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Abstract

Future performance improvements for microprocessors

have shifted from clock frequency scaling towards increases

in on-chip parallelism. Performance improvements for a wide

variety of parallel applications require domain-decomposition

of data arrays from a contiguous arrangement in memory to a

tiled layout for on-chip L1 data caches and scratchpads. How-

ever, DRAM performance suffers under the non-streaming

access patterns generated by many independent cores. We

propose collective memory scheduling (CMS) that actively

takes control of collective memory transfers such that requests

arrive in a sequential and predictable fashion to the memory

controller. CMS uses the hierarchically tiled arrays formal-

ism to compactly express collective operations, which greatly

improves programmability over conventional prefetch or list-

DMA approaches. CMS reduces application execution time

by up to 32% and DRAM read power by 2.2×, compared to a

baseline DMA architecture such as STI Cell.

1. Introduction

In recent years, the primary constraint for microprocessors has

shifted from chip area to power consumption, leading to the

stall in clock frequencies and the move towards massive paral-

lelism [20, 21, 64, 25, 29, 3]. Single-chip high-performance

multi-processors, such as chip multiprocessors (CMPs) and

graphical processor units (GPUs), are anticipated to having

thousands of processing elements as soon as 2018 [8, 9, 68].

These systems are crucial for applications that range from

consumer electronics and high-performance embedded to high

performance computing (HPC), where performance improve-

ments depend on the parallel efficiency of key algorithms.

As we adopt a more aggressive many-core strategy, the

throughput, latency, and cost of DRAM has emerged to the

forefront of research. Memory bandwidth is not scaling rapidly

enough to satisfy the increasing number of processors, making

the performance of a wide variety of applications constrained

by memory bandwidth [70, 66, 59, 12, 32, 18, 19, 28, 30, 2,

55]. In fact, current projections state that chip pins increase

by 10% every year whereas on-chip processors double every

18 months [59]. In addition, while memory density nearly

doubles every two years, the improvement in cycle time has

been hundreds of times less, leading to tens to hundreds of pro-

cessor cycles per memory access; this limits performance in

latency-sensitive systems [10, 48]. Examples of data-parallel

memory bandwidth-bound applications include the Laplacian

and wave equations stencil kernel (used in a variety of appli-

cations such as seismic simulation [46]), combustion simula-

tion [12], face recognition [38], image processing [1], fluid

simulation [53], embedded applications [75, 45], and many

others [36, 18, 12, 1]. Media applications have also been

reported to require up to 300GB/s of bandwidth to utilize

just 48 processors [57]. Even SPEC benchmarks can saturate

memory bandwidth in just eight-core CMPs [39]. In memory

bandwidth-bound applications, techniques that increase mem-

ory bandwidth have a direct effect on execution time [65, 70].

Memory power consumption is also crucial, given the lim-

ited power budget of large-scale chips. In current technology,

reading double-precision operands from DRAM for an addi-

tion costs about 2000pJ, while the operation itself consumes

approximately 100pJ [64]. This problem has already surfaced

in datacenters, where 25%–40% of total power is attributed to

DRAM [69]. Therefore, maximizing DRAM efficiency is criti-

cal, especially for future systems where DRAM’s contribution

will likely be proportionally larger than today [10, 21].

Numerous important applications depend on parallel

speedups achieved through bulk-synchronous single program

multiple data (SPMD) execution where all compute elements

are employed in tandem to speed up a single kernel. Exam-

ples include sparse and dense linear algebra kernels, FFTs

used in spectral methods for filtering, stencil kernels for image

processing and seismic imaging [46], and fluid dynamics sim-

ulation [12, 53]. Bulk-synchronous kernels typically rely on

domain decomposition to expose data parallelism. However,

copying data from a contiguous representation in DRAM to

the domain-decomposed (tiled) layout in on-chip caches poses

significant challenges to modern memory subsystems.

Modern DRAMs are most efficient when presented with

ordered unit-stride access patterns [58, 76, 31, 57]. However,

current chip multi-processors presume each core operates in-

dependently, even for SPMD execution. The result is that

the memory is presented with uncoordinated and stochastic

requests that exhibit poor locality [69, 76], which degrades per-

formance and power [5]. Even though a plethora of memory

controllers have been proposed, they are typically passive ele-

ments which do not control the order requests arrive to them.

Therefore, their degree of freedom is limited to the entries in

their finite-size transaction queues [74, 58, 31, 65, 44, 19, 54].

In this paper, we demonstrate a hardware approach to co-

ordinating on-chip data movement named collective memory

scheduling (CMS), and the programming constructs to make

access to this capability efficient and easy to express using the



hierarchically tiled array (HTA) abstraction [22, 26]. CMS co-

ordinates processors such that distributed data arrays are read

from or written to the DRAM as a unit, and transfered to or

from the appropriate processors. Memory access and distribu-

tion are handled by the CMS hardware engine which replaces

individual processor prefetch or direct memory access (DMA)

engines. Contrary to memory controllers which are passive

elements, the CMS engine actively controls collective data

transfers to guarantee address ordering of requests to memory.

We demonstrate the effectiveness of CMS for stencil-based

computations which are crucial for applications ranging from

image processing in consumer or embedded devices, to the

largest-scale HPC applications such as climate modeling.

CMS also applies non-stencil distributed data algorithms such

as distributed matrix multiplication. We believe that the kinds

of algorithms that are the largest drivers for improved compu-

tational performance are in fact SPMD kernels that are seen in

image processing, face recognition, machine learning, kinetics

simulation, and others.

In summary, CMS makes the following contributions:

• Provides a simple hardware extension to coordinate com-

plex access patterns across multiple processors to re-

establish a streaming access pattern for DRAM to achieve

optimal throughput, latency, and power. CMS reduces the

completion time for a read or write operation of a distributed

array by 39% and 38% respectively, which results in an up

to 32% reduction in application executing time, compared to

independent DMA or prefetch operations in each processor.

• Also due to re-establishing a streaming access pattern, CMS

reduces DRAM read power by 2.2× and DRAM write

power by 50%.

• In systems that predominantly perform collective transfers,

CMS eliminates the need for costly and deep transaction

queues, which modern memory controllers use to partially

recover a streaming access pattern [44, 71, 76, 31, 58, 54].

• Eliminates network congestion by replacing many inde-

pendent read and write requests with a handful of control

packets. Performing independent DMA operations satu-

rates background traffic, whereas with CMS the average

background latency remains just 30–50 cycles.

• Modifies the HTA representation [22, 26] which defines

distributed data arrays and their mapping to processors, to

simplify the application programming interface (API) since

the same collective function call is made by all processors,

with no need to calculate individual DMA address ranges,

as in STI Cell [62]. While CMS can use alternative software

constructs, HTAs simplify the programming interface.

2. Background

2.1. Stencil Computations

Domain decomposition is commonly used to expose paral-

lelism for SPMD algorithms that range from linear algebra to

stencil algorithms, but poses significant challenges to mem-

Figure 1: Tiling divides a contiguous distributed array into

tiles. Each tile is assigned to a processor. Tiles may include

read-only ghost zones that replicate neighboring data. An ex-

ample 5-point stencil is shown.

ory performance of CMPs and GPUs. To illustrate the bene-

fits of CMS, we focus on stencil algorithms because of their

broad applicability, the memory bandwidth sensitivity of their

kernels [36, 18, 12, 1], and their ubiquitous usage [55]. In

particular, stencil algorithms constitute a large fraction of con-

sumer, embedded, HPC and scientific applications in such

diverse areas as image processing, seismic imaging [46], heat

diffusion, electromagnetics, fluid dynamics, and climate mod-

eling [51, 52, 78, 56]. These applications often use iterative

finite-difference techniques, which sweep over a spatial grid,

performing nearest neighbor computations called stencils. In

a stencil operation, each point in a multi-dimensional grid is

updated with weighted contributions from a subset of its neigh-

bors in both time and space, thereby representing the coeffi-

cients of the partial differential equation (PDE) for that data el-

ement. Stencil sizes range from considering only its immediate

neighbors to 9-, 13-, 21- and 27-point stencils [14, 11, 78, 56].

Stencil calculations perform global sweeps through data

structures that are typically much larger than the available data

caches. As a result, data from main memory often cannot be

transferred fast enough to avoid stalling the computational

units on modern microprocessors [74, 18, 12, 70, 66]. Reorga-

nizing these computations to fit into the caches has principally

focused on tiling optimizations that exploit locality by perform-

ing operations on cache-sized blocks of data in each processor

before moving on to the next block [56]. This way, computing

the new values for a cache-sized block does not generate mem-

ory accesses, but the memory accesses to load new data and

store old data are still limited by memory bandwidth, making

the entire application limited by memory bandwidth for a wide

variety of applications [18]. Domain decomposition for sten-

cils is typically referred to as “tiling” due to the appearance

of the domain decomposed grid. Breaking data arrays up into

these tiles expresses parallelism and improves spatial locality.

Tiling for a regular mesh data array and a 5-point stencil that

is used for the heat PDE [52, 11] is shown in Figure 1.

With tiling, each processor is typically assigned a contigu-
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while (data_remaining)
{

load_next_tile(); // DMA load
operate_on_tile(); // Local computation
write_resulting_tile(); // DMA write

}

Figure 2: A computation loop for a local-store architecture.

ous block of stencils (a tile) to operate on within the local

high-speed L1 caches. However, stencils at the edge of a tile

require data that belongs to tiles of neighboring processors.

Therefore, each processor’s tile is extended to include read-

only ghost zones at the edges, which are owned and writable by

a neighbor processor. Ghost zones are also shown in Figure 1.

An abstract computational loop is shown in Figure 2. In

each processor, each iteration operates on a different tile. Be-

cause tiles are sized to fit in local caches, there is typically no

data reuse across iterations (across tiles of the same processor).

Operations in a computation loop can be pipelined by writing

the previous iteration’s results, computing on the current itera-

tion, and loading the next iteration’s tile simultaneously; this

requires triple buffering. Reducing this to double buffering

requires that the previous iteration’s tile must be fully written

to memory before reading the next iteration’s tile.

2.2. Memory Access Streams and Efficiency

Loading a tile causes processors to generate read requests to

the memory controller independently of other processors. This

is done with local independent hardware prefetch [37] or cache

fill streams for a cache-coherent CMP, a list of outstanding

load-store requests for a massively multithreaded architecture

like a GPU, or via a sequence of DMA requests for a local

store architecture like STI Cell [62]. In all of these cases,

requests are sent independently over an unpredictable network

and thus arrive in nearly random order to memory [76, 69].

Therefore, the memory access stream contains little locality.

Unpredictable memory access streams make extracting ben-

efits from memory prefetching difficult [37, 57]. Depending

on the access pattern, only 14%–97% of memory bandwidth

can actually be utilized [57]. Random access patterns degrade

DRAM performance and power [71, 58, 5, 69] because they

cannot take advantage of pre-activated rows and therefore

cause more row activations compared to sequential access pat-

terns. The result is that requests are more likely to activate

a new row. This is known as overfetch [5, 69]. As a result,

in many workloads the number of times an open row is used

before being closed due to a conflict is often one or two [69].

This penalizes both latency and power because opening a new

row includes charging bit lines, amplification by sense ampli-

fiers, and then writing bits back to the cells. We quantify this

performance and power efficiency loss in Section 4.2.1.

Uncoordinated requests also cause redundant memory ac-

cesses, because ghost zones are read multiple times—once

by the owner processor and one by each read-only neighbor.

Finally, multiple independent requests congest the network

       Array = hta(name,
                 {[1,3,5], // Tile boundaries before

 //  rows 1 (start),3 and 5
   [1,3,5]},// Likewise for columns

                  [3,3]);  // Map to a 3x3 processor array

Figure 3: Example HTA declaration code.

1

The larger rectangle is the
middle tile plus its ghost zones

2 3 4 5 6

1

2

3

4

5

6

Figure 4: The mapping from our example declaration. Only

the ghost zones for the shaded tile are shown. Vertical and

horizontal lines are tile boundaries.

waiting for vacancies in the memory controller’s queue.

2.3. Hierarchical Tiled Arrays Representation

HTAs are a polyhedral representation language that compactly

and efficiently expresses distributed tile arrays [22]. The dec-

laration of HTAs includes how the distributed array is tiled

and how the tiles map to processors. An example declaration

is shown in Figure 3. This declaration divides a 6×6 array into

2×2 tiles and maps those tiles to a 3×3 array of processors,

as shown in Figure 4. The first two parameters define tile

boundaries, while the last parameter defines the dimensions of

the processor array. HTAs overload data operations and array

indexing to resemble those of local arrays. The HTA library

translates data operations to remote data accesses if needed.

3. Collective Memory Transfers

3.1. Programming Interface

The CMS programming interface is responsible for making the

collective transfer capabilities of the hardware CMS engine

accessible to the programmer. For the CMS API we adopt

the HTA syntax [22] to define a 2D plane of data that a CMS

operation handles. We also modify the simple HTA syntax

to compactly express ghost zones by adding a parameter to

denote the number of ghost zone cells in each dimension. We

choose HTAs for the CMS API for simplicity. Collective oper-

ations can be expressed in software with other polyhedral rep-

resentations instead, or even with basic language constructs.

Our extension to HTA is shown in Figure 5. The added pa-

rameter denotes how many ghost zone cells in each dimension

each tile in the HTA has. The resulting mapping is illustrated

in Figure 4. HTAs have been extended to offer an alternative
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Array = hta(name, {[1,3,5],[1,3,5]},
   1, // One ghost zone cell in each dimension
  [3,3]);

Figure 5: The added parameter denotes that there is one ghost

zone cell in each dimension.

Loading a HTA with a CMS read

HTA_instance = CMS_read (Starting_address,
     HTA_instance);

Loading the same HTA with DMA operations for each line of data

   Array[row1] = DMA (Starting_address_row1,
Ending_address_row1);
.
.
.

   Array[rowN] = DMA (Starting_address_rowN,
Ending_address_rowN);

Figure 6: Without CMS, the programmer needs to calculate

starting and ending address for each tile line in a local-store

architecture, including ghost zones.

and more complex but also more powerful syntax to declare

ghost zones of arbitrary shapes and sizes [26].

3.2. API

We choose to provide access to CMS functionality using a li-

brary that exposes an API similar to DMA function calls [62].

This leaves the programming style intact and simply requires

the programmer to use CMS function calls instead of DMA

function calls. Once a CMS function call is made, the pro-

cessor generates a ready packet in the manner described later

in this Section. Similar to DMA function calls, the processor

also reserves local storage in architectures like STI Cell for

incoming data for read operations, or points to the local data

that needs to be transfered to memory for write operations.

A CMS read or write function call requires only the HTA

instance and its starting address in memory as parameters.

Since the caller’s identifier is implicit and the HTA instance

contains all the tiling and layout information, the CMS library

translates virtual to physical memory addresses if necessary

and infers exactly what address ranges each processor requires

for reading and writing, or only for reading (for its ghost

zones). Therefore, all processors that wish to read or write the

same HTA make the exact same function call.

The CMS API is considerably simpler than DMA opera-

tions in local-store architectures such as STI Cell, where the

programmer has to calculate address ranges individually in

order to configure each processor’s DMA engine [62]. In the

common case that a processor’s tile consists of non-contiguous

memory addresses [27, 55, 32, 67], a potentially large number

of DMA calls is required, which in turn require deep trans-

action queues in each DMA engine [40]. As an example, to

transfer a tile in a 64-core system from a 2048×2048 HTA

without architectural support for strided memory access, simi-

lar to the STI Cell [62], each processor requires 256 separate

1 Routers in each row send ready packets to the
router in the same column as the CMS engine

CMS

2
The shaded routers send a ready
packet for their row to the CMS

engine. Once all arrive, transfer starts.

Figure 7: Initiating a synchronous read CMS operation.

DMA transfers. That is because each processor’s tile contains

256 rows and a DMA transfer can only fetch a single row

since different rows of the same tile are disjoint in memory

address order with row- or column-major mappings, which are

typically used. This is aggravated with ghost zones due to the

additional transfers. In contrast, the equivalent CMS operation

requires only one function call, as shown in Figure 6.

Although we demonstrate CMS in a local-store architec-

ture with an explicit API, this is not a requirement. GPU

programming languages can identify collective transfers ab-

stractly from the programmer. Also, compilers or run-time

systems can analyze memory access patterns and data structure

layouts to identify collective operations. Finally, in hardware-

managed cache-coherent CMPs, prefetching and cache miss

handling can be performed collectively at a HTA granularity

instead of locally by each processor.

3.3. Read Operations

In reads, the CMS engine reads memory sequentially and dis-

tributes data to the appropriate processors according to the

HTA mapping. We implement synchronous and asynchronous

reads. In the synchronous case, the CMS engine initiates

the transfer when all processors make the synchronous read

function call for the same HTA. Therefore, processors re-

quire double buffering because they cannot receive the next

iteration’s HTA before completing their computation on the

previous iteration’s HTA. However, processors may block and

wait for others to become ready. Because barrier calls are typ-

ical in computation loops [28], synchronous reads introduce

no additional waiting and can replace barrier calls.

Asynchronous reads are used when the implicit barrier of

synchronous reads is not desired. With asynchronous reads,

the transfer initiates when the first processor is ready. This

requires non-ready processors to buffer the next iteration’s

HTA. Therefore, processors require triple buffering.

To coordinate operation start in the synchronous case we

employ a simple hierarchical communication pattern, shown

in Figure 7. As shown, a processor sends its ready packet—

generated after making the CMS read function call—to the

processor which shares a dimension (e.g., column) with the

CMS engine. Once these intermediate processors receive a
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O R

1

Packet propagates until paths diverge.
A copy is created for R whereas

the original packet continues to O

CMS

2

CMS unit sends a packet
with data for nodes O

(owner) and R (reader)

Figure 8: Using multicast to reduce propagation of bits.

ready packet from their entire row, they send a collective ready

packet on behalf of their row to the CMS engine. Transfer

initiates when the CMS engine receives a collective ready

packet from each row. Ready packets contain the base address,

transfer count and the HTA information (such as the tiling and

layout), or simply instruct the CMS engine to reuse the tiling

layout it used for its last operation but with a different starting

address; this reduces the size of ready packets.

Once transfer initiates, the CMS engine reads memory se-

quentially and sends each tile line to the appropriate processor

as specified by the HTA declaration. For ghost zone data,

the CMS engine sends a copy of the packet that it sent to the

owner processor, to the reader processor. This occurs as data

is read from memory, ensuring that all data is read only once.

3.4. Multicast Packets

For ghost zone data, the energy cost can be reduced by adding

multicast functionality [33]. With multicast, ghost zone data

is sent only once, instead of with different packets to different

destinations. At the router where the paths to the owner and

reader processors diverge, routers create a copy of the packet

for the reader processor, while the original packet continues

to the owner processor. This is shown in Figure 8. Multicast

reduces propagation energy and contention in the network

because only one packet traverses the common path between

the CMS engine and the two destinations, instead of two.

Efficient implementations of multicast in on-chip routers only

extend cycle time by 1%, area by 5%, and power by 2% [72].

3.5. Write Operations

To easily guarantee memory access order, CMS write opera-

tions are performed as reads from the standpoint of the CMS

engine. In other words, the CMS engine is reading data from

the processors and writing it into memory. When the proces-

sor that holds the first tile line of the HTA is ready to write

its tile, it sends a write ready packet to the CMS engine con-

taining the HTA information to initiate the write operation.

That information includes the base address, transfer count and

HTA information such as tiling and layout. Similar to read

Reorder
buffer

for writes

Network interface

Memory interface

Mem.
read
buffer

Mem.
read
buffer

Active
trans.
info

Request issue

Figure 9: CMS engine outline.

operations, the control packet can instruct the CMS engine to

reuse the previous operation’s HTA information, except for

the starting address. The CMS engine then sends read requests

in units of tile lines to retrieve the HTA in memory address

order. In the mapping of Figure 4, the first read request for

elements (1,1) and (2,1) is served by processor 1, (3,1) and

(4,1) by processor 2, (5,1) and (6,1) by processor 3, (1,2)
and (2,2) by processor 1, and so on. Processors may delay

their response until they produce the data.

In order to cover the communication delay and keep the

memory constantly busy, there need to be more than one out-

standing read requests in flight. Because the network guaran-

tees no ordering, the CMS engine uses a small reorder buffer

to enqueue read replies write to memory in address order. The

number of outstanding read requests defines the size of the re-

order buffer, which needs to be deep enough to eliminate mem-

ory idle cycles. However, excessively large reorder buffers are

not only costly but also stress the network since they allow

more read replies to be in transit, causing contention.

In our 8×8 2D mesh, the optimal size for the reorder

buffer is six transactions for HTAs of 512×512 elements, four

transactions for 1024×1024, and three for 2048×2048 HTAs.

These are the minimum numbers to ensure that the CMS en-

gine constantly has data to write to memory. In the first case

there are 512
8
×6 = 384 HTA elements (variables) in flight, in

the second case 512 elements, and in the third case 768 ele-

ments. Larger HTAs increase tile line size and therefore fewer

pending reads are required to cover the round-trip latency.

3.6. Collective Memory Scheduling Engine

We implement the CMS engine as a "stencil engine" atop a

typical DMA engine. As illustrated in Figure 9, the CMS en-

gine has a memory interface side and a network interface side.

When a valid read or write command appears at the network

interface, the CMS engine records the HTA’s starting address

and its 4 dimensions (elements in a tile’s row, elements in a

tile’s column, tiles in a HTA row, tiles in a HTA column). The

engine then breaks the large operation into smaller memory-

sized ones and tracks its position in the operation with counters

representing each dimension of the HTA. The information of

the active transfer, progress, and list of memory-sized transac-

tions remaining reside in the “active trans. info” block until

the operation completes. At the memory interface side, the

CMS engine either sends read requests as fast as the memory

controller allows, or it sends write requests whenever it has
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valid data to write from the network interface side. Once the

internal command counter reaches its limit, the DMA engine

returns to idle, waiting to accept a new operation.

The allowed number of pending memory transactions de-

pends on the size of the stencil engine’s buffers. Read opera-

tions use two small 16×128 bit buffers (“mem. read buffers”)

for the outstanding DRAM read requests and to permit dupli-

cating ghost zone packets (in this implementation the memory

controller interface is 128 bits). No new DRAM read requests

may be issued until one of the two buffers is free. With the

HTAs evaluated in this paper, two small 16×128 bit buffers

were enough to prevent stalls on the memory side. A small

state machine handles ghost zone packet duplication. The

CMS engine does not return to idle (indicating operation com-

pletion) until packets are sent to all participating processors.

The reorder buffer for write operations tags requests to tiles

for their tile lines and uses that tag to write the returned data

into the correct location in the reorder buffer such that memory

address order is preserved when data is read from the reorder

buffer and written to memory. The reorder buffer size depends

on the allowed number of outstanding read requests in flight.

The CMS engine can also include a small queue to store

pending collective transfer requests, but only one is active at

a time. Moreover, the CMS engine is not invoked for non-

collective transfers. The CMS engine can be integrated into

the memory controller instead of remaining a separate entity

like a DMA engine, but we leave this for future work. Further-

more, to reduce communication delay, we co-locate a CMS

engine with each memory controller. With multiple memory

controllers, a large collective transfer is divided into smaller

ones, each of which is assigned to a CMS engine. Therefore,

a chip-wide operation will activate all CMS engines, each per-

forming a portion of the operation. In local-store architectures,

CMS does not require hardware support in processors since

the required functionality is implemented in software.

Because the CMS engine guarantees memory address order,

the memory controller need not be more complex than a FIFO

scheduler with just enough transaction queue entries for mem-

ory pipelining. The additional complexity of the CMS engine

compared to a typical DMA engine is outweighed by the vastly

reduced memory controller complexity compared to modern

memory controllers with large transaction queues and complex

scheduling policies [58, 31, 65, 44, 19, 54]. Moreover, CMS

engines replace individual processor DMA engines or prefetch

units because the CMS engine performs the entire operation

instead of individual processors. Simplifying the memory con-

troller to FIFO scheduling and removing prefetch units may be

inefficient in systems that do not predominantly use collective

data transfers. That’s because the performance degradation

for non-collective transfers may become a significant factor in

system performance. However, as we show in Section 4.2.6,

CMS engines are inexpensive enough to be included even

in general purpose systems that do not frequently perform

collective transfers. When those systems execute non-stencil

algorithms, CMS engines remain inactive, similar to any other

accelerator. In addition, a wide-variety of important systems

and applications use predominantly collective data transfers,

such as such as STI Cell, GPUs, image processing, face recog-

nition, combustion simulation, fluid modelling, wave equation

processing, and Laplacian stencil kernels.

3.7. Collective Operation Overview

In summary, a CMS operation has the following steps:

• The programmer declares the HTA and uses the CMS API

function call appropriate for the desired transfer.

• Each processor generates a ready packet containing the start-

ing address and HTA information. Processors follow the

communication pattern appropriate to the type of transfer,

such as that of Figure 7 for synchronous reads. In case of

reads, processors reserve space in their local storage.

• The CMS engine performs the collective transfer.

4. Evaluation

4.1. Methodology

We use a heavily-modified version of the Booksim network

simulator to model a local-store architecture similar to STI

Cell [62] including processors, memory controllers, and lo-

cal storage [34]. Initially we simulate writes and synchronous

reads operations of single HTAs. HTAs are 2D and range from

64×64 to 2048×2048. Variables are 8-byte double precision.

We use 5-point stencils such as for the heat PDE [11]. There-

fore, each processor tile requires two ghost zone elements per

row and two per column (one element on each side).

We then present application results for the following im-

portant stencil-based applications: fluid animation from the

PARSEC benchmark suite [6], geometric multi-grid calcu-

lations (GMG) [73], seismic wave propagation simulation

(RTM) [46], the SOBEL filter used extensively for image pro-

cessing [23], and a collection of Laplacian stencil kernels [35].

For the application results, we model Intel Phi co-processors,

which are simple x86-based processors and representative of

the simple cores projected for future many-core chips [9, 68].

For each application, we calculate the processing time per

variable as well as the ghost zone sizes, and simulate ten

iterations of each application’s execution loop, shown in Fig-

ure 2. We assume enough local storage for triple buffering (in

general-purpose systems the software runtime can resize tiles

accordingly). We use the typically-used row-major mapping

of each distributed array to memory (column-major mapping

would produce comparable results).

Our default proxy CMP consists of an 8×8 grid of pro-

cessors. Four memory controllers are placed at the corners.

Each memory controller is co-located with a CMS engine. We

use static address-based mapping to map tile lines (memory

addresses) to memory controllers. Therefore, each processor

requests each tile line from the appropriate memory controller

and CMS engine. With a simple location-based mapping, most
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processors access only one memory controller. The pin pres-

sure on current large-scale chips make more than four memory

controllers a challenge to support [2, 59]. A 2D mesh on-

chip network is used with dimension-order routing (DOR) and

four-stage input-buffered routers [17]. Input buffers have 4

virtual channels (VCs), with eight flit slots statically assigned

to each. Two VCs are used for request packets, and two VCs

for replies. The datapath is 128 bits wide. Data-transferring

packets carry one line of a processor’s tile, plus one head flit.

For the memory, we use DRAMSim2 to simulate a Micron

16MB DDR3 1600MHz memory module with a 64-bit data

path and two ranks with 8 banks each [60]. There is a single

memory controller for the two ranks. The memory controller

has 32-slot transaction and DRAM command reorder queues,

and First Ready First Come First Served (FRFCFS) schedul-

ing [58, 76]. Our FRFCFS scheduler uses an open-row policy

which respects row buffer locality by prioritizing transactions

to open DRAM rows. This essentially performs limited trans-

action reordering by address, similar to other modern sched-

ulers [58, 31, 44, 19, 54]. We compare CMS against FRFCFS

because FRFCFS maximizes memory throughput compared

to a variety of other controllers [65, 58]. FRFCFS does not

necessarily minimize application execution time because max-

imizing memory throughput may be unfair to threads [44, 54].

However, we do not model and therefore hold these adver-

sary effects against the baseline case. Therefore, our FRFCFS

represents an optimized state-of-the-art. We assume the same

frequency of 1600MHz for the simple cores and the network.

4.2. Results

4.2.1. Memory Throughput Degradation: First, we illus-

trate the performance of DRAM in response to an uncoor-

dinated access pattern that results from a SPMD algorithm

running on a conventional many-core memory subsystem. In

this case, our FRFCFS memory controller tries to maximize

performance by reconstructing a linear access pattern and

respecting row buffer locality using transaction reordering.

However even a sophisticated controller’s reordering capabil-

ity is inherently limited by the depth of the transaction queue

since memory controllers can only choose among the trans-

actions in their queue and do not control the order requests

arrive in their queue. With CMS, neither complex reordering

schemes nor deep queues are required to maximize memory

throughput since the memory is always accessed sequentially.

To set up this experiment, we use DRAMsim2 [60] to simu-

late a synthetic 16MB in-order trace of loads to represent the

“coordinated” CMS case, and an out-of-order trace to simulate

the uncoordinated case where loads or stores are presented to

the memory controller in random order. A single load accesses

a 64-Byte word, causing an eight-cycle burst due to the 64-

bit memory controller datapath. The uncoordinated requests

are randomly-ordered in sizes of 128 bytes, representing one

tile line. Thus the uncoordinated/random-order traces have

two adjacent loads or stores for consecutive addresses. These

traces therefore accurately represent the unpredictable mem-

ory access stream that would arrive to a memory controller

in the baseline case where processors send requests for each

tile line without coordination. Experiments with access traces

larger than 16MB produce comparable results.

Our results show that for the uncoordinated access pattern

(baseline), DRAM throughput drops by 25% for loads and

41% for stores. Also, median latency increases by 23% for

loads and 64% for stores, maximum latency increases by 2×

in both cases, and power increases by 2.2× for loads and 50%

for stores. Compared to the maximum theoretical throughput,

reads achieve 80% and writes 75% with CMS compared to

60% and 44% respectively for the uncoordinated case. Even

streaming unit-stride traces cannot achieve 100% through-

put due to refresh operations. Latency reduction is crucial if

DRAM latency is the performance bottleneck [48, 66].

The uncoordinated case exhibits higher power consumption

due to an increase in activate and precharge power (5.2× for

loads and 3.4× for stores due to a similar decrease in row

buffer hit rates). Past work has found similar results, and not

even the best-performing memory transaction scheduler can

bridge the gap between random and in-order accesses [58, 69,

71, 5, 66]. For example, the row-buffer hit rate drops from

60% for a single processor to 35% in a baseline 16-processor

CMP, in a variety of benchmarks [69]. Also, in a 16-core

CMP, a row fetched into the row buffer is typically used only

once or twice before being closed due to a conflict [69]. For

the rest of our evaluations, we use a 25% lower DRAM read

throughput for the baseline case, and 41% for write operations.

4.2.2. Operation Completion Time: Figure 10 (left) shows

execution times for completing a single read or write CMS

operation. In the baseline case, processors send memory re-

quests without coordination. Compared to the baseline with

FRFCFS, CMS reduces completion time by 39% for reads

and 38% for writes. These gains are due to:

• The lower throughput the DRAM provides with random

access patterns, created by the baseline case because each

processor requests data independently of other processors.

• Eliminating redundant memory reads in read CMS opera-

tions compared to the baseline, since data is read only once

and submitted to the owner and reader processors, instead

of each processor retrieving its ghost zones separately. With

a 256×256 HTA, there are 12% fewer reads with CMS.

This additional benefit of reads compared to writes provides

them with a speedup comparable to writes even though

memory write performance gains are smaller.

For both reads and writes, CMS load balances the network

better because it accesses tile lines in an interleaved manner,

whereas in the baseline case hotspots can be created depending

on the order requests arrive to the memory controller. For

example, processors closer to the memory controller are more

likely to have their requests satisfied first, but that creates a

larger number of replies to the same processor, resulting in

transient load imbalance and fairness concerns.
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Figure 10: CMS read and write operation completion time normalized to the baseline, and the impact on background traffic.
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Figure 11: Application speedup for CMS.

We then repeat the experiments, but with a uniform ran-

dom (UR) background traffic pattern with a 10% flit injection

rate. A 10% injection rate provides non-negligible traffic, but

not enough to saturate the network by itself. This traffic is

composed of read and write requests and replies similar to

DMA traffic, and represents innocent bystander traffic.

As shown in Figure 10 (center), the reduction in execution

time for CMS in the mesh is 46% for reads and 36% for writes.

While background traffic degrades performance for CMS, it

is more adversary to the baseline because read and write re-

quests are queued in the network. Figure 10 (right) better

illustrates the impact to the background traffic. Baseline oper-

ations saturate the network and raise the average background

traffic latency to thousands or millions of clock cycles in our

simulations (latencies in saturated networks are unbounded).

In contrast, CMS keeps the average background traffic latency

to 30–50 cycles. These gains for CMS are due to:

• Replacing the large number of read or write requests in the

uncoordinated case with a few ready packets for the entire

transfer. This alleviates contention in the network because

that many requests do not fit in the memory controller’s

queue. Therefore, they create multi-hop paths of congested

packets which degrade other traffic’s performance [47].

• Bounding the number of in-flight read reply packets, which

carry data from processors to memory in CMS write op-

erations, because of the reorder buffer in the CMS engine.

This also alleviates network congestion.

4.2.3. Impact on Application Execution Time: We show

our application benchmark results in Figure 11. The gains de-

pend on the ratio of the time spent computing in each iteration

versus completing a read and a write operation. Applications

that are compute-bound in our system (RTM and GMG) re-

ceive minimal (0%–1%) execution time benefit from CMS.

In contrast, memory bandwidth-bound applications directly

benefit from CMS. Specifically, by average across HTA sizes,

fluidanimate requires 21% fewer cycles, the Sobel filter 31%

fewer cycles and the Laplacian stencils kernel 32% fewer cy-

cles. The energy reduction benefits from CMS remain for both

compute-bound and memory bandwidth-bound applications.

CMS has broad applicability because a wide variety of

stencil-based kernels are memory bound [65, 70, 32, 36].

Stencil-based kernels are also critical because they comprise

the building blocks of applications ranging from image pro-

cessing in consumer devices to the largest scale HPC applica-

tions such as climate modeling and fluid simulations. Media

applications can require 300GB/s of memory bandwidth for 48

processings [57]. Other kernels are more memory bandwidth

bound, even for just a few processors, and remain so even after

a variety of software optimizations, autotuning, and autopar-

allelization [36, 18]. In addition, numerous image processing

applications are also memory bandwidth bound, such as the

matrix-vector product in NVIDIA Fermi [1] and face recogni-

tion [38]. High graphics processing demands force the Xbox

360 to have 22.4GB/s of GDDR3 bandwidth to satisfy just

three processors [70] Finally, CMS reduces memory access

latency, which directly benefits latency-sensitive systems [66].

To make matters worse, the number of memory bandwidth-

bound applications and systems is expected to increase due

to increased application demands and because computational

throughput increases faster than memory bandwidth [12]. For

example, current projections state that chip pins increase by

10% every year whereas on-chip processors double every 18

months [59]. This way, modern CMPs may require 90% of

their area being caches to keep the memory from becoming a

bottleneck [59]. Because the performance of a memory-bound

application is roughly proportional to the rate at which its

memory requests are served [65], techniques to increase mem-

ory bandwidth directly impact application execution time [70].

4.2.4. Impact of Multicast: Enabling multicast support in-

creases the benefits for CMS read operations from a 39%

operation completion time reduction to 43% with no back-
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Figure 12: Results for enabling multicast in CMS reads.

ground traffic, as shown in Figure 12. Multicast with CMS

reduces congestion as well as the amount of bits propagating

through the network because data destined to two processors

(the owner and the reader) propagates as a single packet until

the point that the paths diverge. Since the owner and reader

processors are neighbors in stencil computations, the majority

of multicast packets traverse most of their paths as a single

packet before a copy is produced. The percentage gains de-

pend on the ratio of ghost zone size and tile size. This reduces

the benefits for multicast as the size of the HTA increases in

our experiments, since the size of the ghost zones remains

constant because our 5-point stencil remains the same.

4.2.5. Sensitivity to System Configuration: We then repeat

our operation completion experiments with a 144-processor

system and then the original 64-processor system with a ghost

zone of twice the size using a 9-point stencil such as for S3D

which models turbulent combustion [14]. Operation comple-

tion gains for CMS are comparable to Section 4.2.2. This

remains true except for a large ghost zone size to tile size ratio

which benefits CMS, because CMS’s benefit of reading data

destined to two processors only once is amplified with larger

ghost zones. Finally, repeating our experiments with only one

or two memory controllers slightly favors CMS because the

baseline case produces more severe network hotspots.

4.2.6. CMS Engine Implementation Results and Energy:

We implement a CMS engine and a typical DMA engine in

RTL and synthesize them using Synopsys Design Compiler

and a 40nm general-purpose technology library. We also syn-

thesize the same designs using the Xilinx FPGA design flow

for a Virtex-5 FPGA. The CMS and DMA engines are config-

ured for the DDR3 Micron modules with 64 bit datapaths used

in our evaluations. For the CMS engine, the reorder buffer for

write operations is sized to hold eight transactions of 16×128

bits each, for a total of 2KB. Eight transactions are more than

required to keep the memory busy in the write operations of

our evaluations, as discussed in Section 3.5. In the ASIC

flow, the reorder buffer as well as the small read buffer in the

CMS engine are implemented using flip-flop (FF) arrays. The

results are presented in Table 1.

As shown, cycle time for the CMS engine increases by 25%

in the ASIC flow and 16% in the FPGA flow. This is due to

the extra complexity of the CMS engine as reflected by the

Table 1: RTL synthesis results.

DMA CMS

ASIC

Combinational area (µm2) 743 16231

Non-combinational area (µm2) 419 61313

Minimum cycle time (ns) 0.6 0.75

FPGA

LUTs for logic 245 856

Minimum cycle time (ns) 4.4 5.1

count of logic LUTs, as well as the reorder buffers and the

small read buffers. Also due to the buffers, the CMS engine

occupies more area. To make the CMS engine operate at the

same clock frequency as the DMA engine, we can simply

pipeline the CMS engine by adding one more stage. This will

delay initialization of operations by a cycle, but will enable

the CMS engine to operate at comparable clock frequencies

as the DMA engine. The one extra cycle is a negligible timing

overhead compared to the duration of an operation.

Despite the increased complexity of the CMS engine, CMS

can significantly simplify other parts of the system. Specifi-

cally, when performing collective operations, CMS requires

only a simple FIFO memory scheduler with just enough trans-

action queue entries for memory pipelining. Compared to

modern memory controllers, this is a significant reduction

in cycle time because modern controllers typically hold a

few tens of transactions [58] and perform an associative com-

parison of all requests in the transaction queue every cycle

(therefore requiring comparators for every queue entry), and

then issue a transaction from any position in the queue based

on multi-level priority and other complex schemes [76, 58].

In addition, the reorder buffer for write operations in the CMS

engine is much smaller compared to transaction queues used in

modern memory controllers; this more than compensates for

the additional area of the CMS engine. As an example of the

savings obtained by the shallower transaction queue, a ternary

content addressable memory (TCAM) that holds eight trans-

actions has a 10%–130% shorter cycle time, is 4× smaller,

and requires up to 1.5×–4× less access energy compared to a

transaction queue of 32 entries which is typical for a modern

memory controller transaction queue TCAM [4, 58]. CMS

also replaces DMA engines in each processor.

Using FIFO memory schedulers and removing DMA en-

gines is only prudent in systems that predominantly use col-

lective data transfers, because otherwise the impact of non-

collective transfers becomes considerable. However, such

bulk-synchronous SPMD systems and other systems that rely

on collective transfers comprise a wide variety of architectures

and applications, such as STI Cell, GPUs, image process-

ing, face recognition, combustion simulation, fluid modelling,

wave equation processing, and Laplacian kernels. Moreover,

CMS engines are inexpensive enough to be included even

in general purpose systems that do not frequently perform

collective transfers. When those systems execute non-stencil

algorithms, CMS engines remain inactive, similar to any other
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accelerator.

CMS also reduces DRAM access power because the base-

line case consumes 2.2× more dynamic power for reads and

50% more for writes. This is because of the extra row ac-

tivations in the baseline case, which increases activate and

precharge power. Given that today’s DDR3 technology con-

sumes about 70pJ per bit, a system with only 0.2 bytes per

FLOP memory bandwidth requires over 160mW of DRAM

power [64]. These projections, combined with attributing 25%–

40% of total datacenter power to the DRAM system [69], make

CMS’s DRAM power reductions critical.

5. Discussion

CMS is targeted at bulk-synchronous SPMD execution mod-

els that transfer distributed arrays to and from memory, and is

not intended to address irregular multi-processing workloads.

We believe that the kinds of algorithms that are the largest

drivers for improved computational performance are in fact

these kinds of SPMD kernels that are seen in image processing,

face recognition, machine learning, fluid dynamics, linear al-

gebra, kinetics simulation, and numerous others. Even though

mappings alternative to row- or column-major can produce a

more favorable memory access stream for some applications

without CMS [27, 55, 32, 67], the baseline still cannot out-

perform CMS even with complex data layout transformations.

CMS will also benefit communication-avoiding optimizations

which tradeoff reduced memory traffic for redundant computa-

tion [51, 28, 18]. CMS can increase performance without the

extra local storage, cache space, or computations needed for

redundant communication, while better alleviating network

congestion and reducing memory power.

CMS also readily applies to GPU architectures, due to their

similarity with our local-store architecture and the wide variety

of stencil algorithms they execute with similar memory access

patterns as our evaluations, such as image processing [1]. In

such architectures, GPU programming language constructs

can identify collective transfers by being aware of the data

layout. Furthermore, while in local-store architectures such

as STI Cell [62] we choose to identify collective transfers

by using a software API that replaces DMA function calls,

typical cache coherent CMPs can use hardware prefetch units.

In such systems, individual prefetch units in each processor

can transmit their predictions to the CMS engine, which can

identify collective transfer opportunities. Prefetch decisions

can also be performed in the CMS engine by observing the

access stream, without prefetch engines at each processor.

Alternatively, compilers can also recognize collective transfer

opportunities abstractly from the programmer.

6. Related Work

Past work has researched similar collective data transfer tech-

niques in very different contexts. In wide-area networks, coor-

dinating the nodes in a TCP/IP network to send their data to a

common destination in with a common transfer schedule that

avoids conflicts substantially reduces network congestion [15].

Alternative techniques for wide-area networks focus on hetero-

geneity and use of shared resources by transferring different

chunks of the same file from replicas and taking network

bandwidth into account [43]. Collective data transfers have

also been applied for server disk-directed I/O, because the

access bandwidth for traditional hard disk drives significantly

improves with sequential accesses [63].

Classic vector machines such as the Cray-1 [61, 50] over-

come the inefficiencies of DRAM overfetch and access

granularity by using massive bank-switching to offer word-

granularity accesses. However, vector core designs and mem-

ory controllers are costly due to their limited market and siz-

able engineering costs [24]. VIRAM [45] can also exploit data-

level parallelism at chip level to overcome the wiring costs of

massive bank-switching [45, 75], but the memory capacities

offered by the various Processor-in-Memory approaches have

proven to be impractically small for the commercial market.

Moreover, variations of DMA engines, such as scatter-gather

DMA [40], still perform transfers between only two compo-

nents, thus creating out of order access streams to memory.

The Impulse memory controller overcomes the inefficiency

of sparse access patterns due to cache-line granularity issues

by reorganizing the memory address stream so that sparse ad-

dress pattern appears contiguously in the cache hierarchy [77].

However, with Impulse the data arrays remain scattered in the

DRAM, thereby leading to inefficient DRAM performance

due to overfetch. By contrast, CMS schedules what would

otherwise be non-contiguous memory accesses so that they

are presented as a linear stream of addresses to DRAM. There-

fore, the impulse memory controller improves efficiency of the

cache hierarchy, but it offers no benefit for memory bandwidth.

Sophisticated memory schedulers use complex scheduling

policies, and can use different policies for threads according to

their memory access characteristics or quality of service guar-

antees [58, 31, 65, 44, 19, 54, 74]. Memory controllers can

be thread-aware by trying to serve requests at a thread gran-

ularity in order to reduce thread stall time. Many schedulers,

such as PAR-BS, perform limited reordering by attempting to

exploit row buffer locality and bank parallelism among other

metrics [54]. Still, even a memory controller with an ideal pol-

icy is inherently incapable of fully reconstructing the memory

access stream. That is because controllers are passive ele-

ments which do not control the order requests arrive to them

and decide which one to serve next only from within their

transaction queues. CMS has similar goals with “memory ac-

cess scheduling” proposed for stream processors, but memory

access scheduling is merely an algorithm that applies to the

memory controller, and thus is inherently limited by the size

of the memory controller’s transaction queue [57]. Since trans-

action queues are not of infinite size, the result is far from the

complete memory address order that CMS achieves because

CMS actively takes charge of collective memory operations.
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As we explain in Section 4.1, we compare against FRFCFS

with an open-row policy because FRFCFS maximizes through-

put compared to many other controllers

Because sophisticated memory schedulers require associa-

tive comparison of all queued transactions every cycle, past

work has simplified memory controllers by using the on-chip

routers to reorder requests [76]. However, because decisions

are made with local knowledge and processors still issue re-

quests independently, this scheme performs slightly lower

than a FRFCFS scheduler. Such schemes that rely exclusively

on the network cannot perfectly reconstruct memory order

without blocking packets in the network, affecting other traf-

fic. Alternative work uses admission control to inject only

requests for open DRAM rows [49]. However, this uses a

centralized scheme and thus faces limited scalability, and also

risks idling memory due to propagation delay. Frequently-

accessed data can be placed in the same row to favor open

row DRAM policies [66]. Modifications to DRAM internals

have been proposed to mitigate the negative power effects of

random-order sequences, by avoiding activating all the bitlines

in a row before the exact read request is known [69].

Past work has repeatedly reported that a wide variety of

applications are constrained by memory bandwidth [65, 28,

64, 59, 36, 18, 46, 12, 32, 55]. In those cases, while local

and last-level caches can eliminate DRAM accesses during

the computation phase of a loop, data is still retrieved from

main memory when loading new and storing old HTAs, which

is the focus of CMS. Last-level caches can partially recon-

struct address order for writes with a write back policy. How-

ever, streaming (write-through) writes are preferable to write

back policies in stencil-based computations to avoid pollut-

ing higher-level caches because the results of a computation

loop are not reused in the next iteration [18, 28]. Even with a

write-back policy, caches are constrained by their size and the

unpredictability of the incoming packers, similar to a memory

controller. Last-level caches can, to some degree, eliminate

redundant memory reads due to ghost zones, but this highly

depends on timing and cache size to determine when data is

evicted. Memory prefetching techniques focus on reducing

latency and offer little benefit in systems that are bound by

memory bandwidth. Prefetching techniques typically perform

predictions independently at each processor and thus create

out-of-order access patterns [37].

CMS does not resolve cache interference across tiles (such

as for ghost zones) during a computation iteration. This can

be accomplished by hybrid software–hardware cache coher-

ence [16, 42]. CMS focuses on collective transfers to fetch

new data or record old data back to memory. We assume tiles

optimized for local caches, with no data reuse across loops.

Polyhedral representations alternative to HTAs are also ap-

plicable to CMS [41, 13, 7]. Polyhedral representations are not

a prerequisite for CMS because collective memory transfers

can be expressed even with basic language constructs.

7. Conclusion

To make optimal use of the limited memory bandwidth of

current and future systems, we present CMS to coordinate par-

allel data access in a chip multi-processor such that distributed

arrays of data are read from or written to the DRAM in strict

memory address order. CMS is a hardware technique that

programming constructs access. CMS maximizes memory

throughput beyond that possible even by the most aggressive

transaction schedulers in modern memory controllers, reduces

memory power and latency, simplifies the API to manage bulk-

synchronous DMA operations of SPMD codes, and alleviates

network congestion. These gains result in up to 32% lower

application execution time, up to 2.2× less power for memory

reads, and 50% less power for memory writes.
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