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THE IMPACT OF ESTIMATION UNCERTAINTY ON

COVARIATE EFFECTS IN NONLINEAR MODELS

IVAN JELIAZKOV AND ANGELA VOSSMEYER

Abstract. Covariate effects are a key consideration in model evaluation, fore-

casting, and policy analysis, yet their dependence on estimation uncertainty
has been largely overlooked in previous work. We discuss several approaches

to covariate effect evaluation in nonlinear models, examine computational and

reporting issues, and illustrate the practical implications of ignoring estimation
uncertainty in a simulation study and applications to educational attainment

and crime. The evidence reveals that failing to consider estimation variability

and relying solely on parameter point estimates may lead to nontrivial biases
in covaraite effects that can be exacerbated in certain settings, underscoring

the pivotal role that estimation uncertainty can play in this context.

Keywords: Covariate effect; Discrete data; Marginal effect; Nonlinear

model; Partial effect.

JEL Codes: C10, C18, C50.

1. Introduction

Unlike the case of linear models, parameter interpretation in nonlinear settings
is more difficult and context-dependent because the effect of any covariate typically
depends on other covariates and parameters in the model. In addition, a key
implication of nonlinearity for covariate effect estimation is that it is essential to deal
with both data variability and parameter uncertainty. While some attention has
been paid to tackling the former of these considerations, studies rarely address the
latter despite its importance. We show that covariate effects constructed without
accommodating parameter variability can be misleading, and discuss conditions
when differences can be particularly large.

To motivate the discussion, consider the popular probit model for binary data,
where yi ∈ {0, 1}, and given covariate and parameter vectors xi and β, respectively,
the model is given by

(1) Pr (yi = 1|xi, β) = Φ (x′iβ) , i = 1, . . . , n,

where Φ (·) is the standard normal cdf. The impact of changing the jth covariate xij
on the outcome probability in (1) can be evaluated in a number of ways, leading to
differences in terminology and reporting conventions across fields and disciplines.
In this paper we employ the term covariate effect to refer to that impact more
broadly, subsuming terms such as marginal, partial, or average effects, when the
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2 IVAN JELIAZKOV AND ANGELA VOSSMEYER

covariates are continuous, discrete, ordinal, etc. The derivative of (1) (or marginal
effect) with respect to xij is given by

(2)
∂ Pr (yi = 1|xi, β)

∂xij
= φ (x′iβ)βj ,

where φ(·) is the normal pdf. This reveals that the impact of changing xij depends
on the entire vector xi and all parameters β, not just βj , and it is nonlinear due to
the presence of φ(·) in (2). The same points are true in the case of discrete changes,

where for two vectors x†i and x‡i that differ only in the value of xij ,

(3) Pr
(
yi = 1|x†i , β

)
− Pr

(
yi = 1|x‡i , β

)
= Φ

(
x†′i β

)
− Φ

(
x‡′i β

)
,

which makes it clear that nonlinearity, due to Φ (·), and dependence on all other
covariates and parameters, are still present for the effect of a given xij .

In the past, marginal effects have often been computed at the average value of

the covariates x̄ and the parameter point estimate β̂ (see, e.g., [5] or [10]):

(4) δj1 = φ
(
x̄′β̂
)
β̂j .

Unfortunately, x̄ can be meaningless if the set of covariates involves categorical,
indicator, or any other kind of discrete variables. The effect can be unrepresenta-
tive even with continuous covariates if x̄ falls in a low density region (e.g., if that
distribution is multimodal), in which case policy recommendations based on x̄ may
not reflect the effects in the population. Despite these deficiencies, computations
based on (4) have frequently been employed in the literature.

To avoid some of the aforementioned issues, covariate effects can be evaluated
by averaging (2) over the sample (sometimes called average partial effects), i.e.,

(5) δj2 =
1

n

n∑
i=1

φ
(
x′iβ̂
)
β̂j = φ

(
x′iβ̂
)
β̂j .

The computation in (5), by virtue of averaging the effects rather than the covariates
as in equation (4), is more representative of the actual effects in the sample. A
comparison of the estimators in (4) and (5) is offered in [9], who derives several
important results on their relationship and provides conditions under which their
difference can be signed.

Unfortunately, neither δj1 in (4) nor δj2 in (5) account for the uncertainty due to

estimating the parameters as both employ only the point estimate β̂, rather than
its full distribution. This can be clearly inadequate in nonlinear settings because
Jensen’s inequality applies – for a convex function h(·), the inequality states that

E[h(z)] ≥ h[E(z)],

whereas the opposite is true when h(·) is concave. In the probit context, the link
function Φ(·) has both concave and convex regions, as illustrated in Figure 1, so
that the presence of estimation variability would imply that estimates that ignore
it (such as those in equations (4) and (5)) could exhibit biases of unknown sign
and magnitude. Because nonlinearity affects the mean of the estimated covariate
effect, not just its variance, confidence interval adjustments alone are insufficient
to resolve this problem. It is also worth noting that the estimation variability in
all components of β, not only βj , will impact the estimated covariate effect of
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xj . These considerations emphasize the important role that parameter uncertainty
plays in the computation, reporting, and interpretation of covariate effects.

Figure 1. Jensen’s inequality can impact covariate effect esti-
mates in an unknown direction depending on the shape of the link
function.

In practical terms, this calls for another layer of integration that relates to un-
certainty in the parameters. In Bayesian analysis, marginalization over the param-
eters is done with respect to the posterior distribution π (β|y) ∝ f (y|β)π (β) where
f (y|β) is the likelihood and π (β) is the prior (see, e.g., [4], [7]). Specifically, the
Bayesian computation involves

δj3 =

∫
∂ Pr (yi = 1|x, β)

∂xj
f (x)π (β|y) dxdβ

≈ 1

nM

n∑
i=1

M∑
m=1

∂ Pr
(
yi = 1|xi, β(m)

)
∂xj

=
1

nM

n∑
i=1

M∑
m=1

φ
(
x′iβ

(m)
)
β
(m)
j

= φ (x′iβ)βj

,(6)

where marginalization over x employs the empirical distribution of the covariates
f (x) as in as in the case of (5), and integration over the parameters is done using
a sample from the posterior β(m) ∼ π (β|y), m = 1, . . . ,M . When dealing with
discrete covariates, the computation would, similarly to (3), need to be modified to

δj3 =

∫
[Pr
(
yi = 1|x†, β

)
− Pr

(
yi = 1|x‡, β

)
]f (x)π (β|y) dxdβ.

The classical (or frequentist) analogue to (6) would involve integration of the

estimate of β with respect to its sampling distribution q(β̂), rather than the pos-

terior π (β|y). One possibility is to employ the parametric bootstrap to sample β̂
from its asymptotic (e.g., Gaussian) distribution. Another option, if computational

costs are minor or moderate, is to employ the paired bootstrap to obtain draws β̂
without relying on the parametric approximation. In either case, the draws from
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the asymptotic distribution can be used to construct the classical analogue to (6),

(7) δj3 =
1

nM

n∑
i=1

M∑
m=1

φ
(
x′iβ̂

(m)
)
β̂
(m)
j .

As noted in [1], standard econometric packages can be used for bootstrapping,
reducing the practical costs associated with implementing (7).

A few remarks are in order regarding the estimators discussed so far. First,
δj3 obtained by equation (6) will approach the estimate from equation (7) as the
Bayesian posterior distribution approaches the classical asymptotic distribution.
Second, the parametric and paired bootstrap estimates of δj3 would be close when
the paired bootstrap distribution is approximately Gaussian. Third, as n→∞, δj3
from (6) or (7) will converge to δj2 from (5), noting that for ill-conditioned data
matrices, data sets with unbalanced outcomes, or weakly identified models, this
convergence may be slow. Fourth, the quantities in (6) and (7) provide estimates
that integrate out both variability in the sample and estimation uncertainty, and
therefore basic summaries such as confidence or credibility bands that are commonly
reported for other estimates would not be sensible here as there is no residual
uncertainty that such bands could represent. It is important to note, however,
that variability in the covariate effect can still be captured by summarizing the

distribution of the terms φ(x′iβ
(m))β

(m)
j or φ(x′iβ̂

(m))β̂
(m)
j that enter the averages

in (6) or (7), e.g. by reporting quantiles or presenting a histogram. Note also that
other interesting aspects of the covariate effect can be represented analogously, by
conditioning on particular variables or by integrating either over the parameter
distribution or the data distribution, but not both. In the former case, we are left
with a distribution of the covariate effect over the units in the sample (individuals,
firms, etc.); in the latter, we have a distribution of the average (over the sample
units) effect as a function of the parameter uncertainty. Both of these marginal
distributions and their summaries may be interesting and important in particular
contexts and could be easily obtained as a by-product of the more general average
δj3. Regardless of which methods are considered suitable and how covariate effects
are ultimately summarized in a particular setting, a key point is that parameter
uncertainty directly affects the point estimates for those effects.

2. Practical Illustrations

To illustrate the points made earlier, we examine two applications and augment
the findings with simulation evidence to make points that are difficult to address
with real data. Our first application involves educational attainment using data
from the National Longitudinal Survey of Youth (NLSY79). Educational attain-
ment has been the subject of active discourse in academic and policy circles, but
it is useful for our purposes because the attainment of education can naturally be
categorized by various thresholds such as the completion of high school or college
and allows the study of how variations in the dependent variable (for a given set of
covariates) will affect the behavior of the estimated covariate effects. The second
application considers a Poisson model for crime data, which offers a useful dis-
tinction from the probit example because under the Poisson link (which is strictly
convex) we can determine the sign of the bias caused by ignoring variability.
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2.1. Probit Example. In the education application we use data from [7] and ex-
amine three probit models under alternative specifications for the binary outcomes –
in the first model, yi = 1 {high school degree}; in the second, yi = 1 {some college};
and in the third model, yi = 1 {college or graduate degree}. Under the first dis-
cretization, the fraction of ones is 77%, in the second case it is 42%, and in the
last case, it is 19%. In addition to exploiting alternative outcome variables, we also
focus on different subgroups in the sample in order to evaluate the differences in
the estimated covariate effects in less well-behaved contexts.

For this application, we use data on cohorts 14-17 of age in 1979 for whom a
family income variable (average family income, in tens of thousands of 1980 dollars,
at age 16 and 17) is available. The sample consists of 3923 individuals and includes
variables on an individual’s family at the age of 14 including the highest grade
completed by the father and mother, whether the mother worked, family income
(stabilized by a square root transformation), and whether the youth lived in an
urban area or the South at the age of 14. We also include the individual’s gender
and race, and to control for age cohort affects, we add indicator variables for an
individual’s age in 1979. Additional discussion of the data can be found in [7].

The results of the analysis using the three definitions of yi are presented in
Table 1. Estimation was performed by Gibbs sampling, and the posterior means
and standard deviations were very close to the frequentist MLE and standard errors
which were also obtained as a robustness check. The coefficients presented in the
table accord with findings in the literature. Based on these different regressions,
our goal in the next section is to compare the behavior of δ1, δ2, and δ3, computed
for the family income variable, in several different settings.

Table 1. Posterior means and standard deviations.

High School Some College College
Covariate Mean SD Mean SD Mean SD
Constant -1.218 0.117 -2.412 0.120 -3.465 0.160

Mother Working 0.073 0.050 0.048 0.044 -0.034 0.050
Urban -0.214 0.062 0.055 0.053 0.011 0.064
South 0.028 0.053 0.060 0.048 0.074 0.057

Father Education 0.058 0.008 0.074 0.008 0.086 0.009
Mother Education 0.039 0.010 0.047 0.010 0.076 0.012

Family Income 1.76 0.15 1.16 0.12 1.25 0.14
Female 0.293 0.049 0.134 0.042 0.059 0.050

Black 0.298 0.061 0.157 0.056 -0.038 0.067
Age 15 -0.044 0.069 0.023 0.064 -0.088 0.077
Age 16 0.007 0.075 0.063 0.067 -0.043 0.077
Age 17 0.232 0.077 0.235 0.068 0.202 0.078

2.1.1. Some Basic Lessons. We begin our discussion by referring the reader to
Table 2 and noting the effect of the sample size on the behavior of δ1 and δ2
relative to δ3, which we measure by gauging the approximate percentage differences
λ1 = 100(ln(δ1) − ln(δ3)) and λ2 = 100(ln(δ2) − ln(δ3)). Here δ3 serves as a
benchmark that accounts for all sources of variability, which is compared to δ1 and
δ2, which do not do so. We consider random subsamples of size 100, 500, and 1000,
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in addition to the full data sample and several specific subsamples of interest in
policy analysis. As the sample size n increases, the first 4 rows of Table 2 indicate
that δ2 moves closer to δ3 as seen by the decrease in the absolute values of λ2. From
the table we also see that the behavior of δ1 across the three specifications of yi
is more erratic and convergence of δ1 to δ3 is not guaranteed to occur at all, or to
occur quickly, as the sample size n increases. As expected, in larger samples the
parameters are estimated more precisely and the draws of β used to compute δ3 in

equation (6) are close to β̂ that appears in the computation of δ2 in equation (5)
leading to smaller discrepancies; however, even in well-behaved cases (e.g., when
yi = 1{some college}) and large samples, δ1 need not converge to δ3 because x̄ in
equation (4) may not converge to anything useful or sensible.

In irregular settings, e.g., in the presence of ill-conditioned covariate matrices,
data sets with unbalanced outcomes, or weakly identified models, δ1 could be af-
fected severely, and even the effect on δ2 may be quite large. This can be seen
from rows 5-9 in Table 2, where the sample is restricted to study such scenarios.
Column 3 of the table presents the condition number (C) of the data matrix. In
general, a high condition number reflects high dependencies in the data, implying
a poorly-conditioned data matrix. Confining the sample to individuals who have
educated parents leads to large differences between δ1 and δ3 and δ2 and δ3. This
subsample is characterized not only by correlation in the covariates, but also con-
tains a high degree of classification, especially when yi = 1{high school degree}
because educated parents almost always have children who have at least a high
school degree. Therefore, it is not surprising that this is where we see the largest
differences even when the sample size is relatively large. Rows 5 and 6 of the ta-
ble illustrate how the covariate effect differences vary as we restrict the sample to
higher levels of parental education. Rows 7, 8, and 9 show similar developments
as the sample is restricted along gender, racial, and parental education lines that
have been of interest in earlier work. In these cases, ignored parameter uncertainty
can be seen to produce significant biases – even though the samples with educated
mothers are often large, Table 2 displays that the bias of δ2 can be upwards of 22%.
This particular segment of the population – young individuals who have educated
mothers – is a widely studied area in labor economics, so that employing a signif-
icantly biased result such as this, can have major policy implications and lead to
ill-informed decisions. Some policy considerations are examined in section 2.1.2.

Table 2. Percentage differences λ1 = 100(ln(δ1) − ln(δ3)) and
λ2 = 100(ln(δ2) − ln(δ3)) for the covariate effect of family income
for several subsamples.

High School Some College College
Subsample n C λ1 λ2 λ1 λ2 λ1 λ2

Random 100 121 3.1 3.3 26.6 7.0 −198.7 −5.3
Random 500 101 2.9 0.9 15.3 1.8 2.7 0.8
Random 1000 101 4.4 0.5 12.7 0.8 2.1 0.4

Full 3923 101 5.6 0.2 11.7 0.2 1.0 0.1
Father College 500 309 −56.5 −7.5 3.5 0.8 14.4 1.7

Father College, Mother High School 468 318 −63.7 −14.0 −0.5 0.6 11.4 1.9
Female, Mother Some College 284 236 −448.4 −22.1 −0.2 1.3 22.3 2.7
Black, Mother Some College 124 242 −262.7 −8.5 16.9 4.1 21.4 5.9

Black, Parents < High School 336 98 4.6 2.3 4.5 1.9 −13.7 −4.8
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As discussed at the end of Section 1, confidence bands for δ3 are not necessary
as there is no residual uncertainty that can be represented. However, two marginal
distributions can be obtained as a by-product of the draws of δ3, which may be of
interest in certain contexts. For the attainment of some college, Figure 2 represents
the distribution of the covariate effect of income (i) as a function of parameter
uncertainty and (ii) over the units of the full NLSY sample. Separately integrating
over the data and parameter distributions elicits aspects of the data and estimation
uncertainty that would otherwise not be available with δ1 or δ2.

Figure 2. Distribution of the average effect as a funciton of (i)
parameter uncertainty (top two panels) and (ii) the units in the
sample (bottom two panels); in each case, a histogram and a plot
of the ordered values are presented.
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2.1.2. Policy Analysis. In this section, we examine the differences that the three
covariate effect estimates—δ1, δ2, and δ3—would have on policy implications. Ta-
ble 3 reports the three covariate effect estimates for the income variable and shows
that, in all instances, δ3 implies a higher impact of the income variable on the the
probability of achieving a high school degree than δ1 and δ2. A comparison between
δ2 and δ3 indicates that, in this sample, at least one percentage point difference
will emerge due to failure to account for parameter uncertainty. The sign of the
difference also indicates that, on average, these subsamples of individuals are on
the convex part of the link function and that the presence of important increasing
returns will be missed by covariate effect estimates that ignore parameter variabil-
ity. Finally, comparing δ1, δ2 and δ3 in the third row of Table 3, leads to dramatic
differences in policy recommendations: at one end of the spectrum, the value of
δ1 suggests that conditionally upon advanced maternal eduction, income does not
affect the probability of finishing high school for minorities, while δ2 and δ3 clearly
reveal that income still plays an important role in completing high school.

2.1.3. Additional Considerations. The results from our probit application indicate
that differences in covariate effect estimates can occur not only in small samples,
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Table 3. The covariate effect of income on obtaining at least a
high school degree for several subsamples.

Results
Subsample δ1 δ2 δ3

Father College 0.094 0.153 0.165
Father College, Mother High School 0.068 0.112 0.129

Black, Mother Some College 0.009 0.117 0.127

but also in larger samples with ill-conditioned covariate matrices, high degree of
classification, unbalanced outcomes, and so on. We now focus on the effect that the
variability of the covariates x can have on δ1 and δ2, and do this by constructing
a simulation study as it is not straightforward to change the variance of covariates
while holding their coefficients fixed in a real data application. For the simulation
study, the covariate vector xi, i = 1, . . . , n, includes an intercept and 2 continuous
variables which are generated from the distribution N

(
0, σ2

x

)
, where σ2

x is set to
0.5, 1, and 5 to explore the effect of changes in the variability in the regressors.
We let β = (0, 0.2, 0.3)′ and yi = 1 {x′iβ + εi > 0}, where εi ∼ N (0, 1). The effect
of the sample size on the point estimates is again studied by setting n to 100,
500, and 1000. The results of the simulation study, presented in Table 4, are quite
interesting and somewhat unexpected, but can be easily rationalized. In particular,
δ1 improves as σ2

x decreases and δ2 improves as σ2
x increases. The former is due to

the fact that with lower variability of the covariates, replacing them by their mean
(as done in computing δ1) is not as detrimental as it would be otherwise; the latter
is due to the fact that as σ2

x increases, large values of x′iβ lead to small values of
φ(x′iβ), which in turn implies that the impact of βj is small, regardless of whether
it varies (as in δ3) or not (as in δ2). It is interesting to note that even though most
of the differences diminish with larger samples, some remain relatively stable across
sample sizes.

Table 4. Percentage differences λ1 = 100(ln(δ1) − ln(δ3)) and
λ2 = 100(ln(δ2) − ln(δ3)) for the covariate effect of x2 in the sim-
ulated data over 25 Monte Carlo replications.

σ2
x = 0.5 σ2

x = 1 σ2
x = 5

n λ1 λ2 λ1 λ2 λ1 λ2
100 19.4 14.4 13.4 3.5 26.6 2.7
500 4.1 0.8 7.0 0.7 27.3 0.5

1000 4.4 0.4 7.1 0.4 33.9 0.3

In closing, we note that even though in the probit example the link function is
symmetric and its shape is such that extreme values of x′iβ lead to low values of
the covariate effects, in other cases this need not be true. One important case is
the Poisson model, which is considered next.

2.2. Poisson Example. The Poisson link exp(x′iβ) is asymmetric and exhibits an
increasing derivative, whereby the effects of covariate and estimation uncertainty
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may play a strong role. For this model, the marginal effects for the jth component
of xi are

δj1 = exp(x̄′β̂)β̂j ,

δj2 = exp(x′iβ̂)β̂j ,

δj3 = exp(x′iβ)βj ,

which can be contrasted with the the probit effects in equations (4), (5), and (6).
In this example, we re-evaluate earlier findings in a new context in which, because
of the global convexity of the Poisson link, δ1 and δ2 should exhibit negative bias.

The data set for our example comes from [6], which was made available by [11].
It was constructed from arrest records maintained by the California Department
of Justice and earnings records from the California Employment Development Pro-
gram for a random sample of men born in 1960-1962. The dependent variable yi
is the number of arrests, whereas covariates include prior convictions, average sen-
tence length, time in prison, number of quarters employed, income (measured in
tens of thousands of dollars), and race indicators for black and Hispanic. Param-
eter estimation was performed by Accept-Reject Metropolis-Hastings simulation
(see [8], [2], [3]), and estimates were confirmed by maximum likelihood (which is
an input in the simulation algorithm). In this example, we focus on the effect of
income on number of arrests.

The results are presented in Table 5 for the full data sample and several different
subsamples (in the table, C is used again to denote the condition number of the
data matrix). The results again point to a number of instances of practically
relevant biases, especially in small samples and the specific subsamples in rows 5-9
of Table 5. Note that, unlike the results in Table 2, the sign of the differences in
Table 5 is always negative, as theoretically predicted due to the convexity of the
link function. While knowing the sign of the bias is helpful, it does not mitigate
the dangers of ignoring parameter uncertainty, as its magnitude will generally be
context-specific.

Table 5. Percentage differences λ1 = 100(ln(δ1) − ln(δ3)) and
λ2 = 100(ln(δ2) − ln(δ3)) for the covariate effect of income for
several subsamples.

Results
Subsample n C λ1 λ2

Random 200 286 −33.7 −6.6
Random 400 304 −25.0 −3.0
Random 1000 286 −20.9 −1.2

Full 2725 288 −21.2 −0.4
Previously imprisoned 134 248 −47.3 −6.1

Black 439 192 −15.0 −1.0
Hispanic and previously imprisoned 32 271 −111.0 −13.4

White and previously imprisoned 54 323 −1113.6 −16.4
Previously imprisoned for more than 1 year 77 229 −80.5 −10.4
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2.2.1. Policy Analysis. We now focus on the implications of δ1, δ2, and δ3 for
setting policy. In particular, while Table 5 presents the biases that result from
the different covariate effect approaches, this section considers their implications
in practice. Table 6 presents the actual values of δ1, δ2, and δ3 for the effect
of our income on the number of arrests. For white individuals who have been
previously imprisoned, the increase in income is predicted to reduce the number of
arrests by 2.38. The interpretation of this result is vastly different than that of δ1,
which shows nearly no effect and could mislead policy makers into believing that
income for white, previously imprisoned individuals is not pertinent. However, once
parameter and sampling variability are accommodated (as in δ3), income has a very
large effect – actually the largest among the race groups considered. This result
suggests that policies aimed at creating employment opportunities for inmates can
be an important tool for reducing the number of future arrests and crimes. The
table also shows that δ2is much closer to δ3 than δ1, the discrepanies are still
meaningful from a policy standpoint.

Table 6. The covariate effect of income ($10,000) on number of
arrests for several subsamples.

Results
Subsample δ1 δ2 δ3

Previously imprisoned -0.54 -0.81 -0.87
Hispanic and previously imprisoned -0.39 -1.05 -1.20

White and previously imprisoned 0.00 -2.02 -2.38
Previously imprisoned for more than 1 year -0.78 -1.57 -1.75

3. Conclusion

This paper has considered the problem of assessing covariate effects in nonlinear
models. Two traditional approaches employing point estimates of the parameters—
one evaluating the effect at the average of the covariates and the other averaging
the effect over the observations in the sample—are contrasted with an estimator
that also accounts for estimation uncertainty. This uncertainty should be accounted
for by integrating over the distribution of the model parameters. Our study shows
that even though estimation uncertainty tends to diminish with larger samples,
there are instances where failure to incorporate it in covariate effect estimation can
lead to significant biases, even in large samples. For this reason, we advocate that
both Bayesian and frequentist researchers report covariate effects that account for
estimation uncertainty (in addition to covariate variability) when reporting their
findings or make policy recommendations.
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