures are formed
by the critical layers. Under the secondary linear stability such as the Kelvin-Helmholtz
instability, vortex are spawned on the vortex sheet. Under the effect of horizontal shear and
background rotation, the shape of the vortex is elliptical and turn out to be cyclonic instead
of anti-cyclonic. On the cross-stream direction, those vortex are observed to be located at
the critical layer positions since they are spawn in the vortex sheet which is formed by the
critical layers. On the vertical direction, they have showed up at certain heights. The next
stage is the self-replication of the cyclonic zombie vortex. New critical layers are excited
by the zombie vortex and newly excited critical layers spawn next-generation zombie vortex
until the whole flow field are filled up with zombie turbulence. Similar to the anti-cyclonic
case, those five stages can be seen at the plot of vertical kinetic energy plot correspondingly.

When initialized with 3d random noise, cyclonic vortex seeds are generated by the flow
field. Those cyclonic vortex seeds will excite their own critical layers until the zombie tur-
bulence state is reached. Zombie turbulence for cyclonic cases share the similar patterns as
the anti-cyclonic part, that there exist anti-cyclonic strips which separates the turbulence
into regimes. The distance between the separations are around the critical layer positions.

The second observation of the ZVI unstable regime is that, there is a clear bound for
the unstable regime for anti-cyclonic and cyclonic cases. For anti-cyclonic regime, the un-
stable area is constrained between −1 ≤ σ/f ≤ −0.5 horizontally and 0.5 ≤ N/f ≤ 2
vertically. The unstable regime is roughly centered around the Keplerian case where σ/f =
−3/4, N/f = 1. On the other hand, for cyclonic regime, there is a clear lower bound on the
horizontal direction that σ/f ≥ 0.5. For the stratification on general, the cyclonic requires
higher N/f compared with the anti-cyclonic cases. There also exists an universal lower
bound for the stratification that N/f ≥ 1. However, for cyclonic cases, we did not find a
upper bound for shear and stratification. Instead, when the background shear and the strat-
ification increases on the same order,i.e. σ/f O(1), ZVI is still observed with strong shear
and deeply stratified case such as σ/f = 3 and N/f = 4. The unstable area for cyclonic area
can be roughly described to be between 1 ≤ N/f ≤ 4. Despite the fact 1 ≤ N/f ≤ 4 looks
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Figure 3.8: Vertical vorticity of zombie turbulence on horizontal plan N/f = 4, σ/f = 2
observed above the middle plane z/Lx = 0.5; Red color represents cyclonic(positive sign)
while blue color represents anti-cyclonic(negative sign)

like the Richardson number, we want to point out that our shear is horizontal shear rather
than vertical shear, our ZVI unstable regime for cyclonic regime that N/σ is between 1 and
4 shares no similarity with the vertically stratified and vertical shear flow.

One interpretation of why ZVI is not observed for strong stratification and strong shear
case for anti-cyclonic case is because the existence of the linear instability in the anti-cyclonic
regime. One might argue the existence of a boundary for cyclonic cases when σ/f and N/f
keep increasing while maintaining N/σ ∼ O(1). Since the extreme case for such scenario is
the vertically stratified fluid with horizontal shear, but no background rotation. ZVI can not
be triggered without the background rotation. Due to limited resources, how far the ZVI
cyclonic regime can go when increasing σ and N is beyond the scope of this paper.

moderate stratification effect

Although cyclonic and anti-cyclonic regime have different boundary for unstable regime, they
do share some similarities, in respect of the effects of physical ingredients. In the following
session, we will discuss about some of the trend we observed for stratification and shear
separately.

First let us focus on the effect of the stratification, i.e. we fix the ration between shear
and rotation. On the map, we could imagine we are moving upward and downward corre-
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Figure 3.9: Log-plot of Vertical kinetic energy changes versus time for three cases, σ/f =
−0.75, N/f = 0.5, 0.75, 1.0; All of which initialized as Ro = −1 Gaussian vortex

spondingly. When σ/f is fixed, ZVI is observed in a limited regime of 0.5 ≤ N/f ≤ 2 for
anti-cyclones and 1 ≤ N/f ≤ 4 for cyclones. When stratification increases from the lower
bound, it takes less time for the flow field to become unstable and the energy transported
from the background shear to fluctuations seems to increases, when the background shear
and the initial condition remains unchanged. Here we observe the trend by examining the
vertical kinetic energy for various N/f . Notice that when BruntVäisälä frequency increases,
the location of the baroclinic critical layers will get further and further from the center of
the domain. We only report the cases where the domain sized unchanged the duplication of
m = 1 critical layers stay inside the domain.

From 3.9, we could see that N/f increases, the vertical kinetic energy increases earlier
and faster, indicating that the earlier formation of zombie vortex, and the faster duplication
of the critical layers. For the case N/f = 0.75, the first zombie vortex is observed around
700 1/f time and the flow filed becomes fully zombie turbulence around 2700 1/f . While for
N/f = 1 case, the zmobie vortex is observed around 400 1/f time and the zombie turbulence
formed around 1800 1/f time.The physical interpretation why moderate stratification will
promote the instability comes from the energy analysis of ZVI. As we have discussed above,
when the instability happens, the energy is transformed from the background shear to the
perturbations, and later from the perturbations to the potential energy. As the BruntVäisälä
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frequency is associated with the potential energy, the bigger N is, the stronger momentum
transportation there are on the vertical direction.

small shear effect

When we fix the ratio between stratification and rotation and decreases we could focus
on the physics when shear is getting small. We set up several numerical experiments for
various shears while maintaining the same stratification and background rotation. First,
ZVI is still observed when |σ/f | is as low as 0.5 for both cyclonic and anti-cyclonic cases.
The zombiefication process is the same as Keplerian shear case σ/f = −0.75: The baroclinic
critical layers will first appear, then we observe the spawn of zombie vortex within the critical
layers. The magnitude of the first generation of zombie vortex are on the same order. The
shape of the zombie vortex is elliptical with the long axis of the vortex lying on the stream-
wise direction x̂. The zombie vortex tend to have smaller horizontal aspect ratio when shear
is smaller, which is reasonable that it is the horizontal shear that stretches the vortex and
results into the elliptical shape of the vortex and the decreased stretching effect leads to the
bigger horizontal aspect ratio.

The second observation we have for small shear effect is the time evolution of ZVI. As we
could see from the two plots of zombie vortex, despite of the similarity between the shape
and magnitude of the zombie vortex, the time it takes for the appearance of the vortex
are dramatically different, with the Keplearian shear case takes around 7201/f time while
a slightly smaller shear case σ/f = −0.65 takes around 4 times longer. We have observed
the dramatically slowing down of the ZVI process when shear is decreasing, until the case
where σ/f = −0.5, ZVI stops. Figure 3.10 shows the kinetic energy Ek varies with σ/f . As
we can see all of these cases saturates after a long time and Ek decreases for small shear,
which indicates the ZVI getting weaker with all theses cases are initialized with Gaussian
vortex of Ro = −1. During the period where ZVI happens, the growth rate of kinetic energy
are positively correlated with the magnitude of shear, from where we could conclude that
stronger shear will promote the ZVI process.

As for figure 3.11, the zombiefied cases all share the similar trend that the Ek,z is zero at
the first beginning because we have no initial vertical velocity. With the appearance of the
baroclinic critical layers of the initial vortex, the vertical kinetic energy starts to increase
gradually until the ZVI triggers. During the self-replication period of the zombie vortex,
critical layers of several generations of zombie vortex are excited, and correspondingly, we
see rapidly increases of the vertical kinetic energy. Until the late time that the whole flow
field are filled up with zombie vortex, the flow becomes zombie turbulence, vertical kinetic
energy start to saturate, as there is no more zombie vortex and critical layers created. Thus,
we could define the time it takes to ZVI as the time from the beginning of the simulation
where there is no vertical structure, to the time where the flow field is filled up with zombie
turbulence (Ek,z stop increasing and starts to saturates). Someone may argue why we don’t
use the total kinetic energy, instead of the vertical kinetic energy to measure the time ZVI
takes, the reasons are as following, first, the initial Ek for different shear cases are different,
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Figure 3.10: Log-plot of total kinetic energy Ek changes versus time for four cases, N/f = 1,
σ/f = −0.75,−0.7,−0.65,−0.5, all of which initialized as Ro = −1 Gaussian vortex

due to the fact that we are using different aspect ratio of the gaussian vortex following
Equ(3.1) such that the initial Ro = −1 for all the cases. Secondly, those vortex are not
equilibrium solution of the flow field, we cannot predict the behavior of the vortex and thus
we cannot conclude the early time phenomena we observe are due to ZVI or the self-adjusting
of the vortex. However, the vertical kinetic energy represents the vertical structure of the
flow field which are basicly the critical layers excited by the initial vortex and zombie vortex,
which is independent of the initial vortex. Thus it is a pure indication of the ZVI while total
kinetic energy also includes the information of the initial condition and the self-adjusting of
the vortex. Based on our argument, we summarize the time ZVI takes for each case in the
table 3.1/

Marginal stable state

For the case where |σ/f |= 0.5, ZVI does not happen. We call the very small shear cases
as marginal stable state, by which we mean, the whole physical status when shera is small
is almost static. What we observe is that, the baroclinic critical layers will show up and
so are the vortex layers. However, the vortex layers do not roll up to any zombie vortex,
instead, the vortex layer saturate and the change of the magnitude of the vortex layers are
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Figure 3.11: Log-plot of vertical kinetic energy Ek,z changes versus time for four cases,
N/f = 1, σ/f = −0.75,−0.7,−0.65,−0.5, all of which initialized as Ro = −1 Gaussian
vortex

σ/f N/f time to ZVI (1/f)

-0.75 1.0 2000
-0.70 1.0 3360
-0.65 1.0 5520
-0.50 1.0 > 7920

Table 3.1: Zombiefication time versus shear
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negelatable. We have run our simulation until 10000 1/f time, which is 5 time longer than
the time Keplearian shear case will take to become unstable, we still did not observe the
rolling up of vortex on the critical layers. As we could see clearly in 3.11 and 3.10, the
total kinetic energy as well as the vertical kinetic energy saturate at early stage (around 500
1/f time). Both of the quantities remain unchanged. Secondly, the marginal stable state is
observed for various values of N/f = 0.5, 1, 1.5, 2, 3. For small shear cases, the increasing of
stratification does not seem to accelerate the ZVI process and we did not observe the rolling
up of zombie vortex for all the cases. Thus we claim σ/f = −0.5 is the lower bound for ZVI
in anti-cyclone cases.

The reason why the instability is getting slower is due to the fact that the energy re-
sources of ZVI comes from the background shear. We have figured out that during the ZVI
process, the energy is transported from the background shear to the fluctuations, and then
from the fluctuations to the potential energy. In order to measure the amount of energy
transported from the back ground shear, We define a new quantity called “shear energy”
Es, as a measurement of how much energy is drained from the background shear to the flow
field.

Es =

∫
ρ0U · udV (3.10)

As we could see, for Keplearian Shear case σ/f = −3/4, the energy is transported from
the background shear to fluctuations and when ZVI happens, the rate of shear energy trans-
portation increases monotonically. For the cases of small shear, the energy transportation is
quickly slowed down. For marginal case σ/f = −0.5, there is a constant energy transporta-
tion from the background to our flow field as a constant rate. This explains the saturation
of the instability.

Internal wave and critical layers

Beyond the similarities that anti-cyclonic and cyclonic cases shared, we want to point out
one differences we observed for cyclonic cases are the shape of critical layers. The critical
layers for the anti-cyclonic cases, when plotted on the cross-stream and vertical direction,
are appear to be “curved” in such a way that around the middle plan, it is not straight
line. The reason is due to the interaction of the internal gravity waves and the critical layers
around the middle plane. However for all the numerical simulations we have for cyclonic
cases, regardless of stability, we did not observe the existence of the such waves. The shape
of critical layers appear to be straight lines on the cross-stream and vertical plane.

Internal gravity waves in stratified rotational flow has been discovered and verified both
analytically and numerically. With the effect of horizontal shear, the governing equations
are not autonomous in cross-stream wise direction y. This problem can be solved using the
technique by [12], that there exists a simple relationship between the absolute frequency of
the internal waves ω and the relative frequency ω0,
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Figure 3.12: Shear Energy versus time, N/f = 1, σ/f = −0.75,−0.7,−0.65,−0.5, all of
which initialized as Ro = −1 Gaussian vortex
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(a) Vertical velocity at 64 1/f time, for σ/f =
−0.9, N/f = 1.5, plot on the cross-stream and
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Figure 3.13: Shape of critical layers in anti-cyclonic and cyclonic cases
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ω = ω0 + k · U (3.11)

ω is the frequency occurring at fixed point in the space, which is the frequency we observe
while ω0 is the frequency of the inertial wave when we move with the background flow, which
is the linear shear.k is the wave number vector. We could apply the WKB approximation by
assuming that the system rotation f = 2Ω and stratification are strong are strong compared
with the mean flow( see [20]). We also assume that for the local wave number vector k, the
stream-wise wave number kx is one order of smaller than the wave number on cross-stream
and vertical direction ky, kz. i.e. kx � ky, kz. The intrinsic frequency ω0 can be given by
following, which is the same with the local frequency when kx = 0.

ω2
0 =

N2k2
y

k2
y + k2

z

+
f(f + σ)k2

z

k2
y + k2

z

(3.12)

Since ky and kz are local wave numbers, on a physical y − z plane where x is fixed, for

any location y and z on the wave, we could say tan2 θ =
k2
y

k2
z
, where θ represent the angle

between the tangent line of the wave trace and the horizontal direction y.

(
dz

dy
)2 ≈ tan2θ ≈ ω2

0 − f(f + σ)

N2 − ω2
0

(3.13)

Meanwhile, in our numerical simulations, we find that the local temporal frequency of the
wave ω = 0, by putting a numerical probe into the wave we observe. Using this numerical
observation, we could easily rewrite the following differential equation

(
dz

dy
)2 =

(kxσy)2 − f(f + σ)

N2 − (kxσy)2
(3.14)

Integrate the equation above will provide us a solution for the trace of the internal wave.
It matches very well with our numerical observation, as shown below 3.14. Notice that this
wave trace is valid under the assumption that the streamwise wave number is much smaller
than the cross-stream and vertical direction. This assumption is cruel since the wave tracing
without such assumption actually matches poorly with the numerical simulations.

The second observation we have for the internal wave is, although the temporal frequency
of the waves are all zero, the spatial wave number of those waves are nonzero and it is the
same as the critical layers it approaches. For example, in the Fig3.14, the red doted lines
are critical layer positions determined by Equ(2.2). They are kx = 1 and kx = 2 critical
layers from outside to the inside. We clearly see two wave approaching each critical layer.
The spatial wave numbers of such wave are also kx = 1, 2 correspondingly, which can be
numerically verified. We can say that, for baroclinic critical layers, which is linearly neural
stable, and associated with a certain wave number, there exists internal waves which has no
temporal frequency and share the same spatial frequency with the critical layers. However,
for the cyclonic cases, we have never observed the appearance of the interaction of the wave
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Figure 3.14: Vertical vorticity for the case σ/f = −3/4 N/f = 1.5; Red line represents the
critical layer positions; Blue line represents the internal wave path; yellow circle represents
the location where zombie vortex is observed;

and the critical layers. The structure of the critical layers are straight lines on cross-stream
and vertical plane, as predicted by the linear normal mode analysis.

At last, the analysis of the wave also provides us some insight to the question we come
up with earlier that why zombie vortex, spawn at different wave number critical layers,
prefer different height. As shown in the Fig3.14, the yellow circles are the locations where
zombie vorticies are observed. They are also the locations were the waves and critical layers
meets. This coincidence are valid for critical layers with different wave numbers. Whether
the zombie vortex is generated by the interaction of the critical layers and the internal waves
or there is no physical interaction between these two remains an open question.
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ZVI stable regime

In this session, we will discuss about the regime where ZVI is not observed. At the first
beginning, it is easy to understand that when one or more of the three physical ingredients
equals to zero, ZVI will not be triggered. When the horizontal shear vanished, our flow
filed becomes stratified rotation flow. In this kind of flow, one of the common observations is
Taylor column vortex predicted by the Taylor-Proundman theorem. Secondly, the excitement
of baroclinic critical layers requires the existence of the horizontal shear. The same argument
works for stratification too. Without density stratification, the flow becomes rotational shear
flow. There is no baroclinic critical layers reported, let along the observation of Zombie
Vortex Instability. As we have discussed in the previous session, lack of background rotation
will lead to no ZVI also.

As you may have noticed, ZVI is only observed when all three of the physical ingredients,
stratification, rotation and shear remains on the same order. The lack of any physical
ingredients or one of the physical ingredients dominant will lead to stability on the parameter
map. Such result can be interpreted from the perspective of critical layers and the long
existence of the zombie vortex.

As we have observed, the continuing process of ZVI greatly replies on the self-replication
of the zombie vortex. Even with 3d random noise as initial condition, small vorticies are
still observed and considered as the seeds to trigger ZVI. Thus it is very important to make
sure the zombie vortex can be generated and maintained for a while in order to excite new
critical layers. If vortex is not generated in the flow field, or the vortex is generated but
cannot last long enough to excite the critical layers, following generations will not be spawn.
So we could say that the zombie vortex has to be quasi-equilibrium state such that it can
last long enough to excite critical layers. Although the equilibrium state of vortex in such
flow has not been found yet. We could still interpret the effect of the physical ingredients in
simplified cases. As we know, if we neglect the vertical structure of the flow, the shape of the
vortex on the horizontal direction can be determined by the ratio of shear and rotation in
Equ(2.5). Thus the ratio between shear and rotation is to maintain the horizontal structure
of the zombie vortex. When the shear becomes dominate, the vortex has to be very strong,
in terms of Ro according to Equ(2.5) to survive such strong shear. Indeed, in our numerical
simulations, for cases where |σ|� N, f , the vortex will be stretched and no barocilinic critical
layers are excited.

Similar argument can be made on the vertical direction, when we consider the stratificaion
and rotation. For the cases with strong stratification N � σ, f , when initializing with
gaussian vortex, the initial Gaussian vortex could be easily split into smaller, shorter vortex
vertically. The critical layers will be generated and the zombie vortex can also be observed.
However, there are strong momentum dynamics on the background that the zombie vortex
will be destroyed due to the strong vertical stratification effect. This numerical results can
be easily interpreted by the asymptotic analysis in the paper [13], we could see that the
magnitude of zombie vortex are in the order of O((f/N)2). If f/N is small, while σ/N
remains order of unity, the vertical momentum equation is simply the hydrostatic balance
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at the leading order, which gives no change to generate the zombie vortex. While f/N gets
big, the background stratification will be totally dominated by the dynamics of O(f 2/N2),
which is far away from the vortex equilibrium on the vertical direction. Therefore the zombie
vortex will be last very long, even if it is generated on the critical layers. The asymptotic
results agrees with our numerical simulations.

Discussion and suggestions for experiments

Based on the parameter map, we would recommend the parameters for the experiments
of observation of ZVI in the laboratory would be in the cyclonic regime. There are three
reasons we suggests this. The first is because cyclonic regime is always linearly stable. Since
our numerical simulations are using shearing sheet coordinates and we assume periodicity in
the system, while in the real experiments with real boundary conditions, people claims the
existence of StratoRotatinal Instability(SRI) in several literatures [26]in the anti-cyclonic
regime −1 ≤ σ/f ≤ −0.5, although the theoretical analysis assumes the small wave number
kx and big stratification N/f . However, all the literatures have claimed SRI does not exist
in cyclonic regime, either in Taylor-Couette or Cartesian system. Thus, if we observe any
instability in anti-cyclonic regime, it shall be ZVI. Secondly, the parameters regime for
cyclonic regime is much bigger than the anti-cyclonic regime. Since the parameter regime for
anti-cyclonic regime is bounded on four directions. This will allow the experimentalists more
freedom and space to build up the facilities and pick up the parameters for the experiments.
Thirdly, we observed that for cyclonic cases, among the unstable cases, the bigger the shear
and stratification is, the faster the ZVI is. Since on general, ZVI will show up in quite late
time after we put in the initial condition, the faster to observe, the better it will be for lab
experiments. The only problem that we may have for big shear and stratification cases are
that it requires strong initial condition, i.e. Ro in our numerical simulations.

Some may argue that beyond SRI, there are other kinds of instabilities exists on our
parameter map, such as the gravity-wave-like instabilities. There are mainly two differences
with our work with them. The first is we don’t have any boundaries on the cross-stream
direction, thus all the instabilities excited by the coupling of gravity-like-waves are not
applicable to our simulations and therefore not observed. This allows us to mainly focus on
the ZVI without the interaction of any other mechanism. The second difference is, ZVI exist
in moderate N/f and σ/f while the gravity-wave-like instabilities require rapid rotation and
strong stratification σ/f small and N/f big.

Summary of chapter

In summary, ZVI can be triggered either by Gaussian vortex or 3d random noise. When
triggered by vortex, there are clearly five stages for ZVI process, i.e. the excitement of
critical layers and vortex sheet, the spawn of the zombie vortex on the vortex sheet due to
linear instability, and self-replication of the zombie vortex. ZVI could be observed for both
anti-cyclonic cases and cyclonic cases. The process for ZVI in both case are similar except
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that the anti-cyclonic(cyclonic) cases will excite anti-cyclonic(cyclonic) zombie vortex. A
parameter map in terms of σ/f and N/f have been provided for the existence of ZVI.
Linear instability has been observed and verified both analytically and numerically for the
area where σ + f ≤ 0. A linear growing mode has under the special case kx = 0 has been
provided to support our argument of linear instability. ZVI can be observed in the area where
all three physical ingredients are on the same order. If one or more of the three ingredients
is missing, or one of the physical ingredient becomes dominant, ZVI will be not triggered.
An interpretation of such observation has been provided in terms of the vortex equilibrium
in such flow. In the are of ZVI, the effects of stratification and shear has been discussed. A
marginal stable state is found to be around |σ/f |∼ 0.5. In the marginal stable state, critical
layers have been observed to be static, whose amplitude remains unchanged for more than
five times longer than the typical time to observe ZVI. The reason of the marginal state is
due to the decreased energy transportation from the background shear to the fluctuations.
The differences between the shape of the critical layers in the anti-cyclonic and cyclonic cases
have been observed and explained.

One of the main reason for constructing the parameter map is to provide quantitative
guidance for experimentalists to set up experiment and observe the Zombie Vortex Instability
in the laboratory. The area we recommend for experiments are the cyclonic regime where
sigma/f and N/f are rather large, since the cyclonic regime has bigger unstable area than
the anti-cyclonic cases and there are no other kind of instabilities, such as SRI exist in the
cyclonic regime.

3.4 Appendix: Taylor-Couette system and plan

Couette system

For stratified rotational shear flow, we have three physical directions, stream-wise, cross-
stream and span-wise. They are θ̂, r̂, ẑ in Taylor-Couette system(TCS) and x̂, ŷ, ẑ in Plane
Couette system(PCS) correspondingly. Notice that our stream-wise direction in PCS is x̂
which is different from the notation in SRI papers and our PRL paper on Zombie Vortex
Instability(ZVI) where ŷ is the stream-wise direction.

In TCS, we have inner and outer cylinders with radius R1, R2 and angular velocity Ω1,Ω2,
and rotation ratio µ = Ω2/Ω1 and the radius ratio η = R1/R2. The background flow is
u = (0, rΩ(r), 0) with angular velocity given by [23]

Ω(r) = Ω1(
A

r2
+B) where A = R2

1(
1− µ
1− η2

) B =
µ− η2

1− η2
(3.15)

In Yavneh[26] and Normand[19], they define a dimensionless number called relative strain
rate S as

S =
r̄Ω′(r̄)

2Ω(r̄)
=

−A
A+Br̄2

, where r̄ = (R1 +R2)/2 (3.16)
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The physical meaning of S is the strain rate on the cross-stream wise direction divided
by the local rotational effects at the mean radius, which is the shear over rotation. Plug in
the formula of A and B, we have

− 1

S
= 1 + (

1 + η

2η
)2(
µ− η2

1− µ
) (3.17)

Also notice that, the cyclonicity of the flow is determined by the sign of (Ω2)′ at r = r̄. We
say the flow is cyclonic(anti-cyclonic) at r = r̄, if the absolute value of the angular velocity
Ω is increasing(decreasing) function of r at r = r̄, i.e. dΩ/dr > 0(< 0) is cyclonic(anti-
cyclonic), with the assumption that Ω1 > 0.

In PCS, we have the background shear velocity as u = (−σy, 0, 0) and the stratification
represented by the Brunt-uäsälä frequency N and the background rotation f = 2Ω. The
dimensionless numbers in PCS are σ/f , N/f and Re for viscous flow.

Notice that the vorticity associated with the background shear is ! = ∇× u = σẑ. The
flow is cyclonic(anti-cyclonic) when σ > 0(< 0).

Since relative strain rate S is the ratio between the local shear and rotation, and people
define the Froude number as Fr = Ω(r̄)/N , we have the following relation,

σ

f
= S,

N

f
=

1

2Fr
(3.18)

In most of the reported cases in TCS, people are interested in Fr = 0.5 which is the
Keplerian shear case. As we can see, it is the same as our PRL paper case that N/f = 1
in the accretion disk. We shall fix our Fr = 0.5, N/f = 1 in our following discussion and
mainly focus on the σ/f .

The famous Rayleigh Criterion suggests that a sufficient and necessary condition for
inviscid, axisymmetric perturbed circular Couette flow to be unstable is d(r2Ω)2/dr < 0
which is equivalent to µ < η2[22][8]. With equ(3), it is easy to see that

µ < η2 ⇔ − 1

S
< 1⇔ σ

f
< −1 (3.19)
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Chapter 4

Viscous Effects on Zombie Vortex
Instability

4.1 Introduction

In recent years, there have been a prosperity on the exploration of the instability in the
protoplanetary disk. Several new instability mechanisms have been discovered and analyzed
in theory, numerically as well as experimentally. More specifically, pure hydrodynamic in-
stabilities such as StratoRotational Instability(SRI) [9] [26] and Radial instability [11] have
been reported. Those instabilities are linear instabilities and believed to be formed by the
resonate of the Kelvin waves trapped by the boundaries. Meanwhile, in the fluid system that
includes horizontal shear, background rotation and vertical stratification, a new kind of finite
amplitude instability, called the Zombie Vortex Instability(ZVI) has also been reported [15].
This finite amplitude instability involves the formation of baroclinic critical layers [5] and
the discontinuity of the vertical vorticity, which will bring in a secondary linear instability
and creates new generation of vortex. ZVI has been found to exist in a variety range of
parameters. While for SRI which only exits in the cases where the vorticity associated with
the background shear has the opposite sign of the background rotation. ZVI exits in a wider
range than those linear instabilities. Also since SRI requires the existence of the boundary
to trap the kelvin waves. It has never been found in systems that has no boundary [19]. ZVI
has no dependency on the boundary and can be excited by a variety of initial conditions.

ZVI has been discovered in the plan couette flow with vertical stratification and back-
ground rotation. However, one important question remaining about the instability is that,
how does the real viscosity effect on the instability? Among the questions about the viscous
effects, the most interesting question we want to ask is the existence of a critical Reynolds
number Recr such that, for strong viscous dissipation ZVI does not happen, and with small
viscosity, ZVI can be observed. This is very important for laboratory experiments in the
observation of ZVI. In summary, the questions we are going to answer with this paper are,
does viscosity has effect on ZVI? If the answer is yes, how does the viscosity affect ZVI
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and is there a dimensionless number such as critical Reynolds number Recr that determines
whether ZVI will be triggered or not? In this paper, we will explore the viscous effect on
the ZVI and try to answer those question mentioned.

4.2 Problem set-up

ZVI is exited in the system involves horizontal shear, background rotation and vertical
density stratification. We define our fluid system in Cartesian x, y, z system, where x is
the streamwise direction and y is the cross-stream direction and z is the vertical direction.
The shear velocity lies on the horizontal plan and has a linear form of U(y) = −σyx̂, while
the system is rotating on the vertical direction z at a constant angular velocity Ω. We
use the Coriolis parameter f = 2Ω to denote the background rotation. The fluid is also
linearly stratified. The BruntVäisälä frequency N2 = − g

ρ0

dρ̄(z)
dz

is defined as a measurement
of stratification, where g is the gravity, ρ0 is the background density at the reference height
and ρ̄(z) is the background stratification. If we separate the our total flow field as two parts,
the background shear velocity and perturbation, i.e. utotal = U + u. We also separate our
density into two parts, the background linear stratification and the density fluctuations, i.e.
ρ(x, y, z, t) = ρ(z) + ρ̃(x, y, z, t). We use the half size of the cross-stream direction y as our
characteristic length, the velocity of the wall σLy/2 as characteristic velocity and the density
at the middle planρ0 as our characteristic density. After neglecting the thermal diffusion, the
dimensionless governing equations for the perturbations can be easily derived as following,

0 =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

∂ux
∂t

= − (u · ∇)ux − U (y)
∂ux
∂x
− ∂P

∂x
+ (f/σ + 1)uy +

1

Re
∇2ux

∂uy
∂t

= − (u · ∇)uy − U (y)
∂uy
∂x
− ∂P

∂y
− uxf/σ +

1

Re
∇2uy

∂uz
∂t

= − (u · ∇)uz − U (y)
∂uz
∂x
− ∂P

∂z
− 2ρ̃g

Lyσ2
+

1

Re
∇2uz

∂ρ̃

∂t
= − (u · ∇) ρ̃− U (y)

∂ρ̃

∂x
+
N2

gσ
uz

Here the dimensionless background shear velocity is U(y) = −1 and we define our Re as
Re = σL2

y/4ν. Notice that we are using the length of the cross-stream direction in our Re.
In order to have a clear understanding of the viscous effect on the instability, we want to
control our parameters in our problem. The parameters existing in our problems are listed
as following,

a. Physical parameters: As we know, there are three physical ingredients existing in our
fluid system, the horizontal shear,which can be represented as σ, the background rotation
on the vertical direction, which can be denoted by the Coriolis parameter f = 2Ω with Ω
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as the angular velocity of the system. We use BruntVäisälä frequency N2 = − g
ρ0

dρ̄(z)
dz

as a
measurement of stratification. These three physical parameters will lead to two dimensionless
numbers i.e. σ/f,N/f . Based on the parameter map in chapter 3, ZVI has been observed
with different parameters. We need to take into account the parameters changes when
looking at the viscous effect on the instability.

b. Initial conditions: There are two points we need to consider when talking about
initial conditions, the first is what type of initial conditions we are talking about. ZVI can
be triggered with both Gaussian vortex and 3D random noise with Kolmogorov scaling.
The second point we need to take into account is, with a specific initial condition, will the
amplitude of the initial condition has any effect on the critical Re.

c. Numerical parameters: Since in our simulations, we used a little bit hyper-viscosity
since our numerical resolution is not as resolved as Kolmogorove length scale. The readers
might question whether this artificial damping within the physical viscous dissipation will
misguide us or not. We will show, with evidence that the use of the hyper-viscosity will not
change the physics at all.

As listed above, we tackle those problems one by one. In the first part of the paper, we will
look for the critical Re with a specific group of parameters, and a specific initial conditions.
In the second part, we change the amplitude of the initial condition and then the type of
the initial condition, and see how the critical Re changes with the initial conditions. In the
third part, after we have a clear understanding of how the critical Re changes with initial
condition, we will look for the critical Re with different physical parameters, i.e. what is
Recritical(σ/f,N/f). At the last, we need prove that the use of hyper-viscosity has no effect
on the physics. Based on our discovery, at the last, we will talk about why we need a local
Re which is defined on the critical layer, to determine the ZVI.

The numerical method we use is similar to chapter 3, where we transform the system into
Shearing Sheet coordinates. The benefits of doing so is to keep the periodicity of the system
and the price we pay for it is the time dependency of derivative operator. In viscous case, we
have viscous terms, which can be easily transformed into a time dependent wave numbers.
The numerical algorithm we designed in the inviscid case also works with this extra viscous
terms. For details of the algorithm, please see [4].

4.3 Critical Re for Keplerian shear case

In this session, we will pick up a specific parameter case N/f and σ/f , with a varying
viscosity. With only viscosity as the varying parameter, we shall have a clear understanding
of how the viscosity affect ZVI. Since one of our main motivation for ZVI, is to understand the
turbulence generating mechanism in the Proto-Planetary Disk (PPD). A group of physical
parameters that simulates the PPD will be a natural choice. Although there is no well-defined
Gaussian vortex in the PPD, we still uses the 3D Gaussian vortex as initial condition since
it provides us the capacity to observe the whole process of ZVI in chapter 3. In order to
control the variables in our experiments, we fix the initial Ro = −1 in our case, and only
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Figure 4.1: Magnitude of critical layers versus time for various Re

changes the viscosity. Based on our set-up, any phenomenon we observed shall be due to
the change of viscosity.

When we add a little viscosity to our experiment Re = 107, ZVI is still observed, i.e. the
appearance of viscous dissipation does not kill the instability immediately. Similar to the
inviscid case, five processes of ZVI could still be clearly observed. The only differences are
the amplitude of the critical layers are damped and the time it takes to become unstable is
delayed.

As we have expected, if we keep increasing the viscosity, the viscous dissipation is strong
enough that the instability is killed. That critical Re we found, for the group of simulations
is between 2.5 × 106 and 5 × 106. For cases Re = 2.5 × 106 or slightly less, we did observe
the formation of critical layers and the critical layers roll up to vortex, However, the viscous
dissipation is so strong that the new zombie vortex did not have a chance to excite their own
critic layers. If we keep increasing the viscosity, we do not even have a chance to observe
the formation of the vortex sheet. What we observe is that the critical layers are excited at
very early stage and then quickly died away.

The question now is, how does the viscosity kill the instability? Our answer is the viscosity
kills the instability by killing the critical layers. As we have discovered, ZVI requires the
long lasting of the critical layers (typically excited by a vortex), such that the zombie vortex
can be generated on the critical layer locations due to local linear instability. If the critical
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layers are quickly dissipated then there is no chance that the zombie vortex will be generated
by linear instability. Second, we know that in order to trigger ZVI, there is a threshold that
the Ro of the initial condition must satisfy [16]. The vertical vorticity on the critical layers
is provided by the discontinuity of the critical layer structure on the horizontal direction.
Thus, when there is a strong viscous damping on the critical layers, the vertical vorticity
will also be damped, such that, even if the zombie vorticity is generated, their amplitude is
not big enough to trigger ZVI.

From Fig.4.1, we are plotting the amplitude of kx = 1 critical layers at the certain height
against time. We could see clearly that, for those cases where ZVI is triggered, the amplitude
of ZVI also plateaued out, saying that it is self-sustained. While for those stable cases where
the viscosity is big, critical layers are all damped out. The stronger the viscosity is, the
faster it damped the critical layers. Considering zombie vortex is spawn on the critical layer
due to linear instability, we could conclude that the killing of ZVI is strongly correlated with
the killing of critical layers. Second, we know that for the viscous dissipation term in the
equation is ν∇2u. In the Fourier space, the Laplacian operator can be represented with the
wave number square, i.e. the bigger the wave number is, the stronger the viscous damping
rate will be on the phenomena associated with that wave number. Since the wave number
is inverse proportional to the length scale. Thus the smaller the length scale of the physical
phenomena is, the stronger the viscous dissipation will be on that length scale. In the ZVI
process, the phenomena with the smallest length scale is the critical layer. The critical
layer by itself, is a mathematical singularity. Singularity shall have infinite amplitude and
infinitesimal thickness. In our flow field, the critical layer has finite amplitude and finite
thickness is due the smoothing of both viscous effect and the nonlinear effect. When there is
no viscous effect in the inviscid case, it is the nonlinearility that smooths the critical layers.
Since the critical layers are the smallest length scale phenomena in our case, the energy
dissipation on the critical layer shall be the highest. Indeed, in Fig.4.2, we plot the spectral
viscous dissipation versus the wave number. We could clearly see there is a peak on the
critical layer wave number kcl. kcl = 2π/δcl and δcl is the thickness of the critical layers
which can be measured numerically or predicted analytically.

In summary, in this session, we proved that, for the Keplerian shear case where σ/f =
−3/4, N/f = 1, when initialized with Ro = −1 3d Gaussian vortex, the critical Recritical is
between 2.5× 106 and 5× 106. With solid argument and analysis of the energy dissipation
spectral, we showed that it is through the viscous dissipation on the critical layers that the
viscosity kills the instability. This conclusion can also in return, explains that why the critical
Re for ZVI is so high. Since the critical layer are smoothed singularities, they are typically
very thin. Thus a fair amount of viscosity can have a very big viscous dissipation because
the viscous dissipation rate is proportional to the negative two power of the thickness.
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Figure 4.2: Viscous dissipation(negative) maximize at the critical layer length scale

4.4 Effect of initial conditions

In the previous session, we found the critical Re for a specific initial condition. In this
session, we would like to change the initial condition and see whether the critical Recr will
change or not. Again, we would like to change one variable at a time while maintaining
the other unchanged. Here the variable we change is the initial condition. For the physical
parameters, we still use σ/f = −3/4 and N/f = 1. The initial conditions include two parts,
the amplitude of the initial condition, and the type of initial conditions. We will talk about
these two parts one by one.

First, let us focus on the amplitude of the initial condition. For Gaussian vortex, it
shall be the Rossby number Ro = ωz

f
, where ωz is the vorticity of the vortex at the center.

Previously, we use Ro = −1. Here we would like to modify the Ro and see how the critical
Re would change.

As we could see from Fig.4.3, it requires a certain value of Ro will zombiefy. However,
when Ro is big enough that ZVI is triggered. Increasing Ro did not help on lower the
critical Re. The explanation for such observation are as following. First,as we have show in
chapter 3, once ZVI is triggered, it has no memory of its initial condition and the ZVI will
reach the statistically same zombie turbulence state. Second, in our case with viscosity, the
key whether ZVI will be triggered or not depends on how strong the viscous dissipation on
the critical layers or not. The amplitude of the critical layers are determined by the fluid
systems, such as the shear, the wave number. But it is independent of the initial conditions.
The main function of the initial condition there is to excite and maintain the critical layers.
Thus the amplitude of the initial condition shall be little influence on the critical Re for ZVI.



CHAPTER 4. VISCOUS EFFECTS ON ZOMBIE VORTEX INSTABILITY 63

Figure 4.3: Initial amplitude of the vortex and the Re; × represent stable cases and ◦
represents unstable cases

Second, we would like to check whether different types of initial conditions might change
the critical Re or not. So far there are three kinds of initial conditions we have used. They
are a) 3D Gaussian vortex b) 3D random noise and c) Zombie turbulence. The advantages
and disadvantages of a) and b) as initial conditions have been discussed in details in chapter
3 and [16]. Zombie turbulence is the late time turbulence state of the corresponding inviscid
case. In this session, we are focusing on the Keplerian shear case. We use the zombie
turbulence as initial condition for viscous cases and increase the viscosity until the state
where the self-sustained turbulent state stops.

Before we run our simulations with different type of initial conditions, we would like
to discuss about how to measure the amplitude of initial condition. Here we define the
measurement of the strength of the initial condition as the corresponding Rossby number
R̃o, which has different form for different type of initial conditions. For 3D Gausssian vortex,
we use the Ro of the Gaussian vortex at its origin (x = 0, y = 0, z = 0) as its corresponding
Rossby number, i.e. R̃o =

ωz,origin

f
where ωz,origin is the vertical vorticity at the origin. For

3D random noise, we could plot the vertical vorticity ωz in terms of the wave number k as use
the Rossby number at the smallest scale (resolution scale) as the indication of the strength,

i.e. R̃o = ωz(kresolution)
f

where ωz(kresolution) is the root-mean-square of the vertical vorticity at
the resolution wave number kresolution. The reason for such definition is because the vertical
vorticity at the highest wave number determines whether ZVI will be triggered or not for
iniviscid case when initialized with random noise [16]; At last, for zombie turbulence, the
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Initial condition |R̃o| Re Zombiefy
Vortex 0.3 4× 107 YES

0.3 1× 107 YES
0.3 5× 106 YES
0.3 4.75× 106 YES
0.3 2.5× 106 NO
1.5 4.75× 106 YES
1.5 2.5× 106 NO

Turbulence 2.836 5× 106 YES
2.836 2.5× 106 YES
2.836 1× 106 NO
2.836 5× 105 NO
2.836 2.5× 105 NO

Noise 0.05 1× 107 NO
0.05 5× 106 NO
0.05 2.5× 106 NO
0.05 1× 106 NO
0.2 1× 107 YES
0.2 1× 106 NO

Table 4.1: For Keplerian shear case σ/f = −0.75, N/f = 2, summary of part of the numerical
simulations with different types of initial conditions in terms of corresponding Rossby number
R̃o and Re

corresponding Rossby number is defined as the ratio between the L1 norm of the vertical
vorticity and the background rotation, R̃o = |ωz |∞

f
. Although the zombie turbulence has

the similar energy spectrum as 3D random noise, we do not use the same definition as the
random noise because the zombie turbulence is generated from our inviscid simulations with
hyperviscosity. So the high wave number is damped by the hyperviscosity.

Table 4.1 shows some of the simulations with different initial conditions. We could see
clearly from the table that for all three types of initial conditions, the critical Reynolds
number Recritical fall between 1× 106 < Recritical < 5× 106. In another word, different types
of initial conditions do not change the critical Re. When initialized with noise or zombie
turbulence, if it is still unstable, the physical process and observations are exactly the same
as the inviscid cases. The only differences are the amplitude are smaller than inviscid case.

In summary, in this session, we have proved that the critical Re is independent of the
types of initial conditions and the amplitude of initial conditions. This conclusion agrees
with our observation in the inviscid case that once triggered, ZVI e has no memory of the
initial conditions. One intuitive way to explain this observation is that the critical Re is
determined by the nonlinear effects of system that brings in the stability and the viscous
effect that dissipates the energy. As we have shown in the first paper, once ZVI is triggered,
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Figure 4.4: Four groups of parameters on the parameter map that we explored on the critical
Re

it has no memory of the initial conditions and it reaches statistically the same turbulence
state. Thus we could say that the nonlinear effect that creates and promotes the instability
is independent of the initial condition. On the other hand, as we have discussed in the
previous session, the dissipation is mainly focused on the critical layers. Critical layers can
be excited by different initial conditions and the thickness of critical layers are determined
by the parameters of the system, instead of the strength of the initial conditions. From
this point of view, we could say that the viscous dissipation is also independent of the initial
conditions. Thus the critical Re is determined by the balance of nonlinear and viscous effect,
shall be independent of the initial condition naturally.

4.5 Viscous effect for Non-Keplerian case

After we have a clear understanding of how the viscous effect act on the instability and the
Recr is independent of the initial condition, let us chance the physical parameters and see
whether modifying the physical parameters will help in decreasing the Recr or not. Due to
limited resources and time, we pick up three other case: another anti-cyclonic case where
σ/f = −3/4, N/f = 2 and two cyclonic cases σ/f = 2, N/f = 4 and σ/f = 3/4, N/f = 2.

The reason why we pick up those cases are as following. Since the motivation for this
research starts with the accretion disk. Thus a thorough exploration on the Keplerian shear
case is necessary and natural. Beyond the Keplarian case, we have worked out the inviscid
parameter map in part 1 of this paper indicating the stable and unstable regime of ZVI. For
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σ/f N/f Initial condition |R̃o| Re Zombiefy
-0.75 2 Vortex 0.3 5× 106 YES

0.3 1× 106 NO
Noise 0.2 5× 106 YES

0.2 1× 106 NO
0.75 2 Vortex 2 5× 107 YES

2 7.5× 106 YES
2 5× 106 NO
2 1× 106 NO

Turbulence 2.545 5× 106 YES
1× 106 NO

2 4 Vortex 4 1× 107 YES
4 5× 106 YES
4 1× 106 NO

Table 4.2: Numerical simulations for non-Keplerian shear cases with different initial condi-
tions

anti-cyclonic cases, the unstable regime is bounded in four directions. We also know that
changing the shear in the anti-cyclonic case will make ZVI more difficult due to the fact
that big shear in anti-cyclonic cases will lead to linear instability and small shear will greatly
decrease the energy transported from the backgroud shear to the fluctuations that slows down
the whole process. Thus we have to keep the shear for anti-cyclonic case the unchanged.
For the stratification over rotation, we know that within certain range, the stronger the
stratification is, the faster we will observe ZVI. Thus this parameter σ/f = −0.75, N/f = 2
will come in handy. As for the cyclonic cases, we have shown that the bigger the shear and
the stratification are, the better it will promote ZVI. Thus we pick up two cases, one case
that shear and stratification are as close to the anti-cyclonic case σ/f = 0.75, N/f = 2 and
the other case that shear and stratification as big as possible, i.e. σ/f = 2, N/f = 4.

As we have shown in the previous session, that the critical Re is independent of the type
and amplitude of initial conditions. Thus with limited resources, there is no need for us to
try all kinds of initial conditions and amplitudes. We only need to check that if the critical
Re for those three cases will be on one order of smaller than the critical Re for Keplerian
shear case which is on the order of 106.

Similar to the Keplerian cases, when initialized with 3d Gaussian vortex, a small amount
of viscosity will damp the amplitude of the critical layers as well as slowing down the ZVI
process. When viscosity increases to a fair amount, the instability is not observed due to
the high viscous dissipation of the critical layers. From our simulations, we conclude from
the table that, Re = 1× 106 is a global lower bound for the cases we have explored.

The result that the critical Recr does not change for various initial conditions and the
different parameters does not surprise us. As we have discovered on the Keplerian case, it
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σ/f N/f Recritical
-0.75 1 (1× 106, 5× 106]
-0.75 2 (1× 106, 5× 106]
0.75 2 (5× 106, 7.5× 106]
2 4 (1× 106, 5× 106]

Table 4.3: Summary of critical Re for four cases

is due to the high viscous dissipation of the critical layers that viscosity is able to kill the
instability. The viscous dissipation of the critical layers depends on the thickness of the
critical layer and the wave number associated with it. The thickness of critical layers δ is
proportional to (kxRe)

−1/3, as demonstrated in [17] and [5]. Thus the change of stratification
and background rotation N and f will have little effect on the dissipation rate. However,
the thickness of critical layer does depend on the background shear σ, the smaller the shear
is, the weaker the viscous dissipation will be. From our previous study, the region for ZVI
to exist for various shear is not very large(see chapter 3). So there range of σ we could
choose is quite limited. Second, considering the thickness is proportional to the −1/3 power
of σ, a not dramatically different σ will not change that much of the thickness. As we have
discussed, ZVI requires the long lasting existence of the critical layer and the whole stability
also takes a fairly amount of time to become unstable. Together with the thickness of the
critical layer, it is not surprising that we did not get much smaller Re for various physical
parameters.

As we could show in this session, the critical Re for different parameters does not change
either. Thus there is really no benefits we could get on the viscous part with different
parameters. We will stick with our suggestions for experiments on the observation of ZVI on
the cyclonic cases where σ/f and N/f are both big. As we have discussed in the last paper,
there are several reasons why such area is the best for experiments. First the anti-cyclonic
unstable regime is bounded while the anti-cyclonic regime is not. This will allow us a lots of
freedom when designing the experiments. Second, in the anti-cyclonic regime, there exists
other kinds of instabilities, such as SRI and linear instability. While for cyclonic regime, no
any other kinds of instabilities in stratified rotational shear flow have been reported in such
area. Third, we observe that in the cyclonic regime, the bigger the stratification and shear
are, the faster the ZVI will be. Thus the cyclonic regime where σ/f and N/f are big is
recommended for experiments.

4.6 Resolution of critical layers and the effect of

hyper-viscosity

Since the first publication of ZVI, we have received feedback and questions, especially on the
critical layers as well as the hyper-viscosity part. There are two main concerns on our work of
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ZVI, the first concern is, since critical layers are singularities, how and could your numerical
simulation handle the singularities? In another words, do you have enough resolutions for
the critical layer. The second concern is, why do you use both hyper-viscosity and physical
viscosity? Is it possible that ZVI is purely due to the effect of hyper-viscosity, thus it is an
artificial phenomena, instead of real physical mechanism? We will address these two concerns
one by one, with statements and evidence. Hopefully after you finish reading the following
session, you will be convinced that we can resolve the critical layers and hyper-viscosity has
no effect on the physics of ZVI.

First, let us talk about the critical layers. Indeed, critical layers are mathematically sin-
gularities. As we know, singularities, by definition, have infinite amplitude and infinitesimal
thickness. The mathematical description of the singularity is the Dirac function, typically
denoted as δ(x0) where x0 is the location of the singularity. However, living in the Newto-
nian mechanism world, the infinitely large and infinitesimally thin layer or point does not
exist in our system. Thus there must exist some mechanism that smooth the singularity,
by smoothing I mean, the amplitude is finite, and the singularity has a finite thickness. In
the previous study on the critical layers, people have been able to show that it is either the
nonlinearility or the viscosity that smoothed the critical layers. In another words, critical
layers are singularities that are either smoothed by nonlinear effect, or viscous effect, or
both, depending on the terms in the governing equations. When linear normal mode anal-
ysis is implemented, the nonlinear terms are ignored, thus we only have viscous effect. For
inviscid initial value simulation where there are nonlinear terms, but no viscous terms, it is
the nonlinear effect that smooths the critical layers. For our initial value simulation in this
paper, we have both nonlinear effect and viscous effect, thus our critical layers are dual layer
structure. In the following, we will discuss numerically for each scenario, which the critical
layers shall look like and how we are able to resolve them. Notice that when we talk about
critical layers in the following part, we mean the baroclinic critical layers we discovered in
the stratified rotational flow with background shear. For barotropic critical layers excited
purely by the background shear, please see [17].

Linear eigen-value calculation

As we have described previously, critical layers are singularities smoothed by nonlinear effect
and viscous effect. We are able to identify them by using numerical tools, i.e. linear eigen-
value calculation or direct numerical simulations(DNS). In this session, we will focus on the
linear eigen-value calculation. Without the nonlinear effect, the viscosity will be the factor
to smooth the critical layers.

The equations for linear normal mode analysis are very straightforward. With the pe-
riodicity assumption on the streamwise direction x̂ and vertical direction ŷ, as well as
the linear assumption that nonlinear effects are one order of small compared with the
background flow, the mathematical formula for the fluid quantity can be expressed as
A(t, x, y, z) = Ã(y)eikx(x−ct)+ikzz. We calculate the eigen-value c and its corresponding eigen-
vectors and check the vertical velocity ũz.
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Figure 4.5: Inviscid eigen-vector showing the critical layer structure on vertical velocity;
c = −0.2216, kxLx = 64π, kzLx = 2π, σ/f = −1.5;N/f = 1.0; There are 256 collocation
points on cross-stream ŷ direction.

Linearized inviscid case

In the purely inviscid case, a linear normal mode analysis will bring us all the linear eigen-
modes with the nonlinear effect and the viscous effect eliminated. Thus, our critical layers
will not be smoothed out by any physical effect, thus it shall be infinitesimally thin. Indeed,
out linear eigen-value and eigen-vectors do show the existence of the critical layers at the
location and the critical layers always shows three numerical grid points, no matter what
numerical resolution we use and what parameters are for the system. In Fig.4.5, we could
clearly see that the appearance of critical layers and their width are infinitesimally small,
i.e. there are only three grid points inside the critical layers. Also since it is inviscid case,
the eigenvalue c is a purely real number, which tells us the critical layers for inviscid case
are neutrally stable.

Linearized viscous case

Secondly, let us add the viscosity to our linear system. Based on our previous discussion,
we know that the bigger the bigger the viscosity, the thicker the critical layers will be. The
concerns come from our critical Re for ZVI is on the order of 106 thus our critical layer
might be too thin and we can not resolve it. In Fig.4.6, we could see clearly the critical
layer structures, there are around 10 to 15 grind points inside the critical layers. Secondly,
since there are viscosity in our flow field, the eigen-values are all decaying modes, i.e. the
imaginary part of eigenvalue c are all negative. We pick up a specific eigenvalue to show the
critical layer structure, since the critical layer locations are determined also by the eigenvalue
c, so we may not be able to observe all the critical layers inside our domain.
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(a) Eigen-vector ũz, real part
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Figure 4.6: Viscous eigen-vector showing the critical layer structure on vertical velocity;
c = 5.90 + 0.026i, Re = 5 × 106, kxLx = 2π, kzLx = 2π, σ/f = −1.5;N/f = 1.0; There are
1024 collocation points on cross-stream ŷ direction.

Linearized viscous case with hyperviscosity

Thirdly, we could add the hyperviscosity term in our linear eigen-value calculation, since we
know the analytic formula of such term in known to us. We would like to use exactly the
same parameters as the viscous linear eigen-value calculation, with the hyperviscosity term.
The parameters for hyperviscosity is exactly the same as those we use in our initial value
calculation. There are mainly two questions we would like to investigate in such numeri-
cal experiment: first, could we found exactly the same eigenvalue and eigenvectors in the
calculation with hyperviscosity; Second, by adding the hyperviscosity, does the eigenvector
changes, i.e. does the thickness of the critical layer change. If the hyperviscosity will physi-
cally change the dynamics of the system, then we would expect the answers to the last two
questions are both no. If there is no effect from the hyperviscosity term, we would expect to
observe the same eigenvalues shows up and the thickness of critical layers does not change
at all

Fig. 4.7 shows you the result of the calculation. We use the same parameters as in last
session, the viscous linear eigenvalue calculation and the hyperviscosity exactly the same as
it is in the initial value calculation. The eigen-values and eigenvectors are calculated. As
shown in the figure, we are able to find the exactly the same eigenvalues with those has no
hyperviscosity terms and it is easy to verify that the thickness of the critical layers do not
change and the change of the magnitude is negelectable.



CHAPTER 4. VISCOUS EFFECTS ON ZOMBIE VORTEX INSTABILITY 71

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6
y

-15

-10

-5

0

5

10

15

20

25

r
e
a
l
ũ
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1.8 2 2.2 2.4 2.6

y

-20

-15

-10

-5

0

5

10

15

im
a
g
ũ
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Figure 4.7: Viscous eigen-vector with hyperviscosity showing the critical layer structure on
vertical velocity; c = 5.90 + 0.026i, Re = 5× 106, kxLx = 2π, kzLx = 2π, σ/f = −1.5;N/f =
1.0; There are 1024 collocation points on cross-stream ŷ direction.

the effect of hyper-viscosity in initial value simulation

For our initial value simulation, viscous or inviscid, there are nonlinear terms. The plots of
critical layers can be found in Fig.4.2(b) for viscous case and chapter 3 for inviscid case. With
256 grid points on the cross-stream direction, there are around 10 points at least inside the
critical layers, which tells us that are very well resolved. Now let us talk about hyperviscosity
in the initial value simulations. The key question for hyperviscosity in our simulation is to
make sure that hyperviscosity does no have physical effects on our simulations. A numerical
simulation without any use of hyperviscosity shall be perfect for our case. However, The
numerical resolution for Kolmogorov scale is too big to be computationally feasible in our
case. With limited resources, hyperviscosity or some kind of modeling is essential in the
simulations. We use hyperviscosity to damp the energy in the high wave numbers. The
hyperviscosity has the formula kv∇pu and the hyperdiffusivity has the formula kd∇pρ̃. kv, kd
and the power p are parameters that we could tune for our calculation. Typically we use
p = 8 or 16. We believe the hyperviscosity has no physical effect on our simulation and our
argument and evidence are as following.

Hyperviscosity are damping on small scale (large wave number) phenomena

With the formula of our hyperviscosity kv∇pu, define wave number k =
√
k2
x + k2

y + k2
z , it is

easy to notice that the hyperdissipation term is proportional to kp, i.e. the bigger the wave
number is, the bigger the hyper-diffusion will be. We also know that the wave number k is
proportional to 1/L where L is the length scale of the physical phenomena. Thus we could
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Figure 4.8: Kinetic energy spectrum for case Re = 1× 106 , σ/f = −1.5, N/f = 1 at 721/f
time

conclude that the smaller the length scale associated with the physical phenomena is in our
system, the bigger the hyperdifussion will be.

Then the next question we shall answer is, what the wave number khyper that hypervis-
cosity has effect on? This question can be easily answered by plotting the kinetic energy
spectrum against the wave number k. Fig. 4.8 shows such a plot, for the case where
σ/f − −1.5, N/f = 1 and Re = 106. As we could see clearly, the kinetic energy spectrum
has roughly Kolmogorov scale than wave number is smaller than the wave number hyperdif-
fusivity has effect on. In this case, it is k < khpyer. For wave number that are higher, the
kinetic energy is quickly damped.

Thus we need to know that, in our numerical simulations, what are the small length scale
phenomenon and whether that small scale phenomenon fall into the regime of hyperviscosity
or not. As we have discussed clearly in the previous session, before Zombie turbulence formed,
the smallest scale physical phenomena are the critical layer and the viscous dissipation peaks
on the critical layer length scale. Then it is easy for us to check whether the length scale
of critical layers fall into the hyperviscosity effective regime or not. If the length scale of
critical layers are much bigger than the length scale that the hyperviscosity affects, it is a
strong evidence that the hyperviscosity will not change the physics on the length scale of
critical layers. This could also be easily verified by the kinetic energy spectrum.
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We have defined kcl as 2π/δcl where δcl is the thickness of the critical layers. In Fig.4.8,
we could see clearly that the wave number associated with critical layers kcl = 22 are much
smaller than the wave number that hyperviscosity is acting on khyper = 70. Since critical
layers are the physical phenomena of the smallest length scales and it is the viscous dissipation
of critical layers that kills ZVI, the length scale that hyperviscosity is acting on is less than
one third of the thickness of critical layers. Thus we could conclude that, the hyperviscosity
is not heavily damping the critical layers.

Hyperviscosity has little effect on the critical layers

Some of the readers may still question that, even if we have proved hyperviscosity is not
heavily damping the critical layers, it is still damping the critical layers, since the hypervis-
cosity is damping on all the wave numbers and particularly on the phenomenon whose wave
number is bigger than khyper. In this part we will show evidence that the damping on critical
layer phenomena is negelatable.

The second experiment we would like to do is to compare the results between two nu-
merical simulations, one with hypervicosity (Case 1) and the other one without any sort
of artificial dissipation (Case 2). When designing the numerical experiments, we guarantee
that the only difference between those two cases is the use of hyperviscosity, with all other
conditions the same. Although for Case 2, there is no artificial dissipation, the simulation
still produces valid results since at the first beginning of the simulations, the smallest length
scale in our simulation is the critical layers and we have shown in previous session that our
resolution can well resolve the critical layers. The numerical blow-up only happens later on,
when the kinetic energy cascade into the small scales where numerical grid can not resolve.
Thus at the beginning of the simulation in Case 2, we could still observe the form of critical
layers and thus we could measure the thickness as well as the amplitude of the critical layers
and compare them with Case 1. This comparison shall give us a clear observation how much
hyperviscosity actually damps the critical layers.

Fig.4.9 shows the comparison. First, we notice that the critical layers show up on the
vertical velocity uz for both cases at the expected location. The amplitude for Case 2,
which has the artificial damping, is slightly smaller than the Case 1 which has purely viscous
dissipation. If we use the amplitude of the critical layer, uz(y = −1) as a measurement of
the strength of critical layers. The numerical values for two cases are uz,clean(y = −1) =
−5.01×10−3 and uz,hyper(y = −1) = −4.84×10−3. The relative differences between these two
cases is roughly 3%, which is fairly small. Second, we could see clearly that the thickness of
critical layers are numerically the same. Since the thickness are determined mathematically
by the balancing of the leading physical terms in the governing equations. For the case in
Fig.4.9, it is the nonlinear effect dominant case. The hyperviscosity shall have little effects
on the thickness of the critical layers. Due to the nonlinear property of the critical layers,
the thickness of nonlinear critical layers is not trivial. It is difficult for us to compare the
thickness for this case with the analytical solution.
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Figure 4.9: Vertical velocity uz shows the critical layer structure for two cases; σ/f = −1.5,
N/f = 1, Re = 1× 107 at time 36 1/f y is scaled such that m = 1 critical layer located at
y = ±1 and uz is scaled based on σLy/2.

The third evidence that hyperviscosity has no effects on the critical layers is the amount
energy dissipated by hypervisocosity is much less than the amount of energy dissipated by real
viscosity. Based on our numerical simulations, the energy dissipation due to hyperviscosity is
less than one percent of the energy due to the real viscous dissipation. This is not surprising
to us as we have discussed, most of the physical phenomenon happens in the length scales
that are much larger than the hyperviscosity scale. We also have shown in the previous
session, that the hyperviscosity effect on the large scale phenomenon is very small. Thus the
amount of energy dissipated due to hyperviscosity is two orders of smaller than the energy
dissipated by the real viscosity. This shall be another strong evidence that hyperviscosity is
small enough that it does not affect the physics in our system.

Hyperviscosity has no effect on the system

The fourth numerical evidence we have done is to figure out without hyperviscosity, what the
flow field would behave like. In this numerical experiment, we initialize the flow field with
zombie turbulence, generated by the simulations where the parameters are observed to be
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(a) Energy spectrum of zombie turbulence, with hy-
perviscosity
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(b) Energy spectrum after hyperviscosity is turned off,

Figure 4.10: For parameters N/f = 1, σ/f = −1.5, Re = 5 × 106, it is unstable case; After
we observe the zombie turbulence with hyperviscosity; We turn off the hyperviscosity and
the simulation blows up; As it shows clearly, there is an energy cascade to the smallest scale
which is not resolved without hyperviscosity that leads to the numerical blow-up

unstable. Zombie turbulence is last time state of the flow field when ZVI happens. Detailed
discussions can be found in [16]. In this numerical experiment, we set up the numerical
experiments with initial vortex and with hyperviscosity, when the flow filed reaches the
zombie turbulent state, we turn off the hyperviscosity while continuing the simulation. We
will expect the our code to be numerically unstable. Thus the numerical results shall blow
up and we could plot the energy spectrum as a function of wave number. If our resolution
is not big enough to resolve the thickness of the critical layers, then the numerical blow up
shall occur at the length scale of the thickness of the critical layer. On the other hand, if
the critical layers are well-resolved, the numerical blow up shall be due to the cascade of the
energy to the smallest scales and we shall expect a curl-up on the smallest length scale on
the energy spectrum. Fig. 4.10 shows the energy spectrum of this numerical experiment.
As we have expected, the energy spectrum curl up at the largest wave number and nothing
unusual happens at the critical layer length scale.

The fifth evidence we would like to show that hyperviscosity has no effect on the physics
is that, we could double the resolution in our numerical simulations and check if there is any
change in our simulation results. Since the hyperviscosity is the only nonphysical term in the
simulation, if the results with different resolutions show similar pattern, we could conclude
that the hyperviscosity does not change the physics in the system. Since critical layer plays
a very important role in ZVI and is deeply connected with the hyperviscosity, we would
like to compare the critical layer structure of two runs with same parameters and different
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Figure 4.11: N/f = 1, σ/f = −1.5, Re = 4.75 × 106 at 160 1/f time; Vertical velocity uz
shows the critical layer structure with two different resolutions 2563 and 5123; y is rescaled
such that m = 1 critical layer located at y = ±1; Notice that only half of the points of 5123

case are plotted in the figure

resolutions. If there is any effect caused by the hyperviscosity and the lack of resolution of
the critical layers, we shall notice the differences on the results. Fig.4.11 shows the result.

Last but not the least, we would like to point out that the effects of hyperviscosity
is damping the critical layers. Suppose we have enough resolutions that can resolve the
small scales without any hyperviscosity, the total dissipation on the critical layers without
any hyperviscosity shall be less than the cases where there exists hyperviscosity. Thus for
cases with hyperviscosity, we observe it zombies. Then for the real cases where there is no
hyperviscosity, it shall be more likely to zombiefy since the dissipation on critical layers are
less.

In summary, in this session, we carefully examine from several aspects of the potential
effect of hyperviscosity. We showed that first hyperviscosity heavily damps the physics
with length scale that are much smaller than the critical layer length scale. The total
amount of energy dissipated by the hyperviscosity is two order of smaller than the real
viscous dissipation. The critical layers are well resolved by our numerical grid and without
hyperviscosity, the code will blow up due to the energy cascade. Thus we conclude that
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hyperviscosity causes no physical effect on our simulations.

4.7 Conclusions and future work

In this paper, we explored the viscous effects and how the viscous effect acting on ZVI. We
first start with the Keplerian shear case where σ/f = −1.5 and N/f = 2. With a small
amount of viscosity, the critical layers start to be damped due to the thin layer structure.
Under one specific initial condition, we increase the viscosity while maintains other effects
unchanged, a critical Recl is found to be around 2.5 × 106. We also find that it is due to
the high viscous dissipation of the critical layers that the instability is killed. Secondly, we
investigated whether the critical Re will vary with initial condition or not. There are two
aspects we discussed, the amplitude of the initial condition and the different types of initial
conditions. We find that as long as the amplitude of the initial conditions are big enough
to excite the instability, increasing the amplitude of the initial condition does not help on
decreasing the critical Re. Different type of initial conditions such as 3d random noise or
Zombie turbulence have been explored and we found the critical Re remains at the order of
106. Next, we verified the critical Re for cases with different physical parameters. We do
not find any specific group of physical parameters that may significantly decrease the critical
Re. The reason is because the thickness of critical layers barely varies with the change of
parameters, when we have to maintain the order of shear, stratification and rotation to excite
ZVI. At last, we discussed the effect of the hyperviscosity and the thickness of critical layers.
We have shown that in both linear eigenvalue calculation and the initial value simulations,
critical layers can be easily resolved. The effect of hyperviscosity is also discussed. The
evidence why the hyperviscosity has not effect on the critical layers have been explained.

As we have discussed, the thickness of the critical layers determines the viscous dissipation
rate on the thin layer structure, thus determined the critical Re where ZVI will happen or
not. However, the definition we have on Re is a global one which depends on the length scale
on the cross-stream direction ŷ, instead of the thickness of the critical layers. Meanwhile, it
can be easily proved that the thickness of critical layers will not change with the cross-stream
direction length Ly. This leads to a natural idea what we need a Re depending on the critical
layers to better describe the viscous effects on ZVI. To be more precisely, we need a local Re
which depends on the amplitude and width of baroclinic critical layers, instead of the global
Re people typically use, to determine whether the viscous effects will kill ZVI or not. There
are several different kinds of ways to determine such local Re. One good candidates are from
the classical work on the baroclinic critical layers, where a critical layer Re depends on the
viscous and nonlinear effects of the critical layers. To obtain the exact solution on the form
of such local Re on baroclinic critical layers requires careful asymptotic analysis on both the
nonlinear effect as well as the viscous effect, which falls beyond the scope of this paper.
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Chapter 5

Numerical Algorithm for Stratified
Rotational Shear Flow

In this chapter, I will discuss about the numerical algorithm I use for the initial value
simulations for stratified rotational shear flow, for both inviscid and viscous cases. First I will
discuss about the numerical difficulties for this problem. Second, I will briefly go through the
numerical algorithm for inviscid and viscous case with triply periodic boundary conditions in
shearing sheet coordinates. Third, this chapter will mainly focus on the case where non-triply
periodic boundary conditions are implemented using Chebyshev polynomials. We invented a
new algorithm for such case. This algorithm is invented in collaboration with Nelson Chen1.

5.1 Governing equations and numerical difficulties

In this section, a brief introduction to the equations that this code attempts to solve, as
well as an assumption about the flow field that would be generated, will be presented.
Specifically, this would be the Boussinesq equations in shear flow. Then an overview of work
previously done that serves as a foundation to this project will be presented. Finally, our
goals and problems this project wishes to address based on the limitations of prior work will
be explored.

Boussinesq Equations with background shear, stratification,
rotation and viscosity

As we have discussed in details in Chapter 2, the equations of interest in this project are the
Boussinesq equations with a constant rotation, stratification, and viscosity. This approxi-
mation filters out sound-waves is used because we only care larger scale physics, while still
allowing for small density variations. This is due to the vertical stratification in the flow.
These approximate equations are usually very accurate and simplifies the mathematics and

1Nelson Chen is Data Science Fellow at NYC Data Science Academy; Email: nchen9191@gmail.com
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physics, making our computations more efficient. A strong application of these equations is
the study of ZVI. The Boussinesq equations are as follows

∂Ux
∂t

= −(U · ∇)Ux + ν∇2Ux −
1

ρ0

∂P

∂x
+ Uyf (5.1)

∂Uy
∂t

= −(U · ∇)Uy + ν∇2Uy −
1

ρ0

∂P

∂y
− Uxf (5.2)

∂Uz
∂t

= −(U · ∇)Uz + ν∇2Uz −
1

ρ0

∂P

∂z
− ρ̃

ρ0

g (5.3)

∂ρ̃

∂t
= −(U · ∇)ρ̃+ ρ0

N2

g
Uz (5.4)

0 =
∂Ux
∂x

+
∂Uy
∂y

+
∂Uz
∂z

(5.5)

Where U is the total velocity field that dependent on both time and spatial coordinates,
and ρ̃ is the density perturbation. ∇P is the pressure gradient. These are the variables that
we are trying to solve. f is the Coriolis parameter that is equal to two times the constant
background rotation angular velocity Ω0. In the Boussinesq approximation, the density is
allowed to have a small perturbation such that ρ(x, y, z, t) = ρ̄(z) + ρ̃(x, y, z, t), where ρ̄
is the background density and ρ̃ is the small perturbation. Additionally, ρ0 is a reference
density at a reference height that we choose. For simplicity we choose the reference density,
ρ0 = 1. N is called the Brunt Väisälä frequency given by the equation N = − g

ρ0

dρ̄(z)
dz

. In our
code, we have a fixed N . Lastly ν is the kinematic viscosity.

Additionally, we are going to assume that the flow can be decomposed to a background
linear shear flow (with shear rate σ) plus a finite amplitude perturbation. This assumption
is true in many astrophysical flows where there are intense shear in the system, like the zonal
flows on Jupiter where the east-west winds create a strong shear background.

U(x, y, z, t) = Ū(y) + u(x, y, z, t) (5.6)

Ū(y) = −σyx̂ (5.7)

It can be shown that a linear shear flow is at equilibrium and is steady with time.
After substituting equation (4.6) into the Boussinesq equations, we are left with equations
consisting mostly of the perturbation and some leftover shear terms from the nonlinear
advection term.
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∂ux
∂t

= −(u · ∇)ux + ν∇2ux −
∂P

∂x
+ uy(f + σ) + σy

∂ux
∂x

(5.8)

∂uy
∂t

= −(u · ∇)uy + ν∇2ux −
∂P

∂y
− uxf + σy

∂uy
∂x

(5.9)

∂uz
∂t

= −(u · ∇)uz + ν∇2ux −
∂P

∂z
− ρ̃g + σy

∂uz
∂x

(5.10)

∂ρ̃

∂t
= −(u · ∇)ρ̃+

N2

g
uz + σy

∂ρ̃

∂x
(5.11)

0 =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

(5.12)

There are mainly two numerical difficulties in those equations. The first is if we use the
traditional method, the time step we have to use is very very small which is not numerically
efficient at all. The physical reason why we have to use very small numerical algorithm can be
explained as following. For this problem, there are four physical ingredients involved, there
are shear, rotation, stratification and viscous effect. For each of those physical ingredients,
there is a physical time scale associated with it. For example, the time scale for rotation is
basically the period of the self-rotation of the system. The time scale associated with the
stratification is 1/N and the time scale for the shear is 1/σ. As we know, in order to avoid
the stiffness of the system, when implementing the numerical algorithm, we have to make
sure that the time step for the algorithm is small than all of the physical times scales, such
that all the physics can be very resolved and simulated, That means the time step has to
be less than the smallest time scale in the system. In cases where one physical time scale is
much smaller than other physical time scales, the time step is extremely small which makes
the simulations unaffordable. One example of such case is the simulations for oceanic vortex.
The simulations for oceanic vortex can be regarded as a simplified version of our problem,
where there are only stratification and rotation. There is no shear. For the ocean water,
f/N is roughly 0.01, which is exactly the case that we mentioned, one of the physical time
scale is very small. Thus in order to produce long-enough simulations, it is quite popular
for researchers to use f/N = 0.1, instead of 0.01 in their simulations. This problem has
been perfectly solved by using the semi-analytical method proposed by [4]. In our system,
we have eve more than two physical time scales, thus the semi-analytical method comes in
handy to remove the time step restrictions.

The second numerical difficulty of our problem come from the shear term. The reason is
because the shear term U(y) = −σy breaks the autonomy of our equations. We can not use
the triply periodic boundary conditions any more. There are two ways to solve this problem.
The first is to use the shearing sheet coordinates. In order to enforce the periodicity, without
loss of generality, we could transfer our coordinates to the shearing sheet coordinates. The
shearing sheet coordinate is a Galileo transformation of our frame to a moving frame where
the observer(origin of the system) is moving with the background shear velocity. One of
the advantage of applying such system is that, in the shearing sheet coordinates, the terms



CHAPTER 5. NUMERICAL ALGORITHM FOR STRATIFIED ROTATIONAL SHEAR
FLOW 81

that break the autonomy of the equations will vanish and thus periodic boundary conditions
are valid. Mathematically, the relationship between our shearing sheet system (x′, y′, z′, t′)
and the original coordinates (x, y, z, t) is (x′, y′, z′, t′) = (x + σyt, y, z, t). Shearing sheet
coordinates works well for both inviscid or viscous cases, since the viscous terms are trivial
to calculate within triply boundary conditions. The Laplatian operator ∇2 is a constant
and can be put into the linear terms with the semi-analytic algorithm. The price we pay
for the shearing sheet coordinates is the spatial derivative terms(or the wave numbers) are
time dependent. The combination of semi-analytic algorithm with shearing sheet coordinates
works great for our system. Details for such algorithm can be found in [4].

The second way to solve the problem with the shear term is to live with the non-periodic
boundary conditions. Instead of using the fourier basis functions, we could use the Chebyshev
polynomials as basis functions on the non-periodic direction. The problem for using the
Chebyshev polynomials is how to deal with the viscous terms. Since now the Laplatian
operator can not be expressed as a constant, we can not use the semi-analytic method for
this term any more. We invented a new algorithm to solve such problem, by using the classical
Crank-Nicholson method for viscous terms. Before we show the step by step method, we
want to talk about the prior work in order to have a though understand of how our algorithm
works.

5.2 Prior work

Here, we will highlight two main body of works that lay the foundation for our algorithm.
The first is an overview of spectral methods. The second is the usage of spectral methods,
specifically, Fourier basis in two directions and Chebyshev polynomials in third direction, to
solve the Navier-Stokes Equation. The third is a semi-analytic algorithm applied to Euler’s
equations.

Spectral methods

The basic philosophy of spectral methods is that instead of discretizing differential equations
by a set of collocation points, it is discretized to a summation of basis functions multiplied
by their spectral coefficients. It can proven that the accuracy of finite-difference methods
are proportional to (1/N)p where N is the number of grid points and p is a fixed constant.
While spectral accuracy is proportional to (1/N)N [6]. Therefore, spectral methods are
extremely accurate and needs much less degrees of freedom than finite-difference methods.
It should noted that to compute nonlinear terms, many Fast-Fourier-transforms (FFTs) are
needed to go back and forth between physical collocation space and spectral coefficient space,
which is the bottleneck in parallel spectral simulations. However, the much fewer degrees of
freedom make up for this efficiency difference. The velocities and pressure will be functions
represented as a truncated summation of Fourier-Fourier-Chebyshev basis functions and their
respective coefficients that are allowed to evolve in time.
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u(x, y, z, t) =
Nx∑

l=−Nx

Nz∑
m=−Nz

Ny∑
n=0

ũlmn(t)eikxxeikzzTn(y)

P (x, y, z, t) =
Nx∑

l=−Nx

Nz∑
m=−Nz

Ny∑
n=0

P̃lmn(t)eikxxeikzzTn(y)

Here l,m,n are integers that represents the index of ũlmn(t) and P̃lmn(t), which are the
spectral coefficients. kx = 2πl/Lx and kz = 2πm/Lz are the Fourier wave modes in the
streamwise and vertical direction, where Lx and Lz are the lengths in the periodic directions.
Tn(y) are the Chebyshev polynomials in the cross-stream direction, where Ly is the length
in this direction.

Furthermore, this algorithm is psuedo-spectral. Nonlinear terms are computed as prod-
ucts on collocation points instead of the convolution of spectral coefficients, which is compu-
tationally inefficient. FFTs are used to go between physical collocation space and spectral
Fourier-Fourier-Chebyshev space. Additionally, it is also needed that some computations be
done in Fourier-Fourier-Physical space, which will be referred to as mixed space.

It should be mentioned that under the Fourier-Fourier-Chebyshev transformation, the
Fourier modes are decoupled, but the Chebyshev modes are all coupled. For this algorithm,
the following formulation is solved for every Fourier mode separately. This also allows for
high parallelization of the code for different processors to solve a different set of Fourier
modes. One great advantage of using spectral methods is that taking derivatives become
an algebraic process [6] and are usually much more accurate than using finite-difference or
finite elements methods. For example,

∂P

∂x
=

Nx∑
l=−Nx

Nz∑
m=−Nz

Ny∑
n=0

ikxP̃lmn(t)eikxxeikzzTn(y)

∂P

∂y
=

Nx∑
l=−Nx

Nz∑
m=−Nz

eikxxeikzz
Ny∑
n=0

P̃lmn(t)
dTn(y)

dy

∂P

∂z
=

Nx∑
l=−Nx

Nz∑
m=−Nz

Ny∑
n=0

ikzP̃lmn(t)eikxxeikzzTn(y)

dTn
dy

can be found in appendix B. The gradient, divergence, and laplacian spectral opera-
tors are built on these derivative definitions.
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Solving Navier-Stokes equation with Chebyshev polynomials

The new algorithm was developed on based on an older algorithm to solve the incompressible
Navier-Stokes equations (in cartesian coordinates) using Fourier basis in two directions, and
Chebyshev polynomials in third direction [6]. Typically this is because the problems that
are studied using this method are autonomous in two directions, but something would break
this autonomy in the third direction. For example, in astrophysical flows, there may be a
strong background shear that causes the flow to be non-periodic in one direction. Another
example is in geophysical flows when there is strong stratification in the vertical direction.

It should also be noted that when using Chebyshev polynomials to solve boundary value
problems, it is not possible to directly impose boundary conditions. Instead, the ”tau”
method is used, where small additional terms are added to the original differential equations
to enforce constraints such as boundary conditions. These τ ’s can be thought of as Green’s
functions that help enforce constraints in the problem. In this section, we will treat the x
and z direction as the autonomous directions, and y as the Chebyshev direction.

∂u

∂t
=− (u · ∇)u−∇P + ν∇2u + (τx1x̂+ τy1 ŷ + τz1 ẑ)TNy−1(y)

+ (τx2x̂+ τy2 ŷ + τz2 ẑ)TNy(y)
(5.13)

Note that the τ ’s only act on the highest two Chebyshev modes. The algorithm works
almost entirely with the time-dependent spectral coefficients. The only time we compute
in physical space is to compute the nonlinear advection term. However, we will keep the
notation general to focus on the time-stepping algorithm.

This algorithm uses the traditional fractional method to treat different terms in the
equation with different numerical time-stepping algorithms to optimize between efficiency
and stability. Here, we treat the advection term with second order Adam-Bashforth, but we
use Explicit-Euler as a starting step. In addition, we will add the current viscosity term in
this step. This will serve as our first fractional step.

un+ 1
3 = un − (

3

2
∆t(un · ∇)un − 1

2
∆t(un−1 · ∇)un−1) +

ν∆t

2
un (5.14)

The pressure and τ ’s are formally treated with Crank-Nicholson, but in this algorithm,
by leveraging the fact that they are whatever they need to be to preserve the divergence-free
condition and other constraints, they can be combined to terms that do not look like any
specific time-stepping algorithms. As you will see, this is not the case in our semi-analytic
algorithm, and we have to treat these terms with a Crank-Nicholson-like algorithm:

un+ 2
3 = un+ 1

3 +
∆t

2
(−∇P n+1 −∇P n

+ ((τnx1
+ τn+1

x1
)x̂+ (τny1

+ τn+1
y1

)ŷ + (τnz1 + τn+1
z1

)ẑ)TNy−1

+ ((τnx2
+ τn+1

x2
)x̂+ (τny2

+ τn+1
y2

)ŷ + (τnz2 + τn+1
z2

)ẑ)TNy)

(5.15)
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Now combining the terms by defining the following quantities:

Πn+1 =
∆t

2
(P n+1 + P n)

τ̂n+1 =
∆t

2
(τn+1 + τn)

The second intermediate step equations are now:

un+ 2
3 = un+ 1

3 −∇Πn+1 + (τ̂n+1
x1

x̂+ τ̂n+1
y1

ŷ + τ̂n+1
z1

ẑ)TNy−1

+ (τ̂n+1
x2

x̂+ τ̂n+1
y2

ŷ + τ̂n+1
z2

ẑ)TNy

(5.16)

The last step is to calculate the new velocity from the implicit viscosity term. This is
done by inverting the laplacian operator and applying boundary conditions. After inverting
the laplacian operator, we place a bar on the new velocity field to denote that this velocity
field is consistent except for the highest two Chebyshev modes because it was replaced by
boundary conditions. A detailed explanation for this can be found in the appendix A. Using
Taylor expansion, this algorithm is formally second-order. The last fractional step algorithm
is

un+1 = un+ 2
3 +

ν∆t

2
∇2un+1 (5.17)

(I − ν∆t

2
∇2)un+1 = un+ 2

3 (5.18)

ūn+1 = (I − ν∆t

2
∇2)−1un+ 2

3 (5.19)

To solve for the pressure and τ̂n+1’s, we must use the divergence-free condition ∇·un+1 =
0. Again, a detailed explanation is provided in the appendix A. A key aspect about this
algorithm is the constraints used to compute the ˆτn+1’s. These constraints are setting the
highest two Chebyshev modes in the divergence to be zero and correcting the highest two
Chebyshev two modes of the velocity equation. τy’s and the pressure boundary conditions
must be solved simultaneously, and then τx and τz can be solved after the implicit pressure
gradient is computed.

0 = ∇ · un+1 (5.20)

un+1 = ūn+1 (5.21)

There is a major problem with the constraints involving setting the highest two Cheby-
shev modes of the divergence equation to be zero. For a reasonable time-step size (typically
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N=32 N=64 N=128 N=256

ν∆t/L2
y = 2.5 ∗ 10−4 105 1025 106 10175

ν∆t/L2
y = 2.5 ∗ 10−5 103 107 1024 1085

ν∆t/L2
y = 2.5 ∗ 10−6 103 103 109 1029

Table 5.1: Condition Number for τ Matrix

ν∆t/L2
y = 2.5 ∗ 10−5), the algorithm cannot handle resolutions higher than 128 Chebyshev

modes. When this algorithm was first developed, the state of the art computers could only
handle up to 32 Chebyshev modes, much smaller than what we need now (greater than 256
modes). This problem occurs because the matrix equation to solve for τ̂n+1’s become closer
to singular as the resolution increases. This problem only occurs in the viscous version of
the code, and is not present in the code for Euler’s equation. It is the implicit viscous step
that causes this singularity issue. One simple but inefficient way to fix this is to decrease
the time-step size or increase the domain size. Another is to use a mixed-space algorithm.
This issue can be seen in the condition number of the matrix as we vary the time-step size
and resolution.

From table ??, it is clear that as one increases the spectral resolution (N number of
modes), the condition number becomes exponentially worse. This causes the simulation to
diverge very quickly. This problem is what needs to be solved in order to have a high-
resolution Chebyshev viscous code.

Semi-analytic algorithm

In a paper published in the Journal of Computational Physics in 2006, J. Barranco presented
a hydrodynamic code that uses spectral methods for the Anelastic Equations [4]. In partic-
ular, Barranco presented a semi-analytic method to treat the shear, Coriolis, and buoyancy
terms. In this paper, the algorithm presented was:

un+1 = e£∆tun + £−1(e£∆t − I)(
3

2
Nn − 1

2
Nn−1 −∇P n)− ∆t

2
∇P n+1 (5.22)

In this algorithm, £ is the linear operator that contains the coriolis and buoyancy term.
N is the nonlinear advection term. And ∇P is the pressure gradient. This algorithm is
shown to be second order in the paper. This algorithm has also been applied to the inviscid
Boussinesq equations to study ZVI in shear and stratified flows. The semi-analytic method
will be discussed more in-depth later in the chapter.
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5.3 Numerical method step by step

Based on the prior work presented in the previous subsections, several areas can use im-
provements. The biggest problem currently is the inability to use high resolution with any
viscous Chebyshev code. We will present a method to stabilize the τ matrix in the following
section. The second goal is to apply the semi-analytic algorithm to the viscous Boussinesq
code to exactly solve the linear terms.

We have developed a three-dimensional hydrodynamic code using spectral methods to
solve the Boussinesq equations, and to deal with the background shear, stratification, and
rotation. This code is expanded using Fourier series as basis functions in the streamwise
(x-direction) and vertical (z-direction) direction because these directions are assumed to be
autonomous. The cross-stream direction (y-direction) has a background shear that breaks
this autonomy, and thus a Chebyshev polynomial basis is used. The spectral coefficients
associated with their respective spectral basis functions are allowed to evolve in time and
are discretized using finite-difference methods [6]. The background forces are represented as
linear terms in the differential equations and are treated with a semi-analytic method. This
can be advantageous when any of these parameters become much larger than the others and
ultimately become the bottleneck in how big of time-step we can take [7]. With the semi-
analytic treatment, these terms are exactly resolved so their bottlenecks have been removed.
In addition, viscosity is included in this code and is treated with a semi-implicit method
to avoid stability issues. However, the semi-implicit viscosity presents a different numerical
instability when using high resolution with Chebyshev polynomials. The instability and a
proposed solution will be presented in the body of this report. The nonlinear advection term
is treated explicitly, and the pressure gradient is treated semi-implicitly.

In this section, a general overview of the numerical algorithm will be presented. After-
wards, the application of the numerical algorithm on our specific equations will be derived.
As a reminder, When using a Fourier-Fourier-Chebyshev spectral discretization, we would
compute the spectral coefficients for each Fourier mode separately because each Fourier mode
is decoupled. The Chebyshev coefficients are all coupled so that we have to solve for them
simultaneously. However, for this section, we will leave the equations in a general form to
focus on conveying the time-stepping algorithm clearly. Majority of these equations would
be applicable to both spectral methods or finite difference methods. The only exceptions are
the way we discretized the shear term, we will talk about the divergence of velocity and the
special treatment needed for a specific Fourier-Fourier mode in the following sections.

General numerical method

Any spatial and time dependent set of partial differential equation can be represented in the
form:

∂u

∂t
= £(x)u + N(x, t) + M(x, t) (5.23)
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Here, u is the variable that needs to be solved. £ is the linear matrix operator in the
differential equations that can be analytically solved simply. In this case, these would be
the shear, Coriolis, and buoyancy terms. N is the nonlinear term. In this case, this is the
advection term. Finally, M is the linear terms that cannot be analytically solved in a simple
manner, and requires some numerical approximation. In this case, this would be the pressure
gradient and viscosity terms.

Assuming that the linear operator £ is only a function of the spatial coordinates, the
analytic solution to this differential equation would be [7]

u(x, t) = e£tu0 +

∫ t

t0

e£(t−s)N(u, s)ds+

∫ t

t0

e£(t−s)M(u, s)ds (5.24)

The discrete, but still analytic, version of this is:

un+1 = e£∆tun +

∫ ∆t

0

e£(∆t−s)N(un, s)ds+

∫ ∆t

0

e£(∆t−s)M(un, s)ds (5.25)

As one can see, the linear terms in £ is solved exactly. The next step is to approximate
the two integrals in the above equation. For the nonlinear terms N, an Adam-Bashforth-like
method will be used, whereas the difficult linear terms M, a semi-implicit Crank-Nicholson-
like method will be used. The reason for the separate treatment is because in our case the
nonlinear is most efficient with an explicit time-stepping method, whereas the difficult linear
terms (pressure gradient and viscosity) are numerically unstable and requires a semi-implicit
method to be stabilized. Additionally, for the sake of convenience and easy solvability, it is
desired that implicit terms have no cross-coupling with other components. The numerical
algorithm is now:

un+1 = e£∆tun + e
£∆t

2 ∆t(
3

2
Nn − 1

2
Nn−1) + e£∆t∆t

2
Mn +

∆t

2
Mn+1 (5.26)

0 = ∇ · un+1 (5.27)

Another way of looking at this equation is as a fractional step method. Each step will
consist of a dealing with a different term. Also, in this report, the velocity flow must also
satisfy the additional divergence-free condition imposed by the incompressiblilty of the flow.

un+ 1
4 = e£∆tun (5.28)

un+ 2
4 = un+ 1

4 + e
£∆t

2 ∆t(
3

2
Nn − 1

2
Nn−1) (5.29)

un+ 3
4 = un+ 1

4 + e£∆t∆t

2
Mn (5.30)

un+1 = un+ 2
3 +

∆t

2
Mn+1 (5.31)

∇ · un+1 = 0 (5.32)



CHAPTER 5. NUMERICAL ALGORITHM FOR STRATIFIED ROTATIONAL SHEAR
FLOW 88

In the following sections, this algorithm will be applied directly to the Boussinesq equa-
tions. This algorithm is second-order accurate where a single time-step locally produces an
error ∼∆t3 and globally produces an error ∼∆t2.

Step 1: Semi-analytic treatment of Coriolis, Buoyancy, and Shear
forces

For the remainder of section 3’s subsections, the equations will be written out in component
form instead of vector form for cleanliness. The linear operator here £(y) contains the shear,
buoyancy, and Coriolis terms. Please note that the shear term is a function of the cross-
stream spatial coordinate. Since the linear operator is a function of y, the easiest way to
compute the first intermediate step is to work in mixed-space, and then in subsequent steps
work in fully spectral space.

£(y) =


σyikx f + σ 0 0
−f σyikx 0 0
0 0 σyikx −g
0 0 N2

g
σyikx

 (5.33)

An easy and straightforward way of computing the matrix exponential of the linear matrix
is by doing an eigen-decomposition of the matrix and then exponentiating each eigenvalue
of the diagonal matrix. Lets define the following constants:

λ1 ≡ f + σ

λ2 ≡ f

λ ≡
√
λ1λ2 =

√
f + σ

f

ζ1 ≡ g

ζ2 ≡
N̄

g

ζ ≡
√
ζ1ζ2 = N̄

c ≡ iσykx

In terms of these constants, the matrix exponential of the linear term is:

e£∆t = ec∆t


cos(λ∆t) λ1

λ
sin(λ∆t) 0 0

−λ2

λ
sin(λ∆t) cos(λ∆t) 0 0

0 0 cos(ζ∆t) − ζ1
ζ
sin(ζ∆t)

0 0 ζ2
ζ
sin(ζ∆t) cos(ζ∆t)

 (5.34)
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The velocity equations for the first quarter step are

u
n+ 1

4
x = ec∆t(cos(λ∆t)unx + λ1

sin(λ∆t)

λ∆t
uny ) (5.35)

u
n+ 1

4
y = ec∆t(cos(λ∆t)uny − λ2

sin(λ∆t)

λ∆t
unx) (5.36)

u
n+ 1

4
z = ec∆t(cos(ζ∆t)unz − ζ1

sin(ζ∆t)

ζ
ρ̃n) (5.37)

ρ̃n+ 1
3 = ec∆t(cos(ζ∆t)ρ̃n + ζ2

sin(ζ∆t)

ζ
unz ) (5.38)

Step 2: Adam-Bashforth-like exponential propagation of
Advection term

The advection term -(u · ∇)u here is a nonlinear term, so the common time-integration
method used is the 2nd order Adam-Bashforth algorithm. This algorithm also uses Adam-
Bashforth, but scaled by the linear matrix exponential to maintain 2nd order accuracy.
Again to simplify the equations, lets define the quantities:

Nn
x = −3

2
∆t((un · ∇)unx) +

1

2
∆t((un−1 · ∇)un−1

x )

Nn
y = −3

2
∆t((un · ∇)uny ) +

1

2
∆t((un−1 · ∇)un−1

y )

Nn
z = −3

2
∆t((un · ∇)unz ) +

1

2
∆t((un−1 · ∇)un−1

z )

Nn
ρ̃ = −3

2
∆t((un · ∇)ρ̃n) +

1

2
∆t((un−1 · ∇)ρ̃n−1)

With these nonlinear Adam-Bashforth terms defined, the second intermediate equations
are

u
n+ 2

4
x = u

n+ 1
4

x + e
c∆t

2 (cos(λ
∆t

2
)Nn

x + λ1

sin(λ∆t
2

)

λ
Nn
y ) (5.39)

u
n+ 2

4
y = u

n+ 1
4

y + e
c∆t

2 (cos(λ
∆t

2
)Nn

y − λ2

sin(λ∆t
2

)

λ
Nn
x ) (5.40)

u
n+ 2

4
z = u

n+ 1
4

z + e
c∆t

2 (cos(ζ
∆t

2
)Nn

z − ζ1

sin(ζ∆t
2

)

ζ
Nn
ρ̃ ) (5.41)

ρ̃n+ 2
4 = ρ̃n+ 1

4 + e
c∆t

2 (cos(ζ
∆t

2
)Nn

ρ̃ + ζ2

sin(ζ∆t
2

)

ζ
Nn
z ) (5.42)
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Step 3: Crank-Nicholson-like treatment of Pressure, green’s
function, and Viscous terms

In the third intermediate step, the code has to partially deal with the difficult linear terms,
which in this case are the pressure gradient, and viscous terms. In addition, since the
algorithm uses Chebyshev polynomials as a basis, there are green’s functions that are used
to enforce boundary conditions and the divergence-free condition. The magnitude of the
green’s functions are represented by the unknown τx1 ,τx2 ,τy1 ,τy2 , τz1 and τz2 associated with
the green’s functions (highest Chebyshev modes) TNy−1 and TNy respectively. Here, the
current step’s pressure gradients, viscous terms, and τ ’s are added into the equations. Once
Again, defining the following quantities to simplify the equations:

Πn =
∆t

2
P n

τ̂n =
∆t

2
τn

Mn
x =

ν∆t

2
∇2unx −

∂Πn

∂x
+ τ̂nx1

TNy−1 + τ̂nx2
TNy

Mn
y =

ν∆t

2
∇2uny −

∂Πn

∂y
+ τ̂ny1

TNy−1 + τ̂ny2
TNy

Mn
z =

ν∆t

2
∇2unz −

∂Πn

∂z
+ τ̂nz1TNy−1 + τ̂nz2TNy

Please note that Π and τ̂ here are defined differently from section 2.2. Now the equations
for the third intermediate step are

u
n+ 3

4
x = u

n+ 2
4

x + ec∆t(cos(λ∆t)Mn
x + λ1

sin(λ∆t)

λ
Mn

y ) (5.43)

u
n+ 3

4
y = u

n+ 2
4

y + ec∆t(cos(λ∆t)Mn
y − λ2

sin(λ∆t)

λ
Mn

x ) (5.44)

u
n+ 3

4
z = u

n+ 2
4

z + ec∆tcos(ζ∆t)Mn
z (5.45)

ρ̃n+1 = ρ̃n+ 2
3 + ec∆tζ2

sin(ζ∆t)

ζ
Mn

z (5.46)

Step 4: Computing implicit Pressure and τ terms from divergence
and velocity equations

The final step in the equations involve the future pressure gradient, τ ’s, and viscosity terms.
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un+1
x = u

n+ 3
4

x +
ν∆t

2
∇2un+1

x − ∂Πn+1

∂x
+ τ̂n+1

x1
TNy−1 + τ̂n+1

x2
TNy (5.47)

un+1
y = u

n+ 3
4

y +
ν∆t

2
∇2un+1

y − ∂Πn+1

∂y
+ τ̂n+1

y1
TNy−1 + τ̂n+1

y2
TNy (5.48)

un+1
z = u

n+ 3
4

z +
ν∆t

2
∇2un+1

z − ∂Πn+1

∂z
+ τ̂n+1

z1
TNy−1 + τ̂n+1

z2
TNy (5.49)

This last step involves computing the implicit terms which will prove to be the most
difficult part. This is because you have to solve a Helmholtz equation to compute the
pressure-head and then another Helmholtz equation to compute the velocity from the implicit
viscosity term. However, when one uses Chebyshev polynomials as a basis, it is actually not
possible to directly impose boundary conditions. The only way to do this is to replace the last
two equations for the highest two modes with boundary conditions. And you must do this
once for the pressure equation and the second time when solving for the final velocity. Due
to this, the flow will not be divergence free and the highest two modes will be inconsistent
in the equations. Luckily, there are eight extra degrees of freedoms we can use, the six τ̂ ,
and the two pressure boundary conditions that will represented by τp1 and τp2 . Please refer
to appendix A for a detailed procedure on how to derive the pressure.The pressure head is
now:

Πn+1 = Πh + τ̂n+1
y1

G1 + τ̂n+1
y2

G2 + τ̂n+1
p1

G3 + τ̂n+1
p2

G4 (5.50)

where Πh is the homogeneous part of pressure, and the four τ ’s and G’s are the green’s
functions. Using equation above, and solving another Helmholtz equation, we can arrive at
the final velocity equations for the next time step. Once again, refer to appendix A for a full
derivation of these equations.

ūn+1
x = un+1

ν,x + τ̂n+1
y1

H1,x + τ̂n+1
y2

H2,x + τ̂n+1
p1

H3,x + τ̂n+1
p2

H4,x (5.51)

ūn+1
y = un+1

ν,y + τ̂n+1
y1

H1,y + τ̂n+1
y2

H2,y + τ̂n+1
p1

H3,y + τ̂n+1
p2

H4,y (5.52)

ūn+1
z = un+1

ν,z + τ̂n+1
y1

H1,z + τ̂n+1
y2

H2,z + τ̂n+1
p1

H3,z + τ̂n+1
p2

H4,z (5.53)

Here ū is the new velocity but with the incorrect highest two modes, and the τ ’s and H’s
are the new green’s functions. un+1

ν and H’s are defined and derived in appendix A.

Step 5: Computing τ ’s and pressure boundary conditions

The τ ’s and pressure boundary conditions are the last eight unknowns in our system of
equations. The eight constraints that we need to solve for these unknowns will come from
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restoring the last two modes of the velocities so that they satisfy our governing equations,
and divergence-free condition.

Restoring the highest two Chebyshev modes of the velocity will involve substituting the
ūn+1 into the un+1 equations. Using the τ ’s we will demand that the following equations be
true.

For the highest two Chebyshev modes Ny − 1 and Ny

ūn+1
x = un+1

x (5.54)

ūn+1
y = un+1

y (5.55)

ūn+1
z = un+1

z (5.56)

As was explained in the prior work, the divergence-free conditions in the original algo-
rithm has problems when increasing resolution in the Chebyshev direction. The new way to
resolve this is use a different formulation to set all Chebyshev coefficients in the divergence
to be zero. Instead of solving the τs to directly set the last two modes of the divergence of
velocity to zero, what we can do is to demand the divergence at the boundaries to be zero.

∇ · ūn+1 = 0
∣∣∣
y=±Ly/2

(5.57)

This method works because if you solved for the pressure so that the velocity is divergence-
free without the τ ’s, then the divergence of velocity’s Chebyshev modes will all be zero except
for the highest two modes.

let ∇ · un+1 ≡
Nx∑

l=−Nx

Nz∑
m=−Nz

Ny∑
n=0

D̃lmn(t)eikxxeikzzTn (5.58)

=
Nx∑

l=−Nx

Nz∑
m=−Nz

(D̃lm(Ny−1)TNy−1 + D̃lmNyTNy)eikxxeikzz (5.59)

From this equation you can see that all the spectral coefficients are equal to zero except
for the highest two Chebyshev modes. Now applying the new divergence-free constraints at
the boundaries will yield the two linear equations

D̃lm(Ny−1) + D̃lmNy = 0 (5.60)

D̃lm(Ny−1) − D̃lmNy = 0 (5.61)

The only solution to these two equations is D̃lm(Ny−1) = 0 and D̃lmNy = 0. Furthermore,
even when dealing with computer precision, the method still works where the solution will end
up approximately a = O(10−16) and b = O(10−16). Even though this is a roundabout way
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to force the highest two Chebyshev modes to the equal to zero (up to computer precision),
it proves to be stable even with high resolution. Repeating, the same condition number test
from section 2, the new condition numbers are close in order despite the increase in number
of Chebyshev modes. This is in contrast to table ??, where the condition number increases
exponentially with number of Chebyshev modes.

N=32 N=64 N=128 N=256

ν∆t/L2
y = 2.5 ∗ 10−4 105 106 106 107

ν∆t/L2
y = 2.5 ∗ 10−5 106 106 107 107

ν∆t/L2
y = 2.5 ∗ 10−6 107 107 107 108

Table 5.2: Condition number for τ matrix with new constraints

Special treatment of the (nx = 0, nz = 0) Fourier-Fourier mode

It is not possible to solve for the (nX = 0,nz=0) Fourier mode’s coefficients using the above
method. This is because the matrix equation to solve for the pressure is singular and will
provide no solution. Furthermore, the (0,0) mode of the pressure gradient in the y-direction
∂Πn+1/∂y must be stored to included in the algorithm to achieve second-order accuracy.
Therefore, a special treatment must be applied.

For the x and z directions, since they are discretized using a Fourier basis, the pressure
gradients in these directions are always 0. So there is no need to solve the Helmholtz
equation to compute the pressure. For the y-direction, it is even simpler. The (0,0) mode
for the divergence demands that ∂uy

∂y
= 0, when means that uy does not change in the y

direction (for the (0,0) mode) and so uy must equal to the uy at the boundaries. Hence the
equations for the (0,0) mode velocities are:

un+1
x = un+1

ν,x (5.62)

un+1
y = 0 (5.63)

un+1
z = un+1

ν,z (5.64)

Again, the uν are defined in appendix A. Lastly, the (0,0) mode of ∂Πn+1/∂y can com-
puted when you substitute un+1

y = 0 into the y-direction velocity’s equation.

∂Πn+1

∂y
= u

n+ 3
4

y (5.65)

5.4 Results and preliminary tests

In this section, a series of tests are done to test the validity and usage of the developed
code. The code is shown to be numerically second-order accurate. It is also stable under the
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conditions researchers typically use to study ZVI. Lastly, we demonstrate that the code can
produce critical layers to qualitatively validate the code.

The first series of tests that were done to this code was just to see if the code will be
stable under different conditions. In these tests, σ, N , f , and ∆t are varied to test the limits
of the code. For a given parameter, the code either stayed stable or become unstable. The
code was compared to the old, traditional fractional method to test the capabilities of the
semi-analytic algorithm. All tests was initialized with a 3D Gaussian vortex.

The first test was to see if we can go up to 1024 Chebyshev modes and still be divergence-
free using the new τ constraints. Here, σ/f = 0.75, N/f = 1, and ∆t = 0.01 1

σ
.

New Method Old Method

Ny = 32 Stable Stable
Ny = 64 Stable Stable
Ny = 128 Stable Unstable
Ny = 256 Stable Unstable
Ny = 512 Stable Unstable
Ny = 1024 Stable Unstable

Table 5.3: Stability of the new algorithm vs the traditional algorithm as a function of number
of Chebyshev modes

Now varying the linear parameters, N , and f . Here, ∆t = 0.01 1
σ
, and Nx = Ny = Nz = 64

Semi-Analytic Fractional Step
N/f=1 Stable Stable
N/f=50 Stable Stable
N/f=100 Stable Stable
N/f=120 Stable Unstable
N/f=150 Stable Unstable

(a) Varying N with σ/f = 1

Semi-Analytic Fractional Step
f/N=1 Stable Stable
f/N=50 Stable Stable
f/N=100 Stable Stable
f/N=120 Stable Unstable
f/N=150 Stable Unstable

(b) Varying f with σ/N = 1

Semi-Analytic Fractional Step
σ/N = -30 Stable Unstable
σ/N = -10 Stable Unstable
σ/N = -2 Stable Stable
σ/N = 1 Stable Stable
σ/N = 2 Stable stable
σ/N = 10 Stable Unstable
σ/N = 30 Stable Unstable

(c) Varying σ with f/N = 1

Table 5.4: Varying N , f , and σ to see when the new method is better than the old method
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Numerical accuracy

Even though analytically, the algorithm can be shown to be second order accurate using
Taylor expansions, We also numerically prove that the algorithm is second order accurate.
The initial condition we chose was a 3D Gaussian vortex,

ωz = ω0exp(−x2/a2 − y2/b2 − z2/c2) (5.66)

ω0 is the vortex strength, and a, b, and c are constants chosen so that the vorticity is
close to zero near the boundaries.

The first simulation is run with a very small time-step size that we will call ∆t* and
treated as the exact answer. Four more simulations is run with much bigger time-step sizes
∆t1, ∆t2, ∆t3, and ∆t4, where

∆t1,∆t2,∆t3,∆t4, >> ∆t∗

The simulations will be integrated to the same final time, Tf . The error is evaluated as
the L2 norm of velocity at the time-step size of interest vs the ”exact” solution.

error = ||ui − u∗||2

The log of the error vs. log of ∆t are plotted. The slope of the plot is the order of
accuracy. In figure 4.1, the errors for velocity and density shows that the code is second-
order accurate. The equation shown in the graph are the fitted lines through the error points,
and the slope of the linear equations are the order of accuracy.
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(a) Error plot for ux (b) Error plot for uy

(c) Error plot for uz (d) Error plot for ρ̃

Figure 5.1: Loglog plots of L2 Norm of error vs time-step size

Critical layer formation

As a demonstration of the code that was developed, a simulation was ran to show the
formation of critical layers and the self-replication of critical layers. The code was again
initialized with a 3D Gaussian vortex. The code setup was σ/f = -0.75, N/f = 1, ∆t =
0.015 1

σ
, Lx/Lz = 1 and Ly/Lx = 1.5 (this was chosen so that Ly is at least 6 times larger

than the first generation critical layer location.), and Nx = Ny = Nz = 256. In addition,
hyperviscosity and vertical boundary damping was applied. It should mentioned that at
this resolution, hyperviscosity is needed. A simulation was ran with this set up but without
hyperviscosity, and the simulation diverged.
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(a) XY-Plane (b) YZ-Plane

Figure 5.2: Vertical Vorticity for two different planes at t = 0

(a) XY-Plane (b) YZ-Plane

Figure 5.3: Two pairs of critical layers are formed at t = 720 1/σ
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(a) XY-Plane (b) YZ-Plane

Figure 5.4: The pair of critical layers has fully formed at = 1440 1/σ

(a) XY-Plane (b) YZ-Plane

Figure 5.5: Second generation of critical layers starting to form at t = 2160 1/σ
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(a) XY-Plane (b) YZ-Plane

Figure 5.6: Second generation fully formed at t = 2880 1/σ

5.5 Conclusion and future research

We have developed a three-dimensional spectral hydrodynamic code to study rapidly rotat-
ing, intensely sheared, and strongly stratified systems. This code is built using a number
of different techniques to address the challenges associated with shear and stratification.
Additionally, a new method to solve for the τ ’s is presented to stabilize simulations with
high resolution in Chebyshev direction and viscosity. The streamwise and vertical direction
are discretized using a Fourier basis, while the cross-stream direction is discretized using a
Chebyshev polynomial basis. The shear, coriolis, and buoyancy terms are treated with a
semi-analytic method. The nonlinear advection is treated with an explicit Adam-Bashforth-
like method. Lastly, the pressure gradient, viscous terms, and τ ’s are treated with a semi-
implicit Crank-Nicholson-like method. In summary, the code is numerically second-order
accurate, stays stable even with high resolution, and is capable of simulating the formation
of critical layers. In the future, this code will hopefully be used to study the viscous effects
on ZVI and predicting ZVI in experiments.

Although this code can be applied to a wide variety of problems, some limitations exist.
The code is built on solving equations that use the Boussinesq approximation, thus the flows
are limited to subsonic flows where the density cannot deviate from the mean density too
much. Also the viscosity is treated with a Crank-Nicholson-like method so at high wave
numbers, the solution is highly oscillatory. A future code would include the viscosity in the
linear operator and exponentiated exactly (up to spectral accuracy). However, that is a very
challenging task. Also, a future version would allow the Brunt Väisälä frequency to vary as
a function of spatial coordinates.



CHAPTER 5. NUMERICAL ALGORITHM FOR STRATIFIED ROTATIONAL SHEAR
FLOW 100

£(y) =


σyikx + ν∇2 f + σ 0 0

−f σyikx + ν∇2 0 0
0 0 σyikx + ν∇2 −1

g

0 0 N(x,y,z)2

g
σyikx

 (5.67)

5.6 Appendix A: Computing the Pressure and

Implicit Viscosity term

For incompressible flows, the pressure is a ”slave” to the flow. It is whatever it needs to be
to maintain a divergence-free flow. Therefore, the equation to solve for the pressure-head is

∇ · un+1 =0 (5.68)

∇ · un+1 =∇ · (un+ 3
4 −∇Πn+1 +

ν∆t

2
∇2un+1

+ (τ̂n+1
x1

x̂+ τ̂n+1
y1

ŷ + τ̂n+1
z1

)TNy−1 + (τ̂n+1
x2

x̂+ τ̂n+1
y2

ŷ + τ̂n+1
z2

ẑ)TNy

(5.69)

Since this code is in cartesian coordinates, it is assumed that the divergence operator
and the Laplacian operator commute. Hence, the divergence of the future viscosity term
(∇ ·∇2un+1 = ∇2∇ ·un+1 = 0) must also be equal to zero. Here, we are going to use a tilde
to denote that we are working with an array of spectral coefficients.

Π(xi, yj, zk, t
n)← FFT → Π̃l,m,n(tn)

∇2Π̃n+1 = ∇ · ũn+ 3
4 + ikx(τ̂

n+1
x1

TNy−1 + τ̂n+1
x2

TNy)x̂+
∂

∂y
(τ̂n+1
y1

TNy−1

+ τ̂n+1
y2

TNy)ŷ + ikz(τ̂
n+1
z1

TNy−1 + τ̂n+1
z2

TNy)ẑ)

(5.70)

After replacing the last two rows in the laplacian Chebyshev matrix with the boundary
conditions (summation and alternating summation of the spectral coefficients):

Ny−1∑
i=0

Π̃n+1
i = τp1

Ny−1∑
i=0

(−1)iΠ̃n+1
i = τp2

When the last two rows are replaced, the τ̂ ’s in the x and z direction (Fourier directions) are
discarded. The matrix equation then becomes the following:



CHAPTER 5. NUMERICAL ALGORITHM FOR STRATIFIED ROTATIONAL SHEAR
FLOW 101

∀nx, nz Fourier mode ∇2
spectral

1 . . . 1
10 . . . −1nz

 Π̃

 =

 ∇ · ũn+3/4

0
0

+ τ̂y1

 ∂TNy−1/∂y
0
0

+ τ̂y2

 ∂TNy/∂y
0
0



+τp1

 0
1
0

+ τp2

 0
0
1


Now defining the following quantities:

Π̃h = (∇2)−1∇ · ũn+ 3
4

G1 = (∇2)−1∂TNy−1

∂y

G2 = (∇2)−1∂TNy

∂y

G3 = (∇2)−1TNy−1

G4 = (∇2)−1TNy

The pressure head is now:

Πn+1 = Πh + τ̂n+1
y1

G1 + τ̂n+1
y2

G2 + τ̂n+1
p1

G3 + τ̂n+1
p2

G4 (5.71)

Substituting that into the un+1 equations

ũn+1 = ũn+ 3
4 +

ν∆t

2
∇2ũn+1 −∇(Π̃h + τ̂n+1

y1
G1 + τ̂n+1

y2
G2 + τ̂n+1

p1
G3 + τ̂n+1

p2
G4) (5.72)

+ (τ̂n+1
x1

+ τ̂n+1
x2

)x̂+ (τ̂n+1
y1

+ τ̂n+1
y2

)ŷ + (τ̂n+1
z1

+ τ̂n+1
z2

)ẑ (5.73)

(I −∇2)ũn+1 = ũn+ 3
4 −∇(Π̃h + τ̂n+1

y1
G1 + τ̂n+1

y2
G2 + τ̂n+1

p1
G3 + τ̂n+1

p2
G4) (5.74)

+ (τ̂n+1
x1

+ τ̂n+1
x2

)x̂+ (τ̂n+1
y1

+ τ̂n+1
y2

)ŷ + (τ̂n+1
z1

+ τ̂n+1
z2

)ẑ (5.75)

Again, replacing the last two rows with the no-slip and no-penetration boundary condi-
tions
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 I −∇2

1 . . . 1
10 . . . −1nz

 ũn+1

 =

 ũn+ 3
4 −∇Π̃h

0
0

+ τ̂n+1
y1

 ∇G1
0
0

+ τ̂n+1
y2

 ∇G2
0
0



+τ̂n+1
p1

 ∇G3
0
0

+ τ̂n+1
p2

 ∇G4
0
0


Now defining the following quantities:

ũn+1
ν = (I − ν∆t

2
∇2)−1(ũn+ 3

4 −∇Π̃h)

H1 = (I − ν∆t

2
∇2)−1∇G1

H2 = (I − ν∆t

2

ν∆t

2
∇2)−1∇G2

H3 = (I − ν∆t

2
∇2)−1∇G3

H4 = (I − ν∆t

2
∇2)−1∇G4

Where the bar over the equation denotes that the last two modes are replaced with
zeros. Finally the equations are (the bar denotes that the last two modes were replaced by
the boundary conditions and will be corrected by the τ ’s):

ūn+1 = un+1
ν + τ̂n+1

y1
H1 + τ̂n+1

y2
H2 + τ̂n+1

p1
H3 + τ̂n+1

p2
H4 (5.76)

5.7 Appendix B: Chebyshev Polynomials

Since the Fourier decomposition can only be applied to periodic domains, we need a way
of representing systems that are not necessarily periodic. We do this with the Chebyshev
polynomials [6]. The definition of the nth Chebyshev polynomial Tn(x) is:

Tn(x) := cos(n cos−1(x))

They can also be equivalently defined by the recurrence relation:
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T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

They form a linearly independent, complete, orthogonal basis over the interval [1,−1].
Our goal is to represent a function f(x);x ∈ [1,−1] as a sum of Chebyshev polynomials:

f(x) =
N∑
n=0

anTn(x)

Chebyshev Derivatives

Taking the derivative of a Chebyshev sum is relatively easy, although not as straightforward
as differentiating a Fourier series. We want to find dTn

dx
:

We know that

d

dx
=
dθ

dx

d

dθ
dx

dθ
=
d(cos(θ))

dθ
= − sin(θ)

Which means that:

d

dx
Tn(cos(θ)) = − 1

sin(θ)

d cos(nθ)

dθ

=
n sin(nθ)

sin(θ)

Which can be expressed as:

n sin(nθ)

sin(θ)
= 2n

(
cos((n− 1)θ) + cos((n− 3)θ) + ...+

{
cos(θ) if n is even

cos(2θ) + 1/2 if n is odd

)
= 2n

(
Tn−1(x) + Tn−3(x) + ...+

{
T1(x) if n is even

T2(x) + 1
2
T0(x) if n is odd

)
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Upon inspection, we can find the following matrix representation of the differentiation
operator (assuming that N is odd):

d

dx


a0

a1

a2
...
aN

 = 2×



0 1/2 0 3/2 0 5/2 · · · N/2
0 0 2 0 4 0 · · · 0
0 0 0 3 0 5 · · · N

0 0 0 0 4 0
. . .

...
...

...
...

...
...

...
. . . N

0 0 0 0 0 0 · · · 0




a0

a1

a2
...
aN



=: D


a0

a1

a2
...
aN
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Chapter 6

Summary and Future Work

Zombie Vortex Instability (ZVI) is a new finite amplitude instability driven by the interaction
of horizontal shear, background rotation, vertical stratification. The instability comes from
nonlinear baroclinic critical layers excited, the singularities excited by vortex. When the first
generation of critical layers are excited, the logarithm singularity structure of the horizontal
velocities will generate the discontinuity on vertical vorticity (vortex sheet). Vortex sheet
are unstable structures and a secondary instability, such the Kelvin-Helmoltz instability or
Rossby wave instability will appear on the vortex sheet, thus a new vortex is spawn on the
location of critical layers. Those new born vortex will generate their own baroclinic critical
layers. The newly form critical layers will spawn vortex. The self-replication process will
continue until the whole system is fulled with critical layers and vortex, and thus reaches to
a turbulent state.

We present a parameter map, in terms of the physical ingredients in the system. The
parameter map shows clearly under what condition ZVI will be excited. ZVI has been found
to exit not only for Keplerian case, but also for numerous parameter cases, with both anti-
cyclonic and cyclonic regimes. ZVI is created and sustained under the condition that the
stratification, rotation and shear are on the same order, which is believed to maintain the
long lasting of the vortex that excite critical layers. When excited, ZVI shows clear patterns
and can be observed in five stages, the formation of critical layers and vortex sheet, the
roll up to zombie vortex, the self-replication of zombie vortex and the formation of zombie
turbulence.

Two kinds of critical layers exits in stratified rotational shear flow, the barotropic critical
layers and the baroclinic critical layers. Critical layers are mathematical singularities that
are smoothed out by either nonlinear effects or viscous effects or both. The analytic solution
of the barocolinic critical layers are provided with matched asymptotic expansions, showing
the dual layer structure. The nonlinear dominate critical layers will bring in the instability
and generate the zombie vortex. Viscous dominate critical layers will dissipate and stabilize
the system. The critical layers are found to be logarithm singular on the horizontal velocity,
which leads into a vertical vorticity jump conditions. The jump conditions bring in the
secondary instability that generates vortex. The viscous effects dissipate the critical layer.
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The critical Re for ZVI is at the order of 106. ZVI is killed by the viscosity due the high
dissipation on the critical layer length scale.

In order to simulate the dynamics of the stratified rotational shear flow, we have de-
signed and developed several sets of numerical algorithm, including semi-analytical method
in shearing sheet coordinates with inviscid and viscous cases, a brand-new semi-analytical
numerical algorithm with one direction non-periodic with Chebyshev polynomials. The al-
gorithm works correctly as second-order accurate and generates the zombie vortex.

The main questions for ZVI have been answered by this thesis. The left-overs are not
very exciting but yet worth of exploring. The main goal remains is, can we actually build
up the experiments in the laboratory to observe ZVI. The key questions in the experiment is
how to observe the critical layers and maintain them in a long time. Once ZVI is verified in
the experiment, the next step shall be, despite the fact that there are several hydrodynamic
instabilities claimed to exist in the accretion disk, which one shall be the dominate? This
can be explored by setting up the numerical experiments with parameters that will generate
two or more instabilities in the system, and let them compete. The one lasts successfully
suppress other instabilities will last to end, shall be the candidate for generating turbulence
in the accretion disk.

However, it may take a long long time to verify whether our theory is right or wrong,
with the real observation of the accretion disk in the universe which has last so long as close
to eternity compared with human’s life. I am pessimistic about the probability whether
my work shall be approved or disapproved in my lifetime, or even in the lifetime of the
next several generations, while yet I am optimistic about the existence of such a day, and so
delighted to have such opportunity to contribute to the knowledge of human’s understanding
of our universe.
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