
UC Irvine
ICS Technical Reports

Title
Hierarchical parallelism exploitation

Permalink
https://escholarship.org/uc/item/19v6w8s3

Author
Nicolau, Alexandru

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/19v6w8s3
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

HIERARCHICAL PARALLELISM EXPLOITATION

Alexandru Nicolau
~__:::'-.-- ~

Department of Information and Computer Science

,Yniversity of California, Irvine

Irvine, California 92717

Technical Report No.89-32

,..--c

z
~ff
t8
))t) t ev- § ~u

HIERARCHICAL PARALLELISM EXPLOITATION

Alexandru Nicolau

1 Introduction

The generation of hand-crafted code for efficient execution on parallel machines is a tedious

task. For some important problems, new algorithms carefully designed for parallel execution

are being developed, often tailored to a particular architecture. However, these algorithms

are difficult to develop and implement-the problem must be of sufficient generality, interest

and regularity to compensate for the considerable effort. Even when the core algorithms are

hand-parallelized, complex application codes will not run at large speedups if the rest of the

code is not speeded up as well. Furthermore, even the carefully crafted parallel algorithms are

likely to contain parallelism that is too low-level and too irregular to be explicitly exploited

by the human designer. The remaining parallelism has a multiplicative effect on the oi.·erall

performance of the code. Thus the ability to exploit parallelism at all levels is critical for

execution speed.

1.1 How Should Parallelism Be Exploited?

Automatic fine-grain (instruction level) parallelism holds the promise of exploiting substan­

tially all the parallelism available in a given program, including highly irregular forms of

parallelism not visible at coarser levels. Since the effect of all levels of parallelism exploita­

tion have a multiplicative effect on overall performance, substantially all parallelism should

be exploited in order to achieve good performance-an obvious consequence of A.mhdal's law.

The importance of fine-grain parallelism exploitation has already been recognized t~ a small

extent, and is reflected in the use of pipelining and (relatively narrow) horizontal microcode,

in virtually all high-performance (numerical) processors. However, its wider application has

been limited by several factors. to be discussed shortly. In this paper we will describe some

new results on the exploitation of fine-grain parallelism and will discuss their implications for

the design of massively parallel machines.

Ideally, fine-grain parallelism would be exploited at runtime, when all data-dependencies

are strict (i.e., there is no ambiguity between indirect references) and a unique execution path

through the code is followed. This is essentially the approach taken in the data-flow model

of computation. In practice however, the runtime overhead involved in dynamic (hardware)

scheduling of operations and interlocking to ensure dependency preservaqon is often several

times larger than the theoretical performance speedup. The alternative approach is compile­

time parallelization of the code. The obvious advantage of this approach lies in the elimination

1

of runtime overheads (by doing the scheduling work at compile-time). This yields simpler,

and thus cheaper and faster, machines. Furthermore, this approach can potentially exploit

parallelism that is not readily available at coarser levels of granularity, and is far too tedious

to be expressed at the user level.

1.2 Difficulties in Static Fine-grain Parallelism Extraction

Unfortunately, several difficulties have limited compile-time fine-grain parallelism exploita­

tion. These are:

• Very tight coupling of processors. To achieve maximal benefits, the hardware behaviour

should be highly predictable. For example, if processors are synchronous, operations

could be executed in parallel in this model, utilizing the "free" implicit synchronization,

while the same operations would not be worth executing in parallel if explicit synchro­

nization were required. 1 While this requires high memory bandwidth a~d constrains

the scalability of the architecture, it is technologically feasible, and typically easier to

build (and thus less expensive) than complex dynamic interlocking/ scheduling hard­

ware. The main drawbacks of the approach are in the ability of the compiler to expose

enough fine-grain parallelism to efficiently utilize such hardware.

• Amount of parallelism exploitable by fine-grain techniques. Due to a misunderstanding

of some early experiments this was widely (and erroneously) believed to be too small

or too expensive to bother with. Later evidence, (21], has conclusively established the

availability of rather large amounts of fine-grain parallelism (factors from 10 to 100) in

ordinary code.

• Conditional jumps. Since branches occur very often in ordinary programs (once ev­

ery 3-8 instructions on average), they make the static scheduling of large numbers of

operations difficult. Previous techniques have either been limited to branch-free code

(basic blocks), thus drastically limiting the potential parallelism, or strongly relied on

heuristics to statically predict the direction of runtime branches, with potentially heavy

penalties in cases where such prediction is unsuccessful.

1 This assumes that keeping the processors synchronous is done with negligible cost, and/ or does not affect

the cycle time significantly.

2

we can show that the effect of many previous (coarser grain) techniques (e.g., vectorization.

wavefront/hyperplane, loop-interchange. doacross) can be obtained as restricted combination:,

of our transformation. This provides us with a means of comparing transformations across

several computation models. In that context it becomes obvious that the power of the

transformations to extract parallelism increases when the target architecture is tightly coupled

and synchronous.

\Ve will use our results above to argue that statically scheduled, tightly coupled s1;·n­

chronous architectures are both critical and practical, for the efficient exploitation of massive

parallelism. On the. other hand, due to hardware issues and other pragmatic considerations

(e.g., compilation time, space considerations) it is unlikely that the fully static approach

will directly scale up to massive (· 1000) parallelism exploitation. Fortunately, since good

programming techniques tend to yield structured (hierarchical) code with relative locality,

tight coupling and static scheduling at the higher levels of the hierarchy (e.g., across proce­

dures /modules) become less important-the ratio of synchronization/ communication across

processors decreases relative to the code size). This leads to the notion of a general intercon­

nection network with each node consisting of a set of (possibly dynamically partitionable)

tightly coupled synchronous processors.

2 Compile-time Fine-grain Parallelism Extraction

In this section we discuss the tools necessary for exposing parallelism in ordinary programs

from the (machine) instruction level up to the procedure level. For the purposes of the section

we assume that the hardware on which the code will ultimately run efficiently supports this

granularity of parallelism. As we have argued in the introduction, such support is critical .

since all levels of parallelism need to be addressed to "beat" Amhdal's law. In the next

section we will discuss the practicality of such an architecture.

2.1 Analysis Tools: Disambiguation

A large fraction of the parallelism available in programs involves indirect references. Thus,

it is imperative for a parallelizing compiler to be able to effectively disambiguate as many

indirect references as possible. Indeed, too Liberal an approach to disambiguation could result

in incorrect code being generated, while too conservative an approach will sharply decrease

loop induction variable, say l1 3. Since j involves an input variable no further reduction is

possible, and j is expressed as 2"' r by the disambiguator. Then the diophantine equation:

2l1 + 1 = 2r

is solved, using techniques derived from standard number-theory. Since in this particular case

no integer solutions exist, the compiler can safely assume that no conflict can occur between

the two statements. Thus they can be executed in any order, and in particular in parallel.

2.3 Effectiveness of Static Disambiguation

Indirect references in inner loops of scientific code are mostly array references, and such code

usually offers the greatest potential for parallelism. Thus the very accurate disambiguation

of indirect references is crucial to the success of fine-grain parallelizing compilers.

Evidence supporting both the effectiveness of disambiguation and its importance for a

fine-grain compiler is provided by our experiments with the BULLDOG compiler. Table 1

compares the results obtained by the BULLDOG compiler with and without its (fully-static)

disambiguator system, for several programs and various unwindings. Even with the limited

unwinding used for some of these tests 4 the importance of disambiguation becomes obvious.

The significance of disambiguation for the performance of the compiler increases dramatically

with larger unwindings.

The programs (a fast Fourier transform, solving a system of linear equations, tridiagonal­

ization, matrix multiplication, finding prime numbers and transitive closure) are all dramati­

cally improved by the use of the disambiguation system; the speedup is essentially doubled in

several cases by the disambiguation . .As expected, the improvement is particularly large when

the traces are long and the potential speedups obtainable by trace scheduling are relatively

large. This happens when the important (innermost) loops are unwound. When unwinding

is not done, or traces are still small, the length of the compacted schedule is dominated by

simple arithmetic dependency-chains (e.g., index calculations may determine the length of the

trace schedule) and no large speedups will be achievable in any case. Under these conditions

the effect of disambiguation decreases.

3 In general this further improves the accuracy of the disambiguation process by eliminating multiple in­

duction variables in a loop. Such variables would otherwise become free variables in the diophantine equation.

4The number at the end of the program names indicates the amount of unwinding.

6

(a)

(b)

for i = lb,ub do

j :=read(); /*read() reads an integer from the standard input*/

A[2i+1] := exprt;

B : = A[j];

od;

Figure 2: Ambiguity not Handled by Fully-Static Disambiguation

the dependency analysis tool.

2.5 What Runtime Disambiguation Has to Offer

What we have proposed is the shifting of part of the burden of disambiguation from compile­

time to runtime. While the scheduling decisions will still be made statically, they may occa­

sionally rely on runtime tests to guarantee correctness. This will have the advantage that the

disambiguation information rather than having to be always right (i.e., verifiable) statically.

would only need to be usually (or often) right. This relaxation allows-in principle-the

disambiguator to handle all of the above cases, and in fact could be used not only as a

complement for a fully static disambiguator, but even-within limits-could make up for

the lack of sophisticated-and slow-fully static disambiguation. Thus the use of runtime

disambiguation could dramatically improve not only the running time of the code generated

but also the running time of the compiler itself. 5

This approach is new for parallelizing compilers. Previous techniques relied exclusively on

fully-static information to estimate data-dependencies. This conservative approach, discussed

m the previous section. has undully restricted the effectiveness of parallelizing compilers.

In fact, some of the chief critiques voiced against parallelizing compilers (e.g.,)4]) center

precisely on the perceived intrinsic need of such compilers to rely solely on fully-static analysis,

and their resulting inability to exploit the "real" parallelism limited only by actual runtime

dependencies. Runtime Disambiguation (RTD) comes to remedy this problem of parallelizing

5 Between 1/3 and 1/2 of the running time of the Bulldog compiler [12] is spent in preparing accurate fully­

static dependency information. Even with all this effort, the compiler still missed some relatively simple-and

important-disambiguations. An assertion facility was added to the system precisely to allow the user to

overcome such problems.

8

Table 2: RTD Net Speedups.

Program (unwinding) Speedup RTD vs NoRTD Speedup .4 U vs .VoRTD Speedup TR v.5 .VoRTD

dotprod(-1/8) 0/0 0/0 o .. ·o

ln(4/8) 0/0 0/0 0, 0 :

matmul(4/8) 0/0 0/0 Qi'O

sqrt(4/8) 0/0 0/0 o, 0 .

Conduc(4/8) . 15/.22 (< 0)/.10 .15/.20

FFT(4/8) .26/.42 . .10/.34 .26/.-12

Trid(4/8) .18/.23 (< 0)/.20 .18/.23

Quanc(4/8) .15/.28 .08/ .22 .15/.26

SVD(4/8) .26/.44 .15/.40 .24/.-11

Solve(4/8) .16/.27 .10/.27 .16/.21'

Invert(4/8) 2.2/3.4 .5/.9 2.2/3.-l

BinSort(4/8) 3.7/i.l 2.3/5.1 . 2.5/5.:3

BubleSort(4/8) -; Q . I •v .4/.5 .4; .6

ShellSort(4/8) 1.5 /2.4 1.2/2.3 1.3/2.l

RadixSort(4/ 8) 3.2/6.2 2.3/5.2 2.2/5.0

prime(4/8) .5/.9 .3/.7 A/.'i

trcl(4/8) 1.3 /2.1 .8/ 1. 7 .8I1..1

Unions(4/8) 1.6/3.l .7 /.6 1.3/2.-l

Inserts(4/8) 2.9/4.6 1.7/1.9 2.4/4.1

ShortesPaths(4/8) 1.2/2.l .9/1.9 .8/1.6

11

........ _______ _......._. ___, __ .. -.-~ ... ~---_ ... _.......__ _.__ ______ ,..._ __ ... _. -- .. -

[1

Ii

M -- - - - -- -- -- - -

I1 ~

~ '·-9 ~

N'

E1

E1

E1
E1

1,

Figure 5: Core Transformations

Guided by the higher level rules and transformation~. the core transformations operate

uniformly on an entire program graph. They can also be applied to partially parallelized

cude. This allows modification of code produced by other types of compilers. In addition.

these transformations are themselves highly parallel and could be run on a parallel machine.

significantly reducing r.ompilation time.

The following is an outline of the lavers of the PS ~ystem and their function:

Core Level This level contains a set of four core tran::;forrnations that define semantically

correct motions of operations between arljacent nodes in a program A.ow-graph. Bv ·~per­

colating~! operations that can execute in parallel to the same node of the graph. the core

transformations expose parnllelism implicit in the code. These transformations applv di­

rectly. to loop bodies and non-loop co'ie. The~- serves as the main parallelization tool in our

svstem. The core transformations arf:' illustrated in fig11re :>.

Support Level At this level we have analv.-;is methods (e.g .. :\[emory Disambiguation

)9 !) and standard optimizations (e.~ .. Dead-Cu<le Remo ml). They provide accurate <iata­

depen<lency information and thus enhance the applicabilitv of the core transformations.

Guidance Level This level consists of rules that <iirect the application of the core trans­

formations to achieve effective optimization of the rode in acceptable time and space. Thi~

contrasts with Trace Schedulin~) l _ where a siru;lC' rule (for trnce picking) is inseparable from

the actual transformation mechanism. This limit:5 Trnce Scheduli1Lg and makes it too rigid

for our goals.

l2

equal or better running time for the final loop. In other words, OPT not only yields the best

running time for the loop with respect to unwinding and the particular parallelizing transfor­

mations used, but true time optimality with respect to any possible dependency-preserving

transformations. 6 OPT relies on the fact that only a finite (and in practice, small) number of

iterations ever need to be examined to determine a pattern which yields an optimal running·

time schedule for the loop. These results hold in the presence of multicycle operations. The

justification of these claims and the details of the algorithm are given in [3]. For the purpose

of this paper we only need to understand how OPT works. OPT incrementally unwinds the

loop, allowing operations to be scheduled as early as possible in the schedule, subject only

to data-dependencies and latencies. 7 Thus operations are scheduled at the earliest possible

time they could be issued at runtime, if a synchronous multiprocessor were available. A

repeating, fixed size pattern is guaranteed to emerge after a relatively small amount of such

unwinding and compaction (parallelization), if the original data-dependencies of the loop are

not allowed to drastically change throughout the process. Further unwinding and compaction

beyond this point cannot improve parallelism, and thus replacing the loop body with this

pattern will yield an optimal execution schedule for the given loop. Of course, a prolog and

postlog including some start-up and wind-down code may be required; this code consists of

partial iterations (loop bodies) '.3-t the beginning and end of the loop. There are several ways

for handling these and other details such as the loop overhead, with either software or hard­

ware support. Some hardware mechanisms which would be relevant have been implemented

and are discussed in [8], [10].

An illustration of the effects of OPT and the optimal schedule produced for the given loop

is found in Figure 6. For simplicity, latencies of operations in this example are assumed to

be just one cycle. As we mentioned earlier, OPT can deal with realistic operation latencies.

When taking into account true operation latencies the notion of optimality derived from

OPT /PP is realistic, in the sense that a schedule produced by OPT or PP could be run "as

is" on a synchronous parallel machine (e.g., ~Iultiflow's)i]) with enough resources. Still,

6 Dependency changes (e.g., due to renaming) can be allowed in this context, even if done dynamically as

part of the parallelization process.
7 \Ve are essentially performing a topological sort, creating a partial ordering of the operations; operations

that are placed at the same Level in the schedule are therefore independent of each other and can be executed

in parallel. Given a synchronous parallel processor with enough resources, such a schedule could run "as is",

with each level or slice of the schedule issuing each cycle.

14

unwinding of multiple loops may violate correctness, and thus appropriate checks are needed

to ensure that the transformation preserves the semantics of the original code. For example,

in figure 7, a 3 by 3 unwinding on each loop would yield an incorrect program.

Loop Quantization is a technique that we have developed to overcome this problem by

allowing correct multiple-loop unwinding for arbitrary nested loops. In the case above, for

example, the 3 by ;3 unwound loop body (the "quantum box") can be slanted to become

parallel with the dependencies in the code, thereby restoring correctness. Of course the loop

bounds need to be modified accordingly to allow for such slanted quantization. In [2] we have

shown how the decision on the bounds of Quantization, and the ensuing transformation of

the loop, can be automated.

Loop Quantization rearranges the order of execution of the loop iterations less than some

other global transformations. For example, quantization will succeed even when straight loop

interchange would not apply. By exposing even irregular fine-grain parallelism, quantization

may help achieve significant speedups in ordinary code. The main loop of weather code, for

example, is naturally amenable to quantization, as are the Livermore loops[16] in their nested

context. LQ combines with PP to achieve optimal parallel schedules (for a given number of

processors) for nested loops.

An example of loop quantiza_tion is given in figure i; further details and an algorithm for

computing maximal loop quantizations is given in (2].

3 Architectural Considerations

The above compiler techniques combine to effectively expose virtually all fine-grain paral­

lelism obtainable at compile-time. The techniques are resilient in the presence of unpre­

dictable conditional-jumps, and indirect references. To take full advantage of the potential

of these compiler techniques, synchronous multiprocessors are required. While on a small to

medium scale (up to a few tens of processors) such machines are relatively easy to build and

can be very cost effective-as demonstrated by commercial machines such as (li], (8]-on a

larger scale they may involve a number of disadvantages.

3.1 Disadvantages of Statically Scheduled Multiprocessors

The main disadvantage of static architectures is that they can't scale up arbitrarily due to:

16

• Conservative scheduling assumptions. As the number of processing elements working

in parallel increases, we have to find more opportunities of exploiting parallelism in

the code. We have demonstrated that at the nested loop level (and below) enough

parallelism exists and can be extracted effectively; a tightly coupled machine of medium

size (somewhere between ten to one hundred processing units, is typical of ordinary code

in our experience), can make the most of this parallelism. While conservative decisions

may sometimes be made at this level to ensure correctness of execution, there is usually

no alternative: dynamic mechanisms (e.g., for dependency testing) that are general

enough to allow the exploitation of significant amounts of parallelism, are usually too

expensive at this level. However, as we go beyond such numbers of processors, an<l

examine coarser levels of parallelism, (e.g .. at the procedure level), we may wt>ll be

slowed down by the conservative decisions implicit in the fully static approach more

than by the use of dynamic synchronization.

Out of these obstacles to scalability, the last one is probably the most critical. For ex­

ample, consider the task of inserting a sequence of elements into a binary search-tree. Two

successive calls to Insert could clearly execute in parallel as soon as it is determined (at

runtime) that the subtrees they need to insert into are disjoint. A purely static approach.

however, would need to schedule them for sequential execution, since a conflict could some­

times exist. Of course, RTD could be used to m·ercome this problem, but that would involve

some overhead plus some code duplication for the case where the conflict does indeed arise

at runtime. To the extent that the overhead involved in explicit synchronization between the

two procedure calls compares favorably with that of RTD, it would be preferable for the user

to insert some synchronization code between the calls, (e.g., through the future mechanism

proposed in Multilisp), and allow for fully dynamic synchronization. The point is, that when

the execution time of the tasks (insert) is large relative to the cost of synchronization, the

overhead on an asynchronous machine becomes tolerable, and possibly preferable to static

scheduling.

i\fore importantly, the parallel execution of multiple procedure calls with their individual

threads of control fl.ow implies, in itself, a combinatorial explosion in code size-if encoded in

the statically scheduled model. Such an explosion results from the need to encode all possible

18

of dedicated and fast communication processors, or by latency avoidance schemes such as

that used in Burton Smith's Horizon.

Such a machine could use heuristic high-level scheduling algorithms as in ~23], to map the

parallelism exposed at the language (and algorithm level) onto dusters. The effectiveness

of this approach is illustrated in [23], where the automatic mapping was shown to be better

than that derived by human experts.

3.3 Cluster Architecture

Synchronous processing elements, each able to accept (any) one operation per cycle, with

operation execution pipelined over multiple cycles. While the number of cycles required to

execute a n operation is fixed for each operation type. This presents no particular problem for

a register-to-register instruction set, with explicit load/stores. The fixed execution time for

loads can be enforced-as far as the processors are concerned-by freezing (all) the processors

in the cluster if loads do not complete in the expected time. Alternatively, latency may be

masked by trading off parallelism as in the HEP or the Horizon.

Such synchronous processors are obviously buildable on a small to moderate scale (2 to 30

processors), as illustrated by the products of:vlultift.ow, Cydrome, Chopp,_ FPS. Thus the only

other difficulty is in providing a •'clean" machine, i.e., free of structural hazards, so that any

operation can be accepted by each processing element every cycle. The availability of clean

pipes is not crucial to our approach. However, while structural hazards (i.e., irregul~rities in

the machine design that optimize hardware utilization) can reduce the cost of the hardware,

the trend in architectural design is to avoid structural hazards as much as possible-clearly

any machine with too many structural bottlenecks cannot perform at or near its peak re­

gardless of the compiler technology used. \Ve are arguing that the added (hardware) cost

of avoiding structural hazards is now even more justified by the existence of software tech­

niques capable of generating optimal code for clean machines for large classes of loops, and

provably good code for the cases where optimality is unfeasible-see bellow. If structural

hazards are not completely avoided, then simple techniques such as further unwinding of the

OPT schedule and compaction (parallelization) coupled with reasonable mapping algorithms

can minimize the impact of the hazards on the quality of the code. This,. coupled with the

relative simplicity and uniformity of application of OPT /PP makes it a good candidate even

for existing pipelined and synchronous parallel machines.

20

Loop

LLl
LL2
LLJ
LL4
LL5
LL6
LL7
LLB
LL9
LLlO
LLl l
LLl2
LLlJ
LL14 (av~)

Average

Harmonic Mean

); Or1~111a! Code

,. Mftops

9

8
1
6
6

8

I
20
II
17

10

4
4

4
4

I a
i I

-.--- ---------- -- ----·- --- - - -- --

LimHed Processors

I 1 proc Mftops i 2 procs Mftops

! 3 I . 5 0 I 5 7 - I 00
20-.1s I 40-60
16-20 I 20-2J

' 16 I JO
I 12-15 15-16

6-16
36-51

I 40-55
' 35-49

I 18-25
I 4.9

1

13-20
l 1-12
14-18

I
19-28

13-20

I 6-20

I
71-99

80-110

1

68-97

.J6-4M

I
~;~~o
22-24

I ·zs-J 1

I 1s-5o
! 18-33

pro cs

lJ
16

5
5
:I

~

.J6

60
.J9

40
4
6

50
28

Ideal Schee.Jule

82 I

10s I
8 !
8

5
8

243
363
264
210

4 !
31 I

J1s I
151 I

~flops

-WO
320

27-40
27

16 '
6-·i;

121:!0
2400
1360
i20

4-1.J

80

.560
2i0

I 534-5.J 1 :

I 25-53 I

Table 3: Cluster Sample Performance on Livermore Loops

of iterations in the loop-is not obtainable in general, so good heuristic performance is all

we may expect (and do in fact achieve) in practice. Some sample measurements based on

the Livermore Loops)6 '. are shown in Table 3. The timings of the operations are assumed

to be those of the Crav- l. It is interesting to note that the single (pipelined) processor mean

performance on these loops is by itself slightly better than that of the Crav-1, while for the

two processor version. the performance improves e\·en further. The ultimate performance of

a staticallv scheduled cluster will depend of course on the number of processors. as well as

on the actual hard ware implement at ion. :V[ore details are to be found in · L

References

·i: K. Pingali A. :-J'icolau and A. Aiken. Fine-grain compilation for pipelined machines.

A.ccc.pted for p7Lblication in thr- J 01tr11.al of S·upncomp-1tlinq, f.o appear A. ug·ust f ')88.

-~: .-\. Aiken and .-\.. :\"icolau. Loop Quantization: an analvsis and algorithm. Technical

Report 87-821. Cornt>ll Universitv. l!J~i.

i:J: .-\. . .-\.iken and A. \'icolau. Optimal loop parallelization. In Proceedings of the 1 !J88

...! (.,'.\[SIG P LL.V Cunference un Programming language De:;igrz and Implementation.

June l D88.

22

. ~ ,,. - ~ ,.__ -- _ _,. - . - ~ - - - - - -- ..-.

[l.5] D. Kuck, R. Kuhn, , B. Leasure, and M. Wolfe. The structure of an advanced vec­

torizer for pipelined processors. In Proceedings of the 4th Int 'l Computer Software and

Applications Conference, pages i09-il5, October 1980.

[16] F. H. Mc:\Iahon. Lawrence Livermore National Laboratory FORTRAN kernels:

MFLOPS. Livermore, CA., 1983.

[17] ~Iultiflow Computer Inc., Branford, Connecticut. Technical Summary, 1987.

[18] A. Nicolau. Runtime disambiguation: Coping with statically unpredictable dependen­

cies. Accepted for publication in IEEE Transactions on Computers, to appear Fall J 988.

[19] .-\.. ~icolau. Parallelism, Jlemory Anti-.4.liasing and Correctness for Trace Scheduling

Compilers. PhD thesis, Yale University, 1984.

[20] A. Nicolau. Percolation Scheduling: A parallel compilation technique. Technical Report

85-6i8, Cornell University, 1984.

[21] A. Nicolau and .J. Fisher. Measuring the parallelism available for Very Long Instruction

Word architectures. IEEE Transactions on Computers, C-33:968-76, November 1984.

[22] M . .J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis, University of

Illinois at Urbana-Champaign, October 1982.

[23] ~I. Y. \.Vu and D. D. Gajski. A programming aid for hypercube architectures. Accepted

for publication in Journal of Supe·rcomputing, to appear August 1988.

24

