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ABSTRACT OF THE THESIS

Calculating Compressed Modes for Topological Crystalline Insulators

by

Bradley Magnetta

Master of Science in Materials Science and Engineering

University of California, Los Angeles, 2017

Professor Vidvuds Ozolin, š, Chair

While there are many computational methods for testing the properties of topological models,

most rely heavily on human intervention to produce reliable results. In theory, an approach using

compressed modes would require little human intervention to calculate topological properties.

We outline the computational methods needed for calculating compressed modes for a simple

topological crystalline insulating model. While our methods produce accurate results we will

comment on ways to further automate the standard process for calculating compressed modes

by constraining topological structure.
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CHAPTER 1

Introduction

1.1 Motivation

Ground breaking innovation is needed to solve imminent problems such as climate change

and the physical limit to Moore’s law [1]. Topological insulators are exotic materials that could

contribute towards solving both of the previous mentioned crises. An experimental study has

suggested that topological insulators may be feasible for use in highly efficient room-temperature

devices with applications of computer memory and logic [2]. While three-dimensional (3D)

topological insulators have been discovered [3] [4] further progress is needed to find practical

topological insulators that are suitable for everyday use. It would be of great interest to find

3D topological insulators that are both inexpensive and effective towards alleviating world wide

problems. While this search may be difficult, and beyond the construct of this thesis, refining

the methods used to search for practical topological insulators is our main focus.

1.2 Topological Insulators

Duncan Haldane, winner of the 2016 Nobel prize in physics, predicted that a topological

phase that mimics the quantum Hall effect (QHE) [5], can exist in a honeycomb structure where

time reversal (TR) symmetry breaking effects occur [6]. This prediction was verified using a

2D HgTe quantum-well to exhibit topological properties; helical edge states [7]. TR respect-
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ing topological models are the physical realization of the quantum spin Hall effect (QSHE) [8].

The Kane-Mele model [9] was the first TR respecting model to predict that a topological phase

can exist in 2D honeycomb structures that include reletivistic spin effects. While the previously

mentioned models are important, their 2D constraints make them impractical. Liang Fu’s model

for topological crystalline insulators (TCI) [10] could serve as a foundation for practical mate-

rials. In fact, TCIs have been found within the SnTe material class [4]. Not only is Fu’s model

3D, but the mechanisms and interactions responsible for the topological properties are relatively

simple: rotational and TR symmetry for a specific p-orbital basis.

Before we discuss methods used to study the topology of simple models it is helpful to

understand the connection between a model’s topology and transport. Both QHE and QSHE

produce edge states with quantized ballistic transport. The nature of Quantized transport is a

result of a model’s invariance to a change in topology. In topological models, system properties

that are invariant to changes in system energy and depend solely on the topology are called

topological invariants which are constructed using wavefunctions [11]. Bernevig provides a

useful derivation demonstrating the connection between QHE qunatized electron transport and

a wavefunction based topological invariant in the case of Chern insulators [12].

1.3 Computational Calculations for Topological Insulators

Having identified some important scientific findings related to topological insulators it is

easy to see the impact that simple tight-binding models can have on explaining experimental

results. We will now discuss numerical methods used to study the topology of tight-binding

models. As mentioned previously, the topological invariant is deeply connected to system wave-

functions. Thus, ideally we should be able to calculate topological properties and electron trans-

port by calculating wavefunctions. While this seems to be a straight forward task, it has been
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proven that a non-zero topological invariant is a consequence of a violation of the Stokes the-

orem [12]. In topological systems with non-zero quantized conductance there is no smooth

gauge, choice of phase that is single valued and continuous, that can be established between

system wavefunctions, making the topological invariant difficult to calculate.

The topological invariant can also be calculated using Wannier functions instead of wave-

functions. Wannier functions are obtained through a linear combination of wavefunctions using

an unitary transformation which ensures that a smooth gauge is automatically established. Maxi-

mally localized Wannier functions (MLWF) [13] can be numerically calculated for a topological

model, based on the groundstate wavefunction. This approach starts with pre-calculated wave-

functions and determines localized functions by minimizing the second moment [13]. However,

a method based on MLWFs requires significant human intervention when selecting initial algo-

rithm parameters and interpreting topological results due to the non-convexity of the variational

problem. Another method that is based on MLWFs calculates hybrid-Wannier functions, whose

charge centers can be tracked to determine topological properties [14]. While there exist many

methods for obtaining the functions needed to calculate topological properties most methods rely

on human intervention to get reliable results. One promising approach could involve calculating

compressed modes (CM) [15]. Not only are CMs efficient to calculate but due to the convexity

of their algorithm they require very little human intervention to produce reliable results. Refin-

ing our computational methods to rely less on human intervention would be helpful for studying

simple tight-binding models. A more automated methodology could contribute greatly to finding

practical topological insulators.
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1.4 Thesis Objective and Organization

In the following chapters we will attempt to calculate the properties of a practical topolog-

ical insulating model using compressed modes. While our approach produces credible results

we will suggest areas where improvements can be made. This thesis will be organized in the

following manner. First we will discuss the most important aspects of topological insulators and

then provide details about numerically calculating CMs. We will then demonstrate how to use

CMs to calculate topological properties. Next we will apply our discussion to study a simple

TCI model and document calculated CMs and topological properties. Finally we will reflect on

our results and conclude with some future thoughts.
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CHAPTER 2

Methods

2.1 Topological Analysis

2.1.1 Berry Phase

In time dependent systems, the Berry phase [1] accounts for system changes, other than the

dynamical phase, that occur during quantum adiabatic transport [2]. The instantaneous eigen-

states, |npRqy, whereR is a time dependent parameter, can be used to calculate these additional

changes and define the Berry phase, γn:

γn “ i
ż

C
xnpRq|∇R |npRqydR. (2.1)

The Berry phase occurs because the system is not the same at t and a later t`dt. More impor-

tantly, we can now define the Berry connection:

AnpRq “ ixnpRq|∇R |npRqy . (2.2)

We refer to the Berry phase as the integral of the Berry connection along a closed curve. The

Berry curvature can be written as the curl of the Berry connection,ΩnpRq “ ∇RˆAnpRq. Ref

[3] demonstrates the connection between the Berry curvature and the Chern number, a topologi-

cal invariant. This connection is general and demonstrates the importance of the Berry connec-
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tion for analyzing the topology of a system. Topological invariants are bulk quantities that do

not depend on system energies, only the system eigenfunctions [4]. This means that topological

invariants are bound to the occupied band manifold, which is controlled through the opening and

closing of band gaps. Furthermore, it can be shown that the Berry connection is in fact related

to the Hall conductance [3] demonstrating the connection between the topological invariant and

transport. Thus, systems with trivial topology will not exhibit quantized electron transport be-

cause they are in the same topological phase as the normal insulating state. Systems that break

or preserve symmetries can produce non-trivial topological behavior which is characterized by

quantized electron transport. Systems that rely on TR symmetry breaking to produce non-trivial

behavior, such as the Chern insulator, have a topological invariant referred to as the Chern num-

ber. Other systems rely on the preservation of TR symmetry, such as the Kane-Mele model and

Fu’s TCI model, and are characterized by the Z2-invariant. In fact, all TR-invariant Hamiltoni-

ans belong to the Z2-classification. Regardless of the topological classification, all non-trivial

invariants are results of a system violating the Stokes theorem through a specified portion of the

first Brillouin zone (BZ). We can rewrite the Berry phase using the Stokes theorem and make

a comparison to Equation 2.1. A difference occurs between these two Berry phase definitions

when a topological obstruction arises as a result of the Bloch functions being non-analytic at

some point in the BZ and is constrained to be an integer of 2π:

Z “
1

2π

´

¿

BS

Apkqdk´
ż ż

S
ΩpkqdS

¯

. (2.3)

For non-trivial systems no global smooth gauge can be established in the BZ, for the Bloch

functions, that is continuous and single valued [3]. Essentially, a non-trivial system has a set of

Bloch functions with phases that are non-analytic at some point in the BZ. The symmetries that

are broken or preserved in these non-trivial systems are the mechanisms which force a set of
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Bloch functions to be non-analytic, and as a result violate the Stokes theorem. If the Stokes

theorem is not violated, as in the trivial insulating case, then a smooth gauge can be established

between the Bloch functions and no interesting electron transport will occur. This logic is easily

transferable to 3D systems [5].

2.1.2 Calculating Topological Invariants

Testing the topological characteristics can be done in a few ways. We will focus on meth-

ods for calculating and testing Z2-classification which fits with our studied model, Fu’s TCI

model [6]. We can apply Equation 2.2 to crystalline systems, where our eigenstates are the

Bloch functions. Ref. [7] provides another equation involving the Bloch functions, called the

sewing matrix,

Bmnpkq “ xump´kq| T̂ |unpkqy , (2.4)

which holds all necessary topological information. Equation 2.4 considers a system where re-

specting only TR symmetry is necessary for non-trivial behavior. A matrix is formed by cal-

culating Bpkq for each combination of the Bloch functions, u. The sewing matrix is important

because it is unitary [7] and relates the Bloch functions at k and ´k. There exist special mo-

menta points (∆) in topological systems where the resulting sewing matrix value will reveal a

systems topological structure. In the case of TR respecting systems these special points are TR

invariant momenta (TRIM), for which ´k “ k`G. At ∆-points the following relationship is

true when a smooth gauge has been established throughout the BZ:

Cp∆q “

a

detBp∆q
PfrBp∆qs

“ ˘1. (2.5)
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For a (2ˆ 2) sewing matrix, the Pfaffian reduces to PfrBpkqs “ B12pkq. The topological

character, or in this case the Z2-index can be calculated for a system by taking the product of

C at all ∆-points. If the resulting product is ´1 then our system has non-trivial topological

behavior because this represents a winding in phase due to a violation of the Stokes theorem.

Some Z2 topological models require additional symmetry to produce non-trivial behavior. In

the case of Fu’s TCI model, both C4 and TR symmetry must be preserved and a corresponding

sewing matrix would include both symmetries in its formulation.

Topological analysis can also be done using Wannier functions. The Bloch functions and

Wannier functions, W , are related through a Fourier transform,

unpkq “
ÿ

R

eikRWnpr´Rq. (2.6)

We can construct a real space matrix similar to Equation 2.4 by imposing symmetry relations

between Wannier functions. Here we consider a model that respects only TR symmetry:

Umnprq “ xWmpr´Rq| T̂ |Wnp0qy . (2.7)

In order to calculate topological properties, we must Fourier transform Uprq, obtaining a sewing-

like matrix Upkq. We can use Upkq to determine topological structure by taking the following

contour integral about half the BZ, in the case of Z2 classification:

I “
1

2πi

¿

C

∇k logrU21pkq` iδksdk. (2.8)

Here, we sum up all imaginary portions of Upkq phase which is analogous to the Berry phase.

This procedure results in a value I which we call our Z2-invariant. The path chosen will incorpo-
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rate a system’s∆-points but must be a continuous loop. As we move along our path it is possible

that Upkq “ 0. Thus, we have incorporated iδk into our integrand to avoid such undefined terms.

2.2 Topological Crystalline Insulators

Studying practical topological models could be the key to finding real topological mate-

rials for everyday use. Liang Fu first suggested the topological crystalline insulator (TCI) [6]

which demonstrates how non-trivial topological behavior can arise in crystalline systems without

relativistic spin-orbit effects. We will now discuss Fu’s TCI model in detail.

2.2.1 Fu’s TCI Model

Fu’s TCI model respects both crystal point group symmetries and TR symmetry. In this

case TR symmetry operator is represented by complex conjugation. One advantage of the TCI

model is that it is a spin-less system, which does not rely on spin-orbital coupling to produce

non-trivial behavior. Instead, the TCI model relies on p-orbitals which act like pseudo-spins

to produce an effect similar to QSHE. The TCI model is based on a tetragonal crystal with C4

symmetry, including a unit cell of two inequivalent atoms A and B along a c-axis as shown in

Figure 2.1.A. Only the px and py orbitals are necessary to study the topological behavior [6]

making our primitive cell fairly simple. We can Fourier transform Fu’s tight-binding model to

obtain the k-space Hamiltonian; a required input for calculating CMs as shown in Figure 2.3:

Hpkq “

˜

HApkq HABpkq

HAB:pkq HBpkq

¸

, (2.9)
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Ha
pkq “ 2ta

1 I`2ta
2

˜

cospkxqcospkyq sinpkxqsinpkyq

sinpkxqsinpkyq cospkxqcospkyq

¸

, (2.10)

HAB
pkq “ rt

1

1`2t
1

2pcospkxq` cospkyqq` t
1

ze
ikzsI. (2.11)

Figure 2.1: A) Tetragonal crystal structure with a basis consisting of two inequivalent atoms and
p-orbtials. B) High symmetry path within the first Brillouin zone.

Figure 2.2: Density of states for Fu’s TCI model [6]; N “ 24, ET “ 3.4482, Egap “ 0.353773

Where the parameter a refers to either atom choice, A or B. Equation 2.9 includes nearest

and next-nearest neighbor intralayer hoppings in Ha and interlayer hoppings in HAB. Fu sug-

gests using the following system parameter values to study the non-trivial phase: tA
1 “´tB

1 “ 1,
12



tA
2 “ ´tB

2 “ 0.5, t
1

1 “ 2.5, t
1

2 “ 0.5, t
1

z “ 2. We can study the density of states from our Bloch

Hamiltonian by creating an (NˆNˆN) super-lattice, as represented by Figure 2.2. The density

of states reveals both the total energy and band gap of the corresponding super-lattice. Fu iden-

tifies four special momenta points Γ “ p0,0,0q,M “ pπ,π,0q,A“ pπ,π,πq, and Z “ p0,0,πq.

The path (Γ ´M ´A´Z ´Γ ) can be used to define the contour integral in Equation 2.8 to

determine the topological nature of the studied TCI system. If trivial topology is present the

contour integral will result in an even integer of 2π. If non-trivial topology is present the con-

tour integral will result in an odd integer of 2π. We will use our algorithm to obtain CMs that

describe the valance bands of the TCI model. These CMs will have the following basis for each

super-cell lattice site,
 

Apx ,Apy,Bpx ,Bpy

(

.

2.3 Compressed Modes

In order to calculate the properties of a topological model in an automated manner it is

not enough to calculate a system’s Bloch functions. Any methods involving the Bloch functions

will require a smooth gauge throughout the BZ. However, as we have mentioned non-trivial

behavior results in the inability to establish a smooth gauge that satisfies all Bloch functions

simultaneously while preserving symmetry. This makes calculating non-trivial properties from

the Bloch functions a difficult problem. One method to remove the burden of having to establish

a smooth gauge is to use Wannier functions as the root of our topological analysis. We will

discuss a set of functions that not only remove the burden of establishing a smooth gauge but are

better suited for an automated process; compressed modes (CM) [8].
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2.3.1 Mathematical Description

The independent-particle Shrödinger equation, without spin effects, can be expressed using the

following variational problem [8],

E0 “min
Φ

N
ÿ

j“1

xφ j| Ĥ |φ jy s.t. xφ j|φky “ δ jk, (2.12)

Where Ĥ is the Hamiltonian, E0 is the groundstate energy, and Φ “ tφiu
N
i“1 is a collection of

orthonormal functions that span the N-eigenspace of Ĥ. Through diagonalization of xφ j| Ĥ |φ jy

we can obtain eigenfunctions Ψ “ tψiu
N
i“1, which are usually used to produce a set of spatially

localized functions that span the occupied eigenspace of Ĥ [8]:

Wiprq “
ÿ

j

Ui jψ jprq. (2.13)

U must be unitary and is responsible for a subspace rotation of the system eigenfunctions.

These functions are often referred to as Wannier functions [9], but there are many choices of

U that can produce sparse solutions that still span the occupied eigenspace of Ĥ. Here we

use the term sparse to refer to localized solutions with compact support. While there exist

many methods for determining Wj [10], calculating CMs have advantages conducive towards

automation. The CM method introduces L1-regularization into the above variational problem

(Eqn. 2.12) to approximate the total energy while simultaneously producing sparse solutions

without the need to calculate the eigenfunctions [8]:

E “min
Φ

N
ÿ

j“1

p
1
µ
|φ j|1`xφ j| Ĥ |φ jyq s.t. xφ j|φky “ δ jk. (2.14)

Essentially, CMs rely on the L1-penalty term to choose a value for U that produces sparse solu-
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tions. The parameter µ controls a trade off between localization and energy. Choosing a large

value for µ will effectively reduce Equation 2.14 to Equation 2.12. As a result, we will obtain

delocalized solutions that have good total energy approximation. Choosing a small value for

µ will introduce a large L1-norm presence and result in very localized solutions with bad total

energy approximation. A discretized version of Equation 2.14 can be solved numerically by

splitting the orthogonality constraint (SOC) as discussed in Ref. [11].

2.3.2 Computational Algorithm

Figure 2.3: Computational flow used to calculate CMs for a tight-binding model.

Figure 2.3 describes the computational flow we use in our algorithm to solve Equation

2.14 [11]. From a tight-binding Hamiltonian we can apply a Fourier transform to produce a

Bloch Hamiltonian; this process is commonly done analytically. We can construct a k-space
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Hamiltonian, Ĥk, that is representative of a square (NˆNˆN) sized super-cell. Our algorithm

must be initialized with the following: Ĥk, an initial guess for our CMs, and Bregman iteration

parameters [11]. In our calculations we fix the following Bregman parameters: λ “ γ “ 10.

We’ve set the number of iterations per algorithm instance to I “ 40 which should be enough to

arrive at approximate minimum solutions. µ is the parameter that controls the trade off between

band structure accuracy and localization, and was varied between µR “ r25 : 500s to produce

CMs with non-trivial topological structure. We choose a N “ 24 super-cell size to ensure our

CMs are contained within the super-cell lattice.

2.3.3 CM Initial Guess

As mentioned previously, in order to execute our algorithm we need to define an initial

guess for our CMs. Incorporating an L1-penalty term into the variational problem, Equation

2.14, introduces convexity [8]. This makes our initial guess for the CMs less important because

regardless of how we initialize the problem our algorithm is less likely to get trapped by local

minimum solutions. While our work does not define a procedure to guarantee accurate solutions

for all tight-binding Hamiltonians, the following methods helped us produce reliable CMs for

the Fu TCI model. Wannier fuctions are exponentially localized in 2D and 3D, except for Chern

insulators [12]. Thus, a simple approach to choosing a CM initial guess is to use a random

exponentially decaying function positioned at the center of our super-cell,

ψ
0
inprq “ p1` iqRe´|r´rc|. (2.15)

Equation 2.15, demonstrates our random initialization where r is the lattice position, rc is the

central lattice position, and R is a random number chosen between r´1 : 1s. Our initial guess

should have the same topological structure as our desired result. If it does not, we will not arrive
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at CMs that accurately represent the studied model. While an initial guess structure can be

determined analytically for a model, random initialization along with a trial and error approach

is sufficient for numerical topological analysis.

2.3.4 Wannier Interpolation

Having discussed methods for calculating CMs for a given tight-binding model, it is im-

portant to verify the accuracy of these CM solutions. Accurate CMs not only approximate total

energy but can also be used to recreate the band structure. Comparing the total energy and band

structure of the tight-binding model against the total energy and band structure produced by CMs

will help determine CM accuracy. We can obtain the band structure from our CMs through a

Wannier interpolation. We start by Fourier transforming our CMs into momentum-space, result-

ing in the Bloch functions described by equation 2.6. We form a matrix of inner products using

our Bloch functions and our Bloch Hamiltonian:

Mi jpkq “ xui|Hpkq |u jy . (2.16)

For the case of Fu’s TCI model, Hpkq is defined by Equation 2.9. It is more beneficial to convert

Mi jpkq into real-space and is done so through a Fourier Transform, Mi jprq “
ř

k Mi jpkqe´i2πkr.

Through a final Fourier Transform of Mprq we can obtain Mpkq at any point in momentum-

space. We can diagonalize Mpkq using an invertible unitary matrix X to obtain a diagonal matrix

D,

X:MpkqX “ D. (2.17)

Eigenvalues are obtained from the diagonal elements of D, λ “ tDiiu
ND
i“1; where D is a square
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matrix of order ND . We can now build an interpolated band structure using λ along a specified

momentum path. In the case of Fu’s TCI model the momentum path of interest is (Γ ´M ´

A´Z´Γ ), as depicted in Figure 2.1.B.

2.3.5 µ-dependence

Another way to test the accuracy of our CM solutions is by checking the convergence

of the total energy and the L1-norm with respect to a change in the parameter µ. Non-trivial

CMs with Z2-classification will have an L1-norm that varies as µ´2 and a total energy that varies

linearly [8] (Figure 2.4). Figure 2.5 demonstrate the computational flow that is used to test a

solution’s µ-dependence.

Figure 2.4: An example µ-dependence for CMs with non-trivial topology. A) the desired total
energy, E, variation to increasing µ, B) the desired L1-norm variation to an increasing µ.

Figure 2.5: Computational flow for determining CM µ-dependence.
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CHAPTER 3

Compressed Modes for Topological Crystalline Insulators

All results discussed in this section use the methods and parameter settings described in

chapter 2 to calculate and analyze CMs from a TCI super-cell Bloch Hamiltonian. We will

produce CMs that accurately represent total energy, desired sparsity, and non-trivial topology.

3.1 Trivial Compressed Modes

We demonstrate CM results obtained from initializing our algorithm using Equation 2.15

and executing our algorithm [1] a single instance setting µ “ 100. The resulting CMs, Weven,

produce an inaccurate interpolated band structure (Fig.3.1). The plot in Figure 3.2 was created

by building a unitary matrix from Weven, (Eqn. 2.7), and calculating the topological invariant

using Equation 2.8; carrying out the contour integral along the path (Γ ´M ´A´Z´Γ ) [2].

We see that the contour integral is approximately zero, an even integer of 2π, proving Weven

exhibits trivial topological behavior.

3.2 Non-trivial Compressed Modes

We demonstrate CM results obtained from initializing our algorithm using Equation 2.15

and executing our algorithm [1] a single instance setting µ “ 400. The resulting CMs, Wodd,

produce an accurate interpolated band structure (Fig.3.3).
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Figure 3.1: The red plot represents the band structure obtained from the Bloch Hamiltonian of
the Fu TCI model, while the blue plot represents a Wannier interpolated band structure of Weven;
µ“ 100.

Figure 3.2: Tracking the contour integral as described by Equation 2.8 for Weven. The sum of the
blue plot reveals a trivial topological invariant of I “ 0.000154892
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Figure 3.3: The red plot represents the band structure obtained from the Bloch Hamiltonian of
the Fu TCI model, while the blue plot represents a Wannier interpolated band structure of Wodd;
µ“ 400.

Figure 3.4: Tracking the contour integral as described by Equation 2.8 for Wodd. The sum of the
blue plot reveals an odd topological invariant of I “ 1
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Figure 3.5: Compressed mode 3D plot. A) RerΨ1 pxs. B) ImrΨ1 pxs. C) RerΨ1 pys. D) ImrΨ1 pys
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Figure 3.6: Compressed mode 3D plot. A) RerΨ2 pxs. B) ImrΨ2 pxs. C) RerΨ2 pys. D) ImrΨ2 pys
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Figure 3.7: Wodd µ-dependence. Using Figure 2.4 as a reference we can classify Wodd as having
non-trivial µ-dependence A) a negative linear slope with increase µ. B) a slope following µ´2

with increasing µ.

The plot in Figure 3.4 was created by building a unitary matrix from Wodd, (Eqn. 2.7),

and calculating the topological invariant using Equation 2.8; carrying out the contour integral

along the path (Γ ´M ´A´Z´Γ ) [2]. We see that the contour integral results in unity, an

odd integer of 2π, proving Wodd exhibits non-trivial topological behavior. We can visualize Wodd

by plotting amplitude over the whole super-cell for each basis component as shown by Figures

3.5 and 3.6. Our 3D plots represent the absolute value of the amplitude at a lattice point by

the size of the sphere. Only absolute value amplitudes that are greater than a threshold value of

0.01 are shown. The 3D plots cover all lattice sites including both A and B atoms, but we will

have to break each CM into four subplots to fully visualize the real, imaginary, px-orbital, and

py-orbital components. The amplitude in Figures 3.5 and 3.6 is contained within our super-cell

and localized at the central lattice position. Besides quantifying accuracy using the total energy,

topology, and sparsity of Wodd, we can also check how Wodd varies to changing µ to test the

accuracy of CMs. More specifically, the µ-dependence of Wodd will verify that we have retrieved

CMs with non-trivial topology. We make this claim by comparing Figures 2.4 and 3.7.
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3.3 Discussion

We have discussed a variety of numerical methods that can be used to produce CMs for

Fu’s TCI model that accurately represent the Bloch Hamiltonian band structure and produce the

correct topological character. However, our computational process required human intervention

and chance for proper initialization of our algorithm. It would be very useful to append the

common method for calculating CMs [3] to ensure the correct topological structure is retrieved

while simultaneously minimizing the total energy and producing sparse solutions. If this were

possible through an additional penalty term, as was done with the L1-norm to ensure sparsity, the

procedure for obtaining accurate CMs with the correct topology would become very automated.
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