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 This dissertation demonstrates the uses of satellite and surface observations, in 

tandem with hydrologic modeling, to characterize daily-to-interannual cloudiness variability 

and its influence on spring-summer snowmelt and streamflow fluctuations over the 

mountains of the western United States from 1996 to 2015.   

Daily cloudiness variations can exceed 50% of long-term averages during the 

springtime. When aggregated over three-month periods, cloudiness varies by ±10% of long-

term averages in many locations. Rotated empirical orthogonal functions (REOFs) analysis 

indicates the first five REOFs account for ~67% of the total variance, each of which has 

distinct regional and seasonal emphases. Each of the REOF modes associates with 

anomalous large scale atmospheric circulation patterns and one or more large-scale 
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teleconnection indices, which helps to explain why anomalous cloudiness patterns take on 

regional spatial scales and contain substantial variability over seasonal time scales. 

Cloud cover indices (CC) are, to some extent, related linearly to snowmelt (ΔSWE) 

and snow-fed streamflow (ΔQ) fluctuations. Local CC-ΔSWE and CC-ΔQ associations vary 

with time and location, with the dominance of negative correlations between CC and ΔSWE, 

exemplifying the cloud-shading (or clear-sky) effect on snowmelt. The magnitude of CC-

ΔSWE association (R2) amounts to 5%-56%, typically peaking in May. These associations 

fade earlier in summer during dry years than wet years, indicating the differing responses of 

higher vs. lower snowpack. The CC-ΔQ association displays less consistent arrangement, 

with R2 amounting to 2%-47%. The ΔSWE and ΔQ fluctuations exhibit spatially extensive 

patterns of correlations with daily CC anomalies, indicating the effects of cloudiness often 

operate over regional scales. 

On a watershed scale, cloudiness variability redistributes the seasonal runoff and 

hastens the spring onset by 1-3 days. Higher elevation cloudiness exerts a greater influence 

on the basin runoff than lower elevation cloudiness does. Overall, cloudiness delays spring 

onset by 2-15 days regardless of the elevation. Lastly, the experiment on the intensification 

of cloudiness fluctuations suggests greater streamflow sensitivity to the “relatively cloudy 

periods get cloudier” scheme than to the “relatively clear periods get clearer” scheme, with 

the former producing 3-5 days later spring onsets. 
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Chapter 1 

Introduction 

1.1 Background and Motivations  

Cloudiness is pivotal for earth’s surface radiative budget (Harrison et al., 1990). In 

snow hydrology, the importance of cloudiness is exemplified by its role in regulating the 

amount of solar radiation/shortwave flux (SWF) at the snow surface (Simpson et al., 2004). 

In turn, SWF is the primary input component in snowmelt energy balance in mountain 

environment (U.S. Army Corps of Engineer, 1956; Marks and Dozier, 1992; Cline, 1997; 

Bales et al., 2006; Comola et al., 2015; Painter et al., 2017). Furthermore, cloudiness also 

modulates the longwave radiative exchange between the atmosphere and the surface 

(Aguado, 1985, Zhang et al., 1996; Stone, 1997; Stone et al., 2002; Harpold and Brooks, 

2018). Despite these facts, cloudiness variability over mountainous terrains, along with its 

influence on snowmelt and runoff processes, has not been thoroughly investigated. 

The underlying factor that hinders such a study is the difficulty in observing cloud 

cover and the associated incoming SWF at the surface, particularly over complex 

mountainous terrains. Fundamentally, cloud cover and, consequently, SWF have great spatial 

and temporal variations (Rauber, 1992), which necessitates spatially and temporally dense 

observation networks. However, the difficult physical access and snowy seasons severely 

limit our capability to setup and maintain comprehensive surface measurement networks in 

montane environment (Dettinger, 2014; Henn et al., 2015; Lapo et al., 2015a; Le Moine et 

al., 2015; Raleigh et al., 2016). For this reason, studies relating cloudiness variability and 

surface radiation to hydrologic variations in snow-laden mountainous settings are relatively 

few (e.g., Simpson et al., 2004; Pellicciotti et al, 2011; Lapo et al., 2015b). 
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For the same reason, hydrologic models, such as the Precipitation-Runoff Modeling 

System (Leavesley et al., 1983; Markstrom et al., 2015) and the Variable Infiltration 

Capacity (Liang et al., 1994), parameterize SWF input using algorithms based on diurnal 

temperature range—a proxy for cloud cover. However, the relationship between the diurnal 

temperature range and cloud cover is not robust (Pellicciotti et al., 2011). As a result, such 

algorithms can produce highly biased SWF estimates and, therefore, inaccurate snowmelt 

and runoff estimates (Rittger et al., 2011; Mizukami et al., 2014; Hinkelman et al., 2015; 

Lapo et al., 2015b; Lapo et al., 2017). 

The use of satellite imageries is increasingly common and reliable for meteorological 

and climatological applications. In particular, the fine spatial and temporal resolutions that 

geostationary satellites offer allow real-time cloud cover monitoring and forecasting. This 

advancement has also enabled solar energy communities to assess SWF resources and yield 

real-time SWF estimates for solar power grids (Kleissl, 2013), reflected by the abundance of 

SWF algorithms that utilize satellite remote-sensed cloud products (e.g., Ineichen and Perez, 

1999; Pinker et al., 2003; Perez et al., 2002, 2010; Hinkelman et al., 2012). Therefore, 

geostationary satellite cloud products and the associated SWF estimates offer a promising 

solution for hydrologic applications in mountainous catchments, where surface SWF 

observations are scarce. 

Thus, the goals of my graduate research are: 

1. To characterize spatial and temporal cloudiness variabilities over the mountain terrain of 

the western U.S., which will be addressed in Chapter 2 and was published in Journal of 

Hydrometeorology (Sumargo and Cayan, 2017), 
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2. To evaluate how this variability influences daily-seasonal snowmelt and runoff processes, 

which will be addressed in Chapter 3 and is currently in revision to be re-submitted to 

Water Resources Research journal (Sumargo and Cayan, 2018),  

3. To examine the applicability of satellite-derived SWF estimate in hydrologic modeling, 

which will allow spatially and temporally comprehensive investigation of the effects of 

cloudiness variability and the associated SWF variations on snowmelt-runoff processes at 

watershed scales. This part will be addressed in Chapter 4 and is currently in preparation 

for submission. 

The importance of addressing these goals is accentuated with climate change, since many 

hydrologic applications still rely on historical statistics that become less reliable as climate 

continues to change (Lundquist et al., 2009; Rice et al., 2011). For example, storm tracks, 

cloud cover patterns (Yin, 2005; Held and Soden, 2006; O’Gorman and Schneider, 2008; 

Dettinger, 2011) and radiative properties (Zelinka et al., 2017) are expected to evolve as a 

consequence of climate change. What is more, greater rain-to-snow ratio (Knowles et al., 

2006), changes in winter precipitation, seasonal snowpack and annual flow (Hantel and Hirtl-

Wielke, 2007; Schöner et al., 2009; Beniston, 2010; Das et al., 2011; Luce et al., 2013), and 

earlier streamflow timing (Stewart et al., 2005; Horton et al., 2006; Morán-Tejeda et al., 

2014) are observed throughout. Climate change is also expected to decrease the snowmelt 

rate (Musselman et al., 2017) and summer soil moisture (Gergel et al., 2017). These factors 

will likely complicate the association between cloudiness variability and surface hydrologic 

variations, especially in mountain environment where surface energy balance and 

hydroclimatic processes are inherently complex (Brauchli et al., 2017). 
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1.2 Spatial and Temporal Scopes of the Research 

The sensitivity of mountain snowpack to climate fluctuations makes mountainous 

regions, such as the western U.S., particularly vulnerable to climate change (Barnett et al., 

2008; IPCC, 2013). Climate change can adversely impact the ecology (Diaz and Eischeid, 

2007; Null et al., 2013) and hydrologic systems (Hoerling et al., 2013; Mann and Gleick, 

2015; Musselman et al., 2017). It has led to earlier snow-fed streamflow (Dettinger and 

Cayan, 1995; Cayan et al., 2001; Stewart et al., 2005; Regonda et al., 2005) and extensively 

altered spring snowpack (Mote, 2003, 2006; Mote et al., 2005, 2008; Pierce et al., 2008; 

Kapnick and Hall, 2012; Sproles et al., 2017) and snow cover extent (Groisman and 

Easterling, 1994).  

This sensitivity was exemplified in the recent multiyear severe drought in California 

[water years (WYs) 2012-2015], marked by disproportionately low spring-early summer 

snowpack associated with anomalous low precipitation (Mao et al., 2015; Seager et al., 2015; 

Williams et al., 2015). This episode was followed by the exceptionally wet WY 2017, which 

featured numerous Atmospheric River events (Ralph et al., 2017) and high snowpack 

(California Department of Water Resources, 2017; Lettenmaier, 2017). This sensitivity was 

similarly shown in the “snow drought” in WY 2015 in Oregon and Washington, where 

anomalous high temperature accompanied near-normal precipitation, resulting in lower 

snow-precipitation ratio (Fosu et al., 2016;	Mote et al., 2016; Sproles et al., 2017).  

Thus, the western U.S. makes a suitable natural laboratory for my research, which 

focuses on the spring-early summer period when snowmelt and runoff processes are most 

active.  
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Chapter 2 

Variability of Cloudiness over Mountain Terrain in the Western United 

States 

This study investigates the spatial and temporal variability of cloudiness across 

mountain zones in the western United States. Daily average cloud albedo is derived from a 

19-year series (1996-2014) of half-hourly Geostationary Operational Environmental Satellite 

(GOES) images. During springtime when incident radiation is active in driving snowmelt-

runoff processes, the magnitude of daily cloud variations can exceed 50% of long-term 

averages. Even when aggregated over three-month periods, cloud albedo varies by ±10% of 

long-term averages in many locations. Rotated empirical orthogonal functions (REOFs) of 

daily cloud albedo anomalies over high elevation regions of western conterminous U.S. 

identify distinct regional patterns, wherein the first five REOFs account for ~67% of the total 

variance. REOF1 is centered over northern California and Oregon and is pronounced 

between November and March. REOF2 is centered over the interior northwest and is 

accentuated between March and July. Each of the REOF/RPC modes associates with 

anomalous large scale atmospheric circulation patterns and one or more large-scale 

teleconnection indices (AO, Niño 3.4 and PNA), which helps to explain why anomalous 

cloudiness patterns take on regional spatial scales and contain substantial variability over 

seasonal time scales.  

 

2.1 Introduction 

Understanding spatial and temporal variability of cloudiness is a long-standing 

problem (e.g., Welch et al., 1988; Seze and Rossow, 1991; Rossow, 2002; Simpson et al., 
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2004). A better determination of recent historical variability is yet more important in the light 

of climate change, which may affect storm tracks and cloud patterns (Yin, 2005; Held and 

Soden, 2006; O’Gorman and Schneider, 2008; Dettinger, 2011). Cloud variability in 

mountain settings is enigmatic because clouds and radiation are not well-monitored by 

surface observers, because cloudiness depends on several factors at multiple scales including 

storm tracks and cloud life cycles, and because topographic features can change the cloud 

systems on relatively short spatial and temporal scales (Rauber, 1992). The present work 

addresses this complexity by identifying the extent to which the cloudiness in mountain 

zones is organized over large regional scales and how it varies temporally.  

In the mountains of the western United States (U.S.), precipitation is largely delivered 

as snow from cool season storms (Serreze et al., 1999). Snowpack provides water storage 

(Mote, 2006) and is an integral part of the hydrologic cycle in the region (Pierce et al., 2008; 

Pierce and Cayan, 2013). In snow-fed watersheds, net solar radiation is the primary energy 

input for spring snowmelt (U.S. Army Corps of Engineers, 1956), providing 66–90% of 

energy needed for snowmelt (Marks and Dozier, 1992; Cline, 1997). Varying cloudiness 

comes into play in modulating this solar heating and the associated snowmelt, a process that 

continues into the summer. In their study of hydrologic responses in the upper Colorado 

River basin, Mizukami et al. (2014) reported a difference of 85 W m-2 in shortwave radiation 

in May, which translated to a difference of 273 mm snowmelt at elevations above 3 km, 

contributing to the differences of ~20% in annual runoff and ~20 days in the timing of 

snowmelt and runoff.  

Diurnal and annual cycles of solar energy reaching the surface are controlled by solar 

geometry, but the anomalous solar variations depend on the structure and evolution of clouds 
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(Kleissl, 2013). Consequently, cloud cover variations are the principal regulator of solar 

insolation at synoptic to inter-annual time scales (Smith et al., 1992; Ringer and Shine, 

1997). Cloudiness also affects longwave radiation exchange with the surface (Aguado, 1985). 

Therefore, understanding cloud variability is needed to comprehensively explain the spatial 

and temporal variations of surface processes, particularly the fluctuating patterns of 

hydrologic measures over the mountainous western U.S.  

Although clouds are a major regulator of the energy budget, their optical properties 

vary over a range of spatial scales, so describing the incoming radiation using radiative 

transfer modeling is not feasible (Gimeno García et al., 2012). Additionally, in situ radiation 

measurements are difficult in mountainous settings because complex topography and snow-

laden seasons hinder necessary ground-based observations. Moreover, surface point radiation 

measurements generally lack the scope required to portray spatial and temporal structure over 

the broader region. As a result, clouds and surface radiation in mountainous terrains have 

been inadequately described (Gautier et al., 1980; Bales et al., 2006).  

A direct impact of this inadequacy is reflected in hydrologic modeling and related 

applications, e.g., in Precipitation-Runoff Modeling System (PRMS) (Leavesley et al., 1983; 

Markstrom et al., 2015), wherein daily surface air temperature range is used as a proxy for 

cloud cover to estimate surface radiation. This can introduce errors in water supply forecasts 

(Rittger et al., 2011) by producing biases in estimating snowmelt rate (Lapo et al., 2015) and 

runoff timing (Hinkelman et al., 2015).  

Studies using space-borne measurements have demonstrated the merit of remotely 

sensed snow albedo as input to a snowmelt model (Molotch et al., 2004), to investigate snow 

cover area under forest canopies (Raleigh et al., 2011) and to map snow cover (Rittger et al., 
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2013). Geostationary satellite estimates of surface irradiance are increasingly common (e.g., 

Cano et al., 1986; Ineichen and Perez, 1999; Perez et al., 2002, 2010), since they provide the 

most accurate option for locations >25 km away from a ground station (Zelenka et al., 1999; 

Paulescu et al., 2012). 

The availability of two decades of remote-sensed cloud measures, along with an 

increasing reliance on remote-sensed radiation measures (e.g., Bales et al., 2006; Khan et al., 

2011), motivates us to investigate the variability of cloudiness over western U.S. mountain 

settings. Cloud variability during the hydrologically important winter-to-summer period is 

emphasized here. While the occurrence of long period, globally patterned changes in 

cloudiness is becoming clearer (Dai et al., 2006; Warren et al., 2007; Eastman and Warren, 

2013; Norris et al., 2016), the 19-year GOES dataset used in this study is too short to resolve 

such changes. Accordingly, our focus here is to understand cloudiness variability from daily 

to seasonal time scales. 

 

2.2 Datasets 

2.2.1 GOES-West visible cloud albedo 

The cloud measures explored here are derived from NASA/NOAA Geostationary 

Operational Environmental Satellite (GOES) images collected at half-hourly intervals from 

1996 to 2014. GOES captures a large swath simultaneously throughout the day 

(http://noaasis.noaa.gov/NOAASIS/ml/genlsatl.html). The GOES radiometer provides an 

albedo measure defined as the ratio of reflected to incident radiation from the surface, i.e., 

the reflectivity. As cloud cover increases, the albedo increases and the downwelling surface 

radiation decreases (Ramanathan et al., 1989; Iacobellis and Cayan, 2013).  
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This study utilizes GOES-West (9, 10, 11 and 15) visible albedo measurements with 

1-km horizontal and 30-minute temporal resolutions retrieved from NOAA Comprehensive 

Large Array-data Stewardship System (http://www.nsof.class.noaa.gov). The 1-km pixels are 

spatially aggregated to 4-km pixels to alleviate the computational burden. The GOES data in 

this study encompasses the westernmost U.S. and adjacent eastern North Pacific domain (25-

50 °N, 130-113 °W), and spans the period 1996-2014. The albedo observations are adjusted 

by removing the estimated clear-sky albedo to derive cloud albedo values (section 2.3.1).  

Mountain clouds can vary considerably within the period of a day in response to 

synoptic events and topographically forced diurnal circulations. To minimize the impact of 

these shorter period variations, cloud albedo is averaged over daytime scenes [0800-1600 

Local Standard Time (LST)]. The vast majority of days (>80%) have at least 15 half-hour 

observations. A sampling exercise that constructed the daily average from successively 

smaller numbers of observations per day determined that 10 out of 17 possible half-hourly 

data yielded a reasonable estimate of the daytime average albedo (appendix 2A). The 

daytime average albedo is the fundamental measure of cloudiness used throughout the paper. 

 

2.2.2 Gridded elevation data 

Gridded elevation data with 2-minute cell size are downloaded from the NOAA 

National Geophysical Data Center (NGDC) GEODAS Grid Translator Design-a-Grid 

website (http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html). The output latitude-

longitude boxes are then interpolated to the 4-km GOES pixels using shortest distance 

interpolation method to discriminate the high-elevation GOES pixels from the low-elevation 

GOES pixels (section 2.3.3).  
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2.2.3 Reanalyzed meteorological data and low frequency weather anomalies indices  

This study utilizes the (0.3°x0.3°) North American Regional Reanalysis (NARR, 

Mesinger et al., 2006) provided by NOAA Physical Sciences Division/PSD to investigate the 

associations with larger-scale meteorological patterns. Connections between cloud variability 

and climate patterns are also examined using a set of low frequency weather anomalies 

metrics commonly known as teleconnection indices (Wallace and Gutzler, 1981; Franzke et 

al., 2001). These metrics include the monthly versions of Pacific North American (PNA), of 

the Arctic Oscillation (AO), and of Niño 3.4 indices from the NOAA Climate Prediction 

Center database (http://www.cpc.ncep.noaa.gov/).  

 

2.3 Methods  

2.3.1 Determining the clear-sky albedo and the cloud albedo 

GOES albedo (α) is controlled by both clouds and other non-cloud factors. The non-

cloud component of albedo, i.e., clear-sky albedo (αclear), is dominated by changing surface 

characteristics (e.g., snow covered vs. not snow covered) as well as changes in clear 

atmospheric components (e.g., aerosol). The cloud component of albedo, hereby called cloud 

albedo (αcloud), is determined as the difference between α and αclear:  

𝛼!"#$% =  𝛼 −  𝛼!"#$%     (2.1) 

αclear evolves over time in response to local albedo variations at and near the surface, chiefly 

consisting of snow, moisture and vegetation (Perez et al., 2002). αclear is calculated and 

subtracted from α separately for each individual half-hour of the day since surface reflectance 

can be dependent on the angle of incoming solar radiation (Iacobellis and Cayan, 2013). The 
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units of the albedos are percent, ranging from 0% (transparent) to 100% (opaque). 

αclear is derived using a sliding time window algorithm (Cano et al., 1986; Perez et al., 

2002), such that αclear is the minimum α observed at a particular pixel within a prescribed 

time window. A time window centered on a given target day (after Paech et al., 2009) is used 

to determine the minimum albedo value (αclear), under the likely assumption that there is at 

least one clear-weather day within this time window for each particular half-hour. This 

algorithm is based on the premise that clouds are non-stationary and thus the minimum value 

of daily mean α observed at each pixel can provide a reference albedo map (Cano et al., 

1986), which in this case is αclear. A set of time windows was investigated to determine their 

ability to capture fluctuations from changing surface properties. This experimentation 

indicated that a sliding 15-day window of ±7 days was able to balance the need to sample a 

long enough period to include a clear-sky day within the window and the need to make the 

window narrow enough to capture relatively short time scale changes in surface 

characteristics (appendix 2B). Figure 2.1 illustrates the resulting αclear and αcloud estimates 

over a period that includes an abrupt deposit of snow cover during a winter storm from 30 

November 2005 to 4 December 2005.   

 



	 19 

 

Figure 2.1. (Top) Estimated daily mean (0800-1600 LST) αclear over California and Nevada 
before and after 1-3 December 2005 snowstorm. (Bottom) November and December 2005 
time-series of local noontime α (blue) and the estimated αclear (red) and αcloud (black) at GOES 
pixel overhead Dana Meadows in Yosemite National Park (37.9 °N, 119.26 °W, 2,987 m 
elevation). The vertical magenta lines denote 30 November 2005 and 4 December 2005. 
 

2.3.2 Quantifying solar insolation sensitivity to cloudiness variation  

The influence of cloudiness on incoming solar radiation at the surface [hereby called 

Shortwave Flux (SWF)] is quantified from a simple sensitivity measure where SWF is a 

linear function of αcloud: 

SWF = 100%−  𝛼!"#$% ∗ SWF!"#$%   (2.2) 

such that the response or sensitivity of SWF is determined as: 
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ΔSWF = Δ𝛼!"#$% ∗ SWF!"#$%     (2.3) 

SWFclear is theoretical clear-sky SWF calculated as a function of geo-location and time of the 

year (see http://maeresearch.ucsd.edu/kleissl/files/R.m for documentation). To investigate the 

effect of cloud variations, we evaluate the response of SWF to a 10% increase in αcloud 

(Δαcloud = 10%). The resultant linear response is presented for every season and at four 

representative locations spread across the western U.S. to examine ΔSWF at different areas 

and different times of the year. Additionally, the linear response derived from observed solar 

irradiance records from radiometers at selected Sierra Nevada sites are employed.   

 

2.3.3 Low elevation mask 

Our GOES albedo dataset includes all pixels, regardless of altitude, within the 

western U.S.-eastern North Pacific domain. In several of our analyses, we wish to focus upon 

cloud variability that occurs over the higher terrain, without including stratus cloud 

influences and other possible valley and low elevation effects. For these high terrain 

analyses, GOES pixels with elevations of less than 800 meters are masked using the gridded 

elevation data to focus on cloudiness over higher elevation terrain.  

 

2.3.4 Removing the seasonal cycle of αcloud and meteorological variables 

The estimated seasonal cycle of αcloud is removed using the daily climatology 

(average) of αcloud at each individual pixel. After considering different estimators of the 

seasonal cycle, we adopt a long-term (19-year) average of the daily αcloud wherein the daily 

average values are smoothed using a 29-day (±14 days) centered moving average to reduce 

high frequency sampling noise (appendix 2C). The “de-seasonalized” αcloud is defined as the 
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difference between αcloud and the smoothed daily climatology. The resulting de-seasonalized 

residuals provide a description of higher frequency (intra-seasonal) weather and climatic 

phenomena. 

 

2.3.5 Rotated Empirical Orthogonal Function (REOF) of daily cloud anomalies 

Empirical Orthogonal Function (EOF) analysis (Lorenz, 1956; Davis, 1976; 

Hannachi, 2004) is employed to decompose space-time variations in daily αcloud into 

orthogonal spatial eigenvector patterns (or simply EOFs) and their corresponding temporal 

amplitude time-series, called Principal Components (PCs) (Hannachi, 2004). To ensure 

physically meaningful spatial structures, rotated EOFs (REOFs; Richman, 1986; Hannachi, 

2004; Monahan et al., 2009) are constructed using Kaiser row normalization and a varimax 

criterion (Kaiser, 1958), which are constrained to be orthogonal in time only.  

The varimax rotation is applied to the five leading EOF modes of the de-seasonalized 

αcloud, all days of the year (January-December) over the 19-year period (1996-2014), from 

pixels with elevations of at least 800 meters above sea level. A set of time varying 

coefficients, or rotated principal components (RPCs) was also derived. When the REOF 

analysis is repeated for four-month blocks, e.g., February-May, June-September, and April-

July, instead of the entire year, the results yield nearly identical patterns for the five leading 

REOF modes, only ordered differently according to the variance explained. In each of the 

four-month and all-year analyses, the five leading modes account for 60% or more of the 

total variance. Moreover, the 6th mode in the all-year analysis accounts for 3.1% of the total 

variance, a significant drop from the 5th mode (9.5%). Therefore, only the five leading modes 

are presented in this paper.  
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2.3.6 Composites based upon extreme RPC values 

December-August days within the 1996-2014 period with the most positive and 

negative RPC values are identified to represent the cloudiest and clearest days during winter-

to-summer period when snow accumulation and melt are most active. The cloudiest days in 

the REOF core regions are determined as days with RPC values > 90th percentile, while the 

clearest days are determined as days with RPC values < 10th percentile. Given these subsets 

of cloudiest and clearest days, composites of anomaly fields of pertinent variables were 

formed to investigate the association of the cloudiness patterns with surface weather 

variables and atmospheric circulation patterns. For the latter, the NOAA PSD website 

(http://www.esrl.noaa.gov/psd/cgi-bin/data/narr/plotday.pl) was used to generate NARR 

composite datasets corresponding to the REOF/RPC modes.  

 

2.3.7 Contingencies based upon extreme RPC values 

2-by-2 contingency tables (Pearson, 1904; Wilks, 1995, Done et al., 2004) are 

constructed to examine how positive and negative                                                                                                                                                                                                                                                             

anomalies of each RPC mode associate with positive and negative anomalies of the selected 

teleconnection indices. The days corresponding to the most positive (>75th percentile) and 

negative (<25th percentile) indices are identified. The cloudiest (>75th percentile) and clearest 

(<25th percentile) days corresponding to each RPC mode are also identified. This criterion is 

applied to the high positive and negative states of the AO, Niño 3.4 and PNA indices, so the 

cells of the 2-by-2 tables represent the number of days associated with high positive and 
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negative phases of each teleconnection index and the number of days of high positive or 

negative phase of each RPC.  

The ϕ coefficients and χ2 statistics (Pearson, 1904; Howell, 2011) are subsequently 

computed to determine the correlation and statistical significance of the associations between 

the RPC modes and the teleconnection indices. The ϕ coefficient is analogous to Pearson’s 

correlation coefficient, although it must be noted that the maximum value of ϕ is not 

necessarily ±1 (Davenport and El-Sanhurry, 1991). 

 

2.4 Results and discussion 

2.4.1 αcloud variability on daily to inter-annual time scales 

The magnitude of αcloud variations at daily and inter-annual time scales is investigated 

by computing the mean (µ), standard deviation (σ) and the coefficient of variation (CV = σ/µ) 

of αcloud for winter (DJF), spring (MAM), summer (JJA) and autumn (SON), separately, at 

each GOES pixel (all elevations) across the western U.S from the 1996-2014 data. The maps 

showing the three-month aggregates of σ and CV are displayed in Figure 2.2 for intra-

seasonal daily anomalies and in Figure 2.3 for inter-annual seasonal anomalies. The mean 

values (µ) are identical in both intra-seasonal and inter-annual cases, so they are displayed in 

Figure 2.2 only. Figures 2.2 and 2.3 illustrate DJF, MAM and JJA to focus on periods when 

cloudiness variability has the most important influence on snowpack dynamics. The figures 

include offshore regions to compare coastal and lowland cloud variability to that of the 

higher elevation terrestrial regions of the western U.S. The albedo mean and variability 

statistics of representative regions for all four seasons are presented in Table 2.1.  
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Figure 2.2. Maps of mean (µ), standard deviation (σ) and coefficient of variation (CV) of 
daily αcloud for winter (DJF), spring (MAM) and summer (JJA). 
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Figure 2.3. DJF, MAM and JJA standard deviation and coefficient of variation calculated 
from seasonal (three-month) αcloud averages. Means for the seasonal averages are same as 
those in Figure 2.2, so are not shown. Note change in color scales from those in Figure 2.2. 

 

Table 2.1. Daily and seasonal means (µ) and standard deviations (σ) of αcloud in percent and 
the coefficients of variations (CV) for winter (DJF), spring (MAM), summer (JJA), and 
autumn (SON). The two tabulations are aggregates over the mountains in California and 
Oregon, and over the mountains in Idaho, Montana and eastern Washington. 

Time scale Season Region 1 (CA-OR) Region 2 (ID-MT-WA) 
µ σ CV µ σ CV 

Daily DJF 22.4 11.3 0.50 24.7 8.1 0.33 
MAM 19.8 13.0 0.66 24.8 12.1 0.49 
JJA 9.1 8.6 0.94 16.5 12.2 0.74 
SON 14.9 11.5 0.77 22.3 13.8 0.62 

Seasonal DJF 22.4 2.6 0.12 24.7 1.2 0.05 
MAM 19.8 2.8 0.14 24.8 1.4 0.06 
JJA 9.2 1.2 0.13 16.6 2.1 0.12 
SON 14.8 2.3 0.15 22.1 1.9 0.09 
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Seasonal means of αcloud range from as low as 6% to as high as 30%. Cloudiness is 

greatest in the offshore and near-shore coastal lowlands, and over mountainous terrains of the 

coast range, the Cascades, the northern Rockies and the Sierra Nevada (Figure 2.2, top 

panel). Over land, cloudiness tends to be greater north of San Francisco than to its south. A 

well-defined seasonality is observed over much of the western U.S. land mass, with greatest 

cloudiness in winter and least in summer. This contrasts with offshore and coastal lowland 

marine cloudiness in California, which peaks in summer (Clemesha et al., 2016), and 

illustrates the distinct physical mechanisms driving cloud formations. While subsiding air 

masses and low-level inversions are involved in marine layer clouds, synoptic-scale weather 

systems, e.g., Pacific cold fronts, are the primary generator of cool season mountain clouds. 

These synoptic systems produce spatially coherent cloudiness from offshore Pacific 

Northwest to the Cascades and Sierra Nevada.  

The variability of daily αcloud, represented by σ (Figure 2.2, middle panel), ranges 

from ~2% to >20%. On daily time scales, σ is highest over the coastal ocean and coastal 

lowlands and over the western slopes of mountain ranges. Regions with greater µ usually 

exhibit greater daily σ, including inland areas in California where both daily µ and σ are high 

in winter and spring. In California, this pattern demonstrates the strong influence of synoptic 

weather patterns in determining the enhanced average and time varying cloudiness in winter 

and spring months. However, over the interior Pacific Northwest in winter and spring, µ is 

high but σ is reduced, suggesting more persistent cloudiness. In the interior Pacific 

Northwest, the variability is heightened in summer and rather isolated from that over the 

coasts, indicative of regional processes including local convective activities.  
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Daily αcloud CV (Figure 2.2, bottom panel) provides a different perspective of the 

variability since they are scaled by their mean values, so a higher CV denotes increased 

variability relative to average conditions. The CV is generally higher in the south than in the 

north, an indication of the important role played by time varying cloudiness in a region with 

lower overall mean cloudiness such as the southwestern U.S., or particularly California. In 

DJF and MAM, the daily CV is pronounced along the eastern side of the Sierra Nevada 

rather than along the Sierra range itself, probably related to the irregular occurrence of 

mountain cloud formations including wave cloud that Grubišić and Billings (2008) found in 

spring and, even more variably, in winter. The high CV in California continues through JJA, 

which reflects the intermittent orographic thunderstorms that are common over the plateaus 

and mountains of the western U.S. during summertime (Kelly et al., 1985; Whiteman, 2000).  

Turning to seasonal time scales (Figure 2.3), it is important to know how much 

variability remains when αcloud is time-averaged, since persistent fluctuations of incoming 

radiation could affect seasonal anomalies of precipitation, snowmelt and other surface 

processes. Although their magnitudes are reduced, σ and CV patterns derived from ~90-day 

average αcloud are qualitatively similar those from daily αcloud, but they are accentuated in 

different regions. Importantly, the seasonal σ tends to be greatest in California, in contrast to 

daily σ, which is generally greatest in the Pacific Northwest. This daily-seasonal contrast 

indicates the regional significance of seasonal αcloud variability in California, especially 

during snowmelt season when the variability is emphasized over the west of Sierra Nevada.  

From year to year, seasonal αcloud deviations range from about 4% to 40% of mean 

αcloud, as shown by the seasonal CV (Figure 2.3, lower panel). Traversing central California, 

seasonal CVs exceed 0.18 from the California coast across the Central Valley and up the 
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Sierra Nevada slope, and also over neighboring high elevations of western Nevada, southern 

Oregon, and southern Idaho. In contrast, over the Pacific Northwest, seasonal CVs are low in 

DJF and MAM, reflecting high mean cloudiness and relatively low inter-annual variation.  

 

2.4.2 Sensitivity of solar insolation to cloudiness variability  

Using Eq. (2.3), the change in SWF associated with a given change in αcloud can be 

determined. Considering a set of selected locations (Table 2.2), the magnitude of daytime 

(0800-1600 LST) average ΔSWF, expressed as the response of SWF to a 10% increase in 

αcloud, ranges from ~66 to ~84 W m-2 over spring and summer when snowmelt activity is 

prominent; this range of ΔSWF is representative of ΔSWF determined for a larger set of 239 

high-altitude (≥800 meters) locations (64-84 W m-2). Furthermore, these calculated responses 

are comparable to those directly observed at the surface, via a least-squares regression 

analysis, between αcloud and surface pyranometer SWF at high-elevation stations in 

California. For example, a 10% increase in αcloud at Dana Meadows and at nearby Tuolumne 

Meadows (37.873 °N, 119.35 °W, 2,621 m) results in a 77-91 W m-2 SWF reduction over 

spring and summer. 

 

Table 2.2. Change in daily solar irradiance (SWF) at the surface corresponding to a 10% 
increase in daily αcloud estimated for two Region 1 locations [Dana Meadows, CA (37.9 °N, 
119.26 °W, 2,987 m), and Fish Lake, OR (42.38 °N, 122.35 °W, 1,420 m)] and two Region 2 
locations [Crater Meadows, ID (46.56 °N, 115.29 °W, 1,817 m), and Quartz Peak, WA 
(47.88 °N, 117.09 °W, 1,433 m)]. A negative ΔSWF denotes reduced SWF associated with 
increased αcloud.* 
Season Δαcloud (%) ΔSWF (W m-2) 

    Dana Meadows Fish Lake Crater Meadows Quartz Peak 
DJF 10 –43.3 –35.3 –29.8 –27.6 

MAM 10 –76.4 –70.2 –67.5 –65.8 
JJA 10 –84.1 –78.9 –77.5 –76.1 
SON 10 –56.2 –49.0 –43.9 –42.1 
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Table 2.2. Continued 
*The sensitivity values are based on daily time-series of αcloud and SWFclear. The daily 
SWFclear is an average of hourly SWFclear during daytime only (0800-1600 LST). 
 

2.4.3 Coherent patterns of daily αcloud variability 

To extract the dominant patterns of cloud variability over the mountains of the 

western U.S., REOF analysis is performed on the de-seasonalized daily αcloud over high-

elevation (≥800 meters) terrain, encompassing all months (January-December) of 1996-2014. 

By design, the leading REOF patterns are the ones whose αcloud anomaly patterns occupy a 

relatively large spatial scale and thus avoid the complexity introduced by smaller scale higher 

order patterns. Collectively, these five REOFs account for a considerable amount of the 

variability of mountain cloudiness, amounting to 66.7% of the total daily variance (Table 

2.3). 

 

Table 2.3. The eigenvalues of αcloud REOFs/RPCs 1-5 and the specific geographical areas 
where each mode is pronounced. The eigenvalue represents the amount of variance explained 
by each mode. 

REOF/RPC Eigenvalue (%) Geographical Emphasis 
1 20.4 Northern California and Oregon 
2 15.1 Interior Pacific Northwest 
3 11.2 Coastal Pacific Northwest 
4 10.5 Southwestern U.S. 
5 9.5 Great Basin 

 

Correlations between the five leading RPCs and de-seasonalized αcloud are strongest 

over high-elevation areas where the REOFs are accentuated, and rapidly degrade over 

adjacent lower-elevation areas (Figure 2.4). REOF1 represents daily αcloud anomalies that are 

pronounced in the mountainous region of northern California and Oregon, including the 

Sierra Nevada and the Oregon Cascades. REOF2 represents daily αcloud anomalies centered 
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over the interior northwest covering Idaho, western Montana, eastern Oregon and eastern 

Washington. REOF3 is concentrated over the Cascade mountain range in western Oregon 

and Washington. REOF4 has greatest weightings in southern California, Nevada, and parts of 

Utah and Arizona. REOF5 represents daily αcloud anomalies focused on the eastern two thirds 

of Nevada and Idaho. Each of the five leading REOFs has core areas that partially overlap 

with those of other REOFs because, unlike in EOF analysis, the spatial orthogonality has 

been relaxed in REOF analysis. For instance, both REOF1 and REOF2 contain a footprint 

over northeastern Oregon.  

 

 

Figure 2.4. Correlation (R) fields (all months of 1996-2014) between de-seasonalized daily 
αcloud and (a) RPC1, (b) RPC2, (c) RPC3, (d) RPC4, and (e) RPC5 over the entire domain. 
Only pixels with p-value < 0.05 are colored. 

 

When a separate REOF analysis was applied to daily αcloud anomalies over all 

elevations (not shown), the same five higher elevation-oriented modes appeared, but not in 

the same order and in the midst of other REOFs that represent lower-elevation cloudiness, 

primarily over the eastern Pacific Ocean and coastal lowlands. This confirms the authenticity 
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of the original αcloud REOFs and the distinction between these higher elevation modes from 

those that are organized over lower elevations.    

While there is some degree of spatial overlap between the five REOFs, by 

construction their temporal variability is statistically independent—the RPCs are temporally 

orthogonal. Although each RPC has a time mean of zero for each day of the year, the 

magnitude of month-to-month RPC fluctuations still contains substantial seasonal variability, 

as shown by their monthly standard deviations (Figure 2.5).  

The variability of RPCs 1, 3 and 4 exhibits a well-defined annual cycle, while that of 

RPCs 2 and 5 displays a biannual cycle peaking in spring and early autumn. The Oregon-

California and Nevada modes (RPC1 and RPC4) have greatest variability between autumn 

and late spring and least variability in summer. This seasonality reflects the winter-

dominated storminess climate pattern in California and Nevada, having more abundant 

clouds (and higher variations thereof) during the cool season (October-May) than during the 

warm season (June-September). In contrast, the two Pacific Northwest modes (RPC2 and 

RPC3) contain highest variability from summer to early autumn and lowest variability in 

winter and spring. The cloud cover over the Pacific Northwest during the cool season is high 

(Figure 2.2, upper panel), but prone to persisting for long periods—both RPC2 and RPC3 

have minimum variability in December and January. The seasonality of the variance of the 

Great Basin mode (RPC5) has peaks in spring and autumn, resembling that of the northern 

Idaho-eastern Washington-eastern Oregon mode (RPC2) in which twice yearly cycle is 

presented. 
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Figure 2.5. Standard deviations of (a) RPC1, (b) RPC2, (c) RPC3, (d) RPC4, and (e) RPC5 
for each month in αcloud percent unit, exemplifying the seasonal structures of each RPC mode. 
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2.4.4 Relations to larger scale circulation patterns 

The contours in Figures 2.6a and 2.6b present the 500-hPa geopotential height (Z500) 

composite anomaly fields from NARR historical reanalysis associated with the two 

REOF/RPC modes during the most positive αcloud RPC amplitudes (cloudiest days) during 

December through August. The cloudy-day composites are characterized by negative Z500 

anomalies with centers positioned west and/or north of the strongest REOF loadings, 

conducive to anomalous cyclonic flow and rising motion, as described below. Similarly, the 

contours in Figures 2.6c and 2.6d show the Z500 anomaly fields during the most negative RPC 

amplitude (clearest days). The clear-day composites are nearly the mirror image patterns of 

their positive RPC cloudy-day counterparts, with positive Z500 anomalies in the upstream or 

overlying regions, conducive to anomalous anti-cyclonic motion and descending motion.  

The color shades in Figure 2.6 represent the 500-hPa pressure vertical velocity (ω500) 

composite anomalies in association with the positive and negative αcloud RPC subsets. A 

negative ω500 anomaly denotes greater than average upward motion, often associated with 

lowered surface pressure and often with precipitation; a positive ω500 anomaly denotes more 

downward motion, often associated with surface high pressure and often with fewer clouds. 

A consistent feature of the composites is the association of core positive REOF (greatest 

cloudiness) areas with strong negative ω500 anomaly over areas with strong negative Z500 

anomaly and vice versa, in agreement with canonical quasi-geostrophic theory [e.g., Holton 

(2012)].  
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Figure 2.6. 500-hPa geopotential height (Z500) anomaly (isolines) and pressure vertical 
velocity (ω500) anomaly (shades) composited for days with the most positive (a and b) and 
most negative (c and d) anomalies for RPC1 (left) and RPC2 (right), representing cloudiest 
and clearest days during December-August of 1996-2014. The positive (negative) Z500 
anomaly is contoured as solid (dashed) line.  
 

2.4.5 Relations to lower frequency climate variability patterns 

The associations of the REOF/RPCs with seasonal atmospheric circulation patterns 

are explored using conventional teleconnection indices and correlation patterns averaged 

over winter (DJF), spring (MAM) and summer (JJA).  
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Contingency tables are developed to understand how the high and low seasonal 

anomalies of the αcloud RPCs associate with positive and negative expressions of the 

teleconnection patterns. Positive (negative) cloudiness RPC anomalies represent greater 

(lesser) cloudiness in the respective REOF core regions and are denoted +RPCs (–RPCs). 

Likewise, the positive/negative phase of the teleconnection indices are marked with +/– sign. 

From the contingency tables (not shown), the χ2 statistics and the associated ϕ coefficients 

are summarized in Tables 2.4 and 2.5 to denote the statistical significance and the correlation 

of the associations between the teleconnection indices and the RPC modes.  

 

Table 2.4. χ2 values of the contingency tables relating the five RPC modes to selected 
teleconnection indices during winter (DJF), spring (MAM), and summer (JJA) of 1996-2014. 
The statistic is significant at 95% confidence level when χ2 > 3.84 (bold numbers). 

Indices Season RPC1 RPC2 RPC3 RPC4 RPC5 
AO DJF 23.65 6.72 6.40 19.46 0.61 

 
MAM 0.49 1.98 0.03 0.67 0.22 

 
JJA 5.13 4.52 0.50 1.21 2.31 

Niño 3.4 DJF 0.69 1.15 0.48 19.51 5.72 

 
MAM 0.00 0.79 0.15 5.07 0.03 

 
JJA 0.79 4.38 5.76 1.63 0.35 

PNA DJF 0.19 0.31 3.08 1.70 4.13 

 
MAM 1.51 0.41 0.05 2.87 0.29 

  JJA 17.49 3.24 0.44 2.14 17.01 
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Table 2.5. ϕ coefficients associated with the χ2 statistics, indicating the magnitude and the 
sign of the correlations between the RPCs and teleconnection indices during winter (DJF), 
spring (MAM), and summer (JJA) of 1996-2014. 

Indices Season RPC1 RPC2 RPC3 RPC4 RPC5 
AO DJF –0.24 0.12 0.12 –0.22 0.04 

 
MAM –0.03 0.07 –0.01 –0.04 0.02 

 
JJA –0.10 –0.10 –0.03 0.05 –0.07 

Niño 3.4 DJF 0.04 –0.05 –0.03 0.21 –0.11 

 
MAM 0.00 0.04 –0.02 0.10 –0.01 

 
JJA 0.04 0.10 –0.11 0.06 0.03 

PNA DJF –0.02 –0.03 0.08 0.06 –0.10 

 
MAM 0.06 –0.03 –0.01 0.08 0.02 

  JJA 0.20 0.09 –0.03 0.07 0.19 
 

RPC1, the interior California and Oregon pattern, has statistically significant 

relationships (χ2 > 3.84) with AO and PNA. RPC1 is negatively correlated with AO in DJF 

and JJA as indicated by the ϕ coefficient. Thus, +RPC1 cases tend to coincide with –AO, the 

equatorward and more distorted version of the high latitude westerlies that presumably 

increases storminess across the mid-latitudes of western North America (Thompson and 

Wallace, 2000, 2001). The opposite pattern, –RPC1 cases, is associated with +AO, the mode 

having confined high latitude westerly winds. The significant RPC1 relationship with PNA in 

JJA is rather unexpected because the PNA pattern is usually weak in summer, and because a 

high pressure ridge (indicative of fair weather) along the western North America often 

characterizes +PNA condition (Wallace and Gutzler, 1981). The RPC1-PNA contingency 

table shows a particularly high number of days when both RPC1 and PNA index are negative 

(Table 2.6). This unexpected RPC1-PNA relationship in JJA may also be a “false positive” 

attributed to the 95% confidence level test applied here. 
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Table 2.6. Contingency table showing the relationship between RPC1 and PNA in JJA 

 
+RPC1 –RPC1 Total 

+PNA 123 78 201 
–PNA 103 146 249 
Total 226 224 450 

 

RPC2, the interior northwestern U.S. pattern, associates with AO in DJF and JJA, 

where +RPC2 tends to concur with +AO in DJF and with –AO in JJA as indicated by the ϕ 

coefficient. Although mid-latitude storm activities in North Pacific are often associated with 

–AO when the westerlies are usually weaker (Thompson and Wallace, 2001), the relatively 

northern REOF2 region is in a location where the storm track may trail into the region even 

with +AO. Interestingly, RPC2 is positively correlated with Niño 3.4 in JJA, although El 

Niño Southern Oscillation (ENSO) signal in the western U.S. tends to be weak in boreal 

summer. The RPC2-Niño 3.4 contingency table shows a particularly high number of days 

when both RPC2 and Niño 3.4 index are positive (Table 2.7), demonstrating that contingency 

table analysis can report a statistically significant relationship even with only one distinctly 

high number of days.  

 

Table 2.7. Contingency table showing the relationship between RPC2 and Niño3.4 in JJA 

 
+RPC2 –RPC2 Total 

+Niño 3.4 138 98 236 
–Niño 3.4 102 108 210 

Total 240 206 446 
 

Similar to RPC2, RPC3, the Cascade mountain range pattern, is positively correlated 

with AO in DJF, in keeping with the positive AO correlations with RPC2. However, the 

RPC3 relationship with AO is not statistically significant in JJA. +RPC3 is negatively 

correlated with Niño 3.4 in JJA. In view of the fact that its neighboring interior Northwest 
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pattern (REOF2/RPC2) is positively correlated with Niño 3.4 in JJA, this indicates a rather 

strong gradient of cloudiness may set in during summer ENSO events.        

RPC4, the southwestern U.S. pattern, is significantly correlated with AO in DJF, 

where, similar to +RPC1, +RPC4 tends to coincide with –AO. Furthermore, +RPC4 events 

are associated with +Niño 3.4 in DJF and MAM, a signature of El Niño conditions and 

increased storminess in the southwestern U.S. (Cayan et al., 1999).  

RPC5, the northern Nevada and Idaho pattern, associates with Niño 3.4 and PNA. 

RPC5 is negatively correlated with Niño 3.4 in DJF, evidently because El Niño forces storm 

tracks farther south resulting in variable influences on Great Basin precipitation (Smith et al., 

2015). RPC5 is negatively correlated with PNA in DJF, indicating that strengthened high 

pressure ridging in winter reduces cloud cover over the northern Great Basin. However, 

RPC5 is positively correlated with PNA in JJA, reflecting Leathers et al. (1991) finding that 

PNA is negatively correlated with precipitation over much of the western U.S. during the 

cool season and a positively correlated during the warm season. 

The correlation maps between the seasonal averages of the five leading αcloud RPCs 

and those of Z500 anomaly are shown in Figure 2.7. Although they vary somewhat with 

season, the spatial structure of the correlation maps of RPCs 1 and 2 (upper two rows of 

Figure 2.7) is in good agreement with the daily composite maps in Figure 2.6. The rather 

detailed regional structure of the correlation maps explains why the association of western 

U.S. cloudiness with the AO, Niño 3.4, and PNA teleconnection patterns is perhaps more 

modest than might be expected. These correlations clearly represent regional circulations that 

may, at times, conflict with the larger scale circulations of the major teleconnection patterns, 

making for relatively weak associations.    
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Figure 2.7. Correlation maps between the seasonal averages of the five leading αcloud RPCs 
and those of Z500 anomaly for 1996-2014. The gray contours denote the areas where p-value 
< 0.05.  
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2.5 Summary and conclusions 

Aside from having substantial spatial and seasonal variation, cloudiness over the 

mountains of the western U.S. has significant anomalous variation over a broad range of 

scales. A 19-year (1996-2014) GOES cloud albedo (αcloud) dataset, sampled to cover 

elevations ≥800 meters, exhibits anomalous fluctuations whose dominant patterns are 

organized over 100’s of km regions. The high degree of spatial coherence is evidenced by the 

αcloud REOF decomposition of the daily cloudiness variability in which the first five modes 

account for ~67% of the total variance. These αcloud modes operate throughout the whole 

year, but they are modulated seasonally. For example, the leading mode represents the 

variability over northern California and Oregon and is accentuated between November and 

March, while the second mode represents that over the interior Pacific Northwest and is 

pronounced between March and July.  

 Anomalous cloudiness over high elevation regions has differing levels and primary 

seasons of activity. For example, in the southwest, mountain cloudiness variability is highest 

in spring, probably because of year-to-year climate variability and intermittent synoptic 

weather systems from the Pacific. This springtime variability amounts to ~13% (cloud albedo 

unit) on daily scale, equivalent to ~95 W m-2 difference in solar radiation (based on Tables 

2.1 and 2.2). Even when seasonally averaged, the αcloud standard deviation amounts to ~3%, 

equivalent to ~20 W m-2 departure in incoming solar radiation. In contrast, in the northwest, 

the variability is lowest in winter and highest in summer, probably because it is persistently 

cloudy in winter while summertime cloudiness is more often interrupted by interludes of 

clear skies. In a relative sense, the amount of cloudiness variation compared to the mean 

cloudiness is uniformly higher in the southwest than in the northwest. Importantly, this 
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relative variation is quite large, with a magnitude of up to ~1.8 on daily scale and ~0.4 on 

seasonal scale, and is typically greatest during spring and summer when snowmelt is most 

active.  

The seasonal variability of cloudiness over mountain regions in the western U.S. 

contrasts with that of eastern North Pacific and low lying coastal cloudiness, reflecting the 

different dynamics operating in these environments. This contrast is most evident in 

California, where the mean cloudiness and variability over higher elevation terrain is greatest 

in winter, while offshore and along the coastline they are greatest in summer.  

As expected, daily variations in cloudiness are dictated by anomalous patterns of 

atmospheric circulation. Positive regional cloudiness anomalies are usually accompanied by 

anomalously low surface pressure systems, e.g., negative geopotential height anomalies and 

upward vertical velocity anomalies.  

These circulation patterns are affected by regional and to some extent by Pacific 

basin-scale climate variability as represented by regional atmospheric circulation composites 

and by associations with AO, PNA and Niño 3.4 teleconnection patterns. These associations 

vary with regions and seasons. For instance, during the winter and spring the southwestern 

U.S. is greatly influenced by AO and Niño 3.4, while the interior Pacific Northwest is almost 

singularly influenced by AO. Somewhat surprisingly, northern California and Oregon are not 

strongly influenced by ENSO, probably because this region resides near the hinge point of 

the West Coast precipitation dipole (Dettinger et al., 1998).  

Previous studies (e.g., Eastman and Warren, 2013; Norris et al., 2016) suggest there 

may be a slight decline in cloud cover globally and a poleward movement of mid-latitude 

storm tracks, but the 19-year GOES dataset is too short to form realistic estimates of trends. 
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Determination of long term changes over high elevations of the western U.S. must contend 

with considerable shorter period variability of cloudiness that is described here. Because of 

strong influences by large-scale weather and short period climate patterns, cloudiness varies 

over regional spatial scales, with characteristic patterns that cover large portions of the high 

elevation zones of the region.  
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APPENDIX 2A 

GOES data availability 

The structure of the missing data is illustrated in Figure 2.A1. Most of the missing 

data occur in early morning and late afternoon during times of low sun angle. There are more 
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missing data in winter months due to shorter day lengths. The right panel on Figure 2.A1 

shows that >80% of the days have >15 half-hour daytime observations.  

 

 

Figure 2.A1. Left: Number distribution of missing data for each month and half-hour of the 
day of 1996-2014, averaged over >300 high-elevation pixels across the westernmost U.S., 
illustrating which hours of the day have the least/most missing data in each month. Right: 
The percentages of hours between 0800 and 1600 PST exist per day during the same period 
and averaged over the same pixels, illustrating how many daytime hours exist on average.  

 

Whether 10 out of 17 half-hours made a reasonable daily mean estimate was 

determined from an analysis summarized in Table 2.A1. We identified the days when there 

was no missing data between 0800 and 1600 LST and derived the daily averages. We then 

randomly removed [1, 2, 3…16] half-hours of the same days and re-derived the daily 

averages. In each instance, the correlation (R), root-mean-squared error (RMSE) and 

fractional mean absolute bias (f|Bias| = |α17-n – α17|/α17, for 1 ≤ n ≤ 16) between the two sets 

(with vs. without missing data) were computed to determine the validity of the daily 

averages.  

There is no set standard of how many half-hours or of how much error/bias can be 

tolerated. Together with the facts that >90% of the days had >15 half-hours available and that 
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the days with 7 missing data accounted for <0.1%, having an error (fractional bias) of 

~1.91% (0.1) was a reasonable limit.  

 

Table 2.A1. The correlation (R), root-mean-squared error (RMSE) and fractional mean 
absolute bias (f|Bias|) between daily average cloud albedo when no half-hour between 0800 
and 1600 LST is missing and that when one or more (n) half-hours are missing, for 1 ≤ n ≤ 
10 only. The RMSEs are in percent cloud albedo unit. The statistics are averages over all 
days and sites as in Figure A1. 

  n 

 
1 2 3 4 5 6 7 8 9 10 

R 0.999 0.998 0.997 0.996 0.994 0.993 0.991 0.990 0.988 0.986 
RMSE 0.66 0.94 1.17 1.38 1.56 1.74 1.91 2.08 2.24 2.41 
f|Bias| 0.03 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 

 

APPENDIX 2B 

Clear-sky albedo time window 

Figure 2.B1 shows how different time windows used to determine the clear-sky 

albedo evolve throughout the water year 2006, in comparison to snow water equivalent 

(SWE) at nearby snow sensors in California and Idaho mountain settings. Each of the clear-

sky albedos generally captures the snow and non-snow season, but the one with the shortest 

time window (7 days) is hypersensitive to short-term fluctuations. In contrast, the one with 

the longest time window (28 days) is hyposensitive to such fluctuations. The 15-day (±7 

days) time window has intermediate properties that capture major changes while being 

immune to short period changes.  

There were a few isolated cases when the 15-day time window did not capture the 

evolving snow surface cover during the early snow season. For example, the period when 

snowfall and accumulation occurred rapidly between 29 November 2005 and 1 December 

2005 was misclassified as no snow accumulation (Figure 2.1). Shortening the time window 
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(e.g., to 7-day period) resolved this problem, but resulted in other days misclassified as 

cloud-free, e.g., 2 December 2005, 7 December 2005 and 15 December 2005. On the other 

hand, expanding the time window would result in more days misclassified as no snow 

accumulation, e.g., in 1-4 December 2005 and 31 December 2005. Thus, we determined that 

15-day window was optimal. 

 

 

Figure 2.B1. Daily time-series of water year 2006 SWE (gray shading) and of αclear derived 
using four different time windows (color plots) at Dana Meadows in the Yosemite National 
Park, California, (left) and Crater Meadows in Idaho (right). The thick red line denotes the 
time window used in the study. 
 

APPENDIX 2C 

Determining the seasonal cycle  

Harmonic fitting, Butterworth filter and Chebyshev Type I filter were evaluated 

alongside the original 29-day (±14 days) centered moving average used in this study. Figure 

2.C1 shows the de-seasonalized daily cloud albedo time-series at four different pixels and 

two selected filters (1st order Chebyshev Type I filter, 29-day centered moving average), 

averaged over all years. The more sophisticated and computationally more intensive method 

yielded a somewhat different representation of the annual cycle, but without appreciable 
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improvement. The power spectra of the de-seasonalized time-series displayed similar power 

dissipations at different spectral periods, most notably at ~365-day period (not shown). 

 

 

Figure 2.C1. Daily climatology (1996-2014) of αcloud (gray) and its low-pass filtered versions 
using Chebyshev Type I filter (blue) and original 29-day (±14 days) centered moving 
average (CMA) (red) at four different locations. 

 

The same conclusion was derived when different filters (i.e., harmonic fitting and 

Butterworth filter) and different orders (i.e., 2nd, 3rd, … order Chebyshev, 1, 2, 3, … -point 

Butterworth) were used. Furthermore, the two other filters and the higher order Chebyshev 

filters tended to underestimate the annual cycle as they produce dampened amplitudes, which 

resulted in large positive biases in winter and large negative biases in summer.  



	 47 

 

References 

Aguado, E., 1985: Radiation balances of melting snow covers at an open site in the central 
Sierra Nevada, California. Water Resour. Res., 21(11), 1649-1654. 

Bales, R. C., N. P. Molotch, T. H. Painter, M. D. Dettinger, R. Rice, and J. Dozier, 2006: 
Mountain hydrology of the western United States. Water Resour. Res., 42(8). 

Cano, D., J. M. Monget, M. Albuisson, H. Guillard, N. Regas, and L. Wald, 1986: A method 
for the determination of the global solar radiation from meteorological satellite data. Solar 
Energy, 37, 31-39. 

Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and Hydrologic Extremes in 
the Western United States*. J. Climate, 12, 2881–2893. doi: http://dx.doi.org/10.1175/1520-
0442(1999)012<2881:EAHEIT>2.0.CO;2 

Clemesha, R. E. S., A. Gershunov, S. F. Iacobellis, A. P. Williams, and D. R. 
Cayan, 2016: The northward march of summer low cloudiness along the California coast. 
Geophys. Res. Lett., 43, 1287-1295. doi:10.1002/2015gl067081. 

Cline, D. W., 1997: Snow surface energy exchanges and snowmelt at a continental, 
midlatitude Alpine site. Water Resour. Res., 33(4), 689-701. 

Dai, A., T. R. Karl, B. Sun, and K. E. Trenberth, 2006: Recent trends in cloudiness over the 
United States: A tale of monitoring inadequacies. Bull. Amer. Meteor. Soc., 87, 597–606. 

Davis, R. E., 1976: Predictability of Sea Surface Temperature and Sea Level Pressure 
Anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249–266. 
doi: http://dx.doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2 

Davenport, E. C., and N. A. El-Sanhurry, 1991: Phi/phimax: review and 
synthesis. Educational and Psychological Meas., 51(4), 821-828. 

Dettinger, M., 2011: Climate change, atmospheric rivers, and floods in California—A 
multimodel analysis of storm frequency and magnitude changes. J. Am. Water Resour. 
Assoc., 47(3), 514–523, doi:10.1111/j.1752-1688.2011.00546.x. 

Dettinger, M. D., D. R. Cayan, H. F. Diaz, and D. M. Meko, 1998: North-south precipitation 
patterns in western North America on interannual-to-decadal time scales. J. Climate, 11(12), 
3095-3111. 

Done, J., C. A. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit 
forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. 
Sci. Lett., 5(6), 110-117. 

Eastman, R., and S. G. Warren, 2013: A 39-Yr Survey of Cloud Changes from Land Stations 
Worldwide 1971–2009: Long-Term Trends, Relation to Aerosols, and Expansion of the 
Tropical Belt. J. Climate, 26, 1286-1303.  



	 48 

Franzke, C., K. Fraedrich, and F. Lunkeit, 2001: Teleconnections and low-frequency 
variability in idealized experiments with two storm tracks. Quart. J. Roy. Meteor. Soc., 127, 
1321–1339. 

Gautier, C., G. Diak, and S. Masse, 1980: A Simple Physical Model to Estimate Incident 
Solar Radiation at the Surface from GOES Satellite Data. J. Appl. Meteor., 19, 1005–1012. 
doi: http://dx.doi.org/10.1175/1520-0450(1980)019<1005:ASPMTE>2.0.CO;2. 

Gimeno García, S., T. Trautmann, and V. Venema, 2012: Reduction of radiation biases by 
incorporating the missing cloud variability via downscaling techniques: a study using the 3-D 
MoCaRT model. Atmos. Meas. Tech. Disc., 5(1), 1543-1573. 

Grubišić, V., and B. J. Billings, 2008: Climatology of the Sierra Nevada Mountain-Wave 
Events. Mon. Weather Rev., 136(2), 757–768. doi:10.1175/2007MWR1902.1. 

Hannachi, A., 2004: A primer for EOF analysis of climate data. University of Reading, 33 
pp. 

Held, I. M., and B. J. Soden, 2006: Robust Responses of the Hydrological Cycle to Global 
Warming. J. Climate, 19, 5686–5699. doi: http://dx.doi.org/10.1175/JCLI3990.1 

Hinkelman, L. M., K. E. Lapo, N. C. Cristea, and J. D. Lundquist, 2015: Using CERES SYN 
Surface Irradiance Data as Forcing for Snowmelt Simulation in Complex Terrain. J. 
Hydrometeorol., 16, 2133-2152. doi:10.1175/JHM-D-14-0179.1. 

Holton, J., 2012: An introduction to dynamic meteorology. 5th edition, Academic press, 552 
pp. 

Howell, D. C., 2011: Chi-square test: analysis of contingency tables. International 
Encyclopedia of Statistical Science. Springer Berlin Heidelberg, 250-252 pp. 

Iacobellis, S. F., and D. R. Cayan, 2013: The variability of California summertime marine 
stratus: Impacts on surface air temperatures. J. Geophys. Res.: Atmospheres, 118(16), 9105-
9122. 

Ineichen, P., and R. Perez, 1999: Derivation of cloud index from geostationary satellites and 
application to the production of solar irradiance and daylight illuminance data. Theor. Appl. 
Climatol., 64, 119–130. 

Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis. 
Psychometrika, 23, 187–200. 

Kelly, D. L., J. T. Schaefer, and C. A. Doswell III, 1985: Climatology of nontornadic severe 
thunderstorm events in the United States. Mon. Wea. Rev., 113(11), 1997-2014. 

Khan, S. I., and Coauthors, 2011: Satellite remote sensing and hydrologic modeling for flood 
inundation mapping in Lake Victoria Basin: Implications for hydrologic prediction in 
ungauged basins. IEEE Trans. Geosci. Remote Sens., 49(1), 85–95, 
doi:10.1109/TGRS.2010.2057513. 



	 49 

Kleissl, J., 2013: Solar energy forecasting and resource assessment, Oxford: Academic 
Press. 

Lapo, K. E., L. M. Hinkelman, M. S. Raleigh, and J. D. Lundquist, 2015: Impact of errors in 
the downwelling irradiances on simulations of snow water equivalent, snow surface 
temperature, and the snow energy balance. Water Resour. Res., 51, 1649–1670. 
doi:10.1002/2014WR016259. 

Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American 
teleconnection pattern and United States climate. Part I: Regional temperature and 
precipitation associations. J. Climate, 4(5), 517-528. 

Leavesley, G. H., R. W. Lichty, B. M. Troutman, and L. G. Saindon, 1983: Precipitation-
runoff modeling system: User's manual, Water-Resources Investigation Report, 83-4238 pp., 
U.S. Geol. Surv. 

Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. 
Statistical Forecasting Project Rep. 1, MIT Department of Meteorology, 49 pp. 

Marks, D., and J. Dozier, 1992: Climate and energy exchange at the snow surface in the 
alpine region of the Sierra Nevada: 2. Snow cover energy balance. Water Resour. 
Res., 28(11), 3043-3054. 

Markstrom, S. L., R. S. Regan, L. E. Hay, R. J. Viger, R. M. T. Webb, R. A. Payn, and J. H. 
LaFontaine, 2015: PRMS-IV, the precipitation-runoff modeling system, version 4. U.S. 
Geological Survey Techniques and Methods, book 6, chap. B7, 158 
p., http://dx.doi.org/10.3133/tm6B7. 

Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, P. C. Shafran, W. Ebisuzaki, D. Jović, J. 
Woollen, E. Rogers, E. H. Berbery, M. B. Ek, Y. Fan, R. Grumbine, W. Higgins, H. Li, Y. 
Lin, G. Manikin, D. Parrish, and W. Shi, 2006: North American regional reanalysis. Bull. 
Am. Meteorol. Soc., 87, 343–360. 

Mizukami, N., M. P. Clark, A. G. Slater, L. D. Brekke, M. M. Elsner, J. R. Arnold, and S. 
Gangopadhyay, 2014: Hydrologic Implications of Different Large-Scale Meteorological 
Model Forcing Datasets in Mountainous Regions. J. Hydrometeorol., 15(1), 474–488, 
doi:10.1175/JHM-D-13-036.1. 

Molotch, N. P., T. H. Painter, R. C. Bales, and J. Dozier, 2004: Incorporating remotely 
sensed snow albedo into spatially distributed snowmelt modeling. Geophys. Res. Lett., 31, 
L03501, doi: 10.1029/2003GL019063. 

Monahan, A. H., J. C. Fyfe, M. H. Ambaum, D. B. Stephenson, and G. R. North, 2009: 
Empirical orthogonal functions: The medium is the message. J. Climate, 22(24), 6501-6514. 

Mote, P. W., 2006: Climate-Driven Variability and Trends in Mountain Snowpack in 
Western North America*. J. Climate, 19(23), 6209-6220. 



	 50 

Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O'Dell, and S. A. Klein, 2016: 
Evidence for Climate Change in the Satellite Cloud Record. Nature. 
doi: 10.1038/nature18273. 

O’Gorman, P. A., and T. Schneider, 2008: The Hydrological Cycle over a Wide Range of 
Climates Simulated with an Idealized GCM. J. Climate, 21, 3815–3832. 
doi: http://dx.doi.org/10.1175/2007JCLI2065.1 

Paech, S. J., J. R. Mecikalski, D. M. Sumner, C. S. Pathak, Q. Wu, S. Islam, and T. 
Sangoyomi, 2009: A calibrated, highresolution GOES satellite solar insolation product for a 
climatology of Florida evapotranspiration. J. Amer. Water Resour. Assoc., 45(6), 1328–1342. 

Paulescu, M., E. Paulescu, P. Gravila, V. Badescu, 2012: Weather Modeling and Forecasting 
of PV Systems Operation, 2013th edn. London: Springer-Verlag. 

Pearson, K., 1895: Notes on regression and inheritance in the case of two parents. Proc. R. 
Soc. Lond., 58, 240-242. 

Pearson, K., 1904: On the theory of contingency and its relation to association and normal 
correlation. Foreword to Drapers Company research memoirs: Biometric series I. 

Perez, R., P. Ineichen, K. Moore, M. Kmiecik, C. Chain, R. George, and F. Vignola, 2002: A 
new operational model for satellite-derived irradiances: description and validation. Solar 
Energy, 73, 307-317. 

Perez, R., S. Kivalov, A. Zelenka, J. Schlemmer, and K. Hemker Jr., 2010: Improving the 
performance of satellite-to-irradiance models using the satellite’s infrared sensors. In: Proc. 
of American Solar Energy Society’s Annual Conference, Phoenix, AZ. 

Pierce, D. W., and D. R. Cayan, 2013: The Uneven Response of Different Snow Measures to 
Human-Induced Climate Warming. J. Climate, 26, 4148–4167. 
doi: http://dx.doi.org/10.1175/JCLI-D-12-00534.1 

Pierce, D. W., and Coauthors, 2008: Attribution of declining western US snowpack to human 
effects. J. Climate, 21(23), 6425-6444. 

Raleigh, M. S., K. Rittger, and J. D. Lundquist, 2011: What lies beneath? Comparing 
MODIS fractional snow covered area against ground-based observations under forest 
canopies and in the meadows of the Sierra Nevada. Proc. Western Snow Conf., 79, 3-14. 

Ramanathan, V., R. D. Cess, E. F., Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, E., and 
D. L. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation 
Budget Experiment. Science, 243(4887), 57-63. 

Rauber, R. M., 1992: Microphysical Structure and Evolution of a Central Sierra Nevada 
Orographic Cloud System. J. Appl. Meteor., 31, 3–24, doi: http://dx.doi.org/10.1175/1520-
0450(1992)031<0003:MSAEOA>2.0.CO;2. 

Richman, M. B., 1986: Rotation of principal components. J. Climate, 6(3), 293-335. 



	 51 

Ringer, M. A., and K. P. Shine, 1997: Sensitivity of the Earth’s radiation budget to 
interannual variations in cloud amount. Climate Dyn., 13, 213–222. 

Rittger, K., A. Kahl, and J. Dozier, 2011: Topographic distribution of snow water equivalent 
in the Sierra Nevada, Proc. Western Snow Conf., 79, 37-46. 

Rittger, K., T. H. Painter, and J. Dozier, 2013: Assessment of methods for mapping snow 
cover from MODIS. Adv. Water Resour., 51, 367-380. 

Rossow, W. B., C. Delo, and B. Cairns, 2002: Implications of the observed mesoscale 
variations of clouds for the Earth’s radiation budget. J. Climate, 15, 557 – 585.  

Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S Pulwarty, 1999: 
Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) 
data. Water Resour. Res., 35(7), 2145-2160. 

Seze, G., and W. B. Rossow, 1991: Time-cumulated visible and infrared radiance histograms 
used as descriptors of surface and cloud variations. Int. J. Remote Sens., 12, 877–920. 

Simpson, J. J., M. D. Dettinger, F. Gehrke, T. J. McIntire, and G. L. Hufford, 2004: 
Hydrologic scales, cloud variability, remote sensing, and models: Implications for 
forecasting snowmelt and streamflow. Wea. Forecasting, 19(2), 251-276. 

Smith, G. L., D. Rutan, and T. D. Bess, 1992: Atlas of albedo and absorbed solar radiation 
derived from Nimbus-7 Earth Radiation Budget data set — November 1978 to October 1985. 
NASA Ref Publ 1231. 

Smith, K., C. Strong, and S. Y. Wang, 2015: Connectivity between historical Great Basin 
precipitation and Pacific Ocean variability: A CMIP5 model evaluation. J. Climate, 28(15), 
6096-6112. 

Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical 
circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016. 

Thompson, D. W., and J. M. Wallace, 2001: Regional climate impacts of the Northern 
Hemisphere annular mode. Science, 293(5527), 85-89. 

U.S. Army Corps of Engineers, 1956: Snow hydrology: Summary report of the snow 
investigations. North Pacific Division, U.S. Army Corps of Engineers, 437 pp. 

Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height during 
the northern hemisphere winter. Mon. Wea. Rev., 109(4), 784-812. 

Warren, S. G., R. M. Eastman, and C. J. Hahn, 2007: A Survey of Changes in Cloud Cover 
and Cloud Types over Land from Surface Observations, 1971 – 1996. J. Climate, 20, 717-
738. 

Welch, R. M., K. S. Kuo, B. A. Wielicki, S. K. Sengupta, and L. Parker, 1988: Marine 
stratocumulus cloud fields off the coast of southern California observed using LANDSAT 
imagery. Part I: Structural characteristics. J. Appl. Meteor., 27, 363–378. 



	 52 

Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford 
University Press, 376 pp. 

Wilks, D. S., 1995: Statistical Methods in Atmospheric Sciences: An Introduction. Academic 
Press, 467 pp. 

Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st 
century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684. 

Zelenka, A., R. Perez, R. Seals, and D. Renne, 1999: Effective accuracy of satellite-derived 
hourly irradiances. Theor. Appl. Climatol., 62, 199-207. 

  



	 53 

Chapter 3 

The Influence of Cloudiness on Hydrologic Fluctuations in the Mountains 

of the Western United States 

This study investigates snowmelt and streamflow responses to cloudiness variability 

across the mountainous parts of the western United States. Twenty years (1996-2015) of 

Geostationary Operational Environmental Satellite-derived cloud cover indices (CC) with 4-

km spatial and daily temporal resolutions are used as a proxy for cloudiness. The primary 

driver of non-seasonal fluctuations in daily mean solar insolation is the fluctuating 

cloudiness. We find that CC fluctuations are related linearly to snowmelt and snow-fed 

streamflow fluctuations, to some extent (correlations < 0.5). Multivariate linear regression 

models of daily snowmelt (MELT) and streamflow (ΔQ) variations are constructed for each 

month from February to July, when snowmelt is most active. Predictors include CC from five 

antecedent days up to the concurrent day. The CC-MELT and CC-ΔQ associations vary with 

time and location. The results show the dominance of negative correlations between CC and 

MELT, exemplifying the cloud-shading (or clear-sky) effect on snowmelt. The magnitude of 

CC-MELT association (R2) amounts to 5%-56%, typically peaking in May. These 

associations fade earlier in summer during dry years than wet years, indicating the differing 

responses of higher vs. lower snowpack. The CC-ΔQ association displays less consistent 

pattern, with R2 amounting to 2%-47%. Nevertheless, MELT and ΔQ fluctuations exhibit 

spatially extensive patterns of correlations with daily cloudiness anomalies, indicating the 

effects of cloudiness often operate over regional spatial scales.  
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3.1 Introduction 

Snowmelt from mountain snowpack is an essential source of water supply in many 

regions on the globe (Barnett et al., 2005). Notably, in the western United States (U.S.), 

seasonal streamflow originating from spring-summer mountain snowmelt supplies much of 

the water needs (Serreze et al., 1999; Stewart et al., 2004; Li et al., 2017). For this reason, 

seasonal snowmelt is a critical process that draws considerable research attentions.  

Numerous studies have investigated the effects of precipitation and temperature on 

surface hydrologic variability (e.g., Karl & Riebsame, 1989; Mote, 2006; Stoelinga et al., 

2009; McCabe & Wolock, 2011; Nowak et al., 2012; Luce et al., 2014; Woodhouse et al., 

2016; Sproles et al., 2017). Incoming solar radiation at the surface, hereby called the 

shortwave flux (SWF), is another significant contributor to hydrologic variability. However, 

the effect of SWF variations on hydrologic variability remains inadequately studied, although 

SWF is a dominant snowmelt energy balance component in alpine catchments (Marks & 

Dozier, 1992; Cline, 1997; Bales et al., 2006; Comola et al., 2015). 

The difficulties in characterizing the effect of SWF variations are due mainly to 

irregular fluctuations of surface radiation, which depend on the highly variable cloud cover 

(Simpson et al., 2004). Varying spring-summer cloudiness over the mountains in WUS 

produces SWF fluctuations that amount to ~90-140 W m-2 on an hourly scale, ~60-130 W m-

2 on a daily scale, and ~10-20 W m-2 on a seasonal scale [following Sumargo & Cayan 

(2017)]. Sustaining measurements of these fluctuations over several years is a challenge—

difficult access to mountain environments hinders the installation and maintenance of in situ 

radiation measurements, especially in wintertime (Henn et al., 2015; Lapo et al., 2015a). 

Consequently, surface radiometer observations are sparse in mountain environments 
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(Hinkelman et al., 2015; Lapo et al., 2015b), resulting in poor representations of cloudiness 

and surface irradiance (Gautier et al., 1980; Bales et al. 2006), and tend to have poor data 

quality requiring careful quality control (Slater, 2015). In addition to complex terrain and 

vegetation (Lundquist & Flint, 2006; Andreadis et al., 2009; Raleigh et al., 2013; Lundquist 

et al., 2013; Garvelmann et al., 2014; Dickerson-Lange et al., 2017; Comola et al., 2015; 

Henn et al., 2015), the lack of accurate cloudiness and radiation data impairs the 

understanding and modeling efforts of hydrologic variability in mountain settings (Rittger et 

al., 2016; Lapo et al., 2015a).  

Therefore, an accurate representation of cloudiness variability is necessary to 

characterize surface radiation and hydrologic variabilities. Cloudiness is also correlated with 

fluctuations of precipitation and surface air temperature (Appendix 3.A), whose effects on 

surface hydrologic variability are well documented (Lundquist et al., 2013; Garvelmann et 

al., 2015; Mutzner et al., 2015; Shukla et al., 2015; Woodhouse et al., 2016). In contrast, the 

relationship between cloudiness and surface hydrology has not been thoroughly explored, 

particularly in mountain environments. Thus, the relationship between cloudiness variations 

and surface hydrologic variability deserves further investigation. This topic should motivate 

future uses of satellite-derived cloud cover to benefit SWE and streamflow predictions. 

  Past studies have demonstrated the applicability of geostationary satellite 

observations in characterizing cloudiness and solar energy-related variability (e.g., Gautier et 

al., 1980; Cano et al., 1986; Ineichen et al., 1999; Perez et al., 2002; Simpson et al., 2004). 

Because most mountainous watersheds in WUS are sparsely monitored by in situ stations, 

most of which do not include radiometer instruments (Raleigh et al., 2016), remote sensing is 
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arguably the most reliable option for locations >20 km away from any ground stations 

(Zelenka et al., 1999).  

In this work, we employ high spatial and temporal resolution observations from a 

geostationary satellite, along with surface observations and a simple physical snow model, to 

characterize the variability of cloudiness and investigate its relationships with snowmelt and 

streamflow. Specifically, we address the following questions:  

1. How do springtime snowmelt and streamflow respond to local intraseasonal cloudiness 

variability, and how strong are these responses?  

2. How do the responses vary across different regions and across the years? 

3. How do they compare to regional-scale cloudiness variability? 

Our geographical focus is the western U.S. (WUS). Unless otherwise noted, the analyses are 

aggregated into three regions: 1) northwestern U.S. (NW; >42 °N) and 2) southwestern U.S. 

(SW; <42 °N) as in Figure 3.1, and 3) WUS, the union of NW and SW.  

The relevance of this study to WUS is heightened by the vulnerability of WUS to 

climate change, owing to its strong topographic gradients and the sensitivity of mountain 

snowpack to climate fluctuations (Barnett et al., 2008; IPCC, 2013). Moreover, hydrologic 

applications commonly rely on historical statistics, which are increasingly obsolete with 

climate change (Lundquist et al., 2009; Rice et al., 2011). These attributes can adversely 

impact the ecology (Diaz & Eischeid, 2007; Null et al., 2013) and hydrologic systems 

(Hoerling et al., 2013; Mann & Gleick, 2015; Musselman et al., 2017). Earlier snow-fed 

streamflow (Dettinger & Cayan, 1995; Cayan et al., 2001; Stewart et al., 2005; Regonda et 

al., 2005) and extensive declines in spring snowpack (Mote, 2003, 2006; Mote et al., 2005, 
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2008; Pierce et al., 2008; Kapnick & Hall, 2012; Sproles et al., 2017) and snow cover extent 

(Groisman & Easterling, 1994) are observed throughout. 

 

 

Figure 3.1. USGS HCDN stream gauges (green), CDWR CSS (CDEC) snow sensors (red) 
and USDA/NRCS SNOTEL (blue) snow pillows employed in this study. The background 
colors signify the Northwest (gray) and the Southwest (beige) climate regions adapted from 
Karl and Koss (1984) and verified using principal component analysis (Section 3.3.4). The 
113 °W line denotes the eastern limit of our research domain. The text boxes denote some 
sites examined in this paper. 

 

This sensitivity was exemplified in the recent exceptional drought in California 

(2012-2015), marked by disproportionately low spring-early summer snowpack associated 

with anomalous low precipitation (Mao et al., 2015; Williams et al., 2015), and in the 

“snowpack drought” in 2014/2015 in Oregon and Washington, marked by near-normal 
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precipitation and anomalous high temperature resulting in lower snow-precipitation ratio 

(Fosu et al., 2016; Mote et al., 2016; Sproles et al., 2017). In contrast, 2016/2017 featured 

numerous Atmospheric River events (Ralph et al., 2017) and high snowpack (California 

Department of Water Resources, 2017; Lettenmaier, 2017), highlighting an exceptionally wet 

year in California. In view of these issues, WUS is a suitable natural laboratory for our 

research.  

 

3.2 Data, methods and tools 

3.2.1 Observational datasets and processing 

3.2.1.1 Cloud cover index 

The cloud cover index (CC) used in this study is derived from the Geostationary 

Operational Environmental Satellite (GOES)-West (9, 10, 11, and 15) visible albedo product 

over the western U.S. (25-50 °N, 130-113 °W) from the National Oceanic and Atmospheric 

Administration (NOAA) Comprehensive Large Array-data Stewardship System database 

(CLASS) (https://www.class.ncdc.noaa.gov). The dataset employed here spans twenty years 

(1996 to 2015) and has 1-km spatial and hourly temporal resolutions. The 1-km pixels are re-

sampled to 4-km resolution to be consistent with the PRISM dataset (Section 3.2.1.4). 

Physically, CC represents the fraction of the cloud cover in a pixel and is designed to 

linearly correlate with the atmospheric transmission (Cano et al., 1986). The cloud cover 

fraction here is defined as the ratio of cloud albedo to the pixel’s dynamical range. The cloud 

albedo is defined as the difference between the raw albedo (α) and clear-sky albedo (αclear), 

while the dynamical range is defined as the difference between the overcast albedo (αovc) and 
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αclear. The dynamical range represents the actual α range occurring in a pixel [see Perez et al. 

(2002) for more detail].  

Mathematically, CC is formulated as: 

CC!,!,! =  
!!,!,!! !!"#$%!,!,!

!!"#!,!,!! !!"#$%!,!,!
     (3.1) 

where i is the GOES pixel, d is the day, h is the hour of the day. The αclear is determined as 

the minimum albedo within a prescribed time window (Cano et al., 1986; Perez et al., 2002), 

assuming there is at least one day with a clear-sky condition within this time window [after 

Paech et al. (2009)]: 

α!"#$%!,!,! =  min(α!,!!!!,!:α!,!!!!,!)   (3.2) 

Setting d0 to 7 days is sufficient to discriminate the more persistent snow cover from the less 

persistent cloud cover, while still allowing albedo fluctuations due to changing surface and 

non-cloud atmospheric properties, chiefly those related snow, moisture and vegetation (Perez 

et al., 2002; Sumargo & Cayan, 2017). Although αclear fluctuates, αovc is relatively constant 

(Perez et al., 2002). Our diagnosis suggests that the highest α ever reached in our dataset is 

~0.96 and that the results (Section 3.3) are virtually insensitive to αovc variations. Therefore, 

the αovc is set as 1 (opaque) for simplicity. The hourly dataset is subsequently averaged over 

daytime scenes [7-17 Local Standard Time (LST), given there is no missing data between 9 

and 15 LST] to form daily composites that are consistent with the temporal resolution of the 

other datasets used in this study. Most of the days (>90%) contain valid data.  

 

3.2.1.2 Snow water equivalent  

Daily snow water equivalent (SWE) records are retrieved from the California Data 

Exchange Center (CDEC) (http://cdec.water.ca.gov/) operated by the California Department 
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of Water Resources (CDWR) Cooperative Snow Survey (CSS) snow sensor records, and 

from the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service 

(NRCS) Snow Telemetry (SNOTEL) records (http://www.wcc.nrcs.usda.gov/snow). 

Considering stations with records from 1996 to 2015, 235 stations are used in our analyses (8 

from CDEC and 227 from SNOTEL) (Figure 3.1). Daily SWE change is approximated using 

a daily-centered SWE difference: 

ΔSWE!,!  =  SWE!,!!! –  SWE!,!!!    (3.3) 

where i is the station and d is the day. Under this definition, snowmelt days are defined as 

having negative ΔSWE and when water leaves the snowpack (as snowmelt water may 

refreeze within the same snowpack during the cold night, especially in early snowmelt 

season). Unless otherwise noted, any ΔSWE > 0 (accumulation) is not included our analysis 

since we focus on the snowmelt events. We hereby formulate snowmelt as:  

MELT!,!  = –ΔSWE!,!     (3.4) 

The days when both SWE and ΔSWE are zero are excluded from the analyses.  

 

3.2.1.3 Streamflow  

Streamflow (Q) is obtained from the U.S. Geological Survey (USGS) database 

(http://waterdata.usgs.gov/ca/nwis/). The Q dataset used here is a set of 79 snow-dominated 

Hydro-Climatic Data Network (HCDN) gauges (Slack and Landwehr, 1992) having minimal 

diversions and other human manipulations (Stewart et al., 2005), and having records from 

1996 to 2015 (see Figure 3.1). Analogous to the snowmelt variable, daily streamflow change 

is approximated using a daily-centered Q difference: 

ΔQ!,!  =  Q!,!!! –  Q!,!!!     (3.5) 
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where i is the station and d is the day. Under this definition, increased daily streamflow is 

positive ΔQ.  

  

3.2.1.4 Precipitation and surface air temperatures 

We utilize Precipitation-elevation Regressions on Independent Slopes Model 

(PRISM) daily gridded precipitation (P), average (Tavg), maximum (Tmax) and minimum 

(Tmin) surface air temperatures (Daly et al., 1994, 2008; PRISM Climate Group). For this 

study, we use the 4-km horizontal resolution and daily temporal resolution version of PRISM 

data (Daly, 2013) from 1996 to 2015. Temperatures and precipitation are mated with snow 

pillow and stream gauge observations by assigning the closest PRISM grid box to a given 

snow pillow or stream gauge.  

 

3.2.2 Contingency analysis of cloudiness and snowmelt 

As an initial investigation of local cloudiness’ relationship with snowmelt, we 

conduct a categorical evaluation using a contingency analysis (Pearson, 1904) and evaluate 

the results using the chi-squared test (Howell, 2011). We account for both snow 

accumulation and melt [determined using equation (3.3)] to compare how both snow regimes 

vary with different cloudiness regimes (clear, moderate and cloudy). An alternate 

contingency analysis using the diurnal temperature range (dT = Tmax – Tmin) as proxy for 

cloudiness is provided in the Supporting Information; the dT is inversely proportional to 

cloudiness and hence is a valid indicator of atmospheric transmittance (Grillone et al., 2012). 

We derive three equally frequent categories of CC, defining clear condition as a day 

with CC less than its 33rd percentile value, cloudy condition as a day with CC greater than its 
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67th percentile, and moderate condition as anything in between. These tercile categories are 

derived for each site and each of the early (February-March), mid (April-May), and late 

(June-July) spring periods individually to examine how the relationship varies over different 

parts of the springtime. Although February can also be categorized as late winter when snow 

accumulation may still occur, and intermittent snow ablation can occur throughout the entire 

snow season, interannual climate variability can lead to the start of snow ablation period 

earlier than the canonical April 1st. Only days when snow is present (SWE > 0) are included 

in the analysis. 

 

3.2.3 Multivariate linear regression analysis of cloudiness and snowmelt/streamflow 

We construct multivariate linear regression models of MELT and of ΔQ with CC as 

the predictor to quantify the association of CC with MELT and ΔQ:  

Y!,! =  C!,!!! ∗ X!,!!!! + ε     (3.6) 

X = overhead CC            (3.6a) 

Y =  MELT,ΔQ            (3.6b) 

C = regression coefficient            (3.6c) 

ε =  error term            (3.6d) 

Here i is the station index, d is the concurrent day, and n is the number of days before d (for 0 

≤ n ≤ 5 days). The regression model is configured such that the predictand is the anomaly of 

MELT or ΔQ on a given day, and the predictors are the anomaly of CC from 5 antecedent 

days up to the concurrent day. Each variable is de-seasonalized by subtracting its smoothed 

daily climatological value, derived using a 29-day centered (±14 day) moving average of the 

daily climatological average of the time series. De-seasonalizing allows us to focus on 
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intraseasonal processes. Some examples of the raw and de-seasonalized time series of CC, 

MELT and ΔQ are shown in the Supporting Information. 

A separate regression model is built for each month. Statistical significance is 

evaluated using an F-test (Fisher, 1925). The square of the correlation between the observed 

and the modeled MELT or ΔQ, i.e., the coefficient of determination (R2), measures the 

amount of MELT or ΔQ variance accounted by the CC. The strength and sign of the 

regression coefficient (C) weighs the relative importance and represents the partial 

correlation of each predictor to MELT or ΔQ. Although collinearity between the predictors 

exists, our results (Section 3.3.3) demonstrate that the relative importance of the predictors 

can be evaluated consistently, e.g., with respect to the lag/auto correlation analysis (Section 

3.3.2).    

 

3.2.4 REOF analysis of cloud cover 

A larger scale perspective is the extent to which snowmelt and streamflow respond 

coherently to regional cloudiness variations. To investigate this, Rotated Empirical 

Orthogonal Function (REOF) analysis of de-seasonalized daily CC over high-elevation 

terrains (>800 m) for all months of 1996-2015 were derived [see Sumargo & Cayan (2017) 

for an analog]. Principally, the REOF analysis here identifies the leading modes of CC. Each 

of these modes represents the areas where CC tends to vary in unison, in both space and time. 

The spatial component is called the REOF, while the temporal component, which is time-

varying amplitude of the REOF, is called the Rotated Principal Component (RPC) 
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3.3 Results  

3.3.1 Local cloudiness and snowmelt variations  

Table 3.1 is the contingency table (see Section 3.2.2) showing the relationships 

between daily CC and snow accumulation/melt observed at Gin Flat (2,149 m elevation on 

the west slope of the Sierra Nevada in California). The χ2 statistics from this contingency 

table indicate strong relationship in February-March, with most snowmelt days coincide with 

clear skies or moderate cloudiness, and snow accumulation days coincide with cloudy 

conditions. The relationship, judging by the χ2 statistics, is strongest in April-May, but the 

distribution skews toward the melt regime. Warmer temperatures and generally greater solar 

heating in April and May increases the proportion of days with snowmelt; even on days with 

cloudy conditions snowmelt is relatively high (50% of all April-May cloudy days), but not 

nearly as high as on days with moderate sky cover (75%) or clear conditions (86%).  

 

Table 3.1.  
Numbers of Days associated with Snow Accumulation/Melt coincident with 
Clear/Moderate/Cloudy Sky for February-July of 1996-2015 at Gin Flat in California 
(37.767 °N, 119.773 °W, 2,149 m)  

Period MELT CC χ2 
Clear Moderate Cloudy  

Feb-Mar Accumulation 77 170 238 140.94 
Melt 143 86 38 

      
Apr-May Accumulation 9 41 121 148.17 

Melt 258 231 148 

      
Jun-Jul Accumulation 0 0 2 2.00 

Melt 5 36 40 
Note. The χ2 value indicates the statistical significance of MELT-CC association (significant 
at 99% confidence level when χ2 > 9.21). Only days with non-zero SWE are included. 
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By early summer, much snow has melted, so there are much fewer days that register 

with snow to populate the contingency table (Table 3.1). However, based upon the available 

data, the strength of the relationship between cloudiness and snowmelt degrades in early 

summer (June-July) as temperature warms and snowpack has largely diminished, with most 

days registering as having snowmelt regardless of cloudiness category (clear, moderate and 

cloudy). A similar but slightly weaker (as indicated by the lower χ2 values) pattern is 

obtained across the three periods when CC is substituted with dT (Supporting Information). 

Most of the days with snowmelt in June-July occur under moderate or cloudy 

conditions. A closer inspection reveals the amount of snowmelt occurring under cloudy 

conditions tends to be lower (less than its median value), while that occurring under 

moderate and clear-sky conditions tends to be higher. This result indicates a limitation of 

contingency analysis. For example, a day with a small CC value in June/July may still be 

classified as cloudy, since CC tends to be small and does not vary as much during this period. 

The use of dT instead of CC does not relieve this issue, although it improves the χ2 values for 

some NW sites that we inspect, e.g., Crater Meadows in Idaho (Supporting Information), 

where cloudiness tends to be relatively persistent across the snowmelt season.  

Interestingly, the contingency table contains some days with snow accumulation that 

coincide with clear-sky conditions. Considering the definition of snow accumulation here, 

snow accumulation events occurring on the days following those with a clear-sky condition 

may be responsible. Indeed, ~63% of such days are followed by days with snow 

accumulation. On the other hand, unlike the snow accumulation, CC does not include 

information from the preceding or following day. Moreover, CC is a daytime average (7-17 



	 66 

LST), so cloud processes occurring specifically during the early hours and/or the previous 

night would fail to register in the contingency table.  

Similar results and issues are obtained at relatively nearby (e.g., Lower Kibby Ridge 

and Tuolumne Meadows in California) and distant (e.g., Crater Meadows in Idaho and 

Stampede Pass in Washington) sites.  

 

3.3.2 Antecedent cloudiness and snowmelt/streamflow fluctuations 

In considering effects of cloudiness on snowmelt and streamflow fluctuations, it is of 

interest to determine if snowmelt is preconditioned by anomalous cloudiness (and thus the 

amount of radiation) occurring one or more days prior to a given day. To address this, 

Figures 3.2a and 3.2b show 0-to-5-day lag correlations between de-seasonalized daily CC 

and de-seasonalized daily MELT anomalies for February-July at two snow pillow sites: a) 

Gin Flat in California (to represent SW) and b) Crater Meadows in Idaho (to represent NW). 

Additionally, Figures 3.2c and 3.2d show the lag correlations between de-seasonalized daily 

CC and de-seasonalized daily ΔQ for the same period at two snow-dominated streams: c) 

Merced River at Happy Isles Bridge in California, d) South Fork Clearwater River at Stites in 

Idaho. Like in Section 3.2.3, the de-seasonalizations are done by subtracting the smoothed 

daily climatological values, derived using a 29-day centered (±14 day) moving averages of 

the daily climatological averages of the time series. 

Gin Flat and Merced River at Happy Isles Bridge are located within the Yosemite 

National Park on the west slope of the Sierra Nevada. The Sierra Nevada is characterized 

with the maritime snowpack regime, with relatively high snowpack and shorter accumulation 

period (Trujillo & Molotch, 2014). Crater Meadows and South Fork Clearwater River at 
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Stites are located near the Clearwater National Forest on the Northern Rockies. The Northern 

Rockies is characterized by the intermountain snowpack regime, with relatively low 

snowpack and longer accumulation period (Trujillo & Molotch, 2014). 

Figures 3.2a and 3.2b exhibit predominantly negative correlations in April-May and, 

to a lesser extent, in March and June. Negative correlations signify the role of clear skies 

driving snowmelt and cloud shading in reducing snowmelt. Significant correlations 

(magnitudes >0.4 and p-values <0.01) at 1-day to 4-day lags suggest that a form of 

preconditioning operates, where prior-day cloudiness reduces concurrent-day snowmelt. 

These significant negative correlations also suggest the dominance of cloud-shading effect 

over the enhanced longwave radiation effect associated with greater cloudiness (Zhang et al., 

1996; Stone, 1997; Stone et al., 2002), as the latter can counteract the cloud-shading effect by 

enhancing snowmelt and runoff. 

Importantly, most of these correlations peak at 1-day to 2-day lags, indicating a 

delayed response of MELT and ΔQ to cloudiness. The autocorrelations (Rauto) of de-

seasonalized CC drop with time lags, especially at lag > 1 day (e.g., Rauto = 1, 0.52, 0.28, 

0.12, … at lag = 0, 1, 2, 3, … days at Gin Flat in April), suggesting the lagged CC-MELT 

and CC-ΔQ correlations are not simply a signature of persistent multi-day CC anomalies. 

Stronger correlations typically have longer lags in the early snowmelt season when radiative 

energy input is lower (discussed in Section 3.3.3.1) and when snowpack is thicker and colder. 

In such a condition, snowpack requires a longer time to buildup the energy before snowmelt 

can begin. 
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Figure 3.2. Upper: Correlation between de-seasonalized overhead CC and subsequent and 
concurrent MELT at (a) Gin Flat in California (37.767 °N, 119.773 °W, 2,149 m) and (b) 
Crater Meadows in Idaho (46.56 °N, 115.29 °W, 1,817 m). Lower: Correlations between de-
seasonalized overhead CC and subsequent or coherent ΔQ at (c) Merced River above Happy 
Isles Bridge in California (37.732 °N, 119.558 °W, 1,224 m) and (d) South Fork Clearwater 
River at Stites in Idaho (46.087 °N, 115.976 °W, 400 m). Lag < 0 indicates CC leads MELT, 
ΔQ. The symbol ‘x’ denote statistically significant correlations at 99% confidence level (p-
value < 0.01).  
 

Figure 3.2b also shows positive CC-MELT correlations at zero and 1-day lags in 

March, which seems to indicate snowmelt occurrence during days with cloudy conditions. In 

March, positive P vs. MELT lag correlation is similarly present (not shown). Further 

examination reveals ~34% of all March days with snowmelt receive measurable precipitation 

(P > 0.254 mm) and coincide with above freezing Tavg, suggesting rain-on-snow events may 

be involved (see Section 3.3.3.1). However, this correlation becomes negative if MELT 
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includes accumulation regime, indicating it is an artifact of the analysis method, since Figure 

3.2b does not include cloudy days having positive snow accumulation.  

Turning to CC vs. ΔQ, Figures 3.2c and 3.2d exhibit some positive correlations at 

zero to 1-day lags, mainly in February and March, but also in June and July. This feature 

illustrates a near-term relation with cloudiness, likely reflecting the effect of precipitation and 

nearly immediate runoff (see Section 3.3.3.2). Additionally, Figure 3.2c also displays 

relatively strong positive correlations at longer lags in April-June. In April and May, this 

pattern may reflect the effects of clear/cloudy sky interludes associated with synoptic scale 

weather events. In June, the snowpack and its runoff are largely diminished, as shown by the 

weak negative correlations. The strong positive correlations at longer lags may simply reflect 

multi-day cumulative effect of clear skies, signifying the drying effect of summertime.   

The pattern of CC-ΔQ correlations must reflect the different processes operating in 

different watersheds. Strongest negative correlations occur in April at both Merced River and 

South Fork Clearwater River, with a peak at 1-day lag for the former and at 2-day lag for the 

latter. However, statistically significant negative correlations fall away after May at the 

relatively southern Merced River, but are present through July at the relatively northern 

South Fork Clearwater River. This result reflects the snowpack’s tendency to last longer in 

NW than in SW. Both sites exhibit statistically significant positive correlations at lag zero in 

July, signifying the immediate effect of rainfall runoff on streamflow. 

 

3.3.3 Snowmelt/streamflow variations accounted by local cloudiness variability 

The correlations in Figure 3.2 demonstrate that, to a certain extent, CC is linearly 

correlated to MELT and to ΔQ. Following this thread, in this section we use multivariate 
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regression analysis (see Section 3.2.3) to investigate patterns of linear associations and to 

what extent CC fluctuations explain variances of MELT and ΔQ. The regression results vary 

through the snowmelt season, as shown for MELT (ΔQ) on the left (right) column in Figure 

3.3 for February, April and June, covering late winter through early summer when various 

stages of snowmelt occur.  
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Figure 3.3. Variances of MELT (left) and of ΔQ (right) anomalies explained (%) by 
anomalous CC predictors in lagged multiple regressions for February, April and June of 
1996-2015. Circle size is proportional to R2 (%). Color tone represents the time lag whose 
regression coefficient magnitude is strongest, where red (blue) denotes positive (negative) 
correlation and lag < 0 means CC leads MELT/ΔQ. Sites with p-value < 0.01 are color-filled.  

 

3.3.3.1 Cloudiness and snowmelt variability 

The left column in Figure 3.3 and Tables 3.2 and 3.3 display results from the CC-

MELT regressions. The CC-MELT association (R2) is generally greater in the relatively low 

elevation northwestern sites (averaging ~1,637 m) than in the relatively high elevation 
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southwestern sites (averaging ~2,360 m), and largest in May for all regions (Table 3.2). 

Some differences also occur between the windward and the leeward sites, with the windward 

sites having larger R2 (by ~4% on average) and more negative CC-MELT correlations. The 

windward-leeward differences may reflect the generally drier climate and snow 

characteristics of the leeward sites, resulting in less robust CC-MELT relationships. In total, 

611 of the 1,410 snowmelt models (from 235 snow pillows and every month of February-

July) exhibit statistically significant R2 results (p-values < 0.01), as determined from the F-

test.  

 

Table 3.2.  
Area-averaged R2 (%) of Multiple Regression-modeled MELT, February-July 1996-2015  

Month NW SW WUS 
Feb 8 6 8 
Mar 8 12 9 
Apr 17 19 17 
May 27 22 25 
Jun 24 19 23 
Jul 21 7 20 

Note. The R2 are averaged over 173 sites in the Northwest (NW), 62 sites in the Southwest 
(SW) and 235 sites in the whole western U.S. (WUS), reflecting the degree to which MELT 
fluctuations are explained by CC variability. The boldface numbers indicate MELT at most 
of the locations (>60%) have negative correlations with CC. 

 

This result persists, with comparable R2 across months and regions, when the model 

and statistics are built and evaluated for training and validation periods separately (Appendix 

3.B). However, site-to-site variations can occur. For instance, the peak association occurs in 

April at Fish Lake and Gin Flat, but it occurs in May at Crater Meadows and Stampede Pass 

(Table 3.3). Gin Flat also exhibits a secondary peak in June, consistent with the pattern 

shown in Figure 3.2. The result also differs from dry years to wet years, with generally larger 

R2 but shorter snowmelt season in dry years (Appendix 3.C). The windward-leeward 
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differences are weaker in drier years when the reductions in cloudiness and snowpack are 

likely greater on the windward sites, with the R2 of the windward sites being larger by only 

~2% on average.    

 

Table 3.3.  
The R2 (%) of Multiple Regression-Modeled MELT for Some Selected Stations  

Month CRM FIL GIN STP 
Feb 13 5 5 13 
Mar 13 13 11 6 
Apr 32 44 30 9 
May 53 25 28 21 
Jun 33 -- 40 15 
Jul -- -- -- -- 

Note. Stations are Crater Meadows (CRM) in Idaho (46.56 °N, 115.29 °W, 1,817 m), Fish 
Lake (FIL) in Oregon (42.38 °N, 122.35 °W, 1,420 m), Gin Flat (GIN) in California (37.767 
°N, 119.773 °W, 2,149 m) and Stampede Pass (STP) in Washington (47.27 °N, 121.34 °W, 
1,174 m). 

 

In February, as shown in Figure 3.3 (top row), most SW and interior NW locations 

exhibit weak and inconsistent (both positive and negative) CC-MELT relationships, with 

only 47 snow pillow sites yield statistically significant results (p-value < 0.01), signifying 

minimal snowmelt activities. In contrast, Figure 3.3 shows that most Cascade locations, 

including Stampede Pass in Table 3.3, exhibit moderate positive CC-MELT correlations, 

indicating cloudier (clearer) sky produces more (less) snowmelt. This occurrence may reflect 

greater snowmelt due to enhanced incoming longwave radiation flux with cloudiness (Zhang 

et al., 1996; Stone, 1997; Stone et al., 2002) and/or rain-on-snow events (Würzer et al., 

2016). The relatively low elevations of Cascade Mountain sites (averaging ~1,374 m, 

compared to ~1,902 m over the interior NW and ~2,360 m over SW) may also allow more 

rain-on-snow episodes by having more days with above freezing temperature and liquid 
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precipitation. Rain-on-snow events have been shown to be relatively common in the 

Cascades (McCabe et al., 2007). 

Subsequent scrutiny of days in February when cloudy days coincide with snowmelt, 

i.e., when both CC and MELT anomalies are positive, shows that most have above-freezing 

Tavg and positive Tavg anomalies. Further, when February days registering precipitation are 

excluded from the analysis, the CC-MELT associations at stations along the Cascades 

diminish, indicating the presence of rainfall on cloudy days with snow loss (i.e., an impact of 

rain on snow). This result is similarly reflected by the relative importance of P compared to 

CC, Tmax and Tmin in February (Supporting Information). 

From March onward, almost all locations across the WUS exhibit negative 

correlations, indicating cloudier (clearer) skies produce lesser (greater) snowmelt. The 

number of locations exhibiting statistically significant results also increases (87 sites). 

Negative regression coefficients demonstrate the dominance of cloud-shading (or SWF when 

clouds are lacking) effects over other processes, such as the cloud-precipitation.  

Reinforcing results from Figure 3.2, MELT often exhibits a delayed peak response to 

CC, as shown by the color-coding in Figure 3. The delay becomes progressively shorter 

through the snowmelt season. In February-March, the peak CC association is less definite. A 

slight majority of locations has peak associations from 1-day (112 sites total for February-

March) to 2-day (114 sites) lags, with most of the rest of the maxima occurring at zero lag 

(92 sites) and even fewer at each of the lags >2 days.  

During the early snowmelt season (February-March), snowmelt requires 

preconditioning by a warming phase, i.e., when snowpack temperature is raised to an 

isothermal condition at the melting point, followed by the ripening phase when melting starts 
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to occur at snow surface and the melt water subsequently percolates into deeper, colder layer 

in which it refreezes (Dingman, 1994; Boike et al., 2003). Thus, snowmelt during these 

months may happen more slowly regardless of cloudiness fluctuations (also see Supporting 

Information). By April, shown by the light blue color-shading, the number of locations 

having peak associations at 1-day lag increases, and the number at lags >1 day decreases 

significantly, especially in SW. In April, there are 200 sites exhibiting statistically significant 

results. This transition to more rapid responses reflects the greater solar heating and warmer 

climate and, presumably, earlier spring onset in SW. In fact, CC becomes increasingly 

important in modulating MELT in April (Supporting Information).  

The number of sites with peak association at zero lag rises to 58 in May, which also 

has 126 sites with peak association at 1-day lag, but only 51 sites with peak association at lag 

>1 day. The number of sites with statistically significant results is slightly fewer (181 sites) 

than that in April. 

In June and July when both cloudiness and snowpack have diminished, the number of 

locations with highest association with CC at zero lag becomes commonplace. Furthermore, 

only 86 sites in June and 10 sites in July produce statistically significant results. This shift 

corresponds to a more rapid response of snowmelt to heating in late spring and summer as 

solar irradiance increases, snowpack diminishes, and snow temperature has increased, 

inducing the output phase when runoff initiates and the melt water is produced proportionally 

to the energy input (Boike et al., 2003).  
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3.3.3.2 Cloudiness and streamflow variability 

The CC-ΔQ regression results (right column of Figure 3.3 and Table 3.4) are not as 

strong and consistent as those for CC-MELT. The R2 values for streams exhibiting 

statistically significant regression model results (p-value < 0.01), averaged over the WUS and 

over February-July, are only 9.6%. In comparison, the area and snowmelt season average R2 

value of CC-MELT regressions are 22.5%. However, like in the CC-MELT case, the 

windward sites tend to have larger R2 (by ~3% on average), although this windward-leeward 

difference is not weaker in drier years. In total, 313 of the total of 474 streamflow regression 

models (from 79 stream gauges and every month of February-July) exhibit statistically 

significant results, as determined from the F-test at the 99% level of significance.  

 

Table 3.4.  
R2 (%) of Multiple Regression-modeled ΔQ for February-July of 1996-2015  

Month NW SW WUS 
Feb 7 7 7 
Mar 5 8 6 
Apr 6 10 7 
May 7 6 7 
Jun 6 6 6 
Jul 9 6 8 

Note. The R2 averaged over 51 sites in the Northwest (NW), 28 sites in the Southwest (SW) 
and 79 sites in the whole western U.S. (WUS), reflecting the degree to which ΔQ fluctuations 
are explained by CC variability. The boldface numbers indicate ΔQ at most of the locations 
(>60%) have negative correlations with CC. 

 

The relatively weak associations and large residuals (not shown) between the 

modeled and measured ΔQ during the peak snowmelt season seem to reflect the convoluting 

effects of multiple factors directly or indirectly related to cloudiness, including precipitation, 

evapotranspiration, local and upstream snowmelt-runoff. For instance, cloudiness can reduce 

net radiation and thus evapotranspiration, which in turn allows higher streamflow. The 
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importance of the cloudiness to evapotranspiration is stronger than that of temperature and is 

accentuated in the spring when the intraseasonal variability of evapotranspiration anomaly 

associated with cloudiness is highest (Hidalgo et al., 2005). Likewise, greater snowmelt rate 

(Barnhart et al., 2016), cooler temperature and higher soil moisture during antecedent cool 

season (Woodhouse et al., 2016), which are not accounted for in this study, correlate with 

higher flows. The generally weak linear associations of Tmax, Tmin and P with ΔQ similarly 

reflect this phenomenon (Supporting Information).  

The most consistent model results appear in April (Figure 3.3, middle row) and May 

(not shown, but similar to April), when the strongest linear correlations are negative, i.e., 

greater (lesser) cloud cover yields negative (positive) flow departures. The other months 

exhibit lower R2 and less consistent correlations between CC and ΔQ, having both negative 

and positive correlations. Similar results are retained even when the model and statistics are 

built and evaluated separately for the training and validation periods (Appendix 3.B). These 

seasonally varying results are also illustrated in dry-year and wet-year subsets (Appendix 

3.C). For the dry-year subset, June stands out in having relatively large positive correlations 

throughout most of the WUS, evidently indicating precipitation effect on streamflow. 

In February, CC and ΔQ are weakly correlated, with 62 of the 79 stream gauge sites 

registering statistically significant results. There is 1 site in northern California and 2 sites in 

eastern Washington that yield R2 > 20% (Figure 3). The map shows that the strongest 

correlations are predominantly positive, mostly (~58%) occurring without time lag. This 

result indicates streamflow fluctuations are inconsistently related to cloudiness. For instance, 

the streamflow increases occur with rainfall. In a few other cases, the streamflow increases 
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occur under clear skies as shown by negative correlations, which presumably induces 

snowmelt. 

In March, stronger associations reflect that snowmelt occurrence has become 

widespread across the WUS. More locations exhibit negative correlations and time lags, 

mainly in central California and southern Idaho, albeit only 53 sites yield statistically 

significant results. The negative correlations confirm the cloud shading mechanism, i.e., ΔQ 

increases as CC decreases, and vice versa. The previously noted sites with positive 

correlations and R2 > 20% have diminished, presumably with the declining winter 

precipitation, indicating snowmelt becomes more important than precipitation in streamflow 

generation. Although the number of sites with peak associations at zero lag is still dominant 

(23 sites), those at 1-day and 2-day lags are comparable (21 sites each). The emergence of 

peak timings at 1-day and 2-day lags underlines the role of upstream processes on 

streamflow. 

As the snowmelt season progresses, the association between cloudiness and 

streamflow fluctuations peaks in April in the SW (centered in California) and in May in the 

NW (centered in Idaho) (Table 3.4). In these peak months, the number of locations with peak 

negative correlation at time lags of one or more days increases (68 sites in April and 73 sites 

in May) when compared to March (56 sites). The lengthening of travel-time from source 

regions as snow lines retreat to higher elevations apparently contributes to the increases in 

lag time (Lundquist et al., 2005). There are 60 sites in April and, interestingly, only 50 sites 

in May that yield statistically significant results.  

The associations between CC and ΔQ change markedly in June, with shifts from 

negative to positive correlations at many locations throughout the WUS (37 sites), with 38 
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sites exhibiting statistically significant results. This shift intensifies in July (50 sites), most 

notably in Central California where a cluster of positive relationships emerges. 

Correspondingly, the number of sites with statistically significant results increases to 50 sites.  

Analogous to the CC-MELT linear associations, the emergence of statistically 

significant positive CC-ΔQ correlations appear, on one hand, to reflect a runoff response to 

rainfall. These positive correlations also signify the drying that takes place with the onset of 

summer (i.e., less cloud, more solar radiation but little or no snow to melt and feed the 

streams), where evapotranspiration becomes the dominant influence on streamflow 

fluctuations (Lundquist & Cayan, 2002; Mutzner et al., 2015). The result from a contingency 

analysis (as in Table 3.1) performed on ΔQ at some selected gauge locations suggests that 

negative ΔQ anomalies tend to coincide with clear-sky condition (Supporting Information), 

which verifies the drying effect of summertime.  

 

3.3.3.3 Elevational dependence of snowmelt and streamflow responses to cloudiness 

variability 

The CC-MELT and CC-ΔQ associations depend upon elevation (Figure 3.4, left 

column). In the MELT case, the magnitudes and signs of the correlations (r) between the 

MELT response to CC and elevation vary considerably across months, reflecting changes in 

snowmelt processes with elevation across the melt season. The strength of MELT response 

decreases with elevation in February (r = –0.35), increases with elevation in March (r = 0.22) 

and April (r = 0.15), and again decreases with elevation in May (r = –0.12), June (r = –0.33) 

and July (r = –0.48).  
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The negative r in February corresponds to the precipitation effect in early snowmelt 

season, i.e., rainfall at lower elevations and snowfall at higher elevations. Positive CC-MELT 

associations at most lower elevation sites (>70% of all low elevation sites) and only a few 

positive CC-MELT associations at higher elevation sites (<40%) further confirm this result. 

The negative r in May onwards corresponds to the earlier and greater drying effect at lower 

elevations in late snowmelt season.  

The positive r in March-April suggests higher MELT sensitivity to CC at higher-

elevation sites during the peak snowmelt season, when SWE is typically greatest. During the 

peak snowmelt period, solar radiation and, plausibly, cloud-shading effect are higher than 

during the early snowmelt season, especially at colder, higher-elevation sites. Downward 

longwave radiation associated with the vegetation may complicate CC-MELT relationship in 

lower elevation areas, where vegetation density is typically higher. 

The ΔQ case is more complicated, since the stream gauges generally are situated 

downstream of a considerable higher elevation catchment area upstream, so the elevation 

identified by the gauge elevation is only an index of true elevation (Figure 3.4, right column). 

The correlations between ΔQ response (R2) to CC and elevation range from –0.3 in February 

to 0.37 in May. The negative correlation in February indicates the higher ΔQ sensitivity to 

CC variation at lower-elevation gauges during early snowmelt season. Positive correlations 

are observed from March to June, indicating higher ΔQ sensitivity to CC variation at higher-

elevation gauges during peak snowmelt season. This pattern is consistent with the CC-MELT 

results and consequently demonstrates the snowmelt-runoff association with streamflow. 

Higher sensitivity to CC at lower-elevation gauges may reflect the dependence of these 

gauges on both local runoff and upstream tributaries. By July, the correlations fade (r = –
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0.07), indicating the dependence of streamflow fluctuations on cloudiness varies little with 

elevation. 

 

	

Figure 3.4. Scatter plots of R2 between modeled and measured MELT (left) and ΔQ (right) 
as a function of station altitude for February, April and June, showing the variations of CC-
MELT association with elevation and month. The red lines are least-square fits denoting the 
data trends. Sites with p-value < 0.01 are color-filled.  
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3.3.4 Regional cloudiness vs. snowmelt/streamflow variability 

The two leading CC REOF modes representing regionally coherent non-seasonal 

cloud variability over NW and SW are displayed in Figures 3.5 and 3.6 (left panels), 

respectively. The time-varying amplitudes (RPCs) of these two REOF modes are then 

correlated with MELT and ΔQ over all snow and stream locations in the WUS for February, 

April and June (Figures 3.5 and 3.6, center and right panels).  

The correlations demonstrate how anomalous cloudiness is associated with short 

period snowmelt and streamflow fluctuations over regional scales. The resulting maps exhibit 

correlations over relatively broad regions, with highest p-values < 0.01 in locations with 

large REOF weightings. The REOF-NW correlations with MELT and ΔQ are strongest over 

Idaho (Figure 3.5), while the REOF-SW correlations with MELT and ΔQ are strongest over 

California and Nevada (Figure 3.6). The REOF-MELT correlations are relatively strong, with 

values <–0.3 in many cases. Compared to the REOF-MELT correlations, the REOF-ΔQ 

correlations are weaker, evidently reflecting the complex variation of short-term streamflow 

fluctuations and the multifold controls that affect them (Section 3.3.3.2). 

As exhibited by the local regression models, predominantly negative correlations 

between CC and MELT, and between CC and ΔQ during springtime indicate the role of 

cloud shading. In other words, as cloudiness increases, solar insolation decreases and as a 

result, there is less energy input to melt the snowpack that in turn feeds streamflows. 

However, some sizeable positive correlations also occur, most notably over NW in February 

in MELT case (Figure 3.6), indicating snowmelt occurrence with greater cloudiness. ΔQ case 

shows notable positive correlations over the northern Idaho and southern California/Nevada 
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in February and June (Figures 3.5 and 3.6), indicating a more immediate runoff as a response 

to greater cloudiness and, presumably, rainfall. 

 

	

Figure 3.5. Left: The NW REOF of February to July de-seasonalized daily CC anomalies 
from 1996-2015. Center: Correlations between the NW RPC daily time series and MELT 
anomalies for February, April and July. Right: Same as center panel, except between the NW 
RPC time series and ΔQ. Sites with p-value < 0.01 are colored-filled. 
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Figure 3.6. Same as Figure 3.5, except for the SW daily CC REOF. 

 

3.4 Summary and conclusions 

The results demonstrate the varying degrees to which daily cloudiness (CC) 

variability linearly correlates with daily snowmelt (MELT) and daily streamflow (ΔQ) 

fluctuations over the western U.S. within the snowmelt season (February-July). The CC-

MELT association is greater in the relatively low elevation northwestern sites than in the 

relatively high elevation southwestern sites. The CC-ΔQ associations vary in magnitude, but 

not systematically, across the western U.S. Both CC-MELT and CC-ΔQ associations vary 

considerably over the period between February and July.  
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While cloud cover is often associated with precipitation, it also provides shading for 

the snowpack and thus modulates the melt and runoff timings during the springtime. 

Contingency analysis and linear regressions reflect this shading mechanism, showing that 

snowmelt tends to coincide with clear days, and vice versa, especially in mid spring (April-

May). This effect also shows up in an asymmetry between dry and wet years, where negative 

springtime CC correlations with MELT and with ΔQ are more persistent, albeit weaker, in 

wetter years, particularly in the southwest. The dry vs. wet years asymmetry may also 

provide an outlook on the variations in snowmelt and streamflow responses to cloudiness 

variability under the future intensification of dry/wet hydrologic extremes (Swain et al., 

2018). Importantly, cloudiness-driven MELT and ΔQ fluctuations operate on regional scales, 

demonstrated by temporal correlation coefficients between the CC rotated empirical 

orthogonal functions and anomalies of MELT and ΔQ.  

Throughout the western U.S., snowmelt tends to have a lagged as well as a 

contemporaneous response to cloudiness variations. Regressions indicate that fluctuations of 

daily snowmelt are associated with variations in cloudiness of that day itself as well as 

variations of cloudiness on antecedent days. For many months and locations, correlations of 

cloudiness with snowmelt or streamflow fluctuations have peak values when cloudiness leads 

by one to three days. This phenomenon is likely related to snowpack energy depletion 

throughout its depth, so cold content increases and melt is inhibited. Peak correlations 

between cloud variations and snowmelt fluctuations exhibit longer lags in the early season 

when days are shorter and cooler, and snowpack is thicker. Streamflow also exhibits a 

delayed relationship with cloud variations, but they operate at longer lags. For streamflow, 
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upstream effects sometimes dominate local processes (Lundquist et al., 2005), which 

introduce time delays into the peak CC-ΔQ associations.  

Finally, although elevation is clearly an important factor in seasonal snowpack and 

runoff generation (Garvelmann et al., 2015; Gleason et al., 2017; Tennant et al., 2017), 

cloudiness-associated snowmelt and streamflow fluctuations also appear to depend on the 

elevation. This dependence is complex, however. CC-MELT and CC-ΔQ associations are 

stronger at lower elevations in the early (particularly February) and late (particularly July) 

snowmelt season, but are stronger at higher elevations in the peak snowmelt season 

(particularly March and April) when overall snowmelt is greatest.  

In summary, cloudiness influences snowmelt and streamflow in different ways 

throughout the snowmelt season, i.e., the cloud-precipitation effect in early and late 

snowmelt season, and cloud shading effect in peak snowmelt season. The relatively inactive 

snowmelt earlier in the season, followed by peak activity in April-May and decline in June-

July underpins a link between snowpack dynamics and annual streamflow, which 

Rheinheimer et al. (2016) similarly noted from their work at Yuba River watershed in 

northern California. The low-to-moderate strengths in these linear associations indicate the 

non-linear nature in cloudiness-snowmelt-streamflow processes, and that other factors are 

involved in snowmelt and streamflow fluctuations. The lagged peak associations suggest the 

importance of antecedent cloudiness variations, which are important in understanding 

snowmelt and streamflow fluctuations.  

Future works should address the non-linearity in cloudiness-snowmelt and 

cloudiness-streamflow relationships and how these relationships may evolve with future 

hydroclimatic changes. If the study involves “big data”, machine learning techniques will be 
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particularly useful when non-linearity is present (Bair et al., 2018). Other aspects needing 

further investigations include the effects on cold content, longwave and turbulent fluxes, and 

what roles local topography and vegetations play in these relationships. In addition, 

streamflow is a confluence of upstream snow-fed tributaries and is thus affected by upstream 

cloudiness. Consequently, upstream cloudiness is an important variable with potential 

applications in hydrologic predictions, such as dam and reservoir operations.  
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Appendix 3A: Cloudiness relationships with precipitation and diurnal air temperature 

Linear relationships among cloud cover (CC), precipitation (P), diurnal air 

temperature range (dT), i.e., the difference between daily maximum and minimum air 

temperatures, are investigated. For this purpose, correlations formed from each pair of the 

four variables for individual months to investigate the sign and strength of correlations, and 

how they vary through the year.  

Figure 3.A1 shows the correlations for two sites representing different regions 

(Figures 3.1, 3.5 and 3.6). The CC has strong positive correlations (R > 0.5) with P and 

strong negative correlations (R < –0.5) with dT at both sites, despite the monthly variations, 

inferring the close connection between cloudiness and precipitation and the cloud modulating 

effect on daytime and nighttime temperatures. For the latter, cloud cover reduces the 

incoming solar radiation at the surface during the daytime, which cools the daytime 

temperature. In contrast, cloud cover traps outgoing longwave radiation from the surface, 

which warms the nighttime temperature. These strong correlations are evident during 

springtime, emphasizing the importance of CC on P and dT, and their relevance to spring 

snowmelt. Similarly but to a lesser degree, P has strong negative correlations with dT (R < –

0.4).  
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Figure 3.A1. Monthly correlations (R) (1996-2015) between de-seasonalized CC, P, and dT 
at (a) Gin Flat in California (37.767 °N, 119.773 °W, 2,149 m) and (b) Crater Meadows in 
Idaho (46.56 °N, 115.29 °W, 1,817 m), ordered according to water-year months (October-
September). The symbol ‘x’ denote where p-value < 0.01. 

 

Appendix 3B: Training and validation of MELT and ΔQ models 

The analyses in Section 3.3.3 are repeated with two-third of the years (1996-1997, 

1999-2000…2014-2015) as the training period and one-third of the years (1998, 

2001…2013) as the validation period. MELT and ΔQ models are reconstructed using the 

validation period only. The modeled MELT and ΔQ are subsequently evaluated against the 

observed MELT and ΔQ over the training and validation periods, separately. The purpose is 

to test whether the models have consistent predictive skills in different years with different 

hydroclimatic conditions. 

Table 3.B1 demonstrates that the arrangement seen in Table 3.2 is largely maintained 

in both training and validation periods. For instance, in NW and WUS, the R2 for both 

training and validation periods show peak associations in May. Of course, some differences 

exist, as no two or more water years have the exact same hydroclimatic condition. For 
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example, in SW, this remains true only for the training period, as the peak R2 shifts to April 

for the validation period. Nevertheless, the magnitudes of R2 in both training and validation 

periods are comparable, demonstrating that the model has a reasonably consistent predictive 

skill.  

A similar conclusion can be drawn from the ΔQ case (Table 3.B2), and from when 

the analyses are conducted for dry-year and wet-year subsets (not shown).  

 

Table 3.B1.  
Same as Table 3.2, except for when the training and validation periods are treated separately 

Month NW SW WUS 
Training Validation Training Validation Training Validation 

Feb 11 4 8 4 10 4 
Mar 11 5 11 13 11 7 
Apr 14 25 17 23 15 24 
May 25 35 22 26 24 33 
Jun 25 22 25 9 25 19 
Jul 26 35 6 6 25 32 

Note. The training period consists of 1996-1997, 1999-2000…2014-2015, and the validation 
period consists of 1998, 2001…2013. 

 

Table 3.B2. 
Same as Table 3.4, except for when the training and validation periods are treated separately 

Month NW SW WUS 
Training Validation Training Validation Training Validation 

Feb 9 7 9 5 9 6 
Mar 6 4 10 5 8 5 
Apr 5 12 9 13 6 13 
May 7 9 7 6 7 8 
Jun 7 6 9 4 8 5 
Jul 10 6 7 4 9 5 

Note. The training period consists of 1996-1997, 1999-2000…2014-2015, and the validation 
period consists of 1998, 2001…2013. 
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Appendix 3C: Asymmetry of cloudiness associations between dry years and wet years  

Dry years and wet years are determined using October-July total PRISM precipitation 

(P) at each individual snow pillow and stream gauge. The dry-year and wet-year subsets are 

prescribed as those with the 10 lowest and 10 highest October-July cumulative P. 

Subsequently, separate regression models are derived for the dry and wet-year subsets.  

From the observed data, dry years generally exhibit larger CC-MELT association 

(R2), but they undergo an earlier seasonal fall-off, reflecting shorter springtime and earlier 

summer, particularly in the SW. This contrast is most clearly depicted by June maps in 

Figure 3.C1 and by Table 3.C1, showing statistically significant negative correlations 

throughout the WUS in wet years, but confined to the NW in dry years.  

This difference between dry and wet CC-MELT regression results in June reflects the 

longer-lasting snow cover and snowmelt in wetter years. Moreover, wetter years are 

associated with higher precipitation and hence with greater cloudiness, where the proportion 

of shortwave input to snowmelt energy balance is reduced. Along with this pattern is a 

relatively weaker MELT response to CC than to Tmax and Tmin in wetter years (Supporting 

Information). 
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Figure 3.C1. Daily MELT variance explained by anomalous CC (%) for February, April and 
June during dry years (left) and wet years (right) of 1996-2015. Circle size is proportional to 
R2 (%). Color tone denotes time lag of MELT relative to CC predictor whose regression 
coefficient has strongest magnitude, where red (blue) designates positive (negative) 
correlation. Sites with p-value < 0.01 are color-filled. 
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Table 3.C1. 
Same as Table 3.2, except for the Dry-year and Wet-year Subsets 

Water Year Month NW SW WUS 
Dry Feb 11 12 12 

 
Mar 12 16 13 

 
Apr 27 26 27 

 
May 34 28 32 

 
Jun 33 10 31 

 
Jul 30 -- 30 

Wet Feb 15 10 14 

 
Mar 12 12 12 

 
Apr 15 16 16 

 
May 27 22 26 

 
Jun 25 21 24 

  Jul 22 7 10 
 

 

The CC-ΔQ set shows the springtime progression in April, with most streams in SW 

exhibiting higher R2 values in both subsets (Figure 3.C2 and Table 3.C2). Also, more streams 

in NW have negative correlations in the wet-year subset. The main difference from the CC-

MELT set is that many locations exhibit strong positive CC-ΔQ correlation in June, marking 

the onset of summertime precipitation activities common in the mountains of western U.S. 

(Whiteman, 2000). However, in the dry-year subset, there are more sites with larger R2 and 

positive correlations, especially in SW. This phenomenon is probably a symptom of a weaker 

snowmelt influence on streamflow fluctuations, owing to lower snowpack, and hence a 

stronger signal from rainfall and a drying effect from clear days that correlates positively to 

cloudiness.  
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Figure 3.C2. Same as Figure 3.C1, except for ΔQ. 
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Table 3.C2.  
Same as Table 3.4, except for the Dry-year and Wet-year Subsets 

Water Year Month NW SW WUS 
Dry Feb 10 9 10 

 
Mar 7 11 8 

 
Apr 11 11 11 

 
May 9 9 9 

 
Jun 10 13 11 

 
Jul 13 14 14 

Wet Feb 10 10 10 

 
Mar 7 10 8 

 
Apr 7 13 9 

 
May 9 9 9 

 
Jun 8 8 8 

  Jul 12 8 11 
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Chapter 4 

Effects of Cloud Variability on Snow-fed Runoffs in California’s Sierra 

Nevada 

We investigate how runoff responds to varying cloudiness by comparing runoffs in 

two neighboring watersheds, the upper Tuolumne River and upper Merced River watersheds 

in California’s Sierra Nevada. Daily cloud cover indices (CC) from the Geostationary 

Operational Environmental Satellite are used to derive daily solar irradiance input in the 

Precipitation-Runoff Modeling System, from which the Baseline simulation is generated. We 

then conduct three experiments: 1) removing daily CC fluctuations under which every day 

has climatological cloud cover, 2) removing CC at different (high, mid, low) elevation bands, 

and 3) amplifying daily CC fluctuations. Each experiment is then compared to the baseline 

simulation to isolate the influence of daily CC variability on runoff, to reveal the relative 

importance of CC at different elevation bands, and to understand the runoff sensitivity to 

intensified daily CC fluctuations, respectively. Overall, the influence of cloudiness on the 

seasonal runoff is greater on the runoff timing than on the runoff volume. Variability of daily 

CC moderates the seasonal runoff, characterized by higher flows in the early and late 

snowmelt season and lower flows in the mid snowmelt season. In the first experiment, we 

find the baseline simulation produces 1-3 days earlier spring onsets. From the second 

experiment, we find higher elevation fluctuating CC exerts a greater influence on the runoff 

than lower elevation fluctuating CC does. Across all elevation bands, the baseline simulation 

produces 2-15 days later spring onsets. From the third experiment, we find a greater runoff 

response to the “relatively cloudy-sky periods get cloudier” scheme than to the “relatively 
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clear-sky periods get clearer” scheme, with the former producing 3-5 days later spring onsets 

than the baseline simulation.  

 

4.1 Introduction 

Cloud cover variability is the principal regulator of incoming solar radiation, or short 

wave flux (SWF) at the surface (Harrison et al., 1990; Simpson et al., 2004). In a 

mountainous region like the western United States (U.S.), SWF is the primary input to 

snowmelt energy balance (Marks and Dozier, 1992; Cline, 1997; Bales et al., 2006; Comola 

et al., 2015; Painter et al., 2017). Consequently, understanding cloud cover variability is 

essential for hydrologic applications in mountainous catchments and their downstream 

ecosystem and societies, such as irrigation, water supply, hydropower generation and 

environmental services (Viviroli et al., 2011).  

California’s highly seasonal Mediterranean climate and its setting in the lower edge 

of the North Pacific winter storm track exposes the Sierra Nevada mountain range to 

considerable fluctuations in winter and spring cloudiness (Sumargo and Cayan, 2017), 

precipitation and runoff (Lundquist et al., 2005; Cayan et al., 2016) variabilities in California. 

The exceptionally wet water year (WY; defined as the year running from October to 

September) 2017, marked by high mountain snowpack (California Department of Water 

Resources, 2017; Lettenmaier, 2017) and frequent Atmospheric River events (Ralph et al., 

2017), following the multiyear severe drought occurring in WYs 2012-2015 (Mao et al., 

2015; Seager et al., 2015; Williams et al., 2015) exemplify these variabilities. 

Over the mountain regions like the Sierra Nevada, winter precipitation is strongly 

influenced by the orographic effect (Dettinger et al., 2004; Lundquist et al., 2010) and arrives 
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mostly as snowfall that is subsequently stored as seasonal snowpack (Dettinger et al., 2011). 

The snowpack sporadically melts and feeds into the streams throughout the spring and 

summer, providing water for 60%-75% of California’s agricultures and cities (Rosenthal and 

Dozier, 1996; Downing, 2015). During the snowmelt season, cloudiness variability is a major 

regulator of snowmelt variations, accounting for ~10%-40% of snowmelt variations over the 

peak months in the Sierra Nevada (Sumargo and Cayan, 2018). For this reason, this study 

emphasizes the spring-summer period when cloudiness-snowmelt-runoff processes are most 

active. 

However, unlike surface hydrologic response to precipitation and temperature (e.g., 

Karl and Riebsame, 1989; Mote, 2006; Stoelinga et al., 2009; McCabe and Wolock, 2011; 

Nowak et al., 2012; Luce et al., 2014; Woodhouse et al., 2016; Sproles et al., 2017), the 

response to cloudiness variability over montane watersheds has not been thoroughly studied.  

The significance of this study is heightened with climate change, since many 

hydrologic applications rely on historical statistics, which will become less reliable as 

climate continues to change (Lundquist et al., 2009; Rice et al., 2011). For instance, storm 

tracks, cloud cover patterns (Yin, 2005; Held and Soden, 2006; O’Gorman and Schneider, 

2008; Dettinger, 2011) and radiative properties (Zelinka et al., 2017) are expected to evolve 

with climate change. The warming trend has resulted in greater rain-to-snow ratio (Knowles 

et al., 2006), changes in winter precipitation, seasonal snowpack and annual flow (Hantel and 

Hirtl-Wielke, 2007; Schöner et al., 2009; Beniston, 2010, Das et al., 2011), and earlier 

streamflow timing (Stewart et al., 2005; Horton et al., 2006; Morán-Tejeda et al., 2014). It is 

also projected to decrease the snowmelt rate (Musselman et al., 2017) and summer soil 

moisture (Gergel et al., 2017). These factors will inevitably complicate the association 
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between cloudiness variability and surface hydrologic variations, especially in mountain 

environment where surface energy balance and hydroclimatic processes are inherently 

complex (Brauchli et al., 2017). 

The geographic foci in this study are two neighboring watersheds, i.e., the Tuolumne 

River and the Merced River watersheds on the west-central slope of California’s Sierra 

Nevada. The close proximity between the two watersheds allows a direct comparison of the 

surface hydrologic responses to cloudiness in the respective watersheds, owing to their 

similar climate. These watersheds are characterized by high elevations and cold fall-winter-

spring conditions (Lundquist et al., 2016), which allow more snowfall vs. rainfall and the 

development of a substantial snowpack which persists into later spring or early summer.  

Additionally, the steep terrain, shallow soils and abundant granodiorite rocks allow 

minimal losses of surface water to subsurface processes—often a major source of 

uncertainties in determining the water balance in many other watersheds (Lundquist et al., 

2016). This characteristic makes the surface hydrology of both basins relatively 

straightforward (Slack and Landwehr, 1992; Jeton et al., 1996; Rice et al., 2011), thus 

enabling direct examinations of weather/climatic influence on the surface hydrology. 

Nevertheless, some differences should emerge since no two basins are identical. Therefore, 

the Tuolumne River and Merced River watersheds are suitable for this research. 

In this paper, we use a hydrological model, driven by observed and idealized 

meteorological inputs, to explore how runoffs in the Tuolumne River and Merced River 

catchments respond to different forms of cloudiness variation. To investigate different types 

of cloudiness effects, we conduct a series of experiments with a recent version (see section 

4.2.1) of Precipitation-Runoff Modeling System (PRMS) (Leavesley et al., 1983; Markstrom 
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et al., 2015) as our primary tool.  We also examine how this response varies with elevation, 

since the elevation of these watersheds covers a wide range where cloudiness, rainfall and 

snowfall vary considerably (Dettinger et al., 2004; Simpson et al., 2004), as does the 

sensitivity to climate variation of snowmelt and other processes (Rice et al., 2011). Finally, 

motivated by the projected increase in static stability (Frierson, 2006) and by projected 

intensification of occasional extreme precipitation (Shi and Durran, 2016) over the 

midlatitudes, we investigate how runoff changes when the relatively clear-sky periods get 

clearer and the relatively cloudy-sky periods get cloudier. 

 

4.2 Precipitation-Runoff Modeling System (PRMS) 

4.2.1 Model description 

The Precipitation-Runoff Modeling System (PRMS) is an operational, watershed-

scale hydrologic model developed by the U.S. Geological Survey (Leavesley et al., 1983; 

Markstrom et al., 2015). The PRMS is a deterministic, distributed-parameter, physical-

process-based model developed to evaluate watershed hydrologic responses to 

weather/climate and land use. The watershed is partitioned to segments called the Hydrologic 

Response Units (HRUs), which are based on the physical characteristics of the watershed, 

such as the surface elevation, slope and aspect, vegetation and soil types. The model requires 

daily maximum and minimum air temperatures, precipitation and solar radiation (optional) as 

inputs. 

In this study, we use version 4.0.1 of the PRMS model. Specifically, we utilize the 

California Department of Water Resources (CDWR) PRMS modules of the Tuolumne and 

Merced River basins. The two models already have precipitation and temperature inputs 
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provided by the CDWR modeling team and have undergone calibrations by the modeling 

team at the CDWR. On the other hand, SWF inputs are not provided. The primary reason is 

SWF and, in fact, any weather measurement networks in mountainous watersheds tend to be 

sparse, owing to installation and maintenance problems related to the difficult access and 

snow-laden seasons (Dettinger, 2014; Henn et al., 2015; Lapo et al., 2015; Le Moine et al., 

2015; Raleigh et al., 2016).  

If not provided, SWF is estimated using degree-day method based on diurnal 

temperature range (DTR), which is a proxy for cloud cover, and clear-sky solar radiation 

(Leavesley et al., 1983). This simple method remains to be a standard practice in hydrologic 

modeling communities (Bohn et al., 2013). However, the relationship between DTR and 

cloud cover is not robust (Pellicciotti et al., 2011), and the estimated SWF may contain 

significant biases.  Problems that arise from the DTR-based estimates are shown for example 

at the Dana Flat location at 2,987 m in the Tuolumne River watershed in Figure 4.1, which 

also shows that SWF estimates using Geostationary Operational Environmental Satellite 

(GOES) performs much better in replicating surface observations of SWF. For this reason, 

we explore the use of GOES observations of clouds to derive SWF (described in section 

4.3.2) and demonstrate that this method brings significant improvements to SWF (Figure 4.1) 

and runoff (appendix 4C) estimates.   
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Figure 4.1. Observed vs. estimated daily SWF at Dana Meadows (DAN; 37.897 °N, 119.257 
°W, 2,987 m) for snowmelt season (February-July) of 1996-2014. The observed SWF record 
is obtained from the California Data Exchange Center (http://cdec.water.ca.gov/) operated by 
the California Cooperative Snow Survey. The SWF estimates are derived using PRMS 
version of diurnal temperature range (DTR) algorithm and using Ineichen-Perez algorithm 
with using GOES α (GOES). The diagonal line is the 1:1 line. 

 

If provided, the provided SWF, instead of the default SWF, is used as a forcing in the 

water balance and energy balance computations, including in snowmelt and potential 

evapotranspiration (PET) estimations. The snowmelt is principally a function of SWF and 

snow albedo, such that the amount of SWF applied to the snowpack is proportional to 1 – 

albedo (Markstrom et al., 2015). The snow albedo is a function of time where it decays with 

time as snowpack ages, computed using an empirical relationship developed by the U.S. 

Army Corps of Engineer (1956). (Note that the albedo does affect the longwave radiation 

from the atmosphere in PRMS.) The PRMS Tuolumne and Merced modules we employ 

estimate the PET using the Jensen-Haise formulation (Jensen and Haise, 1963; Jensen et al., 

1969). 

The PRMS Tuolumne River basin covers a larger basin area and represents the 

watershed as being distributed among 405 HRUs and 10 sub-basins, with a terminus 

downstream of Lagrange dam (TRLG; USGS gauge 11289650) (Figure 4.2, top left panel). 
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The model spans from WY 1969 to WY 2014 by default, but our simulations can only run 

from 1996 onward due to the availability of GOES data (described in section 4.3.2). The 

simulations are divided into two segments of approximately equal lengths: 1) training period 

(1996-2005) for calibration (appendix 4C), and 2) validation period (2006-2014) for 

evaluation.  

The Hetch Hetchy Reservoir (HTH) affects flows over downstream areas. Therefore, 

the analysis is focused on sub-basins 1-3 above HTH, which altogether constitute the upper 

Tuolumne basin, with a terminus at HTH. Likewise, the sum of total runoff from sub-basins 

1-3 is equivalent to the total inflow to HTH. The time series of the observed inflow to HTH 

is provided by the San Francisco Public Utilities Commission. The upper Tuolumne River 

basin consists of 161 HRUs, with HRU centroid elevations ranging from 1,152 m to 3,471 m, 

and averaging 2,621 m. 

The PRMS Merced River basin has 659 HRUs and 3 sub-basins, with a terminus at 

Merced River below Merced Falls Dam (MRMF; USGS gauge 11270900) (Figure 4.2, top 

right panel). By default, the model runs from WY 1949 to WY 2013, but again, our 

simulations start from 1996 following the availability of GOES dataset. Like the Tuolumne 

module, the simulations are divided into: 1) training period (1996-2004) for calibration 

(appendix 4C), and 2) validation period (2005-2013) for evaluation.  

Dams are also present in most parts of the basin, including in one of the upstream 

sub-basins (sub-basin 2). Only sub-basin 1 does not contain a dam, which has a terminus at 

Merced River at Pohono Bridge (POH; USGS gauge 11266500). This situation makes the 

calibration effort tricky, since calibrating the model on sub-basin 1 only would not account 

for flows from sub-basin 2, while including sub-basin 2 or calibrating on a whole-basin scale 
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would include dams’ effects. We choose to focus the calibration and analyses on sub-basin 1 

only, hereby called the upper Merced basin. The observed streamflow data from POH is 

provided by the CDWR modeling team. The upper Merced River basin consists of 298 

HRUs, with HRU centroid elevations ranging from 1,198 m to 3,733 m, and averaging 2,494 

m. 

The Merced basin is adjacent to the Tuolumne basin, so the hydroclimates of both 

basins should be similar. To verify this similarity, the wavelet coherence between the inflow 

to HTH and streamflow at POH is computed using Aslak Grinsted’s MATLAB® script 

(Grinsted et al., 2004; available on http://www.glaciology.net/wavelet-coherence). The result 

reveals close correspondence between the two variables at periods >7 days nearly across the 

entire WYs 1996-2013 (Figure 4.2, bottom panel), indicating both basins have nearly 

identical behaviors on weekly and longer time scales. 
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Figure 4.2. Top left: PRMS Tuolumne River basin, with a terminus at Tuolumne River 
below La Grange Dam (TRLG). The upper Tuolumne basin is hatched, with a terminus at 
Hetch Hetchy Reservoir (HTH). Top right: PRMS Merced River basin, with a terminus at 
Merced River at Merced Falls (MRMF). The upper Merced basin is hatched, with a terminus 
at Merced River at Pohono Bridge (POH) in Yosemite National Park. Bottom: Wavelet 
coherence between the observed daily inflow to HTH and observed daily streamflow at POH, 
for WYs 1996-2013. The color shadings represent the strength of the relationship. The 
arrows denote the phase of the relationship, with rightward arrows denoting both variables 
are in-phase. The thick contours demarcate the 5% significance level against red noise. 
 

4.2.2 GOES-derived solar radiation input 

Satellite remote sensing technology has enabled researchers from various disciplines 

to retrieve and use high quality image data. Geostationary satellites like the GOES are 

particularly useful for operational purposes. Examples of such applications include solar 

energy and hydrologic forecasting. Here we utilize GOES-West visible albedo product, 

which has 4-km spatial and 30-minute temporal resolutions over the western U.S.  
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For this study, we derive SWF using the Ineichen-Perez algorithm (Ineichen and 

Perez, 1999). The algorithm requires cloud cover index (CC), also known as cloud dynamical 

range (Cano et al., 1986), clear-sky SWF (estimated using a simple algorithm in the 

American Society of Civil Engineers’ evapotranspiration equations, available on 

http://maeresearch.ucsd.edu/kleissl/files/R.m), Linke turbidity factor (obtained from 

http://www.soda-pro.com/help/general-knowledge/linke-turbidity-factor), and station 

latitude, longitude and elevation as inputs.  

The CC is defined as:  

CC(𝑖,𝑑, 𝑡) = ! !,!,!  ! !"(!,!,!)
!" !,!,!  ! !"(!,!,!)

   (4.1) 

where α is the raw albedo, LB and UB are the lower and upper bounds of cloud dynamical 

range, respectively, i denotes the HRU, d denotes the day and t denotes the time of the day 

[see Cano et al. (1986), Ineichen and Perez (1999) for explanation]. The LB and UB are 

determined as the minimum and maximum values of α, respectively, within prescribed time 

windows (Perez et al., 2002). Based on our diagnostic where we compare the estimated SWF 

to the observed SWF at several stations, we determine that setting the daily-centered time 

windows to 7 days (±3 days) for LB and to 91 days (±45 days) for UB is optimal (appendix 

4A). 

The PRMS simulations run using Ineichen-Perez SWF are hereby called Baseline 

simulations. Compared to the default runs where DTR-based SWF is used, the Baseline 

simulations show a better performance in estimating the basin runoff throughout the 

snowmelt season, particularly in replicating the early and peak snowmelt season discharges 

(appendix 4C). In the PRMS modules that we employ, this improvement is noticeably greater 

in the Tuolumne River basin model than in the Merced River basin model. 
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Unless otherwise noted, any modifications to the cloudiness as a part of the 

experiments (section 4.3) are done on the cloud albedo component (αcloud), defined as: 

𝛼!"#$% 𝑖,𝑑, 𝑡 = 𝛼 𝑖,𝑑, 𝑡 − LB(𝑖,𝑑, 𝑡)   (4.2) 

following Sumargo and Cayan (2017), where i denotes the HRU, d denotes the day and t 

denotes the time of the day. Other variables, such as temperature and precipitation, are kept 

the same. The LB is subsequently added back to the modified αcloud to generate a modified α, 

which is then used to derive SWF. 

 

4.3 PRMS Experiments to Explore Response to Cloudiness 

 A set of experiments are conducted to explore how cloudiness temporal variability 

and the spatial distribution of clouds affect runoff in west-slope Sierra Nevada, the primary 

source of water resources for California. These experiments compare runoff that occurs 

during a 19-year historical period from the upper Tuolumne River and upper Merced River 

basins simulations using the observed weather (precipitation, temperature and GOES-

estimated SWF), called the Baseline simulations, with those whose cloudiness variability is 

altered, as described below.  

 

4.3.1 Snow-fed streamflow response to daily cloudiness variability 

The first experiment investigates snow-fed streamflow response to daily cloudiness 

variability by removing the artifacts of daily cloudiness variability in SWF input. For this 

purpose, the SWF input is similarly derived using Ineichen-Perez algorithm, except that the 

numerator of CC (αcloud) is replaced with the annual harmonic of αcloud, while other 

inputs/variables are kept the same. We find that replacing αcloud with its annual harmonic 
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results in a 3,000 W m-2 (~4%) deficit in the snowmelt season’s (February-July) total SWF, 

when averaged over the 1996-2014 period over the upper Tuolumne River watershed. Over 

the upper Merced River watershed, this deficit amounts to 1,464 W m-2 (~1%). 

Figure 4.3 displays the behavior and magnitude of the resulting SWF estimate 

(hereby called “Annual harmonic clouds”), which retains the annual cycle of GOES SWF 

(Baseline), but with substantially smaller high-frequency variability. The difference between 

the Baseline simulation and “Annual harmonic clouds” simulation should reveal the relative 

contribution of daily cloudiness variations.  

 

 

Figure 4.3. Daily climatology (1996-2014) of SWF at Dana Meadows (DAN) from 
observation, Ineichen-Perez algorithm with original αcloud (Baseline), and Ineichen-Perez 
algorithm with annual harmonic αcloud (Annual harmonic clouds). 
 

4.3.2 Snow-fed streamflow response to high/mid/low elevation cloudiness 

The second experiment investigates the effect of cloudiness at a specific elevation 

band on the snow-fed streamflow by removing αcloud at high/mid/low elevation HRUs, while 

maintaining αcloud at the other elevation HRUs. The other inputs/variables are kept the same. 

Different from the first experiment where the cloudiness is replaced with its annual 

harmonic, this experiment removes the cloudiness entirely, resulting in ~2 (from removing 
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low-elevation cloudiness)-3 (from removing mid and high-elevation cloudiness) times larger 

changes in February-July total basin-average SWF than those in the first experiment. 

Consequently, SWFs at high/mid/low elevation HRUs are the clear-sky SWFs, while SWFs 

at the other elevation HRUs remain unchanged. The modified simulations are hereby called 

“No clouds at high/mid/low elevation HRUs”.  

For this purpose, the αcloud multiplication factor (f) is defined as: 

𝑓(𝑖) =
1,                     𝑖𝑓 𝑧(𝑖) < 𝑧!!
1,         𝑖𝑓 𝑧!! ≤ 𝑧(𝑖) ≤ 𝑧!!
0,                    𝑖𝑓 𝑧(𝑖) > 𝑧!!

    (4.3) 

when αcloud at high elevation HRUs are removed and αcloud at the other elevation HRUs are 

maintained. Variable z is the HRU centroid elevation, while zt1 is the first tercile (33rd 

percentile) value of the elevations (2,481 m for upper Tuolumne and 2,302 m for upper 

Merced) and zt2 is the second tercile (67th percentile) value of the elevations (2,881 m for 

upper Tuolumne and 2,773 m for upper Merced). The tercile values are used as the elevation 

bands’ cutoffs such that each elevation band consists of an equivalent number of HRU. When 

αcloud at mid/low elevation HRUs are removed instead, the second/first criterion in Eq. (4.3) 

becomes 0, while the other criteria become 1.  

The modified αcloud is then: 

𝛼!"#$%! (𝑖,𝑑, 𝑡) = 𝑓(𝑖) ∗ 𝛼!"#$%(𝑖,𝑑, 𝑡)   (4.4) 

where i denotes the HRU, d denotes the day and t denotes the time of the day. As a result, CC 

becomes 0 when f = 0, and remains unchanged when f = 1. SWF is subsequently derived 

using Ineichen-Perez algorithm. The differences between the Baseline and modified 

simulations should reveal the relative importance of cloudiness over high/mid/low elevation 

HRUs on streamflow.  
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For reference, the climatological mean February-July CCs of each HRU in the upper 

Tuolumne and upper Merced watersheds are displayed in Figure 4.4. The figure illustrates 

the spatial distributions of snowmelt season cloudiness in both watersheds, which are 

typically greater over higher elevation HRUs. Following this pattern, we find that the 

resulting increases in SWF from removing cloudiness are typically greater at higher elevation 

bands in both watersheds. 

 

 
Figure 4.4. Snowmelt season (February-July) daily climatological mean (1996-2014 for 
Tuolumne and 1996-2013 for Merced) CC at each HRU in the Upper Tuolumne (left) and 
Merced (right) watersheds.  
 

4.3.3 Snow-fed streamflow response to intensified daily cloudiness fluctuation 

The third experiment investigates snow-fed streamflow response to intensified daily 

cloudiness fluctuations. This scheme is implemented on a daily basis by amplifying αcloud to 

cloudy-sky condition during the relatively cloudy condition (Cloudy gets cloudier), or de-

amplifying αcloud to clear-sky condition during the relatively clear condition (Clear gets 

clearer). The “Cloudy gets cloudier” and the “Clear gets clearer” scenarios are conducted 

separately. As before, the other inputs/variables remain unchanged. A similar approach to 
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that in section 4.3.2 is applied. The amplification depends on the αcloud value itself instead of 

the HRU elevation (z) and on the median value of αcloud (αcm) from all WYs, but specific to 

the HRU and time of the day. The median value is used as the clear/cloudy threshold, so each 

clear/cloudy category consists of an equivalent number of HRUs. 

For the “Clear gets clearer” scenario, CC is set to 0 when αcloud is less than αcm and 

remains unaltered otherwise. This scheme results in 3,364 W m-2 (~4%) and 631 W m-2 

(<1%) higher February-July total SWFs than in the Baseline, when averaged over the upper 

Tuolumne and Merced watersheds, respectively. For the “Cloudy gets cloudier” scenario, CC 

is set to 1 when αcloud value is greater than αcm and remains unaltered otherwise. This scheme 

results in disproportionately greater changes in the February-July total SWFs, with 26,791 W 

m-2 (~31%) and 15,944 W m-2 (~8%) lower February-July total SWFs than in the Baseline 

over the upper Tuolumne and Merced watersheds, respectively.  

Subsequently, SWF is re-derived using Ineichen-Perez algorithm. To enable a direct 

comparison to the Baseline simulation, we impose a condition where the WY total SWF must 

equal to that in the Baseline simulation. The resulting WY total SWF difference from that in 

the Baseline simulation is added/subtracted from the “Clear gets clearer” and “Cloudy gets 

cloudier” simulations equally to/from each day of the WY. The differences between the 

Baseline and modified simulations should represent the relative importance of cloudiness on 

streamflow during the relatively clear/cloudy condition. 
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4.4 Results and Discussion 

4.4.1 Snow-fed streamflow response to daily cloud variability 

The 2010-2013 time series of the resulting hydrographs at HTH and POH from 

Baseline and “Annual harmonic clouds” simulations are displayed in Figure 4.5. The figure 

illustrates the behaviors of snow-fed streamflow response to daily cloudiness variations 

across different WYs, including the relatively wet WYs 2010 and 2011, and the relatively dry 

WYs 2012 and 2013. The daily climatological averages, including those for dry-year and 

wet-years subsets, are summarized in appendix 4D. Despite the different flow magnitudes, 

the plots exhibit similar behaviors between the HTH and POH hydrographs, consistent with 

the result from the wavelet coherence analysis (Figure 4.2). At both locations, the magnitudes 

of flow difference between the Baseline and “Annual harmonic clouds” simulations are 

comparable across the WYs (Figure 4.5, bottom panels).  

Daily cloudiness variability results in slightly higher annual flows. When averaged 

over all WYs (1996-2014 for HTH and 1996-2013 for POH), the annual total runoff volume 

transport (QT) at HTH (POH) is ~44 (69) m3 s-1 higher in the Baseline simulations, equivalent 

to ~0.4% (1.1%). Over February-July period, these numbers become ~21 (41) m3 s-1, 

equivalent to ~0.2% (0.7%) higher in the Baseline simulations, signifying that 48% (60%) of 

the runoff difference at HTH (POH) occurs during the snowmelt season. 

Over a seasonal scale, the Baseline simulation yields higher flows in early spring (by 

5% at HTH and 7% at POH in February-April) and lower flows in mid spring (by 3% at both 

HTH and POH in May-June) than the “Annual harmonic clouds” simulation does. This 

feature is especially evident in the drier WYs 2012 and 2013 as shown in Figure 4.5, which 

indicates the Baseline runoff occurs earlier than the “Annual harmonic clouds” runoff. 
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However, the lag correlation between the flow time series from the two simulations shows a 

peak correlation at lag zero, suggesting this feature does not necessarily represent a shift in 

hydrograph, but a higher early-snowmelt-season flow in the Baseline simulation.  

Indeed, in the wetter WYs 2010 and 2011, the Baseline simulation also yields higher 

flows in early summer (by 3% at both HTH and POH in July-August), along with higher 

early snowmelt season flows. In other words, compared to the climatological cloudiness 

cases, the observed daily cloudiness variability moderates the runoff by distributing it more 

evenly throughout the snowmelt season, especially in wetter years (also see appendix 4D). 

This dampening effect is emphasized over the change in annual/seasonal QT, reasonably 

since annual QT largely depends on the precipitation input, which is not modified in this 

experiment. Similar effects are observed for the snowmelt hydrographs (not shown), 

confirming the snowmelt-runoff correspondence. 

 

 

Figure 4.5. Top: WYs 2010-2013 time series of Tuolumne River inflow to HTH (left), and 
of Merced River inflow to POH (right), from Baseline (blue) and “Annual harmonic clouds” 
(orange) simulations. Bottom: Differences, Baseline minus “Annual harmonic clouds” 
simulations, where positive differences are shown as red and negative differences are shown 
as blue.     
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This pattern reflects the clear-cloudy sky interludes associated with daily CC 

fluctuations in the Baseline simulation. On the one hand, CC fluctuations can result in more 

cloudy-sky episodes, which strongly correlate with precipitation (Lapo et al., 2017; Sumargo 

and Cayan, 2018). The effect of rainfall-runoff is evident from the intermittent spikes in the 

hydrographs throughout the entire year.  

On the other hand, CC fluctuations can also result in more clear-sky episodes with 

higher SWF for snowmelt energy input. In turn, more snowmelt-runoff can occur in early 

snowmelt season, leading to lower streamflow in mid snowmelt season. The HRU spring 

onsets [as defined in Cayan et al. (2001)] are mostly 1-4 days earlier in the Baseline 

simulation, especially at mid elevations (Figure 4.6). This characteristic is accentuated in the 

drier 2012 and 2013 (also see appendix 4D) and similarly present in the evapotranspiration 

(ET) plots, showing (~1%) higher ETs in early March and noisy, yet overall (~1%) lower ET 

in the subsequent months in the Baseline simulations (Figure 4.7). The relatively strong 

springtime ET fluctuations associated with daily CC variations supplements what Hidalgo et 

al. (2005) found across lower elevation sites in California.  
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Figure 4.6. Differences in HRU spring onsets, for each year of 1996-2014, between Baseline 
and “Annual harmonic clouds” simulations, mapped (top) and plotted against HRU 
elevations (bottom), for the upper Tuolumne (left) and Merced (right) River basins. Reds 
denote positive differences, blues denote negative differences, and gray denotes no 
difference. Positive differences mean Baseline simulation results in later spring onsets, and 
vice versa. The plots are the daily climatological averages. 
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Figure 4.7. Daily climatological averages of basin area-weighted evapotranspiration (ET) of 
the Upper Tuolumne River (left) and the Upper Merced River (right) basins, for the Baseline 
and “Annual harmonic clouds” simulations (top) and those of the differences between the 
two simulations (bottom).  

  

4.4.2 Snow-fed streamflow response to cloudiness at different elevation bands 

The relative importance of cloudiness over high, mid and low elevation HRUs is 

illustrated in Figure 4.8. As expected, the differences between the Baseline and modified 

simulations consistently exhibit lower flows in earlier snowmelt period and higher flows in 

later snowmelt period in the Baseline simulation. This result illustrates the delayed flow 

timings due to cloudiness over all elevation bands, confirming the cloud-shading effect on 

snowpack and its runoff.  

The flow differences between the Baseline and modified simulations exhibit different 

signatures across different elevation bands. The delays in flow timing are roughly 

comparable in the high and mid elevation cases (Figure 4.8, top and middle panels), but 

smaller in the low elevation case (Figure 4.8, bottom panels). However, qualitatively, the 

annual amplitudes of daily flow differences between the Baseline and modified simulations 

are largest in the mid elevation HRUs and smallest in the low elevation HRUs. The 
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magnitudes of flow difference between the Baseline and the modified simulations are 

reduced (heightened) in dry (wet) years.  

Furthermore, the shifts in flow timing between the two simulations, i.e., when the 

flow difference is zero, take place earlier (later) in dry (wet) years. This behavior persists 

across all elevation bands when the analysis is performed for the dry-year and wet-year 

subsets (not shown). The differences in the climatological average of total February-July 

runoff QT at both HTH and POH are largest in the “No clouds at high elevation HRUs” 

scenario. Like in the previous experiment, however, the QT differences are small (<4%).  

The small QT differences can partly be attributed to changes in ET, characterized by 

lower ET until April/May and higher ET afterwards in the Baseline simulation (not shown). 

The ET change is typically greater at lower-elevation HRUs owing to the warmer 

temperatures, with snowmelt season (February-July) averages of ~7% and of ~4% lower ET 

in the Baseline simulations of the upper Tuolumne and upper Merced watersheds, 

respectively. These numbers are smaller in dry years (6% and 2%, respectively) and larger in 

wet years (10% and 7%, respectively), reflecting the greater cloudiness difference between 

the Baseline and “No clouds at low elevation HRUs” scenarios, and its effect on ET in wetter 

years. The percentages of ET change are small (<1%) at mid and high-elevation HRUs. 

Overall, this result indicates that the effect of cloudiness and solar radiation variations in the 

PRMS model is greater on ET than on the streamflow.  

As verification, this experiment is repeated using different elevation band cutoffs, 

e.g., at 2,500 m and 3,000 m instead of at the first (2,481 m for upper Tuolumne and 2,302 m 

for upper Merced) and second (2,881 m for upper Tuolumne and 2,773 m for upper Merced) 

terciles, respectively. The resulting hydrographs exhibit similar delays in flow timing (not 
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shown), but different magnitudes of flow differences between the Baseline and modified 

simulations, since each elevation band now contains a different number of HRU from before. 

 

 

Figure 4.8. The differences in daily climatological averages of inflow to HTH (left) and of 
streamflow at POH (right) between Baseline simulation and “No clouds at high elevation 
HRUs” (top), or “No clouds at mid elevation HRUs” (middle), or “No clouds at low 
elevation HRUs” (bottom) simulation. Positive differences (red) mean Baseline simulation 
results in higher flows, and vice versa. 
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The delaying effect of cloudiness on the flow timing at HTH is further demonstrated 

by the spring onset differences (Figure 4.9), exhibiting 2-15 days (averaging ~3 days) later 

onsets in the Baseline simulations in most HRUs. On average, these numbers vary by ±1 day 

in the dry-year and wet-year subsets, indicating the relative importance of cloudiness at each 

elevation band to spring onset is consistent across different WYs. Interestingly, earlier onsets 

associated with cloudiness also occur at some low elevation HRUs (Figure 4.9c), particularly 

along the main tributary of Tuolumne River near HTH (see Figure 4.2). The upper Merced 

River basin experiment yields similar results (not shown).  

Forest cover and other local factors (e.g., topography and wind) that are not 

accounted for in this study may also influence the micrometeorology and snow distribution, 

thereby modifying snow mass and energy fluxes (Harding and Pomeroy, 1996; Trujillo et al., 

2007; Lehning et al., 2008; Schirmer et al., 2011; Brauchli et al., 2017). To a lesser degree, a 

similar phenomenon happens at mid elevation HRUs, but in this case due to cloudiness over 

high elevation HRUs (Figure 4.9a).  
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Figure 4.9. Differences in Upper Tuolumne River basin’s HRU spring onsets between 
Baseline simulation and No clouds at (a) high, (b) mid, and (c) low elevations HRUs 
simulations, mapped (left) and plotted against HRU elevations (right). Reds denote positive 
differences, blues denote negative difference, and gray denotes no difference. Positive 
differences mean Baseline simulation results in later spring onsets, and vice versa. The plots 
are the daily climatological averages. 
 

4.4.3 Snow-fed streamflow response to intensified daily cloudiness fluctuations 

Figure 4.10 illustrates the importance of cloudiness during the relatively clear-sky 

periods (top panels) and during the relatively cloudy-sky periods (bottom panels). As 
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expected, the Baseline simulations produce later hydrographs compared to the “Clear gets 

clearer” simulation, albeit with relatively tiny magnitudes of flow difference. Like in the 

previous experiments, the differences in the February-July climatological averages of HTH 

and POH QT between the two simulations are tiny (<<1%). 

In contrast, the Baseline simulations yield earlier hydrographs compared to the 

“Cloudy gets cloudier” simulation, with slightly elevated February-July HTH (by 2%) and 

POH (by 1%) QT, signifying the higher sensitivity of snow-fed streamflow to cloudiness 

perturbation during a relatively cloudy condition. The flow timings are noticeably earlier in 

the Baseline than in the “Cloudy gets cloudier” simulation, with mostly 2-7 days earlier 

spring onsets in both basins, averaging ~3 (5) days throughout the upper Tuolumne (Merced) 

River basin. The lag correlation between the daily climatological averages of the inflows to 

HTH from the two simulations suggests, on average, the Baseline simulation leads the 

“Cloudy gets cloudier” simulation by 5 days. This result is slightly different in the upper 

Merced case, with the strongest correlation at zero lag and a secondary peak correlation at 5-

day lag.  

Interestingly, the February-July mean ET difference between the Baseline and 

“Cloudy gets cloudier” simulations is only ~1%. The small ET difference between the two 

simulations is likely an artifact of maintaining the same WY total SWF in both simulations 

(see Section 4.3.3). When this constrain is removed, the February-July mean ET is ~6% 

higher in the Baseline simulations, reasonably as cloudiness is lesser in the Baseline 

simulation. 

This outcome seems to imply that the streamflow is more sensitive to cloudiness 

perturbation during the relatively cloudy condition. However, it may also be an artifact of the 



	 129 

clear/cloudy threshold used in the experiment, which is determined as the median value of all 

days throughout the time series for each individual HRU. When a different threshold (e.g., 

the 75th percentile) is used, the magnitudes of flow differences between the Baseline and the 

“Clear gets clearer” simulations becomes comparable to that between the Baseline and the 

“Cloudy gets cloudy” simulations. This discrepancy reflects the disproportionately greater 

number of days included in the “Clear gets clearer” case. 

 

 

Figure 4.10. The differences in daily climatological averages of inflow to HTH (left) and of 
streamflow at POH (right) between Baseline simulation and “Clear gets clearer” simulation 
(left), and between Baseline simulation and “Cloudy gets cloudier” simulation (right). 
Positive differences (red) mean Baseline simulation results in higher inflows, and vice versa. 
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Further, using the median values as thresholds means each HRU has different 

threshold. When the threshold is set uniformly (e.g., to 0.1) across all HRUs, the results 

virtually look the same as those displayed in Figure 4.10. This means the HRUs with 

relatively abundant clear-sky conditions will lose more days than the HRUs with relatively 

abundant cloudy-sky conditions, so the former have disproportionately small contributions to 

the total flow.   

The climatological averages of spring onset differences between the Baseline and the 

“Clear gets clearer” simulations are <2 days later in the Baseline simulations virtually across 

all HRUs of both basins. The same result is obtained for both dry-year and wet-year subsets. 

Also, the climatological averages of the February-July HTH and POH QT are <<1% lower in 

the Baseline simulation in both dry-year and wet-year subsets. The differences between the 

two simulations indicate consistently small flow timing and magnitude deviations in both 

dry-year and wet-year subsets. 

On the other hand, the delay in hydrograph in the “Cloudy gets cloudier” simulation 

is longer in wet years than in dry years (Figure 4.11). The lag correlations between the daily 

climatological averages of both HTH and POH flows from the Baseline and “Cloudy gets 

cloudier” simulations suggest the delays are, on average, 5 days in wet years and 0 days in 

dry years. This dry-wet year asymmetry occurs despite the relatively small (±2 days) 

variation in the spring onset.  

By comparison, the climatological averages of the February-July QT are only ~1% 

lower in the Baseline simulation in the dry-year subset and ~2-3% higher in the Baseline 

simulation in the wet-year subset. This behavior consistently exemplifies the importance of 

flow timing over QT differences between the two simulations in dry years and wet years 
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alike. Overall, this result indicates amplified streamflow sensitivity to cloudiness perturbation 

in wetter years, reasonably as wetter years are generally cloudier (appendix 4B) and as this 

sensitivity is greater during a relatively cloudy condition in the first place (see above). 

 

 

Figure 4.11. The daily climatological averages of the observed and simulated inflows to 
HTH for the dry-year (top) and wet-year (bottom) subsets, illustrating the different flow 
timings and discrepancies between the Baseline and “Cloudy gets cloudier” simulations 
between the two subsets. The vertical lines demarcate the February-July window when 
snowmelt is typically most active. 
 

4.5 Summary and conclusions 

We employ a recent version of the PRMS hydrological model, driven by observed 

and idealized meteorological inputs, to explore how runoff responds to varying cloudiness in 

the close-by snow-fed upper Tuolumne River and upper Merced River catchments on the 

west slope of the Sierra Nevada. This investigation considered three specific questions were 

addressed:  

1) How does the runoff generated within the basins respond to variations in cloudiness?  

2) How does the runoff in the basins respond to elevation band-specific cloudiness?  

3) How does snow-fed streamflow respond to intensified cloudiness fluctuations? 
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We find that cloudiness variability modulates snow-fed streamflows by distributing 

the flows more evenly throughout the snowmelt season (February-July) in both upper 

Tuolumne and upper Merced River basins. The resulting seasonal flow distribution is more 

dominant than the resulting difference in flow volume, expectedly since we do not modify 

the precipitation input. This feature is evidenced by the higher flows in early (February-

April) and late (July) snowmelt seasons, and lower flows in mid/peak (May-June) snowmelt 

season, with 1-4 days earlier spring onsets but virtually no shift in the overall hydrographs.  

On the one hand, cloudiness variability allows more clear-sky episodes with relatively 

abundant solar radiation to melt the snowpack that, in turn, feeds into the streams. On the 

other hand, it also allows more cloudy-sky episodes that help to conserve the snowpack. 

These occurrences imply a competing effect of clear/cloudy sky on seasonal snowpack due to 

daily cloudiness variability. Subsequently, the snow-fed streamflows are lower in mid 

snowmelt season because of the modulation.  

When comparing the effects of cloudiness from different elevation bands (i.e., high, 

mid and low), we find that higher elevation cloudiness has a greater influence on both flow 

volume and timing. Like in the first experiment above, the effect on the flow timing is greater 

than that on the flow volume. We also find significant evapotranspiration (ET) response to 

cloudiness at low elevation sites, with basin-average spring-summer reduction in ET by 4%-

7% due to cloudiness. Averaged over the 1996-2014 period, cloudiness delays the spring 

onset by 2-15 days (averaging ~3 days) regardless of the elevation band. These numbers also 

indicate the greater effect from removing cloudiness than from removing the day-to-day 

cloudiness fluctuations (as in the previous experiment) on the spring onset. Similar patterns 

are observed in the dry-year and wet-year subsets, with spring onset variations of ±1 day 
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from the all-year subset, indicating the relative importance of cloudiness at each elevation 

band is consistent across different WYs.  

In evaluating the effects of intensification in cloudiness, we find that snow-fed 

streamflow is more sensitive to perturbation during the relatively cloudy periods. This 

sensitivity manifests as larger annual amplitude of daily flow difference and as shifts in 

hydrograph and in spring onset. For example, averaged across all HRUs, the spring onsets 

are 3-5 days later as cloudy periods get cloudier and virtually unchanged as clear periods get 

clearer. By comparison, widespread warming in the western North America during the 

second half of the 20th century resulted in 1-4 weeks earlier spring onsets (Stewart et al., 

2005), which highlights the potential role of cloudiness in moderating the effect of climate 

change-related springtime warming. These numbers barely change from dry to wet years, 

varying by ±2 days only. However, the delay in the annual hydrograph because “cloudy 

periods get cloudier” is, on average, 5 days in wet years and 0 day in dry years. These 

patterns are also sensitive to the clear/cloudy threshold (i.e., the definition of clear vs. cloudy 

condition) used in the analysis, so care must be taken when evaluating hydrologic sensitivity 

to future change in cloudiness. 
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APPENDIX 4A 

Determining the Time Windows of UB and LB 

The time windows for UB and LB (T) used in this study is determined from the 

Ineichen-Perez model performance in estimating SWF. Theoretically, UB represents the 

cloudiest condition a GOES pixel can get and, for this reason, UB is relatively constant over 

time (Perez et al., 2002). The LB represents the contributions of surface and non-cloud 

atmospheric constituents, which can rapidly evolve within a few days and has seasonality, 

especially at pixels with seasonal snow cover. For this purpose, we test the optimal T by 

varying it from as low as 7 days (±3 days) to as high as 181 days (±90 days) in both UB and 

LB cases. The SWF is then computed separately for each value of these T. The correlations 

(R) and root-mean-squared errors (RMSE) between the observed and modeled SWF are 

calculated to evaluate the model’s performance.  

The top panels of Figure 4.A1 show the R and RMSE of the UB case as functions of 

T when they are calculated for all months and for the February-July period (snowmelt 

season), with the T of the LB case being held constant at 7 days. The plots exhibit remarkable 

initial improvements in the algorithm’s performance by showing significantly higher R and 

lower RMSE as T increases. Changes in R and RMSE start to plateau on 91-day time window 

onward, indicating retarded improvement in the algorithm’s performance. Although the 
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performance keeps improving at T > 91 days, any higher T values would require longer 

dataset to include in the computational process, in which more days, i.e., the first and last T 

days of the time series, would lose information. For this reason, we determine that the 91-day 

time window is optimal for the UB case.  

The bottom panels in Figure 4.A1 show the R and RMSE of the LB counterpart, with 

the T of the UB case being held constant at T = 91 days. Unlike in the UB case, the sharp 

increase in R and decrease in RMSE are limited to T = 7 days. The values of R and RMSE at 

T > 7 days are virtually constant. Any shorter T values would greatly increase the risk of not 

having a clear day within the time window. In fact, we find that shorter T values do not 

necessarily improve the algorithm’s performance (not shown). These patterns remain 

unchanged when the T of the UB case is varied. Therefore, we determine that the 7-day time 

window is optimal for the LB case. 

 

 

Figure 4.A1. The R (left) and RMSE (right) between the observed and Ineichen-Perez 
estimated SWF at Dana Meadows in California (37.897 °N, 119.257 °W, 2,987 m) for all 
months (blue) and February-July period (red) of 1996-2014, for the UB (top) and LB 
(bottom) cases. The dots represent the specific time windows (T) used to compute UBs and 
LBs, which are then used to derive the SWFs. The vertical dotted lines denote the ±45-day 
window for UB and the ±3-day window for LB used in this study. 
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APPENDIX 4B 

Determining dry vs. wet years 

For the Tuolumne River basin, the dry-year and wet-year subsets are determined from 

the January-September total inflow to HTH (Figure 4.B1, top panel). The 9 driest years are 

those with lowest total inflow, while the 9 wettest years are those with the highest total 

inflow on record (1996-2014). As a comparison, the January-September mean αcloud, 

composited over all HRUs of the upper Tuolumne River basin, is computed for each WY. 

The result demonstrates that wet years coincide with cloudy years, and vice versa, in most 

occasions (Figure 4.B1, bottom panel), with a Pearson’s correlation coefficient of 0.86, 

signifying the significance of cloudiness to streamflow throughout winter-summer. 

 

 

Figure 4.B1. Top: January-September total inflow to HTH for every water year of 1996-
2014, showing 9 wettest and 9 driest years in the period. Bottom: January-September upper 
Tuolumne River basin composite mean αcloud for every water year of 1996-2014, showing its 
overall consistency with the total inflow. 
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The same method is applied to streamflow at POH for the Merced River basin, except 

that 9 driest and 9 wettest years are sorted from 1996-2013 only, following the data 

availability. 

 

APPENDIX 4C  

PRMS model calibration 

The initial simulation with GOES SWF input yielded larger bias and root-mean-

squared error (RMSE) in daily basin runoff simulation than that with default temperature 

range-based SWF. Thus, to accommodate the more realistic GOES SWF, a new parameter 

calibration of the Tuolumne PRMS model was required. 

Dr. Chris Graham of San Francisco Public Utilities Commission recommended a 

selected set of parameters used in PRMS that would likely be the most important for a re-

calibration adjustment; he shared a MATLAB® code that allowed the user to setup several 

runs, each with a different combination of parameters. The large number of parameters that 

could be calibrated, under many possible permutations to derive an optimal model posed a 

significant challenge to the calibration effort, but the initial choices of likely parameters that 

probably came into play helped to reduce those. 

Having performed numerous runs using the sets of parameters explored within the set 

of runs described above, the search for an optimal parameter tuning was reduced to a 

significantly narrower range. As a result, the ongoing calibration effort can employ a more 

explicit Gauss-Newton optimization [see Verdy et al. (2014) for more detail]. This approach 

is an inverse method utilizing Taylor’s expansion and based on the least-square regression. 

This technique recognizes that, while the parameters may be non-linear, they are 
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approximately linear at a certain point/range. The purpose of this optimization method is to 

generate estimates of optimal parameter values. In our case, the optimization is performed by 

minimizing the RMSE between the simulated and observed daily time series of inflow to 

HTH for the Tuolumne module, and of stream discharge at POH for the Merced module. 

The performances of PRMS model simulations using the original DTR and calibrated 

GOES are summarized in Table 4.C1, and illustrated in Figure 4.C1 for the Tuolumne model 

and in Figure 4.C2 for the Merced model. The results show considerable improvement in the 

simulated flows in both basins. The improvement is especially noticeable in the Tuolumne 

case, where the simulation using calibrated GOES SWF better captures both the shape of and 

the peak hydrograph.  

In the dry-year subset (see Appendix 4B), the inflow overestimations in March and 

April are significantly reduced. In the wet-year subset, the inflow overestimations between 

June and August are similarly reduced. Similar improvements are observed in the Merced 

case, except with smaller magnitudes. Nevertheless, the simulation using calibrated GOES 

SWF still fall short from capturing a few spikes in the hydrographs, which likely reflects the 

deficiency of precipitation inputs.  
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Table 4.C1. The correlations (R), root-mean-squared errors (RMSE) and Nash-Sutcliffe 
Efficiencies (NSE) between the daily climatological averages of the observed and PRMS 
simulated inflow to HTH and streamflow at POH, using the original diurnal temperature 
range-based SWF (DTR) and the calibrated Ineichen-Perez SWF based on GOES α (GOES), 
for all-year, dry-year and wet-year subsets. 

Subset Scenario HTH POH 
R RMSE NSE R RMSE NSE 

All DTR 0.97 0.05 0.9 0.97 0.06 0.86 

 
GOES 0.99 0.03 0.97 0.98 0.06 0.87 

    
  

   Dry DTR 0.93 0.07 0.85 0.95 0.07 0.85 

 
GOES 0.99 0.03 0.97 0.95 0.07 0.84 

    
  

   Wet DTR 0.97 0.06 0.89 0.94 0.07 0.82 
  GOES 0.99 0.04 0.95 0.96 0.07 0.83 

Note. The hydrographs are normalized using their water yearly amplitudes, so the statistics 
can be compared directly across all subsets. The GOES simulation becomes the Baseline 
simulation in the rest of the paper. 
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Figure 4.C1. The observed (shade) and simulated (plots) daily climatology of inflow to HTH 
using the original diurnal temperature range (DTR) method and using calibrated Ineichen-
Perez algorithm based on GOES α (GOES), for all-year (left), dry-year (upper right) and wet-
year (lower right) subsets. The hydrographs are normalized using their water yearly 
amplitudes, so the difference between the two simulations can be compared directly across 
all subsets. Note that GOES simulation becomes the Baseline simulation in the rest of the 
paper. 
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Figure 4.C2. Same as Figure 4.C1, except for the PRMS Merced model. 

 

APPENDIX 4D  

Different effects of “Annual harmonic clouds” in dry vs. wet years 

Using the “Annual harmonic clouds” (Section 4.3.1) to derive SWF may introduce 

positive cloudiness bias in dry years and negative cloudiness bias in wet years over seasonal-

annual time scales. These biases mean negative SWF bias in dry years and positive SWF bias 

in wet years, respectively. Therefore, The annual harmonics of GOES αcloud are re-derived for 

dry-year and wet-year subsets, separately. The dry-year and wet-year subsets are defined in 

Appendix 4B.  
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For the upper Tuolumne River basin, the dry-year subset exhibits an earlier 

streamflow in the baseline simulation (Figure 4.D1, left panel), demonstrating that cloudiness 

variations hasten streamflow timing. This outcome signifies more frequent clear/cloudy sky 

interludes and hence more clear-sky episodes, which in turn allow more days with higher 

SWFs for snowmelt energy input. The wet-year subset does not display a shift in hydrograph 

(Figure 4.D1, right panel). Instead, it displays a dampened hydrograph, with higher flows in 

early (February-mid May) and late (mid June-August) snowmelt season, and lower flows in 

mid snowmelt season (mid May-mid June).  

Furthermore, the flow difference between the two simulations appears noisier in the 

wet-year subset. This reflects the fact that how dry/wet a water year is strongly correlates 

with cloudiness (Figure 4.B1), and that the frequency of clear-cloudy sky interludes is greater 

in the Baseline simulation. On one hand, these results indicate the relative importance of 

cloudiness variations to streamflow timing in drier years. On the other hand, they imply 

cloudiness variations result in more even runoff distribution throughout the snowmelt season.  

The ET profiles (not shown) and the results the upper Merced River basin show 

largely similar behaviors to those from the upper Tuolumne River basin in both dry-year and 

wet-year subsets. In the dry-year subset, the main difference occurs in the first half of June, 

where the Baseline simulation yields a slightly higher flow than the “Annual harmonic 

clouds” simulation. In the wet-year subset, the dampening of hydrograph appears less defined 

than in the upper Tuolumne River basin result.  

 



	 143 

 

Figure 4.D1. Top sub-panels: Daily climatology (1996-2014) of inflow to HTH for all-year 
(left), dry-year (top right) and wet-year (bottom right) subsets from PRMS upper Tuolumne 
River basin model Baseline and “Annual harmonic clouds” simulations. Bottom sub-panels: 
The resulting difference between the Baseline and “Annual harmonic clouds” simulations. 
The y-axis scales are set to be different from those in Figure 4.5 for clarity of presentation. 
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Figure 4.D2. Same as Figure 4.D1, except for streamflow at POH from PRMS upper Merced 
River basin model. 
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Chapter 5 

Conclusions 

This dissertation highlights the importance of mountain cloud variability as a driver 

of surface hydrologic variations in the mountains of the western U.S. The results from this 

study include the novel characterizations of spatial and temporal mountain cloud variability 

(Chapter 2), of snowmelt and streamflow responses to daily cloudiness variability (Chapter 

3), and of watershed-scale snow-fed runoff response to upstream cloudiness variability 

(Chapter 4). Chapter 1 of this dissertation introduces the scientific problems and outlines the 

research questions specifically addressed in the three subsequent chapters. Correspondingly, 

this concluding chapter summarizes the main findings. 

Chapter 2 first explores the means and variability of cloudiness, as measured by 

GOES cloud albedo (αcloud) over mountain terrain across the western U.S. As expected, the 

results show greater cloudiness in the northwestern U.S. than in the southwestern U.S. across 

all seasons. On the other hand, the variability is roughly comparable in both northwestern and 

southwestern U.S., but emphasized during the springtime in the maritime mountains, such as 

the Sierra Nevada and the Cascades. When scaled by its mean, the (relative) variability is 

greatest during the spring-summer period, particularly in the west slope of the Sierra Nevada.  

On a daily scale, the αcloud variability often exceeds 50% of a given location’s long-

term average. In terms of incoming solar radiation (SWF), this amount is equivalent to 90-

140 W m-2. On a seasonal scale, the αcloud variability often exceeds 10% of a given location’s 

long-term average, equivalent to 10-20 W m-2 of SWF. For reference, Mizukami et al. (2014) 

found from their study in upper Colorado River basin that an 85 W m-2 SWF difference in 
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May results in ~20% difference in annual runoff and ~3-week difference in snowmelt/runoff 

timing. 

A rotated empirical orthogonal function (REOF) analysis of daily αcloud anomalies 

reveals that a few leading modes account for the predominant portion of the daily variability 

of clouds over the western United States, with the first five REOFs accounting for 67% of the 

variance. Importantly, the modes occupy relatively large regional scales. The first mode 

resides over the northern Sierra Nevada and the southern Cascades and the second mode 

resides over the northern Rockies in Idaho and western Montana. Monthly standard 

deviations of the associated temporal coefficients (principal components) indicate that both 

modes have greatest amplitude in winter and spring, when snow deposition and snowmelt are 

most active. Thus, these fluctuating patterns are pertinent to mountain snowmelt-runoff 

processes—a major source of water supply in the western U.S. Although the two leading 

modes are well-correlated with the upper level (geopotential) height, they are surprisingly 

only weakly associated with well-known teleconnection patterns, with only Arctic 

Oscillation exerting a significant influence during the snow seasons (winter-spring).     

Chapter 3 investigates the snowmelt and streamflow responses to cloud cover 

variability [as measured by a cloud cover index (CC), which increases linearly with αcloud]. A 

contingency analysis demonstrates that snowmelt usually coincides with lesser CC, and snow 

accumulation or no snow loss occurs with higher CC, This and other analyses demonstrate 

the importance of CC to snowpack dynamics. A lag-correlation analysis subsequently 

confirms this dominant inverse relationship in the sense that as CC decreases, short wave 

flux (SWF) increases, and snowmelt and snow-fed streamflow increases. Snowmelt and 

streamflow responses to CC variations typically peak 1-3 days after anomalously high or low 
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cloudiness. The inverse relationship lasts longer into the early summer, albeit weaker, in 

wetter years. Revisiting the REOF analysis performed in the previous chapter, correlations 

between the leading RPC modes and snowmelt/streamflow demonstrate statistically 

significant snowmelt and streamflow responses to regional cloudiness patterns.     

Results from a linear regression analysis relating snowmelt and streamflow to CC 

variations from 5 days previous to zero days quantifies the multi-day cumulative effect of 

cloudiness.  Over different locations and different months, this linear analysis indicates that 

CC accounts for 5%-56% of day-to-day snowmelt variability and 2%-47% of streamflow 

variability. The magnitude of the cloudiness effect typically peaks in May. The limited 

amount of variance captured is likely because the snowmelt and streamflow responses to CC 

variations may be, to some extent, non-linear.  

The snowmelt and streamflow responses to CC tend to be stronger at lower elevations 

during the early and late snowmelt seasons, and at higher elevations during the peak 

snowmelt season. The relatively strong lower elevations’ responses in the early snowmelt 

season reflect the fact that snowpack melts at lower elevations first, owing to the thinner 

snowpack, warmer air and snowpack temperatures, and lower snowpack cold content, which 

is the energy required to bring the snowpack temperature to melting point (Marks et al., 

1999). With such conditions, lower elevations’ snowpack is ready to melt with a relatively 

small increase in solar radiation input.  

The relatively strong higher elevations’ responses in the peak snowmelt season, on 

the one hand, reflect snowmelt initiations at higher elevations, as enough energy has finally 

been built up to melt this thicker and formerly colder snowpack. On the other hand, it may 

also indicate the complication from higher air temperature and downward longwave radiation 
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associated with the forest cover, which is typically denser at lower elevations. Overall, this 

analysis suggests the importance of accounting for non-linearity associated with cold content 

and external factors (e.g., longwave radiation from the atmosphere, forest cover, slope and 

aspect). 

Chapter 4 applies the datasets and findings derived in the two preceding chapters to 

watershed modeling. In so doing, experiments are conducted using optimized versions of the 

California Department of Water Resources’ PRMS hydrologic model. For comparative 

purposes, we include separate models of two close-by watersheds, i.e., the upper Tuolumne 

River and the Merced River, which drain the west slope of the central Sierra Nevada 

mountain range. The CC datasets are used to derive SWF, which is subsequently used as an 

input to the PRMS model. As discussed in Section 4.2.1 and Appendix 4C, this new SWF 

parameterization provides significant improvements on SWF estimates. When used as a 

forcing in the PRMS model, with calibrations, this method offers significant improvements 

on basin runoff simulations.   

This method also provides a means of conducting a set of experiments, where the 

response of snow-fed runoff to the observed cloudiness is compared to that from altered 

cloudiness and SWF. Of particular interest are the effects of daily CC variability, the relative 

importance of high, mid and low elevation cloudiness variations, and the effects of 

cloudiness variation that have stronger intensity than historically observed.    

In both upper Tuolumne and upper Merced watersheds, we find cloudiness variability 

affects the snow-fed runoff by distributing it throughout the snowmelt season. This effect 

acts to increase runoff in the early season and decrease runoff in the later snowmelt season, 

resulting in runoff from the natural system that has (1-3 days) earlier spring onset than it 
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would have had cloudiness been smoothed out so it only had a climatological average 

seasonal cycle. This characteristic is mostly evident in wet years, but not in dry years when 

the snowmelt and runoff occurs earlier in a more concentrated pulse.  

When cloudiness variations at different elevation bands are accounted for, cloudiness 

at higher elevation bands of both upper Tuolumne and upper Merced watersheds have greater 

effects on the basin runoff. This result is presumably related to the fact that other external 

factors (e.g., cooler air temperature and less forest cover) are typically not as dominant and 

that snowpack that feeds the stream flows is typically thicker at higher elevations. On the 

other hand, cloudiness at lower elevation bands has greater effects on the basin 

evapotranspiration owing to the warmer temperatures at lower elevations. Furthermore, 

cloudiness delays the spring onset by 2-15 days, regardless of the elevation bands. 

The results from amplifying clear/cloudy interludes show overall greater snow-fed 

streamflow sensitivity to “relatively cloudy periods get cloudier” experiments, which delay 

the spring onsets by 3-5 days in most HRUs. In contrast, the “relatively clear periods gets 

clearer” experiments barely affect the streamflow. In comparison, widespread warming in the 

western North America during the second half of the 20th century resulted in 1-4 weeks 

earlier spring onsets (Stewart et al., 2005), underlining the pertinence of cloudiness in 

moderating the effect of climate change-induced springtime warming. This result may also 

provide an outlook on the effects of future changes in cloudiness pattern under the 

intensification of dry/wet hydrologic extremes associated with climate change (Swain et al., 

2018).   

In summary, this dissertation as introduced in Chapter 1 addresses the following 

goals: 
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1. To characterize spatial and temporal cloudiness variabilities over the mountain terrain of 

the western U.S., from which new questions arise: 

a. How do these variabilities relate to intra-seasonal modes of weather variability, like 

the Madden-Julian Oscillation? 

b. How do they evolve with climate change? 

c. How do they compare to those in other mountain regions, such as the Rockies, Alps 

and Himalayas? 

2. To evaluate how this variability influences daily-seasonal snowmelt and runoff processes, 

from which new questions arise: 

a. How would the results change if non-linearity is accounted for, such as that 

associated with snowpack cold content, longwave and turbulent fluxes? 

b. How do they evolve with climate change? 

3. To examine the applicability of satellite-derived SWF estimate in hydrologic modeling, 

which will allow spatially and temporally comprehensive investigation of the effects of 

cloudiness variability and the associated SWF variations on snowmelt-runoff processes at 

watershed scales. At present, more analyses need to be done to better constrain the effects 

of: 

a. Intensification of cloud cover fluctuations, which we have shown to be sensitive to 

threshold between clear sky and cloudy sky, and 

b. Complications from the advective temperature component, as opposed to the radiative 

temperature component associated with cloudiness. 
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