UC Irvine
ICS Technical Reports

Title
Hierarchical parallelism exploitation

Permalink
https://escholarship.org/uc/item/19vow8s3

Author
Nicolau, Alexandru

Publication Date
1989

Peer reviewed

eScholarship.org

Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/19v6w8s3
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

'HIERARCHICAL PARALLELISM EXPLOITATION
Alexandru Nicolau

Department of Information and Computer Science
University of California, Irvine

Irvine, California 92717

Technical Report No.89-32

s
L7
L3

No §¢-304

HIERARCHICAL PARALLELISM EXPLOITATION

Alexandru Nicolau

1 Introduction

The generation of hand-crafted code for efficient execution on parallel machines is a tedious
task. For some important problems, new algorithms carefully designed for parallel execution
are being developed, often tailored to a particular architecture. However, these algorithms
are difficult to develop and implement—the problem must be of sufficient generality, interest
and regularity to compensate for the considerable effort. Even when the core algorithms are
hand-parallelized, complex application codes will not run at large speedups if the rest of the
code is not speeded up as well. Furthermore, even the carefully crafted parallel algorithms are
likely to contain parallelism that is too low-level and too irregular to be explicitly exploited
by the human designer. The remaining parallelistn has a multiplicative effect on the overall
performance of the code. Thus the ability to exploit parallelism at all levels is critical for

execution speed.

1.1 How Should Parallelism Be Exploited?

Automatic fine-grain (instruction level) parallelism holds the promise of exploiting substan-
tially all the parallelism available in a given program, including highly irregular forms of
parallelism not visible at coarser levels. Since the effect of all levels of parallelism exploita-
tion have a multiplicative effect on overall performance, substantially all parallelism should
be exploited in order to achieve good performance—an obvious consequence of Amhdal’s law.
The importance of fine-grain parallelism exploitation has already been recognized to a small
extent, and is reflected in the use of pipelining and (relatively narrow) horizontal microcode,
in virtually all high-performance (numerical) processors. However, its wider application has
been limited by several factors. to be discussed shortly. In this paper we will describe some
new results on the exploitation of fine-grain parallelism and will discuss their implications for
the design of massively p;arallel machines.

[deally, fine-grain parallelism would be exploited at runtime, when all data-dependencies
are strict (i.e., there is no ambiguity between indirect referénces) and a unique execution path
through the code is followed. This is essentially the approach taken in the data-flow model
of computation. In practice however, the runtime overhead involved in dynamic (hardware)
scheduling of operations and interlocking to ensure dependency preservation is often several
times larger than the theoretical performance speedup. The alternative approach is compile-

time parallelization of the code. The obvious advantage of this approach lies in the elimination

’

of runtime overheads (by doing the scheduling work at compile-time). This yields simpler,
and thus cheaper and faster, machines. Furthermore, this approach can potentially exploit
parallelism that is not readily available at coarser levels of granularity, and is far too tedious

to be expressed at the user level.

1.2 Difficulties in Static Fine-grain Parallelism Extraction

Unfortunately, several difficulties have limited compile-time fine-grain parallelism exploita-

tion. These are:

e Very tight coupling of processors. To achieve maximal benefits, the hardware behaviour
should be highly predictable. For example, if processors are synchronous, operations
could be executed in parallel in this model, utilizing the “free” implicit synchronization,
while the same operations would not be worth executing in parallel if explicit synchro-
nization were required.’" While this requires high memory bandwidfh and constrains
the scalability of the architecture, it is technologically feasible, and typically easier to
build (and thus less expensive) than complex dynamic interlocking/scheduling hard-
ware. The main drawbacks of the approach are in the ability of the compiler to expose

enough fine-grain parallelism to efficiently utilize such hardware.

¢ Amount of parallelism exploitable by fine-grain techniques. Due to a misunderstanding
of some early experiments this was widely (and erroneously) believed to be too small
or too expensive to bother with. Later evidence, [21], has conclusively established the

availability of rather large amounts of fine-grain parallelism (factors from 10 to 100) in

ordinary code.

e Conditional jumps. Since branches occur very often in ordinary programs (once ev-
ery 3-8 instructions on average), they make the static scheduling of large numbers of
operations difficult. Previous techniques have either been limited to branch-free code
(basic blocks), thus drastically limiting the potential parallelism, or strongly relied on
heuristics to statically predict the direction of runtime branches, with potentially heavy

penalties in cases where such prediction is unsuccessful.

' This assumes that keeping the processors synchronous is done with negligible cost, and/or does not affect

the cycle time significantly.

e Loop limitations. Static fine-grain parallelization was essentially limited to acyclic code

(i-e., no loops), although loop-unwinding attenuates this problem to some extent.

¢ Resource utilization efficiency. Code compacted (parallelized) by fine-grain methods
tends to vary a great deal in the amount of parallelism exposed. This variation is
particularly troublesome in loops, since each iteration will tend to have a relatively se-
quential startup and/or wind-down sequence of operations, with a burst of very parallel

code in between. This leads to inefficient use of resources and/or degrades performance.

e Unpredictable (ambiguous) data-dependencies. When indirect references occur in a
program it can be difficult—or impossible—for a compiler to decide whether two such
references do or do not refer to the same memory location. This forces the compiler to
make very conservative assumptions about the order in which the instructions have to

execute, resulting in slower (less parallel) code.

1.3 Overview of the Paper

In this paper we present a set of techniques that combine to overcome all of the above diffi-
culties. We discuss a set of simple core program transformations that can expose substantial
amounts of parallelism even in cases where alternate techniques would fail. Furthermore, these
transformations are defined independently of any superimposed heuristics, yielding increased
flexibility. Two additional transformations extend the applicability of the core transforma-
tions to arbitrary loops. The first of these meta-transformations allows the exploitation of
fine-grain parallelism across multiple nested loops, while the second realizes the full effect of
complete unwinding of loops, without the actual complete unwinding. The transformations
work even in the presence of conditional jumps. Together, these transformations combine to
overcome all of the loop-related difficulties previously mentioned.

The resilience of our approach to statically unpredictable conditional jumps has been con-
firmed by both our own experimental evidence, and by independent work at IBM T.J.Watson
research Center [10|. In fact, Percolation Scheduling was found to be so robust in the pres-
ence of control-flow unpredictability, that its main target application in the IBM project is
in systems and casual code domains.

The techniques we present are most effective in the context of synchronous shared memory

multiprocessors, although they could be used for asynchronous processors as well. In fact,

we can show that the effect of many previous (coarser grain) techniques (e.g., vectorization.
wavefront /hyperplane, loop-interchange. doacross) can be obtained as restricted combinations
of our transformation. This provides us with a means of comparing transformations across
several computation models. In that context it becomes obvious that the power of the
transformationsto extract parallelismincreases when the target architecture is tightly coupled
and synchronous.

We will use our results above to argue that statically scheduled, tightly coupled svn-
chronous architectures are both critical and practical, for the efficient exploitation of massive
parallelism. On the other hand, due to hardware issues and other pragmatic considerations
(e.g., compilation time, space considerations) it is unlikely that the fully static approach
will directly scale up to massive (- 1000) parallelism exploitation. Fortunately, since good
programining techniques tend to yield structured (hierarchical) code with relative locality,
tight coupling and static scheduling at the higher levels of the hierarchy (e.g., across proce-
dures/modules) become less important—the ratio of synchronization/communication across
processors decreases relative to the code size). This leads to the notion of a general intercon-
nection network with each node consisting of a set of (possibly dynamically partitionable)

tightly coupled synchronous processors.

2 Compile-time Fine-grain Parallelism Extraction

In this section we discuss the tools necessary for exposing parallelism in ordinary programs
from the (machine) instruction level up to the procedure level. For the purposes of the section
we assume that the hardware on which the code will ultimately run efficiently supports this
granularity of parallelism. As we have argued in the introduction, such support is critical
since all levels of parallelism need to be addressed to “beat” Amhdal’s law. In the next

section we will discuss the practicality of such an architecture.

2.1 Analysis Tools: Disambiguation

A large fraction of the parallelism available in programs involves indirect references. Thus,
it is imperative for a parallelizing compiler to be able to effectively disambiguate as many
indirect references as possible. Indeed, too liberal an approach to disambiguation could result

in incorrect code being generated, while too conservative an approach will sharply decrease

for i = 1b,ub do
j := 2*read(); /* read() reads an integer from the standard input */
(a) A[2i+1] := expri;
(b) B = A(5];
od;

Figure 1: Sample Problematic Ambiguity

the effectiveness of the overall parallelizing compiler. For example, figure 1 shows a situation
in which a simplistic (and conservative) compiler. will assume that statements (a) and (b)
have to be executed sequentially. Note that this is the only safe assumption that the compiler
can make, unless it has the ability to ascertain that the references in (a) and (b) cannot refer
to the same memory location. Even in this trivial example, the ability to disambiguate the
two references in (a) and (b) could result in a significant speedup, by allowing (a) and (b)
to execute in parallel. It should therefore be intuitively obvious that the ability to perform
accurate disambiguation of indirect references is crucial for a parallelizing compiler. We will

shortly present quantitative evidence to this effect for the Bulldog compiler {12!

2.2 Performing Static Memory Disambiguation

Memory disambiguation techniques for determining (to the extent possible based on fully-
static? information) whether two indirect references might access the same memory location

can be found in (7!, ‘22|, '19]. They involve the derivation of primitive expressions for the array

indexes. These expressions contain compile-time constants, and variables whose values cannot
be derived at compile-time. To determine whether two references conflict, the primitive index
expressions are symbolically equated and the resulting diophantine equation is solved. If
there are (integer) solutions to the equation. then the two references might access the same
memory location, and a potential conflict (data-dependency) must be assumed. For example,
the indices in statements (a) and (b) in Figure 1, would first be analyzed and transformed
into a canonical form consisting of only constants and irreducible variables. In particular, ¢,

the induction variable of the loop is transformed, if necessary, into a function of the canonical

?Fully static information is knowledge about the program that can be completely derived from facts known

at compile-time.

loop induction variable, say /1 3. Since j involves an input variable no further reduction is

possible, and j is expressed as 2 =7 by the disambiguator. Then the diophantine equation:
20+ 1 =2r

is solved, using techniques derived from standard number-theory. Since in this particular case
no integer solutions exist, the compiler can safely assume that no conflict can occur between

the two statements. Thus they can be executed in any order, and in particular in parallel.

2.3 Effectiveness of Static Disambiguation

Indirect references in inner loops of scientific code are mostly array references, and such code
usually offers the greatest potential for parallelism. Thus the very accurate disambiguation
of indirect references is crucial to the success of fine-grain parallelizing compilers.

Evidence supporting both the effectiveness of disambiguation and its importance for a
fine-grain compiler is provided by our experiments with the BULLDOG compiler. Table 1
compares the results obtained by the BULLDOG compiler with and without its (fully-static)
disambiguator system, for several programs and various unwindings. Even with the limited
unwinding used for some of these tests* the importance of disambiguation becomes obvious.
The significance of disambiguation for the performance of the compiler increases dramatically
with larger unwindings.

The programs (a fast Fourier transform, solving a system of linear equations, tridiagonal-
ization, matrix multiplication, finding prime numbers and transitive closure) are all dramati-
cally improved by the use of the disambiguation system; the speedup is essentially doubled in
several cases by the disambiguation. As expected, the improvement is particularly large when
the traces are long and the potential speedups obtainable by trace scheduling are relatively
large. This happens when the important (innermost) loops are unwound. When unwinding
is not done, or traces are still small, the length of the compacted schedule is dominated by
simple arithmetic dependency-chains (e.g., index calculations may determine the length of the

trace schedule) and no large speedups will be achievable in any case. Under these conditions

the effect of disambiguation decreases.

’In general this further improves the accuracy of the disambiguation process by eliminating multiple in-
duction variables in a loop. Such variables would otherwise become free variables in the diophantine equation.

“The number at the end of the program names indicates the amount of unwinding.

Table 1: Effectiveness of fully-static disambiguation.

Program Instructions produced W/0O Disambiguation . Instructions produced W/ Disambiguation \
FFT1 1215 1135
FFT4 869 521
FFT16 800 415
SOLVEL 10007 10007
SOLVE4 8625 5169
TRID1 2988 2988 .
TRIDS 2469 1401
MATMULL 109 109
MATMUL4 53 41 l
PRIMEL1 656 656

PRIME4 427 321

TRCL 78 53

Examination of the disambiguation results reveals that the speedups could be even more
dramatic, if the—already considerable—effort the disambiguator puts in analyzing the code

were further increased.

2.4 Limitations of Fully-static Disambiguation

While a large fraction of indirect references occurring in ordinary code (particularly 'scientiﬁc
code) are array references that can be disambiguated at compile-time, others are too depen-
dent on runtime information to vield to any fully-static analysis. For example, the code in
Figure 2 (unlike that in Figure 1) cannot be disambiguated by any purely static analysis.
Also intractable by fully static analysis are most pointer references, and multiple indirection
(e.g., scatter/gather).

In practice, the disambiguator system will be limited in its ability to successfully disam-
biguate references not only by ambiguities fundamentally intractable at compile time, such as
the above, but also by the system’s own imperfections. For example most disambiguators will
not deal well (if at all) with division, general non-linear indices, or interprocedural analysis.
Similarly range analysis {13] and control-flow analysis are usually sacrificed to improve the

running time of the compiler. All of these weaknesses tend to decrease the performance of

for i = 1lb,ub do

read(); /* read() reads an integer from the standard input */

J' =
(a) A[2i+1] := expri;
(v) B := A[j];
od;

Figure 2: Ambiguity not Handled by Fully-Static Disambiguation
the dependency analysis tool.

2.5 What Runtime Disambiguation Has to Offer

What we have proposed is the shifting of part of the bufden of disambiguation from compile-
time to runtime. While the scheduling decisions will still be made statically, they may occa-
sionally rely on runtime tests to guarantee correctness. This will have the advantage that the
disambiguation information rather than having to be always right (i.e., verifiable) statically.
would only need to be usually (or often) right. This relaxation allows—in principle—the
disambiguator to handle all of the above cases, and in fact could be used not only as a
complement for a fully static disambiguator, but even—within limits—could make up for
the lack of sophisticated—and slow—fully static disambiguation. Thus the use of runtime
disambiguation could dramatically improve not only the running time of the code generated
but also the running time of the compiler itself.?

This approach is new for parallelizing compilers. Previous techniques relied exclusively on
fully-static information to estimate data-dependencies. This conservative approach, discussed
in the previous section. has undully restricted the effectiveness of parallelizing compilers.
In fact, some of the chief critiques voiced against parallelizing compilers (e.g., '14]) center
precisely on the perceived intrinsic need of such compilers to rely solely on fully-static analysis,
and their resulting inability to exploit the “real” parallelism limited only by actual runtime

dependencies. Runtime Disambiguation (RTD) comes to remedy this problem of parallelizing

*Between 1/3 and 1/2 of the running time of the Bulldog compiler [12] is spent in preparing accurate fully-
static dependency information. Even with all this effort, the compiler still missed some relatively simple—and

important—disambiguations. An assertion facility was added to the system precisely to allow the user to

overcome such problems.

.......

(a) Afi]
if i =\=j 11 12 .9 /* i not equal j */
11: assert i =\= j

(b) 12: A[j]

Figure 4: Code after RTD code insertion

compilers, while at the same time still avoiding most of the dynamic overheads inherent in
pure runtime approaches.

The RunTime Disambiguation system (RTD) we have implemented treats memory anti-
aliasing of references which cannot;be effectively disambiguated at compile time. Using it,
part of the disambiguation mechanism is integrated into the parallel code produced by the
compiler.

Given two references that cannot be disambiguated at compile-time, a potential conflict
between them (i.e., i = j) (Figure 3) has to be conservatively resolved to ensure correctness
using the traditional disambiguation approach. RTD on the other hand, will transform the
code segment to that in Figure 4. The .9 probability estimate gives the trace (a,l1,b) priority
in the compaction process. The assertion in statement 11 will be placed in a small data-base for
the disambiguator and will supercede any information the disambiguator may have obtained
about the references for that path. The asserted information will be used as a compiler
directive, allowing a,b to be scheduled independently. Of course, the off-trace branch must

take care at runtime of the case in which i = j. Depending only on the computation of :

and j, the if statement might be placed early in the schedule (quite possibly for “free” if

resources are available). So if the conflict between the references is either nonexistent (but
the disambiguator cannot establish that by itself at compile time) or occurs rarely (e.g., i
and j are used to traverse A in opposite directions), the potential speedup resulting from
the use of RTD can be significant, as shown in table 2. RTD can also be used in the form
of dynamic assertions, i.e., the user introduces assertions about the absence of dependencies
which allow the compiler to parallelize the code as if no dependency was present, but also
result in the insertion of a runtime check and escape to guarantee correctness. This feature
can be very useful, by allowing good parallelization in the presence of transient (occasional)
dependencies, or boundary conditions: it can also provide a fool-proof assertion mechanism
for relatively naive users. More details on the implementation of RTD, as well as a detailed

analysis of its performance are found in |18].

2.6 Instruction-level Parallelism Extract\ion

Existing compilers for parallel machines do not provide the needed support. While important
advances in the parallelization of ordinary code (especially vectorization) have been achieved
[15], [5], there is still a lack of satisfactory tools to automatically extract fine and coarse
grained parallelism in a unified fashion. The goal of Percolation Scheduling (PS)—our hier-
archy of fine-grain code transformations—is to provide such tools. Thus PS can be thought
of as complementing and/or enhancing previous approaches to parallelism extraction.

PS globally rearranges code past basic block boundaries in an attempt to gain parallelism.
Its core is a small set of primitive program transformations defining the allowable motions of
operations between adjacent nodes in a parallel program graph. A parallel program graph is
a directed graph in which each node contains one or more operations that can be executed
in parallel. The edges in the program graph determine the execution-paths in the program.
The goal of PS is, then, to maximize parallelism by moving operations from node to node
s0 as to maximize the number of parallel operations in the final graph. A precise definition
of the execution semantics is found in [20]. PS core transformations are easy to under-
stand and implement. Furthermore, they are atomic and can be combined with a variety of
guidance rules to direct the optimization process. Above this core level are guidance rules
and transformations which extend the applicability of the core transformations and exploit
coarser parallelism. The main advantage of PS over previous approaches, is its resilience to

unpredictable control flow, its modularity, and its uniformity of application.

10

Table 2: RTD Net Speedups.

Program (unwinding) Speedup RTD vs NoRTD Speedup AU vs NoRTD Speedup TR vs NoRTD ’

dotprod(4/8) 0/0 0/0 0.0
In(4/8) 0/0 0/0 0.0
matmul(4,8) 0/0 0/0 00 I
sqrt(4/8) 0/0 0/0 0.0
Conduc(4/8) 15/.22 (< 0)/.10 15/.20 |
FFT(4/8) 26/.42 10/.34 26/.42 |
Trid(4/8) .18/.23 (< 0)/.20 18/.23
Quanc(4/8) .15/.28 .08/.22 .15/.26 ’
SVD(4/8) 26/.44 15/.40 24/41 |
Solve(4/8) .16/.27 .10/.27 16/.27 ¢
Invert(4/8) 2.2/3.4 5/.9 2.2/3.4
BinSort(4/8) 3.7/7.1 2.3/5.1 12.5/5.3 '
BubleSort(4/8) 7/.9 4/.5 476 |
ShellSort(4/8) 1.5/2.4 1.2/2.3 1.3/2.1 l‘
RadixSort(4/8) 3.2/6.2 2.3/5.2 2.2/5.0 |
prime(4/8) .5/.9 3.7 A4/.7 ‘}
brl(4/8) 1.3/2.1 8/L.T B/15
Unions(4/8) 1.6/3.1 7/.6 13/2.4
Inserts(4/8) 2.9/4.6 L.7/1.9 2.4/4.1 |
ShortesPaths(4/8) 1.2/2.1 9/1.9 8/1.6 |

11

M
——
T2 N
N
Ey Ny
Ey
E
I L
M M
I
Iz *
Ey m— E1
N N N
Ez E?

Figure 5: Core Transformations

Guided by the higher level rules and transformations. the core transformations operate
uniformly on an entire program graph. They can also be applied to partially parallelized
code. This allows modification of code produced by other types of compilers. In addition.
these transformations are themselves highly parallel and could be run on a parallel machine.
significantly reducing compilation time. .

The following is an outline of the layers of the PS system and their function:

Core Level This level contains a set of four core transformations that define semantically
correct motions of operations between adjacent nodes in a program flow-graph. Bv “per-
colating™ operations that can execute in parallel to the same node of the graph. the core
transformations expose parallelism implicit in the code. These transformations apply di-
rectly to loop bodies and non-loop code. Theyv serves as the main parallelization tool in our
svstem. The core transformations are illustrated in Figure 3.

Support Level At this level we have analvsis methods (e.g.. Memory Disambiguation
'191) and standard optimizations (e.g.. Dead-Code Removal). They provide accurate data-
dependency information and thus enhance the applicability of the core transformatious.
Guidance Level This level consists of rules that direct the application of the core trans-
formations to achieve effective optimization of the code in acceptable time and space. This
contrasts with Trace Scheduling 11 where a single rule (for trace picking) is inseparable from

the actual transformation mechanism. This limits Trace Scheduling and makes it too rigid

for our goals.

L2

Enabling Level This level consists of transformations that allow the core transformations to
process arbitrary graphs and enables them to exploit coarser grained parallelism (e.g., within
inner and nested loops).
Meta Level This level consists of transformations that use the core transformations to ex-
ploit coarse parallelism (e.g., partial loop/module overlapping).

The separation of levels vields more general, cleaner transformations. It simplifies both
the understanding and the implementation of a PS compiler. Furthermore, the applicability
of the transformations is enhanced, and it is easier to experiment with various high level

transformations without affecting the correctness of the compiler.

2.7 Static Inner Loop Parallelization

Recently, techniques have emerged that produce absolute time-optimal parallel schedules for
loop execution on synchronous multiprocessors, subject to the data-dependencies of the loop
and the availability of enough resources (i.e., processors) to accommodate the schedule.

The most general technique, Perfect Pipelining (PP) (4], combines the benefits of fine-
grain parallelism (can exploit irregular forms of parallelism) with the pipelining of iterations
of c;)arser methods {9]. Perfect Pipelining uses incremental unwinding and successive appli-
cations of parallelization (compaction) transformations (e.g., Percolation Scheduling ;20}), to
detect a pattern in the code—which in practice will emerge after a small amount of unwinding.
The loop body can then be replaced by this pattern yielding a schedule for the loop. It can
be shown that given enough resources, and subject to the given compaction transformations,
the loop thus obtained will yield the best (optimal) running time, (i.e., further unwinding
and compaction of the loop cannot yield better speedups). In particular, the running time
of the new loop is identical to what might be obtained by full unwinding of the loop and
full fine-grain parallelization. would such unwinding be feasible. This is important, since in
practice loops can (or should) seldom be fully unwound at compile-time. These results hold
even in the presence of conditional jumps and multicycle operations.

The second technique, Optimal Loop Parallelization (OPT) (3], deals with loops contain-
ing no conditionals, or in which conditionals are if-converted 6} (or the probability of paths
execution is predictable). For such loops, OPT, which is a refinement of perfect pipelining,
can be used to achieve an even stronger result. We can show that given any parallelization

transformations that preserve the original data-dependencies, our transformation achieves

13

P o

equal or better running time for the final loop. In other words, OPT not only yields the best
running time for the loop with respect to unwinding and the particular parallelizing transfor-
mations used, but true time optimality with respect to any possible dependency-preserving
transformations.® OPT relies on the fact that only a finite (and in practice, small) number of
iterations ever need to be examined to determine a pattern which yields an optimal running-
time schedule for the loop. These results hold in the presence of multicycle operations. The
justification of these claims and the details of the algorithm are given in [3!. For the purpose
of this paper we only need to understand how OPT works. OPT incrementally unwinds the
loop, allowing operations to be scheduled as early as possible in the schedule, subject only
to data-dependencies and latencies.” Thus operations are scheduled at the earliest possible
time they could be issued at runtime, if a synchronous multiprocessor were available. A
repeating, fixed size pattern is guaranteed to emerge after a relatively small amount of such
unwinding and compaction (parallelization), if the original data-dependencies of the loop are
not allowed to drastically change throughout the process. Further unwinding and compaction
beyond this point cannot improve parallelism, and thus replacing the loop body with this
pattern will yield an optirnal execution schedule for the given loop. Of course, a prolog and
postlog including some start-up and wind-down code may be required; this code consists of
partial iterations (loop bodies) at the beginning and end of the loop. There are several ways
for handling these and other details such as the loop overhead, with either software or hard-
ware support. Some hardware mechanisms which would be relevant have been implemented
and are discussed in (8], [10].

An illustration of the effects of OPT and the optimal schedule produced for the given loop
is found in Figure 6. For simplicity, latencies of operations in this example are assumed to
be just one cycle. As we mentioned earlier, OPT can deal with realistic operation latencies.

When taking into account true operation latencies the notion of optimality derived from
OPT/PP is realistic, in the sense that a schedule produced by OPT or PP could be run “as

is” on a synchronous parallel machine (e.g., Multiflow’s 117]) with enough resources. Still,

®*Dependency changes (e.g., due to renaming) can be allowed in this context, even if done dynamically as

part of the parallelization process.
"We are essentially performing a topological sort, creating a partial ordering of the operations; operations

that are placed at the same level in the schedule are therefore independent of each other and can be executed
in parallel. Given a synchronous parallel processor with enough resources, such a schedule could run “as is”,

with each level or slice of the schedule issuing each cycle.

14

fori— | to N do

4 A: ALi| — BIi]; R ———————
B: A2i| — Adi - 1f; V- auC A A - - ==
C: Alli} — Asli = 1f; : . g:ﬁl. ::xt. :\'L : -z z
D: Adfi] = A} +AT =~ 1; oM :'o:“ rn I\L - - -
E: ASlij — A2Mil; A Nt
£: Asli] — Alli] +AL30 = 1f; ' w o o m o - = [H, CifaNylh — = | -
G. ATli| — Adli); : :c 7°' :L ‘- -]
H: ABfi] = Adli] » ASK] +A Tl = 1); . = -
I: ASfi| = Allil; ’ " w sar xu = | (B2D02P1Q, Ry KdLd|
I: AL0(i] = Asti] rAISEE - 0); a e }
L] = A, ; o) EGahM s ==
3 1N 10 L}
M: AL — AL " L \-/
N: ALdL] = AL *: G)
P: AlSlif — Alalif; o L =
Q: ALSH| — Al4(if; u tc
R: ALTH] ~ Aldlif; e L]

The pattern.

The dependency graph.

A sampie loop.

Figure 6: Sample OPT scheduling

in practice, resources are often not available to allow the direct execution of the optimal
schedule. and thus a mapping phase that adapts the optimal schedule to the actual hardware
is needed. The more idiosvncratic the hardware (e.g., structural hazards. non-uniform pipes),
the harder this mapping becomes.

In this context. it is natural to ask what the relevance of the optimal schedules is for
practically feasible machines. A formal discussion of these issues is found in ‘1]. In this paper
we will further address this topic after considering the issues involved in architectural design

for uniform parallelisim exploitation.

2.8 Nested Loop Parallelization

Loop unwinding has been long known as an effective wav to increase the efficient utilization
of pipelined machines. More recentlv loop unwinding has emerged as a primary technique
for exploiting fine-grained parallelisin within loops. notably for Very Large Instruction Word
machines, a form of very tightlv coupled tultiprocessors [12!. Percolation Scheduling and
Perfect Pipelining also use (incremental) unwinding in deriving the optimal pattern for a
loop body. While these techniques {PS, PP) are very effective in extracting parallelism inside
and outside single loops. sometimes the parallelism in the code may be distributed across
several nested loops. so dealing with onlv one of the loops will not achieve the best results.

This situation occurs frequently and is illustrated in figure Ta. Ou the other hand. arbitrary

15

The Anal program

- —

unwinding of multiple loops may violate correctness, and thus appropriate checks are needed
to ensure that the transformation preserves the semantics of the original code. For example,
in figure 7, a 3 by 3 unwinding on each loop would yield an incorrect program.

Loop Quantization is a technique that we have developed to overcome this problem by
allowing correct multiple-loop unwinding for arbitrary nested loops. In the case above, for
example, the 3 by 3 unwound loop body (the “quantum box") can be slanted to become
parallel with the dependencies in the code, thereby restoring correctness. Of course the loop
bounds need to be modified accordingly to allow for such slanted quantization. In {2} we have
shown how the decision on the bounds of Quantization, and the ensuing transformation of
the loop, can be automated.

Loop Quantization rearranges the order of execution of the loop iterations less than some
other global transformations. For example, quantization will succeed even when straight loop
interchange would not apply. By exposing even irregular fine-grain parallelism, quantization
may help achieve significant speedups in ordinary code. The main loop of weather code, for
example, is naturally amenable to quantization, as are the Livermore loops[16] in their nested
context. LQ combines with PP to achieve optimal parallel schedules (for a given number of
processors) for nested loops.

An example of loop quantization is given in figure 7; further details and an algorithm for

computing maximal loop quantizations is given in {2].

3 Architectural Considerations

The above compiler techniques combine to effectively expose virtually all fine-grain paral-
lelism obtainable at compile-time. The techniques are resilient in the presence of unpre-
dictable conditional-jumps, and indirect references. To take full advantage of the potential
of these compiler techniques, synchronous multiprocessors are required. While on a small to
medium scale (up to a few tens of processors) such machines are relatively easy to build and
can be very cost effective—as demonstrated by commercial machines such as (17}, [8|—on a

larger scale they may involve a number of disadvantages.

3.1 Disadvantages of Statically Scheduled Multiprocessors

The main disadvantage of static architectures is that they can’t scale up arbitrarily due to:

16

—

A
Ni ¢ o 0 @6 ¢ 0@ ¢ 0 006 ¢ @ 0060 ¢
9 € 6 6 © 0 O O O O O 9 O ¢ ¢ 0 o ¢
® ® O & & & 0 & O 0 ¢ ¢ 0 ¢ 0 0 L 4
p ¢ o & & & 9 ¢ S O O 9 O ¢ 0 0 0 o
FOFi:=1,Nid0 EEEEEEEEE I
. ‘ P © 0 @ 9 0 0 & O ¢ 0 ¢ ¢ o0 o * o o
FOF].—1,NJd0) ¢ © 0 0 ¢ @ 0 0 0 0 0 0 000 0 0
X(ijl : = expr(X[i +2,j-11); EERE R RN RS
) Ki ¢ ¢ o o @ tTo e o o 0-0110 o 0o 0 0o @
Qd,) © @ 0 ¢ 010 0 0 0 0 010 000 0 0
od: P BB AR S SR
CREEC LA vL G L MC IS VENTANERONORY
e e ool }. Ve e e e
: B 127K N,

1st iteration . 2nd —
iteration

Iteration Space for the loop

(a) Original loop (b) Iteration space and quantum box

Figure 7: Loop Quantization.

e Clock drift. as the machine grows larger, it becomes harder to keep all components syn-
chronous. While a svnchronous model can be enforced by various (hardware 'software)
syachronization protocols. it will ultimately lead to slower cycle times (so as to allow

the synchronization of the hardware).

e Memory bandwidth. As mote operations are executed in parallel, more simultaneous
loads need to be executed. Since memory access is intrinsically sequential. énd can-
not even be pipelined directly, this implies that the required bandwidths can only be
achieved bv extensive banking of the memory, coupled with either software or hardware
mapping of data to memorv banks (e.g.. hashing), in an attempt to minimize bank con-
flicts. To ensure good average performance. the banking extensive even for relatively
small (e.g.. less than 32 processors) machines. could become unmanageable for vastly
larger number of processors. Furthermore, any bank conflict will lead to a delay of
all the operations being issued ‘executed: to preserve the svnchronous model of execu-
tion. the global clock must be frozen until all merory conflicts are resolved: otherwise.
complex interlocking hardware would have to be provided. which would again be either

hard to build for anv large aumber of processing elernents, or would cause significant

bottlenecks.

L7

e Conservative scheduling assumptions. As the number of processing elements working
in parallel increases, we have to find more opportunities of exploiting parallelism in
the code. We have demonstrated that at the nested loop level (and below) enough
parallelism exists and can be extracted effectively; a tightly coupled machine of medium
size (somewhere between ten to one hundred processing units, is typical of ordinary code
in our experience), can make the most of this parallelism. While conservative decisions
may sometimes be made at this level to ensure correctness of execution, there is usually
no alternative: dynamic mechanisms (e.g., for dependency testing) that are general
enough to allow the exploitation of significant amounts of parallelism, are usually too
expensive at this level. However, as we go beyond such numbers of processors, and
examine coarser levels of parallelism, (e.g.. at the procedure level), we may well be
slowed down by the conservative decisions implicit in the fully static approach more

than by the use of dynamic synchronization.

Out of these obstacles to scalability, the last one is probably the most critical. For ex-
ample, consider the task of inserting a sequence of elements into a binary search-tree. Two
successive calls to Insert could clearly execute in parallel as soon as it is determined (at
runtime) that the subtrees thev need to insert into are disjoint. A purely static approach.
however, would need to schedule them for sequential execution, since a conflict could some-
times exist. Of course, RTD could be used to overcome this problem, but that would involve
some overhead plus some code duplication for the case where the conflict does indeed arise
at runtime. To the extent that the overhead involved in explicit synchronization between the
two procedure calls compares favorably with that of RTD, it would be preferable for the user
to insert some synchronization code between the calls, (e.g., through the future mechanism
proposed in Multilisp), and allow for fully dynamic synchronization. The point is, that when
the execution time of the tasks (insert) is large relative to the cost of synchronization, the
overhead on an asynchronous machine becomes tolerable, and possibly preferable to static
scheduling.

More importantly, the parallel execution of multiple procedure calls with their individual
threads of control flow implies, in itself, a combinatorial explosion in code size—if encoded in

the statically scheduled model. Such an explosion results from the need to encode all possible

18

paths through the code into a single thread of control, required by the fully static approach®.
While a single thread of control is a natural paradigm for the execution of non-loop code,
individual loops and even most procedure bodies, it obviously becomes impractical at the
procedure/module level. While expansion in line of procedures can alleviate this problem, it
will not eliminate it.

At this level the tasks are often large and relatively independent of each other—after all,
modularity, one of the main reasons for using procedures, discourages extensive sharing of
data between procedures and thus minimizes need for communication. Even in cases when
communication occurs frequently at the procedure level, it is often of the producer-consumer
type. Such unidirectional communication can be effectively pipelined (given that the com-
munication and routing are handled by dedicated hardware operating concurrently with the
processors). This will tend to further decrease the relative cost of dynamic synchronization
at this level. Also, and perhaps most importantly, at this level of granularity, the user may
be better able to share in the burden of parallelism extraction. In fact there is not much
choice: if massive parallelism is to be effectively exploited, all components of the program
development chain must cooperate. Fortunately, many algorithms that could benefit from

massive speedups have an intrinsically parallel high-level structure.

3.2 Ideal Architecture

In the light of the fact that good techniques for extracting fine-grain parallelism exist, and
that this parallelism can be consistently exploited most effectively by a synchronous machine,
it is reasonable to suggest that such a machine should be used as the basic block for any
massively parallel architecture. since otherwise an important multiplicative speedup factor
could be lost. On the other hand, we have also shown that there are several obstacles in using
the fully static approach as the model for a scalable parallel architecture. Thus , we believe
a hierarchical architecture, with fine-grain, statically scheduled clusters interconnected by
some interconnection network (e.g., a hypercube) is the best approach. The trade-off between
the cluster size and the overall size of the machine, remains to be determined empirically.

Obviously, the communication speed between clusters should be minimized either by the use

8Typically, static machines only allow a single thread of control with possibly a multiway jump mechanism.

While not impossible in principle, multiple threads of control on a synchronous static machine would be hard

to support.

19

of dedicated and fast communication processors, or by latency avoidance schemes such as
that used in Burton Smith's Horizon.

Such a machine could use heuristic high-level scheduling algorithms as in /23], to map the
parallelism exposed at the language (and algorithm level) onto clusters. The effectiveness
of this approach is illustrated in {23], where the automatic mapping was shown to be better

than that derived by human experts.

3.3 Cluster Architecture

Synchronous processing elements, each able to accept (any) one operation per cycle, with
operation execution pipelined over multiple cycles. While the number of cycles required to
execute a n operation is fixed for each operation type. This presents no particular problem for
a register-to-register instruction set, with explicit load/stores. The fixed execution time for
loads can be enforced—as far as the processors are concerned—by freezing (all) the processors
in the cluster if loads do not complete in the expected time. Alternatively, latency may be
masked by trading off parallelism as in the HEP or the Horizon.

Such synchronous processors are obviously buildable on a small to moderate scale (2 to 30
processors), as illustrated by the products of Multiflow, Cydrome, Chopp, FPS. Thus the only
other difficulty is in providing a “clean” machine, i.e., free of structural hazards, so that any
operation can be accepted by each processing element every cycle. The availability of clean
pipes is not crucial to our approach. However, while structural hazards (i.e., irregularities in
the machine design that optimize hardware utilization) can reduce the cost of the hardware,
the trend in architectural design is to avoid structural hazards as much as possible—clearly
any machine with too many structural bottlenecks cannot perform at or near its peak re-
gardless of the compiler technology used. We are arguing that the added (hardware) cost
of avoiding structural hazards is now even more justified by the existence of software tech-
niques capable of generating optimal code for clean machines for large classes of loops, and
provably good code for the cases where optimality is unfeasible—see bellow. If structural
hazards are not completely avoided, then simple techniques such as further unwinding of the
OPT schedule and compaction (parallelization) coupled with reasonable mapping algorithms
can minimize the impact of the hazards on the quality of the code. This, coupled with the
relative simplicity and uniformity of application of OPT/PP makes it a good candidate even

for existing pipelined and synchronous parallel machines.

20

The only other problem is the register-bank bandwidth. A clean architecture needs to
support writes per cycle equal to the number of different operation-sizes supported by the
machine, and reads equal to the maximal number of operands read per operation. There
are several ways to implement this; trickier (but still feasible) for multiple pipes. In any
case, loads/stores need to write in separate register bank, since they may have some (un-
predictable) variation in completion time, and thus we can’t guarantee non interference with
other operations. Reads are done globally from all register banks (only two most likely),
writes can be guaranteed (by the compiler) to be non-conflicting—simple enough: destina-
tion of operations that can finish simultaneously have to be in different banks. Even simpler
hardware: each type of operation writes into a different (and unique) register-bank. This
may result in either extra moves, or some code duplication on occasion. to get data in the
right place at the right time. This can also be done under compiler control.

Thus such machines are feasible, and many of the ideas necessary have already been
developed and even incorporated in commercial products. We believe the hardware overhed
involved in building a clean machine compares favorably with the hardware overheads existing
in other, common architectures. both in terms of complexity and performance implications,
and they are more than compensated for by the simplification of the scheduling problem
that can potentially lead to better code, hence enhancing speed. Furthermore the cost of
the added hardware needed to eliminate hazards is offset by the elimination of the need for

hardware interlocks (work done bv compiler), which in turn may allow a faster cycle time.

3.4 Mapping

In [1] we have shown that the problem of generating optimal code for a single pipelined
machine with a unique structural hazard is NP-Complete.

On the other hand, we have shown that the idealized schedules produced by our fine-
grain techniques can be adapted to produce optimal code for hazard-free single or multiple
processors, for recurrence-free loops. Furthermore, we have shown that even in cases where
optimal machine schedules are not achievable, the optimality of the idealized schedule leads
to a tight bound on the overall performance, and good empirical performance. If structural
hazards are introduced, we show that the schedule may be suboptimal even when an optimal
schedule exists for an equal size hazard-free machine. We have also shown that in such cases,

an optimal fixed-size schedule for the loop—i.e., one whose size is not a function of the number

21

Lo i : i
op) Slrﬂlgmal Code Luruted Processors [deal Schedul
— ‘ ule

- ' : ops ! 1 pfoc MHRops | 2 procs MAops procs registers - Mflops

(L . 31-30 57-100 13 82 ! 400
L : 1 20-35 40-60 16 108 j 320 I
16-20 20-23 ' :

LL4 6 16 20 ; .

5 . -
ttz 6 I 12-15 15-16 3 : | s
L 20 6-16 I 6-20) 8 | 6-':?' |
LLT x : Jg-ol 71-99 36 243 (1280

o 't , ;5-55 80-110 60 363 { 2400

o o -49 68-97 39 264 i 1360

o . ; . ;8;25 36-48 40 210 ! 720

;4 4-11 !

L 4 4 4-13

LLij : 13-20 27-40 6 ar | 80
. 11-12 22-24 S0
376 | :

LL14 (avg) 4 14-18 | 25-31 28 16? | -

Averagc. 8 19-28 i 35-30 . 5 :2‘9
Harmonic Mean i 7 13-20 ‘ 18-33 { 33;-505:‘! |
! -3 |

Table 3: Cluster Sample Performance on Livermore Loops

of iterations in the loop—is not obtainable in general, so good heuristic performance is all

we may expect (and do in fact achieve) in practice. Some sample measurements based on

the Livermore Loops 16! are shown in Table 3. The timings of the operations are assumed

he Crav-1. It is interesting to note that the single (pipelined) processor mean

slightly better than that of the Crav-1, while for the

to be those of t

performance on these loops is by itself

¢ version. the performance improves even further. The ultimate performance of

two processo
pend of course on the number of processors. as well as

a statically scheduled cluster will de

on the actual hardware implementation. Vore details are to be found in 1.

References

‘1! K. Pingali A. Nicolau and A. Aiken. Fine-grain compilation for pipelined machines.

Accepted for publication. in the Journal of Supercomputing, to appear August 1988.

27 A, Aiken and A. Nicolau. Loop Quantization: an analvsis and algorithm. Technical

Report 87-821. Cornell Universitv. 1937.
Optimal loop parallelization. In Proceedings of the 1933

i3 A. Alken and A. Nicolau.
anguage Design and [mplementation.

10M SIGPLAN Conference om Programming L
June 1988.

22

(4]

(9]

[10]

[11]

(12]

A. Aiken and A. Nicolau. Perfect Pipelining: A new loop parallelization technique. In
Proceedings of the 1988 European Symposium on Programming. Springer Verlag Lecture
Notes in Computer Science no. 300, March 1988. Also available as Cornell Technical

Report TR 87-873.

J. R. Allen and K. Kennedy. PFC: A program to convert Fortran to parallel form.
Technical Report MASC TR 82-6, Rice University, 1982.

J. R. Allen, K. Kennedy, C. Porterfield. and J. Warren. Conversion of control depen-
dence to data dependence. In Proceedings of the 1983 Symposium on Principles of

Programming Languages, pages 177-189. January 1983.

U. Banerjee. Speedup of Ordinary Programs. PhD thesis, University of Illinois at Urbana-
Champaign, October 1979. 79-989.

Cydrome Inc., Palo Alto, Ca. Technical Summary, 1987.

R. Cytron. Doacross: Beyond vectorization for multiprocessors. In Proceedings of the

. 1986 International Conference on Parallel Processing, pages 836-844, August 1986.

K. Ebcioglu. A compilation technique for software pipelining of loops with conditional
jumps. In Proceedings of the 20th Annual Workshop on Microprogramming, pages 69-79,
December 1987.

J. A. Fisher. The Optimization of Horizontal Microcode within and beyond Basic Blocks:
an Application of Processor Scheduling with Resources. PhD thesis, New York University,

1979.

J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau. Parallel processing: A smart
compiler and a dumb machine. In Proceedings of the 1984 SIGPLAN Symposium on

Compiler Construction, pages 37-47, June '1984.

W. H. Harrison. Compiler analysis of the value ranges for variables. [EEE Transactions

on Software Engineering, SE-3:243-50, May 1977.

R. W. Heuft and W. D. Little. Improved time and parallel processor bounds for Fortran-
like loops. [EEE Transactions on Computers, C-31(1), January 1982.

23

(15] D. Kuck, R. Kuhn, , B. Leasure, and M. Wolfe. The structure of an advanced vec-
torizer for pipelined processors. In Proceedings of the §th Int’l Computer Software and

Applications Conference, pages 709-715, October 1980.

(16] F. H. McMahon. Lawrence Livermore National Laboratory FORTRAN kernels:
MFLOPS. Livermore, CA., 1983.
(17} Multiflow Computer Inc., Branford, Connecticut. Technical Summary, 1987.

(18] A. Nicolau. Runtime disambiguation: Coping with statically unpredictable dependen-

cies. Accepted for publication in IEEE Transactions on Computers, to appear Fall 1988.

[19] A. Nicolau. Parallelism, Memory Anti-Aliasing and Correctness for Trace Scheduling

Compilers. PhD thesis, Yale University, 1984.

(20] A. Nicolau. Percolation Scheduling: A parallel compilation technique. Technical Report

85-678, Cornell University, 1984.

[21] A. Nicolau and J. Fisher. Measuring the parallelism available for Very Long Instruction

Word architectures. I[EEFE Transactions on Computers, C-33:968-76, November 1984.

(22] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis, University of
lllinois at Urbana-Champaign, October 1982.

(23] M. Y. Wu and D. D. Gajski. A programming aid for hypercube architectures. Accepted

for publication in Journal of Supercomputing, to appear August 1988.

24

