
UCLA
UCLA Electronic Theses and Dissertations

Title
Coprocessor Acceleration for Domain-Specific Computing

Permalink
https://escholarship.org/uc/item/1bp8611m

Author
Zou, Yi

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1bp8611m
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Coprocessor Acceleration

for Domain-Specific Computing

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Yi Zou

2012



c⃝ Copyright by

Yi Zou

2012



Abstract of the Dissertation

Coprocessor Acceleration

for Domain-Specific Computing

by

Yi Zou

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2012

Professor Jason Cong, Chair

There is a growing trend to use coprocessors to offload and accelerate domain-specific applica-

tions in order to obtain significant performance improvement and energy/power reductions.

Two important coprocessor components in the heterogeneous system are the GPU and F-

PGA. GPU (graphics processing unit) is increasingly used as a data-parallel coprocessor

for general computations. The newest GPU has a much larger number of cores (compared

to CPU) and very high peak FLOPS. FPGA (field programmable gate array), on the other

hand, allows users to customize, at fine-grain level, the computational data path and memory

hierarchy according to the exact need of the applications. FPGA excels in integer operations

and bit-level operations.

The thesis starts with several coprocessor acceleration examples for our focus application

domains: the first domain is on VLSICAD algorithms and the second is on computation-

al medical imaging. We detail application acceleration examples in the domains including

lithography simulation for IC manufacturing, medical image reconstruction using compres-

sive sensing, and medical image registration using fluid models. Both GPU-accelerated

versions and FPGA-accelerated versions have been implemented. Based on these imple-

mentations, we then analyze the performance and energy trade-offs, the interaction between

the diverse application requirements and a spectrum of hardware systems, and how those

domain-specific coprocessor acceleration case studies further bring us insights for domain-

ii



specific architecture innovations. In the end, we showcase an example for collaborative ex-

ecution on the heterogeneous platform. Different scheduling policies are needed to optimize

performance or energy. The thesis concludes as we present reusable architecture templates

and realizations for futuristic accelerator-rich CMPs.
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CHAPTER 1

Introduction

1.1 Motivation

Recently, the frequency scaling of microprocessors has slowed down, and the trend is that

more and more cores are being put in a single chip. Programs need to actively leverage

parallel computing to make the best use of available computing resources.

On the other hand, the conventional multi-core system may not be the best architecture

realization for a particular application specification. These multi-core systems are general-

purpose in nature and are typically less power-efficient. As the number of cores continue

to increase, the power density of the system creates the utilization wall [1] where not all

the components can be active all the time. The term “dark silicon” [2] is used to refer to

the transistor underutilization on the future many-core chips. This motivates us to take

the domain-specific approach to customize the hardware platform in order to improve the

power/performance of the computing system. Off-the-shelf coprocessors such as FPGAs and

GPUs can offload certain computation-intensive parts of the application, and can signifi-

cantly accelerate overall system performance. GPU is a device that is traditionally used

for rendering images for computer display and gaming purposes, but it is also used as a

data-parallel coprocessor for general computations. The newest GPUs have a much larg-

er number of cores (compared to CPUs) and very high peak FLOPS. The FPGA, on the

other hand, allows users to customize, at fine-grain level, the computational data path and

memory hierarchy according to the exact need of the applications. FPGA excels in integer

operations and bit-level operations. While the specialization using the coprocessors does

bring in further under-utilization, the superior energy-efficiency of the coprocessors creates

1



an effective means to battle the utilization wall.

The research is partially funded by the CDSC (Center for Domain-Specific Computing)

[3] project. The vision of the CDSC project is to look beyond parallelization, adapt the

hardware architecture to application domains, and focus on domain-specific customization

as the next disruptive technology to bring orders-of-magnitude power-performance efficiency

improvement to important application domains. Using this technology, we can potentially

build a “supercomputer in a box” to illustrate the energy-efficient computing. As part of the

effort of the CDSC project, we have built a heterogeneous testbed that contains both FPGA

and GPU in a tightly integrated fashion. Still, the challenges for using the coprocessors are

two-fold.

First, we need to obtain the component-specific implementation efficiently. Because the

hardware architecture of the coprocessor may be completely different from the traditional

multi-core, different implementation schemes for each coprocessor component are likely need-

ed. For the GPU, we use the Nvidia CUDA toolkit, which is a C/C++ language augmented

to support the single program multiple data (SPMD) paradigm. For the FPGA, we use

the AutoESL high-level synthesis (HLS) tools to describe the bare-metal hardware accelera-

tor in hardware-oriented C-language. The CUDA toolkit (or the more general cross-vendor

API OpenCL) has been widely accepted in the GPGPU community. We have implemented

several interesting applications using the GPU: mixed-size circuit global placement [4], and

MRI image reconstruction using compressive sensing. But for the FPGA, the C-based high-

level synthesis has not yet reached very broad adoption. The frustration can be seen in the

FCCM’11 top 10 predictions: “No. 1 prediction: a high-level, object-oriented solution for

FPGA design will be popular, it won’t be C to gates; and the No. 5 prediction: VHDL and

Verilog will remain ubiquitous for circuit expression.” Yet we will allocate a major portion

of this thesis to present several FPGA-based coprocessor accelerator cases to advocate the

HLS development flow for the FPGA. I will detail the optimization scheme used (at C-level)

to obtain a design implementation with the best performance, and the potential perfor-

mance/energy benefit. The limitations and work-arounds of the current flow also motivate

us to pursue further automations.
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The second challenge is to manage those coprocessor accelerators efficiently, assuming

the component-specific implementation is ready. For example, we map a medical imaging

pipeline that includes image denoising, image registration and segmentation onto the het-

erogeneous platform. Efficient implementations on either FPGA or GPU can speed up each

individual application by 10X to 20X respectively, and with a 2X to 4X improvement on

energy-efficiency.

When we have a batch of images to process, the task-level parallelism in the macro data-

flow permits concurrent execution on multiple processors as well as coprocessors (including

GPU and FPGA). Moreover, some application kernels are more suitable for FPGA copro-

cessors, some are more suitable for GPUs, and some portion of the codes shall still be left to

CPUs to execute. We need to consider these preferences of kernel binding as well as resource

availability in the mapping.

By using the task-level data flow description called Concurrent Collections (CnC) [5],

and the underlying Habanero run-time, we can achieve the load-balancing (through work-

stealing) across different heterogeneous components. A dynamic task to coprocessor binding

(with cross-device stealing) can boost the overall accelerated performance compared to a

static binding. However, the Habanero runtime works in user-space and will not perform any

coprocessor/accelerator management at the whole system-level. We then present a practical

architecture template implementation that mimics the features of accelerator-rich CMPs. We

realize a global accelerator manager (GAM) using an embedded processor. The embedded

processor performs the actual accelerator invocation and is the gateway/abstraction-layer

for the application code and device drivers.

1.2 FPGA/GPU Coprocessor Implementation: Lithography Sim-

ulation, Fluid Registration and CT Image Reconstruction

In this section we briefly highlight our achievements of the three applications that are de-

scribed in this thesis.
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Lithography simulation, as an essential step in design for manufacturability (DFM), is

still far from computationally efficient. Most leading companies use large clusters of server

computers to achieve acceptable turn-around time. Thus coprocessor acceleration is very

attractive for obtaining increased computational performance with reduced power consump-

tion. We designed a customized accelerator on an FPGA using a polygon-based simulation

model. An application-specific memory partitioning scheme is designed to meet the band-

width requirements for a large number of processing elements. Deep loop pipelining and

ping-pong buffer based function block pipelining are also implemented in our design. A

15X speedup is obtained using the FPGA-device in the Xtremedata XD1000 system versus

the software implementation running on a microprocessor of the same system. The perfor-

mance is 2X that of a CUDA implementation GPU 8800GT, yet the FPGA only consumes

about a fraction (1/20) of the power of the GPU. The implementation also leverages state-

of-art C-to-RTL synthesis tools. At the same time, we also identified the need for manual

architecture-level exploration for parallel implementations—with the most important one

being memory partitioning.

In the clinical applications, medical image registrations on the images taken from different

times and/or through different modalities are needed in order to have an objective clinical

assessment of the patient. Viscous fluid registration is a powerful PDE-based method that

can register large deformations in the imaging process. We present our implementation of

the fluid registration algorithm on the multi-FPGA platform Convey HC-1. We obtain a 35X

speedup versus single-threaded software on a CPU, and comparable performance with GPU

(Telsa C1060). The implementation is achieved using a high-level synthesis (HLS) tool, with

additional source-code level optimizations including fixed-point conversion, tiling, prefetch-

ing, data-reuse, and streaming across modules using a ghost zone (time-tiling) approach.

These manual steps need to be further automated by existing HLS software.

The radiation dose associated with computerized tomography (CT) is significant. Com-

pressive sensing methods provide mathematic approaches to reduce the radiation exposure,

without sacrificing image quality. However, the computational requirement of the algorithm

is prohibitive, and much higher than conventional image reconstruction algorithms like the
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Feldkamp-Davis-Kress (FDK) algorithm. We present an FPGA implementation of one com-

pressive sensing algorithm with applications on CT image reconstruction. The ray tracing

forward and backward projection procedures have abundant random off-chip accesses, as well

as load-balancing issues, and are good fit for the multi-FPGA platform that excels in inter-

leaved memory access. Our FPGA EM kernel is 50% faster than the GPU implementation on

Telsa C1060. Moreover, our FPGA kernel can process two independent images at the same

time, and thus the kernel throughput is 3X that of Tesla C1060 and slightly better than the

Fermi GTX480 GPU. Moreover, our EM kernel is deployed in a hybrid (CPU+GPU+FPGA)

computer, and we show that the hybrid approach delivers better performance and energy

than GPU-only solutions.

1.3 Managed Task-level Parallelism for heterogeneous Computing

We need a diverse and customizable architecture to meet the needs of diverse applications.

To address the needs, we built a heterogeneous testbed that contains both the FPGA and

GPU in a tightly integrated fashion. From the perspective of application-side, we need

to consider two issues: first, the coprocessors introduce additional computational elements

and thus we can further explore task-level parallelism where tasks on the CPU, GPU and

FPGA can potentially run in parallel; second, some kernels are more suitable for FPGA

coprocessors, some are more suitable for GPUs, and some portion of the codes shall still be

left to CPU to execute.

We use the modeling language chosen by the Center for Domain Specific Computing

(CDSC): Concurrent Collection [5], which develops a software flow that is capable of con-

verting high-level task-level dataflow into a lower-level async-finish style parallel code. We

demonstrate a working example that maps a medical image processing pipeline onto one

heterogeneous platform with CPU, GPU and FPGAs. The limitation is that the manage-

ment scheme works within a single process. We then discuss the architecture template and

support that works at the system-level, which can move some scheduling logic from software

into hardware.
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CHAPTER 2

Coprocessor Acceleration

The goal of the Center for Domain-Specific Computing (CDSC) [3] is to develop domain-

specific hardware architectures, and the software systems to greatly improve the performance

and the energy efficiency of domain-specific applications. In this thesis we focus on two

application domains. The first one is VLSICAD, because many of the algorithms in the

domain are quite computational intensive and requires heavyweight clusters to compute.

The second one is medical imaging, given its significant impact on the healthcare industry.

To achieve our goal, it is essential to benchmark how well current commodity platforms

perform, and identify opportunities for architectural innovations.

2.1 General-Purpose Computing on GPUs (GPGPU)

The first type of accelerator component is the graphics processing unit or GPU. The GPU is

the processing unit specifically designed for handling the computation for computer graphics.

It is increasingly used as massive-parallel many-core processor that can aid general purpose

computation.

2.1.1 Graphics Processing Units (GPU)

Conventional GPU contains a number of processors for vertex processing, texture processing

and fragment pipeline. Texture processing is normally vector-based as textures will contain

RGB components for visualization.

The Nvidia GT200 series GPU uses a unified shader architecture, so that tasks for vertex

processing, fragment pipelining and texture processing are all performed by the unified shad-
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Figure 2.1: Hardware model of GT200 series GPU

er.1 Also, it uses scalar processors rather than vector processors; thus it is much friendlier

for general computing tasks. Figure 2.1 shows the hardware model for the GT200 series

GPU. Each device is composed of N stream multiprocessors (SM), and each multiprocessor

is composed of M stream processors (SP). Each processor has its dedicated registers. The

M stream processors in each multiprocessor share a fast-access scratchpad memory called

“Shared Memory” (as shown in Figure 2.1), and share the instruction unit. These M pro-

cessors run exactly the same threaded program in the SPMD (single program multiple data)

model. The constant cache and texture cache are also shared by the M processors in the

same multiprocessor. Compared to the previous generation G80 series, GT200 also adds the

double precision support. Each multiprocessor has one double precision unit.

Another major vendor of the graphics compute card is AMD. The overall architecture

of the AMD GPU compute card is very similar to those from Nvidia. Yet they may have

different ratio of arithmetic units, special function units and texture shading units. One

major difference is that the AMD card uses 4-way or 5-way VLIW at the finest level, where

the Nvidia card uses the scalar processor. AMD’s recent Graphics Core Next (GCN) ar-

1GT200 is the codename for the latest version of Nvidia GPU. GTX280 and Tesla C1060 are specific
names of the video cards that use the GT200 series of GPU.

7



chitecture also adopted the scalar architecture. A detailed comparison between the Nvidia

GPU architecture and the AMD GPU architecture can be seen in [6].

Modern GPU compute cards sit on the PCI-express slots and talk to the host CPU

using PCI-express protocols. The 2.0 version of the PCI-express will have 500MB/s peak

bandwidth per lane and 8GB/s bandwidth for a 16-lane connection. A 16-lane connection

is what we use in most modern GPU compute cards. Note the PCI-e bandwidth is still

significant lower than the peak bandwidth of the on-board off-chip memory bandwidth of

the GPU card, which can be around 100GB/s.

2.1.2 GPU Programming Environment

Writing general programs for GPUs requires an in-depth understanding of the graphics

concepts and a conversion from the general computing task to a graphics processing pipeline.

This, often, is not an intuitive and easy task.

CUDA is the C environment for programming the G80, G92 and GT200 series GPUs.

It uses massive threading to overlap the computing with the memory access latency, and it

also provides the scratchpad-like shared memory for fast access (note the size of the shared

memory is very limited). Thread creation and switching are very lightweight on the GPU

compared to a multi-core CPU. In the CUDA environment, users can write SPMD code to

map onto the hardware architecture. Inside the code, users can define the parallelism among

different multiprocessors by specifying the number of parallel blocks to use: N block. Also

the parallelism inside each multiprocessor is specified by the number of threads inside each

block: N thread. A total of N block ∗N thread threads shall be created for that code. The

block ID and thread ID are used to identify different threads, and they can access different

data based on their IDs. Each thread can access per-thread registers, per-thread-block shared

memory, per-thread-block cache and per-device global memory.

The hardware architecture of the Nvidia GPUs also has certain limitations. Because

of the SIMD fashion used in the stream multiprocessor, there is significant overhead in

handling divergent control flows. No synchronization between thread-blocks is provided
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except through global memory on the board. Memory access needs to follow a special access

pattern (called coalesced access) where a half-warp (16 in the GT200 architecture) of threads

shall access continuous memory locations for optimal memory bandwidth. These architecture

restrictions impose considerable challenges for implementation, and require significant tuning

efforts for better performance.

Another general-purpose programming framework for GPU computing is OpenCL [7].

OpenCL is an open, industry-standard framework, which has gained support from almost

all CPU/GPU manufacturers including AMD, Intel, and NVIDIA; CUDA is only supported

on Nvidia GPUs. The GPU implementations in this thesis are done using CUDA rather than

OpenCL, because at that time the CUDA toolkit is more mature than the Nvidia OpenCL

toolkit. While the two share a similar programming paradigm, the OpenCL program is

slightly lower-level (in order to achieve platform neutral) and is more lengthy to write.

2.2 Reconfigurable Computing

Reconfigurable computing leverages the specialized hardware platforms to adapt the com-

putational need through hardware customization. In the 1960s, pioneering work by Prof

Gerald Estrin at UCLA proposed the architecture that features the fixed plus reconfigure

hardware [8, 9]. Similarly, the Stanford GARP project [10] combines a RISC processor with

a reconfigurable hardware. Most modern reconfigurable systems use the field programmable

gate array (FPGA) as the major component to realize the customizable hardware kernel.

A typical FPGA architecture consists of an array of logic blocks (called configurable logic

block, CLB), I/O pads, and routing channels. The logic block uses a lookup-table (LUT)

to realize arbitrary bit-level logical expressions. The routing channel is also programmable

at bit-level. Modern FPGAs also incorporated several hardware blocks such as block RAM,

DSP units, and carry chains. High-end FPGAs now feature thousands of block RAMs,

where multiple block RAMs can provide parallel data accesses simultaneously. Because of

the nature of FPGA, it is well suited to accelerate bit-level, fixed-point parallel computation;

though floating point arithmetic is also supported via efficient utilization of DSP units in
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Figure 2.2: XD1000 system diagram

modern FPGAs.

The principle of customizable computing is not limited to FPGA-based computing; also

applies to other reconfigurable systems that use coarse-grain reconfigurable logics. Several

more recent reconfigurable architectures are further surveyed in [11]. The book by [12]

presents comprehensive examples on reconfigurable computing.

This year, we celebrated the 20th anniversary of FCCM, which is a conference that is

specifically dedicated to reconfigurable computing. We have seen many successful examples

for reconfigurable computing, such as networking and communications [13], image processing

[14], finance [15], data-warehousing [16], bioinformatics [17], radar and remote sensing [18]

etc.

The case studies we present in the following chapters also showcase successful examples

of reconfigurable computing where we target VLSICAD and medical imaging.

2.2.1 FPGA-Centric Accelerator Systems

FPGA accelerators still have no standard packaging or interconnect protocols, and thus a

number of choices are available. Several cards (e.g., Xilinx ML605, Altera DE4, Nallatech

PCIe-280) also provide PCI-express edges. These may be the easiest integration options, but

typically only one or two SODIMMs are attached to these cards and the bandwidth from

the SODIMMs is relatively poor compared to the bandwidth of GPUs. Axel [19] and QP

[20] all use this type of FPGA accelerator.
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Figure 2.3: Overall system diagram of Convey HC-1 hybrid computer

Figure 2.4: Coprocessor-side diagram of Convey HC-1 hybrid computer

In the lithographic simulation acceleration, we used the XD1000 system from XtremeDa-

ta. Figure 2.2 is the system diagram of XtremeData’s XD1000 development system, which is

the hardware platform we use. This development system uses a dual Opteron motherboard

and one Opteron is replaced by an XD1000 coprocessor module. The XD1000 coprocessor

communicates with the host Opteron CPU via Hypertransport links, and it is built based

on Altera’s largest FPGA in the Stratix II family: EP2S180.

The applications in the medical imaging domain are very memory-intensive. Because

the size of the 3D images is too big to fit in the on-chip RAM or on-board SRAM chip, we

need to use off-chip DRAM extensively. Some cards (e.g., SRC Map station) use memory

DIMM slots with proprietary protocol. The more compelling choices are the FPGA accel-

erators that use processor interconnects. AMD opened its HyperTransport bus through its

Torrenza initiative, and Intel later opened its Front Side Bus to third party FPGA board ven-

dors as well. Representative systems include Xtremedata’s XD1000F and XD2000F (using

HyperTransport), Nallatech’s FSB development system, and Convey HC-1 (using FSB).
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Among these systems, we further selected Convey HC-1(ex) as our baseline platform

for implementing medical imaging applications. Figure 2.3 shows the system diagram for

the Convey HC-1. The form-factor of the platform is a 2-U rack-mountable server box.

Figure 2.4 shows the structures of the coprocessor hardware of the Convey HC-1. The HC-1

platform has four user FPGAs (Virtex5 LX330). The CPU and different FPGAs access the

off-chip memory using a shared memory model. The system employs an on-board crossbar

to realize the interconnection. Cache coherence is also handled through the FSB protocols.

Convey realizes a cache-coherent NUMA (ccNUMA) system on top of a FSB protocol stack.

Each FPGA is presented with 16 external memory access channels. (Eight physical memory

ports are connected to eight memory controllers that run at 300MHZ. Core design runs at

150MHZ. Thus, effectively the design on each FPGA is presented with 16 “logical” memory

access channels through time multiplexing.) Convey HC-1 provides a very large bandwidth

(claims to have 80GB/s peak bandwidth) for coprocessor side memory. Note, a claimed

80GB/s coprocessor side memory bandwidth in Convey HC-1 is only slightly lower than the

bandwidth of one Tesla C1060 card (around 100GB/s). In practice, we observe that 30% to

50% of the peak bandwidth can be achieved. As a comparison, the Xilinx ML605 board has

only one SODIMM and the off-chip sustained memory bandwidth from SODIMM measured

less than 1GB/s. In the Nallatech FSB development system, the FPGA coprocessor does not

have a large coprocessor-side memory but accesses the system memory through the front-side

bus and the bandwidth is limited to the bandwidth of FSB (around 8GB/s).

The multi-FPGA platform Convey HC-1(ex) uses an interleaved memory scheme. Differ-

ent FPGAs access the off-chip memory using a shared memory model. The system employs

an on-board crossbar to realize the interconnection. In HC-1ex, the user FPGAs are upgrad-

ed from Virtex5 LX330 to Virtex6 LX760. The system supports two modes of an interleave

scheme. The prime number interleave is where the system uses a prime number of banks

to better support power-of-two strides. The other interleave scheme is called the binary

interleave.

The binary interleave scheme takes out the 12th to 3rd bits (counted from the LSB) of

the virtual address to determine the bank the address falls in. The system features 1024
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Figure 2.5: Binary interleave

banks. In particular, the 9th to 6th bits of the address determine which memory DIMM

the address falls in. The system has 16 DIMMs in total. Figure 2.5 illustrates the binary

interleave scheme. We can see from Figure 2.4 that each memory controller is connected

to two DIMMs. The D bit in Figure 2.5 determines which DIMM to select from the two

DIMMs. Each DIMM has 64 banks.

2.2.2 High-Level Synthesis Tools

One of our unique approaches on reconfigurable computing is through the use of high-level

synthesis tools. As the complexity of FPGA designs goes up, it is more and more challenging

to implement the design manually using RTL-level descriptions such as Verilog or VHDL.

Electronic system-level (ESL) is a cutting-edge technology which allows users to describe

their designs at high level, such as C/C++, and ESL tools further perform high-level syn-

thesis (HLS) to generate platform-specific RTL automatically. The adoption of these tools

leads to a significant savings in design effort and reduced turn-around time.

Currently there are many ESL products in the market, such as Impulse C [21] from

Impulse Accelerated Technologies, Catapult C [22] from Calypto Design Systems, DK Suite

and Handel-C [23] from Agility (now part of Mentor Graphics), Cynthesizer [24] from Forte

Design Systems, AutoPilot [25] from AutoESL Design Technologies (now part of Xilinx),

PICO Extreme FPGA [26] from Synfora (now part of Synopsys), C-to-Silicon Compiler [27]

from Cadence, just to name a few.

AutoPilot [25] is the ESL tool that we use in this thesis, because it uses the latest tech-

nology and leverages a robust open compiler framework; it features a rich set of optimization

passes and compiler transforms for hardware synthesis; it also has a very wide C/C++ lan-
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Figure 2.6: Design flow using AutoPilot HLS tools

guage support. (Also it is the tool that we have access to.) It accepts synthesizable C, C++,

or SystemC as input and generates RTLs in Verilog or VHDL, while we primarily use C

as input. AutoPilot is based on the xPilot system [28] licensed from UCLA, but has been

commercialized by AutoESL Design Technologies for further development. Figure 2.6 (from

BDTI certification report [29]) shows the design flow using AutoPilot tools. Starting from

the C code, we perform hardware-oriented code refinement at C-level to obtain a bit-accurate

synthesizable code. Simulation can be done by pre-synthesis autocc tool, or at RTL-level us-

ing third-party simulators. The RTL is further synthesized to obtain the bitstream through

vendor tools (e.g., Xilinx ISE).

The AutoPilot tool will only generate the RTL for one IP. Designers need to connect

the IP with other IPs or system interfaces. Platform-specific interface wrappers in RTL are

needed to provide a fast integration path. For example, in the case of the Convey system,
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the interface for one external memory access port is separated into one request FIFO and

one response FIFO.

Note that from Figure 2.6 we can see that an important step in the flow is manual code

refinement. In this thesis we describe many details on how those refinements are done. These

also motivate further automations that need to be addressed by the high-level synthesis tools.

2.3 A Heterogeneous Node with CPU, GPU and FPGAs

As part of the CDSC project, we further combine the GPU accelerator and FPGA accelerator

into a single server node.

The form-factor of the Convey HC-1 platform is a 2-U rack-mountable server box. The

motherboard has two PCI-e X16 slots, but there is no physical space to host a Tesla compute

card due to form-factor issues. Currently, we use a PCI-express expansion box, Magma

ExpressBox 2, to host a Tesla compute card C1060.

In the HPC space, a distributed memory paradigm is typically used across the cluster

nodes, and shared memory is used within each node. However, coprocessors bring in ad-

ditional complexity, because coprocessors have access to coprocessor-side memory, and the

coprocessor-side memory may not be directly addressable from the host. FPGAs also have

a large amount of coprocessor-side memory, which can be placed in a shared virtual mem-

ory space along with the host-side memory space. This needs some OS support as well as

hardware support. Convey Computer realizes a cache-coherent NUMA (ccNUMA) system

on top of a FSB protocol stack. With the release of CUDA 4.0 that supports unified virtual

addressing, our heterogeneous server node should be able to support a shared virtual mem-

ory space across CPU, GPU and FPGAs. Currently, the GPU card in our system still has

its own address space.

Our system runs Convey Linux, which is essentially a Linux distribution with modifica-

tions to better support the shared virtual memory system. Convey also provides the compiler

and debugger toolchains for the system as well. The compiler can recognize certain Convey-
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specific pragmas. It also has the ability to generate vectorized code that runs on a vector

ISA which can be implemented on FPGAs. NVIDIA CUDA drivers and CUDA toolkit are

installed on the system as well.

2.4 Run-Time Support

Despite over four decades of research, few high-level parallel programming models and run-

times are available to domain experts who are not, at the same time, experts in parallelism.

Fortunately, this situation is starting to change. Frameworks such as Map-Reduce [30] suc-

cessfully exploit implicit parallelism on distributed systems and have also been extended to

heterogeneous platforms such as GPU [31] and FPGA [32], but unfortunately have a restrict-

ed programming model. The StarSs model builds a task-level model using a pragma-based

approach (similar to OpenMP) to ease the burden of task-level programming for different

architectures; its instantiations include Cell Superscalar [33] for the Cell broadband engine

and GPUSs [34] for a system with multiple accelerators. Dryad [35] is a research project at

Microsoft Research for a general-purpose runtime data-parallel applications. An application

written for Dryad is modeled as a directed acyclic graph (DAG). However, its focus is on

the multi-core cluster platform and does not provide sufficient heterogeneity support.

We have installed the CnC-HC and Habanero-C runtime on the platform to provide

the runtime and the high-level implementation flow for heterogeneous computing. The

Habanero-C (HC) language [36] is a parallel programming model developed at Rice Uni-

versity in the Habanero Research project. Habanero-C has two basic primitives for the task

parallel programming model borrowed from X10 [37]: async and finish.

The async statement ( async ⟨ stmt ⟩ or async { stmt1 .. stmtN } ) causes the current

executing thread to fork a new child task that will execute one or more statements. The

parent task continues executing the statements that follow the async statement and does not

wait for the child task to finish its execution. The finish statement ( finish ⟨ stmt ⟩ or finish {

stmt1 .. stmtN } ) performs a join operation. Consider a thread that executes the statements

inside a finish scope. These may spawn one or more children, but no instructions which follow

16



the finish scope are allowed to start executing until all such children, grandchildren, etc., have

finished executing. The language permits any level of nesting of the async and finish scopes,

and supports terminally-strict computation and multiple scheduling policies (work-first or

help-first) [38], which is more general than Cilk [39] that realizes spawn-sync computations

which must be fully-strict and work-first .

For locality, Habanero-C uses Hierarchical Place Trees (HPTs) [40]. HPTs define hierar-

chical trees of execution location, which are an abstraction for underlying hardware. These

places could be cores, groups of cores sharing different levels of cache, or devices such as

GPUs or FPGAs. The HC language allows the programmer to spawn a task explicitly at

such a place, and the work-stealing runtime is designed to take advantage of this information

and preserve locality. The Habanero-C runtime uses a work-stealing scheduler that supports

cross-device stealing. An FPGA can steal from a task queue for GPU and vise-versa.

Concurrent Collections (CnC) is a macro dataflow model developed by Intel [5] for execu-

tion of C++ programs on homogeneous multicore processors. CnC is a general programming

model, while the CnC-HC is a specific instantiation of the model. CnC-HC was developed

on top of the Habanero C (HC) programming language, and it uses the async and finish

constructs available in HC. However, not all dependency graphs can be expressed using only

async and finish, so we need a CnC runtime. CnC-HC took a new and different approach

from those in previous instantiations of the CnC model—that of spawning a step only when

all data is available in order to eliminate the overhead of repeated task creation when nec-

essary. To better aid the user in specifying the preference of task binding, we added the

affinity field in the CnC description. For each task in the CnC dataflow, users can specify a

numerical value for each processor/coprocessor (a larger value denotes a greater preference).

More details on CnC-HC are in [41].
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CHAPTER 3

FPGA/GPU Accelerated Lithography Simulation

3.1 Introduction

Optical lithography is the technology used for printing circuit patterns onto wafers. As

the technology scales down, and the feature size is even smaller than the wavelength of

the light employed (e.g., 193nm lithography), significant light interference and diffraction

may occur during the imaging process. Lithography simulation, which tries to simulate the

imaging process or the whole lithography process— from illumination to mask to imaging

to resist—is considered an essential technique for the emerging field of DFM.

Lithography simulation can be done through various methods with different accuracy.

Model- or rule-based optical proximity correction (OPC) uses empirical rules and models

from experimental data to perform the simulation and discover the defects caused by lithog-

raphy [42]. It is fast but not accurate enough. On the other hand, using finite difference or

finite element methods to solve the corresponding electromagnetic equations directly [43] is

a very accurate approach, but is so expensive that it can only simulate small regions and

designs.

The coherent decomposition method [44] can better balance the accuracy and running

time, and is the main method used in computational lithography for large designs. It first

decomposes the whole optical imaging system into many coherent systems with decreasing

importance. The image corresponding to each coherent system can be obtained via numeri-

cal image convolution, and the final image is the weighted sum of the image of each coherent

system. However, the method still needs a large amount of CPU time to perform the sim-

ulation because the number of layers and the size of images are large. As the technology
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scales down and the accuracy requirement goes up, it will be more challenging to meet the

tight requirement of design turn-round time.

Leading commercial computational lithography products have already started to use

special coprocessor acceleration to further accelerate computation. Brion Technologies (now

part of ASML) reports that each leaf node composed of two CPUs and four FPGAs in their

Tachyon System can achieve 20X speedup over one single CPU node [45]. Mentor Graphics

uses the Cell Broadband Engine to accelerate the computation in their nmOPC product [46].

Clear Shape Technologies has filed patents for using GPUs to accelerate the computation

[47].

We present a new hardware implementation for accelerating lithography imaging simu-

lation on FPGA platforms. Unlike the image-based approach Brion takes, which ultimately

relies on the accelerated performance of 2D-FFT, we use the polygon-based approach [48, 49]

instead. The polygon-based approach makes use of the fact that the actual layouts are solely

composed of rectilinear shapes, and it has comparable or even better performance than an

image-based approach in software implementation. Recent advances in OPC algorithms,

e.g., IB-OPC [50], also employ a polygon-based approach for lithography intensity simula-

tion. Moreover, the polygon-based approach pre-computes the convolution and stores that

into a look-up table, and the subsequent computation mainly just involves some additions

and subtractions on the look-up value. Thus the polygon-based approach could be better

approximated via fixed-point computations without sacrificing much accuracy. The algo-

rithm can be better parallelized and accelerated by utilizing the high bandwidth of on-chip

memory in FPGA.

Another unique aspect of our work is that we leverage state-of-art C to HDL compilation

tools and write all our design in C, whereas the FPGA accelerator design by Brion [45] was

based on completely manual RTL coding. A design described in higher-level languages such

as C/C++ is more portable to various platforms and easier to maintain. Also these tools

could evaluate multiple design choices faster and perform various kinds of optimizations for

improved performance against the RTL-based design, but those tools also have limitations

on the supported language features. The challenge we experienced for this design is that of
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manually developing an efficient memory partitioning scheme, based on the observation of the

memory access pattern, to provide a large data bandwidth for a larger number of processing

elements. Deep loop pipelining and the overlapping of the communication and computa-

tion via ping-pong buffers are also implemented to take advantage of both instruction-level

parallelism and task-level parallelism. All the design techniques are represented at algorith-

mic level in the code refinement/rewriting of ANSI C, and the resulting C code is further

synthesized into RTL though the automatic C-to-RTL synthesis tools.

3.2 Basics for Aerial Image Simulation

3.2.1 The Imaging Equation

The coherent decomposition method first decomposes the whole optical system, into a series

of coherent optical systems (using eigenvalue decomposition). The series is truncated to a

finite one based on the ranking of the eigenvalues. If we only keep K significant eigenvalues

and eigenvectors, the image can be computed as:

I(x, y) u
K∑
k=1

λk|(O ⊗ ϕk)(x, y)|2 (3.1)

Here the I(x, y) is the image intensity, λk is the kth eigenvalue, O(x, y) is the object function

(field) and ϕk(x, y) is the kth eigenvector. The symbol ⊗ denotes convolution (2D image

convolution). For more details on the derivation of the coherent decomposition method,

please refer to [51].

One way to perform the 2D image convolution is through 2D FFT. We can first transform

the padded object pattern (see Section 3.2.3) and the eigenvector into the frequency domain

via 2D FFT. (Note the FFT of the eigenvector ϕk only needs to be computed once and can

be reused.) Then we multiply the eigenvector and object pattern in the frequency domain.

Finally we can obtain the convolution result via an inverse FFT of the multiplied result.

This is the image-based simulation that is also used by [45].

As the actual layout of VLSI circuits is only composed of polygons (or rectangles if we

perform polygon decomposition on the layout), the convolution of different sizes of polygon-
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Figure 3.1: Rectilinear polygons can be processed similar to rectangles

s/rectangles can be pre-computed and stored. We first consider purely rectangle cases. The

convolution for an object pattern solely composed of N rectangles with vertices at (x
(n)
1 , y

(n)
1 ),

(x
(n)
2 , y

(n)
1 ), (x

(n)
1 , y

(n)
2 ),(x

(n)
2 , y

(n)
2 ) can be simplified via quadrant functions.

The object pattern in one padded area can be written as:

O(x, y) =
N∑

n=1

[Q(x− x
(n)
1 , y − y

(n)
1 )−Q(x− x

(n)
2 , y − y

(n)
1 )

+Q(x− x
(n)
2 , y − y

(n)
2 )−Q(x− x

(n)
1 , y − y

(n)
2 )] (3.2)

where quadrant function

Q(x, y) =

 1 if x ≥ 0 and y ≥ 0

0 otherwise

The convolution equation thus can be rewritten as:

I(x, y) u
K∑
k=1

λk|(O ⊗ ϕk)(x, y)|2

=
K∑
k=1

λk|
N∑

n=1

[ψk(x− x
(n)
1 , y − y

(n)
1 )− ψk(x− x

(n)
2 , y − y

(n)
1 )

+ ψk(x− x
(n)
2 , y − y

(n)
2 )− ψk(x− x

(n)
1 , y − y

(n)
2 )]|2 (3.3)

where

ψk(x, y) = Q(x, y)⊗ ϕk(x, y)

is the convolution of the quadrant function with the kth eigenvector. This is the polygon/rectangle-

based algorithm we use, and it is described in more detail in [49].

For rectilinear polygons, an equation similar to Equation 3.2 can be written using quad-

rant functions on each vertex of the polygons. In Figure 3.1, we label the + and − on the
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vertexes of rectilinear polygons (the rectangle is simply a special type of rectilinear polygon,

and + and − are just the signs for the look-up value for the vertexes; see Equation 3.2

and Equation 3.3 for the rectangle case). We go from a vertex which is at bottom-left, and

label that with + and go around the border of the polygon and label that with − and +

respectively.

Using rectangles or polygons will not alter the overall algorithm and design presented

in the following. For simplicity and benchmarking purposes, we assume we are given N

rectangles with 4N vertexes for one region of the image in the subsequent illustration, while

our litho simulation tool, which goes from GDSII to simulated image, is also capable of

processing polygons from the GDSII directly without the need for rectangle decomposition.

3.2.2 Image-Based Simulation versus Polygon-Based Simulation

It is worthwhile to briefly discuss the trade-offs between image-based simulation and polygon-

based simulation. Image-based simulation first converts the layout, which in most cases

is stored in GDSII, into an object image, and then gets the image convolution via FFT

and IFFT. Note that only image-based simulation needs to take this additional conversion

step from the GDSII to the object image, which might also be expensive. The 2D-FFT

algorithm, although well studied, still needs a large number of floating-point operations. On

the other hand, the polygon-based algorithm can use fixed-point computation without losing

much accuracy, and thus can be implemented without using any floating-point operations.

Suppose the rounding error for the elements in ψk in Equation 3.3 is 2−p, the absolute error

for computing
∑N

n=1[ψk(x− x
(n)
1 , y − y

(n)
1 )− ψk(x− x

(n)
2 , y − y

(n)
1 ) + ψk(x− x

(n)
2 , y − y

(n)
2 )−

ψk(x − x
(n)
1 , y − y

(n)
2 )] is bounded by 4N ∗ 2−p. If we assume the error distribution for the

elements in ψk is a uniform distribution between −2−p and 2−p, the error distribution of the

sum
∑N

n=1[ψk(x−x(n)1 , y−y(n)1 )−ψk(x−x(n)2 , y−y(n)1 )+ψk(x−x(n)2 , y−y(n)2 )−ψk(x−x(n)1 , y−

y
(n)
2 )] follows uniform sum distribution. Its variance is proportional to N and the standard

deviation is proportional to
√
N ; thus the actual error is much smaller, statistically, than

the conservative error bound which is linear with N.
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Both algorithms scale linearly with the number of pixels to compute. The issue of the

polygon-based approach is that the running time will also depend on the layout density,

which determines the number of polygons or rectangles in a unit area within the interaction

range (N in Equation 3.3), while the image-based approach only depends on the chip area.

We implemented the 2D-FFT based 2D-convolution using the FFTW package [52], and

tested that on kernels with size 400 by 400. We found that the running time is comparable

to a polygon-based method with a moderate density (see Section 3.5.3). The polygon-based

approach requires less computation and runs faster for layers that are not very dense, and

the image-based approach runs faster for very dense layers. Note that the polygon-based

approach also saves the step on conversion from polygons to images, as polygons are naturally

stored in GDSII.

In terms of the FPGA-based acceleration, FFT is still tightly constrained by the avail-

able DSP units or logic slices, and the peak FLOPs of FPGA are at the same magnitude

with the peak FLOPs of modern CPU; thus, typically only a 2 to 8X speedup is seen on

accelerating FFT on FPGA platforms via parallel implementation [53]. Fixed-point FFT

core for FPGA is also available and gives potentially larger speedup, but it will have worse

accuracy because multiplication can enlarge the absolute error. For the polygon-based ap-

proach, the convolution on the quadrant function can be pre-computed using highly accurate

floating-point computations (on CPU) and reused multiple times. The time to pre-compute

the convolution can be ignored as it is a one-step process. The remaining computations

only involve table look-up and simple addition/subtraction operations, and are much more

suitable for a decent speedup. Therefore, in this work we use the polygon/rectangle-based

approach rather than the image-based approach for accelerator design.

3.2.3 Detailed Settings for the Imaging Equation Using the Polygon-Based

Approach

We assume that the convolutions of eigenvectors and the quadrant functions are already pre-

computed, and sampled into a 2D array called kernel. The region/range of the kernel we use
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is 2000nm by 2000nm; it is sampled on a 5nm grid, and thus contains 400 by 400 numbers.

The image we need to compute is on a 25nm grid. Without loss of generality, we assume

the layout corners (vertexes of the polygons) are also on the 5nm grid. (If the layout corner

is on a much finer grid, interpolation will be used to get the kernel value.) These settings

used in our algorithm and implementation were recommended by our industry collaborators

from Magma Design Automation [54], but our architecture certainly is not confined to these

settings and can be extended to other settings. Some setting changes require a recompile/re-

synthesis while some do not. This depends on whether the change of underlying hardware is

needed. For example, the design synthesized with a large N (layout density metric) can be

used for a smaller N without the need of changing hardware. On the other hand, enlarging

array sizes or changing the memory partitioning schemes will affect the underlying hardware

and a recompile/re-synthesis will be needed to generate the new hardware bitstreams.

3.3 FPGA-based Accelerator for the Imaging Simulation

3.3.1 Image Padding for the Polygon-based Approach

Both the object pattern and the simulated image are large; however, when we compute one

region of the image, only one padded region of the object needs to be considered due to the

locality of the litho effects. For example, for a kernel ranges within a 2000nm by 2000nm

area, if we want to compute a 1000nm by 1000nm image region, an object pattern within

a range of 3000nm by 3000nm needs to be taken into computation. The reason for this is

that some objects are far away from the current pixel and out of the interaction range, and

therefore need not be considered.

The computation complexity is proportional to the number of rectangles N taken into

computation, and the intensity of each pixel is determined by the rectangles within the

interaction range (2000nm by 2000nm in our case) around this pixel.
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for ( x=0;x<pixel max ; x++)

for ( y=0;y<pixel max ; y++)

{

// I n i t i a l i z e p i x e l i n t e n s i t y

I [ x ] [ y ]=0;

for ( k=0;k<K; k++)

{

// I n i t i a l i z e p a r t i a l sum

I k [ x ] [ y ]=0;

//Core computation

for (n=0;n<4∗N; n++)

{

addrx=5∗x−rectx[n]+c ;

addry=5∗y−recty[n]+c ;

I k [ x ] [ y]+=(−1)n∗ ke rne l [ k ] [ addrx ] [ addry ] ;

}

I [ x ] [ y]+=I k [ x ] [ y ]∗ I k [ x ] [ y ] ;

}

}

Figure 3.2: Pseudo-code for the nested loop
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// I n i t i a l i z e p i x e l i n t e n s i t y

for ( x=0;x<pixel max ; x++)

for ( y=0;y<pixel max ; y++)

I [ x ] [ y ]=0;

for ( k=0;k<K; k++)

{ // I n i t i a l i z e p a r t i a l sum

for ( x=0;x<pixel max ; x++)

for ( y=0;y<pixel max ; y++)

I k [ x ] [ y ]=0;

//The core computation

for (n=0;n<4N; n++)

for ( x=0;x<pixel max ; x++)

for ( y=0;y<pixel max ; y++)

{

addrx=5∗x−rectx[n]+c ;

addry=5∗y−recty[n]+c ;

I k [ x ] [ y]+=(−1)n∗ ke rne l [ k ] [ addrx ] [ addry ] ;

}

//Square opera t ion

for ( x=0;x<pixel max ; x++)

for ( y=0;y<pixel max ; y++)

I [ x ] [ y]+=I k [ x ] [ y ]∗ I k [ x ] [ y ] ;

}

Figure 3.3: Pseudo-code for the rearranged nested loop
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3.3.2 Rearranging the Nested Loop

Now we devote ourselves to implementing the nested loop corresponding to Equation 3.3,

which is described in Figure 3.2, where c is a constant for addressing alignment, and rectx

and recty are arrays for the coordinates of rectangle corners. Note that this is the code for

simulating one region of an image, and there is another outer loop over the pseudo code in

Figure 3.2 for changing the current image region where the input N and rectx and recty shall

all be changed as we move to different image regions. Here the pixel max is the number of

pixels in either X or Y direction. We use 5 ∗ x and 5 ∗ y in the code as we use an image grid

on 25nm and a kernel grid on 5nm. The outermost loop goes over different image pixels.

Within the outer loop there is a loop that goes over different kernels. The innermost loop

goes over different layout corners. This is a direct implementation of Equation 3.3, but it

might not be suitable for generating synthesizable hardware. We apply loop interchange

techniques to find a better rearrangement for the nested loop.

Typically, loop transforms can be applied to increase the parallelism or improve the data

locality. Suppose two loop transforms have the same number of off-chip access count, we

would prefer the implementation with a smaller size of on-chip reuse-buffer. In this case, we

look at the choices for the outermost loop. Because the whole nested loop will need the data

in the kernel array, which shall be reused for the image computation with different image

regions or different pixels and layout corners, we would like to pre-fetch the kernel array and

store the kernel array in the on-chip RAM of the FPGA. In our setting in Section 3.2.3, each

kernel has 16 ∗ 400 ∗ 400 bits of data, which is 2.44Mb, if we use 16bit precision for kernel

data. As the total size of on-chip RAM of FPGA is limited, it is unlikely that all the kernels

will fit, but in our case at least one kernel can be put in, (the device we use has around 9Mb

on-chip memory in total). Thus, we would like to make the loop over different kernels the

outermost loop. Otherwise, we may need an on-chip storage that is KX larger (or simply

do not use any reuse).

Besides the consideration for data reuse, we want the data accesses (especially the in-

nermost levels) are regular or affine. Affine data access can potentially enable the memory
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Layout corner
Partial sum

Kernel array (x1,y1)Kernel array Kernel array Kernel array ……
+ -

+

-

(x2,y1)(x1,y2) (x2,y2)……

Figure 3.4: Computation of the inner nested loop

partition scheme which we will elaborate on in later sections. We can see that the loop over

different layout corners is less structured than the loop over the image pixels. If we fix one

layout corner and update the set of pixels, the memory access pattern is parametrical affine.

(The parameter is the coordinates of the layout corners, which are loop-invariants for the

loops over image pixels.) This property enables our subsequent memory partitioning scheme.

But if we fix one pixel and change different layout corners, it will not be somewhat random

(not regular) because we can not expect the layout corners to have some specific pattern.

Thus, we would like to make the loop over different pixels the innermost loop. Figure 3.3 is

the nested loop after the loop interchange.

The illustration of the computation is shown in Figure 3.4. The address of kernel data de-

pends on the value of the rectangle corner. For one specific corner, the address for the kernel

array is just an affine mapping over the pixel index x and y. As the data of rectx[n], recty[n]

is in the layout corner array and accessed at runtime, the data access for the kernel array is

still some type of indirect memory access. This imposes great challenges for the automation

tools. After the rearranging of the nested loop, the key problem is to design and implement

the inner loop—the inner loop over different rectangle corners and image pixels.

Later, automatic loop transform for data reuse is presented in [55]. The work still needs

further extensions to handle our case because the data accesses in our nested loop are not

strictly affine.
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3.3.3 Communication Analysis and HW/SW Partitioning

In our design, the hardware component running on FPGA mainly initializes and computes

the image partial sum Ik, while the result is sent back to a software component running

on the processor; the software component parses and provides input data to the hardware

component and also performs the square operation and stores the results.

As the computation is mainly performed on the FPGA coprocessor, input data required

for computation needs to be transferred from the host CPU to the coprocessor, and the

computed results need to be transferred back. Although the Hyper-Transport bus enables a

low latency solution, overhead in the data transfer still exists.

The major part of data transfer from host (CPU) to coprocessor is the layout corner array

(rectx,recty in the pseudo code). Note that kernel data also needs to be transferred from the

host to coprocessor, but the same kernel can be used for a larger number of padded image

region, thus the communication overhead in transferring kernel data can be neglected. The

major data transfer from coprocessor to CPU is the array of image partial sum Ik. Assume

we use 16-bit data for the elements in rectx,recty array and 32-bit data in array Ik. For

settings shown in Section 3.2.3, the total bytes of data transfer for computing one padded

region with size 1000nm by 1000nm on a 25nm grid is (32/8) ∗ 4N + (32/8) ∗ 40 ∗ 40, where

the first term corresponds to the data transfer for the layout corner array and the second

term corresponds to the transfer of partial image. The data transfer is done in a DMA-like

fashion. For a moderate density say N = 100, and a data bandwidth around 800MB/s (the

peak bandwidth of the SRAM device we use as hardware/software shared memory), the

data transfer needs around 10µs. This is roughly 10% of the overall execution time of our

accelerated design. In Section 3.3.8 we talk about the overlapping of the communication and

computation, a technique that could completely resolve the overhead.

3.3.4 Exploring Parallelism

Typically, the accelerator on the FPGA platform is able to explore task parallelism, da-

ta parallelism, and instruction parallelism. We will use high-level synthesis tools, e.g.,
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Figure 3.5: Naive partitioning based on geometric locations

AutoPilotTM[25] to implement our design. AutoPilot first parses the input description, e.g.,

in C, and generates a control data flow graph (CDFG) of the code. Then it performs schedul-

ing and binding on the CDFG to generate the final RTL. Instruction parallelism is directly

realized by the scheduler of the tool, because scheduler might schedule multiple instances

of function units (FU) at same cycle. Moreover, the loop pipelining pragma can inform the

scheduler to schedule the loop in a pipelined fashion, creating more instruction parallelism.

Task parallelism needs to explicitly write multiple processes or tasks, and needs to consid-

er inter-process synchronization and arbitration of shared resources. Currently, AutoPilot

can realize the task parallelism via functional block pipelining or through SystemC based

description. Data parallelism, on the other hand, widely used in SIMD instructions or GPU

accelerators, tries to use the same or similar program/code to cope with multiple data. Au-

toPilot uses loop unrolling pragma to invoke program transform for loops, and the scheduler

will schedule the unrolled CDFG to create the data parallelism.

In our initial scheme, we developed a design based on task-level parallelism. We first

partitioned the kernel array and the partial image array into several partitions based on the

geometric locations. Figure 3.5 shows a 4-way naive partitioning.

We then allocate four PEs in the FPGA, and each PE is responsible for the computing

of one partition of partial image array. As the computing of one partition of partial image

might need all the four partitions of kernel data, access conflicts might occur. We schedule

the operations such that different PEs will read or write different memory blocks at each

computation stage (shown in Figure 3.6).
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Figure 3.6: Block scheduling for naive partitioning

. . . . . .

//Core computation , 4−way un r o l l i n g

for (n=0;n<4N; n++)

for ( x=0;x<pixel max /2 ; x++)

for ( y=0;y<pixel max /2 ; y++)

{

addrx=5∗2∗x−rectx[n]+c ;

addry=5∗2∗y−recty[n]+c ;

I k [ 2∗ x ] [ 2 ∗ y ]

+=(−1)n∗ ke rne l [ k ] [ addrx ] [ addry ] ;

I k [ 2∗ x+1] [2∗y ]

+=(−1)n∗ ke rne l [ k ] [ addrx + 5 ] [ addry ]

I k [ 2∗ x ] [ 2 ∗ y+1]

+=(−1)n∗ ke rne l [ k ] [ addrx ] [ addry + 5 ]

I k [ 2∗ x+1] [2∗y+1]

+=(−1)n∗ ke rne l [ k ] [ addrx + 5 ] [ addry + 5 ] ;

}

. . . . . .

Figure 3.7: Pseudo-code for the partially unrolled nested loop
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However, as the address of the required kernel data depends on the set of layout corners,

it is likely that this approach might face load-balancing problems, if the layout corner is not

uniformly distributed. For example, if the whole loop makes heavy use of one or several

specific partitions, the benefit or speedup using partitioning might become degraded. An-

other drawback is that this type of task parallelism needs control flow in each PE and needs

additional logic to do synchronization.

Later, we decided to mainly borrow the idea from data parallelism, where we first unroll

the inner nested loop (the loop over different pixels) to some degree and try to execute

the multiple operations in the inner loop at exactly the same cycle. The benefit is that

the control flow is more simplified and the load-balancing problem no longer occurs. The

4-way unrolled code is shown in Figure 3.7, where we unroll once in x direction and once

in y direction. (Note this unrolling doesn’t need to be written explicitly, as in Figure 3.7,

but can also be achieved by specifying unrolling pragmas in the original loop.) However,

this rewriting technique does not help without further memory partitioning, as each on-chip

memory block only has limited ports. When loop pipelining is further enabled, the unrolling

might increase the initiation interval of pipelining and not contribute much for the overall

latency. The goal of the memory partitioning is to make sure the correspondent simultaneous

memory accesses in the unrolled loop are partitioned into different memory blocks.

Besides the parallelism similar to data parallelism, we also use a loop pipelining technique

as an instructional parallelism technique, and the data prefetching or the overlapping of

the SW/HW communication and computation using function block pipelining or task-level

parallelism.

3.3.5 Memory Partitioning using Modulo Addressing

This subsection discusses the memory partitioning scheme to allow multiple memory access

in the inner unrolled loop to be parallelized. For each block of on-chip memory in the

FPGA, typically there are only two ports available. If the kernel array and partial image (a

temporary buffer for each pixel to store the inner sum) are just single memory blocks without
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partitioning, multiple memory accesses can not be scheduled to the same cycle due to port

contention. Thus, clearly we need to partition the memory to allow for parallel processing

and to achieve high bandwidth and high throughput.

The idea we used in memory partitioning is a variant of modulo addressing. The mod-

ulo addressing approach with a circular buffer which could get a row of data containing n

elements from n banks is presented in [56]. The basic idea of modulo addressing is simple:

if we want to fetch a row of data with address x, x+ 1, x+ 2, · · · , x+ n− 1 simultaneously,

we can use cyclic array partitioning where data with different modulo of address x%n are

placed in different memory blocks. Cubic addressing [57] provides a partitioning scheme for

3-D array which can obtain a 2*2*2 voxel neighborhood simultaneously from eight banks,

this is a special case for modulo addressing. Our case is a 2D case rather than 1D. Also,

we want data with address 5x, 5(x + 1), · · · , 5(x + n − 1) in different blocks; thus we need

some natural extensions on the simple modulo addressing. Also the aforementioned work

is in the domain of multi-port memory architecture design for medical image processing or

video coding, while we describe the partitioning scheme for our design in behavior C for

reconfigurable computing.

In our case, we mainly have three arrays: the kernel array, which serves as the look-up

table for the computation; the partial image sum array, which is used to store the interme-

diate inner sum for different pixels; and the layout corners array. Without loss of generality,

we assume that the overall size of the three arrays can be loaded into the on-chip RAM of

the FPGA. This assumption holds for our test settings, but generally might not be true, and

further partitioning of data and computations might be needed.

We would like to further partition the array to take advantage of the high peak band-

width of the on-chip RAM. Multiple processing elements(PEs), can process multiple data

concurrently if we partition the kernel array and the partial sum array effectively without

access contention and serialization.

To obtain a better partitioning scheme for this specific nested loop, we need to take a

look at the memory access pattern. For a specific layout corner, we need to update all the
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Figure 3.8: 4-way (2 by 2) memory partition scheme for load balancing

image pixels. The corresponding data access in the kernel array has a regular pattern (shown

in Figure 3.4). A better partition scheme should be able to evenly distribute the memory

access pattern shown in Figure 3.4 into multiple memory banks/blocks, regardless of the

location value of specific layout corners. Therefore, we choose to use a modulo interleaving

partition scheme.

We still take 4-way partitioning as an example, and the illustration is shown in Figure 3.8.

The same color/texture means the data are physically stored in the same memory bank/block.

Using this partition scheme, multiple data can be fetched concurrently without any conflicts.

The basic idea for partitioning is to follow the grid size of the access pattern in both X

and Y directions so that memory accesses in the most inner unrolled loop in Figure 3.7 are

always in different memory partitions. In our case, the kernel array is on a 5nm grid and the

image array on a 25nm grid. The illustration of the partitioning is shown in Figure 3.8. In

this figure, dots are memory accesses for kernel arrays (shown on the left) and the memory

access for the image partial sum (shown on the right). We can see the concurrent accesses

always lie in different colors in Figure 3.8, and thus can be scheduled to execute at the same

cycle. Figure 3.8 could be obtained via first coloring (here we use coloring to represent the

memory partitioning) the bottom-left 5 * 5 corner blocks in the kernel array, and coloring

other blocks in an interleaved fashion, to ensure that the four memory accesses in the inner

unrolled loop are in different memory blocks. Note that Figure 3.8 only shows a 4-way 2 *
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Figure 3.9: Address generation and output data multiplexing

2 partitioning corresponding to the partially unrolled loop in Figure 3.7, but a 5 * 5 or 8 *

8 partitioning scheme can also be developed similarly to allow for a larger data bandwidth.

The array of image partial sum is also partitioned in a fashion shown in Figure 3.8, so

that we can write the output data into the array concurrently. As the addresses for the

image partial sum are affine mapping of loop variables and do not depend on run-time data,

the partitioning for the image partial sum array is somewhat simpler. The layout corner

array does not need partitioning as the loop over layout corners is an outer loop.

3.3.6 Address Generation Logic for Partitioned Memory

As we explore the memory access pattern to partition the memory to allow for concurrent

access, the addresses to fetch those data also need to transformed and mapped.

The address generation logic, and the memory partitioning and the multiplexing of output

data, are all implemented via rewriting the code of the original algorithm written in ANSI

C.

Again take the 4-way partitioning in Figure 3.7 and Figure 3.8 as an example. In Figure

3.9, a, b, c, d are four memory blocks after partitioning, and 1, 2, 3, 4 are four concurrent

memory accesses. There are four different configurations shown in the figure. With different

address shifting determined by rectx and recty, the concurrent memory accesses have different

combinations with the memory blocks they visit. In configuration 1, the four concurrent

memory accesses 1, 2, 3, 4 will need the data in memory block a, b, c, d, respectively. In

configuration 2, the four accesses will need the data in memory block b, a, d, c, respectively.

Different configurations will have slightly different address generation logics.
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The address generation logic first looks at which configuration is among the four cases in

the 2 by 2 partitioning design in Figure 3.9. Later, for each configuration, there is a mapping

function to transform the original address into the mapped address. For each of the four

configurations shown in Figure 3.9, the data we get from different memory partitions also

needs to go through multiplexing to provide the required data for the accumulator. Let

us go into more detail on the address generation. Again we take 2 by 2 partitioning cases

as an example. Suppose we denote that the four addresses that the unrolled loop needs

to access (before the address mapping) in Figure 3.7 are [addrx][addry], [addrx + 5][addry],

[addrx][addry + 5] and [addrx + 5][addry + 5] respectively. We first determine which group

the address lies in by looking at the quotient addrx/(2 ∗ 5), addry/(2 ∗ 5); e.g., in Figure 3.9

addrx/(2∗5) = 0 and addry/(2∗5) = 0. We can determine which configuration it is by looking

at the modulo addrx%(2∗5) and addry%(2∗5); e.g., addrx%(2∗5) < 5 and addry%(2∗5) < 5

means that it is the first configuration. The divisor here is 2 ∗ 5: 2 relates to 2 by 2

partitioning, 5 relates to the image grid size which is 5X larger than kernel grid size (also in

the pseudo code in Figure 3.2).

We denote the mapped address [addrax][addr
a
y ], [addr

b
x][addr

b
y], [addr

c
x][addr

c
y], [addr

d
x][addr

d
y ]

for the four different memory blocks shown in Figure 3.9. And a mapping function is

addrmappedx = f(addrx) = (addrx/(2 ∗ 5)) ∗ 5 + addrx%5

addrmappedy = f(addry) = (addry/(2 ∗ 5)) ∗ 5 + addry%5

The first term determines the address that corresponds to different groups of concurrent

access, and the second term determines the address shifting within a 5*5 block.

If it is the first configuration, then the addresses for the four memory block are the same.

addrax = addrbx = addrcx = addrdx = addrmappedx

addray = addrby = addrcy = addrdy = addrmappedy

If it is the second configuration, we have
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Figure 3.10: 2D ring for 2 by 2 partitioning

addrbx = addrdx = addrmappedx

addrax = addrcx = addrmappedx + 5

addray = addrby = addrcy = addrdy = addrmappedy

We can get the address for the remaining two configurations similarly. After we get the ad-

dresses for each configuration, we can somewhat simplify the logic by extracting the common

terms, and write the address generation logic as follows:

addrax = addrmappedx if(addrx%(2 ∗ 5) < 5)

addrmappedx + 5 otherwise

addray = addrmappedy if(addry%(2 ∗ 5) < 5)

addrmappedy + 5 otherwise

When we use other partitioning, such as 5 by 5 partitioning, similar address generation logic

can also be written using the same idea and format.

Note that the equations shown above use division and modulo operations. It is well

known that these operations are relatively costly on FPGA in terms of both area and latency.

However, we pre-compute these costly operations at the CPU side and store them so that

the FPGA does not need to worry about this. If we recall the address generation shown in

Figure 3.3, we only need to convert the array data in rectx and recty to the form of quotient∗

divisor + remainder so that the quotient and remainder used in address computation can

be obtained directly.
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Figure 3.11: Ring based data multiplexing for 5 by 5 partitioning

3.3.7 Output Data Multiplexing

The data we fetched from the partitioned memory blocks needs to go through multiplexing

before it is sent to the accumulator, because the computation of one partition of image

partial sum might still require data in different partitions of kernel array. For the 2 by 2

partitioning shown in Figure 3.9, if the data from the four memory blocks are arraya[..],

arrayb[..], arrayc[..], arrayd[..] and the data we can directly send to the accumulator are

Reg1, Reg2, Reg3, Reg4. We denote the multiplexing logic as

Reg1, Reg2, Reg3, Reg4

= (arraya[..], arrayb[..], arrayc[..], arrayd[..]) (configuration 1)

= (arrayb[..], arraya[..], arrayd[..], arrayc[..]) (configuration 2)

= (arrayc[..], arrayd[..], arraya[..], arrayb[..]) (configuration 3)

= (arrayd[..], arrayc[..], arrayb[..], arraya[..]) (configuration 4)

But this naive multiplexing might have a large routing overhead when we have a larger

partitioning. We use 2D ring-based shifting to implement the multiplexing. Figure 3.10

is the interconnect structure for the 2 by 2 partitioning using ring-based multiplexing. For

configuration 1, no shifting is needed; for configuration 2, we can shift one step in X direction;

for configuration 3, we can shift one step in Y direction; and configuration 4 requires shifting

one step in both X and Y directions.
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// s h i f t i n g /mu l t i p l e x i n g in X d i r e c t i o n

for (m=0; m<5−1; m++)

{ i f (selx>m){

r i n g s h i f t x ;

}

}

// s h i f t i n g /mu l t i p l e x i n g in Y d i r e c t i o n

for (m=0; m<5−1; m++)

{ i f (sely>m){

r i n g s h i f t y ;

}

}

Figure 3.12: Pseudo code for 2D ring multiplexing for 5 by 5 partitioning

A larger partitioning scheme, e.g., 5 * 5 partitioning, can also use a similar multiplexing

scheme. Figure 3.11 is the interconnect structure for the 5 * 5 partitioning using ring-based

multiplexing. The pseudo code for the 2D ring-based multiplexing for 5 * 5 partitioning

is shown in Figure 3.12. selx and sely are values to determine how many steps the whole

ring needs to be shifted, which can be obtained by modulo of the layout corner; ring shift x

means all data in the 2D-ring is assigned the value on its circular left side; ring shift y

means all data in the 2D-ring is assigned the value on its circular upper side. Although the

if statement inside the loop can be merged to the loop bound, we write it in the current

form so that it has a constant loop bound. These loops are further unrolled/flattened to

facilitate the loop pipelining of the outer loop. We wrote the pseudo code in such a way that

the cycles needed to perform shifting are constant regardless of which configuration it is,

otherwise a non-deterministic cycle count might bring difficulties for pipelining. The whole

shifting is done in a multi-cycle fashion. In our 5 * 5 partitioning-based design, we will shift

two steps in one clock cycle. Although the latency of the multiplexing through this 2D ring

structure is long, it will not affect the overall performance due to loop pipelining, as the
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for ( x=0;x<pixel max ; x++)

for ( y=0;y<pixel max ; y++)

{// loop p i p e l i n i n g pragma

. . . . . .

}

(a) without flattening

x=0;y=0;

for ( idx=0; idx<pixel max ∗pixel max ; idx++)

{// loop p i p e l i n i n g pragma

. . . . . .

y++; i f ( y==pixel max ) {y=0;x++;}

}

(b) with flattening

Figure 3.13: Loop flattening for deep loop pipelining

multiplexing block can be implemented as a unit that has a multi-cycle latency but with a

one-cycle pipeline initiation interval (similar to many floating point IPs).

3.3.8 Loop Pipelining and Function Block Pipelining

The whole nested loop is pipelined to increase the throughput. Although many rewritings,

including the address generation and data multiplexing, complicate the logic and increase

the latency, they will not affect the performance much because the whole nested loop (over

Figure 3.14: Block pipelining/overlaping communication and computation
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Figure 3.15: Explicit control flow on overlapping communication and computation

different rectangles and image pixels) can be pipelined and can achieve an initiation interval

equal to one. Loop pipelining can be achieved by specifying loop pipelining pragmas within

the nested loop. The core loop we implement is a nested loop. Specifying loop pipelining

pragmas might only pipeline the inner loop. The pipelining possibility also lies between

different instances of the middle loop and even the outermost loop. We manually flatten

the loop to reduce the depth of the loop-nest. In this way, we can further reduce latency by

reducing the startup latency of the pipeline. The flattening process is shown in Figure 3.13.

This is a tool-specific rewriting. Some tools might be able to pipeline the whole nested loop

without manual flattening.

Moreover, we would like to overlap all the communications and computations so that

the hardware component is running the computations almost all the time. This can either

be viewed as function block pipelining (Figure 3.14) or realized as an explicit control flow

of multiple tasks (Figure 3.15). In Figure 3.15 DI1 means transferring data from the CPU

side to the SW/HW shared SRAM, and DI2 means transferring data from the SRAM to

the FPGA. DO2 means transferring data from the FPGA to the SRAM, and DO1 means

transferring data from the SRAM to the CPU. Comp is the computation part in FPGA.

This is an explicit control flow, and two hardware processes communicate with each other
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Figure 3.16: Using wider data to balance the use of the memory ports

via signals. Ping-pong buffers are used for both the layout corner array and the image partial

sum array, which serve as input data array and output data array for the computation of one

region respectively. 2X storage space is used for the ping-pong buffer while one is used in

the current computations and the other is used for sending/receiving data. Using ping-pong

buffers can ensure that the overlapping will not alter the data that is needed for current

computation. In Section 3.3.3, we found that the communication time is not greater than

the computation time, thus the overlapping can hide the overhead in the communications.

3.3.9 Using Wider Memory Access to Balance the Usage of Memory Ports

Besides the techniques shown in the previous subsections, we observe that the port accesses

for the kernel memory and the image partial sum memory are not equal. Even in the

pipelined loop, at each cycle we only get one unit of data from a partition of kernel memory,

but we use two ports for the image partial sum memory due to the accumulator. As each

memory block can have two ports, we try to use both of the two ports of the kernel memory.

But at the output side, the image partial sum memory needs to store a wider bit of data to

avoid port conflict. This would provide 2X more parallelism without further partitioning of

the memory blocks. Figure 3.16 illustrates the computation elements using wider data.

3.4 Leveraging C to HDL Compiler for Hardware Generation

The entire algorithm is written in C so that we can leverage up-to-date C to HDL translation

tools. We use AutoPilot [25], which is a commercial tool that can take ANSI C (within the
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synthesizable subset) as input and generate synthesizable and optimized RTL.

3.4.1 C-Based Hardware Generation and Optimization without Code Refine-

ment

The original core C code might be as short as shown in Figure 3.2 or Figure 3.3. However,

simply taking these codes into the translation tools might generate a hardware design with

even poorer performance than a software implementation, as the clock frequency of FPGA is

much slower than conventional CPU, and we need a much larger degree of parallelism to get

speedup. Automation tools can realize the parallelism via scheduling multiple operations in

the control data flow graph (CDFG) at the same cycle. Currently, these tools are not able

to extract system-level parallelism automatically, but they provide a set of pragmas that

work as hints or directives for invoking parallel execution. These include loop optimization

techniques such as unrolling and pipelining, which can increase the performance substantially

compared to a generated hardware design without using these techniques.

Loop unrolling and pipelining techniques are provided by the tool to optimize the per-

formance of the nested loop. Loop unrolling can increase the degree of parallelism if the

computation is not constrained by memory access of input data or there is some input data

reuse between iterations of inner loop bodies. Loop pipelining tries to start the execution

of the loop body of the next iteration before completion of the prior iteration, and thus can

greatly reduce overall latency of the nested loop. In our case, the unrolling will not help

much compared to the pipelined loop as inner loop bodies will need the data from a single

memory block with limited ports and there is not much data reuse for the loop. Pipelining

did help as it could generate a pipelined loop with a small initiation interval (one clock cycle

in our case). But as the execution of loop body without pipelining just uses around five to

six clock cycles, the pipelined design still can not completely compensate for the low clock

frequency of FPGA to get a decent speedup. AutoPilot recently added pragmas for memory

partitioning, but till now they still can not handle the indirect data access in our case very

well.
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AutoPilot also recently added pragmas to specify the ping-pong buffer-based IO interface.

Thus, the overlapping behavior can also be generated automatically.

3.4.2 Code Rewriting/Refinements for the Core Nested Loop

To break up the bottleneck at code generation for the data access, we conduct a set of

rewriting shown in previous subsections to increase the bandwidth and throughput for the

FPGA platform. The general idea is to partition the memory blocks to allow for concurrent

data access, and the access pattern needs to be exploited to develop a good partition scheme.

Also the addresses for the memory access after partitioning need to be mapped or generated,

and data fetched from different partitions needs to be multiplexed. Besides the memory

partitioning we presented in the previous section, another issue is interconnect. It is very

difficult for high-level tools to estimate the impact of interconnect at the high level, and in

most cases these tools ignore the interconnect issues and only use the delay of the functional

unit during scheduling. The code for output data multiplexing shown in Section 3.3.7 only

performs some small bit-width comparisons and assignment operations, which do not con-

sume much function unit delay in the modeling of the tools. Thus, tools might chain a lot

of comparison and assignment into one cycle. But the interconnect delay will significantly

degrade the frequency in this case. We manually add clock boundary in that code to make

sure that the number of shifting steps in one cycle is fixed.

Many of these rewritings are intrinsic for hardware design. We feel that the gap between

the software C code and the C code suitable for hardware generation still exists. It is

unlikely that a pure software designer can master these rewriting techniques, thus there

is still much room for synthesis tools to extract the systematic parallelism and automate

these refinements and rewritings, especially for users who are developing accelerators for

high-performance computing who might not be very familiar with HDL and the memory

hierarchy of FPGA.

However, even some rewriting and code tweaking can not be done automatically for the

time being, C-based design greatly shortens the development cycle and helps maintenance
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Table 3.1: Device information of EP2S180

ALUT M512 M4K M-RAM Total DSP/Multiplier IO Pins

blocks blocks blocks Memory Bits

143,520 930 768 9 9,383,040 96 / 384 1170

Table 3.2: Device utilization of the design with 5 by 5 partitioning

ALUT Memory Bits DSP/Multiplier IO pins Fmax(MHZ)

22,457 (15.6%) 2,972,876(31.7%) 0 (0%) 485(41%) 112.30

of the design. Most of these refinements are specified at algorithmic level using C. We then

use the C to HDL compilation tools to generate the RTL for the refined C code, and we

also enable the loop pipelining for the nested loop. The performance is greatly increased

with the help of large parallelism in the refined code. The core C algorithm is less than

one hundred lines of code, while after explicitly memory partitioning, the C code becomes

around a thousand lines of code, and the generated RTL contains several tens of thousands

of lines. Thus, using the C-based design shall result in a significant saving in terms of design

effort compared to a pure manual RTL design.

3.5 Experimental Results

We implement the algorithm on Xtremedata’s XD1000 development system [58].
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Figure 3.17: Speedup plot with accelerator, single kernel
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Figure 3.18: Speedup plot with accelerator, multiple kernels, N=200

Table 3.1 shows the device information of Altera Stratix II EP2S180 FPGA.

3.5.1 Speedup Measurement

We use a 5 by 5 partitioning scheme and it effectively drives 25∗2 = 50 processing elements.

Kernel array spans a 2000nm by 2000nm area and is a 400*400 array containing 16-bit

resolution fixed-point values. The window of image region we simulate has a size of 1000nm

by 1000nm, thus image partial sum array is a 40*40 array containing 32-bit resolution fixed-

point values. Layout corner array is an array containing up to 800 32-bit values and can

store N up to 200 rectangles. All these arrays are stored in the on-chip RAM of the FPGA.

The design has only around a 20% device utilization in logic ALUT and 30% utilization of

memory bits; it does not use any multiplier and DSP units. We run the design at 100MHZ.

Note that around 8% ALUT is used by the HyperTransport core and SRAM interface cores

in the framework, thus the design itself consumes less than 20K ALUT. Table 3.2 shows the

device utilization of our design.

We first conduct our experiment on a layout design with size 200um*200um with the

setting shown in Section 3.2.3 where we simulate each unit of image region of 1000nm by

1000nm, and the range of the kernel is 2000nm by 2000nm.

We generate the layout with different layout density N . Figures 3.17 and 3.18 depict

the speedup curve of the FPGA accelerated version versus the pure software implementation
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(a) Fixed point (b) Floating point

Figure 3.19: Contour graph using fixed-point or floating-point computation

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
−3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Absolute error

S
ca

le
d 

hi
st

og
ra

m
 c

ou
nt

Figure 3.20: Error distribution for the contour graph

Table 3.3: Running time comparison with or without accelerator, single kernel

N wo accelerator w accelerator speedup

5 4.16 1.44 2.89

10 8.01 1.44 5.56

25 19.94 1.46 13.65

50 39.88 2.61 15.27

75 59.80 3.86 15.49

100 79.74 5.16 15.45

125 99.64 6.41 15.54

150 119.63 7.71 15.51

175 139.45 8.99 15.51

200 159.44 10.27 15.52
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Table 3.4: Running time comparison with or without accelerator, multiple kernels, N=200

NumofKernel wo accelerator w accelerator speedup

1 159.44 10.27 15.52

2 274.27 20.55 13.34

4 606.37 41.12 14.74

6 885.71 61.70 14.35

8 1216 82.29 14.77

10 1572 102.80 15.29

12 1806 123.46 14.62

Table 3.5: Performance rate (Mpixel/s)comparison of various algorithm and platforms

N polygon polygon polygon 2D-FFT 2D-FFT FPGA 2D-FFT GPU

software FPGA GPU software [59] [60]

10 8.0 44.4 32.4 0.2 1.1 3.4

50 1.6 24.5 10.8 0.2 1.1 3.4

100 0.8 12.4 6.7 0.2 1.1 3.4
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running on the Opteron CPU. The software implementation runs on the same development

box of XD1000 with AMD Opteron 248 (2.2GHZ) 4G DDR memory and is compiled through

gcc -O3. The measured speedup factor is around 15. Note that for a very small N , e.g., N ≤

10, the speedup we get is small due to the overhead in communications. For a moderate N ,

we can keep a speedup around 15, as the communication time is smaller than the computation

time. We first just use one kernel for simulation. Table 3.3 shows the measured running

time and speedup with different N . Then we keep the N fixed and change the number of

kernels. That data is shown in Table 3.4.

One limitation of our current design is that we assume the three arrays used for computing

using one kernel can be fitted into the on-chip RAM of the FPGA. However, we are not able

to fit a larger partitioning with the current setting of input/output data size, although the

overall on-chip memory bits have not exceeded the memory bits available in the device.

The reason is that around 60% of the on-chip memory in the device is M-RAM, and each

M-RAM can store only one memory partition. The more partitioning we use, the larger the

percentage of partitioned arrays put into the remaining M-4K and M512 blocks, which will

increase the difficulty of fitting the design.

It is possible to fit the design and achieve a higher bandwidth and speedup with a larger

partitioning scheme, such as an 8 by 8 partitioning or even larger partitioning scheme, if we

use a smaller kernel array or decreased resolution. Another way is to further partition the

kernel array and computation into multiple parts and only load one part into the on-chip

RAM and only do the computation that uses that part for one time.

3.5.2 Accuracy of the Fixed-point Computation

Using fixed-point computation will not have a big impact on accuracy. We measured the

error of the approach versus the software implementation using all floating-point operations,

and the absolute error is usually within 1% for the pixels with bright intensity. The relative

error for pixels with very small/weak intensity, on the other hand, might be larger because

of the truncation error. Figure 3.19 shows two plotted pictures of a 1000nm by 1000nm
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region obtained via either software or hardware. We can see that almost no difference can

be observed in the contour graph. We also plot the error distribution of the contour graph in

Figure 3.20. From the figure, we see the maximum absolute error of all the pixels is around

10−3. Most of the pixels tend to have an even smaller error, which is in line with our analysis

in Section 3.2.2. Note that the maximum intensity of that contour graph is 1.83, and the

relative error is indeed very small.

3.5.3 Comparison with the FFT-Based Approach and Other Acceleration Tech-

niques

There is no prior published work on accelerating the polygon-based lithography image sim-

ulation. However, the 2D FFT-based image convolution has been extensively studied in

various platforms. We list them here for reference. Table 3.5 shows the measured/expected

performance rate on various platforms (and we assume only one kernel is used here). We use

FFTW [52] in the software implementation of the 2D FFT-based convolution. Note that our

setting uses different grid sizes for imaging and kernel, say a 5nm grid on the kernel/eigen-

vectors and layout corners and a 25nm grid for the simulated image, but FFT needs the

same grid size for computation. If we use the finer grid size among the two (the kernel grid),

it will report the effective performance rate shown in the column of the table. If we use the

coarser grid, the effective performance rate will be 25X to 30X larger, but it might lose some

accuracy in representing the objects and might cause some accuracy loss in the simulated

image. It might be more fair to compare all implementations with a same grid size for kernel

and image, yet we do not have data of the FPGA implementation for this setting.

From Table 3.5 we can see, for a moderate density N around 50 to 100, while the polygon-

based approach is not as fast as the FFT-based approach using 25nm in the object and

eigenvectors, it is much faster than the FFT-based approach using a 5nm grid. (Note that

the extra overhead for the FFT-based approach—conversion from the GDSII to the object

image, is not included.) In terms of accelerated simulation, our implementation can achieve

up to 15X speedup over the software implementation, while the FPGA accelerated FFT-
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. . . . . .

//Core computation us ing CUDA

for (n=blockIdx . x ; n<4N; n+=gridDim . x )

for ( x=theadIdx . x ; x<pixel max ; x+=blockDim . x )

for ( y=theadIdx . y ; y<pixel max ; y+=blockDim . y )

{

addrx=5∗x−rectx[n]+c ;

addry=5∗y−recty[n]+c ;

I k [ x ] [ y ]

+=(−1)n∗ ke rne l [ k ] [ addrx ] [ addry ] ;

}

. . . . . .

Figure 3.21: Pseudo-code for the core computation using CUDA

based 2D convolution only reported around 5X in the single precision and around 10X in

the 16-bit precision [59] using a Virtex-4 device. We also notice that recently FFT-based

2D convolution is shown to achieve very high FLOPS [60] on NVidia G80 with the help

of the CUDA Toolkit and CUFFT library; if we use the coarser grid size, it can achieve

90Mpixels/s.

As the algorithm in Figure 3.3 is naturally data parallel, we also implement the algorithm

using CUDA. CUDA mainly uses the SPMD (single program multiple data) model. Each

thread has a thread ID, and each thread can use the ID to access different data and perform

subsequent computation using the data. Figure 3.21 shows the part of the pseudo CUDA

code. The parameter blockDim.x and blockDim.y define the number of the threads in

one dimension and gridDim.x defines the number of thread blocks. This code will launch

gridDim.x∗ blockDim.x∗ blockDim.y threads. Further optimizations need to determine the

locations for the array data, which affects the effective internal bandwidth for the application.

We place the image partial sum array in the shared RAM in the threading block, place the

kernel array in texture memory, and place the layout corner array in global memory. The

51



overall size of the kernel array is too big to be put in the shared memory. Accessing kernel

data via texture caching might not give as large a bandwidth as the carefully partitioned

on-chip memory of FPGA, but the massive threading offsets the possible latency in memory

access.

We test the performance on a 8800GTS video card. The current measured speedup we

get for the design is around 8X. Consider the usage of a higher-end card e.g., 8800GTX,

GTX280 and more tuning possibilities, we expect the speedup for our litho design using

NVIDIA GPUs should be somewhat the same against our accelerator design using FPGA.

Note that GPUs also have their advantage on floating-point, while the FPGA design usually

needs to use fixed-point for area efficiency.

External IO bandwidth is critical for certain applications. In this application, Section

3.3.3 gives the estimate on the communication for the FPGA design. The communication

time is less than the computation time, and the overlapping scheme removes the communi-

cation from the critical path. For the GPU design using CUDA, the (external IO) commu-

nications are not overlapped with the computation, but the peak bandwidth of PCI-e x16 is

4GB/s and is sufficiently fast for this application. This makes the communication time only

consist of less than 1/10 of the total execution time.

In terms of power consumption, the power for this FPGA design reported by the Quartus

Power Analyzer tool is 6.2W and the peak power for this FPGA device is roughly 25W. The

TDP (thermal design power) of the Opteron 248 CPU is 95W, and the TDP of the 8800GTS

GPU is 147W. (It is difficult for us to measure the actual power for the CPU and GPU at

runtime, thus we use the TDP here.) We can see that the power consumption of either GPU

or CPU is much larger than the FPGA device. However, the FPGA coprocessor is plugged in

a dual CPU motherboard. If we count the power consumption of other parts in the system,

e.g., chipset, hard drive in the comparison, the gap on power consumption is not very large.

If we consider the possibility of using multiple devices (more than one FPGAs or more than

one GPUs), the gap will again become significant. In our design, the FPGA platform could

deliver similar performance with much less power consumption.
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In terms of ease of use, the CUDA toolkit, as a C development environment for NVIDIA

GPU, is very friendly to use; this makes the GPGPU platform very attractive. Users need to

rewrite their code to the SPMD form and tune the locations of array data for performance.

This tuning needs the deep knowledge of GPU hardware. Traditionally, using the FPGA for

computing has been much more difficult than GPU and CPU. C to RTL automation tools

help to bridge the gap, and will also make the FPGA-based computing platform increasingly

attractive. We share our experience to describe our litho design on FPGA using C to RTL

automation tools. We also point out that currently it also needs many hardware-oriented

refinements or tuning.

In terms of cost for reaching similar performance, high-end FPGAs for HPC markets

are still relatively expensive, thus FPGA designs need to demonstrate larger speedups to

justify a more competitive position. This is often the case for examples with high degrees of

bit-level parallelism and data/task parallelism. (Note that the design we present does not

have bit-level parallelism.)

3.6 Related Work

The use of the memory partitioning scheme is closely related to the conflict-free multi-port

memory (or parallel memory) design in multi-media processors. The modulo addressing

approach with a circular buffer which could get a row of data containing n elements from

n banks is presented in [56]. Parker’s skewed scheme [61] can support row, column and

diagonal parallel access patterns. Kuzmanov [62] considers the parallel access for a square

block of data. The access pattern in lithographic simulation (Chapter 3) is not square block

or diagonal, and can not be directly supported by those prior works. We extended the

modulo addressing approach [56, 62] to support our case. In these processor-based systems,

researchers try to design a circuitry to allow concurrent access for a specific access pattern.

Our design is implemented using high-level synthesis tools. Since the tool controls the

scheduling of data accesses, it thus has the freedom to select the parallel access patterns

[63]. Note that it is possible to perform data layout optimization to reduce our case to that
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of [62].

3.7 Conclusions

We present a design for accelerating lithography aerial image simulation using a polygon-

based simulation model. The adequate memory banking scheme for the on-chip memory can

improve the load-balance and ensure a decent speedup. A 5 by 5 partitioning design can

achieve around 15X speedup over software implementation. We also compare against other

algorithms and implementations on a GPU.

We see several opportunities for making improvements over the current design. One is

that the 2D-ring structure might have a large interconnect delay in the feedback path; thus

buffers need to be explicitly inserted, especially when there is a larger partitioning. Another

improvement concerns the assumption that at least one kernel can be loaded into the on-chip

RAM. This might not be always true for different settings. Thus, further partitioning of the

kernel and computation should also be implemented.

Current C to HDL code translation and synthesis tools have already enabled the designer

to write and maintain the algorithm and logic in high level, purely in C, and help reduce

the development cycle. However, our experience shows that a certain amount of effort is

still needed to find a larger parallelism through manual refinement of the C code. More

automation is needed for the extraction of systematic parallelism. Also for the mapping

of memory models, the compilation tool should not simply convert one array in C into a

memory block in HDL, but should provide more flexibility and optimizations on memory

models that could possibly do a better job of handling the specific addressing patterns in

our design.
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CHAPTER 4

FPGA/GPU Accelerated Fluid Registration

4.1 Introduction

Image registration tries to find a transformation function of the coordinate system of one

image into the coordinate system of another image. The ultimate goal is to align the two

images. In the clinical setting, we may want to perform image registration of the image

studies taken of the same patient to see the progressive development of the illness (e.g.,

tumors). Image registration is also broadly used for remote sensing and computer vision as

well.

While there are various kinds of image registration algorithms, we can normally break the

algorithm into four parts: transform, interpolator, metric, and the optimizer on the metric.

Figure 4.1 shows the block diagram of a typical image registration algorithm.

Transform declares the type of transforms (or coordinate mappings) from the coordinates

in the reference image to the coordinates in the target image space. An affine transform

models translation, scaling, rotation, shear mapping, etc. A rigid transform model is a subset

of the affine transform which only allows translation, rotation and reflection. The deformable

transform allows a more general transform formulation which can map a coordinate in the

reference image space into any coordinate in the target image space. Interpolator performs

interpolation in order to obtain the pixel value at the non-integer coordinates. Metric is

the objective we need to optimize. Typical similarity metrics for the two images include the

sum of squared differences (SSD), mutual information and cross-correlation, etc. In order

to restrict the transform or displacement functions, an additional regularization term on the

transform or the displacement is also needed. Typical optimization schemes include steepest
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TargetImageReferenceImage MetricTransformInterpolator OptimizerRegistration Method
 

Figure 4.1: Block diagram of image registration algorithms

descent, conjugate gradient, and some global optimization algorithms.

Pioneering work on FPGA-based medical image registration includes FAIR [64], FAIR II

[65] and the recent work by the same group that uses the sub-volume mutual information

based method [66]. FAIR and FAIR II use mutual information as the optimization metric.

Mutual information (MI) is particularly useful for multi-modality (e.g., CT vs. MRI) regis-

tration. Rigid transform is used in FAIR and FAIR II. Rigid transform can be used to find

the global alignments, but most distortions (such as respiration effects) in the imaging pro-

cess require a deformable transform. The sub-volume MI based method [66] hierarchically

divides the image studies into sub-volumes, and allows rigid transform to be applied on each

sub-volume. Clearly, this is a deformable transform because different sub-volumes may use

different rigid transforms. The drawback is that the transform is not smooth—in particular

for the voxels at the boundaries of a sub-volume.

We try to accelerate a PDE-based non-parametric registration called fluid registration.

Fluid registration regularizes the deformation using a fluid PDE equation, and it allows

registrations of large deformations. Fluid regularizers ensure that the transform function is

smooth. Currently, the speed of the algorithm cannot meet the clinical need. It may take

close to one hour to finish up a typical registration (image with size 2563, 500 iterations) on

a standard workstation. The application is both compute-intensive and data-intensive. This

work tries to accelerate the fluid registration algorithm on a multi-FPGA platform. The

highlights of our implementation are as follows. First, in the fluid registration algorithm

that we implement, the transform is described through a point-wise displacement function

u1, u2, u3 where a point at (i, j, k) will get mapped to coordinate
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((i − u1(i, j, k), j − u2(i, j, k), k − u3(i, j, k)); thus each voxel (rather than a sub-volume)

can move independently in a deformable fashion. Second, to accelerate this data-intensive

application, we employ several source-code level optimizations that include fixed-point con-

version, tiling, prefetching, data-reuse, and streaming across modules using a ghost zone

(time-tiling) approach. We evaluate the impact of these optimizations. Third, we use a

high-level synthesis tool to speed up the implementation process, and identify their pros and

cons through this complex case study. We have reference code that uses either sum of square

differences (SSD) or mutual information as the optimization metric. Currently, we apply the

registration on the image studies with the same modality; thus, we use simpler SSD as the

optimization metric.

4.2 Fluid Registration Algorithm Review

Fluid registration [67] performs smoothing on the velocity field v (or so-called incremen-

tal deformation field) rather than the total deformation field u. Solving large-scale PDE,

especially for 3D image registration, (e.g., Navier-Stokes PDE for fluid registration), is a

computationally expensive process. Bro-Nielsen et al. [68] proposed to use a scale-space

convolution filter to accelerate the smoothing process. Our baseline implementation is a

variant of the implementation in [68], except that we simply use a Gaussian filter to smooth

the velocity field. Gaussian filter is used in the optical-flow based Demons algorithm [69],

and also used in several more recent fluid registration works [70, 71].

The key mathematical derivations for fluid registration can be seen in [67, 68, 72]. Here we

briefly review them for completeness. The two image studies are S and T . The deformation

field is termed u. In each iteration, we first perform linear interpolation based on the

deformation field:

T̃ (x, t) = T (x− u(x, t)) (4.1)

We obtain the force field using the derivative of an L2 SSD metric:

f(x, u(x, t)) = −[T̃ (x, t)− S(x)]∇T̃ (x, t) (4.2)
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Figure 4.2: Dataflow between procedures

Instantaneous velocity v(x, t) can be obtained by solving the fluid PDE:

µ∆v(x, t) + (µ+ λ)∇div v(x, t) = f(x, u(x, t)) (4.3)

In our implementation, we simply use a Gaussian convolution as in [70, 71].

v(x, t) ≈ Gσ ∗ f(x, u(x, t)) (4.4)

We use the recursive Gaussian infinite impulse response (IIR) filter proposed by Alvarez and

Mazorra [73]. This IIR only needs two MADD operations per dimension. This is the fastest

3D Gaussian filter we know of. It is one magnitude faster than the FFT-based convolution

used in [71], and should also be faster than direct convolution and other recursive Gaussian

IIR, e.g., those by Young [74]. Note that an additional normalization step can be fused into

the subsequent computation procedures. After that, we obtain an updated deformation field

by solving the PDE du(x, t)/dt = v(x, t)− v(x, t)∇u(x, t), using an explicit Euler scheme:

R(x, ti) = (v(x, ti)− v(x, ti)∇u(x, ti)) (4.5)

u(x, ti+1) = u(x, ti) + (ti+1 − ti)R(x, ti) (4.6)

The advancement of timestep needs to be bounded so that (ti+1 − ti) max∥R(x, ti)∥2 does

not exceed the maximum displacement allowed in one iteration.

4.3 Module-Level Implementation

The whole fluid registration in our baseline contains the following computation kernels: in-

terp which corresponds to Eq 4.1; updateF which corresponds to Eq 4.2; updateV which
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corresponds to Eq 4.4 and updateU which corresponds to Eq 4.5 and 4.6. The registration

algorithm is an iterative process that repeatedly calls these procedures. The dataflow be-

tween the procedures is shown in Figure 4.2. When non-core parts (file IO etc.) are excluded,

it takes around 6s per iteration on an Intel Xeon 2.0GHZ CPU. Approximately 45% of the

time is spent on Gaussian smoothing, 35% on displacement update, 15% on interpolation,

and 5% on force calculation.

4.3.1 Gaussian Smoothing

Gaussian smoothing essentially performs

Ã = Gσ ⊗ A (4.7)

where Gσ is a Gaussian function and ⊗ is the convolution operator. The 3D Gaussian

function is

Gσ(x, y, z) =
1

(2πσ2)
3
2

e−
x2+y2+z2

2σ2 (4.8)

There are many algorithms and implementations of Gaussian smoothing. Roughly these can

be divided into three categories: FFT-based convolution, direct convolution, and recursive

impulse infinite response (IIR) filtering.

The FFT-based method operates on the frequency domain. It is a very accurate im-

plementation but typically involves more computations. The complexity of the FFT-based

convolution is O(NlogM), where N is the number of pixels/voxels and M is the radius of

the convolution kernel. Direct convolution performs weighted sum operation for each out-

put pixel/voxel. The kernel size is normally selected in proportion to the variance σ of the

Gaussian filter. The complexity is O(NM) because the number of operations per output

pixel in the direct convolution method grows proportionally with the kernel size. For small

convolution kernels, direct convolution is preferable because the sweeping for weighted sum

computation exploits a good data locality. However, the extra computation involved quickly

outweighs the benefit when the convolution radius is large. On the other hand, the compu-

tation involved in the recursive IIR does not depend on the size of Gaussian kernels. Famous

recursive Gaussian IIR algorithms include Deriche-style IIR [75] (12 MADDs per dimension)
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Figure 4.3: 1D IIR PE

// Input : array u tmp

//Output : array u tmp a f t e r in−p lace update

//Backward :

u [ 0 ] = u [ 0 ] ∗ c1 ;

for ( i = 1 ; i < N−1; i++)

u [ i ] = u [ i ] + u [ i −1] ∗ c2 ;

//Forward :

u [N−1] = u [N−1] ∗ c1 ;

for ( i = N−2; i >= 0 ; i−−)

u [ i ] = u [ i ] + u [ i +1] ∗ c2 ;

Figure 4.4: 1D Gaussian IIR

and Young-van Vliet IIR [74] (6 MADDs per dimension). CUDA SDK provides an exam-

ple that implements 2D Gaussian IIR based on Deriche’s algorithm. In this chapter, the

baseline implementation features a much smaller computation (2 MADDs per dimension).

The algorithm is proposed by Alvarez and Mazorra in [73]. They employ the relationship

between Gaussian smoothing and a heat equation PDE to provide a very fast smoothing

algorithm. The complexity is O(N). The implementation techniques presented here should

be applicable to other IIR as well.

Recursive IIR smoothing works through the sweeping of the 3D image in the three di-

mensions (or six directions) sequentially. Suppose the image size is 2563, we need to perform

2562 1D IIRs in each dimension.
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Our 1D IIR uses the recursive computation in each direction:

y(n) ≈ a ∗ x(n) + b ∗ y(n− 1) (4.9)

where y(n) denotes the new signal sequence that is generated by the IIR, and x(n) means

the input signal sequence. Figure 4.4 shows the code for 1D IIR.

We design the hardware for the Gaussian IIR in a way that there is a large number

of parallel PEs that talk to different memory ports. Each FPGA is exposed to 16 virtual

memory ports, and each processing element (PE) talks to 2, thus we realize 8 parallel PEs.

Each PE (Figure 4.3) is a hardware unit that can compute a group of 1D IIR in an interleaved

fashion. (We need to do such interleaving to hide the latency of the MADD unit.) Each

PE is composed of three components. One component is the address generator hardware

unit that keeps sending memory access requests into one memory access port. In parallel

with the address generator, the main task-level pipeline includes the backward processing

unit and forward processing unit. The backward processing unit reads memory responses,

performs computation, and writes data into the on-chip BRAM (ping-pong buffer). The

forward processing unit reads data from the ping-pong buffer and sends requests to another

memory access port. The backward processing unit and the forward processing unit work

in parallel. The computation within the forward processing unit and backward processing

unit are deeply pipelined using standard loop pipelining techniques. We realize 8 PEs on

each FPGA. Our multi-FPGA design incorporates 32 PEs and utilizes all the memory access

ports available in the platform. Additional implementation issues of this module on multi-

core CPU, many-core GPU, and FPGAs are shown in [76].

4.3.2 Displacement Update

This is a kernel that mainly performs stencil data access and performs some finite difference

calculation. The input of this module is the deformation field u and velocity field v, the

output of this module is the updated deformation field. This corresponds to Eq 4.5 and 4.6.

To compute ∇u1 at index (i, j, k), we need to compute:

∂u1
∂x

(i, j, k) = (u1(i+ 1, j, k)− u1(i− 1, j, k))/2 (4.10)
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Figure 4.5: Displacement update

∂u1
∂y

(i, j, k) = (u1(i, j + 1, k)− u1(i, j − 1, k))/2 (4.11)

∂u1
∂z

(i, j, k) = (u1(i, j, k + 1)− u1(i, j, k − 1))/2 (4.12)

The equations for ∇u2 and ∇u3 are similar.

We assign two memory ports for reading u, two memory ports for reading v and two

ports for writing u. The total memory ports available for one FPGA is 16. The computed

u is also streamed to the interpolation module. This module is implemented by three inde-

pendent components: the address generator for u, the address generator for v and the main

computation unit. A small scratchpad is instantiated inside the computation unit to capture

the data reuse opportunities. A diagram for this module is shown in Figure 4.5.

4.3.3 Interpolation

We need to access 2 by 2 by 2 voxels of the target image T to compute each voxel in the

interpolated image. This module is very data-intensive. We use seven external memory

access ports for this module. Six ports are used to access target image T , and another port

is used to write interpolated image interpT . The computed interpT is also streamed to the

force calculation module. All the 3D objects used in our implementation are stored using 32

bits. For each voxel, we send four requests to the request FIFO. At the response FIFO side,

four units of 64-bit data are fed into the interpolation unit. An obvious possible optimization

is to use 16-bit or 8-bit to store the target image, so that we can fetch the required data

using fewer requests.
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Figure 4.6: Interpolation module

This module is implemented using two components. One component reads in the data

that is streamed by the displacement update module and computes the addresses for voxel

access. Another component performs the weighted sum computation for interpolation. Both

the address generation and weight calculation are computed based on the displacement

value. Because of this, the displacement is also streamed from the address generator into

the weighted sum computation unit. The diagram of this module is shown in Figure 4.6.

4.3.4 Force Calculation

This is another kernel that mainly performs stencil data access and finite difference calcula-

tion. One port is used to read S and two ports are used to write f . The overall architecture

is very similar to that of displacement update (although the actual computation performed

is different).

4.3.5 Initial Implementation

Our initial implementation uses the high-level synthesis tool AutoPilot [25] to obtain a

baseline design. Modifications of the code are restricted to those that are related to platform-

specific external memory interfaces. External data accesses are converted to corresponding

memory requests/responses directly. Functional modules are generated one by one and

are invoked sequentially. Floating point is used throughout the design. Although it works

correctly on the board, that design takes around 1s per iteration. AutoPilot does not perform

sharing across function (module) hierarchies, so the floating point units will be instantiated
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for each module. Because this causes some fitting issue, we need to downsize the computation

modules. In the next section we will talk about several optimizations that we did to improve

the performance Note that the diagrams for the modules we described in this section already

reflect some of our optimization schemes.

4.4 Optimizations

The algorithm is both compute-intensive and data-intensive. When we are using floating-

point as the data representations, the implementation is more bounded by area. After we

convert the algorithm into fixed-point, it is then bounded by off-chip memory bandwidth.

We use several techniques to reduce the total data traffic to save the bandwidth.

4.4.1 Algorithm Adaption

4.4.1.1 Conversion to Fixed-Point Computation

The whole registration process is an iterative procedure, and the accuracy can be a trade-

off with slightly more iterations. Note that a similar study [77] was conducted for other

application domains.

We manually convert the code from floating-point to fixed-point. We perform the range

analysis on each procedure to obtain the integer bits of the fixed-point data. Because of the

iterative nature of the algorithm, conventional static precision analysis will not apply as the

errors may accumulate rapidly. In our implementation, we set the fractional bits to be 10.

The convergence curves with different fractional bits are shown in the experimental results

section.

AutoPilot provides arbitrary precision integer (APInt) and arbitrary precision fixed-point

(APFixed) to describe integers and fixed-point data format. We use APInt to describe our

design.
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4.4.1.2 Removal of Reduction Steps

The original code needs to compute max∥R(x, ti)∥2 to determine the timestep. Max opera-

tion is a reduction process which breaks time-tiling (discussed in subsection 4.4.4 and 4.4.5).

We instead use a constant timestep in our implementation. The timestep is parameterized

through user-input.

4.4.2 Prefetching

Off-chip memory access has a long latency. The memory system used in Convey HC-1

optimizes for the scatter-gather type of random access rather than burst access. We need to

employ prefetching to obtain good memory-system performance.

In our implementation, we model each memory access port with a request FIFO and a

response FIFO. We decoupled the “helper threads” that are responsible for sending memory

requests for reads, and the “compute threads” that obtain data from response FIFOs. This

way, the helper threads can keep sending as many requests as possible (until the FIFO is

full). Effectively, the helper thread is performing the prefetching of the required data, and

the response FIFO serves as the prefetch buffer. Note that our helper thread only performs

prefetching for reads. Off-chip memory writes are still performed by the compute threads. In

the Convey system, memory write requests do not generate responses in the response FIFO.

The address generator (or helper thread) and the computation unit (compute thread)

are realized by functions with no dependence between each other. However, the scheduler of

HLS may or may not schedule them precisely at a same state. If they are not scheduled to

execute at a same state, deadlock may happen. In our implementation, we use some tool-

specific tricks, where we create one additional function hierarchy that includes the address

generator and the computing functions, to ensure that the parallel functions are scheduled

at a same state.
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Figure 4.7: Ghost-zone in 2D

4.4.3 Data Reuse

The computation of ∇T̃ (x, t) and ∇u(x, ti) involves finite difference stencil access. A reuse

buffer is used to decrease the bandwidth pressure. The stencil used in our application is

a typical 7-point stencil where we need to access voxels with indexes (i, j, k), (i + 1, j, k),

(i− 1, j, k) (i, j +1, k),(i, j− 1, k),(i, j, k+1) and (i, j, k− 1) to perform the finite difference

computation. The size of the reuse buffer can be kept as 3*256*256 in the simplest case,

or three 2D slices. (The maximum image we deal with is 2563.) When we move on to

process a new 2D slice, we discard the oldest slice in the reuse buffer and write the newly

fetched data from the response FIFO into that slice. Similar techniques are used in many

applications in literature that use stencil access such as [78, 79]. However, the reuse buffer

that holds three 2D slices is too large to fit or get a good timing closure. In our final

implementation, the reuse buffer is allocated as 3*20*256, where we do spatial tiling on one

iteration dimension as well. We observed a 2X performance improvement for the 3D IIR, and

4 to 5X performance improvement for the stencil computation modules (displacement update

and force calculation), because the amount of external data accesses is reduced significantly.

The reuse buffer is referenced using addresses involving mod operations. (Note that we

use a circular increment scheme to realize the mod operation.) The memory partitioning

optimization pass inside AutoPilot fails to analyze it properly but treats the data accesses

as generic indirect accesses. We manually partition the reuse buffer to a number of banks

to allow concurrent accesses. This motivates research to improve the memory partitioning

passes for mod operations [80].
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4.4.4 Streaming Across Modules

If we invoke the four procedures in a sequential fashion, each hardware unit only gets a 25%

utilization on average. Instead, we stream the newly computed data from one module to

another module, so that several modules can execute in parallel. Because of the nature of

stencil access, the consumer module can only start computation when a few slices in the

reuse buffer have been filled up.

The Gaussian IIR module performs sweeping in three dimensions. Although that pro-

cessing step is not a reduction step, the data access pattern is neither sequential access nor

stencil access. Currently, the streaming only occurs in the remaining three modules. This

also translates to an obvious performance enhancement. The initial implementation invoked

the three modules in a sequential way, and we now allow them to work in parallel. This is

important for FPGA-based designs, because it needs to combine data parallelism with deep

pipelining or streaming to get good performance.

4.4.5 Time Tiling Using a Ghost-Zone Approach

We have two procedures that involve 7-point stencil access. For one procedure that works

on a input data tile with size 256*20*256, an output data with size 254*18*254 can be

generated. When this amount of data passes through another stencil access procedure, it

will generate an output data with size 252*16*252. This effect is called ghost-zone, where the

output data size gradually decreases because of the stencil access. Note that the ghost-zone

approach involves the recomputation of some intermediate data to avoid communications and

synchronization. We adapt this approach in our implementation. The ghost-zone approach

is initially used for optimizing CUDA programs in [81]. A diagram that illustrates a 2D

ghost-zone is shown in Figure 4.7. Note that our case is in 3D. With the ghost-zone tiling

and streaming, the effective performance of the three modules except 3D IIR (displacement

update, interpolation and force calculation), is improved by around 2X.
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4.4.6 Towards Automated Code Generation

We use the HLS tool AutoPilot to obtain the implementation. The good thing is that this

enables us to design using C rather than RTL, and it produces correct RTL. The feature

we use extensively in this implementation is loop pipelining. Note that AutoPilot only

generates computing IPs. We also work with Convey to develop platform-specific interfaces

(RTL wrappers and C interface headers) for AutoPilot. These can be viewed as a one-time

process and can be reused for other designs. However, as the optimization steps described

by the previous subsections are performed manually, this is still a very tedious step. This

case study motivates us to do further automated code generation at task level to obtain an

efficient implementation.

In the registration implementation, we manually perform many optimizations such as

tiling, prefetch, data reuse and streaming, etc. There are several academic efforts that may

aid our process, but they are perhaps not directly applicable. KPNGen [82] derives process

networks from sequential C code. It does not perform tiling, and thus it may generate very

large FIFO buffers (may not fit) for our registration design. We use tiling with the ghost-

zone approach to resolve the issue. The ghost-zone approach is initially used for optimizing

CUDA programs in [81], and the corresponding compiler approach is called overlapped tiling

[83]. The work in [84] combines the optimization for loop-level data parallelism and data

reuse. However, it primarily works for a single loop nest. In our case, we need to work with

several modules that are streaming with each other. The sliding window optimization in [78]

works in the 2D case and also does not consider inter-module streaming. Potentially, one

may also leverage the automated prefetching and data reuse analysis in [55, 85, 86].

4.5 Experimental Results

We implement the whole algorithm on a multi-FPGA platform Convey HC-1. The design is

described using synthesiziable C code and then converted to Verilog RTL using AutoPilot

version 2010.a.3. The RTL is connected to memory interfaces and control interfaces provided
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Figure 4.8: Accuracy comparison

by Convey. Xilinx ISE 11.5 is used to obtain the final bitstream. A single bitstream is used

to configure all four user FPGAs. Different FPGAs work on different data tiles in a way

similar to the SPMD (single program multiple data) scheme.

4.5.1 Accuracy Comparison

Using a constant time-step may change the curve of convergence. When the time-step is

chosen properly, the algorithm converges in similar (or even smaller) number of iterations. In

general, an implementation that uses the dynamic time-steps is more stable and should also

converge faster. Our fixed-point conversion results in only marginal accuracy degradation.

We plot the curve of SSD in Figure 4.8. We can see that a fixed-point implementation

using 10 bits in the fractional part has an SSD curve that is very close to the curve of the

floating-point implementation. An implementation that uses 7 bits for the fractional part

has noticeable error and slower convergence.

4.5.2 Performance of Our Implementation

Typically, we need to run hundreds of iterations to get a good registered image. We run

200 iterations in our experiment. One of our test image sets of size 2563 is shown in Figure

4.9. Note that because the images are 3D, we can only show a few 2D slices. S and T are
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Table 4.4: Area results of our design

Utilized Total Utilization

Available Ratio

LUT 84,246 207,360 40%

FF 79,456 207,360 38%

Slice 32,082 51,840 61%

BRAM 176 288 61%

DSP 72 192 37%

the two images we register, interpT is the output image. As one can see, the registered

output image of FPGA-based implementation (column 4) is very close to the reference one

(column 3). Note that interpT is getting closer to S with the registration. In the beginning

of the registration, the output image is the same as the second column. Overall, we obtain

around a 35X speedup compared to single-threaded CPU implementation, and 9X speedup

compared to 4-thread CPU implementation. We also implement the algorithm on a many-

core GPU (Tesla C1060). The speedup is comparable to our multi-FPGA implementation.

Data are shown in Table 4.3. The results shown in the table are the averaged value for a

single iteration.

Note our Gaussian IIR implementation is faster than the GPU implementation. Each

1D IIR needs a small working set (256 elements in our case) to capture the data reuse. This

limits the available parallelism that we can put in each GPU stream multiprocessor. If we

do not exploit this reuse on the GPU, we can get a faster implementation. However, that

results in 2X bandwidth pressure and is still slower than our multi-FPGA implementation

that exploits the reuse. The results are shown in Table 4.1. Note, in each iteration of fluid

registration, we need to invoke the 3D Gaussian IIR three times as we have force fields f1,

f2 and f3. The data shown in Table 4.1 are for a single 3D IIR.

For the remaining modules, the on-chip scratchpad in the GPU serves as the reuse buffer.

It is hard to realize the streaming approach in the GPU that we’ve realized in the FPGAs.

However, the ghost-zone approach within a stream multiprocessor like [81] still applies.
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Moreover, the GPU has dedicated texture caches and texture units to perform 3D interpo-

lation. Thus the GPU implementation of the remaining modules is a little faster than our

multi-FPGA implementation. The results are shown in Table 4.2.

The area results of our FPGA design are listed in Table 4.4. Note these numbers are for

a single FPGA bitstream. Our design runs at 150MHz while the memory controller runs at

300MHz.

4.5.3 Power Consumption

The Xilinx power analyzer reports that each FPGA design consumes 22W. So the 4-FPGA

design consumes 88W. The TDP of the Tesla GPU card is around 200W. Our FPGA imple-

mentation delivers a slightly better performance while consuming less than half of the power

of the Tesla GPU card.

4.6 Conclusions

We present the implementation of a deformable medical image registration algorithm called

“ fluid registration” on the multi-FPGA platform. We detail our application-specific opti-

mization strategy to make the design competitive. We also show that commercial HLS tools

still need to embrace more automation to further enhance design productivity.
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CHAPTER 5

FPGA/GPU Accelerated CT Reconstruction using

Compressive Sensing

5.1 Introduction

Computerized tomography (CT) plays a critical role in modern medicine. However, the

radiation associated with CT is significant, and scientists are exploring various approaches

to reduce that. Compressive sensing methods are among the mathematical approaches that

can potentially enable CT imaging with less radiation exposure but without sacrificing image

quality.

The conventional image reconstruction method used in CT is the Feldkamp-Davis-Kress

(FDK) algorithm, and currently it is still widely deployed by the manufacturers in clinical

settings. The computation kernel of the FDK algorithm is called filtered back projection

(FBP). 2 Many researchers have proposed accelerated engines for these algorithms using

GPUs or FPGAs [87, 88, 89, 90, 91], and reported remarkable speedups. The FDK/FBP

reconstruction directly calculates the image in a single backward reconstruction step using

analytical expressions. However, when we reduce the radiation dose, that presents a case of

incomplete data. the FDK method is no longer suitable, or generates a very poor-quality

image. Iterative reconstruction or compressive sensing techniques are much more insensitive

to noise and provide greater flexibility. The data can be collected over any set of lines, the

projections do not have to be distributed uniformly in angle, and can be incomplete.

Various algorithms and implementations of iterative reconstruction or compressive sens-

2FBP generally only works for 2D images. For parallel beam CT [87], FBP can be applied since images
can then be easily decomposed into 2D slices.
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ing are proposed, with different objectives or regularization terms. However, many of these

algorithms, such as Expectation Maximization (EM)[92], Simultaneous Algebraic Recon-

struction Technique (SART)[93], etc., share a common computation procedure (with minor

differences in scaling etc.), that includes a forward ray tracing step (forward projection)

and a backward ray tracing step (backward projection). Prior work used GPU [94, 95] to

accelerate iterative reconstruction like SART, and obtained good speedup over the CPU.

However, prior FPGA implementation of iterative reconstruction is scarce with an exception

in [96]. But that work also just implemented backward projection in FPGA and left forward

projection to GPU.

This chapter presents an FPGA implementation of an iterative reconstruction algorithm

called EM+TV [97] that is a variant of the classic EM algorithm [92]. The computation

involved in the ray tracing steps is simple MADD; however, a lot of off-chip random access

occurs. Moreover, the computation and the required data access for one ray is proportional

to the intersection length between the ray and the object. This also poses a load balancing

issue. Because of these facts, we think this application is a natural fit for FPGA-based

custom computing, compared to the massive parallel GPU device which prefers coalesced

data access and balanced load. We implemented the ray-tracing forward projection and

backward projection onto the Convey HC-1ex multi-FPGA platform. The remaining stencil

computation kernel for total variation regularization (TV) is left to GPUs which will simplify

the design of our FPGA hardware. The highlight of our implementation includes:

• Shared hardware module that can support both forward projection and backward pro-

jection.

• Separation of the machine configuration and the tracing engine.

• Better performance in terms of latency or throughput than GPU implementation on

Tesla or Fermi.

• A working implementation done at C-level by using AutoESL high-level-synthesis tool

from Xilinx. Caveats about using the tool to target the high-performance reconfig-
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urable hardware are documented in detail.

5.2 EM+TV Algorithm

5.2.1 Algorithm Overview

At high-level, the reconstruction tries to recover signal (vector or images) x from measure-

ments b where Ax = b. A is a M × N matrix describing the transform from the original

image to measurements; M is the number of measurements, and N is the dimension of the

image. The system is underdetermined as we want to reconstruct the whole image using few-

er samples (thus reducing the radiation). Least-square methods optimize for the ||Ax− b||2,

and are easier to compute through the pseudo-inverse. However, the resulting solution is

usually not sparse. Compressive sensing is the approach that tries to find a sparse solution

via minimization of 1-norm ||Ax − b||1 or 0-norm ||Ax − b||0 or other objectives that can

maintain the sparsity.

Figure 5.1: Ray tracing in forward projection

Our baseline compressive sensing implementation is called EM+TV, a recent development

proposed in [97] which is based on the combination of: 1) expectation maximization (EM)

[92], an iterative method that maximizes the likelihood function (in our case, we use that to

perform CT image reconstruction under a Poisson noise assumption); and 2) total variation

(TV) regularization, which has been used to preserve edges, given the assumption that most

images are piecewise constant.
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EM+TV reconstruction [97] tries to solve the non-linear optimization problem:

min
x

∫
Ω
|∇x|+ α

M∑
i=1

((Ax)i − bi log(Ax)i)

xj ≥ 0, j = 1, · · · , N (5.1)

The first term is the TV term and the second is the EM term. We omit the mathematical

derivation details which can be found in [97]. The constraint optimization problem is solved

using the following semi-implicit iterative scheme.

Input : x0 = 1 ;

for Out = 1 : N do

x̃0 = xOut−1 ;

for k = 1 : 1 : K do

x̃k = EMupdate(x̃k−1) ;

end

xOut = TV update(x̃K) ;

end

Figure 5.2: EM+TV block diagram

Figure 5.2 shows the overall flow chart for the EM+TV algorithm. It has two updating

modules, EMupdate and TVupdate. EMupdate is more critical because it occurs in the
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inner-most loop. EMupdate is trying to perform EM iterations

x̃k+1
j =

∑M
i=1 (aijyi)∑M

i=1 aij
x̃kj (5.2)

where

yi = (
bi

(Ax̃k)i
) (5.3)

Inside the EMupdate kernel, we need to do forward projection to obtain Ax̃k, perform

element-wise division to obtain y, do backward projection to obtain ATy (or
∑M

i=1 (aijyi)),

and then obtain the updated value x̃k+1
j using element-wise scaling. Note that because matrix

A is very large and sparse, A is never constructed explicitly. A ray-tracing based technique

is used to compute the forward projection and backward projection. Figure 5.1 illustrates

the ray-tracing technique in a forward projection.

Details for TVupdate are omitted as EMupdate occupies the majority of the computation

time. The tracer engine presented below is responsible for computing the forward projection

Ax and backward projection ATy. This algorithm is much more computationally intensive,

because it needs to invoke forward and backward projection repeatedly (100*3 times in

the setting of Figure 5.2). The conventional FDK algorithm only has a single backward

projection.3

5.2.2 Tracer Engine

In the EM+TV 3D application, forward and backward projections have the same iterative

hierarchical structure. The first level of iteration comprises the number of views (sources of

the ray), and the other two layers consist of the array of 2D detectors/sensors. The ray tracer

engine works on one source and detector pair and is the computation kernel of both forward

and backward projections. As illustrated in Figure 5.3, the ray tracer is composed of two

parts: tracer precal and tracer loop. For forward projection and backward projection, the

tracer has a similar computation structure. The tracer precal part is exactly same. The only

3Scaling required by our application is also fused into the projection in our implementation. However,
different algorithms, e.g., SART vs EM use different scaling. We try to keep our discussion on ray tracing
as general as possible and ignore the scaling in the following sections of the chapter.
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difference is in tracer loop. In forward projection, the tracer loop will read pixels along with

the ray and output one sino value for each ray; while in backward projection, the tracer loop

will read and update pixels along each ray.

The code of the forward and backward projection is shown in Figure 5.4 and 5.4. The

difference between backward and forward projection is quite small. The code first finds out

the direction for the next voxel in the ray, then it performs a MADD operation to accumulate

the sinogram or update the image. Note λ − λ0 is essentially the coefficients for matrix A

and this coefficient is computed on-the-fly. Then it proceeds to the next point in the ray.

The forward projection tries to compute a line integral, while the backward projection tries

to distribute a line integral into the points on the ray. The tracing stops if the voxel hits the

boundary of the object.

Figure 5.3: Ray tracer block diagram

5.2.3 Intersection Computation

The tracer precal() function is responsible for computing the intersection point of the ray

with the object and finding out the parameter required for the tracing. Given a source

coordinate (sx, sy, sz) and destination (dx, dy, dz), the procedure finds the intersection point

with the object which is a cube 0 ≤ x < Nx, 0 ≤ y < Ny, 0 ≤ z < Nz.

The procedure first needs to find the intersection ratio in each dimension.

λxmin = min(
0− sx
dx − sx

,
Nx − 1− sx
dx − sx

) (5.4)

The equation above computes the x-dimension intersection ratio that is closer to the source.

And similarly

λxmax = max(
0− sx
dx − sx

,
Nx − 1− sx
dx − sx

) (5.5)
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for a l l the views

for a l l the d e t e c t o r s

{

tracer precal(); // f i nd i n i t i a l ray parameters

// λx ,λy ,λz ,λ0 , vx ,vy ,vz , Lenx ,Leny ,Lenz , signx , signy , signz

i f (mode==0) tempsino=0; // forward p r o j e c t i on

else value= sinogram ( . . ) ; // backward p r o j e c t i on

for (i = 0; i < Nx +Ny +Nz; i++)// ( t r a c e r loop )

{

i f (λx <= λy && λx <= λz ) λ = λx;

else i f (λy <= λz ) λ = λy;

else λ = λz;

//MADD computation

i f (mode==0) // forward p r o j e c t i on

tempsino+ = imageData(vx, vy, vz) ∗ (λ− λ0);

else // backward p r o j e c t i on

imageData(vx, vy, vz)+ = value ∗ (λ− λ0);

λ0 = λ;

//Find the next po in t on the ray

i f (λx <= λy && λx <= λz ) {λx+ = Lenx; vx+ = signx;}

else i f (λy <= λz ) {λy+ = Leny; vy+ = signy;}

else {λz+ = Lenz; vz+ = signz;}

// Exi t cond i t i on s

i f (vx < 0||vx > Nx − 1) break ;

i f (vy < 0||vy > Ny − 1) break ;

i f (vz < 0||vz > Nz − 1) break ;

}

i f (mode==0) sinogram ( . . )= tempsino ;

}

Figure 5.4: Ray Tracing Core Engine
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The routine then finds out the min and the max of the ratios.

λmin = max(λxmin, λymin, λzmin) (5.6)

λmax = min(λxmax, λymax, λzmax) (5.7)

The ray intersects with the object if and only if λmin < λmax. After we are sure that

the ray intersects with the object, we can then compute the near-end integer intersection

coordinate (vx, vy, vz) using λmin. Other parameters λx,λy,λz,λ0, used in the tracing loop

can be derived based on the coordinate (vx, vy, vz). Lenx,Leny and Lenz are determined by

the reciprocal of distance vector (dx − sx, dy − sy, dz − sz). signx, signy, signz are the signs

of the distance vector. The actual code is lengthier because we also need to consider a set

of special cases where division-by-zero occurs.

5.3 Overview of the Design

5.3.1 Ray-by-Ray Parallelism vs. Voxel-by-Voxel Parallelism

Recall that in the forward projection, we need to read the voxel values along the ray, and

update (accumulate) the corresponding sinogram value based on voxel value. In the backward

projection, we need to update (accumulate) the voxel values on the ray based on the sinogram

value associated with the ray. The code shown in Figure 5.4 is already suggesting a ray-by-ray

tracing approach.

However, we are aware of that there are two approaches to parallelizing the ray-tracing

forward/backward projection. One is called the ray-by-ray approach like Figure 5.4, the

other one is called the voxel-by-voxel approach. For the forward projection, a ray-by-ray

approach is preferred, because the accumulation of different signogram data for each ray is

independent, and we can avoid the concurrent update on the (shared) sinogram data. For

the backward projection, the voxel-by-voxel approach can avoid the access conflict. However,

since the forward and backward projection share a lot of similarity, we use the ray-by-ray

approach to enable the sharing of the hardware.
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Using the ray-by-ray approach also enables the isolation of the machine configuration and

the tracing engine. There are various kinds of source/detector configurations in CT, such as

fan-beam, cone-beam, parallel-beam, etc. If we use the voxel-based approach, the computa-

tion required to obtain the list of sinograms that contribute to voxel heavily depends on the

machine setups. We use a ray-tracing approach that realizes ray-by-ray based parallelism.

Once the set of rays is known, the hardware for tracing can be reused. Figure 5.4 depicts

the code for a single tracer. Using this architecture, it is much easier to migrate from one

machine setup (e.g., cone-beam) to another (e.g., fan-beam). In Section 5.3.3 we describe

how we cope with access conflicts for backward projection.

5.3.2 No Cache Interleaved Access

The ray tracing procedure has a lot of random data access. Those accesses present a certain

degree of reuse; however, these reuses are hard to capture if we do not use a cache-based

system. Note that it is also possible to use the BRAM scratchpad to capture reuse within the

application design. But that requires deep knowledge of the geometry of rays and how they

intersect. On the contrary, our architecture does not make that assumption. It is tedious

to implement the cache in FPGA, and it is also an active research area. Our target multi-

FPGA platform, Convey HC-1/HC-1ex, features a high external memory bandwidth through

interleaved data access. Each system has four user FPGAs. Each FPGA is presented with

up to 16 (virtual) memory channels. Most existing FPGA computing boards prefer burst

access. In the Convey system, parallel data access is not done though a burst access, but

rather through interleaving. Requests in different channels can be processed in parallel if

they fall into different banks. The system has 16 DIMMs and 1024 banks in total in the

memory system. So the possibility of the bank conflicts is low if the parallel accesses are

quite random. Such an interleaved memory design is also seen in the on-chip scratchpad

memory of Nvidia GPUs. A fair amount of BRAM is already used to build up the memory

interface crossbar and FIFOs. Because the bandwidth of the external memory is already

quite high, we do not implement cache, but talk to memory channels directly.
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Figure 5.5: Ray-based parallel mapping

The particular interesting point of the interleaved memory system is the differentiation.

For example, cache is an effective design technique, however, it is widely used in CPU,

and also present in the recent Fermi GPUs. Many FPGA boards prefer continuous off-

chip DIMM access (using burst transfers), but GPU also features coalesced (contiguous)

access with a much higher bandwidth. The interleaved memory system shows the power of

customization, and this memory system matches the need of our application quite well. Our

experiment results also show that our performance can match (or beat) GPU, although the

peak bandwidth of the FPGA system is still lower than the GPU.

As a side note, prior work [96] does use caching to improve the bandwidth for backward

projection. And the paper [89] discusses how to obtain good memory bandwidth on an

FPGA-based system that uses burst transfers.

5.3.3 Resolving Access Conflicts in Parallel Backward Tracing

The forward projection can be parallelized easily. A large number of parallel units can

operate on the forward ray tracers simultaneously for different source and detector pairs. For

backward projection, there are dependencies among views. Moreover, even within one view,

there are conflicts when two parallel units update one pixel. To resolve the data conflicts

within one view, atomic functions that guarantee the mutual exclusion of an address in
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Figure 5.6: RMSE vs. Intervals

memory can be used to handle such potential data conflicts. However our target FPGA

platform does not provide atomic operations on the memory system.4 The only way to

obtain a correct design is to enforce that memory requests complete in order. This has

substantial overhead because the memory system is designed to be weakly ordered and

supports parallel data access. We instead exploit algorithm-level changes to avoid the use of

atomic operations. First, we ensure that the computation for different views (sources) are

done in a sequential fashion. For a same view, the detectors that are far enough are set to

one group. Mathematically there will be no conflicts within the group, and all tracers in one

group can be processed in parallel. As illustrated in Figure 5.5, we can choose the tracer lines

in the same picture pattern. The selection of distance between two adjacent detectors is a

tradeoff of parallel granularity and algorithm performance. In our implementation, we choose

the distance to be 5. The performance of different distances and final reconstructed image

quality is provided in Figure 5.6. The figure shows the root mean square error (RMSE) for

the results with different intervals. When the interval is 5∼8, the algorithm without atomic

operation can obtain the same result as that with atomic operation.

4It is possible to realize the atomic operation within the BRAM. The off-chip memory does not support
atomic updates.
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5.4 Implementation & Optimization

Our whole design is realized using the C-to-FPGA tool AutoESL from Xilinx. While we are

confident that we have done substantial optimization and should match what manual RTL

can do, it took us several hardware-oriented steps to achieve that.

5.4.1 Streaming Architecture

The code shown in Figure 5.4 does not look very complex.5 If we synthesis the code directly,

a few problems arise: First, the tracer precal and the main tracing loop are done in a

sequential way. The synthesis tool supports loop pipelining. However, that pipelining only

works for the innermost loop. The support of task-level pipelining is still quite limited, and

only works for certain synchronous data flow examples. In principle, this feature can be

embedded in the tool further, where we can specify the loop pipeline for the inner-most

loop, and task-level pipeline for the second innermost loop.

We synthesize the tracer precal and the tracer loop individually to obtain their corre-

sponding latency reports. Because the loop bound of the tracer loop is not known, we use an

average loop bound from the simulation of the test data to compute the average-case latency

of the tracer loop. The throughput of the memory interfaces is also considered. Roughly,

the latency of the tracer precal is around 1/4 of the latency of the tracer loop for a 1283 test

data. Because of this, we realize two tracer precal modules and eight tracer loop modules in

a single FPGA. Each FPGA has 16 virtual memory channels, and each tracer loop module

talks to two of them (one for read and one for write). The multi-FPGA system has four user

FPGAs (application engine or AE); we distribute the workload using SIMD fashion.

The diagram of our implementation in one FPGA is shown in Figure 5.7. To realize such

a diagram in C level, we invoke the function tracer precal twice and invoke the function of

the tracer loop eight times. These different invocations take different FIFO channels and

memory interfaces as parameters. The compiler can recognize that these function calls are

5Note we cleaned up and rewrote the code several times to be able to get to that. The original code is
10X longer with a lot of messy control and data flows.
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Figure 5.7: Overall streaming architecture inside one FPGA AE

independent and shall generate a parallel hardware.

The streaming FIFOs are instantiated in a top-level RTL manually, although these FIFOs

are actually “internal FIFOs.” Sources tell us that AutoESL tool is adding the support for

internal FIFOs for C-based flow. Note that it is easy to realize these internal FIFOs using

SystemC flow.

The transform that converts the code in Figure 5.4 to a C code that calls for two

tracer precal and eight tracer loop seems counter-intuitive for software engineers. At a

higher level, our manual step in this subsection can be viewed as a combination of loop un-

roll transform and loop splitting transform, where the split loops then take different unrolling

factors. In practice, these decisions still need to be coded at a lower level.

The round-robin distribution logic is also coded in the tracer precal function. At the

receiver side tracer loop, the control is just a simple counter to maintain the number of rays

processed. Each tracer loop will process a pre-determined number of rays. Note that it is

possible that some rays do not intersect with the object. In this case, the tracer precal will

send a special flag to denote that no processing is needed, but the counter should still be

updated to obtain a correct exit condition.

The intersection computation we implemented is fairly generic. Currently, the controls

that set the list of sources and detectors are also coded in the function, along with the lookup

tables ROM for sin cos functions. Note that it is very easy to change these controls to reflect

another scanner machine setup. Currently, we are working to further break this module into

two submodules, where one submodule simply provides the (sx, sy, sz) and (dx, dy, dz) in a
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streaming fashion, and another submodule performs the intersection computation. We can

move the first submodule to a soft processor like a microblaze (or an ARM core in Virtex-7).

5.4.2 Prefetching

The second problem is that the generic HLS tool is not strongly coupled with a particular

FPGA-board or high-performance reconfigurable system. In this case, we need to code the

C code in a way that can talk to the off-chip memory interfaces used in the RTL design tem-

plates. Off-chip memory access has a long latency. We are told by Convey engineers that the

latency is 125 cycles at 150MHZ (target clock frequency of user FPGA application engine).

And the latency can be longer if congestion (bank conflicts) occur. The memory system used

in Convey HC-1 optimizes for the scatter-gather type of random access rather than burst

access. AutoESL only supports burst transfers using a built-in “memcpy” function. Our

application requires a large amount of random access that is not in burst mode. Without

proper prefetching, latency for the individual access will kill the system performance.

In our implementation, we model each memory access port with a request FIFO and a

response FIFO. We need to invoke two parallel functions inside the hierarchy of tracer loop.

One function is the “helper thread” tracer loop addrGen which is responsible for sending

memory requests for reads; the other function is the “compute thread” tracer loop compute

which obtains data from response FIFO and writes out the computed result into another

request FIFO. This way, the helper threads can keep sending as many requests as pos-

sible (until the FIFO is full). Effectively, the helper thread is performing the prefetch-

ing of the required data, and the response FIFO serves as the prefetch buffer. Note that

our helper thread only performs prefetching for reads. Off-chip memory writes are stil-

l performed by the compute threads. In the Convey system, memory write requests do

not generate responses in the response FIFO. Figure 5.8 depicts the architecture inside

the Tracer loop function. Note that there is an additional FIFO to pass the data from

tracer loop addrGen to tracer loop compute, because we need those parameters that are

generated by the tracer precal to perform the tracing.
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Figure 5.8: Streaming architecture inside one Tracer loop kernel

The address generator (or helper thread) and the computation unit (compute thread)

are realized by functions with no dependence between each other. However, the scheduler of

HLS may or may not schedule them precisely at a same state. If they are not scheduled to

execute at a same state, deadlock may happen. In our implementation, we use some tool-

specific tricks, where we create one function hierarchy that includes the address generator

and the computing functions, to ensure that the parallel functions are scheduled at a same

state.

There are additional risks that may cause deadlock. When we use multiple channels in

the loop pipeline, the coupling between the different channels is then introduced. If one

channel gets blocked, the FSM will not switch to process the other channel, causing the

FIFO in the other channel to fill up. This also can potentially introduce deadlock for a large

dataset. We enlarge the FIFO size for requests or responses in the top-level RTL template

to resolve that. Using a non-blocking FIFO interface can help as well.

5.4.3 Fixed-Point Conversion

The EM+TV algorithm is one iterative reconstruction algorithm that can recover object

information from incomplete acquisition data. To reduce the area of our design, we convert

floating-point computation into fixed-point. We use the standard range analysis technique

to obtain the range of all the values in our datapath. Because the algorithm is iterative,

static precision analysis would generate quite pessimistic results. We use dynamic analysis

instead to determine the number of fractional bits.

We try different numbers of fractional bits and compare these with the floating-point

reference code. As illustrated in Figure 5.9, the bitwidth of the fractional part will influence
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Figure 5.9: Fractional bit width and reconstruction quality

the reconstruction quality greatly. When 18 bits (10−5) are used, the fixed-point version

can achieve the same reconstruction quality of the floating-point version. We enlarge the

bidwidth by additional 2 bits to bring in more safe margins, and use 20 bits for the fractional

part. Note that it is still possible to store all those array data using 32-bit data when we

use 20-bit fractional.

There are multiple multiplications and divisions in the operations; to preserve the preci-

sion of 10−5, 64-bit is used for the core intermediate operations. For example, when we do

the division in fixed-point, we need to first left-shift the dividend so that the quotient can

still have enough fractional bits.

5.4.4 Arithmetic Specialization & Area Optimization

There are a number of division operations used in the tracer precal. The divider generated

by the tool consumes a large area, because the divider IP seems to support a low initiation

interval (II). In our case, we do not need a high-throughput divider as the latency for the

tracer precal is not that critical. We instead write our own divider using a simple shift-and-

subtract method. This reduces the area substantially.

Additionally, because the expression 0−sx
dx−sx

and Nx−1−sx
dx−sx

share a common divisor, we first

compute the reciprocal 2N

dx−sx
, and then use multiplication to replace the division. We can

reduce the number of divisions used by a half. We perform additional optimizations to tune

the functional hierarchy to facilitate hardware sharing. Table 5.1 shows the area results
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Table 5.1: Area optimization for the tracer precal

DSP48E FF LUT

Original 39 373146 115947

Optimized 28 9287 10831

i f (mode==0) // forward p r o j e c t i on

tempsino+ = imageData(vx, vy, vz) ∗ (λ− λ0);

else // backward p r o j e c t i on

i f ( image denote(vx, vy, vz)==1)

imageData(vx, vy, vz)+ = value ∗ (λ− λ0);

Figure 5.10: Masking for backward projection

before and after these optimizations. Note that both versions are in fixed-point already.

5.4.5 Reducing the Data Accesses via Sparsity

The final output image of the compressive sensing algorithm is sparse. Also we know that the

image voxel value is non-negative. Based on these two facts, we develop a simple heuristic

to reduce the amount of data access. In the beginning of the iteration, we perform a single

forward projection. If any accumulated sinogram value falls below a threshold, we conclude

that any image value on that ray shall be close to zero. Based on this, we build a mask of

the image called image denote. When we do the backward projection, we only update the

voxels that are not masked. Note that this mask only needs 1-bit data, so we merge this

1-bit data into the imageData array. This way, we reduce the number of data accesses in

the backward projection. In our test dataset, this reduces the number of external memory

writes by 70%.

5.4.6 Simultaneous Reconstruction of Two Images

After fixed-point conversion, the external data accesses are all in 32-bit. The memory in-

terface of the Convey multi-FPGA platform supports 64-bit memory interface. Because the
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data access in the tracing is somewhat random, it is hard to use the 64-bit interface to

enlarge the application bandwidth. However, it is straightforward to use that to reconstruct

two images simultaneously—by properly pack two 32-bit data from two images into a 64-bit

data. These two images need to have an exact machine setup where the tracer precal part

does not need to be changed.

We do not increase the number of MADDs to support the 64-bit data. We measured that

the external memory FIFO interfaces would return one data element in about three cycles

in the average case. 6 We simply enlarge the initiation interval (II) of the tracer loop from

1 to 2 to facilitate the sharing of MADD units.

5.5 Experimental Results

Our whole design is described in C and synthesized into Vverilog RTL using the AutoESL

HLS tool, version 2011.1. The target hardware platform is the Convey HC-1ex with four

Virtex6 LX760 user FPGAs. We designed the RTL interfaces for the AutoESL tool to hook

up with Convey’s Personality Development Kit (PDK). Those interfaces are reused by a

number of designs that we implemented. PDK is the RTL-based synthesis and simulation

environment for the HC-1ex platform. We synthesize the RTL generated by the AutoESL

HLS tool along with the PDK infrastructure RTLs using Xilinx ISE 12.4.

Our test setup assumes a Cone-Beam CT system. Currently, we tested a phantom dataset

of size 1283 which is supplied by the authors of [97]. We have 36 views (sources) and the

size of detector (destinations) is 301*257. According to [97], the EM+TV algorithm using

36 samples can get a similar image quality that is obtained by using FDK/FBP algorithm

that requires 360 samples. Potentially, that can reduce the radiation dose by 10X. The 2D

slices of the phantom test images are shown in Figure 5.11.

6The peak rate is one data element in every cycle. We did not reach this high rate because our application
logic is connected to a crossbar logic which performs arbitration and packet routing.
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(a) FDK/FBP with 36 views (b) FDK/FBP with 360 views

(c) EM+TV with 36 views, floating-point

software reference

(d) EM+TV with 36 views, our implementa-

tion (in fixed-point)

Figure 5.11: Slices of test phantom images

92



5.5.1 Kernel Performance and Energy Consumption

Table 5.2 presents the performance and the energy consumption of the forward projection

kernel and the backward projection kernel. The number is collected by averaging 1000

invocations. The performance on a dual-core CPU and many-core GPU is also reported.

The CPU used is the Intel Xeon 5138 with 2.13GHZ clock frequency and 35W TDP. The

GPU1 column denotes the Nvidia C1060 with 240 cores and 200W TDP. The GPU2 column

denotes the Nvidia GTX480 with 480 cores and 250W TDP. We parallelize the CPU code

using OpenMP and implement the GPU kernel using the Nvidia CUDA Toolkit 3.2. The

throughput of the FPGA design is better than latency because we can reconstruct two

images simultaneously. The power of the FPGA application engine is measured by the

Xilinx xPower tool. We have four user FPGAs in the system. The actual system power of

the Convey system is larger as the coprocessor memory, coprocessor PCB etc., also consume

a lot of power.

From Table 5.2 we can see that, when the latency of forward and backward is added

together, our multi-FPGA engine is about 50% faster than the CUDA implementation on

the Tesla C1060, but about 2X slower than the Fermi GTX480. When we consider the fact

that we can do two reconstructions simultaneously, it means our FPGA-engine is 3X faster

than Telsa C1060 and on a par with the Fermi GTX480. The energy number is listed in the

table as well. We can see that the FPGA platform delivers a good performance with much

lower energy.

Note that it turns out that the execution time for backward projection is noticeably slower

on other platforms. This is because the amount of data access is up to 2X larger (we need to

first read the voxel value and then write it back). Also we need to use more invocations (and

synchronization) to avoid conflicts and ensure correctness. That also reduces the available

parallelism. For the FPGA design, we use the same architecture for both forward and

backward. Each PE is connected to two memory channels, one for read and one for write.

Thus their execution times are similar. However, in the forward projection, the memory

channel is somewhat underutilized, because the number of writes is much smaller than reads.
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Table 5.3: Area results

BRAM DSP LUT FF Slice

Consumed 79 68 113,355 104,099 36511

Total Available 720 864 474,240 948,480 118,560

Utilization 11% 7% 23% 10% 30%

Table 5.4: Application performance and energy consumption

Throughput(s) Energy(J)

CPU 1189 41.6E3

Hybrid 92.0 12.7E3

GPU 1 361 72.2E3

GPU 2 114 28.5E3

Potentially, the forward projection can be made 2X faster if we separate the design for forward

and backward.

Another interesting observation is that the Fermi GPU GTX480 is between 3 to 4X

faster than the Telsa C1060. The number of cores is 2X that of C1060, and the peak off-chip

bandwidth is about 1.6X (from 100GB/s to 160GB/s). So it is safe to say that there is

an additional 2X performance benefit attributed to its cache systems. Our current FPGA

design does not have a cache, but it is indeed worthwhile to investigate that possibility given

the performance benefit we see from the GPU.

The area results for the complete design are listed in Table 5.3. Note that our core

computing RTL consumes fewer logic slices, because the PDK infrastructure also consumes

about 10% to 15% area. Most of the BRAM utilization is due to the PDK infrastructure.

5.5.2 Application Performance and Energy Consumption

We then test the application performance of the EM+TV algorithm on a hybrid configuration

where the EM part is done by the FPGA-subsystem and the TV part is done by the GPU.

The flowchart of the application is shown in Figure 5.2, where the outer EM+TV iterates
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100 times, and the inner EM step iterates 3 times. The Convey system provides PCI-e X16

interfaces in their HC-1ex platform. However, there is not enough physical space for the

GPU device. We instead use one external PCI-e enclosure to hook up the GPU.

Our hybrid configuration connects the Fermi GTX480 onto the Convey HC1-ex platform.

After one EM iteration completes, the image data is copied into the GPU memory space

and the TV CUDA kernel starts. The data transfer would not add substantial overhead

in this case. We measured that a pipelined data transfer (FPGA coprocessor-side memory

to PCI-e) can reach close to 1GB/s. Each EM iteration only needs to copy 1283 or 8MB

of image data to the GPU. And similarly, we need to do the transfer backwards when

one TV invocation finishes. That only adds about 0.016s for each EM+TV iteration, or

about 2s for the whole EM+TV application. Because the TV kernel is a highly regular

stencil computation, we believe the GPU is a good device for that application kernel. The

execution time of the TV is much shorter than EM. In the energy calculation for the hybrid

configuration, we assume that the GPU can be powered off when it is not actively running

CUDA applications. In practice, a 10% to 15% idle power would exist. The numbers for

application performance/throughput and estimated energy consumption are shown in Table

5.4.

5.6 Conclusions and Future Work

In this chapter we share our experience of using the AutoESL HLS tool to map one compres-

sive sensing iterative reconstruction algorithm on an FPGA-based reconfigurable computer.

Our hybrid approach provides good performance and potential energy savings.

Currently, we are working to separate the intersection computation into two small sub-

modules so that it can be easier to switch to a different setup. We are also investigating

different algorithmic or architectural approaches that can improve the data locality/reuse for

our applications. We are also in the process of testing the algorithm and our implementation

on clinical patient data.
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CHAPTER 6

Architecture Templates for Coprocessor Acceleration

In this section, we study several architecture templates which assume that the component-

specific implementations are ready. The first one uses a pure software-based approach and is

better suited for coarse-grain tasks. The second one focuses on fine-grain tasks and performs

management entirely in hardware. The third one focuses on system-level sharing which uses

device drivers and a dedicated embedded controller to do sharing across multiple processes.

6.1 Collaborative Execution on the Heterogeneous Platform

One of the goals of the CDSC project [3] is to raise the level of abstraction to develop

high-level parallel programming models and runtimes that are available to domain experts

who are not at the same time experts in parallelism. Frameworks such as Map-Reduce [30]

successfully exploit implicit parallelism on distributed systems and have also been extended

to heterogeneous platforms such as the GPU [31] and FPGA [32]; unfortunately these have a

restricted programming model. Dryad [35] is a research project at Microsoft Research for a

general-purpose runtime data-parallel applications. However, their focus is on the multi-core

cluster platform and does not provide sufficient heterogeneity support. In this section, we

provide an example in the medical imaging domain that uses the CnC-HC toolflow to enable

collaborative execution on the heterogeneous platform. We provide a short overview of the

CnC-HC toolflow in Chapter 2 while more details can be found in [41].
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Table 6.1: Performance of the applications on CPUs, GPUs and FPGAs

Denoise Registration Segmentation

Num. of Iterations 3 100 50

CPU 3.3s 457.8s 36.76s

GPU 0.085s(38.3X) 20.26s(22.6X) 1.263s (29.1X)

FPGAs 0.190s(17.2X) 17.52s(26.1X) 4.173s(8.8X)

6.1.1 Benefit of Heterogeneous Computing

As we demonstrated in previous chapters, using accelerators can significantly speed up these

computational-intensive applications like medical imaging [98]. Table 6.1 shows the perfor-

mance of the different application steps on CPUs, GPUs and FPGAs. Note that the time

values measured are for computation kernels and exclude file IOs (around 2s overhead for

each invocation).

From the table, we can see that the GPU and FPGA deliver decent speedup compared to

the single-threaded CPU implementation. We also notice that different applications prefer

different accelerators. For registration application, the FPGA delivers better speedup than

the GPU, and for segmentation, the GPU delivers better speedup.

Note that while it is possible to run an FPGA kernel on multiple applications, in practice

that involves a large reconfiguration overhead. We configure the FPGA in the system to

accelerate registration application only.

6.1.2 Image Pipeline Example

We further show how the CnC-HC toolflow described in Chapter 2 can be used to aid

heterogeneous computing. Suppose we have a medical imaging pipeline, which consists of

image denoising, image registration and image segmentation, We want to make good use of

the heterogeneity to achieve good performance. We first construct the task-level description

CnC model of the application. CnC is a task-level dataflow model, and a complete description

of the model can be seen in [5].

98



< int [ 1 ] d eno i s e t ag > ;

< int [ 1 ] r e g t ag > ;

< int [ 1 ] s e g tag > ;

[ f loat ∗ deno i s e output ] ;

[ f loat ∗ r e g i s t r a t i o n ou t pu t ] ;

[ f loat ∗ f i n a l o u t pu t ] ;

<deno i s e tag > : : ( denoise@CPU = 2 ,GPU=1);

<reg tag> : : ( registration@GPU = 1 , FPGA = 2 ) ;

<seg tag> : : ( segmentation@GPU = 1 ) ;

( deno i s e : k ) −> [ deno i s e output : k ] ;

[ deno i s e output : k]−> ( r e g i s t r a t i o n : k )

−> [ r e g i s t r a t i o n ou t pu t : k ] ;

[ r e g i s t r a t i o n ou t pu t : k ] −> ( segmentat ion : k )

−>[ f i n a l o u t pu t : k ] ;

In the description shown above, the affinity like CPU = 2, GPU = 1 describes the

preference of the task bindings, where a larger number denotes that the task is preferable to

run on that component.

Optionally, we may specify the control or data that is generated by the environment (the

main thread). For example, we may add

env −> <deno i s e t ag : {0 . . 9} >;

env −> <r e g t ag : {0 . . 9} >;

env −> <s e g t ag : {0 . . 9} >;

onto the CnC file to describe that we want to create an application that performs batch

processing of the image pipeline which processes 10 images. 0..9 are the ranges of the

control tags to prescribe the computation steps.

In this CnC file, we describe the list of computation tasks denoise, registration and

segmentation. We also describe the input and output dependencies of each task. After that,
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we call the CnC translator to convert that description into a collection of Habanero C (HC)

files. Users can further edit those files to create a working implementation. For example, for

the above-mentioned CnC file, the auto-generated skeleton for registration.hc is

#inc lude ”Common. h”

void r e g i s t r a t i o n ( int k , f loat ∗ deno i se output0 , \

Context∗ context ){

/∗

f l o a t ∗ r e g i s t r a t i o n o u t p u t 1 ;

// a l l o c a t e memory i f necessary and f i l l

// in va l u e s to put here

char∗ t a g r e g i s t r a t i o n o u t p u t 1 = createTag (1 , k ) ;

Put ( r e g i s t r a t i o n ou t p u t 1 , \

t a g r e g i s t r a t i o n ou t p u t 1 , \

contex t−>r e g i s t r a t i o n o u t p u t ) ;

∗/

}

Basically, the auto-generated code provides hints for the actual implementation.

The edited code is also presented here:

#include ”Common. h”

void r e g i s t r a t i o n ( int k , f loat ∗ deno i se output0 , \

Context∗ context ){

f loat ∗ r e g i s t r a t i o n ou t pu t 1 ;

i f ( c u r r en t p l a c e ( ) == MEMPLACE)

{

r e g i s t r a t i o n ou t pu t 1=REG cpu(k , deno i s e output0 ) ;

}

else i f ( c u r r en t p l a c e ( ) == NVGPUPLACE)

{

r e g i s t r a t i o n ou t pu t 1=REG gpu(k , deno i s e output0 ) ;

}

else i f ( c u r r en t p l a c e ( ) == FPGA PLACE)
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{

r e g i s t r a t i o n ou t pu t 1=REG fpga (k , deno i s e output0 ) ;

}

char∗ t a g r e g i s t r a t i o n ou tpu t 1 = createTag (1 , k ) ;

Put ( r e g i s t r a t i on ou tpu t 1 , t a g r e g i s t r a t i on ou tpu t 1 ,\

context−>r e g i s t r a t i o n ou t pu t ) ;

}

From the code above, we can see that a function current place() is used to obtain the cur-

rent place of the task. Then based on the type of coprocessor, we can call different routines.

MEM PLACE denotes a CPU worker/place, NVGPU PLACE denotes a GPU worker/place

and FPGA PLACE denotes an FPGA worker/place. The scheduling and dependency check-

ing is auto-generated where users do not need to edit.

In the main function of the program, we simply initialize the required data structure

(CnC graph), and prescribe (invoke) the computation steps. In this example, our application

wants to perform a batch processing on ten images (with a same size), where we prescribe

ten instances of denoise, registration and segmentation.

6.1.3 Benefit of Dynamic Work Stealing Across Heterogeneous Components

Without using the CnC-HC framework, we may simply construct a static mapping, like using

CPU for denoise, FPGA for registration and GPU for segmentation. Such a mapping is a

greedy approach which uses a component that is best suitable for the application. However,

it does not keep track of resource availability. In the simple image pipeline, the execution

time of segmentation is smaller than registration, and if we use that static mapping, the

GPU would be left idle for a large proportion of time. Figure 6.1(a) shows the scheduling

graph of the static scheme. Using a dynamic stealing can achieve a better load-balancing.

(Note Figure 6.1(b) has 2 CPU rows but Figure 6.1(a) uses only 1 CPU to emulate a static

binding case.)

Table 6.2 shows the performance results for different hardware configurations: CPU only,

GPU only, CPU+GPU, and CPU+GPU+FPGA (static or dynamic bindings).
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Table 6.2: Dynamic work stealing

Exec time Active Energy

CPU only 3493s 69.8KJ

GPU only 276s 54.8KJ

CPU+GPU 251s 49.4KJ

CPU+GPU+FPGA (dynamic biding) 129s 36.1KJ

CPU+GPU+FPGA (static biding) 193s 23.0KJ

We can see with the cross-device stealing, a setup of CPU+GPU+FPGA with dynamic

binding (Figure 6.1(b)) can get better performance than the static scheme. The energy

column is computed by summing up the energy spent by each device that contributes to

the computation. (We assume CPU is at 10W per worker(core), GPU at 200W and FPGA

at 94W, idle power is ignored so far.) The static binding does have a lower energy number

in the table. However, when the idle power and the power of other system components are

considered, we may prefer the dynamic binding which obtains the results in a shorter period

of time. Still, the data in the table shows that different scheduling policies may be needed

to optimize the energy consumption or the overall performance.

Note that in Figure 6.1, Dk means denoise instance k, Rk means registraion instance k

and Sk means segmentation instance k. We can see that the stealing happens by analyzing

the schedule graph Figure 6.1(b). Initially 10 tasks of denoise(D0 to D9) are pushed into

the queue of the GPU, while the D4 to D9 are actually stolen by the CPU. Similarly, the

registration tasks are pushed into the queue of the FPGA initially, but several task instances

are stolen by the GPU as well.

We want to point out that, all results shown in Table 6.2 can be achieved by simply

modifying the affinities of the CnC description. For example, a static binding can be realized

by

<deno i s e tag > : : ( denoise@CPU = 1 ) ;

<reg tag> : : ( registration@FPGA = 1 ) ;

<seg tag> : : ( segmentation@GPU = 1 ) ;
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A hardware configuration with only 1 CPU worker is used to achieve the effect shown in

Figure 6.1(a), otherwise the denoise tasks shall still be spread across 2 CPU workers.

We just need to rerun the CnC translator and then recompile the program, and the one

<deno i s e tag > : : ( denoise@CPU = 2 ,GPU=1);

<reg tag> : : ( registration@GPU = 1 , FPGA = 2 ) ;

<seg tag> : : ( segmentation@GPU = 1 ) ;

is used to realize the dynamic scheme. CPU-only, GPU-only and CPU+GPU can be con-

structed in a similar fashion.

While the work-stealing runtime is quite powerful, the decision it makes are simply based

on the status of the queues. In the above CnC fragments for the dynamic binding, if we use

<reg tag> : : ( registration@CPU=1,GPU = 2 , FPGA = 3 ) ;

and then the CPU shall also help to perform registration application, and will drag down the

total performance of the batch processing. Nonetheless, the affinity provides a great tuning

capability to boost the overall application performance.

We also constructed another pipeline by adding a few iterations of compressive sensing

reconstruction (EMTV) before the pipeline shown above. More specifically, we first perform

reconstruction and denoise, then we register the denoised image with multiple images in

the database and then perform segmentation. Figure 6.2 shows the execution states for this

pipeline. Ek means the EM instance k, Tk means TV instance k, Dk means denoise instance

k, Rk means registraion instance k and Sk means segmentation instance k. While the graph

is quite similar to the one for the pipeline Figure 6.1, we see that the task dependencies in the

beginning of the pipeline (EM+TV iterations and denoise) limit the freedom to explore task-

level parallelism. When the denoise finishes, 10 instances of registration and segmentation

allow work-stealing across multiple devices.
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6.2 Scheduling Dynamic Loops

The CnC-HC flow uses a pure software-based runtime system to perform load-balancing and

scheduling. For fine-grained tasks (for example, a task is computing a sparse dot product in a

sparse matrix vector multiplication), the overhead of software-managed scheme may become

large. This motivates several studies on architecture support for flexible scheduling such as

Carbon [99] and ADM [100]. We study the hardware-based scheduler in the context of the

FPGA-based accelerator for Dynamic Loops. We discover that, in the settings of dynamic

scheduling, the effective bandwidth for data access is lower due to potential access conflicts.

The FPGA is frequently used as a loop accelerator. The primary reason is that these

loops typically have a large degree of parallelism where multiple instances of the loop body

can execute simultaneously.

A loop typically has an iteration space. Some loops have fixed iteration spaces where the

loop bounds are known in advance. Many loop optimization or transform techniques such as

iteration space tiling/slicing [101] and affine transforms [102] can be easily applied. When

the iteration space is not a fixed one, many of these techniques do not directly apply. We

denote these loops as dynamic nested loops.

Actually, these dynamic loops are frequently encountered in practice. For example, in

sparse matrix vector multiplication, the dynamic behavior occurs because of the fact that

the number of non-zeros in each row/column is not the same. In hypergraph traversal, the

number of pins for each node or each hyperedge is different. Recently, there is a growing

interest in porting map-reduce framework onto FPGAs [103, 104]. This can also be viewed

as a case for dynamic loops. Multiple map (or reduce) instances can run in parallel, and

there is no guarantee that these instances shall finish in a constant cycle count.

Let’s look at a typical dynamic loop: sparse matrix vector multiplication (code shown in

Figure. 6.3). The sparse matrix here is represented in a compressed row format. Clearly,

the inner loop bound is not a constant value. Multiple inner loop instances can execute in

parallel.

Each execution of the inner loop is roughly proportional to the loop bound of the inner
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for ( i =0; i<n ; i++){

temp=0;

for ( k=rows [ i ] ; k<rows [ i +1] ; k++)

temp+=val [ k ]∗ x [ c o l [ k ] ] ;

y [ i ]=temp ;

}

Figure 6.3: Sparse matrix vector multiplication

loop (and they differ row by row). Thus, parallelizing the outer loop in a naive way may

cause load balancing issues. We can also leverage fine-grain parallelism to parallelize the

inner loop using a tree-adder type of architecture to do the reduction.

For the sake of simplicity, we assume we are dealing with a two-level nested loop similar to

Figure. 6.3. The loop bound of the inner loop varies between instances. There are no write-

conflicts or any dependencies between multiple inner loop instances, and their executions

can be arbitrary ordered. These conditions can be checked easily using standard compiler

techniques.

There are mainly three ways to implement the hardware architecture for these dynamic

nested loops: approach A: parallelizing the inner loops (the loops with dynamic bounds);

approach B: parallelizing the outer loops with static allocation/scheduling; and approach C:

parallelizing outer loop with dynamic allocation/scheduling. Here we mainly want to evaluate

three architecture templates and discuss their trade-offs. We find that static allocation, with

various kinds of static allocation strategy, is often the best architecture among the three.

It is simple to implement and is very effective. The dynamic allocation approach, although

attractive, faces many practical difficulties or overheads. These overheads include data access

conflicts, serialization in the centralized scheduler and queue structures etc. Efforts to reduce

the overhead are also presented.

We use SPMxV as a representative example to make this comparative study, but the

discussion presented is broadly applicable to many other dynamic nested loops. SPMxV

is the key computation kernel in a wide range of applications (e.g., quadratic placement
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in EDA domain, level-set solver for medical image segmentation etc.) We also need to

point out that FPGA-based implementations for SPMxV have been heavily studied by the

FCCM community in the past. A tree-adder based approach is implemented in [105] and

[106]. The work in [107] parallelizes multiple sparse dot products and also discusses load-

balancing improvement through graph partitioning. The work in [108] partitions the matrix

into multiple strips and implements a streaming approach.

6.3 Architecture Templates and Implementations for Dynamic

Loops

This section presents the three architecture templates in the general sense, and illustrates

their implementations on the SPMxV example. We assume the computation is done in fixed

point, and all the data required is already stored on-chip.

6.3.1 Parallelizing Inner Loops

Because the loop bound of the inner loop is not fixed, complete loop unroll is not possible.

However, partial unroll of the inner loop is possible. For SPMxV, the result of the partial

unroll can be viewed as an architecture which uses a tree-adder as the atomic unit. The tree

adder has a fixed number of multipliers in the leaf nodes, and a fixed number of adders in

the non-leaf nodes.

In most cases, the latency of this atomic unit is larger than one, and the unit should be

pipelined if possible.

The loop bound of the inner loop may not be a multiple of the partial unroll factor.

To cope with this, dummy data (zero) should be added into the input of the atomic unit.

Clearly, this brings in the architecture overhead, because the relative resource utilization

rate is lower if dummies are added.

Each architecture template requires a specific memory arrangement scheme to achieve

efficiency. Because the inner loop is partially unrolled, this unrolling increases the number
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Figure 6.4: Tree adder with banked storage

of memory accesses of the inner-loop body. We can use a cyclic memory partitioning scheme

so that multiple data accesses (leaf nodes of the tree-adder) always access data in different

banks. Figure 6.4 shows the tree adder with one final accumulator. val (and col, but not

shown in the figure) are banked using cyclic partitioning, while vector x is duplicated because

it uses indirect data access.

The inner loop of SPMxV can be parallelized. However, the inner loops of some applica-

tions have certain loop-carried dependencies that enforce strictly sequential executions. For

example, in random walk simulation, different walks of one trajectory seem to be strictly

sequential. The architecture templates that leverage coarse-grain parallelism should be used

instead.

6.3.2 Multi-PE Realization with Static Allocation

As an alternative, we can unroll the outer loop and parallelize multiple inner-loop instances

(multiple dot products for SPMxV).

In this architecture, the atomic processing unit is the hardware realization of one inner-

loop instance. For SPMxV, this is one MAC (Multiply-And-aCcumulate) unit with some

control logic for boundary checking. The parallelism comes from instantiating multiple

processing units, and each unit is handling different inner loop instances.

The allocation of the inner-loop instances into the processing elements affects the overall

load-balancing. This fact is also discussed in the SPMxV design in [107], but their goal is to

mainly reduce communication messages rather than help load-balancing.

The optimal allocation that minimizes the makespan of the parallel execution is NP-
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Figure 6.5: Multiple PEs with local storage

complete. Four static allocation technique are compared: cyclic (deterministic), random

permutation, random and quasi-random. Note that these four techniques are general, and

they do not make use of the loop bound of inner loops explicitly. More efficient static

allocation can be done based on the analysis on those loop bounds.7 Cyclic assignment

determines the assignment using equation P (i) = i%NPE, where NPE is the number of

PEs, i is the subtask ID and P (i) is the assigned PE ID (from 0 to NPE − 1) for subtask

i. Random permutation generates one random permutation for each group of contiguous

NPE subtasks and uses the permutation to do the assignment. Random assignment or

quasi-random assignment determine the assignment using equation P (i) = Rand()%NPE or

P (i) = Qrand()%NPE, respectively.

Each PE has its own local memory, and it works on these local memories independently.

The data required for the computation is distributed using the allocation strategy. Figure

6.5 shows the diagram of this architecture template for the SPMxV case.

6.3.3 Multi-PE Realization with Dynamic Allocation

The subtasks that are mapped into the PEs can also be allocated dynamically at runtime.

To support the dynamic allocation, we conceptually need a queue of idling PEs and a queue

of pending subtasks. When a PE completes the execution of one subtask, its ID shall be

added into the idling PE queue. A dynamic scheduler checks the status of these two queues

and maps one pending subtask into one idling PE. This is the architecture for the dynamic

allocation/scheduling implemented in [104].

7By explicitly looking at the values of the inner-loop bounds, better load-balancing results can be obtained.
An extreme case is to solve the NP-complete optimal allocation off-line and then use the results to do
mapping. Our static strategies in this section do not perform any preprocessing of the inner-loop bounds.
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A queue is typically implemented through FIFO. The elements in the idle queue are the

IDs of PEs. FIFO can accept at most one input each cycle. When multiple PEs complete

their subtasks in the same cycle, some arbitration logic (e.g., priority encoder) is needed and

the IDs shall be added into the FIFO one by one. And a few more PEs may complete their

subtasks in subsequent cycles, which further complicates the process.

Our implementation does not use any queue explicitly. Instead, the scheduler checks a

group of (say K) idle signals from K contiguous PEs every clock cycle, and assigns some new

subtasks for the idle PEs among the K PEs. When K is smaller than number of PEs NPE,

the scheduler checks the next K contiguous PEs in the next cycle in a circular fashion. The

circuity for assigning the subtasks for K contiguous PEs is a simple bit-counting logic. Let

us denote b0 to bK−1 as the idle signals for K contiguous PEs. The assignment can be known

after pi =
∑i

j=0 bj is computed. If bi = 1, PE i shall get a subtask with ID M + pi, where

M is the last subtask ID that is assigned before this cycle.

The data required for the computation needs to be accessible by all the processing el-

ements. If these data are in one big global buffer or in off-chip memory, the bandwidth

may be a severe problem since it needs to serve all the PEs. We also statically partition

the required data into NPE banks to ensure that the available bandwidth in the dynamic

allocation case is at least the same as the static allocation case. The banking is based on a

cyclic partitioning scheme.

Currently, the interconnect structure between the banked on-chip storage and the PEs is

implemented as a full crossbar, where any PE can access any bank immediately if that bank

is not accessed by others. Other interconnect structures such as ring can be implemented to

further reduce interconnect complexity.

Dynamic allocation determines which subtask each PE shall process at runtime. When

one PE is assigned one subtask, it requests the required data from the banked global buffer (or

even off-chip memory) and starts computation. This data access or data copy is on the critical

path and can not be overlapped, because we can not predict what data is accessed by specific

PEs until run-time, thus we can not use prefetching to hide data access latency. Because
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of this, paper [104] only did the double buffering for the common data path (broadcasted

data).

There are two ways to resolve the issue. First, we can force the architecture to use

double buffers at local PEs to do the latency hiding. Each PE shall have two (or more)

slots of local storage. The dynamic allocation and scheduling determines the assignment

and copies data into the slot that is recently used, but each PE still has another slot to

process when the data copy occurs. Note that the solution of this dynamic assignment is

different then the original one. This approach tries to overlap data access and computation

in a coarse-grain fashion. This idea is inspired by the virtual function unit in the architecture

of a super-scalar processor. Second, the computation can be overlapped with data access

in a fine-grain fashion. For example, the computation of the sparse dot product is done

in parallel when we fetch/access the required data (in a streaming fashion). We use the

second approach because our data is already on-chip. However, the first approach is still

useful for other dynamic loops if the fine-grain approach fails to overlap the data access and

computation completely (for example, the data access needs to be done in a burst mode for

off-chip access).

It is possible that one PE will try to access one data bank that is occupied by another

PE in the dynamic allocation case. To reduce the overhead due to bank conflicts, we also try

to use static allocation at the beginning of the computation, and then switch to a dynamic

approach (this is essentially a type of work stealing) when the whole execution is about to

finish.

6.4 Results with Different Templates

We implemented these architectures using VHDL and simulated them using ModelSim. Be-

cause we use fixed-point computation, we do not need to consider the extra complication due

to the long latency of floating-point units. Floating-point SPMxV needs to use one MAC

unit to compute multiple dot products in an time-multiplexed interleaved fashion to com-

pensate for the long latency of floating-point units [107]. We assume a same clock frequency
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although our preliminary synthesis results suggest that the design with dynamic allocation

gets a worse timing. We use 16 multipliers and 16 adders in all the designs (NPE = 16). For

Approach A, this is translated into an adder-tree with 16 leaf nodes. For Aapproach B and

C, this is translated into a design with 16 MAC units.

We tested the first ten test matrices from the UFL sparse matrix collection [109]. The

lower-bound of the cycle count using NPE multipliers and NPE adders to compute a SPMxV

with a sparse matrix with nnz entries is ⌈nnz/NPE⌉. The values are shown in column a) of

Table 6.3.

The cycle count data for Approach A is shown in column b). Because the number of non-

zeros in one row is typically small (average about 3 to 4), the overhead due to the dummies

added is very large. However, this approach can be an effective solution if the inner-loop

bound is much larger than NPE.

The total cycle count by Approach B depends on the static allocation strategy. The

results of cyclic allocation, random permutation allocation, random allocation and quasi-

random allocation are shown in columns c) to f). All four approaches are not far away from

the lower bound (likely due to the central limit theorem). The cyclic or random permutation

approaches are almost always better than random or quasi-random approaches, because the

latter two can not guarantee that the number of instances allocated in different PEs is more

or less the same.

The cycle count for Approach C with zero-cycle overhead is shown in column g). Zero-

cycle overhead means that the cycle-overheads in data transfer and arbitration are all ignored,

and each PE can always get a new subtask (a new row) in zero-cycle latency. The values

in this column are very close to the lower bound ⌈nnz/NPE⌉, which suggests that dynamic

allocation indeed improves the load-balancing considerably. But we can not get to zero-cycle

overhead in the practical settings. The actual cycle counts for K = 1 and K = 16 are shown

in columns h) and i). We can see that the cycle count for K = 1 is very bad. The average

cycle count for one subtask (one dot product) is 3 to 4 cycles, but we may need to wait up

to 15 cycles to get a new subtask assigned in the K = 1 case. The K = 16 case is much
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better because it can assign a new subtask immediately if any PE signals the scheduler that

it is idle. However, due to banking conflicts, the cycle count is still worse than the static

allocation approach for the majority of examples.

The last method makes the static assignment initially (cyclic allocation), but leaves the

last NumRows%NPE rows unassigned and makes decisions at runtime based on the progress

of the computation. This is a simple heuristic that combines the benefits of dynamic and

static allocation. The data is shown in column j). Further it reduces the cycle count as

compared to the cyclic allocation. However, it still is some distance away from the lower

bound. Other ways of combination, such as the guided scheduling approach which gradually

decreases the chunk size of allocation in runtime, can also be implemented.

Note that we assume the data are already stored on-chip. This seems a little bit unfair and

makes dynamic allocation unnecessary. But this is a valid assumption if we use SPMxV for

iterative methods such as conjugate gradient methods. Multiple SPMxV shall be invoked in

a sequential fashion. Most of our discussions are still valid if the data we need to fetch resides

off-chip. For example, off-chip memory may have multiple memory modules and banks. The

bandwidth shall be higher if we could avoid banking conflicts through static allocation. If

we only have one bank of off-chip memory, the differences between approaches may become

marginal, and the off-chip bandwidth becomes the bottle-neck for this application.

To summarize, the overhead of Approach A is the resource underutilization due to dum-

mies. It should work better if the inner-loop bound is significantly larger than NPE. The

overhead of Approach B is load imbalance, especially if we can not predict the workloads of

individual inner-loop instances in advance. The overhead of Approach C mainly comes from

bank conflicts and serialization of the centralized scheduler. Although we assume the data

is on-chip, similar argument holds if the data is placed off-chip with multi-banked memory

controllers. Because the job allocation is performed dynamically at runtime, the data dis-

tribution can not be done statically and shall also be performed at runtime. It is important

that we are aware of these different architecture templates and select a best one that matches

a particular application.
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6.5 Architecture Template for Accelerator Management

In the previous a few sections, we presented the on-chip scheduling for a type of fine-grained

work-load called dynamic loops. Yet the discussion focused on an FPGA-centric system, and

no CPU or any software is involved in the architecture template. On the other extreme side,

the CnC-HC flow presented in the beginning of this chapter uses a pure software scheme to

perform the accelerator management.

In this section, we want to combine the two extreme points to provide the system-level

scheme for accelerator management. This also serves as the proof-of-concept prototyping

of accelerator-rich CMPs called ARC [110]. The overall architecture of ARC is composed

of cores, accelerators, the Global Accelerator Manager (GAM), shared L2 cache banks and

shared NoC routers between multiple accelerators. These components are further connected

by the NoC. Accelerator nodes include a dedicated DMA-controller (DMA-C) and scratch-

pad memory (SPM) for local storage and a small translation look-aside buffer (TLB) for

virtual to physical address translation. GAM is introduced to handle accelerator sharing

and arbitration. The results of ARC are obtained through architecture simulators. We want

to gradually realize those architecture supports through FPGA prototyping. Note that the

template implemented in this section presents a preliminary one that only realizes a minimal

feature of ARC. In our implementation, components are connected through crossbar or bus

rather than NoC. Off-chip memory are shared, but cache banks are not shared.

6.5.1 System-level Diagram

Figure 6.6 shows the system-level diagram for our proposed architecture template. One

microblaze processor is configured with cache and MMU, and we run a Linux distribution

on the processor. The second microblaze processor is configured with no cache or MMU and

we run bare-metal control code on that. Different components communicate through AXI

buses. Two buses are instantiated on the system: one data bus is configured in the crossbar

mode, while the other one is a shared bus. We also added dedicated point-to-point FIFO

channels to communicate between two microblaze processors. DDR memory is connected
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Figure 6.6: System-level prototyping diagram on Xilinx ML605 board

to AXI bus and is physically shared across different components. The MMU is present on

the first microblaze, and the applications on that microblaze operate using virtual memory

addressing. Other system components operate using physical memory addressing.

The system has four major components to be able to function. The first one is the ap-

plication code (at user-space). The second one is the kernel-space device driver which can

perform virtual-to- physical conversion and native access of hardware resources. The third

one is the hardware-based on-chip accelerator manager called Global Accelerator Manag-

er(GAM). The fourth one is the actual accelerator components.

6.5.2 Application Code

In the application code, the application passes the type of accelerator it wants to use, the

virtual address of the array, the length of the array and other task-specific parameters into

the device driver. A sample code can look like the following listing:

int∗ ptr=mal loc (ARR SIZE∗ s izeof ( int ) ) ;

int f i d=open ( ”/dev/GAM” ,ORDWR) ;
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int i ;

for ( i =0; i<ARR SIZE ; i++)

ptr [ i ]=INIT DATA;

i o c t l ( f i d ,VEC ADD TYPE) ;

int t a s k i d=wr i t e ( f i d , ptr ,ARR SIZE∗ s izeof ( int ) ) ;

while ( read ( f id , ptr , t a s k i d )==0)

us l e ep (SLEEP INTERVAL) ;

c l o s e ( f i d ) ;

f r e e ( ptr ) ;

In this code, we use the system call ioctl to select the type of the accelerator. We use

write to pass array information into kernel-space device drivers, and use system call read to

check the completion of the task. When we have more parameters to pass, we can further

encode the information through the ioctl system call. The device driver is paired with other

system components to understand the parameters passed by the system call. Note that the

user-space application can work on something else in-between before the checking. In this

code, we simply let the process sleep for some constant interval and check again. Note that

we use the return value of the write system call to denote the task ID, and this ID is further

passed as one parameter of the read system call to query the status of this particular task.

6.5.3 Device Driver

The device driver is a kernel-space module that realizes the body of those read, write, ioctl

system calls. The device driver has two main features. First, it performs the virtual-to-

physical translation for all the pages the accelerator needs to access. The device driver then

sends the translated physical addresses along with other task-specific parameters into GAM

FIFO (essentially it is an object FIFO). The driver will block if FIFO is full, as internal

storage will have a finite size. Note that we use different FIFO channels for different task

types. For example, in Figure 6.6, we have two FIFO channels between two microblaze

processor; one FIFO (through Xilinx mailbox IP) for vecadd, and another FIFO for vecsub.

Inside the device driver, we also use the kernel mutex/semaphore to prevent concurrent
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access for the driver.

Second, in order to pass the done signal of the accelerator back to the application, we

implemented a linked-list/hashtable inside the device driver. When the application reserves

the accelerator, the device driver generates a unique task ID; this task ID is passed back

to both the application and the GAM. The application code uses this unique ID to query

the completion of the task. The GAM sends out the completed task ID from a dedicated

FIFO channel. Whenever a new task completes, a new completion ID is sent to the FIFO,

which triggers an interrupt handler in the device driver which can update the entries in the

linked-list accordingly.

6.5.4 Global Accelerator Manager

The Global Accelerator Manager is the component that actually monitors the accelerator

status and performs the bare-metal accelerator invocation. Currently, the GAM is imple-

mented through an embedded processor (the second microblaze) with a configuration that

minimizes area. We use embedded C code to describe the logic of GAM. The logic is an

infinite loop that contains two steps. In the first step, it checks the done signal of all the

accelerators. If any of them switched from 0 to 1 in this check, we will pass the task comple-

tion signal to the device driver through the mailbox FIFO. In this step, we know the status

of all the accelerators, and that information would be stored in a table. In the second step,

the GAM checks the incoming task FIFO one by one (we have one task FIFO associated

with each type of accelerator) using the non-blocking FIFO test-read operation. When the

incoming FIFO for the current type has task objects, the GAM further checks to see whether

any accelerator that is compatible with task is idle (by looking at the status table). If so,

it reads the task information which is sent out through the FIFO (including the page table

along with the parameters of the task to the selected accelerator) to the actual accelerator.

Otherwise, it will try out the next task FIFO. When all the task FIFOs are checked and

processed, the GAM will return the first step to look for status change.

By having one task FIFO for each type of accelerator, the GAM is capable of performing
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out-of-order task processing for tasks of different types.

6.5.5 Accelerator Implementation

The accelerator will keep a local page table, which is sent through the GAM. The accelerator

performs burst read access to read the physical page into private on-chip scratchpad, and

then starts computation to obtain the results; it then uses burst write access to write the

physical output page.

A sample accelerator implementation for the vecadd design is listed here.

#define PAGE TABLE SIZE 512

#include <au t op i l o t t e c h . h>

void vecadd ( volat i le unsigned int ∗ addrFIFO , volat i le int∗ dataBus )

{

#pragma AP i n t e r f a c e a p f i f o port=addrFIFO

#pragma AP i n t e r f a c e ap bus port=dataBus

//Define the pcore i n t e r f a c e s

#pragma AP re sou r c e core=AXI4LiteS metadata=”−bus bundle s l v0 ” \

va r i ab l e = return

#pragma AP re sou r c e core=FSL va r i ab l e = addrFIFO

#pragma AP re sou r c e core=AXI4M va r i ab l e = dataBus

unsigned int l enPages=∗addrFIFO ;

unsigned int A pages [PAGE TABLE SIZE ] ;

unsigned int B pages [PAGE TABLE SIZE ] ;

unsigned int C pages [PAGE TABLE SIZE ] ;

int buf A [ 1 0 2 4 ] ;

int buf B [ 1 0 2 4 ] ;

int buf C [ 1 0 2 4 ] ;

int i , j ;

for ( i =0; i<l enPages ; i++)

{

A pages [ i ]=∗addrFIFO ;
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}

for ( i =0; i<l enPages ; i++)

{

B pages [ i ]=∗addrFIFO ;

}

for ( i =0; i<l enPages ; i++)

{

C pages [ i ]=∗addrFIFO ;

}

for ( i =0; i<l enPages ; i++)

{

memcpy( buf A , dataBus+(A pages [ i ]>>2) ,1024∗ s izeof ( int ) ) ;

memcpy( buf B , dataBus+(B pages [ i ]>>2) ,1024∗ s izeof ( int ) ) ;

for ( j =0; j <1024; j++)

#pragma AP p i p e l i n e I I=1

buf C [ j ]=buf A [ j ]+buf B [ j ] ;

memcpy( dataBus+(C pages [ i ]>>2) ,buf C ,1024∗ s izeof ( int ) ) ;

}

}

We can see that the accelerator contains the storage for the page table as well as the local

storage for storing pages. In the beginning the accelerator reads in the parameters and the

page table. The computation and data transfer are performed afterwards. Because the page

tables are stored locally within the accelerators, the accelerators then obtain the mapping

and perform data transfer for the virtually contiguous addresses.

6.6 Putting the Template in Action

We have implemented the proposed architecture template shown in Figure 6.6. The de-

sign includes two type of accelerators, vecadd and vecsub. We instantiated two accelerator
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instances for each accelerator type. All the system components behave properly.

6.6.1 Single Process Execution

First, we test the system running a single process which invokes one accelerator. The kernel

is able to flush the cache and perform page translation (virtual-to-physical) at a rate of about

3K cycles per page. The accelerator for vecadd needs about 4K to 5K cycles to complete

the computation for one page (which needs to read two pages and write one page); while the

translation for the three pages took about 9K cycles. Table 6.4 shows the timing breakdown

for a single process that invokes the vecadd accelerator. We can see that in the current

setup, the device driver which performs the address translation currently takes about 2X

of the time spent in actual vecadd accelerator computation. Surprisingly, the most time-

consuming part is the data initialization where pages are touched and page table entries are

created or added. When a page is created, the OS will also zero-out the data for security

reasons. The zero-out operation is more expensive than the page translation in the device

driver because the zero-out operation operates on each data element.

Clearly, the data shown in Table 6.4 is an extreme case where the OS and software portion

completely shadow the accelerator execution. We now further consider two synthetic cases.

The first case is to repeatedly invoke the accelerator in the application code. The second

case is to use a single invocation, but realize multiple rounds of the computation inside the

accelerator kernel. Both cases try to emulate an iterative computation where computation

works on a same data array multiple times. The number of iterations is set to 100. With 100

iterations, the overhead in touching pages is almost gone. However, case 1 still runs much

longer than case 2, because the page translations in device drivers are performed in each

invocation. Currently, we are building up an on-demand page translation scheme to reduce

the overhead.

The execution time numbers where we use microblaze to perform computation are also

listed in the Table 6.4. The simple accelerator is able to obtain about 8X to 9X speedup

over the software version on microblaze.
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Table 6.4: Timing breakdown for vecadd example

Basic Synthetic case 1 Synthetic case 2

(1 iteration) (100 iterations) (100 iterations)

(with acc) (with acc) (with acc)

malloc 0.002s 0.002s 0.002s

touch pages 0.157s 0.157s 0.157s

invoke driver 0.027s 2.7s 0.027s

wait for completion 0.015s 1.5s 1.5s

verify output 0.003s 0.003s 0.003s

Total 0.21s 4.4s 1.7s

Basic Synthetic case 2

(1 iteration) (100 iteration)

(without acc) (without acc)

malloc 0.002s 0.002s

touch pages 0.157s 0.157s

computation 0.122s 12.2s

verify output 0.003s 0.003s

Total 0.29s 12.4s
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Table 6.5: Timing for multiple processes of vecadd (using Synthetic case 2)

num of processes elapsed time increment of elapsed time

1 1.72s 1.72s

2 1.99s 0.27s

3 3.54s 1.55s

4 3.85s 0.31s

5 5.41s 1.56s

6 5.72s 0.31s

6.6.2 Multiple Processes with Accelerator Sharing

Note that our template supports multi-process parallelism and arbitration. Table 6.5 shows

the execution time when we have multiple processes which run in parallel (and start at

exactly the same timepoint). The microblaze processor is single-core, thus the time spent

in software (touching pages and device drivers) will be accumulated.8 However, we can see

that the elapsed time of 2 processes is smaller than the 2X of the elapsed time of single

process, which suggests the GAM is operating and distributing the workload into 2 vecadd

accelerators. The elapsed time will have a steep increase when the system has an odd

number of processes. That is because we have two vecadd accelerators, and an odd number

of processes would create load-balancing issues.

6.6.3 Multiple Processes that Invoke Multiple Accelerators

When the system has multiple accelerators, the GAM will be able to manage them as well.

Table 6.6 presents the results. Again the load-balancing will affect the total makespan of

the execution. For example, if we have four concurrent processes in total, the makespan of a

configuration that has one vecadd invocation and three vecsub invocations would run longer

than the one with two vecadd invocations and two vecsub invocations.

8Current Xilinx Linux on Microblaze only support single core. The template should work for multi-core
system like Xilinx Zynq extensible processing platforms (dual-core ARM A9) as well.
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Table 6.6: Timing for multiple processes and multiple accelerators of vecadd and vecsub(using

Synthetic case 2)
PPPPPPPPPPPPPP
#vecadd

#vecsub
0 1 2 3

0 0 1.73s 1.97s 3.59s

1 1.73s 1.98s 2.78s 4.28s

2 1.99s 2.73s 3.62s 5.10s

3 3.55s 4.30s 5.10s 5.45s

We also see that the results are obscured by the accumulation of the software and OS

driver execution on the single-core microblaze. The sharing would be more effective when

the system has a large number of cores, and the number should be at least larger than the

number of accelerators. Running multiple processes concurrently on a single-core will bring

in significant context switching overhead. When we have 3 or more processes, the makespan

goes up a lot, likely due to more frequent context switchings. The template presented in the

section could be smoothly transited to the Xilinx Zynq system as well.

6.6.4 Benefits over Conventional Invocation Scheme

In the conventional design scheme, each accelerator would have its own device node and

device driver. Applications need to explicitly select the accelerator it wants to use. Multiple

processes can invoke the same accelerator, but the request will be sequentialized by the

device driver of the particular accelerator. Our proposed scheme can further dynamically

manage multiple accelerators and distribute tasks onto the accelerators.

As a reference point, we also implemented the conventional scheme. Figure 6.7 shows the

system diagram of the design. Instead of sending parameters and page table to GAM, these

data are directly passed from application to the accelerator through corresponding device

drivers.

Table 6.7 shows the results for the conventional scheme. Suppose we have several process-
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Figure 6.7: Conventional scheme (without GAM) on Xilinx ML605 board

es (a invoking vecadd and b invoking vecsub), when we statically select the non-conflicting

accelerators (best-case), we can achieve similar makespan as our dynamic case using GAM.

When the processes selected the conflicting accelerators (worst-case), the makespan is worse

because of an unbalanced workload.

Currently, the scheduling logic implemented in the GAM is very simple and minimal. We

expect to further extend that to handle complex management such as accelerator chaining

and composition. Although this simple GAM logic can also be incorporated in the device

drivers to achieve a similar effect, we choose to enforce the separation to maintain the

extensibility.

6.7 Resolving Potential Deadlocks in the Template

Concurrent systems may be subject to deadlock situations if not designed carefully. The

CnC computation model is deterministic and it will deadlock only if the unrolled task graph

of initial application description has a cycle. In that case, any scheduling of the tasks will
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Table 6.7: Timing for multiple processes and multiple accelerators of vecadd and vecsub(using

Synthetic case 2) in conventional template

(#vecadd,#vecadd) worst-case best-case with GAM

(1,1) 1.98 1.98 1.98

(2,0) 3.41 1.99 1.98

(2,1) 3.54 2.72 2.73

(2,2) 3.88 3.68 3.62

create deadlock as the cycle exists in the unrolled task graph. If the initial application

description does not have those cycles, any scheduling would be deadlock-free [5].

The templates for dynamic loops is deadlock-free because the templates work like a

streaming fashion and there is no circular wait in the system. We design the template for

accelerator management to disallow the “hold and wait” situation. Processes would use one

accelerator at any particular time-point and the accelerator is given back to GAM immedi-

ately after the task finishes (we do not allow the process to hold accelerator A and request

for accelerator B), and thus we avoid potential deadlock as well. In case the accelerator

requested is not available, the process can either wait or execute other program segments

(e.g, pure software version of the function). Special attention need to be paid once we further

extend the template to allow accelerator chaining or composition [110], because that may

create “hold and wait” scenarios.

6.8 Conclusions and Future work

In this chapter we presented several architecture templates that can potentially aid the

management of coprocessor acceleration. We start from a pure software-based approach

that is powerful and supports the cross-device stealing and scheduling. Then we discuss

a pure hardware-based manager that only works on a narrowed set of applications called

dynamic loops. After that, we present a design template that can support the coprocessor

management at the system-level.
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Still, the template for accelerator-rich CMP is far from complete. The features it can

potentially support are still quite minimum compared to the pure software-based approach.

The control code in the GAM can also be extended to handle more complex resource man-

agement such as buffer allocation, etc.
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CHAPTER 7

Concluding Remarks

Future energy-efficient compute systems will incorporate more coprocessors or accelerators.

In this thesis, we use the GPU and FPGA to showcase the effectiveness of coprocessor

acceleration.

Some major parts of this thesis document many stories on using high-level synthesis tools

to perform reconfigurable computing. We are the earliest user of the AutoPilot tool, and

many of our designs inspired new features that are further integrated by the tool. As the tool

further evolved and strengthened, the startup company AutoESL was acquired by Xilinx in

early 2011. This also shows that the HLS approach is viable and will bring in a world-wide

user-base. As we see from the thesis, many of the hardware-oriented optimizations still need

to be performed manually. The research conducted in this thesis provides concrete examples

to inspire further developments of the field of high-level synthesis in general. For example,

the research in Chapter 3 inspired the automatic memory partitioning [63], which is later

integrated into AutoESL tool. The research in Chapter 4 inspired the automatic buffer

allocation, memory prefetch and reuse analysis [55, 85, 86]. The memory partitioning for

reuse buffer in Chapter 4 also motivates research to improve the memory partitioning passes

for mod operations[80].

The journey just begins. As we improved the flow to perform component-specific imple-

mentation, more optimizations can be done at system-level and architecture level. We need

to develop more automated flow for the coprocessor acceleration, in particular, system-level

optimizations and automations. Architecture templates can further augment the HLS-based

approach to provide a more complete development environment. We believe that accelerator-

rich architecture is the viable approach to address the utilization wall and achieve the goal
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of domain-specific customizable computing. The thesis provides a set of building-blocks (at

both the component-level and architecture/system level) to realize the futuristic accelerator-

rich architectures.
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