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ABSTRACT OF THE THESIS

What Makes Party Systems Different?

A Principal Component Analysis of 17 Advanced Democracies 1970-2013

by

Zsuzsanna Blanka Magyar
Master of Science in Statistics
University of California, Los Angeles, 2017

Professor Mark Stephen Handcock, Chair

Parties are the main vehicles of representation in modern, democratic societies. Party sys-
tems, that is the number and the size of all the parties within a country, can vary greatly
across countries. There is an ongoing debate in the political science literature about the
appropriate way to reduce the dimensionality of the cross-country party system data for
comparative purposes. This thesis reviews that literature and offers a new solution: Princi-
pal Component Analysis to find the most important information in the data matrix. I use
data from 17 advanced democracies from 1970-2013. I conduct analyses using various related
methods (Principal Component Analysis, Principal Component Analysis on the Residuals,
kernel Principal Component Analysis, Non-Linear Principal Component Analysis, Principal
Component Analysis on log-ratio transformed variables and Principal component Analysis
on non-centered variables). I find that the most important differences across countries are:
“the size of the biggest two parties”, “competition between the two biggest parties”, “exis-
tence of a third party” and “balanced multipartism.” I argue that most of the current political
science literature uses summary measures that are only correlated with the first of those four
dimensions. I suggest a strategy for incorporating a measure of the second dimension that

relies on indices of opposition structure.
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CHAPTER 1

Introduction

In the modern world, political parties are the main vehicles of political representation. How-
ever, the number of parties that win seats in the legislature varies widely across countries.
This number depends on the electoral system (Duverger||1954; |Lijphart/|1994) and on the

social cleavages in the society (Lipset and Rokkan|/1967)).

The number and size of the parties within countries were some of the first data that
were readily available for political science. In the 1960s and 1970s, political scientists argued
that the variation in the size of the party system determines how parties can interact with
each other, on the whole party systems ought to be important for politics (Sartori 1976]).
It was not easy to analyze the data however; since party systems vary widely in size and
shape (Kitschelt| 2008). To determine the causes and the consequences of the differences
between these party systems, political scientists hoped to find patterns across countries.
They constructed typologies by grouping together parties with similar party systems. These
groupings sort the countries, partly based on the number of parties, partly based on the sizes
of the parties and how the parties behave in the elections (Duverger|1954;|Dahl||[1966; Rokkan
1970; Mair|{2002)). However, often the demarcation line between the groups is decided based

on how the parties behave, which could already be an outcome of the party system itself.

To avoid the subjectivity, another group of political scientists tried to summarize
the party system size in a single measure, based only on the legislative seat shares of the
parties (Laakso and Taagepera[1979)). Though it would be straightforward to characterize the
political systems of the countries with the sheer number of parties in the legislature, political
scientists argued, that we needed to know not only the number but the size of the parties

as well, since small parties have less influence on the political processes (Blondel 1968]).



Accordingly the notion of a relevant party was born. Political scientists, however, defined
the relevant parties differently, and offered many different solutions as to how to weight the
number and size of the parties. The most important question at this time was whether to
weight big parties more (as they are relevant) or weight small parties more (so that the index
stays sensitive to small changes). This debate points to a classical dimensionality reduction
problem: how to reduce a high-dimensional dataset in such a way that all the important
information is retained?” However, even with the various measures political scientists did not
find any systematic impact of the party system size on politics. Thus the project to describe,
group, and measure party systems slowed down. Today, very little research concentrates on

how the party system influences politics (Kitschelt|2008)).

In this paper I revive the previous research agenda, that aimed to understand what
makes party systems different from each other, but this time I use another set of dimen-
sionality reduction technique to group together the countries that are most alike. Using
legislative seat share data from 17 European countries, I conduct a Principal Component
Analysis (PCA), a Kernel Principal Component Analysis (kPCA), and a Nonlinear Corre-
spondence Analysis (NLCA) to find the latent dimensions that make party systems different
from each other. The seat share data is compositional. This means that the sum of the seat
shares equals to onell] This may cause issues with the PCA analysis as the dataset does not
have subcompositional coherence (Aitchison |1983). For this reason I also conduct a PCA on
the log-ratio transformed and the non-centered variables. I then compare the categories that
I find in my analysis to the categories that the qualitative researchers established. Finally,
I compare the categories to the party system indices that political scientists have created to
see what features of the party system these indices measure. Through this analysis I implic-
itly can compare the typologies with the party system size measures. I find that while the
typologies divide the countries based on the sizes of their party systems and the competition
within the party system the traditional party system measures only measure one aspect, the

size of the party system. I suggest that the opposition concentration measures may offer a

!Compositional data “consists of vectors of positive values summing to a unit” or any other constant for
all vectors (Aitchison and Greenacre|[2002).



solution and can measure the competitiveness of the party systems.



CHAPTER 2

Literature Review

The number and relative sizes of the parties is one of the main characteristics of the political
system in any developed country. Most country studies in political science include a de-
scription of the political development of the party system. However, each country’s political
system developed independently and the interactions of the parties may seem to be unique
from this perspective. Thus, in spite of the ample information available, political scientists
have struggled to understand the extent to which these interactions are determined by sys-
tematic, structural factors and the extent to which they are determined by the stochastic

political behavior of the elites.

Two big schools of thought emerged in the literature. First, some scholars classified
the party systems into several broad groups with qualitative methods. The aim of this clas-
sification effort was to find groups of countries in which the parties and politicians behaved
similarly. At the same time, other scholars created continuous measures to quantify the size
and shape of the party systems that could be used in comparative quantitative analyses.
Before running the PCA analyses, I am going to first review some of the most important

party system typologies and party system measures from the previous literature.

2.1 Typologies

In any parliamentary system, a majority is needed to pass legislation. Normally, this leg-
islative majority chooses the prime minister and the government. The rest of the parties are
considered to be in the opposition. The most canonical difference in party systems across

countries is between two-party and multi-party systems. In a two-party system, the winning



party always holds the legislative majority by itself. In contrast, if there are many parties,
no party may hold a majority by itself. If none of the parties wins a majority, some parties

have to form a governing coalition.

Duverger| (1954)) argues that plurality electoral systems (in which only one candidate
can win in a given district) lead to a two-party competition, at least on the district level. This
is because the voters do not to waste their vote on third party candidates, thus small parties
fall out from the competition. By contrast, proportional representation electoral system (PR)
leads to a multi-party party system. Under PR, several candidates can win seats within a
given electoral district. The parties get seats based on their vote shares in the election
(thus a party that got 15% of the votes receives roughly 15% of the seats in the legislature).
Under this system, small parties can gain legislative representation. Duverger considers the
two-party system the ideal type, while he thinks that multi-party systems are unstable and
inchoate, as the coalition governments are less stable than single party governments. In
practice, however, there are very few countries with ideal two-party systems (countries that
have close to two-party systems, at least in the 1970s include Britain, the United States,

Canada, New Zealand, Austria and Australia (Sartori|1976)).

The rest of the countries are multi-party countries. Within the countries with non-
majoritarian electoral systems, there is a wide variety of different sized and structured party
systems. One reason for this again is the electoral system: In some of the PR countries,
electoral districts are relatively small, - there are electoral districts in which only a few seats
get allocated. Even though within the electoral districts seats are allocated proportionally,
the smallest parties cannot gain seats (for instance if there are only 5 seats available a
party with 15% of the votes may not gain seats). However, the variation is not limited to
electoral causes. Even in countries with the same electoral system, different party systems
have developed, and keep evolving. To impose order in the chaos (to group similar countries
together), political scientists classify the multi-party countries into more refined categories

(Blondel [1968; |[Rokkan! |1970; [Sartori |1976]).

Blondel (1968)) is the first to recognize that not only the number of parties, but

also their relative sizes, are important to compare party systems, as small parties are less



important than big ones.[| Most of the typologies following Blondel (1968)) sort the countries
based on the number of the parties and based on how the parties compete. Depending on
their approach, some authors argue that the competition style is a direct outcome of the
party system size and structure, while others argue that the competition between the parties
is an independent feature, a separate dimension. Rokkan| (1970)) classifies the countries based
on whether the parties in the party system are roughly the same sizes (compared to each
other) or whether there is one or more dominant parties facing small partiesﬂ In a related
paper, Laver and Benoit| (2015]) create a party system classification based on the government,

and coalition potential of the different parties[]

Other authors consider competition a separate feature. |Dahl (1966)sorts the coun-
tries into different categories based on whether the parties only compete or at the same
time cooperate with each other (which happens in party systems in which parties regularly
have to build coalitions). He argues that the competition style is directly influenced by
the party systemﬁ On the other hand, Sartori| (1976|) argues that party fragmentation and
the ideological distances between the parties are two separate characteristics and these two
dimensions determine the type of political competition in a country.ﬂ Finally, Mair classifies
party systems based on whether a country has open or closed party competition, whether

new parties can enter the race. Thus the party system defines the type of the country (Mair

'He sorts the party systems into two-party systems, two and a “half” party systems, multi-party systems
with a dominant party, and multi-party systems without a dominant party.

2Rokkan’s categories are named after the sizes of the parties in these groups. For example the British-
German “1 vs. 1+1” system describes a two and a half party system — a dominant party facing one dominant
and one small party (Rokkan|/1970)).

3Laver and Benoit, (2015) establish categories based on how the ranked parties (biggest, second biggest
etc.) could form winning coalitions (reach the 50% seat share threshold). Thus the authors classify countries
based on their party seat share constellations. The authors do not explicitly show the countries that belong
to each category, as they argue that the multi-party countries shift in and out of these categories quite
frequently, based on small changes in the electoral results.

4Dahl| (1966)claims that the opposition is competitive in two-party systems —in which only two parties
compete— while it is cooperative-competitive in multi-party systems —in which small opposition parties have
a chance to join the government coalition without changing the entire government.

SSartori draws a distinction between countries in which two ideologically close party groups compete (lim-
ited or moderate pluralisms), and between countries in which the opposition is fragmented, and ideologically
diverse (extreme pluralisms). In his classification, the cut off between moderate and polarized pluralism is
around five or six parties (Sartori||1976, 328).



2002) [

2.2 Summary of Typologies

In a later part of this paper, I examine the most important features that separate party
systems, and I compare these to the typologies I discussed above. Table summarizes
the typologies created by previous literature. The table lists the countries that the authors
bring up as examples for the categories. Most of the typologies were created in the 1960s
and 1970s and as a result the universe of the cases that the authors discuss is primarily
limited to European democracies. Often the authors are cautious about discussing the
political institutions in non-democracies or newly democratized countries. Greece, Spain
and Portugal are also missing for the same reason (Greece becomes a democracy in 1974,

Spain in 1978 and Portugal in 1976).

As the authors are writing in the same decade (apart from Mair| (2002)) and |Laver,
and Benoit| (2015)) the typologies are comparable to each other. Most of the authors sort

two-party systems in their own separate categorym

There is less consensus about countries with more parties. As the number of parties
within a country increases, the consensus on the ideal category for the country decreases.
Countries that have party systems close to a two-party system (Germany, Ireland), get their

own separate category in most of the classifications. However, it is unclear whether the

6Closed party systems are those where the alternation in government is fully predictable and new parties
have no chance of gaining power. In contrast, it is unclear how the next government is going to look in an
open system. Mair argues that open competition emerges in transitional (inchoate) party systems, or is a
sign of party system failure which is reminiscent of how Duverger characterized multi-party systems (Mair,
2002]).

"There is considerable agreement that New Zealand, the United States and Australia are within this
category, and Austria (at this time) as well. [Sartori (1976) argues that the consensus is that most of
the anglo-saxon countries are close to the two-party system ideal (Britain, the United States, Canada, New
Zealand, Australia). However, in Canada there is a clear third party, and in Australia a single party competes
with a two-party coalition. Often Austria also listed as a two-party system, although it does not adhere to
the “two-party competition” ideal. In Austria in the 1960s and 1970s the two biggest parries, SPO and OVP
formed a coalition to keep the radical right FPO out of the government



Table 2.1: Party System Classifications

Author Criteria Typology Countries
Sartori:
1. England, United States,
](:;lé\éigger Numbers of Parties ;'Tﬁiii)frg tsygt?nn:ms New Zealand, Australia,
' party oy Canada, Austria
2. All else
1. Strictly competitive
2. Co-operative-competitive 1. Britain
2a. two-party 2a. United States
Dahl Competitiveness 2b. multi-party 2b.France, Italy
(1966) of the Opposition 3. Coalescent-competitive 3a Austria, Wartime Britain
3a.Two-party 3b. (no example)
3b. Multi-party 4. Colombia
4. Strictly coalescent
1.United States,
1.Two-party systems New Zealand, Australia,
2. Two-and-a-half-party England, Austria
Blondel Numbers of parties systems. . 2. Germany, Canada, Belgium,
(1968) Relative size of parties 3. Multi-party systems with Ireland
one dominant party 3. Denmark, Norway, Sweden,
4. Multi-party systems Iceland, Ttaly
without dominant party 4. Netherlands Switzerland,
France, Finland
1.The British-German
. 1ve. 141 system 1 Austria, Ireland,
Numbers of parties 2. The Scandinavian < .
Proximit, “1 vs. 3-4” system some periods Belgium
Rokkan, o ) Y 2. Sweden, Denmark, Norway
to the majority 3. Even multi-party systems .
(1970) “ " 3a. Finland, Iceland
Evenness 1vs. 1vs. 14 2-3 .
", . 3b. Netherlands, Belgium,
of the competition 3a. scandinavian .
s . » Luxembourg Switzerland
split working class” systems
3b. segmented pluralism
1. Norway(or 3),
Sweden (or 3), Japan, Uruguay,
India Turkey
2. Canada, Australia, Austria,
. . England, New Zealand,
. 1. Predominant party regimes N
- Party fragmentation United States
Sartori . 2. Two-party systems .
(number of parties) . 3. Switzerland, Netherlands,
(1976) - . 3. Moderate pluralism
Ideological distance . . Israel, Denmark, Iceland,
4. Polarized pluralism
Luxembourg,
Belgium, Ireland,
France (after 1958), Germany
4. Finland, Chile,
France(before 1958), Italy
Type of Competition 1. Denmark, the Netherlands,
(alternation post authoritarian systems
Mair: of the government, 1. Open Party System 2. United Kingdom,
(2002) new parties: 2. Closed Party System New Zealand (till mid 1990s),
in the system, Japan(1955-93, Switzerland,
in the government) Ireland (1948-89)
1. Single Winning Party
2. No Single Winning party
Laver and Benoit Type of Competition 2a. Strongly dominant party . .
(2015) (potential (S2 +S3 < W) countries change categories
winning coalitions) 2b.Top- three (S2 + S3 < W)
2c. Top-two
2d.Open

Note: The table is modified from Table 1 in |Mair| (2002). The countries in the different categories are the authors’ own except

for Duverger, where I take my information from (Sartori||1976).




Scandinavian countries are their own category or not.ﬁ The most problematic countries to

categorize into the typologies are Finland and Franceﬂ

Overall, it seems, that finding the proper categorization of multi-party countries is
more difficult than dividing two-party and multi-party countries. However the typologies, in
fact, are not too different from each other. Rokkan’s (1970) idea to categorize parties based
on how parties face each other within party system is made more precise 40 years later
by Laver and Benoit| (2015). [Sartori/s (1976) distinction between moderate and polarized
pluralisms creates a very similar categorization to Mair| (2002)). All typologies suggest, that
apart from the size and relative power of the parties, we should consider the competition

within the party system to separate countries into groups.

2.3 Indices

In contrast to the authors who sort countries into party system categories, other authors
summarize party systems with a single, continuous variable. Later, I will calculate some of

these measures to compare them with the results of the PCA analysis.

2.3.1 Maximum Entropy

Kesselman| (1966) develops an entropy-based hyperfractionalization index to characterize the
shapes of party systems (Taagepera and Shugart| 1989, 5). The entropy measure evaluates
the probability of the i-th bin in a histogram. It counts the number of ways how we could

rearrange the parties while still arriving at the same histogram (Bishop 1995).@ Kesselman

8While Sweden and Norway are usually in the same category, the appropriate category for Denmark and
especially Iceland is less clear.

9France has several parties but these parties form coalitions, so depending on the author the country is
categorized as either a quasi two-party system; or a party system with several, equally strong parties. Finland
on the other hand gets categorized with the Netherlands (and France) by [Blondel (1968) as the country has
many small parties, [Rokkan| (1970) puts the country into the same category as Iceland (Scandinavian split
working class country), while |Sartori (1976]) sorts the country to a category in which countries with a
dominant parties are (along with Italy).

10For the 4-th bin there are N;! such ways how we could arrange the objects and arrive at the same
histogram. Where N is the number of objects and N; is the number of objects in each bin. Altogether



defines his index as [=exp[— Zf p; log, pi] where £ is the number of candidates or lists, p;
is the proportion of vote for i-th list and Y-, p; = 1 (Kesselman|([1966)).

Thus the hyperfractionalization indices uniquely characterize each party distribu-
tion. However, entropy-based indices are sensitive to the smallest changes in the distribution.
This can make the measure unreliable, as similar party systems may end up with very dif-

ferent numbers (Laakso and Taageperal/1979).

2.3.2 Concentration

Next, in order to give more weight to bigger parties in the system and minimize the weight of
smaller parties (to make the measures more reliable), political scientists adapt an economic
measure. The basis of this family of measures is the Herfindahl-Hirschman concentration
index, which is the sum of squares of the market share of each company in a given market
HH= Y~ s*. (Where s is the market share of each company). The range of this index is 0
to 1 where a 1 means that the market is dominated by one company and 0 means that all
companies are equal.E Rae and Taylor argue that this measure shows the probability that

two randomly selected voters would vote for the same party (Molinar|[1991).

Laakso and Taagepera (1979) argue that an intuitive transformation is 1/HH (ﬁ),
which shows how many equal sized parties would be equivalent to the current party system.
They call this measure the Effective Number of Parties (ENP). Currently the ENP is prob-

ably the most widely used measure of party-system concentration. However the measure

the multiplicity of the objects can be given by W = HN ]Iv_l the entropy is the negative logarithm of the
multiplicity. S = —%{lnN! — >, InN;!} if we assume that N — oo and use Stirling’s approximation
we find that S = — 3", p;lnp;, the entropy. Consequently, a very high peaked histogram has a very low

entropy (a histogram with one bin would have an entropy of 0) while a uniformly distributed one has a high
entropy. (Bishop||1995).

1 According toWildgen| (1971)) this measure measures “the voters’ tendencies to diverge or converge relative
to parties or candidates.”

12Rae and Taylor| (1970) calculate a fractionalization index by exchanging the companies’ market shares
to seat shares in the formula, and changing the formula to 1-HH or 1-3_ s? where the (si,....,s,) are the
legislative seat shares of the parties. This measure is in fact the Effective Number of Legislative Parties.
Depending on the issue at hand, this measure can be calculated as 1-Y_ v? where (vy, ..., v,,) is the vote share
of all the parties that ran in the elections.
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has been criticized both because it insufficiently weights big parties, and because it does not
show small changes in the party system. The generic formula for this family of indices is:
N, = [2%09]"/(1=9) (Dunleavy and Boucek|2003). Where we raise the decimal vote shares to
a power (a) add these numbers together and raise the resulting summed number to 1 divided
by (1-a). We can see that the ENP is a special case of this formula where a=2 (Dunleavy
and Boucek|2003).

2.3.3 Party Power and the Number of Parties

The first criticism of the ENP is that it overestimates the number of relevant parties. The
critics argue that we should only consider parties to be relevant if they have a real probability
of joining a governing coalition (Kline/2009) or at least of influencing the behavior of parties
that do have coalition potential (Sartori|1976)). Thus new measures are created to put more

weight on the bigger parties if they have a higher coalitional potential or “power”.E

The Shapley-Shubik power index shows how many times a party would be pivotal
in coalitions (Shapley and Shubik 1954)@ The Banzhaf index measures how many times a
coalition would shift from winning to losing if a particular actor were to change their vote
(Banzhaf|1965) [F] [Caulier and Dumont| (2005), |Grofman! (2006)), and Kline (2009) all suggest

using the sum of squared power shares instead of the seat shares of the parties in the formula

13 In practice all power indices use the same data as the party number indices: the seat shares (or the
vote shares) of the parties. The only difference is that, based on some combinatorial rules, the parties may
receive bigger or smaller weight than their original seat (vote) shares.

14This measure starts from the premise that all possible coalitions are ordered as the parties join them
in particular order. After listing all coalitions, in each coalition the pivotal player is identified. The pivotal
player is the player that can make the coalition’s total vote share pass the threshold that is needed to win
the particular vote. The index is calculated for each actor (party) and it shows how many times a player
would be pivotal out of all possible permutations of party coalitions.

15Mathematically the Shapley index for a simple game of n players for party i is the following: ®; =
L 2 {iswings—in—sy(8 = DI(n — )1, (s = [S]). Where the sum is taken over all such coalitions S that
i is in S, S is winning but S — () is losing. With similar notation the Banzhaf index is the following:
Bi = 2,%1 Z{ifswingsfinfs} 1 (Straffln Jr.|1988). In practice, bigger parties could get a higher Banzhaf
power value than Shapley-Shubik value. This is because in an oversized coalition, a big party may be the
only one whose leaving could swing the coalition from winning to losing so it would be the only party that
is relevant for the calculation of the Banzhaf index. But the big party still may not be a majority party and
may therefore need coalition partners, so it would not be the only party relevant for the calculation of the
Shapley-Shubik value.
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of the ENP in order to address the potential over-valuing of small parties. Mathematically

this measure is: LTB =1/, B; where B; is the Banzhaf score of i-the party.m

Several other measures have been created to increase the weight of bigger partiesm
Dunleavy and Boucek suggest that because all of these measures are correlated with the size
of the biggest party, we might as well use the latter to measure the size of the party system
(2003). They suggest using V% where V; is the vote share of the biggest party. This is also
suggested by [Taagepera| (1999).

In practice, studies find that there are sharper step-downs in the number of parties
in the measures modified by the power of parties (Kline 2009)). In fact, this modification
amplifies that problem that ENP has, that some very different party configurations end up

with the same index numbers.

2.3.4 Full distribution

The second major criticism about the ENP measure is coming from the other direction.
Some authors argue that by weighing big parties more than small parties, a lot of different
party configurations end up with the same ENP value, thus the index may mask important
differences among the party systemsE Thus in recent years, some political scientists have

created measures, to describe the full distribution of parties in order to measure the nuanced

16This measure in practice ends up having sharper step-downs in the number of parties than the ENP
when certain thresholds (of coalitional potential) are hit. Especially around these thresholds, the measure
diverges from ENP. Kline argues that we should use this measure when we are interested in outcomes related
to coalitional potential such as government duration (Kline|2009, 21)

1"For instance [Molinar| (1991) argues that we should always count the winning party as one, and then
he suggests that we should calculate the ENP with all the other parties and add the two values together.

T2y
Mathematically this index is the following M =1+ <Z£ — * Zi”; — ~ | , where v are all the parties. and

1t 1 @
V; the voteshare of the opposition parties. This index is criticized by [Dunleavy and Boucek| (2003) as it
behaves erratically under certain circumstances.

8 However, the original goal of Laakso and Taagepera| (1979) was to create exactly such a measure. They
believed that the party systems that they characterized with the same value were indeed similar. “The
effective number of parties is the number of hypothetical equal-size parties that would have the same total
effect on fractionalization of the system as have the actual parties of unequal size” (Laakso and Taagepera
1979). The goal of the authors with the index was to create a measure that will not change significantly
when there is an additional small party in the party system
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changes in the party system. These efforts create predicted vote shares of each party by

using the log-ratio transformed party vote shares. (Katz and King|[1999; [Rozenas 2011).@

2.4 Measuring the Party System: Summary

Overall, there is a trade-off between how comprehensively we would like to describe the party
system on the one hand, and how much we would like to identify the bigger more relevant
parties. The former approach yields a measure that weights smaller parties more, while the
latter yields a measure that weights larger parties more. All the measures were created to
reduce the dimensionality of the party system data matrix by extracting the most important
information in the dataset. The debate between scholars has been over which information
to keep and which information to discard. In the following section, I will use another way to
reduce the dimensionality of the data— Principal Component Analysis — and I will compare
the results of these classical measures. Currently, in most empirical studies that evaluate
whether certain factors influence government policies, the author picks one or more controls
for the party system size (which is usually the ENP) without sufficient attention to what
the indices actually measure. This may be one of the reasons why previous studies on the

influence of the size of the party system did not lead to substantive results.

19Katz and King| (1999) use district level electoral data from England to calculate the changes of party vote
shares within the system. With the full distribution, they predict the expected vote share for each party in
the districts and can calculate whether the politicians have incumbency advantage. [Rozenas| (2011)) uses the
relative sizes of the parties similarly. The parties are not defined by their names but by their electoral results
(biggest, second biggest etc.). Both of these papers use the mathematical transformation that is suggested
by [Aitchison| (1986) for compositional data. For party J let the voteshares in the districts i (¢ = 1,...,n) be
Vi = (Vi1,....Viy—1). In addition let Y; be the vector of J-1 log-ratios. Y;; = In( Vij ). Then we transform the

Vig
eff’&—yif) where Y; is the vector of J — 1 to get the observed voteshares Katz and
1+57 Feap(viy)

voteshares as V;; =

King| (1999).
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CHAPTER 3

Data

In this paper, I use dimensionality reduction techniques to explore the underlying structure
of the party-system dataset. This will make it easier to understand what the party system
size indices measure. The data that I am using consists of the party seat shares in the
legislature of 17 European countries from 1970 to 2013[T In each row (country-year) of the
matrix, I rank parties based on their sizes. The first variable is the seat shares of the biggest
parties; the second variable is the seat shares of the second biggest parties etc. Thus, the
dataset does not contain the identity of any individual party, but it allows me to compare
the party systems across countries. If all the parties have been accounted for in a given
country-year, the next entry in the row is a 0. The number of parties ranges from 3 in
Austria from 1970-1986 and Greece in 1981-1984, to 20 in Italy in 2006 and 2007. The

matrix that I create has 719 rows and 20 columns.

Figure |3.1 shows the party-system size distributions from around the world. The
different colors indicate the different countries. The plot shows that party systems vary
considerably across countries, and even within countries over time. Since the dataset mea-
sures the percent of legislative seat shares over the total number of seats, the dataset is a
compositional dataset. The sum of seat shares within a country-year add up to 1 and each

datapoint is between 0 and 1 (Aitchison n.d.).

To clarify how the party system structure changes within countries, in Figure

!The countries in the dataset are Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland,
Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, and the UK. Data available:
http://www.parties-and-elections.eu/countries.html. T use the legislative seat shares of the parties. Later to
develop the relevant indices, I also use the identity of the government (also available above). Countries that
democratized later than 1970 appear in the dataset after the first democratic elections.
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Party Systems in 17 OECD Countries 1970-2013
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Notes: The plot shows the party system distributions in all 17 countries from 1970-2013. Different
colors indicate different countries. The distribution varies across, and within countries, through

the years.

Figure 3.1: Party System Distribution, 17 Countries

and in Figure[3.3, I present the party system distributions of selected countries. The shading
shows the year of the observation. Lighter shades show the years closer to 1970, while the

darker shades show years closer to 2015.

As Figure[3.9 shows, in countries such as Spain, the UK, Greece and even Sweden,
the party system is fairly stable. In these countries the party system is close to the two-party
ideal, and the electoral system is close to majoritarianﬂ The odd country out of this group is

Sweden, which has a big district PR electoral system. Still, the party system did not change

2The UK has a majoritarian (first-past-the-post) electoral system. In addition, while Spain and Greece
have proportional representation (PR) electoral systems, they have small electoral districts and thus con-
centrated party systems.
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Figure 3.2: Party System Distribution by year, Spain, Sweden, United Kingdom, Greece

considerably over the years.
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Figure 3.3: Party System Distribution by year: France, the Netherlands, Norway, Portugal
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On the other hand, we can see that the party system varies considerably over time
in France, the Netherlands, Norway, and Portugal (Figure . From this group of countries
Portugal is often classified together with Greece and Spain because the country has a PR
system with small district size. However, as we can see, the party system has changed
a lot throughout these years. In Franceﬂ parties often split and merge due to coalitions
competing. Overall, we can see that while there is some correlation between the electoral
system of the countries and the stability of the countries’ party systems we can see some
deviation form the traditional wisdom that the party system is more stable in majoritarian

countries.

3France has a two -round majority plurality electoral system. This means that voters have to vote again
if a majority winner is not selected in the fist round of the elections. Parties form coalitions to support the
the ideologically closest candidate in each district.
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CHAPTER 4

Principal Component Analyses

4.1 Simple PCA

In this paper, I first analyze the results of a Principal Component Analysis (PCA) that I
conducted to explore the structure of the party system dataset. PCA is a dimensionality
reduction technique, in which the goal is to recover the minimum information needed to
reproduce the maximum information present in the data matrix. The method projects high-
dimensional data on a lower dimensional space. The lower dimensional space is determined
by the directions in which the data varies most, so the least amount of information is lost
during the projection. The projection is linear, so it can create an accurate summary of the

data if the data is Gaussian distributed.

In practice, the PCA estimation first calculates the dimension where the data has
the biggest variation. It then finds n orthogonal dimensions which explain the biggest part of
the remaining variation within the data. Mathematically, we would like to map vectors x™ in
a d- dimensional space onto 2" in a M-dimensional space (M < d) . This means that we need
a transformation matrix, a set of vectors that can help with this mapping. If we represent x
as a linear combination of orthonormal vectors such that z = Z?Zl z;u;, we can write this in
the following way: we are looking for such and x where & = M, zu; + 3% ,, 41 biu; (Bishop

1995)).

To arrive to the optimal solution, the PCA (similarly to the regression) reduces
the sum of squared errors of this approximation. The error can be written as z" — 2" =
% a1 (2 =bi)uy; as a consequence we minimize Eyy = £ YN |[zn =502 = L2 2 (20—

b;)?. If we calculate this optimization we can show that this minimum occurs when Yu; =
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Aiu;, where 3 is the covariance matrix of the set of vectors, and A are the eigenvalues (Bishop
1995| 310). Thus this is an eigen decomposition of the covariance matrix. In the result, the
eigenvalues are the scale and the eigenvectors are the direction of the new reduced dimen-
sions. We call the eigenvectors principal components. The eigenvector with the highest
eigenvalue is the first principal component of the data set (the dimension in which the data
has the most variation or the direction in which the data is the most dissimilar); the second

principal component is orthogonal to this dimension etc.

In this paper, I project the 719- dimensional party seatshare data matrix to a 20-
dimensional space (the number of variables). To do this, I first mean center the data. Then,
I find the eigenvalues and the eigenvectors of the covariance matrix. I do not scale the
variables at this point. Transforming the variables to have unit variance would mean that
the PCA is done on the correlation matrix instead of the covariance matrix. This could be
useful if the variables do not have the same measurement. However, in this case the variables
are all seat shares. Moreover, because the seat share data is compositional data, the scaling
would change one important feature of the data— that the seat shares add to one. Thus, in
this case, scaling may not be an optimal solution. In the later part of this paper, I discuss

what happens to the analysis when I standardize the variables.

Table 4.1: Eigenvalues and Explained Variance, PCA

Eigenvalues  Explained Variance Cumulative Variance

1 0.0184119950 70.62 70.62
2 0.0043036798 16.51 87.12
3 0.0020294706 7.78 94.90
4 0.0006882216 2.64 97.54
5 0.0003666149 1.41 98.95
6 0.0001657361 0.64 99.59
7 0.0000709305 0.27 99.86
8 0.0000171304 0.07 99.92
9 0.0000108457 0.04 99.97
10 0.0000048573 0.02 99.98
11 0.0000025334 0.01 99.99
12 0.0000011470 0.00 100.00

Sum 0.0260737

Since the purpose of the PCA analysis is to reduce the dimensionality of the matrix,
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next we have to evaluate the appropriate number of dimensions to use for the analysis. I plot
the screeplot, Figure[{.1, which shows in descending order how much of the total variance
the eigenvalues explain. Figure shows that the first four eigenvalues account for most of
the variation in the dataset. Table shows that the first four eigenvalues explain 97.54%

of the variation in the data.

Scree Plot PCA

0.010 0.015
| |

Variances

0.005
|

0.000

1 2 3 4 5 6 7 8 9 10

Notes: The plot shows the Scree Plot of the Simple PCA. On
the x-axis are the Eigenvalues, on the y-axis the unexplained
variance. We can see that the first four vectors account for most

of the unexplained variance.

Figure 4.1: Scree Plot, PCA

Thus, in the following paragraphs, I focus on the meaning of these first four principal
components. To analyze the source of the biggest variation in the data, next I picture the
eigenvectors recovered by the PCA analysis. Here, I call the weight of the variables in the
eigenvector as loadings. Figure shows the first four eigenvectors, or principal components,
that the analysis has recovered. We can see which parties get a weight in separating the
most dissimilar party systems over country-years. On the X-axes of the plots, we can see
the number of parties. On the Y-axes of the plots we can see the weights that each party

has in the given principal component.
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Figure 4.2: Loadings, PCA
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One of the benefits of the PCA analysis is that the lower dimensions of the data
may be more easily interpretable than the complex dataset (Jolliffe;2002)). The first three
principal components seem to show a clear picture of what makes party systems most unalike.
As Figure shows, the first dimension (PC1) contrasts countries where the sizes of the
two biggest parties are big relative to the other parties, with countries where the sizes of the
two biggest parties are small relative to the other parties. I call this dimension “Size of the
Biggest Two Parties.” The second dimension (PC2) contrasts the countries where the sizes
of the two biggest parties are close to each other with countries where the sizes of the two
biggest parties are far from each other. This dimension contrasts countries with two party
competition with countries with one dominant party. We can understand this dimension
as the “Competition between the Biggest two Parties.” The third dimension (PC3) is most
heavily influenced by the size of the third party, so it contrasts countries with a big third
party with countries with a small third party (we can call this dimension “Third Party”),
while the fourth dimension (PC4) is somewhat unclear. This dimension seems to be defined
by Parties 3-5, and, tentatively, I call it: “Multipartism.” From looking at the plot, this last
dimension may separate countries that have a balanced multi-party system from countries in
which the fourth and the fifth parties are non-existent or very small. In the next section of
this paper, I analyze more closely what this fourth dimension might be. All of the dimensions

(PC1, PC2, PC3 and PC4) are orthogonal to each other.

I plot the cases (which are the country-years) on the two-dimensional plane. First,
Figure[{.3 shows all the countries on the two-dimensional plane that the first two dimensions
(PC1 and PC2) create. This means that the location of each country is its projected position
on the PC1 and PC2 dimensions. The different colors indicate the different countries. We
can see on one side of Dimension 1 the United Kingdom and Greece, while on the other
end of this dimension Belgium and Finland. Dimension 2 separates Germany, Iceland, and
Luxembourg from Sweden and Norway. Later, I discuss how these dimensions relate to the

typologies and party system size measures.

Figure[{.4] shows the biplot. The biplot presents all the observations and the vari-

ables on a two-dimensional plane determined by PC1 and PC2. The parties (variables) are
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represented with red arrows, the n-observations are the dots. The arrows in relation to
the two-dimensional plane show how the dimensions are defined. The arrows are the least
squares projections of the variables to the plane, and the lengths of the rays are proportional
to the variances that the variables explain (Aitchison and Greenacre|[2002)). We can see in
Figure that the first dimension PCI1, is defined by Party 1 and Party 2. The second
dimension, PC2, on the other hand, is defined by the difference between the sizes of Party 1
and Party 2 (in the plot the arrows are pointing to different vertical directions). The size of
the arrows indicates how much variation gets explained by the variables. The arrows of the
variables: Party 1 and Party 2 are much longer than the rest of the arrows. This is because
the two variables have high variances. One of the characteristics of the PCA as a method is
that the result can get dominated by the influence of variables with high variances. As in
Figure /.3 in the biplot Figure[{.| we can also see how the dimensions separate the cases;
however, as I have all country-years in this plot, it is a little bit harder to read. Later in the
paper, I plot and analyze the location of each country, and I discuss the results in greater

detail.

4.1.1 PCA on the Residuals

In this section, I am going to investigate further what PC3 and PC4 mean. The analysis
above shows that PC1 and PC2 are mainly influenced by the sizes of the first two parties,
while PC3 is defined by whether or not there is a third party in the party system. One
reason why it is difficult to interpret PC4 could be that the sizes of the first two parties
(hence the variance of these variables) are so big that they mask how the other variables
relate to each other. To address this problem, I control for the sizes of Party 1 and Party
2 on the sizes of all the other parties to clarify the meaning of the lower dimensions. With
this step, I essentially normalize all the party systems by the size of the first two parties. In

practice, I regress all other party sizes on Party 1 and Party 2 (Vitt et al.|[1997).

On the residuals, I again perform a PCA analysis. We can examine whether this

method leads to a loss of information if we compare the variance explained by the third and
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Table 4.2: Eigenvalues and Explained Variance, PCA on the Residuals

Eigenvalues  Explained Variance Cumulative Variance

1 0.0021061443 60.79 60.79
2 0.0007068498 20.40 81.20
3 0.0003727539 10.76 91.96
4 0.0001695409 4.89 96.85
5 0.0000714137 2.06 98.91
6 0.0000175559 0.51 99.42
7 0.0000109821 0.32 99.74
8 0.0000048574 0.14 99.88
9 0.0000025608 0.07 99.95
10 0.0000011537 0.03 99.98
11 0.0000004139 0.01 100.00

Sum 0.003464353

fourth eigenvalues in the original PCA to the first and second eigenvalues of the PCA on
the residuals. Overall, Table shows that the remaining variation in the data matrix is
0.003464353. Out of this, the first eigenvalue explains 60.79%, which is 0.0021 comparable
to what the third eigenvalue in the original PCA (0.0020) explains (Table [£.2). The second
eigen value in the PCA on the residuals explains 20.4% of the variation, which is 0.00070,
similar to the fourth eigenvalue in the original PCA 0.0006 (Table [1.2)). The screeplot of the
PCA on the residuals Figure [{.5 shows that the first eigenvalue explains less variation than
the first eigenvector of the PCA. As previously however, most of the variation (96.85%) , is

explained by the first four eigenvalues.

As earlier, I show the loadings that determine these four lower dimensions (Figure
[4.4). The first dimension is mostly influenced by the size of the third biggest party (this
is what we have seen in the original PCA as well), and somewhat by Party 4, Party 5 and
Party 6. Thus, PC3 (in the original PCA) is probably indeed “Third Party,” and separates
countries with relatively small third parties from countries with relatively big third parties.
This makes sense if we compare this finding to the traditional typologies, which divided
countries that had two-party systems from countries that had multi party systems. The
second dimension is determined by the competition between Party 3, Party 4 and Party 5.

While I called PC4 “Multipartism.” before, the correct idea is probably the balance in power
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of the variance as previously, the slope is less steep.

Figure 4.5: Screeplot, PCA on the Residuals

within the party system (whether the smaller parties are equal sized or not), as discussed

above.

Similarly to the higher dimensional analysis, the biplot (Figure plots the vari-
ables with the observations on the plane determined by the first two principal components.
In this plot, we can see that the variation is smaller between the observations as it was
previously as we explained some of the variation in the sizes of the parties with the sizes
of the biggest two parties. No clear pattern of countries emerges in the plot. Luxembourg
and Austria are on one end of the “Third Party” dimension, while Belgium is on the other
side of this dimension (which means that compared to Belgium, Luxembourg and Austria
have relatively small third parties). In the second dimension, (which is the original PC4,
now identified as “Balance of the Party System”) Belgium is on one side of the dimension
opposite to Iceland and West Germany. Overall, there seems to be a bigger within country

variation on these dimensions than on the first two dimensions of the original PCA.
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Figure 4.6: Loadings, PCA on the Residuals
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Figure 4.7: Biplot, PCA on the Residuals
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4.2 Introducing Non-linearity to the PCA Analysis

The PCA analysis has limitations. During the PCA analysis, the data is linearly projected
to the new dimensions. The old data is decomposed as a linear combination of lower lever
dimensions (eigenvectors) and weights (eigenvalues). This projection finds the correct solu-
tion if the data is close to Gaussian distributed; however, if the data is non-linear, we may

not find the most important dimensions of the data (Bishop|/1995).

In the following sections, I am going to present two ways that non-linearity can
be introduced into the PCA analysis, and I am going to analyze the dataset through these
methods. The first method, the kernel PCA (kPCA), non-linearly transforms the dimensions
on which we are projecting the data, while the Non-linear Principal Component Analysis
(NLPCA) finds the optimal, potentially non-linear, quantifications (transformations) of the

data, at the same time as it projects the new data on linear lower level dimensions.

4.2.1 Kernel Principal Component Analysis (kPCA)

The Kernel Principal Component Analysis (kPCA) offers one solution to how to find the
appropriate reduced dimensional space if the data is non-linear. With this method, we first
map the data to a higher dimensional non-linear feature space. After this, in this non-linear
subspace, we do a traditional PCA calculation (Scholkopf, Smola and Miiller| 1997)). Thus,
the result will be non-linear on the original data space. |Scholkopf and Smola| (2002) find
that kernel PCA provides a better classification rate than does the linear PCA, and more

components can be extracted with this method than with the linear PCA.

As T discussed above, the minimum of the sum of squared errors in the PCA es-
timation can be found when the covariance matrix is diagonalized. The kernel PCA pro-
ceeds as the regular PCA. However, the covariance matrix of the data is transformed by
the kernel function. The covariance matrix of the non-transformed data is the following

Y=+ 3N zz! (where zy, k= 1...N, z, € RV, Y0 ), = 0).

In this instance, we transform the data to a feature space F by a function ¢, which
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will result in: RV — F,z — X. Hence the data will be the following: ¢(z1)....¢(zx) and
the covariance matrix of the data will look like this: £ = & SN, ¢(z;)¢(z;)7. After this
transformation, the solution is similar to the regular PCA. To minimize the loss function we
find the eigenvectors satisfying \ju; = Yu;. g, are the directions of the space. Let’s define
up = YN a¥¢(z;). The inner product space is K = k(z,y) = (¢(z),0(y)) = ¢(z) ¢(y)
by definition. We can use the kernel trick here, since for the estimation of the data matrix
the PCA uses the inner products of component scores (eigenvalues) and component loadings
(eigenvectors), consequently, we do not need the explicit function to calculate these. The
kernel trick means that we do not explicitly use the high order function, but, instead, we
directly evaluate kernel k. We use the inner product (¢(z), ¢(y)) between the images of two

data points x, y in the “feature space” (¢ space).

While the features ¢(z1)....¢(zy) are not unique, their dot product is unique. As
we do not use the explicit function, however, we cannot compute the principal components
themselves, only the kernel projected data which is computationally given by: (ux, ¢(z;)) =
(0 b o(x;), dx;) =) Sy ok (p(ay)p(x;)) = SN, oFk(x;, 2;) = Ka (Schdlkopf and Smola
2002).

Table 4.3: Eigenvalues and Explained Variance, kPCA

Eigenvalues  Explained Variance Cumulative Variance

Comp.1 0.0036424550 72.27 72.27
Comp.2 0.0008534100 16.93 89.21
Comp.3 0.0004065058 8.07 97.27
Comp.4 0.0001375362 2.73 100.00

Sum  0.005039907

For my analysis I use the Gaussian Radial Basis as my kernel function. This kernel,
k(z,2') = exp(—cl||lz — 2'||?) is a general purpose, smooth kernel that we can use if we do
have deeper knowledge about the structure of the data.ﬂ Below, I present the results of
the kPCA analysis. Figure [/.§ shows the eigenvalues that the kPCA recovers in the high

dimensional space in descending order. The first eigenvalue explains most of the variation

Lthe Gaussian kernel is “universal.” It is positive definite and they are invariant under the Euclidean group.
These are desirable properties if we want to estimate bounded continuous functions (Hofmann, Scholkopf]
and Smola |2008)
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in the data. Table [{.5 shows that in this case the first eigenvalue explains 72.72% of the

variation. Overall, the four eigenvalues explain 100% of the variation.

Kernmodel Screeplot
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0.0000

1.0 15 2.0 25 3.0 35 4.0
Index
Notes: The plot shows the screeplot Kernel PCA.

Figure 4.8: Scree Plot, kPCA

Figure[{.9shows the observations in the two- dimensional plane determined by the
dimensions kPC1 and kPC2. This plot is similar to the PCA plots discussed previously (the
PC2 has the loadings in the opposite direction from the PCA calculation, but since any PCA
analysis is non-directional method, this does not have any impact on the analysis). Even
though we cannot extract the loadings from this estimation process directly, we can see that
the first two principal components are very similar to the first two principal components I
obtained from the normal principal component analysis. To demonstrate this connection I
created show the covariances between the transformed datasets based on the first four PCAs
of the linear and the kernel PCA. (Table shows that the respective principal-components
are related. Since the results of the PCA analysis are easier to interpret than the results
of the kPCA analysis. Because the two sets of results are reasonably similar, I will use the

PCA dimensions later in this paper.
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Figure 4.9: Biplot, kPCA
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Table 4.4: kPCA and PCA Covariances

kPC1 kPC2 kPC3 kPC4
pC1  0.21 -0.00 -0.00 -0.00
pPC2 -0.00 -0.05 0.00 -0.00
pPC3 -0.00 -0.00 -0.02  0.00
pC4 -0.00 0.00 -0.00 -0.01

4.2.2 Non-Linear Principal Component Analysis (NLPCA)

I also conducted a Non-Linear Component Analysis (NLPCA) on the data. In this section,
I present the results of this analysis, and I compare them to the results of the PCA and
the kPCA analyses. The NLPCA is a special case of multiple correspondence analysis or
homogeneity analysis. Homogenity analysis maximizes the correlation between variables
at the same time as it does optimal scaling of the variables (optimal quantification of the
variables). One generalization of this method is a non-metric principal components analysis,
for which we can use not only categorical but also ordinal and ratio variables. (Michailidis

and de Leeuw|[1998)).

Thus, contrary to the kPCA, the non-linearity of the NLPCA does not come from
the transformation of the space on which we project the data, but from the potentially
non-linear optimization of the data matrix. During the process, the data matrix is op-
timized to ensure that the variable variances are explained to the greatest degree possi-
ble. The traditional PCA analysis minimizes the loss function over the eigenvectors and
eigenvalues. The NLPCA analysis also minimizes the loss over the admissible transfor-
mations of the data columns (de Leeuw|2005). This means that the PCA loss function:
Eyv = 250 58 (28 — b;)? is not only minimized with respect to b; but also with

respect to z; (or ;, since z; = u ). Thus, the solution will be: Su; = A\ (X) P

2Furthermore, [de Leeuw| (2005) discusses that not all transformations are admissible: the first restriction
is that the transformed variables must be in a convex cone K. Convex cones are defined by x € K implies
axr € K for all real « < 0 and x € K and y € K implies z + y € K. However, since « is in the cone,
this means that its positive linear function: ax + g with a < 0 must also be in a convex cone. Thus, this
could lead to the trivial solution that all transformations will be set to zero. To avoid this, de Leeuw argues
that we have to make another restriction: we can redefine the cone to only contain centered vectors, so the
cone K; NS is going to be a convex cone of centered vectors. Because of this the optimization problem
finds admissible transformations of the variables where the sum of the n — p smallest eigenvectors of the
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This means that the PCA is performed while the variables are also optimized. As
an algorithm, the method alternates between the two processes in an iterative way, until the
loss function is minimized, and the algorithm converges. At this point, neither the variable
quantifications nor the PCA solution change (Linting et al|2007). The NLPCA can be
used if the data is non numerical or if it is rank ordered since this method handles the non-
quantifiable distances between variables and can also clarify the results if there is non-linear
relationship between the variables (de Leeuw [2005). In this analysis I use the party seat
shares as numerical data, since in the dataset the parties are ordered from largest to the
smallest. Even though I specify the data as numerical, the NLPCA method considers these
variables as categorical. Thus, each observed numerical value becomes a category (Linting

2007).

As I discussed above, I did not standardize the data frame in the PCA and kPCA
calculations. As I also discussed above the two solutions from the PCA and the kPCA anal-
ysis were similar to each other. However, the NLPCA solution is quite different from these
two solutions (Figure . This is because the NLPCA method essentially standardizes
the variables when it creates optimal quantifications. By dividing the mean centered vari-
ables with their standard deviation we can standardize the variables to have unit variance
(which equals to performing the PCA on the correlation matrix). As we have seen above,
in the party system dataset the variances of the two first variables are big, and thus they
influence the solution the most. Through standardization, we give all the variables equal
weight. This diminishes the influence of the variances of the biggest two parties and could

lead to a solution which shows the structure determined by the sizes of the other parties [

As the biplot of the NLPCA shows (Figure , Ttaly is separated from the rest

of the countries on the first dimension. Italy is a unique case because the country had the

correlation matrix is minimized (or the sum of the p largest eigenvectors is maximized). Thus the final form
of the NLPCA is max,,cr;ns P As(R(X)), where the real valued function ¢ is defined as the sum of the
p largest eigenvalues of the correlation matrix R(X) (de Leeuw|2005).

3Thus the variation of the bigger parties (Party 1 and Party 2) becomes smaller and the variation of the
smaller parties (Parties 8-20) becomes bigger. Thus after the standardization Dimensions 1(NLPC1) and 2
(NLPC2) are influenced more by smaller parties than the first and second dimensions I recovered with PCA
and kPCA.
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Figure 4.10: NLPCA Objectplot, All Parties

most parties in the legislature out of all countries (20 in 2006 and 2007). Neither the non-

standardized kPCA nor the PCA analysis revealed that Italy is a special case previously/]

The screeplot (Figure |4.11)) shows that the first eigenvalue that the NLPCA ex-
tracts, explains less variation in the data, compared to the the first eigenvalue that the PCA
and the kPCA methods have foundP| This is because most of the variation in the data has

been generated by the variation in the sizes of the first two parties.

41f we remove Italy from the dataset, the first dimension separates Belgium from the rest of the countries
(as we have seen, the kPCA and PCA solutions also put Belgium at the far end of the dimension that
separated countries with two big parties from the rest of the countries).

5The scree plot of the NLPCA Figure |4.11 is less steep than the ones we have seen before: Figure

Figure
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Figure 4.11: NLPCA, Scree Plot, All Parties

Because I reduced the variance of the variables the first and second principal com-
ponents that the NLPCA analysis finds are influenced less by the sizes of the two biggest
parties. Because all parties get equal weights in determining the dimensions, NLPC1 and
NLPC2 separate the countries based on the actual number of parties. At the same time,
NLPC3 separates moderate party systems (party systems up to 5 parties) from the very
large party systems (Figure E| In order to be able to compare the results of the NLPCA
analysis to the kPCA and to the PCA results, in the following section, I reduce the number
of parties to ten. This way I can avoid that the countries with fragmented party systems

would define the Dimension 1 of the NPLCA.

Before reducing the number of the variables however, I examine the impact of this
change on the NLPCA and the PCA results. Figure shows how the loadings change if
we change the number or parties in the NLPCA analysis. The colors show the number of

parties in the analysis. The number of parties start at 4 and go up to 20. Figure shows

6 Pigure |4.19 shows that even though the sizes of the first two parties are in the opposite direction from
the rest of the parties, the sizes of the smaller parties weigh almost the same as the sizes of the bigger parties.
As Italy has many small parties that have a high weight in this analysis, the country gets separated from the
other countries. In NLPC1 apart from Party 1 and Party 2, Parties 7-16 have the highest loadings. NLPC2
is determined by the sizes of Party 1 and 2 and also it is influenced by Parties 3-11. NLPC3 is influenced by
Party 1 and Party 2 and Parties 3-5, while Dimension 4 has high loadings from the smaller parties, Parties
15-20.
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Figure 4.12: NLPCA, Loadings, All Parties

that the NLPCA does not find exactly the same solution when we increase the number of
parties. When we increase the number of parties the first parties get less weight. However,

the solutions are similar in their underlying structure. We can contrast the NLPCA solution

(Figure with the scaled (Figure and the unscaled (Figure PCA solutions.

Figure shows that even when we limit the number of parties radically, the
unscaled PCA analysis finds the same first two dimensions, and while the sign of the loadings
might change, the PC3 and PC4 remain very similar as well. This is because the small parties
get less weight in this analysis than the bigger parties, and the parties after the fourth party
tend to be small. This is not the case when we scale the variables Figure

A comparison between the scaled PCA Figure and the NLPCA Figure
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Figure 4.13: The Sensitivity of the NLPCA Results to the Change in the Number of Parties

reveals that the NLPCA solution is not the same as the scaled PCA solution. While eventu-
ally the dimensions that the two methods find seem to be similar (apart from the fact that
Dimension 4 is still unclear) the loadings change more when we change the number of parties
in case of the scaled PCA. Overall, it seems that small changes in the party system can influ-
ence the dimensions that the scaled PCA recovers more than it can influence the dimensions
that the NLPCA recovers. In contrast, the unscaled PCA solution remains pretty steady
when we include the smaller parties Figure This may indicate that we have to consider
a trade-off: the NLPCA analysis may be more suitable if we want to explore party system
changes when small disturbances happen within a single country, while the PCA analysis

may be more suitable for cross-country, cross-era comparison.
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Figure 4.14: The Sensitivity of the Scaled PCA Results to the Change in the Number of
Parties

Next, I analyze the results of the NLPCA results that I get when I limit the parties
to the 10 biggest parties in the legislature. As the following plots show, the dimensions that
the NLPCA recovers from the limited data, are similar to the ones that the methods finds

with the full dataset- although there are some differences.

Figure shows that when there are fewer parties, the first eigenvalue that the
NLPCA finds explains more variation of the data compared to the rest of the eigenvalues
than when all the parties are included. Again, this happens because if there are only the
biggest 10 parties included, the first two parties get more weight than if all parties are
included. Figure shows the two-dimensional plane that the NLPCA (with 10 parties)
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finds, and the object scores of the countries on these dimensions.

The object plot (Figure shows that Dimension 1 that separates the parties
(similarly to the PCA and the kPCA) is based on the size of the party system. In one
end of the dimension we can see Greece, Spain, the United Kingdom (countries that have
concentrated party systems) while at the other end of the dimension we can see Belgium, the
Netherlands and Finland (countries that have fragmented party systems). On one side of the
second dimension we can see Luxembourg, Iceland, while on the other side Italy, Denmark,

Belgium and Spain. Again, in this dimension the countries seem to change their positions

throughout the years.
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Figure 4.16: Loadings, NLPCA, Ten Parties

4.3 Issues with the Compositional Dataset

As we have seen, the result of the PCA analysis depends on whether we have the full dataset
or just part of the data. The cause of this problem is the structure of the data. My data
is a compositional dataset, the party seat shares add up to one > s; = 1. The size of each
individual data point depends on the size of the others within a case (Aitchison |1983)). The
potential issue with this type of data is that the correlations between the variables might

have a negative bias (Jolliffel2002) ['] Also [Aitchison| (1983)) notes that one of the issues with

If we have a D part composition [z1,...xp] where Zi’;l = 1 the covariance is going to be cov(xi2z1 +
.. txp) = 0 thus cov(z1,x2) +.... + cov(z1,2p) = —var(x;). According to|Aitchison| (n.d.) this means that
there will be at least one negative element per row in the covariance matrix.
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Figure 4.17: Scree Plot, NLPCA, 10 Parties

the compositional dataset is that the dataset does not have subcompositional coherence.
This means that if we have only a subset of the data, the PCA analysis on the covariance
of this subset will lead to a different result from an analysis on the entire dataset. It has
been widely debated in the literature how to run a PCA analysis on a compositional data
set. Omne solution would be to leave one party out of all the party systems and calculate
the PCA on the remaining data. However, in my dataset the party systems vary widely
in size. This means that leaving out one party from all party systems could change the
analysis considerably (as the smallest parties in some countries are relatively big compared
to other countries). Below, I apply some of the techniques that previous authors suggested
to analyze compositional data. First, I log-transform the variables, second, I perform a PCA

on non-centered variables.

4.3.1 PCA on Log-ratio Transformed Variables

One recommendation about how to perform any calculation on a compositional dataset
comes from |Aitchison (1986), who suggests the log-ratio transformation of the data. He

argues that this transformation makes the observations uncorrelated, and solves the issue
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Figure 4.18: Objectplot, NLPCA, 10 Parties

of subcompiositional coherence (Aitchison|[1983) [f| [Aitchison| (1986)) is aware of the problem
that some datasets may have zeros in them that we cannot transform with the log-ratio
transformation. He suggests adding a small number to the zeros so that the transformation
can be done. In this analysis, first I add 17> to each zero in the dataset, and then transform

the variables with centered log-ratio (clr) transformation. |Aitchison (1986 156) suggests

8 Aitchison suggests the transformation of the data in such a way that the new data is going to be:
v = log[z/g(x)] where g(z) = ([T}, scl) This means that we divide each Varlable with its geometric mean
and do a logarithmic transformation the following way: v; = logx; — % iy logzi,j = 1,2,...p (Jolliffe
2002).

45



PC1 transformed PC2 transformed

<
N o
o
_ N
o
N
o o ]
] o
o -
S
— <
o~ ? ]
S
|
Index Index
PC3 transformed PC4 transformed
®0. e— le—
o < b 5B
o o
o | _
o
o _|
o
. _
S <
| o
! T T T T
5 10 15 20
Index Index

Notes: The plot shows how the PCA on the log-ratio transformed analysis
changes when we add different small numbers to the 0 seat shares of the

parties.
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that if we add a small number to the zeros, next we should do a sensitivity analysis to check
how much the this manipulation changes the results of the PCA analysis. In Figure
I present the results of this sensitivity analysis. We can see in this plot that if we add a

number smaller that 10~* to the zeros we will arrive to a stable solution.
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Figure 4.20: Loadings, PCA on Log- ratio Transformed Variables

Figure shows that Dimension 1 of the PCA on the log-ratio transformed vari-
ables separates the small party systems (and extremely big party systems) from the bigger
ones. Party 5 to Party 10 have a big influence on this dimension. Dimension 2 separates

the moderately big party systems from the very big party systems: Party 5 and Party 10
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have opposite loadings in this dimension.
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Figure 4.21: Biplot, PCA on Log- ratio Transformed Variables

Figure |4.21 shows the biplot of this PCA analysis. An advantage of this method
is that the countries are separated in quite clear groups. In Figure [{.21, we can see that
the PCA on the transformed variable sorts the countries in groups based on the number of
parties in the legislature. Thus, while we can see that the PCA on transformed variables

recovered an important feature of the party system (the number of parties) the result is not
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very informative. In line with this conclusion, Baxter argues that if there are a lot of zeros
and small values in the dataset, performing the PCA on the original dataset is potentially
more informative than any of the other approaches as the absolute variation in the variables

may be an important feature of the data (Baxter and Freestone |20006).

4.3.2 PCA on Non-centered Variables

Another approach to reduce the dimensionality of a compositional dataset is to conduct a
PCA analysis on the non-centered variables (ter Braak|[1983). The reason follows from the
geometrical properties of the compositional dataset. As |Aitchison| (1983) discusses we can
understand each observation in a compositional dataset, as a point on an n-dimensional
simplex. This means that each country-year could be represented as a point or vector on a
20 dimensional space, where the 20 coordinates are the seat shares of the 20 parties in the
dataset. In case of a compositional dataset thus it is informative to find the space going
through the origin of the data as this defines the simplex. This projection can show us the

locations of the points on the simplexﬂ

A non-centered PCA does exactly this, it projects the data to the best fitting plane
through the true origin and not the center of the data. The data and the direction are
projected to this plane (ter Braak||1983). Thus while we get a different projection of the
data, this can be useful if we want to find within group variance as opposed to simply
between group variance (ter Braak||1983). The result is an ordination plot. On this plot the
countries that have unstable party systems will be far from the origin, and countries that
have stable party systems will be close to the origin. In addition, country-years that have

similar party systems will be grouped together (ter Braak|/1983)).

The drawback of this technique is that if the observations are a long way away from
the origin, the first Principal Component that the analysis finds is the center of the data.

This is what we can observe here too, if we conduct this analysis. As Figure |4.25 shows the

9If we denote the seat shares of Party k as si; in year 4 so that Ziozl sk = 1, each of the individual
country -year can be represented as s; = (815, ...... $20i)- The space that these points are on is determined by
the basis vectors that are length 1 orthogonal in each of the 20 directions.
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Scree Plot: PCA not Centered
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Figure 4.22: Screeplot, PCA on Non-centered Variables

first two dimensions absorb the influence of variation in the size of the biggest two parties.
The two later principal components (here PC3 and PC4 ) are exactly the same as PC2 and
PC3 were in the original PCA.

The biplot (Figure of this analysis shows that the countries line up mostly
based on what extent is their party system concentrated. Indeed, countries that were identi-
fied to have smaller party systems (Britain, Germany, France, United Kingdom) are on one
end of the dimension, while party systems that are generally considered fragmented (Belgium
Finland, the Netherlands) are on the other end. The order is similar to what we have seen
on Dimension 1 in the normal PCA analysis. Only three distinct groups arise: in one of
these groups we find Greece, Britain and France in certain years, in the second, we can see
all the multi-party countries (in the middle of the plot) and in the third group Belgium in

the 2000s is its own category.
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Figure 4.23: Loadings, PCA on Non-centered Variables

4.4 Summary

In this paper I analyzed a dataset that contains the legislative seat shares of parties in 17
European countries from 1970-2013. The dataset is ordered so that the variables represent
parties with decreasing sizes. As discussed above, some political science literature classified
party systems with qualitative methods, while other studies created summary measures to
characterize the size and shape of the party systems. In this paper, I explored the underlying
structure of the data, so that we could better understand what these previously created

indices measure.
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Figure 4.24: Biplot, PCA on Non-centered Variables

In this paper I explored the dataset with a principal component analysis (PCA).
Next, I relaxed the linearity assumption of the PCA analysis and I ran a kPCA and a NLPCA
analysis. Overall, all solutions showed that the variations of the two biggest parties were
the most important features of the dataset. I found with the PCA analysis on the unscaled
variables, that the first two principal components were related to the absolute and the relative
sizes of the two biggest parties. In addition, the PCA analysis on the non-centered variables
separated countries with small and with large party systems. The kPCA analysis showed
that the untransformed data is close to a Gaussian distributed, so the kPCA solution was

very similar to the simple PCA solution.
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I argued that because the variation in the sizes of the two biggest parties were
the biggest, these might mask important features in the lower dimensions of the data. To
understand the deeper structure of the data, first I controlled for the sizes of the biggest and
the second biggest parties, and I conducted a PCA analysis on the residuals. This analysis
showed that the lower dimensions were also defined by the absolute sizes of the parties,
and their relative sizes compared to each other. The party systems were separated into two
groups: countries in which the parties were equal in size (competitive party systems) and

countries in which some parties were dominant (less competitive party systems).

Another way to decrease the influence of the variables with high variances is to
scale them. Scaling means that we set the variance of the variables to unit, thus we equalize
their impact on the analysis. This transformation, however, may not be the most optimal
one. Potentially, a better way to reduce the variation in the data, is to use Non-Linear
Principal Component Analysis. The NLPCA methodology created optimal quantifications
of the variables at the same time as it optimized the PCA loss function. Thus, the variance of
the data matrix was reduced to the minimum. With the NLPCA analysis I found that when
the variables were optimized this way, the most important feature that the PCA extracted
was the raw number of parties. Because of this countries that had very big party systems in
certain times became their own category (like Italy). The NLPCA analysis that I conducted
on the 10 biggest parties in each party system had a solution similar to the PCA and kPCA
solutions. This makes sense as PCA and kPCA solutions were not influenced by the variation

of the smallest parties as much.

The sensitivity analysis of the NLPCA analysis showed that the data did not have
subcompositional coherence. This was because the dataset I was using was a compositional
dataset: the variables were proportions that added up to one. To remedy the bias that this
might have caused, I ran one PCA analysis on the log-ratio transformed variables and another
one on the non-centered variables as well. While the results were clear on the log-ratio
transformed variables (the countries with the same number of parties were grouped together)
it was less informative on the non-centered variables (it mostly separated country- years in

which countries had concentrated party systems from country-years in which countries had
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fragmented party systems). Overall, it seems that in the case of the party system size data,

the original PCA analysis is the most informative.
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CHAPTER 5

How do the PCA Dimensions Relate to Traditional

Typologies and Measures

5.1 Comparing the Results of the PCA Analysis to Traditional

Typologies

In this section I compare the results of the PCA analyisis to the traditional typologies. As
we have seen in Table [2.1] the traditional typologies separate party systems by the number
of the parties and by the competition within the party system. Below, I plot the position of
each country in the lower dimensional plane that the PCA analysis have found. In addition,
I plot the position of all the countries, every five years on the same plane. With these plots
we can examine how the party systems have changed within and across countries as well.
Previously, I identified the two PCA dimensions as PC1: Size of the Biggest two Parties,

and PC2: Competition between the Biggest two Parties.

As we can see from these plots, in some countries the party system is relatively
stable. These are countries such as Iceland (Figure or Finland (Figure [0.4). Other
countries stay the same place on Dimension 1, like the United Kingdom (Figure [6.17),
Luxembourg Figure and Sweden (Figure . There are countries that stay in
the same place on Dimension 2 but move on Dimension 1 like Austria (Figure [6.1), the
Netherlands (Figure [6.19), Belgium (Figure and Italy (Figure [6.1(). Also there are

countries which move on both directions, notably France (Fz'gur, Portugal: (Figure

and Norway (Figure: [6.15) ]

'Some of these changes are the results of institutional changes in these countries. For instance, in
Belgium the national parties split into Wallonian and the Flemish regional parties in the 1960s and 1970s.
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It is probably more fair to evaluate the previous party system typologies based on
how the party systems looked like in the years the studies were written. I have yearly data
but here I only include plots for every five years, since the party system does not change very
rapidly. The two most relevant years for this comparison are 1970 (Figure and 1975
(Figure . As T discussed above, some of the first party system typologies separated two-
party systems from multi- party systems. In the data, there are no pure two-party systems
(in the legislatures there are at least three parties), however, in some countries the first two
parties are much bigger than the rest of the parties. All typologies create different categories
for two-party and for multi-party countries (Duverger||1954; [Blondel| 1968} Rokkan| 1970}
Sartori [1976; Mair| 2002)).

The PCA analysis recovers the same difference between the (close to) two-party
systems and the multi-party systems (with PC1). The countries that are two- party systems
are on one side of this dimension: The United Kingdom is always close to this two-party
ideal (Figure and Austria in the 1970s indeed seems to be close to this ideal as well.
Later Spain, Greece and Portugal joined this group (Figure Figure Figure .
On the other side of Dimension 1, we find the fragmented party systems without dominant
parties: the Netherlands, Belgium, and the Scandinavian countries. Overall if we project the

countries down to this Dimension 1, we can see that the order is similar to the categorization

The Flemish/Wallonian pairs of Christian Democratic Parties split in 1968, Socialist Parties split in 1971,
and Liberal Parties split in 1978 in Belgium.

In Ttaly the electoral system changed from PR to a mixed-member electoral system in 1994.The mixed-
member electoral system is often associated with fewer parties, however in Italy’s case many small parties
formed and then competed in two big coalitions. Under the mixed-member system the electoral competition
consists of two separate competitions at once. The people vote for parties and at the same time with a
separate ballot they vote for a district candidate. Parties get legislative seat shares based on their vote
shares, while individuals get seats if they win electoral districts. While small parties can survive in the
proportional tier, in the Single Member District (SMD) tier usually the two biggest competitors remain.

The electoral system did not change drastically in Portugal, however it changed incrementally after the
country became democratic. In Figure |6.14] we can see that the party system at first is fragmented, and
it becomes more competitive and less fragmented throughout the years.The small parties gradually form
coalitions, first, to compete in the elections, however these coalitions merge. Norway Figure[6.13, moves to
the other direction, while between 1970 and 1990 the country had a pretty stable and closed party system,
in the 2000s new parties enter into the electoral competition and the non-left parties become stronger. In
the plots we can also see why Finland and France was hard to categorize by the scholars: Figure shows
that the French electoral system changes the most throughout the years. In contrast, Finland remains pretty
much at the same place- on the very edge of Dimension 1 (at least in the early years) but it is hard to either
classify it as a competitive or an uncompetitive system based on its position on Dimension 2 (Figure|6.4).
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of Blondel| (1968) |

Rokkan| (1970)’s classification is more complex, and it is similar to how both Dimen-
sion 1 and Dimension 2 separate the countries. Rokkan’s first category (the British-German
1vs 1+1 system) engulfs the countries that are separated from the rest of the countries on
Dimension 1, while his 2, 3a, 3b categories include the countries that are separated from
each other by Dimension 2 Figure Rokkan’s categorization is based on the numbers of
parties and the evenness of the competition. This gives qualitative support to the notion that
Dimension 2 separates countries based on the competition between the two biggest parties.
Sartori’s (1976) classification, similarly to Rokkan/s, shows that Dimension 2 captures the

competitiveness in the party system.ﬂ

While the qualitative typologies were useful to draw attention to that “competi-
tiveness” can be considered a separate dimension form the party system size, the countries
change their position more frequently on Dimension 2, so the classification of the countries
in distinctive groups may be difficult On Dimension 1 changes are slowﬁ on Dimension 2,

however the changes are more rapid.ﬂ

Next, I discuss how the PCA dimensions relate to the party system size indices
that I introduced before. After that, I show some indices that may be useful to measure

Dimension 2, the competitiveness dimension.

2The order of in which he classifies the countries is: England, Germany, Ireland, Denmark, Sweden,
Norway, Iceland, Italy, Netherlands, and Finland, is close to the order of the countries that the PCA
analysis finds on Dimension 1. The notable exception is France (and the country’s position is moving around
throughout the years) and Denmark, which seems to be closer to the Netherlands and Finland than to the
rest of the Scandinavian countries.

3Sartoris classification seems to reflect the 1970s as opposed to 1975. In 1970 (Figure |6.18) according
to the PCA analysis Norway and Sweden could indeed constitute their own group. This is less so by 1975
(Figure . While in 1970, Finland and Italy (which are categorized as polarized pluralisms) are on the
same level on PC2 and a bit below the other countries, Denmark should potentially be in the same category.

4 Although these happen too. Figure|6.26/shows that by 2010 the party systems of Spain, the UK Portugal,
ITtaly, Ireland, Greece and France all became more concentrated. On the other hand, Austria and Germany
have a more fragmented party system than they had before.

SJust by comparing 2005 (Figure |6.25) and 2010 (Figure [6.26) we can see that Sweden moves from one
end the other.
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5.2 Comparing the results of the PCA analysis to Party System

Size Measures

In this section, I compare the PCA results to the indices that previous scholarship has
identified as useful measures of the party system size. I calculated the measures: the Effective
Number of Parties in the Legislature (ENP), the Biggest Party in the Legislature (BigP), the
Raw Number of Parties in the Government (GPs), the Shapley ENPE]

I represent the correlations between these measures and the traditional measures on
a correlogram in Figure[5.1, A correlogram is a graphical representation of the correlations
between the variables in a given dataset. Along the main diagonal of the big square we can
see the variables. The small squares on the two side of the diagonals show the direction
of the correlations. Upward slopes mean that there is a positive correlation between two
variables, while downward slopes indicate a negative correlation between the two variables.
The darkness of the shading indicates the strength of the correlations. We can see from
the correlogram that all of these measures are highly correlated with each other and with
Dimension 1 (PC1) which is the dimension defined by the size of the biggest and the second
biggest parties. As we can see through this method we can implicitly compare the typologies
with the party system size measures. And we can see that the party system size indices

relate closely to Dimension 1, and thus to the typologies of Duverger| (1954); Blondel (1968]).

5.3 Measures of Opposition Concentration

As we can see most of the party system size indices measure only one aspect of the party

system: the size of the biggest two parties (PC1). However, the concentration of the opposi-

6This is an ENP like measure, in which I replace the parties’ seat shares with their Shapley-Shubik indices
(S.ENP). I calculated a composite measure of the Effective Number of Parties including the Shapley-Shubik
power index. |Grofman and Kline| (2011)have used the Banzhaf index in their calculations. I am using the
Shapley-Shubik index as opposed to the Banzhaf index because I examine how coalitions are formed, thus the
sequential approach to the coalition formation seems to be more appropriate. In addition, mathematically,
the Banzhaf index puts additional weight on the biggest party. As I am interested in the opposition structure,
I chose a measure that evaluates the opposition power more precisely.
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Figure 5.1: Correlogram, Traditional Measures of Party System Size and PCA Principal
Components
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tion could be measured similarly to the party system size. This notion has been discussed in
a few studies previously (Maeda 2010, [2015). However, very few studies in political science
have used these measures. In this part I examine whether these indices measure the same

dimension of the party systems as the indices discussed above.

The Effective Number of Opposition Parties ENOP is calculated the same way as
the Effective Number of Parties ENP suggested by |Laakso and Taagepera| (1979), except I
calculate the measure only for the opposition partiesﬂ The Difference between the Biggest
and the Second Biggest Opposition Parties (OPOP) measures the competition between the
biggest and the second biggest opposition parties. I normalize the difference between the
seat shares of the two biggest opposition parties by the number of total available legislative
seats within a countryﬁ Finally the Size of the Biggest Opposition Party (BOPP) tellingly

measures the size of the biggest party in the opposition.ﬂ

In Figure and Figure we can see that the opposition measures relate more
closely to PC2 while the party system size measures are more closely related to PC1. The
only exception is the size of the Biggest Party(BigP) which seems to be somewhere in between
the opposition measures and the party system size measures. This makes sense because it
is possible that the biggest party in the party system is not a government party but an

opposition party.

Most political science studies use one of the party system size measures when they

“This measure is the reciprocal of the sum of squared seat shares across all parties in opposition in the

legislature in a given year, ENOP = Sl 5, Where Sop,,, is the seat share of each opposition party. The
Opp;

variable ENOP is utilized by Maeda| (2010) and Maeda| (2015|) although contrary to my calculation Maeda
does not include changes in the government between two elections. In addition, [Falco-Gimeno and Jurado
(2011) uses the Herfindahl-Hirschman index to measure the opposition concentration which is a reciprocal
transformation of ENOP as discussed above.

8This index is: OPOP = M Where Sopp, is the number of seats that the biggest opposition
party has in the legislature, while So,,, is the number of seats that the second biggest opposition party has
in the legislature, and n is the number of total legislative seats.

9Several works argue that if we want to measure the power structure of the entire party system we can
look at the size of the biggest party (Taageperal|1999; |Dunleavy and Boucek!2003). I calculate this measure
as the seat share in the legislature of the biggest opposition party. Mathematically BOPP = % Where
Sopp, is the number of seats that the biggest opposition party has in the legislature, and n is the number of
total legislative seats.
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Figure 5.2: Correlogram, Opposition Structure and PCA Principal Components
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Figure 5.3: Correlogram, Traditional Measures of Party System Size and Opposition Struc-
ture and PCA Principal Components
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want to measure the competitiveness of the party system. However, the analysis in this
section shows that these measures capture the size of the biggest two parties, and not neces-
sarily show how competitive the party system is. While most traditional party system size
indices measure the size of the party system (PC1), the opposition structure measures relate
to a different dimension: competitiveness of the party system (PC2). These measures so far
have been infrequently utilized by the quantitative analyses. I suggest that when a political
science theory relates to the competitiveness of the party system, we should consider using

one of the opposition concentration indices instead of the party system size measures.
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CHAPTER 6

Conclusion

The party system is an important part of the political system in any country. The way how
the party system has evolved and how parties interact with each other are almost always
discussed by country studies. However, since there is a considerable variation in party sys-
tems across the countries, and the party systems evolve within countries, political scientists
have had debates on how accurately measure the size of the party systems. In this paper, I
introduced two approaches that political scientists took to create meaningful comparisons.
One group of scholars sorted the countries into categories based on the characteristics of
the party systems. I argued that most of the party system typologies divided the countries
based on the number of parties, and the competition between the parties. Another group of
scholars created summary indices that characterized the party systems. I argued that these
scholars faced a classical dimensionality reduction dilemma: they tried to represent the most
information possible with a single measure. The debate was about which information was
important to keep, and which could be discarded: political scientists weighted either the

bigger parties or smaller parties more heavily in their calculations.

In this paper, I compared these two approaches to the underlying structure of
the party system data with yet another dimensionality reduction technique. I conducted
a Principal Component Analysis on data on party systems from 17 countries from 1970-
2013. In addition, to verify the results, I allowed for non-linearity of the data with a kernel
Principal Component Analysis, and a Non-Linear Principal Component Analysis. I also
examined whether the analysis was influenced by the structure of the data (as the data was
compositional) and ran a Principal Component Analysis on the log-ratio transformed and

the non-centered variables. The PCA analysis showed that the absolute sizes of the biggest
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two parties, the relative sizes of the biggest two parties (the competition between the two
biggest parties), the size of the third party, and the relative sizes of parties 5-6 (the balance
in the party system) were the important features separating the countries from each other.
I also found that the two most important dimensions that separate countries according to
the PCA analysis were similar to the dimensions that the typologies identified. One of these
was the number of parties within the party system (Dimension 1), and the other one was

the competitiveness of the two biggest parties (Dimension 2).

In the last part of the paper, I compared the results of the PCA analysis to the
party system size measures. I showed that the traditional party system size indices were
correlated mostly with Dimension 1, most of these indices show whether the sizes of the
biggest two parties were big or not relative to the other parties. However, none of these
indices were correlated with the other PCA dimensions. Then, I discussed some indices that
measure the opposition concentration, and I suggested that these indices could measure the
competitiveness of the party systems. I showed that indeed, the opposition size measures

relate partially to Dimension 2 that the PCA recovered.

Overall, this paper shows that we should consider the structure of the dataset
more carefully when we decide how to operationalize our key variables. As I discussed,
for a long time researchers in political science did not find any evidence that the party
system influences political outcomes. However, most of these studies use only one measure
of party system fragmentation: the ENP. Even though qualitative studies have noticed
that the competitiveness of the party systems matter, until recently there have been no
attempts to quantify competitiveness. For this reason, in a lot of studies that required some
measure of competitiveness, political scientists in reality controlled for the size of the party
system and not its competitiveness. As a consequence, maybe it is not surprising that the
quantitative studies have found little evidence supporting that the party system influences
political outcomes. The results in this paper show that the size and the competitiveness of
the party system are two different features of the party systems. I suggest that studies that
require measures of competitiveness should consider using one of the opposition concentration

indices.
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APPENDIX: COUNTRY AND YEAR FIGURES

Austria
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PC1

Notes: The plot shows the Austrian party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.1: Austria on the PCA Dimensions
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Notes: The plot shows the Belgian party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.2: Belgium on the PCA Dimensions
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Notes: The plot shows the Danish party system in the two dimensional plane defined by the

first, and the second dimensions of the Principal Component Analysis. The arrows progress from

earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.3: Denmark on the PCA Dimensions
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Notes: The plot shows the Finish party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.4: Finland on the PCA Dimensions
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Notes: The plot shows the French party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.5: France on the PCA Dimensions
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WGermany
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Notes: The plot shows the German party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.6: Germany on the PCA Dimensions
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WGreece
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Notes: The plot shows the Greek party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.7: Greece on the PCA Dimensions
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Iceland

0.1

0.0

PC2

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

PC1

Notes: The plot shows the Icelandic party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.8: Iceland on the PCA Dimensions
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Ireland
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PC1

Notes: The plot shows the Irish party system in the two dimensional plane defined by the first, and
the second dimensions of the Principal Component Analysis. The arrows progress from earlier to
later years. The shading indicates the direction of the progress; the shading of the arrows becomes

darker in later years.

Figure 6.9: Ireland on the PCA Dimensions
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Notes: The plot shows the Italian party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.10: Italy on the PCA Dimensions
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Notes: The plot shows the Luxembourgish party system in the two dimensional plane defined by

the first, and the second dimensions of the Principal Component Analysis. The arrows progress

from earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.11: Luxembourg on the PCA Dimensions
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Netherlands
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Notes: The plot shows the Dutch party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.12: the Netherlands on the PCA Dimensions
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Norway
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Notes: The plot shows the Norwegian party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.13: Norway on the PCA Dimensions
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Notes: The plot shows the Portuguese party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.14: Portugal on the PCA Dimensions
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Spain
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Notes: The plot shows the Spanish party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.15: Spain on the PCA Dimensions
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Sweden
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Notes: The plot shows the Swedish party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.16: Sweden on the PCA Dimensions
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Notes: The plot shows the British party system in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis. The arrows progress from
earlier to later years. The shading indicates the direction of the progress; the shading of the

arrows becomes darker in later years.

Figure 6.17: The United Kingdom on the PCA Dimensions
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Notes: The plot shows the position of 17 countries in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis in 1970. The countries are:
Austria, Belgium, Denmark, Finland, France Germany, Greece, Iceland, Italy, Ireland, Luxem-

bourg, the Netherlands, Norway, Portugal, Spain, Sweden, the United Kingdom.

Figure 6.18: The Party Systems of 17 European Countries in 1970 on the PCA Dimensions
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Notes: The plot shows the position of 17 countries in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis in 1975. The countries are:
Austria, Belgium, Denmark, Finland, France Germany, Greece, Iceland, Italy, Ireland, Luxem-

bourg, the Netherlands, Norway, Portugal, Spain, Sweden, the United Kingdom.

Figure 6.19: The Party Systems of 17 European Countries in 1975 on the PCA Dimension
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Notes: The plot shows the position of 17 countries in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis in 1980. The countries are:
Austria, Belgium, Denmark, Finland, France Germany, Greece, Iceland, Italy, Ireland, Luxem-

bourg, the Netherlands, Norway, Portugal, Spain, Sweden, the United Kingdom.

Figure 6.20: The Party Systems of 17 FEuropean Countries in 1980 on the PCA Dimensions
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Notes: The plot shows the position of 17 countries in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis in 1985. The countries are:
Austria, Belgium, Denmark, Finland, France Germany, Greece, Iceland, Italy, Ireland, Luxem-

bourg, the Netherlands, Norway, Portugal, Spain, Sweden, the United Kingdom.

Figure 6.21: The Party Systems of 17 FEuropean Countries in 1985 on the PCA Dimensions
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Notes: The plot shows the position of 17 countries in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis in 1990. The countries are:
Austria, Belgium, Denmark, Finland, France Germany, Greece, Iceland, Italy, Ireland, Luxem-

bourg, the Netherlands, Norway, Portugal, Spain, Sweden, the United Kingdom.

Figure 6.22: The Party Systems of 17 FEuropean Countries in 1990 on the PCA Dimensions
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Notes: The plot shows the position of 17 countries in the two dimensional plane defined

by the first, and the second dimensions of the Principal Component Analysis in 1995.

The countries are: Austria, Belgium, Denmark, Finland, France Germany, Greece, Ice-

land, Italy, Ireland, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden,

the United Kingdom.
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Notes: The plot shows the position of 17 countries in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis in 2000. The countries are:
Austria, Belgium, Denmark, Finland, France Germany, Greece, Iceland, Italy, Ireland, Luxem-

bourg, the Netherlands, Norway, Portugal, Spain, Sweden, the United Kingdom.

Figure 6.24: The Party Systems of 17 European Countries in 2000 on the PCA Dimensions
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Notes: The plot shows the position of 17 countries in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis in 2005. The countries are:
Austria, Belgium, Denmark, Finland, France Germany, Greece, Iceland, Italy, Ireland, Luxem-

bourg, the Netherlands, Norway, Portugal, Spain, Sweden, the United Kingdom.

Figure 6.25: The Party Systems of 17 FEuropean Countries in 2005 on the PCA Dimensions
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Notes: The plot shows the position of 17 countries in the two dimensional plane defined by the
first, and the second dimensions of the Principal Component Analysis in 2010. The countries are:
Austria, Belgium, Denmark, Finland, France Germany, Greece, Iceland, Italy, Ireland, Luxem-

bourg, the Netherlands, Norway, Portugal, Spain, Sweden, the United Kingdom.

Figure 6.26: The Party Systems of 17 FEuropean Countries in 2010 on the PCA Dimensions
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