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ORIGINAL RESEARCH
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Chronic NF-kB Activation
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SUMMARY

Here we describe how chronic nuclear factor–kB activation
facilitates the formation of the ripoptosome, which enhances
tumor necrosis factor–induced apoptosis in intestinal
epithelial cells. Blockade of the kinase activity of RIPK1
prevents tumor necrosis factor’s destructive properties
while preserving its survival and proliferative functions.

BACKGROUND AND AIMS: Tumor necrosis factor (TNF) is a
major pathogenic effector and a therapeutic target in inflam-
matory bowel disease (IBD), yet the basis for TNF-induced in-
testinal epithelial cell (IEC) death is unknown, because TNF
does not kill normal IECs. Here, we investigated how chronic
nuclear factor (NF)- kB activation, which occurs in human IBD,
promotes TNF-dependent IEC death in mice.
METHODS: Human IBD specimens were stained for p65 and
cleaved caspase-3. C57BL/6micewith constitutivelyactive IKKb in
IEC (Ikkb(EE)IEC),Ripk1D138N/D138N knockinmice, andRipk3-/-mice
were injectedwith TNF or lipopolysaccharide. Enteroidswere also
isolated from these mice and challenged with TNFwith or without
RIPK1 and RIPK3 inhibitors or butylated hydroxyanisole.
Ripoptosome-mediated caspase-8 activation was assessed by
immunoprecipitation.

RESULTS: NF-kB activation in human IBD correlated with
appearance of cleaved caspase-3. Congruently, unlike normal
mouse IECs that are TNF-resistant, IECs in Ikkb(EE)IEC mice
and enteroids were susceptible to TNF-dependent apoptosis,
which depended on the protein kinase function of RIPK1.
Constitutively active IKKb facilitated ripoptosome formation,
a RIPK1 signaling complex that mediates caspase-8 activa-
tion by TNF. Butylated hydroxyanisole treatment and RIPK1
inhibitors attenuated TNF-induced and ripoptosome-
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mediated caspase-8 activation and IEC death in vitro and
in vivo.

CONCLUSIONS: Contrary to common expectations, chronic NF-
kB activation induced intestinal crypt apoptosis after TNF
stimulation, resulting in severe mucosal erosion. RIPK1 kinase
inhibitors selectively inhibited TNF destructive properties while
preserving its survival and proliferative properties, which do not
require RIPK1 kinase activity. RIPK1 kinase inhibition could be a
potential treatment for IBD. (Cell Mol Gastroenterol Hepatol
2020;9:295–312; https://doi.org/10.1016/j.jcmgh.2019.10.002)

Keywords: IBD; RIPK1; Intestinal Epithelial Cell; Ripoptosome;
Cell Death.

nflammatory bowel disease (IBD), including ulcera-
aBoth authors contributed equally to this work.

Abbreviations used in this paper: BHA, butylated hydroxyanisole; cC-3,
cleaved caspase-3; cC-8, cleaved caspase-8; CD, Crohn’s disease;
CHX, cycloheximide; DPI, phenyleneiodonium; IB, immunoblotting;
IBD, inflammatory bowel disease; IEC, intestinal epithelial cell; IHC,
immunohistochemistry; i.p., intraperitoneally; LPS, lipopolysaccharide;
Nec-1, necrostatin-1; NF, nuclear factor; PBS, phosphate-buffered
saline; qPCR, quantitative polymerase chain reaction; TNF, tumor
necrosis factor; UC, ulcerative colitis; WT, wild type.
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Itive colitis (UC) and Crohn’s disease (CD), represent a
major cause of morbidity and mortality, affecting approxi-
mately 1.4 million Americans.1 IBDs are characterized by
colon or small intestine inflammation and a relapsing course
with clinically quiescent periods followed by bouts of severe
and damaging inflammation associated with tissue
destruction and mucosal erosion.1 Apoptotic and necrotic
features are often found in the crypt compartment of the
affected intestinal tissue.2 IBD etiology depends on genetic
susceptibility and environmental triggers.3 Although most
research efforts have focused on immune cells, it is becoming
increasingly clear that intestinal epithelial cells (IEC) are also
important players in IBD pathogenesis4 and their ability to
regenerate and heal the injured mucosa is critical for long-
term remission.5 Interestingly, single nucleotide poly-
morphisms in ubiquitously expressed genes encoding nuclear
factor (NF)-kB-regulated molecules show strong association
with IBD3,6 and activated/nuclear NF-kB is present in both
IEC and lamina propria macrophages of active disease areas.7

NF-kB stimulates transcription of numerous genes implicated
in IBD pathogenesis, including TNF, which codes for the
prototypical inflammatory cytokine tumor necrosis factor
(TNF). TNF inhibition is one of themain therapeutic options in
IBD7 leading to reduced IEC apoptosis and enhancedmucosal
repair.8 Unlike other TNF-dependent inflammatory diseases,
such as psoriasis, extensive epithelial cell death is a cardinal
feature of IBD, yet the basis for TNF-induced IEC death is
unknown, because TNF is not cytotoxic to normal IEC unless
treated with protein synthesis inhibitors.

In fact, in most cell types, IEC included, transient TNF
signaling inhibits apoptosis because of IKKb-dependent NF-
kB activation.9 Correspondingly, ablation of IKKb10,11 or its
regulatory subunit IKKg/NEMO12 renders IEC susceptible
to TNF-induced death. Elevated expression of A20, a protein
thought to be a negative regulator of NF-kB, also sensitizes
IEC to TNF-mediated killing but this effect is not due to NF-
kB inhibition.13 Indeed, IKK or NF-kB deficiencies have not
been described in IBD.

To determine whether persistent NF-kB activation in
IBD7 has a pathogenic function, we generated Ikkb(EE)IEC

mice in which a constitutively active IKKb(EE) variant is
expressed in IEC from the villin promoter.14 Surprisingly,
instead of being resistant to TNF-induced mucosal erosion,
Ikkb(EE)IEC mice display severe TNF-dependent epithelial
layer destruction when challenged with TNF or various
stimuli that induce TNF production.14 The mechanism by
which constitutive IKKb/NF-kB activation renders mouse
IEC susceptible to TNF-induced killing, rather than prevent
it, is unknown, but is likely to be relevant to the effect of
chronic NF-kB activation in IEC of active IBD lesions. We
have therefore investigated the mechanisms by which TNF
induces IEC death in Ikkb(EE)IEC mice.

We focused our studies on the function of RIPK1, a protein
kinase that serves as a key regulator of life and death in TNF-
exposed cells. Under conditions in which RIPK1 is subject to
K63-linked and linear ubiquitination, TNFR1 engagement in-
duces cell survival, but when the RIPK1 ubiquitination pattern
is altered, TNF induces 1 of 2 forms of programmed cell
death: necroptosis15,16 or noncanonical apoptosis that is not
inhibited by NF-kB.17 The latter depends on formation of a
RIPK1-dependent signaling complex that also contains FADD
and caspase-8, known as complex IIb or the ripoptosome.17

However, in cells that are completely deficient of RIPK1,
which is needed for NF-kB activation,18 TNF leads to a clas-
sical apoptotic response that is NF-kB preventable.19–21 Add-
ing to the complexities of TNF-mediated cell death and its
dependence on NF-kB inhibition or RIPK1 kinase activation,
we found that elevated A20 expression facilitates ripopto-
some formation and RIPK1 activation.13 Here we describe the
role of RIPK1 in TNF-mediated IEC killing and mucosal
erosion in Ikkb(EE)IEC mice.

Results
NF-kB and Caspase-3 Activation in Human IBD

We conducted immunohistochemistry (IHC) analysis of
human tissue specimens from healthy individuals and
patients suffering with either ileal or colonic CD or UC to
determine the correlation between NF-kB activation and
cell death. As previously described,13 we examined 10
normal colon specimens, 10 samples with active UC, and
10 samples with colonic CD, as well as 4 active ileitis
samples and 5 inactive ileal CD samples, all of which were
stained for p65/RelA and cleaved caspase-3 (cC-3). In
general, normal colonic or ileal specimens contained
hardly any IEC that were positive for cC-3 or nuclear p65
(Figure 1A). As described,13 active IBD specimens con-
tained more cC-3-positive cells than control samples.
Interestingly, the areas enriched for cC-3-positive cells

https://doi.org/10.1016/j.jcmgh.2019.10.002
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Figure 1. Active IBD tissue displays spatially adjacent NF-kB and caspase-3 activation in intestinal epithelial cells.
Human control (A), CD and UC colon sections (B) were stained with antibodies to cC-3 and p65(RelA). Magnification bars: 50
mm. Arrows show positive cells. Results are representative for 15 healthy, 14 CD, and 10 UC specimens.
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Table 1.Number of Samples and the Corresponding Percentages of Nuclear p65 and Cleaved Caspase 3 Expression Level in
IEC of Control Tissue and Active IBD Specimens

Expression level C ileum C colon CD ileum CD colon UC colon

Nuclear p65 expression level
0 4 (80) 7 (70) 1 (25) 0 0
1 1 (20) 3 (30) 1 (25) 2 (20) 1 (10)
2 0 0 2 (50) 5 (50) 4 (40)
3 0 0 0 3 (30) 5 (50)
Total 5 10 4 10 10

Caspase-3 expression level
0 2 (40) 5 (50) 1 (25) 0 0
1 3 (60) 5 (50) 1 (25) 3 (30) 2 (20)
2 0 0 2 (50) 5 (50) 4 (40)
3 0 0 0 2 (20) 4 (40)
Total 5 10 4 10 10

C, control; CD, Crohn’s disease; IBD, inflammatory bowel disease; IEC, intestinal epithelial cells; UC, ulcerative colitis.
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correlated with areas harboring cells with nuclear
p65 (Figure 1A and B). Active UC specimens contained
more cC-3- and p65-positive cells than CD specimens and
hardly any differences were observed between colonic
and ileal CD (Table 1). Our finding of activated/nuclear
NF-kB in IEC is consistent with other reports.7,22 In
addition, mining of publicly available data sets also
showed upregulation of numerous NF-kB target genes
including TNFAIP3, CXCL10, CXCL11, CCL2, CCL8, CSF1,
CCL11, and CCL20 in active IBD areas that decreased after
anti-TNF therapy (Figure 2A).23
TNF-Induced Apoptosis in Ikkb(EE)IEC Mice
To determine the pathogenic function of persistent NF-

kB activation we used Ikkb(EE)IEC mice, which instead of
being resistant to TNF-induced mucosal erosion are highly
sensitive to TNF.14 Of note, many of the genes found to be
up-regulated in human IBD and described in our previous
work13 were also up-regulated in Ikkb(EE)IEC mice relative
to the wild-type (WT) mouse epithelium (Figure 2B).14

Because TNF can trigger either apoptosis or necroptosis,
we used IHC with antibodies specific for activated/cleaved
caspase-8 (cC-8) or cC-3 to determine the type of cell death
affecting the Ikkb(EE)IEC small bowel epithelium after
administration of TNF or lipopolysaccharide (LPS). Treat-
ment of Ikkb(EE)IEC mice with either agent activated both
caspases (Figure 3A and B). TNF-treated WT mice showed
only a mild and transient caspase-3 activation near the villi
tips, but not within the crypt compartment, and hardly any
caspase-8 activation, correlating with little or no mucosal
damage. TNF-treated Ikkb(EE)IEC mice, however, displayed
activation of both caspases in villi and especially within
crypt compartments, leading to cell shedding and tissue
damage (0.02 ± 0.03 cC-3þ and 0.01 ± 0.02 cC-8þ cells per
crypt in WT vs 7.01 ± 1.15 cC-3þ and 4.35 ± 2.19 cC-8þ

cells per crypt in Ikkb(EE)IEC mice; P < .001 and P < .001).
Immunoblotting (IB) analysis of the intestinal crypt fraction
of Ikkb(EE)IEC mice intraperitoneally (i.p.) injected with LPS
showed strong and sustained cleavage of caspases-3 and -8
and delayed degradation of IKKb(EE) protein, likely because
of caspase activation (Figure 3B). As described,14 Ikk-
b(EE)IEC/Tnf–/– mice remained hypersensitive to exogenous
TNF and showed caspase-3 and -8 activation after its
administration (6.99 ± 1.50 cC-3þ and 3.38 ± 0.59 cC-8þ

cells per crypt in Ikkb(EE)IEC vs 5.07 ± 0.78 cC-3þ and 1.93
± 0.61 cC-8þ cells per crypt in Ikkb(EE)IEC/Tnf–/– mice; P ¼
.015 and P < .001) (Figure 3C). Similar results were ob-
tained in TNF-treated Ikkb(EE)IEC/Myd88DIEC mice (5.72 ±
2.22 cC-3þ and 4.35 ± 1.12 cC-8þ cells per crypt in Ikk-
b(EE)IEC/Myd88F/F mice vs 8.18 ± 1.17 cC-3þ and 5.61 ±
0.76 cC-8þ cells per crypt in Ikkb(EE)IEC/Myd88DIEC mice;
P ¼ .015 and P ¼ .02) (Figure 3D), suggesting an inherent
ability of persistent IKKb activation to sensitize IEC to TNF-
induced apoptosis independently of IEC-autonomous toll-
like receptor signaling.

To further investigate this phenomenon and determine
whether or not it depends on microbiota and immune cells,
we established enteroid cultures.24 Whereas WT enteroids
exhibited minimal TNF-induced death, Ikkb(EE)IEC and Ikk-
b(EE)IEC/Tnf–/– enteroids underwent extensive cell death,
especially within crypt domains, after incubation with TNF
(1.9% ± 3.8% WT dead organoids vs 95.5% ± 5.4% dead in
Ikkb(EE)IEC organoids; P < .001) (Figure 4A and B), leading
to their rapid disintegration. cC-3 and TUNEL immunofluo-
rescent staining (Figure 4C and D) and IB analysis of
caspases-3 and -8 (Figure 4E and F) correlated and
confirmed that Ikkb(EE)IEC or Ikkb(EE)IEC/Tnf-/- enteroids
underwent TNF-induced apoptosis mainly within crypt do-
mains. Inducible expression of IKKb(EE) in WT enteroids
also conferred susceptibility to TNF-induced apoptosis
(Figure 5A). Doxycycline, which was used to induce IKK-
b(EE) expression, did not cause cell death, neither did it
sensitize WT enteroids to TNF-induced apoptosis
(Figure 5B).

To determine whether the elevated susceptibility of
Ikkb(EE)IEC enteroids to TNF-induced death was NF-kB-
dependent, we transduced them with a lentivirus expressing
IkBa super-repressor (IkBaSR). Enteroids containing
IkBaSR no longer exhibited TNF-induced crypt apoptosis
(Figure 5C), but unexpectedly IkBaSR expression led to
reduced IKKb(EE) expression (Figure 5D).



Figure 2. Anti-TNF treatment decreases expression of NF-kB-related genes in human IBD tissue. (A) Heat map showing
differentially expressed NF-kB-related genes between healthy control subjects and CD subjects, before and after anti-TNF
therapy, in tissue biopsies described in array GSE52746.23 Fc_cdIw12_cdAw0 means fold-change between CD samples
from inactive areas after 12 weeks of anti-TNF therapy and CD samples from active areas at time 0; fc_cdAtnf_cdAw0 means
fold-change between CD samples from active areas after 12 weeks of anti-TNF therapy and CD samples from active areas at
time 0; fc_cdAtnf_cdIw12 means fold change between CD samples from active areas after 12 weeks of anti-TNF therapy and
CD samples from inactive areas after 12 weeks of anti-TNF therapy; fc_cdAtnf_control means fold change between CD
samples from active areas after 12 weeks of anti-TNF therapy and healthy control samples; fc_cdAw0_control means fold
change between CD samples from active areas at time 0 and healthy control samples; fc_cdAw12_control means fold change
between CD samples from active areas after 12 weeks of anti-TNF therapy and healthy control samples. (B) Comparison
between genes that are differentially expressed between WT and Ikkb(EE)IEC enterocytes14 and those that are differentially
expressed between CD and normal human ileum (left).13
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RIPK1 Kinase Activity Is Required for TNF-
Induced Tissue Damage

TNFR1 engagement triggers assembly of several distinct
signaling complexes, the first of which is complex I, which
includes TRADD, RIPK1, TRAF2, and cIAP1/2, and is
responsible for IKK and NF-kB activation and inhibition of
apoptosis. The latter is mediated by induction of anti-
apoptotic genes, including those coding for c-FLIP, a
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caspase-8 inhibitor,25 and survivin, a caspase-3 inhibitor.26

Complex I formation and NF-kB activation depend on the
scaffold functions of RIPK1 but not on its kinase activity.16
Notably, and despite its susceptibility to TNF-induced
apoptosis, the intestinal epithelium of Ikkb(EE)IEC mice
exhibited elevated expression of antiapoptotic molecules,
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including BIRC3, BCL2, and BCL2L1.14 Persistent TNFR1
engagement, however, results in receptor internalization,
which can promote cell death through either RIPK1 kinase-
dependent apoptosis or necroptosis.16,27 To query the
involvement of RIPK1 kinase activity in the observed
response of Ikkb(EE)IEC enteroids, we examined the ability
of necrostatin-1 (Nec-1), a RIPK1 inhibitor,28 to block TNF-
induced killing. Indeed, Nec-1 effectively blocked TNF-
induced Ikkb(EE)IEC enteroid apoptosis (Figure 6A and B),
without any effect on crypt proliferation (Figure 6C and D).
Nec-1, however, can also inhibit other kinases, such as
PAK1.29 We therefore examined the effect of more specific
RIPK1 kinase inhibitors and inhibitors of RIPK3, a key
inducer of necroptosis.30,31 The RIPK1 inhibitors (GSK’963
and GSK’728 or Nec-1s, which is the active enantiomer of
the optimized necrostatin 7-Cl-O-Nec-1), but not the RIPK3
selective inhibitors (GSK’843 and GSK’872), prevented the
TNF-induced death of Ikkb(EE)IEC intestinal enteroids and
blocked caspase-3 and -8 cleavage (95.5% ± 5.4% dead
organoids after control treatment vs 2.8% ± 3.3% after Nec-
1, 3.0% ± 3.5% after GSK’963, 4.9% ± 0.5% after Nec-1s,
95.7% ±5.8% after GSK’843, and 97.7% ± 4.5% after
GSK’872 treatments) (Figure 6A and B).

To further validate the role of RIPK1 in TNF-induced
apoptosis and tissue damage in Ikkb(EE)IEC mice, we
crossed the latter to Ripk1D138N/D138N homozygous knockin
mice, which express a catalytically inactive version of
RIPK1 that retains its scaffold function.32 We also crossed
Ikkb(EE)IEC mice with Rip3-/- mice33 to genetically rule out
a role for RIPK3-dependent necroptosis in TNF-induced
mucosal erosion in our model. Notably, Ripk3 ablation
did not prevent TNF-induced apoptosis (Figure 7A and B)
but RIPK1 kinase inactivation completely blocked TNF-
induced crypt cell death and caspase-3 activation in Ikk-
b(EE)IEC enteroids (95.5% ± 5.4% dead Ikkb(EE)IEC orga-
noids vs 2.0% ± 4.0% dead Ikkb(EE)IEC/Ripk1D138N/D138N

organoids) (Figure 7C and D). As expected,34,35 Ripk3 gene
ablation prevented necroptosis in enteroids incubated with
TNF þ cycloheximide (CHX) þ zVAD (5.59 ± 3.12 cC-3þ

cells per crypt in Ikkb(EE)IEC mice vs 6.79 ± 1.02 cC-3þ

cells per crypt in Ikkb(EE)IEC/Rip3-/- mice; P ¼ .91)
(Figure 7E and F).

Ikkb(EE)IEC mice are highly sensitive to TNF-induced
mucosal damage and even a low dose of LPS, which in-
duces TNF expression, causes their rapid death.14 Whereas
Ripk3 ablation did not decrease LPS-induced mortality, or
LPS-induced caspase-3 or -8 activation (not shown) in
Ikkb(EE)IEC mice (Figures 4A and 5D), RIPK1 inactivation
was fully protective (Figure 8A and B). RIPK1 inactivation
also inhibited TNF- and LPS-induced caspase-3 activation
in Ikkb(EE)IEC intestinal villi and crypts (5.25 ± 1 cC-3þ
Figure 3. (See previous page). IKKb(EE)-expressing intestina
independently of toll-like receptor signaling. (A) WT and Ikkb
intravenously). Jejunal sections were stained with either H&E
(B) Lysates of WT and Ikkb(EE)IEC intestinal mucosa were ana
(C) Ikkb(EE)IEC and Ikkb(EE)IEC/Tnf–/– mice were injected with TNF
later and stained with antibodies to either cC-3 or cC-8. Magnific
Myd88F/F mice were analyzed 4 hours after TNF injection as ab
cells per crypt in Ikkb(EE)IEC vs 1.1 ± 0.35 cC-3þ cells in
Ikkb(EE)IEC/Ripk1D138N/D138N mice, 4 hours after LPS
administration; P < .001), as assessed by IHC (Figure 8C).
Furthermore, the specific RIPK1 inhibitor GSK’963 pre-
vented LPS-induced tissue damage, apoptosis (5.5 ± 0.3 cC-
3þ cells per crypt in Ikkb(EE)IEC mice vs 3.2 ± 0.6 cC-3þ

cells in GSK’963-treated Ikkb(EE)IEC mice; P ¼ .002) and
death in Ikkb(EE)IEC mice challenged with LPS (Figure 8B
and D). Curiously, within 1 hour after TNF or LPS admin-
istration, WT mice contained a few cC-3þ IEC in their villi,
whose number was also reduced on RIPK1 inactivation
(4.5 ± 0.8 cC-3þ cells per villus in WT mice vs 1.5 ± 0.5 cC-
3þ cells per villus in Ripk1D138N/D138N mice; P ¼ .01)
(Figure 8C).

Ripoptosome Formation and Protection by
Antioxidants

RIPK1 activation as a kinase and RIPK1-dependent
apoptosis depend on formation of the ripoptosome, or
complex IIb, which also contains FADD, A20, and caspase-
8.13,17,36 We have recently shown that A20 overexpression
in IECs induces ripoptosome formation and activation in
response to TNF.13 Because A20 expression is elevated in
IKKb(EE)-expressing IEC (Figures 9A and 2B) we examined
its role in TNF-induced Ikkb(EE)IEC enteroid death by
crossing Ikkb(EE)IEC mice with A20DIEC mice, which spe-
cifically lack A20 in IEC.13 We then infected IKKb(EE)/
A20DIEC enteroids with a doxycycline inducible vector
coding for either WT A20 or an A20 variant with a C764A/
C767A double substitution that impairs the linear ubiquitin
binding ability of zinc finger 7 (A20ZNF7mut), which is
needed for RIPK1 activation.13 As expected, TNF induced
caspase activation in IKKb(EE)/A20DIEC (29930103). Sur-
prisingly, expression of the protective A20ZNF7mut did not
prevent caspase-3 and -8 activation as effectively as WT
A20 (Figure 9B), demonstrating that A20 upregulation is
not responsible for TNF-induced apoptosis in Ikkb(EE)IEC

IEC.
Previous studies have shown that RIPK1 activation in-

creases reactive oxygen species production after TNF
stimulation37 to potentiate RIPK1-dependent cell
death.38,39 We therefore examined the effect of the anti-
oxidant butylated hydroxyanisole (BHA), which was shown
to inhibit ripoptosome formation,38 on TNF-mediated
apoptosis and caspase activation in Ikkb(EE)IEC enteroids.
Consistent with previous reports, BHA, but not dipheny-
leneiodonium (DPI), a NOX inhibitor, fully prevented TNF-
induced apoptosis and caspase activation (95.5% ± 5.4%
dead organoids after control treatment vs 23.7% ± 20.0%
dead organoids after BHA or 97.9% ± 4.1% after DPI
treatment) (Figure 9C and D). BHA treatment also inhibited
l crypts are highly susceptible to TNF-induced apoptosis
(EE)IEC mice were analyzed 4 hours after TNF injection (2 mg
or antibodies to cC-3 or cC-8. Magnification bars: 100 mm.
lyzed at different times after LPS injection (5 mg/kg) by IB.
(2 mg intravenously). Jejunal sections were prepared 4 hours
ation bars: 100 mm. (D) Ikkb(EE)IEC/Myd88DIEC and Ikkb(EE)IEC/
ove.
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ripoptosome-mediated caspase-8 activation, assessed by
caspase-8 coprecipitation with FADD, almost as effectively
as Nec-1 (Figure 9E). Accordingly, BHA administration to
Ikkb(EE)IEC mice abrogated LPS-induced mortality and IEC
apoptosis (5.85 ± 1.04 cC-3þ and 3.01 ± 0.83 cC-8þ cells
per crypt after control treatment vs 0.00 ± 0.00 cC-3þ and
0.00 ± 0.00 cC-8þ cells per crypt in BHA-treated mice; P <
.001 and P < .001) (Figure 9F and G).



Figure 5. Susceptibility of
Ikkb(EE)IEC enteroids to
TNF-induced death is NF-
kB-dependent. (A) WT
enteroids transduced with
an inducible IKKb(EE)
construct were pre-
incubated with or without
doxycycline as indicated,
lysed, and IB analyzed 4
hours after TNF addition. (B)
Control and inducible-IKK-
b(EE) transduced WT enter-
oids were incubated for 24
hours with doxycycline
before TNF stimulation as
indicated. Original magnifi-
cation X200. (C) Control and
IkBaSR-transduced Ikk-
b(EE)IEC enteroids were
incubated with TNF as indi-
cated and photographed
under bright field. Original
magnification �200. (D)
Control and IkBaSR-trans-
duced Ikkb(EE)IEC enteroids
incubated with or without
TNF were lysed and IB
analyzed.
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Discussion
TNF is a major pathogenic factor in IBD and its

blockade represents one of the most effective therapeutic
options for these diseases. However, how TNF triggers IEC
killing and mucosal erosion has remained a mystery.
Although certain genetic mutations associated with IBD,
such as ATGL1T300A, increase IEC susceptibility to
TNF3,40–42 and several studies have identified, in different
ethnic cohorts, 235 genetic markers in 200 susceptibility
Figure 4. (See previous page). TNF induces apoptosis in IKKb
enteroids were photographed under brightfield 4 hours after
(B) Ikkb(EE)IEC and Ikkb(EE)IEC/Tnf–/– enteroids were photograph
ng/mL). Original magnification �200. (C) WT and Ikkb(EE)IEC e
confocal microscopy at the indicated times after TNF (40 ng/mL
enteroids were TUNEL stained and analyzed by confocal micros
bright green. Magnification bars: 100 mm. (E) Lysates of WT and
TNF addition. (F) Lysates of Tnf-/- and Ikkb(EE)IEC/Tnf–/– enteroi
activation by IB.
loci, some of them involving the NF-kB pathway, such as
TNFAIP3 and NFKB1,3,43–45 TNF is a poor killer of normal
IEC and can promote antiapoptotic NF-kB activation.11 Not
surprising, NF-kB-deficient IEC are highly susceptible to
TNF-induced killing, which depends on conventional, cas-
pase-8-dependent, apoptosis.10–12,46 However, rather un-
expectedly, we found that excessive IKKb-mediated NF-kB
activation reduces the threshold needed for induction of
TNF-induced IEC death.14 Here we show that the TNF
(EE)-expressing intestinal enteroids. (A) WT and Ikkb(EE)IEC

TNF stimulation (40 ng/mL). Original magnification �200.
ed under brightfield before and after incubation with TNF (40
nteroids were stained with cC-8 antibody and visualized by
) addition. Magnification bars: 100 mm. (D) WT and Ikkb(EE)IEC

copy before and after incubation with TNF. Apoptotic cells are
Ikkb(EE)IEC enteroids were IB analyzed at different times after
ds incubated with or without TNF were analyzed for caspase



Figure 6. RIPK1 kinase
activity is required for
TNF-induced enteroid
death. (A) Ikkb(EE)IEC

enteroids were incubated
with TNF (40 ng/mL) in the
absence or presence of
RIPK1 or RIPK3 inhibitors
and photographed 4 hours
later. Original
magnification �200. (B)
Lysates of Ikkb(EE)IEC

enteroids treated as above
were subjected to IB anal-
ysis after 4 hours. (C) WT
enteroids were treated for
24 hours with interleukin-
22 (10 ng/mL) in the
absence or presence of
Nec-1. Two hours before
fixation, EdU was added to
the culture medium. ****P�
.0001. (D) Percentages of
EdU positive cells per crypt
are shown. IL, interleukin;
ns, not significant.
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induced death of IKKb(EE)-expressing IEC depends on
RIPK1 kinase activation and presumably ripoptosome
formation.

TNF-induced ripoptosome formation in IEC and RIPK1-
dependent apoptosis are also facilitated by elevated
expression of the deubiquitinase A20.13 Since expression of
TNFAIP3, the gene coding for A20, is stimulated by NF-kB
and is elevated in Ikkb(EE)IEC mice, a likely explanation to
the reduced threshold for TNF-induced mucosal erosion
and IEC death driven by IKKb(EE) is A20. Although A20
ablation abrogated the TNF-induced death of IKKb(EE)-
expressing IEC, reconstitution of A20 expression with a
variant, A20ZNF7mut, that no longer enhances TNF-induced
ripoptosome formation13 led to full restoration of TNF-
induced apoptosis. These results suggest that IKKb(EE)
expression overcomes the requirement for linear
ubiquitin binding by the seventh ZnF of A20.13 Exactly how
IKKb(EE) expression does that is not entirely clear, but our
results show that its ability to reduce the threshold for TNF-
induced death is NF-kB mediated. Because TNF-induced
ripoptosome formation and RIPK1-mediated apoptosis in
IKKb (EE)-expressing IEC is inhibited by BHA, it is plausible
that NF-kB activation may promote the accumulation of
reactive oxygen species or other pro-oxidants. Curiously,
oxidative stress is also thought to be involved in IBD
pathogenesis,47 and our results show that NF-kB is
activated in active human IBD. Indeed, in previous studies
we found that Ikkb(EE)IEC mice exhibit higher levels of
oxidative DNA damage, which facilitates loss of APC heter-
ozygocity to cause that formation of colonic adenomas and
premalignant aberrant crypt foci,48 a pathologic process
that also occurs in patients with IBD.49,50 It is also plausible
that chronic NF-kB signaling affects Paneth cell differenti-
ation or alters autophagy signaling, thereby increasing the
susceptibility to TNF-induced cell death, in a similar
manner to the effect of the ATG16L1 or NOD2 gene muta-
tions.51 Overall, our results suggest that RIPK1 inhibition
and treatment with antioxidants may attenuate these pa-
thologies, especially in conjunction with anti-TNF drugs.
Materials and Methods
Mice

Ikkb(EE)IEC and Ripk1D138N mice were described.14,32

Ripk3-/- mice were obtained from Dr. Vishva Dixit (Gen-
entech).52 A20F/F mice were obtained from Dr. Avril Ma.53

Ikkb(EE)IEC mice were crossed to Tnf-/-, Ripk3-/-, and
Ripk1D138N/D138N mice, and maintained in the C57BL/6J
background originally acquired from Jackson Laboratories.
Mice used in this work were 8–12 weeks old and were
maintained under specific pathogen free (SPF) conditions at
a University of California San Diego facility, accredited by



Figure 7. TNF-induced mucosal damage and IEC death is RIPK3-independent. (A) Ikkb(EE)IEC and Ikkb(EE)IEC/Rip3-/-

enteroids were photographed under brightfield before and 4 hours after incubation with TNF (40 ng/mL). Original
magnification �200. (B) WT, Ikkb(EE)IEC, Rip3-/- and Ikkb(EE)IEC/Rip3-/- enteroids were incubated with or without TNF, lysed,
and IB analyzed 5 hours later. (C) Ikkb(EE)IEC and Ikkb(EE)IEC/Ripk1D138N/D138N enteroids were photographed under brightfield
before and 5 hours after TNF addition. Original magnification �200. (D) WT, Ikkb(EE)IEC, Ripk1D138N/D138N, and Ikkb(EE)IEC/
Ripk1D138N/D138N enteroids were incubated with or without TNF, lysed, and IB analyzed 5 hours later. (E) Ikkb(EE)IEC and
Ikkb(EE)IEC/Rip3-/- enteroids were incubated with TNF (40 ng/mL), CHX (25 mg/mL), and zVAD (10 mg/mL) for 4 hours, stained
with Hoechst 33342 and propidium iodide and examined by confocal microscopy. Original magnification �200. (F) WT,
Ikkb(EE)IEC, Rip3-/-, and Ikkb(EE)IEC/Rip3-/- mice were analyzed 4 hours after LPS (0.5 mg/g i.p.) injection. Jejunal sections were
stained with antibody to cC-3 and photographed. Magnification bars: 100 mm.

2020 RIPK1 Mediates Crypt Death Downstream to NF-kB Activation 305
the American Association for Accreditation of Laboratory
Animal Care. All animal protocols were approved by the
institutional review board, following National Institutes of
Health guidelines. Mice were fed autoclaved standard chow
and all of the different strains were cohoused to minimize
microbiome fluctuations.
Reagents
LPS (Escherichia coli O111:B4) was purchased from

Sigma (St. Louis, MO) and was i.p. injected at 0.5 mg/kg,
unless otherwise indicated. TNF was purchased from R&D
systems (Minneapolis, MN) and injected at 2 mg per mouse
unless otherwise indicated. In vitro, TNF was used at 40 ng/



Figure 8. RIPK1 kinase activity is required for TNF-induced death in intestinal crypts. (A) Ikkb(EE)IEC, Ikkb(EE)IEC/
Ripk1D138N/D138N, and Ikkb(EE)IEC/Ripk3-/-mice were injected with LPS (0.5 mg/kg, Escherichia coli O111:B4) and their survival
was monitored over a 36-hour period (n ¼ 5 per group). (B) Ikkb(EE)IEC mice were injected with LPS in the absence or presence
of GSK’963 (50 mg/kg) and their survival analyzed over a 36-hour period and compared with that of LPS-injected Ikkb(EE)IEC/
Ripk1D138N/D138N mice (n ¼ 5 per group). (C) The strains listed above along with WT mice were injected with TNF (2 mg
intravenously) or LPS (0.5 mg/kg i.p.). Jejunal sections were collected at indicated times and stained for cC-3. Magnification
bars: 100 mm. (D) Ikkb(EE)IEC were injected with LPS (0.5 mg/kg i.p) in the absence or presence of GSK’963 (50 mg/kg). Jejunal
sections were collected after 4 hours of LPS injection and stained for H&E or cC-3. Magnification bars: 100 mm.
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mL. CHX (25 mg/mL), zVAD-FMK (50 mM), BHA (10 mM),
Nec-1 (100 mM), and DPI (5 mM) were purchased from
Sigma. RIPK1 (Nec-1s: 50 nM and 963: 50 nM) and RIPK3
(843: 5 mM, 872: 5 mM) inhibitors were synthesized at GSK
and purified before use at the previously determined
doses.30,31 For in vivo studies, BHA (20 mg/kg) and the
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RIPK1 inhibitor GSK’963 (50 mg/kg) were dissolved in sa-
line with 5% dimethyl sulfoxide and 6% Cavitron and were
i.p. injected.
Human Samples
Archived specimens of ileum and colon for IHC analyses

were obtained from patients who had undergone routine
colonoscopy for clinical indications. Prospective ileum and
colon specimens used for RNA analysis were obtained from
patients with CD or UC and healthy control subjects under-
going colonoscopy as part of routine medical care at UCSD.
The recruited participants had a diagnosis of CD or UC and
were older than 18 years. Healthy control subjects were
undergoing colonoscopy as part of routine colon cancer
screening. Healthy control subjects were not included if they
reported gastrointestinal symptoms. The clinical status of the
patients was verified by chart review of all medical records,
laboratory and pathologic data, and all specimens were dei-
dentified before use. All participants provided written
informed consent. The institutional review boards at UCSD
and at VA San Diego Healthcare System approved the study.

RNAseq and Bioinformatics
Total RNA was isolated from human intestinal tissues

and its quality was assessed on an Agilent Bioanalyzer
(Santa Clara, CA). Samples that were determined to have an
RNA Integrity Number of 7 or greater were used to generate
RNA libraries using Illumina TruSeq Stranded Total RNA
Sample Prep Kit starting with 100 ng of RNA. Libraries were
then sequenced using the Illumina Hiseq2500 sequencer
(San Diego, CA). Ikkb(EE)IEC expression array profiling was
published14 and submitted to GEO (GSE29701). The fastq
files were aligned to human and mouse transcriptomes of
the Genome Reference Consortium GRCh.37/hg19 and
GRCm.38/mm10, respectively, using the STAR aligner.54

Transcript-level counts were calculated with an expecta-
tion maximization algorithm RSEM.55 Transcript-level
summaries were processed into gene-level summaries by
combining all transcript counts from the same gene. Gene
counts from different samples were normalized and
analyzed for differential expression using DESeq.56 Because
at least 1 of the samples does not have biologic replicates,
we used an ansatz in which dispersion of gene counts is
estimated from all available samples as if they were repli-
cates. All presented measures of statistical significance
Figure 9. (See previous page). TNF-induced apoptosis of IKK
can be inhibited by BHA. (A) WT and Ikkb(EE)IEC enteroids
(B) Ikkb(EE)IEC/A20DIEC enteroids infected with the indicated A2
lated without or with TNF (40 mg/mL) for 4 hours and IB analyze
incubated with dimethyl sulfoxide, BHA (10 mM), or diphenylen
graphed under brightfield 4 hours later. Original magnification �2
or TNF as indicated were IB analyzed after 4 hours. (E) WT and
together with zVAD (10 mg/mL) (TZ), BHA (TZB), or Nec-1 (50
immunoprecipitation and IB analyzed with the indicated antibod
mg/kg), challenged with LPS (0.5 mg/kg Escherichia coli O111:B
5 mice per group). (G) Ikkb(EE)IEC mice treated as above were
stained with either H&E or antibodies to cC-8 or cC-3. Magnifi
nylene iodonium
should be viewed in this light. Where comparisons are made
between expression patterns of human and the mouse
model, we used the Homologene database to translate
mouse genes into their human homologues, if such a ho-
mologue exists, and compared mouse expression data with
their human counterparts.

Real-Time Quantitative Polymerase Chain
Reaction

Intestinal human tissue from healthy control subjects
and patients with CD was collected by colonoscopy and total
RNA was extracted with Trizol (Invitrogen, Carlsbad, CA)
and reverse-transcribed with random hexamers and Su-
perscript II Kit (Invitrogen). Quantitative polymerase chain
reaction (qPCR) was performed with SYBR Green PCR
Master Mix Kit (Applied Biosystems, Foster City, CA). The
relative amounts of each transcript were compared with
those of GAPDH and normalized to untreated samples by the
DDCt method. Primers are available on request.

Histologic Analysis and IHC
Intestines were removed, opened longitudinally, cleaned,

processed as "Swiss rolls," and fixed in 10% phosphate-
buffered formalin for 24 hours. Fixed tissues were
embedded in paraffin, and 5 mm sections were prepared and
stained with H&E. For IHC, sections from murine and human
samples were incubated overnight at 4�C with anti-p65/
RelA, anti-cC-3, or anti-cC-8 antibodies (1697, 9661, and
8592, respectively; Cell Signaling, Danvers, MA) at a 1:200
dilution. Antigen retrieval was with citrate buffer pH 6.0 at
96�C for 20 minutes. All sections were counterstained with
hematoxylin and photographed using an Axioplan 200 mi-
croscope with AxioVision Release 4.5 software (Zeiss,
Oberkochen, Germany).

Enteroid Isolation and Culture
Small intestinal organoids (enteroids) were cultured as

described.24 Briefly, crypts were collected from small in-
testines of mice after 30-minute incubation in
phosphate-buffered saline (PBS; pH 7.4) containing 2-mM
EDTA in 6�C. Enteroids were plated in Matrigel (BD
Bioscience, San Jose, CA) and maintained in DMEM/F12
(Life Technologies, Carlsbad, CA) containing B27 and N2
supplements (Life Technologies), 1.25 mM N-acetyl L-
cysteine (Sigma), 100 ng/mL noggin (GoldBio, St. Louis,
b(EE)-expressing IEC involves ripoptosome formation and
were IB analyzed with antibodies to the indicated proteins.
0 constructs and preincubated with doxycycline were stimu-
d with the indicated antibodies. (C) Ikkb(EE)IEC enteroids were
e iodonium (5 mM) together with TNF (40 ng/mL) and photo-
00. (D) Lysates of Ikkb(EE)IEC enteroids treated with BHA and/
Ikkb(EE)IEC enteroids were stimulated without (C) or with TNF
nM) (TZN) for 2 hours. Complex IIb was isolated by FADD
ies. (F) Ikkb(EE)IEC mice were treated with or without BHA (20
4), and their survival was monitored over a 36-hour period (n ¼
analyzed 4 hours after LPS injection. Jejunal sections were
cation bars: 100 mm. DMSO, dimethyl sulfoxide; DPI, diphe-
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MO), 50 ng/mL mEGF (Biosource, San Diego, CA), and 10%
Rspo1-Fc-conditioned medium (the Rspo1-Fc-expressing
cell line was a generous gift from Dr. Calvin Kuo,
Stanford).
Immunoblotting and Immunoprecipitation
Whole cell extracts were obtained by lysing enteroids

in ice-cold RIPA lysis buffer (Cell Signaling) containing 20
mM Tris-HCl, pH 7.5, 150 mM NaCl, 10 mM EDTA, 1%
Triton X-100, and 1% deoxycholate, supplemented with a
protease inhibitor cocktail (Roche, Basel, Switzerland).
Proteins were separated by sodium dodecyl
sulfate–polyacrylamide gel electrophoresis and transferred
to nitrocellulose membranes that were incubated with
antibodies against IKKb (Millipore, Billerica, MA), A20
(Thermofisher, Waltham, MA), IkBa, p65, (Santa Cruz
Biotechnology Inc, Santa Cruz, CA), RIPK1, IKKg, and TNF
(R&D Systems, Minneapolis, MN), RIPK3 (eBioscience,
Waltham, MA), cC-3, cC-8, A20, and ERK1/2 (Cell
Signaling), actin, and tubulin (Sigma). For immunoprecip-
itation, whole cell extracts were incubated with the indi-
cated antibodies and Protein G Dynabeads (Life
Technologies) overnight at 4�C. Immunocomplexes were
washed with lysis buffer and analyzed by IB. To isolate
protein complexes by coimmunoprecipitation, the indi-
cated antibodies and cell lysates were incubated in 10 mM
Tris, pH 7.4, 150 mM NaCl, and 0.2% Nonident P-40.
Proliferation Assay
Enteroids in Matrigel were stimulated with interleukin-

22 (10 ng/mL) for 24 hours. EdU (Click-iT EdU Alexa
Fluor 594 Imaging Kit, Thermo Fisher C10339) was added
at 10 mM 2 hours before fixation. EdU staining was per-
formed as indicated by the manufacturer.
Cell Survival Assay
3-.4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium

bromide (MTT) was dissolved in PBS at 5 mg/mL. Organo-
ids were stimulated as indicated and 4 hours post-treatment
MTT was added to the media to a final concentration of 0.5
mg/mL. Thirty minutes post-MTT, cell viability was
assessed through microscopic visualization of organoids and
quantified.
Immunofluorescence
Enteroids in Matrigel were fixed with 4% para-

formaldehyde overnight at 4�C. Fixed enteroids were
blocked with PBS containing 0.2% Triton X-100 and 1%
bovine serum albumin for 30 minutes, immunostained with
primary antibodies overnight at 4�C and with Alexa Fluor
594-conjugated goat antirabbit IgG secondary antibody for 1
hour at room temperature. Immunostained enteroids were
gently mounted on the slide glass and imaged under the
Zeiss confocal microscope.
Constructs and Lentivirus Transduction of
Enteroids

The inducible-IKKb(EE) lentiviral expression constructs
were made by subcloning PCR amplified attB-flanked IKK-
b(EE),57 or A2058 and the different A20 mutants59 cDNAs
were PCR amplified and cloned into pINDUCER2060 using
the Gateway Clonase II system (Life Technologies). All
constructs were verified by sequencing.

The lentiviral constructs were transfected along with
pMD2.G (Addgene, Plasmid 12259) and psPAX2 (Addgene,
Plasmid 12260) into 293T cells to produce viral particles
used to infect enteroids as described.61 Briefly, 2 days
before virus infection, enteroids were supplemented with
50% Wnt3a conditioned medium (the Wnt3a-expressing
cell line was a generous gift from Dr. Karl Willert,
UCSD) and 10 mM nicotinamide. Single cells were ob-
tained by digesting the enteroids with TrypLE (Life
Technologies) for 5 minutes at 37�C. Cells were mixed
with high-titer lentivirus plus polybrene (8 mg/mL, Santa
Cruz) and Y-27632 (10 mM, Sigma) in a 48-well culture
plate and centrifuged at 600 � g at 32�C for 60 minutes,
followed by 5 hours incubation at 37�C. Cells were then
plated in Matrigel and cultured in media with 50% Wnt3a,
nicotinamide, and Y-27632 for 2 days, followed by selec-
tion with puromycin (1 mg/mL) or G418 (800 ng/mL) in
regular media for 1 week.
Statistical Analysis
Data are expressed as means ± standard error. For

comparison between 2 groups, a 2-tailed Student t test or
a Mann-Whitney test was applied depending on the
normality of the distribution of the variables. All statis-
tical analyses were performed using GraphPad Prism
statistical package. Results were considered significant at
P < .05.
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