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ABSTRACT OF THE DISSERTATION

Three essays in robust causal inference

by

Pietro Emilio Spini

Doctor of Philosophy in Economics

University of California San Diego, 2022

Professor Yixiao Sun, Co-Chair
Professor Kaspar Wuthrich, Co-Chair

Economics research often addresses questions with an implicit or explicit policy goal.

When such a goal involves an active intervention, such as the assignment of a particular

treatment variable to participants, the analysis of its effects requires the tools of causal

inference. In such settings, the opportunity to use experimental or observational data to

tease out policy parameters of interest requires a combination of statistical and causal

assumptions. In reduced form work, where an explicit economic theory is not laid out

to allow identification of policy parameters from data, the investigation of the causal

assumptions becomes a critical exercise for the credibility of the results. Many robustness

exercises evaluate the effect that relaxing and/or modifying assumptions produces on the

results of the study. The scope of these exercises is very broad, reflecting the need to tailor

specific robustness exercises to whichever assumptions are most likely to be violated in a

xv



given domain. This dissertation is a collection of three essays on robust causal inference

that share a unifying theme: preserving the nonparametric nature of the robustness exercise.

This aspect has both a theoretical and practical relevance. First, causal assumptions are

usually nonparametric: robustness exercises that restrict to parametric cases might lead to

misleading insights. Further, economics research has started to incorporate more flexible

nonparametric and semi-parametric techniques which may call for robustness exercises that

are readily applicable to these approaches.

Because robustness exercises are context specific, each of these essays addresses a

separate aspect of it. Chapter 1 investigates how changes in the distribution of covariates

may invalidate given experimental results, with implications for evidence based policy-

making. It proposes an explicit metric of robustness that measures the distance of the

closest distribution of covariates for which experimental results are violated. Chapter 2

analyses the practice of robustness checks as a way to validate a researcher’s identification

strategy. It details out the limitations of these exercises in detecting failure of identification

and proposes a non-parametric robustness test that bypasses functional form assumptions.

Finally, Chapter 3 focuses on the robustness of Marginal Treatment Effect identification

when the instrumental variables fail to incentivize treatment for a subset of the population.

It provides two alternative identification results which can be relevant in practice.
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Chapter 1

Robustness, Heterogeneous

Treatment Effects, and Covariate

Shifts

1.1 Introduction

The guiding principle of evidence-based policy-making is to use experimental and

(quasi)-experimental studies to guide the adoption of policies in various settings. This

approach rests on the premise that the (quasi)-experimental findings are sufficiently robust

and generalizable to hold beyond the setting of the (quasi)-experiment. In practice, this

premise does not always hold: there are several examples of policies that, when adopted in

non-experimental settings, under-performed their own experimental estimates Cartwright

and Hardie [2012], Deaton [2010], Williams [2020]. In this paper, I argue that experimental

estimates are insufficient to guide policy adoption and should be complemented by a

measure of robustness that accounts for how policy recipients differ from the experimental

ones. I develop a robustness metric, given by a scalar δ∗, that quantifies how much the

1



characteristics of the recipients would have to change in order to invalidate the (quasi)-

experimental findings. My metric summarizes the out-of-sample uncertainty1 that the

policy-maker faces regarding the policy recipients’ characteristics. As such, my metric

complements traditional summaries of in-sample uncertainty, like the standard errors,

which routinely accompany (quasi)-experimental estimates.

As a motivating example, consider a policy-maker who must decide whether to offer

medical insurance coverage to low-income households. The policy-maker has access to the

experimental estimates of Finkelstein et al. [2012] which suggest that a similar intervention

led to higher health-care utilization and reduced financial strain in Oregon. The target

population of insurance recipients could differ from the experimental one in Oregon along

important dimensions. Our goal is to quantify how robust the experimental findings would

be if relevant characteristics of the recipients are allowed to change. In this paper, I provide

a solution to this problem by leveraging the policy effect heterogeneity in the experiment.

When policy effects are heterogeneous across sub-populations with different covariate

values, (quasi)-experimental findings are generally not robust to changes in the distribution

of the covariates. In such cases, even small changes in the distribution of the covariates

could lead to significant aggregate changes in the policy effects. For example, in the Oregon

experiment, subsidized health insurance could benefit sicker patients more than healthier

patients. Then, the proportion of recipients with a given pre-existing health status, health

habits, and/or co-morbidities may strongly influence the overall effect of the policy. Usually,

these types of covariates are exclusively collected in the experimental context and not all of

them are accessible in the new policy prior to implementation. As a result, the procedures

proposed by Hsu et al. [2020] and Hartman [2020] that re-weight sup-population effects by

the new environment’s entire set of covariates are generally not feasible. Moreover, the
1Quantifying other sources of out-of-sample uncertainty has been a central theme in the recent econo-

metric literature including Andrews et al. [2017] for moment conditions, Altonji et al. [2005], Cinelli and
Hazlett [2020], Oster [2019] for confounding factors, and the break-down approaches in Horowitz and
Manski [1995], Masten and Poirier [2020].
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heterogeneity of policy effects across sub-populations with different covariates values can

be hard to model. This is because while domain knowledge can help select covariates that

are predictive of the heterogeneity of policy effects, it usually cannot pin down a specific

functional form for this heterogeneity. Because this heterogeneity links covariate shifts to

shifts in the magnitudes of the aggregate policy effects, a general approach to robustness

must reflect the uncertainty regarding the heterogeneity’s functional form.

My robustness metric avoids the need to specify a functional form for the policy effect

heterogeneity, letting it instead be flexibly estimated through the (quasi)-experimental data.

Many popular existing approaches to robustness, like Altonji et al. [2005], Oster [2019] and

Cinelli and Hazlett [2020], take advantage of specific functional forms. When designing

a robustness metric for distributional changes, relying on functional form assumptions

carries important implications for what type of shifts the metric can detect. If the way we

measure a shift does not match the way we model heterogeneity, the resulting measure of

robustness may be misleading. Consider, for example, measuring the difference between

an arbitrary covariate distribution and the (quasi)-experimental one by reporting the

difference in their means. With an unrestricted form for the heterogeneity of policy effects,

we can, in general, construct a mean-preserving shift of the covariates’ distribution which

invalidates the policy-maker’s claim. For example, in the Oregon experiment, if higher

income recipients have negative effects while lower-income recipients have positive effects,

we could construct a mean-preserving spread of the income distribution that induces a

negative effect overall. Since their means coincide, such a distribution will have a distance

of zero from the experimental covariates. A metric that, in most cases, is equal to zero

cannot be very informative for assessing the robustness of (quasi)-experimental findings.

This example suggests that a robustness metric should be general enough to accommodate

unknown forms of policy effect heterogeneity. My robustness metric allows for arbitrary

forms of policy effects heterogeneity, avoiding the limitations of a parametric model. Despite

3



its generality, my metric is still easy to construct and interpret: a one-number summary of

heterogeneity which only depends on (quasi)-experimental data.

Measuring robustness to covariate shifts requires choosing a distance between an

arbitrary distribution of the covariates and the (quasi)-experimental one. In my approach,

I adopt Kullback-Leibler divergence distance (KL distance). The KL distance is a popular

choice for sensitivity analysis exercises, appearing recently in Christensen and Connault

[2019] who apply it to models defined by moment inequalities and Ho [2020] who uses it

in a Bayesian context. It has several advantages in our context. First, it is invariant to

smooth invertible transformations of the covariates, hence independent of the covariates’

units. Second, it provides a closed-form expression for the proposed global robustness

measure, while other popular robustness approaches, like Broderick et al. [2020] rely on local

approximations. Leveraging the closed-form solution, I cast estimation of my robustness

metric as a GMM problem where the moment equation depends on two components.

The first is the observed covariate distribution. The second is a functional parameter

capturing the heterogeneity of policy effects, which can be flexibly estimated in the (quasi)-

experimental data.

The heterogeneity of policy effects is often sparse: out of the rich set of covariates

available in the (quasi)-experiment, just a few are needed to approximate it well. When

covariate data is even moderately high-dimensional, it can be hard to select which covariates

are important ex-ante. Machine-learning estimators, like lasso, random forest and boosting,

can exploit the sparsity to automatically select the key covariates, reducing the need

for ad-hoc procedures. Using machine-learning to estimate policy effect heterogeneity is

appealing, but it may result in substantial bias in the estimated robustness metric δ∗, due

to regularization and/or model selection. To accommodate machine-learning methods,

I construct a de-biased GMM estimator: I derive the nonparametric influence function

correction for the GMM parameters and leverage the theory in Chernozhukov et al. [2020]

4



to eliminate the first-order bias from first-step estimators. I show that my metric δ∗ can

be consistently estimated at
√
n-rate under mild conditions on the first-step estimators

of the policy effect heterogeneity. Under these conditions the functional parameter that

summarizes heterogeneity can be estimated through modern high-dimensional methods

like lasso, random forest, boosting and neural nets.

I apply my robustness procedure to study the Oregon health insurance experiment,

whose findings have profound implications for public health Sanger-Katz [2014]. I replicate

results in Finkelstein et al. [2012] and compute the robustness measure for several outcomes

capturing recipients’ heath-care utilization and financial strain. As discussed in Finkelstein

et al. [2012] and Finkelstein [2013], the Oregon lottery recipients are older, in worse health,

and feature a higher proportion of white individuals compared to the national average.

These features invite questions about the robustness of the Oregon experiment’s findings

and the possibility of using them for policy adoption in other states. The differences in

magnitude and sign between the effects of Medicaid expansion in Oregon and Massachusetts

have motivated an effort to reconcile the discrepancy by identifying different populations

of beneficiaries in the two states Kowalski [2018]. My robustness exercise is complementary

to Kowalski [2018]: I compute the smallest change in the distribution of the key covariates

relative to the Oregon benchmark, that can eliminate the positive effect of the lottery on

recipients’ health-care utilization and financial strain outcome measures. I find that the

increase in outpatients visits is the most robust outcome among the measures of health-care

utilization and financial strain.

This paper is also related to a larger strand of the econometric and statistics

literature on robustness and sensitivity analysis originally initiated by Tukey [1960] and

Huber [1965]. Recently, there are many other important but distinct robustness approaches:

geared towards external validity Meager [2019], Gechter [2015], robustness to dropping

a percentage of the sample Broderick et al. [2020], by looking at sub-populations Jeong
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and Namkoong [2020], or with respect to unobservable distributions like in Christensen

and Connault [2019], Armstrong and Kolesár [2021], Bonhomme and Weidner [2018], and

Antoine and Dovonon [2020]. My contribution complements this tool-set by giving the

policy-maker an explicit measure of robustness to shifts in the covariate distributions. There

are two reasons to focus on observable characteristics. First, observable characteristics are

readily available to the policy-maker and are likely to be of first-level importance when

assessing the robustness of (quasi)-experimental findings. Second, the resulting robustness

metric is identified through the (quasi)-experimental data, limiting the need for bounding

or partial identification approaches.

The paper is organized as follows: Section 1.2 introduces the basic setting and the

notion of robustness to changes in the covariate distribution. Section 1.3 presents the

main estimator and its asymptotic properties using the de-biased GMM theory recently

developed in Chernozhukov et al. [2020]. Section 1.4 applies the proposed robustness metric

to the Oregon health insurance experiment and reports empirical findings. Section 1.5

briefly concludes. In the Appendix, I provide all the proofs and discuss multiple extensions.

1.2 A robustness metric for covariate shifts

In this section, I use the potential outcome framework to explicitly link the het-

erogeneity of policy effects to the notion of robustness outlined in the introduction. The

discussion focuses on the average treatment effect (ATE) as the main aggregate policy effect

of interest. The policy-maker wants to assess the robustness of a claim on the magnitude

(and/or sign) of the ATE, of the form ATE ≥ τ̃ . The claim is true in the (quasi)-experiment

but may no longer be true if covariates changes too much. The idea is to take advantage

of the Conditional Average Treatment Effect (CATE), a functional parameter which links

sub-population level treatment effects with the ATE. I use CATE to characterize, among
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the distributions that invalidate the policy-maker’s claim (ATE ≥ τ), the one that is closest

to the distribution of covariates in the (quasi)-experiment. I label this distribution the least

favorable distribution because, among the distributions that invalidate the policy-maker’s

claim it is the hardest to distinguish from the covariates in the (quasi)-experiment. To

measure the distance between two covariate distributions I use the Kullback-Leibler di-

vergence distance. The value of the KL distance between the least favorable distribution

and the (quasi)-experimental covariates will be the proposed robustness metric δ∗. Any

covariate distribution that is closer than δ∗ from the (quasi)-experimental covariates will

be guaranteed to satisfy the policy-maker’s claim (ATE ≥ τ̃).

1.2.1 Notation and Set Up

The policy-maker observes an outcome of interest Y ∈ Y, a set of covariate mea-

surements X ∈ X and a treatment status D ∈ {0,1}. I consider two sets of covariates. The

first set includes covariates which are exclusively collected in the (quasi)-experimental data

and for which no counterpart exists in census data. For example, in the Oregon health

insurance experiment, the recipients’ health status and previous health history is available

through survey data but such information may not be accessible through census variables

in other settings (perhaps other states). The second set includes covariates for which a

counterpart exists in the census data in other states, for example participants’ race and

age. To reflect the division of these two covariate types, X could be partitioned into two

sets: X =Xc∪Xe denoting census covariates and (quasi)-experiment specific covariates

respectively. All variables in X will be used to estimate the treatment effect heterogeneity in

the (quasi)-experiment, which is the functional parameter needed to compute the robustness

metric. The details are introduced in Section 1.2.3. If the policy-maker had access to

observations on Xc in both the (quasi)-experiment and in the setting where the policy

is to be adopted, my robustness metric can be modified to account for this additional
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information. To lighten the notation, in the main text I consider X =Xe and discuss how

to include Xc in the Appendix.

Now I introduce the notation to discuss changes in the distribution of the covariates.

I use FX to denote the distribution of the covariates in the (quasi)-experiment and and

PX to denote its associated probability measure. The propensity score is defined as

π(x) = PX(D = 1|X = x). Following the traditional potential outcome framework, I denote

Yd for d = {0,1}, the potential outcomes under treated and control status when the

distribution of the covariates follows FX . For example, in the Oregon experiment, Y1 may

represent the financial strain of a recipient if they receive insurance coverage while Y0

represents the financial strain of the same recipient if they do not receive insurance coverage.

In principle the distribution of the potential outcomes depends on the distribution of the

covariates. To reflect this, I use Yd and Y ′
d to denote the potential outcomes when the

distribution of the covariates follows FX and F ′
X respectively. Finally, for any random

variable W , W denotes its support.

The parameter of interest for the policy-maker is the ATE := E[Y1− Y0]. The

Conditional Average Treatment Effect (CATE) defined by τ(x) := CATE(x) = E[Y1−

Y0|X = x] captures how the average treatment effect changes across sub-populations

with covariate value X = x. Under unconfounded-ness (Assumption 1 i) below), τ(x) is

nonparametrically identified2 by E[Y |D = 1,X = x]−E[Y |D = 0,X = x] in the (quasi)-

experiment Imbens and Rubin [2015].

Assumption 1. Unconfounded-ness & Overlap

i) Y1,Y0 ⊥⊥D|X.

ii) For all x ∈ X we have 0< ϵ≤ π(x)≤ 1− ϵ < 1

In the case of a randomized control trial, for example when treatment assignment is
2If the CATE only partially identified, like in the case on non-compliance based on unobservables, it is

possible to follow a bounding approach for my robustness procedure. I leave this interesting case for future
research.
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completely randomized or is randomized conditional on covariates, Assumption 1 holds by

design. In the case of (quasi)-experimental studies Assumption 1 i) requires the researcher to

carefully evaluate the selection mechanism that governs program participation. Assumption

1 ii) is strict overlap. While strict overlap is not a necessary condition for identification, it

will be important in the estimation of the robustness metric in Section 1.3.

In this paper, the goal is to study the robustness of claims concerning the ATE with

respect to changes in the distribution of the covariates. Because the ATE is obtained by

averaging τ(x) with weights proportional to FX we have the following map between the

covariate distributions and the ATE:

ATE : FX 7→
∫

X
τFX (x)dFX(x) (1.1)

The subscript FX on τ(x) indicates that, in general, it’s possible that the functional form

of CATE depends on FX . In this case, a change in the distribution of the covariates would

effect the magnitude of ATE through two channels: a direct effect thorough the weights of

FX and an indirect effect through changing the functional form of τFX (x). In this paper, I

introduce the covariate shift assumption3 to eliminate the indirect effect.

Assumption 2. (Covariate Shift) Let X ′ denote the covariates in the new environment.

Then:

i FY ′
d|X ′(y|x) = FYd|X(y|x) for d= {0,1}, for all x ∈X and y ∈ Yd and all distributions

of X ′.

ii X ′ ⊆X

Assumption 2 i) says that the causal link between the treatment variable D and

the potential outcomes of interest Y1 and Y0 does not depend on the distribution of the

observables. One could think of Assumption 2 as analogous to a policy invariance condition
3This assumption appears, for example also in Hsu et al. [2020] and Jeong and Namkoong [2020].
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where the invariance in this case is with respect to the distribution of covariates.

Assumption 2 ii) says the support of the covariates in the new environments

is contained in the support of the baseline environment. In practice, this limits the

extrapolation to environments for which any value of the covariates could have been

observed in the (quasi)-experimental setting as well. Because Assumption 2 guarantees

that τFX (x), the CATE, does not vary when FX is replaced by any other distribution FX ′

it is not necessary to index τ(x) with FX .4 Then, the link between FX and ATE reduces

to integration against a fixed τ(x):

ATE : FX 7→
∫

X
τ(x)dFX(x) (1.2)

To emphasize the dependence of the ATE on an arbitrary distribution of the covariates FX ,

I occasionally write ATE(FX). Before presenting the general framework I give perhaps the

simplest nontrivial example of a robustness exercise with respect to the distribution of the

covariates.

Example 1. Consider a binary covariate X = {0,1}. D is randomly assigned, trivially satis-

fying Assumption 1. By unconfounded-ness, E[Y1|x= 0],E[Y0|x= 0],E[Y1|x= 1],E[Y0|x= 1]

can all be identified. Consequently, the average treatment effect for the sub-populations

x= 0 and x= 1, denoted τ(0) and τ(1) are also identified. Because X is Bernoulli, any dis-

tribution on {0,1} is fully described by PX(x= 1) = p1 so automatically PX(x= 0) = 1−p1.
4This could be cast as an identification result which follows immediately from the Assumption 2. See

Hsu et al. [2020], Lemma 2.1.
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Suppose that, in the experiment ATE ≥ 0. Note that:

ATE(FX) = E[Y1|x= 0] · (1−p1)+E[Y1|x= 1] ·p1

−E[Y0|x= 0] · (1−p1)−E[Y0|x= 1] ·p1

= (E[Y1|x= 0]−E[Y0|x= 0]) · (1−p1)+(E[Y1|x= 1]−E[Y0|x= 1]) ·p1

= τ(0) · (1−p1)+ τ(1) ·p1.

A shift in the covariate distribution is simply a shift in the parameter p1. Assume the

treatment effects are sufficiently heterogeneous, namely τ(1)> 0> τ(0) so one group has

positive effects from treatment and the other group has negative effects. What is the closest

covariate distribution that invalidates the claim ATE ≥ 0?

It suffices to find the weights on x= 0,x= 1 such that the ATE is 0. Expressing it

in terms of p1:

τ(0) · (1−p∗
1)+ τ(1) ·p∗

1 = 0

A solution is given by:

p∗
1 = −τ(0)

τ(1)− τ(0) ∈ [0,1]

so the distance |p∗
1−p1|= | −τ(0)

τ(1)−τ(0)−p1| is largest shift in the covariates that still guarantees

that the claim ATE ≥ 0 holds.

Under what conditions we are always guaranteed to find a solution like p∗
1 above?

Is it unique? Can we always characterize the distance between p∗
1 and p1? If the space X

is not discrete, a probability distribution on X cannot be described by a finite dimensional

parameter without restricting the class of probability distributions on X . How should one

measure the distance between two distributions in general?

I start from this last question by introducing a notion of distance that does not
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require any parametric restriction on probability distributions.5 Here I introduce the

KL-divergence distance:

Definition 2 (KL-divergence). Consider the KL-divergence between two distributions FX

and F ′
X given by:

DKL(F ′
X ||FX) :=

∫
X

log
(
dF ′

X

dFX
(x)
)
dF ′

X

dFX
(x)dFX(x) (1.3)

where dF ′
X

dFX
is the Radon-Nikodym derivative of the distribution F ′

X with respect to the

experimental distribution FX , provided that P ′
X≪PX for the respective probability measures.

There are several advantages to using the KL divergence to measure the distance

between probability distributions: it is nonparametric, it has useful invariance properties

and it delivers a closed form solution for the policy-maker’s robustness problem introduced

below. Both Ho [2020] and Christensen and Connault [2019] use the KL divergence to

measure the distance between probability distributions in different contexts. Appendix

1.H discusses in detail how to use convex analysis to obtain a closed form solution for the

policy-maker’s robustness problem.

1.2.2 The policy-maker’s problem: quantifying robustness

After isolating the link between the ATE and the distribution of covariates and

choosing a distance measure between probability distributions, we can formalize the policy-

maker’s robustness problem. Consider the claim given by ATE ≥ τ̃ : the ATE is larger

than a desired threshold τ̃ . The sign of the inequality is without loss of generality, as claims

of the type ATE ≤ τ̃ can be accommodated with an equivalent treatment. The threshold

τ̃ captures a minimal desirable aggregate effect that would make the intervention viable for

the policy-maker. It could capture the average cost for the roll-out of the intervention or
5I discuss the details of parametric classes in Appendix 1.B, as special cases of the general procedure.
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the value of ATE for a competing policy. In Example 1, τ̃ was fixed at 0. The policy-maker

is interested in the smallest shift from the (quasi)-experimental distribution, FX , such that

the claim ATE ≥ τ̃ is invalidated. Recall τ(x) = CATE(x). Formally the policy-maker

wants to solve the following problem:

inf
dF ′

X : dF ′
X≪dFX ;dF ′

X(X )=1
DKL(F ′

X ||FX) (1.4)

s.t.
∫

X
τ(x)dF ′

X(x)≤ τ̃ (1.5)

The optimization problem in Equation (1.4) searches across all distributions of the co-

variates that invalidate the policy-maker’s claim ATE ≥ τ̃ (notice that the ATE for all

the distributions in Equation (1.5) is constrained to be less than τ̃) and selects, if they

exist, the one(s) that are closest to the (quasi)-experimental distribution FX , according

to the KL distance in Equation (1.4). Notice also that τ(x) in Equation (1.5) is not

indexed by F ′
X because of the covariate shift assumption (Assumption 2). Here, the class

of probability measures for the covariates is restricted to be absolutely continuous w.r.t

the (quasi)-experimental measure dFX6 but no other restriction is imposed: the class of

distributions is still nonparametric. Absolute continuity does restrict the distributions F ′
X

to be supported on X . While it may appear as an unnecessary restriction, I view it as a very

reasonable requirement: the feasible distributions in Equation (1.5) cannot put mass on a

sub-population X = x that could not theoretically be observed in the (quasi)-experimental

setting. Clearly, treatment effect values for sub-populations with X = x that can never be

observed can lead to arbitrarily large average effects and the robustness exercise would not

be very informative. We are now ready to define the least favorable distribution and the

robustness metric.

6This is a refinement of Assumption 1. Namely, with a slight abuse of notation, requiring for instance
that dFX ,dF ′

X ≪ λ will deliver absolute continuity of dF ′
X w.r.t dFX . Restricting the support guarantees

that dF ′
X cannot put mass on areas where dFX does not put mass.
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Definition 3. i) The least favorable distribution set {F ∗
X} is given by the expression below:

{F ∗
X}=arg min

P ′
X : P ′

X≪PX ;P ′
X(X )=1

DKL(F ′
X ||FX) (1.6)

s.t.
∫

X
τ(x)dF ′

X(x)≤ τ̃

where the set in Equation (1.6) is allowed to be the empty set.

ii) For a given τ̃ ∈ R the robustness metric δ∗(τ̃) is given by:

δ∗(τ̃) =DKL(F ∗
X ||FX). (1.7)

The minimizer of Equation (1.4) is the least favorable distribution, the closest

distribution of the covariates that invalidates the target claim. I define the KL-distance

between the experimental distribution and the least favorable distribution as my metric

δ∗(τ̃) which quantifies the robustness of the claim ATE ≥ τ̃ . Observe that, if the (quasi)-

experimental ATE satisfies the constraint in Equation (1.5), then we can always choose

the least favorable distribution to be the (quasi)-experimental one, namely F ∗
X = FX since

it’s feasible and DKL(F ∗
X ||FX) = 0. In words this means that the policy-maker’s claim

is already invalidated in the (quasi)-experiment. The problem is non-trivial when the

ATE(FX)> τ̃ condition is satisfied for the (quasi)-experimental distribution FX . In such a

case, the (quasi)-experimental distribution FX is excluded from the feasible set of Equation

(1.5). As a result, the value of DKL(F ∗
X ||FX) in Equation (1.4) must be strictly positive.

Notice that, in Example 1, we imposed the requirement that the ATE(p1) in the experiment

was larger than 0, to guarantee that the problem was indeed non-trivial.

If X is a set containing finitely many elements, the covariate distribution is discrete.

In practice, there are many empirical applications in which covariates of interest are either

discrete or have been discretized for privacy reasons. Any grouping of a continuous variables
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in finitely many classes, gives rise to discrete distribution. For example, in the Oregon

experiment, the recipients income may have been discretized into income groups. When

the covariates space is discrete, we can get an important geometric insight in the structure

of the robustness problem as formulated by Equations (1.4) and (1.5). The example below

illustrates the case where X contains only 3 points. In this case, a probability distribution

on X can be parametrized by 2 parameters and there is convenient visual representation of

the robustness problem contained in Equations (1.4) and (1.5).

Example 4. Consider the case X = {x1,x2,x3} each value representing an income bin:

high, medium and low respectively. Here the experimental distribution is represented by

a triplet (p1,p2,p3). Because p1 + p2 + p3 = 1 the whole space of probability distributions

on X is 2-dimensional: it suffices to choose p1 and p2 to fully characterize a distribution.

Suppose that conditional treatment effects are highest for lower income participants and are

lowest for high income participants: τ(x1) = 1, τ(x2) = 2, τ(x3) = 3. The average cost of

roll-out is equal to τ̃ = 1.8. The claim is ATE ≥ τ̃ meaning that the ATE should be higher

than average cost. In the experiment ATE is equal to 2.4> 1.8 which satisfies the claim.

The policy-maker’s robustness problem in Example 4 is depicted in Figure 1.1.

Since the functions in Equations (1.4) and (1.5) are differentiable in p1 and p2 the finite

dimensional problem could be easily solved through the standard Karush-Kuhn-Tucker

conditions. The level sets of the KL distance, the feasible set and the least favorable

distribution are all indicated in Figure 1.1. The KL level set associated to δ∗(τ̃) is

highlighted by a green contour. It includes the set of covariate distributions that are

guaranteed to satisfy the policy-maker’s claim. This region is conservative, in the sense

that there exist covariate distributions that satisfy the policy-maker’s claim but fall outside

of the green contour. This feature reflects the definition of robustness as a minimization

problem in Equations (1.4) and (1.5).

When X is not discrete, a representation like Figure 1.1 may not be possible.
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Nonetheless one can still show that, given some conditions, a solution for F ∗
X like the one

in Figure 1.1 always exists, is unique, and can be characterized by a closed form expression,

with virtually little difference from the finite dimensional case. This result also guarantees

that the robustness metric δ∗(τ̃) is well defined for a wide range of τ̃ values.

Figure 1.1: The triangle represents the collection of all arbitrary probability distribution
triplets (p1,p2,p3) on the discrete set (x1,x2,x3) represented in barycentric coordinates.
P denotes the experimental distribution, given by (0.2,0.2,0.6). The CATE(x1,x2,x3) =
(1,2,3) so the conditional treatment effect is greater in the highest income group. The
yellow shaded region is the feasible set: the collection of covariate distributions with
an ATE ≤ 1.8, which invalidate the policy-maker’s claim. The solid yellow line is the
boundary of the feasible set. The contour lines from blue to red represent the level sets
of the KL distance of any distribution in the triangle with respect to the experimental
distribution P (bluer indicates a lower value for the KL divergence). The distribution
P ∗ = (0.491,0.218,0.291) is the least favorable distribution. It is the minimizer of the KL
divergence, subject to the feasibility constraint (it lies on the orange line). The green
boundary is the level set of KL that corresponds to δ∗ ≈ 0.296. Any distribution closer
than δ∗, within the green boundary is guaranteed to satisfy the policy-maker’s claim.
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1.2.3 A closed form solution for quantifying robustness

In this section I characterizes the solution for the policy-maker’s robustness problem

in Equations (1.4) and (1.5) in the general case. Some additional conditions are introduced

below.

Assumption 3 (Bounded-ness). The conditional average treatment effect τ(X) is bounded

PX-almost surely over X . In particular for some M ∈ R+ we have:

PX (|τ(X)| ≤M) = 1

Incidentally, for any covariate probability measure that is absolutely continuous w.r.t

PX , Assumptions 3 continues to hold. This is because PX ′ cannot put mass on the subsets

of X that PX considers negligible, which includes the subset of X where τ(x) is unbounded.

Assumption 3 is automatically satisfied if τ(X) is bounded on X . Bounded-ness is not very

restrictive in a micro-econometrics framework where virtually all variables are bounded in

the cross-section.

Consider the feasible set in Equation (1.5). While the set is guaranteed to be convex,

it may be empty. If that is the case, the value of the minimization problem in Equation (1.4)

is +∞. I avoid such cases by guaranteeing that, for a given claim, an ATE = τ̃ is attainable,

for some distribution F ′
X . This amounts to assuming that there is enough variation in τ(x)

to induce an ATE of τ̃ through changes in the distribution of the covariates. An extreme

case where such requirement fails is described below.

Example 5 (Homogeneous treatment effects). Consider a situation of constant treatment

effects. In this case ATE(FX) =
∫
X c dFX = c so that the ATE is equal to c regardless of

the distribution of the covariates.

Not surprisingly, no heterogeneity in treatment effects translates in no threat to

robustness. One can freely extrapolate the claim from the (quasi)-experimental environment
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to any other environment. Constant treatment effects are a rather extreme case. A more

realistic example concerns whether the minimal desired magnitude τ̃ is outside of the range

of variation of the heterogenous treatment effects. For example, suppose that 2≤ τ(x)≤ 5

with probability equal to 1. Then, choosing τ̃ = 1 results in an empty feasible set of

distributions, since no probability distribution may ever integrate against τ(x) to an ATE

of 1. In this case, since the set of distributions in Equation (1.5) is empty, the infimum

in Equation (1.4) evaluates to +∞. So we see that enough heterogeneity of treatment

effects is a necessary condition for robustness to be non-trivial. For estimation purposes it

is convenient to consider a parameter space for the robustness measure that is a subset of

R rather than R∪{+∞}. The following assumption guarantees that the feasible set is not

empty:

Assumption 4. (Non-emptiness) Denote the interior So of a set S to be the union of

all open sets O ⊆ S. Let L : FX →
∫
X τ(x)dFX(x) be the linear map defined on the set of

probability distributions on X that are absolutely continuous w.r.t PX , denoted as PX ⊂M.

We require τ̃ ∈ Lo(PX), that τ̃ is in the interior of the range of L.

Assumption 4 says that τ̃ is in the interior of the range of the linear map L. In

other words, there is enough observable heterogeneity in treatment effects that there exists

a distribution of covariates that, when integrated against τ(x), it induces an ATE = τ̃ .

Contrast this to the homogeneous treatment effect case in Example 5, where Assumption 3

fails. There, Lo(PX) = ∅. More generally, the length of L(PX) measures how rich is the

set of ATEs that could be produced by choosing an arbitrary distribution FX . Assumption

4 is testable. For a given value for τ̃ , one could obtain an estimate of the τ(x) and test

whether τ̃ is smaller than supx τ(x) or greater than infx τ(x), depending on the sign of the

claim of interest, using the procedure in Chernozhukov et al. [2013]. Testing Assumption 4

tests for whether treatment effects are sufficiently heterogeneous to invalidate the claim of

interest through a covariate shift, which is more general than testing whether any form of
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treatment effect heterogeneity is present. This is because, along the lines of the discussion

above, treatment effects can indeed be heterogeneous but not heterogeneous enough to

invalidate the policy-maker’s claim. A rejection in the test means implies an infinite value

for the robustness metric and signals that the policy-maker’s claim can never be invalidated

by covariates shifts.

Remark 6. The interior condition cannot be relaxed. By Assumption 3, the image of PX

under L is a compact convex subset of R, that is, an interval. If τ̃ is at a an endpoint of

this interval, the feasible set in Equation (1.5) may consist of only a point mass measure

Because such a covariate measure is not absolutely continuous w.r.t. PX , the feasible set

is again empty and will necessarily result in an infinite value for the KL-divergence in

Equation (1.4).

In Example 1 we imposed the condition ATE(1) = τ(0)< 0 to guarantee that the

problem has a solution. In the context of Example 1, L(PX) = [τ(0), τ(1)], the image of L

is the interval between the conditional average treatment effects at x= 0 and x= 1 since

any ATE(p) is a weighted average of τ(0) and τ(1). By requiring that τ(0) < 0 < τ(1) ,

τ̃ = 0 ∈ Lo(PX) hence satisfies Assumption 4.

With Assumptions 3 and 4 we are now ready to introduce the key result that

always delivers a closed form solution for the robustness metric. It says that the least

favorable distribution set in Definition 3 is nonempty and it contains a unique distribution

(PX -almost everywhere). Moreover the robustness metric δ∗(τ̃) is finite and both it and

the least favorable distribution have a closed form solution:

Lemma 7 (Closed form solution). Let Assumptions 1, 2, 3 and 4 hold. Then: i) The infi-

mum in Equation (1.4) is achieved. Moreover F ∗
X , is characterized, PX-almost everywhere,

by:
dF ∗

X

dFX
(x) = exp(−λ(τ(x)− τ̃))∫

X exp(−λ(τ(x)− τ̃))dFX(x) (1.8)

19



where dF ∗
X

dFX
is the Radon-Nikodym derivative of dF ∗

X with respect to dFX and λ is the

Lagrange multiplier implicitly defined by the equation:

∫
X

exp(−λ(τ(x)− τ̃))(τ(x)− τ̃)dFX(x) = 0 (1.9)

ii) The value of the robustness metric δ∗(τ̃) is given by:

δ∗(τ̃) =DKL(F ∗
X ||FX) =− log

(∫
X

exp(−λ(τ(x)− τ̃))dFX(x)
)

(1.10)

Proof. See Appendix 1.I.

Lemma 7 greatly simplifies the computation of the robustness metric by essentially

showing that the fully general robustness problem that searches over the nonparametric

space of probability distribution is no-harder than the parametric cases in Examples 1 and

4. We can compare the closed form solution of Lemma 7 with the KKT solution one could

derive for Example 1 and verify that the two solutions are indeed identical.

Example 8. Return to the example of the discrete variable so X = {0,1}. First notice that

the dominating measure here is the counting measure on {0,1}. We are therefore interested

in simply the ratio p1
p∗

1
since it completely characterizes p∗

1. Because the problem is one

dimensional, the unique minimizer is the one that satisfies the constraint:

τ(1) ·p∗
1 + τ(0) · (1−p∗

1) = τ̃ =⇒ p∗
1 = τ̃ − τ(0)

τ(1)− τ(0) (1.11)

Recall that in Example 1 τ̃ = 0. On the other hand, from the solution provided by 7 we

have:
p∗

1
p1

= exp(−λ(τ(1)− τ̃))
exp(−λ(τ(1)− τ̃)) ·p1 +exp(−λ(τ(0)− τ̃)) · (1−p1) (1.12)

where λ is implicitly defined as in Equation (7).
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Fact 9. Equations 1.12 and 1.11 are equivalent.

Proof. See Appendix 1.I.

Lemma 7 completely characterizes the robustness metric in terms of the (quasi)-

experimental distribution FX(x) and the CATE, τ(x). This is important because both of

them are nonparametrically identified from the (quasi)-experimental data. Hence, to give

an answer to the policy-makers robustness problem, it is enough to estimate the treatment

effect heterogeneity in τ(x). This result will deliver a very convenient estimation theory

which I discuss in Section 1.3.

1.2.4 Locally infeasible problem

We have seen how the restriction in Assumption 4 is key to guarantee that a solution

to Equation (1.4) exists and that the associated δ(τ̃) is finite. There is a partial extension

to Lemma 7 with respect to a local violation of Assumption 4. Consider a sequence of τ̃m

converging to a boundary point τ̃b of the range of τ(X). An example is depicted in Figure

1.2. Suppose the policy-maker’s claim is given by: ATE ≤ τ̃m.

For each τ̃m within the range of variation of τ(X), the policy-maker’s problem

has a solution, F ∗
X,m given by Lemma 7. This is because there is a sub-population with

covariates x such that τ(x)≥ τ̃m. The least favorable distribution will increase the weight

on this sub-population. If τ̃ is on the boundary, for example τ̃ = 3 in Figure 1.2, the only

sub-population that has τ(x)≥ τ̃b is x= 0.6, concentrated on a singleton. But distributions

that put unit mass on singletons are not feasible in the policy-maker’s problem. For τ̃ = τ̃b,

the feasible set is empty so there is no solution. If one looks at the sequence of least favorable

distributions, F ∗
X,m, associated to the sequence τ̃m→ τ̃b, is there a limiting distribution to

which the sequence F ∗
X,m converges in some sense?

Under some additional assumptions, one can show a type of concentration result for

21



Figure 1.2: Local to boundary conditions. The lower panel displays the conditional
average treatment effect, τ(x) for a univariate variable X. The experimental distribution
is in blue: the uniform distribution. The gray segment on the left labelled L(PX) is
the image of the collection of probability distributions supported on X under the map
L : FX 7→

∫
X τ(x)dFX(x). For every point in the interior, Lemma 7 holds and, for each

τ̃m, there is an associated least favorable distribution F ∗
X,m displayed in the upper panel.

As the sequence of τ̃m approaches the boundary of L(PX), the distributions concentrate
around x= argmaxτ(x) = 0.6.

the sequence of solutions obtained by applying the closed-from solution formula in Lemma

7. If τ(x) is a single peaked function, that is, it achieves its maximum (or minimum) at

a single point, we obtain convergence in distribution of the sequence F ∗
X,m to the Dirac

distribution at the single peak, δxb .

Proposition 10 (Local to boundary τ̃). Let Assumptions 1-3 hold and let τ̃m → τ̃b ∈

∂L(PX). Assume that the pre-image τ−1(τ̃b) = Xb = {xb} ∈ X o is a singleton. Further,

let X be compactly supported, with density f(x) <M on X . Then the sequence of least

favorable distributions for the policy-maker’s problem with parameter τ̃m, denoted F ∗
X,m,
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converges weakly to δxb, the Dirac delta distribution with point mass at xb, that is:

lim
m→∞

∫
X
g(x)dF ∗

X,m(x)→
∫

X
g(x)δxb := g(xb)

for g ∈ Cb(X ), the space of all continuous, bounded functions on X .

Proof. See Appendix 1.I.

The point-mass distribution δxb is not a solution to the policy-maker’s problem with

parameter τ̃b because the feasible set never includes point mass distributions unless X is

discrete. In this sense, Proposition 10 delivers the limit of the sequence of solutions in the

sense of weak convergence. This is a weaker that the notion of convergence induced by DKL.

In particular when dFX ≪ λLeb (the Lebesgue measure on Rk), DKL(dF ∗
X,m||δxb) = +∞

so the sequence of solutions F ∗
X,m does not converge to δxb in DKL.7

1.2.5 Interpreting robustness

In this section I offer some practical guidance on how to interpret the the robustness

metric proposed in Definition 18. The first interpretation links the robustness metric

to a bound on the probability of drawing a sample of size n for which the experimental

conclusion is false. The second interpretation is a bench-marking exercise using available

census covariates.

A probability interpretation using Sanov’s theorem

One way to link the magnitude of the robustness metric δ∗(τ) to an easily inter-

pretable probability bound is through Sanov’s theorem. In this section I provide the

intuition through a finite dimensional example and give the interpretation. I discuss more
7In fact, Posner [1975] showed that DKL is lower-semicontinuous, that is, if Pn → P weakly, then

limn→∞DKL(Pn||Q)≥DKL(P ||Q). In this case we have +∞> 0
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details on the foundations of Sanov’s theorem in Appendices 1.F. First, consider the setting

of Example 4. Now suppose we collect a sample containing n i.i.d observations. Consider a

generic sequence of the data of size n, x = (x1,x2, · · · ,xn). Each sequence is an ordered

list of values (High,Medium,Low). Define the type Px of a sequence x as the proportion

(relative to n) of realizations of a in x. This is Px(a) = N(a|x)
n where N(a|x) is the number

of times realization a shows up is in sequence x. We denote the collection of types as Pn.8

For the present example, a result by Cover [1999] shows that while the number of

sequences is of the order of 3n, the number of types is bounded above by |Pn| ≤ (n+1)3.

We can look at the types that fall within a specific subset E of probability distributions.

For example we can look at all the types that invalidate the experimental conclusion on

the ATE. In this case E := {Q ∈ PX :
∫
X τ(x)dQ ≤ τ̃}, the constraint in Equation 1.5.

Notice that whether a sequence x ∈ E or not depends only on its type Px. Now, what is

the probability that, drawing a sequence x according to PX , such a sequence invalidates

the experimental results, that is x ∈ E?. It turns out that Sanov’s theorem provides a link

between this probability and the metric of robustness δ∗(τ).

Theorem 11. (Sanov’s theorem) Let X1, · · ·Xn be i.i.d distributed according to FX . Let E

be a convex set of probability distributions. Letting PnX be the product measure of n copies

of PX . Then

PnX(E∩Pn)≤ e−nDKL(P ∗
X ||PX)

where

P ∗ = min
Q∈E

DKL(Q||P )

8One can think of a type Px as keeping track of the proportion but forgetting the order. So for example
the two sequences of size n= 3 given by x= (High,Medium,Medium) and x′ = (Medium,High,Medium)
are distinct: x ̸= x′. But they have the same type: Px′ = Px.
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Moreover, if the set E is the closure of its interior then

lim
n→∞

1
n

log(Pn(E))→−DKL(P ∗|P )

Proof. The proof can be found in Cover [1999] Theorem 11.4.1.

Note that E := {Q :
∫
X τ(x)dQ≤ τ̃} is obtained through imposing a linear restriction

onQ and therefore E is convex. Sanov’s theorem remains true for larger classes of probability

distributions, not necessarily confined to finitely supported X variables like discussed in

Csiszár [1984]. Note that δ∗(τ̃) =DKL(P ∗||P ) is precisely the metric of robustness δ∗(τ).

It captures the smallest distance from the experimental distribution of the covariates that

will fail to satisfy the conclusion, hence a bound for the probability that a sequence does

not satisfy the policy-maker’s conclusion is given by

PnX(E)≤ e−nδ∗(τ̃)

The fact that the probability bound depends on τ̃ should not be surprising since τ̃ also

controls the inequality that defines the constraint set E. Notably the bound is non-

asymptotic in that it applies for any n. The bound is monotonically decreasing in the

magnitude of δ∗(τ) and it becomes trivial when δ∗(τ) = 0. Of course if δ∗(τ) =∞ we know

that the set E does not contain any valid distributions, so it is reasonable that PnX(E) = 0.

Below, we may revisit the discrete example to get a sense of the estimate that Sanov’s

theorem provides.

Example 4 (Continued). Recall X = income, X = {High,Medium,Low} and the ex-

perimental distribution is FX = (p1,p2,p3) = (0.2,0.2,0.6). For a given n we can list the

types of sequences of size n that can be generated. Here the count of High and Medium

income individuals will completely determine the type of a sequence (since for fixed n,
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#Low = n−#High−#Medium. For n= 3 for example, there are 10 possible sequence

types each corresponding to one of the sequences (3,0,0), (2,0,1), (2,1,0), (1,2,0), (1,1,1),

(1,0,2), (0,3,0), (0,2,1), (0,1,2), (0,0,3) divided by 3. Therefore |P3| = 10. They are

displayed below in barycentric coordinates as red points in the 2-simplex. The set E is also

displayed in yellow.

Figure 1.3: Distribution types for the 3 point space, n= 3

For n = 10 there are 110 distinct sequence types, that is, |P10| = 110. They are

displayed in the figure below.
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Figure 1.4: Distribution types for the 3 point space, n= 10

Note that each of the sequence types may contain many sequences. Because the draws

from the distribution FX are i.i.d, all sequences of the same type have the same probability

under PX . The result in Sanov’s theorem gives a finite sample upper bound on the probability

that a sequence Xl = (X1,l, · · · ,Xn,l), drawn from the joint distribution PnX belongs to the set

E. For n= 3 there are only 4 sequence types that are in E, namely (3,0,0), (2,0,1), (2,1,0),

(1,2,0). What is the probability associate to them? P 3
X(xl ∈E) = 0.128. On the other hand,

we know that δ∗(τ̃) = so Sanov’s theorem gives the upper bound e−3·0.2492 = 0.474 so the

bound is fairly loose. On the other hand, when n= 10, 26 out of 110 sequence types fall in

the set E. The total probability associated with those sequences is 0.0174. Sanov’s theorem

gives an upper bound of 0.0827. Finally for n= 30 P 30
X (x ∈ E) = 0.000083, while Sanov’s

bound gives P 30
X (x ∈ E)≤ 0.00057. The bound is known to be optimal in the exponent for

limn→∞.
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Benchmarking robustness using census covariates

Several papers have proposed benchmarking the sensitivity to unobservable variables,

which is often not computable, using observable variables. For example, Cinelli and Hazlett

[2020] and Oster [2019] who use the explanatory power of observed covariates to benchmark

for the explanatory power of unobserved covariates. This section suggests a similar approach

for the robustness problem. In the context of this paper I would like to quantify whether

a given value for the robustness parameter, δ∗ is high or low. To this end I propose to

leverage the subset of covariates in Xc, which are available in both the (quasi)-experimental

environment and in the extrapolation environment to benchmark the robustness measure.

At the population level it amounts to:

• computing the robustness metric δ∗ through Equation (1.10)

• use the census information to compute DKL(P ′
Xc ||PXc), the KL divergence between

the distributions of the Xc covariates in the (quasi)-experimental population and the

new population

• compare the two measures

If the variables in Xc collectively differ across the two environments by the same

amount as Xe, observing δ∗ >DKL(P ′
Xc ||PXc) suggests that the (quasi)-experimental claim

can be extrapolated to the new environment. In words, it says that the distance, measured

by the KL divergence between the observable census variables in the two environments

would not be large enough to invalidate the claim drawn from the (quasi)-experimental

evidence. In principle, one could develop a formal test that uses both δ∗ and DKL(P ′
Xc||PXc)

(under the assumption that the true distance in Xe is no larger than the true distance in

Xc) to provide a pessimistic policy-maker with a clear rule on when to expand the policy

given the census data. For now, transforming the heuristic exercise above in a full fledged

two-sample test is beyond the scope of this paper and I leave it to future research.
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1.2.6 A conditional limit theorem interpretation for F ∗X

We have seen that the value of δ∗(τ) has a natural interpretation as a probability

bound. What about the least favorable distribution F ∗
X , the minimizer of Equation (1.4)?

It turns out that an extension of the result by Sanov provides a new perspective for it.

Adapting a version of Theorem 1 in Csiszár [1984], one obtains a striking result on the

joint distribution of the data (X1, · · ·Xn):

Theorem 12. (adapted from Csizar, 1984) Let Assumptions 2 - 4 hold. Set E = {Q :∫
X τ(x)dQ ≤ τ̃}, let PX be the probability measure of i.i.d data. Denote the empirical

distribution of X1, · · · ,Xn as F̂n. Then:

(i) the random variables X1, · · · ,Xn are asymptotically quasi-independent9 conditional

on the event that the empirical distribution F̂n ∈ E

(ii) P (Xi|F̂n ∈ E)≈ P ∗(Xi) for i= 1, · · · ,n

Proof. The proof follows straightforwardly from Theorem 1 in Csiszár [1984] noting that,

by Assumption 4, condition (2.18) in Csiszár [1984] is satisfied. For finitely supported X,

an easier proof is given in Theorem 11.6.2 in Cover [1999].

In contrast to Theorem 11 which holds for any n, Theorem 12 is an asymptotic

result: the approximation of the conditional law in ii) depends on the sample size n. The

interpretation is the following, P ∗n := Πn
i=1P

∗ is the approximate joint law of the covariates

X1, · · ·Xn, if we learned that the empirical distribution F̂n does not satisfy the experimental

conclusions. To visualize this, imagine drawing S-many repeated samples of n observations

each from the covariate distribution. Then, combining the Sanov theorem in Section 1.2.5

together with the Csiszár [1984] conditional limit theorem tells us that:

(i) limS→∞
1
S

∑S
l=11[F̂n,l ∈ E]≤ e−nδ∗(τ̃)

9See Definition 2.1 in Csiszár [1984].
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(ii) PnX(Xi|F̂n,l ∈ E)≈ P ∗n(Xi) for any i= 1, · · · ,n and l = 1, · · · ,S

Part (i) says that the proportion of samples of size n that fail to satisfy the

experimental evidence is bounded above by e−nδ∗(τ̃). This interpretation is closest to the

robustness approach in Broderick et al. [2020] which is based on dropping a percentage

of the sample. The difference is that their procedure focuses on a proportion of the fixed

sample, whereas this result concerns the proportion all possible samples of size n that could

be drawn from the joint distribution of PnX . A small value for the robustness metric δ∗(τ̃)

will not control this probability very well. Part (ii) gives an approximate law for the joint

distribution PnX of the collection of samples that invalidate the experimental results. This

tells us that the F ∗
X is not just a by-product of the optimization problem in Equations

(1.4) and (1.5) but it gives the approximate law of the data if we happen to draw a sample

l which does not satisfy the experimental results.

1.3 Estimation and Asymptotic Results

In this section I introduce a semi-parametric estimator for my robustness metric δ∗,

according to Definition 3 ii) and I characterize its asymptotic properties. I show that the

robustness metric can be estimated using a GMM criterion function which only depends on

the (quasi)-experimental distribution and on the CATE τ(x), both of which are identified

in the quasi experiment. The theory is based on constructing the nonparametric influence

function correction for the de-biased GMM procedure in Chernozhukov et al. [2020] to

account for flexible nonparametric estimation of τ(x). The proofs are in the Appendix 1.I.
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1.3.1 An empirical estimate of the robustness metric δ∗

The closed form solution in Lemma 7 suggests a natural estimator based on empirical

averages. In particular, one would like to replace Equation (1.10) with its sample analog

using the Generalized Method of Moments (GMM) framework. Consider the quantities:

ν0 :=
∫

X
exp(−λ0(τ(x)− τ̃))dFX(x)

where λ0 is defined implicitly as the unique solution to:

∫
X

exp(−λ0(τ(x)− τ̃))(τ(x)− τ̃)dFX(x) = 0

The pair of parameters that solves the population moment condition is denoted by θ0 =

(ν0,λ0)T . Ultimately, the robustness measure δ∗ =− log(ν0) is the parameter of interest.

The asymptotic theory for δ∗ follows directly from establishing the asymptotic theory for

θ̂ = (ν̂, λ̂)T hence, I will focus on these parameters in this section. The parameter space

Θ⊆R2 satisfies some constraints. First, observe that if the policy-maker’s claim (ATE ≥ τ̃)

holds with a strict inequality for the (quasi)-experimental distribution, then the true δ∗ > 0.

This implies a restriction on ν0 < 1. Moreover, ν0 > 0 because by the properties of the

exponential, the quantity exp(−λ(τ(x)− τ̃)> 0 for all x ∈ X . Hence, the restriction on ν

is 0≤ ν0 ≤ 1.

Let W = (X,D,Y ) be the data. Then, as in Newey and McFadden [1994] we can

write the moment condition jointly for ν0 and λ0 as:

E[g(W,θ,τ)] = E

 exp(−λ0(τ0(X)− τ̃))−ν0

exp(−λ0(τ0(X)− τ̃))(τ0(X)− τ̃)

=

0

0

 (1.13)

where τ0(X) denotes the true value of CATE. Assumptions 1–4 guarantee that the parame-
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ters of interest (λ0,ν0) are (globally) identified by Equation (1.13). Because the true value

for τ0(X) is an unknown but estimable population quantity, I consider a feasible version of

Equation (1.13) that uses an estimate τ̂(X) in place of τ0(X). One could define the vector

θ̂ = (λ̂, ν̂)T is defined as the approximate solution to the empirical moment:

En[g(W,θ, τ̂)] =

 1
n

∑n
i=1 exp(−λ̂(τ̂(Xi)− τ̃))− ν̂

1
n

∑n
i=1 exp(−λ̂(τ̂(Xi)− τ̃))(τ̂(Xi)− τ̃)

=

0

0

 (1.14)

where τ̂(X) is a plug-in estimate of the conditional average treatment effect. While

Assumption 1 guarantees nonparametric identification of τ0(X), there are many ways that

one could estimate it, both parametrically and nonparametrically. For example Athey et al.

[2016] uses random forest, Hsu et al. [2020] uses a doubly robust score function.

One caveat of the estimator based on Equation (1.14) is that the identifying moment

conditions provided in Equation (1.13) are not Neyman orthogonal with respect to the

first-step estimator τ̂(X). As a result, the first-step estimation of τ̂(X) can, in general, have

a first-order effect on the estimator for θ0 = (ν0,λ0)T , and consequently on the estimator

for δ∗, and possibly lead to incorrect inferences on the robustness metric, a general problem

discussed in Chernozhukov et al. [2018]. Deriving primitive conditions on this form of the

moment condition requires ad-hoc conditions on the first-step nonparametric estimator that

can be hard or inconvenient to check in practice. As an alternative, I use the debiased-GMM

approach in Chernozhukov et al. [2020] that allows to choose flexible estimators for τ0(X)

while automatically correcting for the first-order bias.
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1.3.2 Nonparametric influence function correction and de-biased

GMM estimator

In this section, I derive the nonparametric correction for the GMM estimator of θ

based on Equation (1.14). I map the causal quantities like τ(X) to the statistical functionals

that identify them and then explicitely construct the nonparametric influence function for

these functionals. Because these functionals are always implicitly regarded as mapping the

distribution function of the data, F , to some space, it is natural to index the functional

with a subscript F . For example the τ(X) = τF (X) because depends of the distribution of

the data F . The true distribution of the data will be denoted as F0 and it is understood

that τ0(X) = τF0(X). Recall that τF0(X) is a causal parameter which needs to be identified

through the distribution of the data. By Assumption 1, τF0(X) can be nonparametrically

identified as the difference between the conditional means: τF0(X) = γ1,F0(X)−γ0,F0(X)

where γ1,F (X) := EF [Y |X,D = 1] and γ0,F (X) := EF [Y |X,D = 0]. The left hand side

features a causal quantity while the right hand side features two statistical quantities. The

first step then has two functions that need to be estimated. For convenience, I gather

them into a single vector-valued statistical functional γF = (γ0,F ,γ1,F )T . When considering

the de-biasing term to correct for the first-step estimation of τF0(X), we actually need to

consider the first-step correction with respect to the full vector γF .

Now consider a parametric sub-model for the distribution function, consisting of

Fr := (1−r) ·F0 +rH where F0 is the true baseline distribution function of the data and H

is an arbitrary distribution function which satisfies Assumption 1. For any r ∈ [0,1],Fr is a

mixture distribution and hence, it is also a valid distribution function. Moreover, if both F0

and H satisfy Assumption 1 then Fr does as well. In order to de-bias the moment conditions

in E[g(W,θ,τF )] with the approach of Chernozhukov et al. [2020] one needs to compute

the nonparametric influence function with respect to τF . The nonparametric influence
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function maps infinitesimal perturbations of F in the direction of H in a neighborhood of

F0, to perturbations in R2 (because there are 2 moment conditions). It does so linearly in

H. In particular, the nonparametric influence function of E[g(W,θ,τF )] with respect to F ,

labelled ϕ(·) is implicitly defined by the equation below:

dE[g(W,θ,γFr)]
dr

∣∣∣∣∣∣
r=0

=
∫
ϕ(w,γF0 , θ,α)dH(w) (1.15)

Note that, other than the original arguments of g(·), which feature the vector of conditional

means γF0 , ϕ(·) is allowed to depend on additional nonparametric components, gathered in

α(·). In the next result I derive the nonparametric influence function explicitly.

Proposition 13. The de-biased GMM nonparametric influence function based on moment

function g(·) is:

ϕ(w,θ,γ0,α0) =

 exp
(
−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)

)
· (−λ)

exp
(
−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)

)
· (1−λ · (γ1,F0(x)−γ0,F0(x)− τ̃))


×
(
d(y−γ1,F0(x))

πF0(x) − (1−d)(y−γ0,F0(x))
1−πF0(x)

)

which could be written in the form:

ϕ(w,θ,γ0,α0) =

 exp
(
−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)

)
· (−λ)

exp
(
−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)

)
· (1−λ · (γ1,F0(x)−γ0,F0(x)− τ̃))



×


α1,F0(x)

α0,F0(x)


T  d(y−γ1,F0(x))

(1−d)(y−γ0,F0(x))




with αF0(x) :=

α1,F0(x)

α0,F0(x)

=


1

πF0(x)

1
1−πF0(x)

.
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There are two main multiplicative terms in ϕ(·). The first term is the derivative

of the moment conditions with respect to the first-step estimator. The second one is

the variation of individual treatment effects about their conditional mean, appropriately

weighted by the propensity score. One can immediately check that, by the law of iterated

expectations, EF [ϕ(W,θ,γ0,α0)] = 0 for any θ. Hence we can form the de-biased GMM

moment functions by taking:

ψ(w,γ,θ,α) = g(w,θ,γ)+ϕ(w,θ,γ,α) (1.16)

Notice that EF0 [ψ(W,θ,γ0,α0)] = 0 so an estimator for θ that uses the de-biased moment

function ψ(·) instead of g(·) will preserve identification. Standard conditions can be given

to guarantee V[ψ(W,θ,γ0,α0)]<∞ so that ψ(Wi, θ,γ0,α0) is a valid influence function. As

emphasized in Chernozhukov et al. [2020] the de-biased GMM form of ψ(·) corrects for the

first order bias induced by replacing γ1,F0−γ0,F0 , the statistical counterpart of the true τF0 ,

with a flexibly estimated γ̂1− γ̂0. In particular, for
√
n-consistency of θ, the estimators for

γ̂1 and γ̂0 only need to satisfy mild conditions on the L2-rate of convergence in Assumption

5 below. This allows to characterize simple inference for the robustness measure δ̂∗ while

allowing for flexible nonparametric estimation of γ1,F0 and γ0,F0 using a large collection of

machine learning-based estimators which include, among others, random forest, boosting,

and neural nets. In practice, machine learning methods can help when the covariate space

is high-dimensional but the true τ0(X) has a sparse representation.

The key property to guarantee de-biasing is given by the Neyman orthogonality

of the new moment conditions with respect to the first-step estimator, established in the

result below.

Proposition 14. Equation (1.16) satisfies Neyman orthogonality.

Proof. See Appendix 1.I.
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Consider now the empirical version of the de-biased GMM equations:

ψ̂(θ, γ̂, α̂) = 1
K

K∑
k=1

1
|Ik|

∑
i∈Ik

(
g(Wi, θ, γ̂−k)+ϕ(Wi, θ̃, γ̂−k, α̂−k)

)

The de-biased GMM estimator takes advantage of a cross-fitting procedure where the sample

is split into K many folds. For each fold k = 1, · · · ,K, the nonparametric components

in ψ(·), that is, the γ(·) and α(·) functions, are estimated on the observations in the

remaining (K − 1) folds which explains the indexing −k in the subscripts of γ(·) and

α(·). Sample splitting reduces own-observation bias and, together with the Neymann

orthogonality property established above, avoids complicated Donsker-type conditions that

would potentially not be satisfied for some first-step estimators of γ̂ and α̂, as discussed in

Chernozhukov et al. [2020]. Finally note that θ̃ is a consistent estimator for θ needed to

evaluate ϕ. For example one could use the θ from the plug-in GMM which is consistent

but may not be
√
n-consistent in general. The de-biased GMM estimator is given by:

θ̂ = argmin
θ∈Θ

ψ̂(θ, γ̂, α̂) (1.17)

To establish
√
n-convergence of the GMM estimators for θ, some quality conditions on the

L2 rates of convergence of the first-step estimators for γ and α are required.

Assumption 5. For any k, ∥γ̂−k−γ0∥2L = oP (N− 1
4 );∥α̂−k−α0∥2L = oP (1).

In Appendix 1.I, I use Assumptions 1 – 5 to prove the influence function representa-

tion for θ̂ to which a standard central limit theorem applies to establish the asymptotic

normality of the de-biased GMM estimator for θ = (ν,λ)T . This, in turn, allows to conduct

inference on the parameter of interest, δ∗ through a straightforward application of the delta

method.

Theorem 15 (Asymptotic normality of θ). Let Assumptions 1–5. For θ̂ defined in Equation
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(1.17):

√
n(θ̂− θ0) d→N (0,S)

S := (G)−1Ω(G′)−1

G := E[Dθψ(w,θ,γ0,α0)]

Ω := E[ψ(w,θ0,γ0,α0)ψ(w,θ0,γ0,α0)T ]

and Dθψ(·) is the Jacobian of the augmented moment condition with respect to the parameters

in θ.

Proof. See Appendix 1.I.

The parameter of interest follows from a straightforward application of the parametric

delta method.

Corollary 16 (Asymptotic normality of δ∗). Let δ̂∗ =− log(ν̂). Then

√
N(δ̂∗− δ∗) d→N

(
0, S11
ν2

0

)

where S11 is the (1,1) entry of the variance covariance matrix S in Theorem 15.

With the results of Theorem 15 one can obtain a point estimate δ∗, together with a

confidence interval for a pre-specified coverage level. Because of the nature of the estimand,

the researcher or the policy-maker, are likely to care especially about the lower bound

for δ∗. This is because overestimating the δ∗ implies that there is a distribution of the

covariates within the estimated δ̂∗ that invalidates the policy-maker’s claim. This defies

the entire purpose of the robustness exercise. On the other hand, underestimating δ∗ may

result in unduly conservative characterization of the set of distributions for which the claim

is valid, but it does not defy the purpose of the robustness exercise. A similar, asymmetric
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approach is followed by Masten and Poirier [2020] who report a lower confidence region for

their breakdown frontier rather than a confidence band.

1.3.3 Reporting features of the least favorable distribution

Lemma 7 gives an explicit formula for the least favorable distribution F ∗
X and shows

that it depends on λ0 and τ(X). Because of the interpretation of F ∗
X as the conditional

law of the data that we have given in Section 1.F, the researcher may be interested in F ∗
X

directly. If X ⊆ Rd is even moderately high dimensional, it may be very inconvenient to

look at features of the estimated F ∗
X . Moreover, the rate of convergence of as estimator of

F ∗
X can, in general, be nonparametric. This is because, under some conditions, it inherits

the nonparametric rate of τ̂(X). Rather, the researcher could report particular moments of

F ∗
X that are of interest. This exercise is analogous to reporting moments of the covariate

distribution and compare them across treatment status to gauge at covariate balance, like

in Rosenbaum and Rubin [1984]. The researchers may want to report moments of F ∗
X ,

in addition to the robustness metric δ∗. For example they may want to report a vector

of covariate means under the least favorable distribution F ∗
X and compare it with the

(quasi)-experimental distribution. In such a case, we would like to construct an estimator

for the moments of interest and establish the asymptotic theory of these estimators. I give

a convenient extension of Theorem 15, to include an arbitrary, finite dimensional collection

ζ ∈ Rs of moments of interest, along with the original θ parameters.

Theorem 17 (De-biased estimator of least favorable moments). Let u : Rd→ Rs, with

u ∈ (L∞(X ,µ))s for µ some dominating measure of PX . Let ζ0 = EF ∗
X

[u(X)] ∈ Rs. Define

the following estimating equation for the parameters (θ̂, ζ̂), that is, the original parameters
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of interest, augmented by ζ, the additional moments of the least favorable distribution:

ψ̂u(θ,ζ, γ̂, α̂) := 1
K

K∑
k=1

1
|Ik|

∑
i∈Ik

 g(Wi, θ, γ̂−k)+ϕ(Wi, θ, γ̂−k, α̂−k)

gu(Wi, θ,ζ,γ−k)+ϕu(Wi, θ,ζ, γ̂−k, α̂−k)



where g(·),ϕ(·),γ(·) and α(·) are the same as in Propositions 13 – 27 and gu(·) and ϕu(·),

whose values are vectors in Rs are defined below.

gu(Wi, θ,ζ,γ) = u(Xi)exp(−λ(τ(Xi)− τ̃)−ν · ζ

ϕu(Wi, θ,ζ,γ,α) = u(Xi)exp(−λ(τ(Xi)− τ̃)) · (−λ)

×
(
Di(Yi−γ1(Xi))

π(Xi)
− (1−Di)(Yi−γ0(Xi))

1−π(Xi)

)

(θ̂, ζ̂) := arg min
(θ,ζ)∈Rs+2

ψ̂u(θ,ζ, γ̂, α̂)T ψ̂u(θ,ζ, γ̂, α̂)+oP (1) (1.18)

Let Assumptions 1–5 hold. Then:

1√
n

K∑
k=1

∑
i∈Ik

ψu(Wi, θ,ζ, γ̂−k, α̂−k) = 1√
n

n∑
i=1

ψu(Wi, θ,ζ,γ0,α0)+oP (1)

Moreover

√
n


θ̂− θ0

ζ̂− ζ0


 d→N (0,Su)

Su := (Gu)−1Ωu(Gu
′
)−1

Gu := E[Dθ,ζ ψ
u(W,θ,ζ,γ0,α0)]

Ωu := E[ψu(w,θ0,γ0,α0)Tψu(w,θ0,γ0,α0)]

where Dθ,ζ denotes the Jacobian matrix with respect to the parameters θ and ζ.

Proof. The proof follows the same structure of Theorem 15 and is omitted.
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1.3.4 Simulation data

I conclude this section with a small Monte-Carlo exercise featuring three different

data generating processes (DGPs) with increasing degrees of observable heterogeneity. To

capture the idea of possibly high-dimensional experimental data, I consider a setting with

k = 100 covariates, all independent and each distributed uniformly on [0,1] so that X =

[0,1]k. To reflect the fact that only a few out of all available experimental covariates are

important to predict the treatment effect, I construct τ(x) to be sparse: τ(x) is a function

of of only 1,3 and 10 out of 100 covariates in DGP1, DGP2 and DGP3 respectively. In each

DGP, the potential outcomes also depend on an additive unobservable noisy error term.10

To show that it is the heterogeneity that drives the robustness, keeping the same baseline

ATE for the three DGPs is fundamental. I choose the shape of τ(x) to induce the same

ATE across the three DGPs, regardless of the heterogeneity of treatment effects, when

evaluated with respect to the experimental distribution. I consider M = 1000 replications

for each DGP and a sample size of N = 10,000. The first step τ(x) is estimated through

K-fold cross-fitting, using either boosting or random forest to estimate γ1(x), γ0(x) and

the propensity score πX(x). The number of trees and splitting criteria are tuned to the

sample size through heuristic criteria. In practice one would use within-fold cross-validation

to tune hyper-parameters. I estimate the implied δ̂∗(τ̃), with τ̃ = 1.3 and evaluate its

bias, variance and MSE against the true value δ∗. Fixing the ATE and the experimental

distribution of the covariates guarantees that a change in the population value for δ∗ is

only capturing the change in heterogeneity. I report the estimates of δ∗ using both the

plug-in GMM and de-biased GMM approach below. Note that, because of K-fold cross
10In particular:
• DGP1: Y1−Y0 = exp(X1)+U1−U0;

• DGP2: Y1−Y0 = exp(X1) · (X2 +0.5) · (X3 +0.5)+U1−U0;

• DGP3: Y1−Y0 = exp(X1) · (X2 +0.5) · (X3 +0.5) ·Π10
j=4(0.1 ·Xj +0.95)+U1−U0.

(U1,U0) are uncorrelated normals with µ= 0,σ = 0.25.
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fitting, the own-observation bias in the plug-in GMM is attenuated. Still, the de-biased,

GMM shows very good bias improvements over the plug-in approach.

Table 1.1: Monte Carlo Simulation reports the DGP, the population value for the
robustness metrics, ML estimator used for the nonparametric components and MSE,
Bias and Variance. Sample size n= 10,000, number of simulations M = 1000.

Data δ∗(τ̃) Method γ(·), α(·) est MSE Bias2 Variance

DGP1 0.4485
plug-in Random Forest 3.7568 ·10−4 0.1235 ·10−4 3.6334 ·10−4

Boosting 1.6311 ·10−3 1.2056 ·10−3 0.4255 ·10−3

de-biased Random Forest 3.7148 ·10−4 0.1030 ·10−4 3.6117 ·10−4

Boosting 1.5278 ·10−3 1.1038 ·10−3 0.4240 ·10−3

DGP2 0.1344
plug-in Random Forest 5.0716 ·10−3 4.9474 ·10−3 0.1242 ·10−3

Boosting 1.1218 ·10−3 1.0622 ·10−3 0.0597 ·10−3

de-biased Random Forest 3.6640 ·10−3 3.5616 ·10−3 0.1024 ·10−3

Boosting 0.7309 ·10−3 0.6749 ·10−3 0.0560 ·10−3

DGP3 0.1328
plug-in Random Forest 5.2825 ·10−3 5.1558 ·10−3 0.1267 ·10−3

Boosting 1.4637 ·10−3 1.3991 ·10−3 0.0646 ·10−3

de-biased Random Forest 3.8369 ·10−3 3.7326 ·10−3 0.1043 ·10−3

Boosting 0.9312 ·10−3 0.8716 ·10−3 0.0596 ·10−3

Table 1.1 report the results. First, observe the reduction in the population value of

δ∗(τ̃) as heterogeneity increases in the DGP. This is entirely driven by an increase in the

heterogeneity of τ(x) since the ATE is the same across the three DGPs. This means that a

smaller shift in the covariates is required to invalidate the policy-maker claim (ATE ≥ 1.3).

As a result, the robustness metric decreases. Moving from DGP1 to DGP2 and DGP3

the population value of the robustness metric drops from 0.4485 to 0.1344 to 0.1328. The

decrease is most accentuated between DGP1 and DGP2 because of the functional form of

τ(x).

In DGP1 we can see that the heuristic choice for the hyper-parameters in boosting

likely results in under-fitting the data, leading to a bias an order of magnitude higher

than the variance. For DGP1, the de-biasing procedure results in approximately 20%

squared bias reduction which drives the reduction of approximately the same percentage

in the Mean Squared Error. Variances are comparable between plug-in and de-biased
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GMM. The random forest procedure is better overall for MSE criterion. In DGP2, the

bias dominate the variance component, suggesting both random forest and boosting are

under-fitting. This is likely do to the absence of a within-fold cross-validation step. In this

case,the de-biased GMM reduces the squared bias by about 40% for both random forest and

boosting methods. The variances are again very similar across plug-in and de-biased and

boosting has about half of the variance of random forest. DGP3’s heterogeneity increases

slightly, reducing the associated δ∗(τ̃). Like in DGP2, the bias dominates the variance

component regardless of the first-step estimation method. Similarly, the de-biased GMM

approach results in substantial bias reduction in comparison to the plug-in GMM approach.

1.4 Empirical Application: How robust are the effect

of the Oregon Medicaid expansion?

In this section, I apply my approach to study the robustness of health insurance

policy with respect to shifts in the distribution of covariates. The key reference is Finkelstein

et al. [2012], which uses experimental data to study the effect of the Oregon Medicaid

expansion lottery on health-care consumption and financial outcomes. The positive results

of the study are of great interest for any policy-maker who is potentially interested in

implementing a similar intervention in their state. Because the populations of recipients are

likely to differ across states, I propose to complement the experimental result in Finkelstein

et al. [2012] with an estimate of my robustness metric δ∗ to quantify the smallest shift in

important experimental covariates needed to eliminate the positive effects of the insurance

lottery.
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1.4.1 Institutional context and heterogeneity

Between March and September 2008, the state of Oregon conducted a series of

lottery draws that would award the selected individuals the option to enroll in the Oregon

Health Plan (OHP) Standard. OHP Standard is a Medicaid expansion program available for

Oregon adult residents that are between 19 and 64 years of age and have limited income and

assets. Finkelstein et al. [2012] studies the effect of the insurance coverage on a set of metrics

that include health-care utilization (number of prescription, inpatient, outpatient and ER

visits), recommended preventive care (cholesterol and diabetes blood test, mammogram

and pap-smear test) and measures of financial strain (outstanding medical debt, denied

care, borrow/default). The study uses both administrative and survey data but only the

survey data is publicly accessible through Finkelstein [2013]. The Online appendix of

Finkelstein et al. [2012] discusses a variety of robustness concerns that center on external

validity. For example they note that scaling up the experiment can induce a supply side

change in providers’ behavior. Additionally, they acknowledge substantial demographic

differences between the study population in Oregon versus the potential recipients in other

states. These differences include, for example, a smaller African American and a larger

white sub-population in Oregon versus other states. From the survey data it appears that

the Oregon lottery participants are older and their health metrics under-performs the

national average. If these covariates are important in determining the treatment effects of

the health insurance, the results of Oregon experiment may not be robust to a change in

the distribution of covariates. This robustness is especially important to quantify if the

experimental results are to be extrapolated for policy adoption in other states. I stress the

fact that, in this context, the re-weighting procedure in Hartman [2020] or Hsu et al. [2020]

is not applicable because it lacks the survey-specific health data that are likely to be most

predictive of treatment effect heterogeneity. Absent full covariate data form other states, I

proposed to study the robustness of the policy by augmenting each of the treatment effect
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estimators in Finkelstein et al. [2012] with my robustness metric, which can be computed

by exploiting the heterogeneity in the publicly available survey data Finkelstein [2013].

1.4.2 Robustness in the Oregon Medicaid Experiment

For the robustness exercise I focus on the Intention to Treat Effect (ITT) of the

Oregon Medicaid Experiment lottery. As noted in Finkelstein et al. [2012], not all recipients

who were awarded the option to enroll in the insurance program actually enrolled. For this

reason Finkelstein et al. [2012] estimates both an ITT and a LATE estimate. One could

argue that the ITT is the key parameter for a policy-maker interested in offering the same

intervention. To map my framework to the application, recall that the ITT effect can be

considered as an ATE where the treatment D is simply the “the option to enroll in the

health insurance” so the robustness approach discussed in the paper carries over to the

ITT with only notational changes. I consider hypotheses of the form ITTj ≥ τ̃ or ITTj ≤ τ̃

(depending on the outcome measure of interest) where j indexes a health-care utilization or

a financial strain outcome, following the notation convention in Finkelstein et al. [2012]. As

noted in Finkelstein et al. [2012] all health-care utilization outcomes are defined consistently

so that a positive sign for ITT means an increase in utilization. Similarly, all financial

strain outcomes are defined so that a negative sign for the ITT means a decrease in financial

strain. I focus on 2 value of interest for τ̃ for each of the outcome measures. One of

the values is τ̃ = 0 which reflects the claim that the ITT is non-negative (for health-care

utilization outcomes), or non-positive (for financial strain outcomes). The second value

is τ̃ = tj = zασj where σj is the standard deviation of the ITT for outcome j. tj is the

critical value for the t-statistic of a one sided test with null hypothesis ITT ≤ 0 for some

pre-specified α. As a result δ(tj) proxies for the magnitude of a change in the covariate

distribution that would make the ITT statistically not distinguishable from a non-positive
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or non-negative outcome (respectively).11 Because σj is in general not available, in the

empirical procedure I use σ̂j in place of σj . The researcher interested in different hypothesis

may adapt the procedure easily by specifying a τ̃ with a value different from the two

discussed above.

For the application I group the outcome measure in three groups: measure of

health-care utilization, measures of compliance with recommended preventive care and

measures of financial strain. I replicate the estimates of the intention to treat effect

(ITT) for outcome variables in each of the three groups in Finkelstein et al. [2012] from a

reduced form regression of the outcome variable on the lottery indicator and controls. The

regression includes survey waves indicators, household size indicators and interaction terms

between the two as controls. Because the regression is fully saturated, the estimates for

the ITT are nonparametric. In my robustness exercise I focus on covariates that appear

critical for external validity and are likely to differ across states. Among others, Finkelstein

et al. [2012] identifies gender, age, race, credit access, education and proxies for health

status. To capture the potential heterogeneity, I estimate a Conditional Intention to Treat

effect (CITT) with the set of covariates listed above.12 Finally I use the estimated CITT

to compute the measure of robustness δ∗ for each of the outcome variables in the three

categories and report it, together with the original ITT estimate, for both values of τ̃

discussed above.13 All outcomes are measured on the survey data Finkelstein [2013].

In Table 1.2, column 2, 3 and 4 contain respectively the experimental ITT for each

outcome variable, the estimates for δ∗(0) and the estimates for δ∗(tj). Here tj =±1.645 ·σj
11This interpretation is heuristic, in the sense that the standard deviation of the ITT estimate can

depend on the distribution of the covariates as well. It is possible to impose an additional constraint on
optimization problem, requiring that the variance of the treatment effects about the ITT remains the same.
Such a construction fall into the case discussed in Appendix 1.C.

12From a technical standpoint, the CITT estimated with a discrete set of covariates is still a parametric
estimator. In practice, it can be obtained by a fully saturated regression where the lottery indicator is
interacted with all possible combinations of dummies.

13Comparable (survey weighted) ITT estimates can be found in column 2 labelled Reduced form, of 1.2.
Discrepancies with the (unweighted) ITT effects I compute are due to survey weights.
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depending on whether the experimental ITT is positive or negative. As an example, consider

a measure of financial strain, like whether a patient had to borrow or skip a payment

because of medical debt. The intention to treat effect is equal to -0.0515 with standard

error 0.0060. δ∗(0) = 0.367 represents the smallest distributional shift of the covariates that

can induce an ITT equal to 0. The δ∗(tj) = 0.265 represents the smallest distributional

shift in the covariates that can result in an ITT =−1.645 ·0.0060 =−0.0118 which leads

to not rejecting the hypothesis H0 : ITT ≥ 0. For any distributional shift that is smaller

than δ∗(tj) the statistical claim H0 : ITT ≥ 0 would be rejected.

Table 1.2: δ∗ robustness metric for the health-care utilization and financial strain
outcomes in Finkelstein et al. [2012]. ITT for measures of preventive care are indistin-
guishable from 0 for the experimental distribution so the robustness metric is trivial in
this case. The measure is evaluated at τ̃ = 0 and τ̃ = tj =±1.645σj for each outcome,
depending on the relevant sign of the estimated ITT. The third group of outcomes, pre-
ventive care measures, all have statistically insignificant ITT, leading to a 0 robustness
for all δ∗(tj). I omit them in this table.

Outcome Experimental ATE δ∗(0) δ∗(tj)
health-care Utilization
Prescriptions 0.1296

(0.044)
0.380
(0.007)

0.068
(0.002)

Out-patient visits 0.2986
(0.039)

1.552
(0.022)

0.965
(0.014)

ER visits 0.0064
(0.013)

0.009
(0.001)

0
n/a

In-patient visits 0.0081
(0.005)

0.119
(0.003)

0
n/a

Financial Strain
Out of pocket expenses −0.0622

(0.0069)
0.462
(0.030)

0.346
(0.023)

Outstanding expenses −0.0529
(0.0070)

0.290
(0.0231)

0.204
(0.016)

Borrow/Skip payments −0.0515
(0.0060)

0.367
(0.019)

0.265
(0.014)

Refused care −0.011
(0.0040)

0.063
(0.006)

0.013
(0.002)

I highlight two benefits of this robustness metric. First, it allows a comparison of the

robustness across outcomes because each δ∗ has the same units and it is measured on the

same covariate space. Second, the fourth column of Table 1.2 has a natural interpretation
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as a breakdown point: what is the smallest perturbation of the distribution of covariates

that will break statistical significance of the ITT? A policy-maker may consider findings

with larger δ∗ as more readily applicable to her own policy setting. From the δ metrics

reported in Table 1.2 I notice that among the health-care utilization metrics, the ITT on

outpatient visits is the most robust while the ITT on ER visits is the least robust. For the

measures of financial strain the ITT on out of pocket expenses is the most robust and the

ITT on instances of refused care because of medical debt is the least robust. If one had

access to census data, one could choose a set of census variables of interest and compute

the KL divergence between the distribution of the Oregon census variables and a target

state’s census variables. Then the researcher use this computed measure to benchmark the

magnitude of the robustness metrics in Table 1 to assess whether the magnitude of each δ∗

is high or low, relative to the observed differences in the census variables.

1.5 Conclusion

Robustness of (quasi)-experimental findings is an importance premise of evidence

based policy-making. In this paper I propose a metric δ∗ to quantify the robustness of

(quasi)-experimental findings with respect to a shifts in the distribution of the covariates.

I focus on claims on aggregate policy effects of the type (ATE ≥ τ̃). While I focus on

ATE as a main object of interest, the extension to other linear policy parameters is

straightforward. I characterize my robustness metric as the minimal distance, in terms

of KL divergence, between the set of covariate distributions that invalidate the claim

and the (quasi)-experimental covariates. My robustness metric gives a nonparametric,

one-dimensional summary that links treatment effect heterogeneity, (quasi)-experimental

findings and covariate shifts. Because the computation of the δ∗ robustness metric for ATE

requires computing CATE, I employ the debiased-GMM approach to allow for CATE to
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be estimated using a large collection of machine learning techniques, which only need to

satisfy mild requirements on their L2 norm convergence rates. These include, for example,

lasso, random forest, boosting, neural nets.

I apply my framework to assess the robustness of the results in Finkelstein et al.

[2012] about the Oregon Medicaid Experiment. I consider a set of covariates including

gender, race and lottery timing and find that the increase in outpatient visits and the

decrease in out-of-pocket expenses are, respectively the most robust findings among the

measure of health-care utilization and financial strain. For most other measures, relatively

small shifts in the covariate distributions appear to invalidate the results.
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Appendix

1.A Another look at the Lagrange multiplier λ

The formulation of the optimization problem in Equation (1.4) concerns a policy-

maker who wishes to maintain the claim ATE ≥ τ̃ so that the constraint set in Equation

(1.5) takes the opposite direction of the inequality. The formulation with the Lagrange

multiplier in Equation (1.9) is without loss of generality. If the policy-maker is interested

in maintaining a claim of the type ATE ≤ τ̃ , the Lagrange multiplier would enter Equation

(1.9) with a negative sign, or equivalently, if we want to preserve Equation (1.9), the value

of the Lagrange multiplier would be negative.

The Lagrange multiplier λ in Equation (1.9) can give insight in what happens

moving from the experimental distribution to the least favorable distribution. Note that

λ has the opposite sign as the difference between the (quasi)-experimental ATE and the

target ATE. To see this, we consider how the target ATE relates to the CATE. For each

given τ̃ there is a partition of the covariate support X into three sets, depending on what

will be down-weighted or up-weighted by the least favorable distribution. The weight is

given by:

w(x) = exp(−λ(τ(x)− τ̃))∫
X exp(−λ(τ(x)− τ̃))dFX
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so we see, after simplifying, that w(x) = 1, i.e dF ∗
X and dFX coincide, iff:

exp(−λτ(x)) =
∫

X
exp(−λτ(x))dFX

so the three sets are given by:

X− := {x ∈ X s.t. exp(−λτ(x))−EPX [exp(−λτ(x))]< 0}

X+ := {x ∈ X s.t. exp(−λτ(x))−EPX [exp(−λτ(x))]> 0}

X 0 := {x ∈ X s.t. exp(−λτ(x))−EPX [exp(−λτ(x))] = 0}

For example, suppose that the researcher wants to support the claim ATE ≥ τ̃ , which

holds for the experimental ATE. Then, in order to achieve a lower ATE the least favorable

distribution will have to shift weight from X+ to X−. These sets in the partition will

in general not coincide with the sets {x ∈ X s.t. τ(x)− τ̃ < 0}, {x ∈ X s.t. τ(x) = τ̃}

and {x ∈ X s.t. τ(x) < τ̃}. One case when they coincide is when FX follows the normal

distribution.

1.B Relating parametric forms of least favorable dis-

tributions with assumptions on CATE

Lemma 7 gives a solution to the policy-maker’s problem that does not depend on a

specific functional form for CATE nor on a parametric assumption for the experimental

distribution FX . Leveraging the closed form solution I show that if the conditional treatment

effect function does follow a particular form and the experimental distribution belongs to a

certain parametric family, we can guarantee that the least favorable distribution belongs to

the same parametric family, up to a shift in the parameters.

50



Definition 18. We say that a class of parametric distributions indexed by θ, denoted

F θX is least-favorable closed with respect to a parametric class of Conditional Average

Treatment Effects, τ(x)η, indexed by η ∈H if for any θ and η, the least favorable distribution

F ∗
X = F θ

∗
X for some θ∗ ∈Θ. The choice of θ∗ will in general also depend on features of η as

well.

This means that the least favorable distribution belongs to the same parametric

class as the original, experimental distribution. This idea is similar to the conjugate prior

construction where the posterior distribution belongs to the same class of priors if the

likelihood is within a conjugate parametric class. The distributional shift can then be

thought of as a parameter shift.

Proposition 19 (Quadratic-Normal least favorable closed-ness). The parametric class

N (µ,σ2) is least favorable closed for quadratic Conditional Average Treatment Effects.

That is, if X ∈Rk follows the multivariate normal distribution X ∼N (µµµ,ΣΣΣ) where ΣΣΣ is p.d.

and τ(x) = xTAxxTAxxTAx+xTβxTβxTβ+ c for βββ ∈ Rk then F ∗
X is the measure induced by X∗ ∼N (µ∗µ∗µ∗,Σ∗Σ∗Σ∗)

with µµµ∗ = (ΣΣΣ−1 +2λAAA)−1(ΣΣΣ−1µµµ−λβββ) and Σ∗Σ∗Σ∗ = (ΣΣΣ−1 +2λAAA)−1, provided that (ΣΣΣ−1 +2λAAA)−1

is p.d. The parameter λ is defined as in Equation (1.9).

Proof. See Appendix 1.I.

Corollary 20 (Linear-Normal least favorable closed-ness). If τ(x) =xTβxTβxTβ and X ∼N (µ,Σµ,Σµ,Σ)

then X∗ ∼N (µ∗,Σµ∗,Σµ∗,Σ) where µ∗µ∗µ∗ = µµµ−λΣβΣβΣβ.

Proof. Follows from 19 when AAA= 0.

An extension of Proposition 19 could be shown to hold for the more general class of

distributions in the exponential family given by f(x|θ) = g(θ)h(x)exp(η(θ)TT (x)) but this is

beyond the scope of this paper. The parametric example gives some additional insights in the

geometry of the policy-maker’s problem, which could also help to understand the analytical
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expression for the least favorable distribution above. Consider the univariate case (d= 1)

where FX is the normal distribution with mean µ and standard deviation σ. The policy-

maker’s desired claim is ATE ≥ 0. The conditional average treatment effects are linear in the

only covariate, that is τ(x) = πX for some π ∈R. Because CATE is linear in X, the ATE is

only a function of the population mean µ. As a result, the feasible set of the policy-maker’s

problem in Figure 1.B.1 is the half space µ ≤ 0. Proposition 19 allows us to reduce the

problem to a finite dimensional problem which we can solve with the usual KKT conditions.

Observe that DKL(N (µ∗,σ∗)||N (µ,σ)) = 1
2

(
log

(
σ2

σ∗2

)
+ σ∗2

σ2 −1+ 1
σ2 · (µ−µ∗)2

)
. In that

case:

min
(µ∗,σ∗)∈R×R+

1
2

(
log

(
σ2

σ∗2

)
+ σ∗2

σ2 −1+ 1
σ2 · (µ−µ

∗)2
)

s.t. πµ∗ ≤ τ̃

where the constraint is simplified because of the linear functional form of CATE and

linearity of the expectation operator.
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Figure 1.B.1: Univariate Normal Distribution, Linear CATE. Each point in the graph
represents a normal distribution parametrized by its mean and standard deviation
N (µ,σ2). The starting distribution, the experimental is taken to be P =N (4,2). The
contour lines represent the KL divergence with respect to the experimental distribution.
The policy-maker’s desired claim is ATE ≥ 0. The feasible set shaded in yellow represents
all univariate normal distributions that satisfy ATE ≤ 0. When CATE is linear (that
is τ(x) = πX), the only parameter that contributes to the ATE is the mean µ so the
feasible set is parallel to the σ axis. As a result, the least favorable distribution, labelled
as P∗, amounts to a mean shift from µ= 4 to µ∗ = τ̃

π = 0 and no shift in the σ parameter.

The KKT conditions imply:

µ∗ = µ−λπσ2

σ∗ = σ

λ= 1
πσ2

(
µ− τ̃

π

)

The least favorable distribution amounts to a mean shift of the prescribed magnitude and

no change in the variance. Contrast the example above with the case where the CATE

is allowed to be quadratic. Proposition 19 still applies, hence the problem can still be

formulated as minimizing over the paramteric space (µ∗,σ∗). This time though, the variance
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of the covariate X matters in determining the ATE and the feasible set reflects this.

Figure 1.B.2: Univariate Normal Distribution: Quadratic CATE. The setting is
identical as in Figure 1.B.1 but here is quadratic, τ(x) = 0.8 ·X2 + 8 ·X. As a result,
ATE(µ,σ) = 0.8 · (µ2 +σ2)+8µ so both parameters of the covariate distribution con-
tribute to determining the ATE. The feasible set in yellow has nonflat curvature. The
least favorable distribution, labelled as P∗, features a parameter shift in both the mean
and the variance.

1.C Constrained Classes

An applied researcher may wish to restrict the class of distributions for problem 1

by imposing additional constraints. For example, they may want to fix the certain moments

of the experimental distribution.14 The computational price to pay for each additional

constraint is one additional Lagrange multiplier per constraint as detailed out in Ho [2020].
14Note that finitely many moment restrictions would still amount to searching the KL infimum within

a infinite dimensional class of probability distributions, and, as such, the nonparametric nature of the
problem persists.
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For example, for a known moment function q : X → R we want:

∫
X
q(X)dFX =

∫
X
q(X)dF ′

X

This requirement restricts the space of feasible probability distributions because it asks

that the least favorable distribution preserves the additional moment. From the perspective

of robustness, the value of the problem δ∗ for the constrained problem must be larger or

equal than the value for the unconstrained problem. That is:

inf
dF ′

X : dF ′
X≪dFX ;P ′

X(X )=1
DKL(F ′

X ||FX) ≤ inf
F ′
X : F ′

X≪FX ;P ′
X(X )=1

DKL(F ′
X ||FX)

s.t.
∫

X
τ(x)dF ′

X(x)≤ τ̃
∫

X
τ(x)dF ′

X(x)≤ τ̃∫
X
q(x)dF ′

X(x) = q

Assumptions about moment preservation aides the robustness to external validity of a

causal claim.

In case of additional constraints the solution to the KL problem takes the form:

dF ∗
X

dFX
= exp(−λ(τ(x)− τ̃))∏Ll=1 exp(−µl(q(x)− q̃))∫

X exp(−λ(τ(x)− τ̃))∏Ll=1 exp(−µl(q(x)− q̃))

and each Lagrange multiplier can be solved by:

∫
X

exp(−µl(q(x)− q̃))(q(x)− q̃)dFX = 0

For estimation, the additional restrictions result in L many additional parameters, one

for each Lagrange multiplier that needs to be computed. One could adapt the estimation

framework in Section 1.3 and have θ ∈Θ⊆ RL+2 gathers the original parameters α and λ

as well as the Lagrange multipliers for the population optimization problem µ1,µ2, · · · ,µL.
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At the cost of a more cumbersome notation, all the asymptotic results in Section 1.3 apply.

1.D Partial identification of CATE

In this section, I consider the case where the main ingredient needed to identify

the robustness metric, τ(x) is only partially identified. This situation is important in

practice. For example, with one-sided noncompliance τ(x) is only partially identified. In

this section I will show that one can still recover bounds for δ∗(τ̃) that are robust to this

partial identification.

In section 1.2.2, the covariate shift assumption allowed us to write the ATE as a

linear functional of the covariate distribution, greatly simplifying the treatment. This linear

functional is fixed because τ(x) is identifiable.

Suppose we can set identify τ ∈ T . For example τ(x) could be identified up to a

finite dimensional parameter or one could have an identification region where any τ ∈ τ

satisfies τ(x) ≤ τ(x) ≤ τ(x), that is, there are identification bands bounding any τ ∈ T

above and below. Then we can compute a conservative version of the robustness metric

define below:

δ∗(τ̃) := inf
τ∈T

inf
dF ′

X : dF ′
X≪dFX ;dF ′

X(X )=1
DKL(F ′

X ||FX)

s.t.
∫

X
τ(x)dF ′

X(x)≤ τ̃

Because now τ(·) is not identified, the problem above considers the least favorable

among the ones in the set T . Because τ controls the shape of the feasible set we can rewrite

it as
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δ∗(τ̃) := inf
dF ′

X : dF ′
X≪dFX ;dF ′

X(X )=1
DKL(F ′

X ||FX)

s.t.
∫

X
τ(x)dF ′

X(x)≤ τ̃ for some τ ∈ T

Now regard the constraint set as a collection of Fτ := {F ′
X :

∫
X τ(x)dF ′

X(x) ≤ τ̃}

for a given τ . It is immediate to notice that, if τ ′(x) ≤ τ(x) point-wise, then Fτ ⊆ Fτ ′ .

That is, if a CATE that is dominated point-wise (or in fact FX almost everywhere) the

constraint set admits a larger class of distributions. As a result, for τ we have, for any

τ ∈ T , Fτ ⊆Fτ . But this greatly simplifies the problem since now it is enough to write:

δ∗(τ̃) := inf
dF ′

X : dF ′
X≪dFX ;dF ′

X(X )=1
DKL(F ′

X ||FX)

s.t.
∫

X
τ(x)dF ′

X(x)≤ τ̃

so now the problem can be solved for the lower bound of the identified set. Again,

this interpretation of delta amounts to considering robustness to the lack of identification

the CATE. A similar argument applies for the reverse inequality (ATE ≤ τ̃) and τ .

1.E Re-evaluating policies over time

In the main paper, the policy-maker is concerned with extrapolating experimental

results to different policy contexts. In the application, this takes the form of extrapolating

the Medicaid extension program to other states. In this section I show that we can have

an alternative interpretation that emphasizes changes over time rather than across regions.

According to this interpretation, the measure of robustness δ∗ captures the minimal change

in demographic trends that is needed to invalidate a particular policy conclusion.
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Consider a time horizon t=−1,0,1,2, · · · ,T . Suppose that a policy is implemented

at time 0. For the covariate distribution at time 0, FX,0 the policy meets the target τ̃ ,

that is, ATEFX,0 ≥ τ̃ . Now, we may worry that over time, the covariate distribution might

change from F0 in such a way that does not justify the policy any longer.

How does the covariate shift assumption translate in thus context? It requires that

the causal effect τFX,0(·) = τFX,t(·) for all t= 1,2, · · · ,T . That is, the CATE for whichever

time horizon it is defined, does not change for new cohorts who are newly treated.

Here, a natural benchmark for comparison is given by the change between the

reference point and the pre-policy period t=−1. This benchmark is given by δbenchmark =

DKL(FX,−1||FX,0). In this case, if one finds δ∗(τ)> δbenchmark then the policy-maker may

be comforted by observing that the amount of variation needed to invalidate the claim

is larger than the natural variation that can be elicited from the time trends. Of course,

one could decide to formalize this notion since we could seek to jointly characterize the

asymptotic distribution of the vector of estimators (δ̂∗(τ̃), δ̂benchmark)T which is beyond the

scope of this paper.

1.F An interpretation of the robustness metric based

on Sanov’s theorem

In this section, I discuss some further details on the interpretation of δ∗(τ) based

on Sanov’s theorem the I have introduced in Section 1.F. The treatment in this section will

be restricted to a covariate space X that is supported on finitely many points, reflecting

the discussion of the method of types in Cover [1999]. Suppose there are k covariates,

X1, · · · ,Xk, each taking values in Xj with |Xj | finite. Let m := ∑k
j=1 |Xj |. The set of

probability distributions on X = Πk
j=1Xj can be identified with the (D−1)-dimensional

simplex in Rm. For a fixed sample size n consider the set of all sequences of data
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x = (x1,x2, · · · ,xn) taking values in X n and define the type Px of a sequence x as the

relative proportion of each possible realization a in X , that is, Px(a) = N(a|x)
n where N(a|x)

is the number of times realization a shows up is in sequence x. Let Pn be the collection

of types. Cover [1999] version of Sanov theorem allows for a more general set E, not

necessarily convex at the price of an additional multiplicative polynomial term (n+1)m

in the number of observation. If the set E is a convex set, the upper bound can be

tightened to Pn(E∩Pn)≤ e−nDKL(P ∗||P ) and the polynomial term in n is dropped. Note

that E := {Q :
∫
X τ(x)dQ ≤ τ̃} is obtained through imposing a linear restriction on Q

and therefore E is convex. Sanov’s theorem remains true for larger classes of probability

distributions, not necessarily confined to finitely supported X like discussed in Csiszár

[1984] but the method of types leans itself for a discussion on discrete spaces.

1.G Some additional results

Proposition 21. Let ϵ > 0. Then for τ̃ > infX τ(x)+ ϵ, δ∗(τ̃) in Definition 3 is decreasing

in τ̃ .

Proof. First denote the feasible set E(τ̃) := {FX ∈ F :
∫
X τ(x)dFX(x)≤ τ̃}. Then, GX ∈

E(τ̃) ⇐⇒
∫
X τ(x)dFX(x) ≤ τ̃ < τ̃ ′ for any τ̃ ′ > τ̃ so GX ∈ E(τ̃ ′). But then E(τ̃) ⊆

E(τ̃ ′). Hence, because we are minimizing on a larger set of distributions δ∗(τ̃) :=

infGX∈E(τ̃)DKL(GX ||FX)≥ infGX∈E(τ̃ ′)DKL(GX ||FX) =: δ∗(τ̃ ′). If the feasible set E has

the reverse inequality, it follows immediately that δ∗(τ) is increasing in τ̃ .
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1.H General φ-divergence metrics and least favorable

closed classes.

In this section I extend the theory of least favorable classes by considering different

φ divergence measures. To this end I leverage the thorough treatment of φ divergences in

Christensen and Connault [2019]. The Kullback-Leibler divergence is a special case of a

more general construction, known as φ-divergence. It is introduced below:

Definition 22 (φ-divergence). Consider the φ-divergence between FX and F ′
X given by:

Dφ(F ′
X ||FX) :=

∫
φ

(
dF ′

X

dFX

)
dFX (A1.19)

where φ is a convex function with φ(1) = 0 and dF ′
X

dFX
is the Radon-Nikodym derivative of

the probability distribution F ′
X with respect to the probability distribution of FX , provided

that P ′
X ≪ PX for the respective measures. For example the choices φ(t) = t log t and

φ(t) = 1
2 |t−1| give rise to the KL-divergence and to the total variation divergence (TV)

respectively.

There may be a reason to choose a different φ-divergence metric instead of the

KL-divergence. Under suitable conditions, the construction of the proposed robustness

metric will change in magnitude, since now the (pseduo)-metric on the space of distributions

of the covariates is different. A closed form solution analogous to Lemma 7 is available.

The characterization of the δ∗ now depends on φ(·). In particular it is fully characterized

in terms of the Fenchel-conjugate of φ and its derivative.

Definition 23 (Fenchel-Conjugate). Given a topological vector space X and convex function

φ :X → R, the Fenchel-conjugate φ∗ :X∗→ R, defined on the dual space of X, is defined
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by:

φ∗ : x∗ 7→ sup
x∈X
⟨x∗,x⟩−φ(x) (A1.20)

Then we can have a generalization of the policy-maker’s problem in Equations (1.4)

and (1.5) for an arbitrary φ divergence in 22:

inf
P ′
X : P ′

X≪PX ;P ′
X(X )=1

Dφ(F ′
X ||FX) (A1.21)

s.t.
∫

X
τ(x)dF ′

X(x)≤ τ̃ (A1.22)

From the KKT Theorem (Theorem 1, Ch.8, Sec. 3 in Luenberger [1997]) we can write the

problem as:

sup
λ∈Λ

sup
ξ

(
inf

P ′
X : P ′

X≪PX ;P ′
X(X )=1

Dφ(F ′
X ||FX)+λ

∫
X

(τ(x)− τ̃)dF ′
X(x)+ ξ

(∫
X
dF ′

X −1
))

(A1.23)

where and ξ is the Lagrange multiplier for integration to unity, λ is the Lagrange multiplier

for the policy-maker’s claim. The convexity conditions for Theorem 1, Ch.8, Sec. 3

in Luenberger [1997] are immediate to verify. The interior condition, analogous to a

Slater condition, is satisfied by Assumption 4. Note that convex cone where the Lagrange

multiplier takes values is R+ (or R− if the policy-maker’s claim is ATE ≤ τ̃ instead). In

Equation (1.9) the Lagrange multiplier λ is a 1-dimensional parameter. Notice that after

fixing the experimental distribution, DKL(·||FX) is convex in its first argument. With a

careful rewriting we can express the inner problem as:

inf
P ′
X : P ′

X≪PX ;P ′
X(X )=1

∫
X

(
φ

(
dF ′

X

dFX
(x)
)
− (−λ(τ(x)− τ̃)− ξ) dF

′
X

dFX
(x)
)
dFX(x)− ξ
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and recognize that, if we can pass the infimum under the integral sign, we can substitute

the expression for the Fenchel-conjugate of φ, switching the sign of the infimum.

inf
P ′
X : P ′

X≪PX ;P ′
X(X )=1

∫
X

(
φ

(
dF ′

X

dFX
(x)
)
− (−λ(τ(x)− τ̃)− ξ) dF

′
X

dFX
(x)
)
dFX(x)− ξ

=−
∫

X
φ∗(−λ(τ(x)− τ̃)− ξ)dFX(x)− ξ

Substituting this back into the outside problem one obtains:

sup
λ∈Λ

sup
ξ

∫
X
−φ∗(−λ(τ(x)− τ̃)− ξ))dFX(x)− ξ

which can be maximized with respect to ξ and delivers the first order condition, evaluated

at ξ∗: ∫
X
φ̇∗(−λ(τ(x)− τ̃)− ξ∗)dFX = 1 (A1.24)

where φ̇∗(·) is the derivative of φ∗(·) with respect to its argument. Observe that the

Fenchel-conjugate of φ(t) = t log(t) is given by φ(t∗) = exp(t∗− 1). Solving for ξ∗ here

delivers:

ξ∗ = log
(∫

X
exp(−λ(τ(x)− τ̃ −1))dFX(x)

)

Now differentiating with respect to λ we obtain

∫
X
φ̇∗(−λ∗(τ(x)− τ̃)− ξ∗)(τ(x)− τ̃ + ξ̇∗

λ)dFX(x)− ξ̇∗
λ = 0 (A1.25)

where ξ̇∗
λ is the derivative of ξ∗ with respect to λ and λ∗ is the value that implicitely solves

the moment condition in Equation (A1.25). Observe that plugging Equation (A1.24) into

Equation (A1.25) allows to simplify it to:

∫
X
φ̇∗(−λ∗(τ(x)− τ̃)− ξ∗)(τ(x)− τ̃)dFX = 0
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since the two terms in ξ̇∗
λ cancel out. Moreover, if φ(·) is the KL divergence like in the

main body of the paper, then

∫
X
φ̇∗(−λ∗(τ(x)− τ̃)(τ(x)− τ̃)dFX · exp(−ξ∗) = 0

so the additional term exp(−ξ∗)> 0 can be dropped and Equation (A1.25) recovers

Equation (1.9).

1.I Proofs

First I introduce a few basic results for optimization problems like the one in

Equations (1.4-1.5). Consider the set of probability distributions on X , PX := {PX :∫
X dPX = 1}. Under the L1 norm, PX is a complete metric space and it is convex. Namely,

if P1,P2 ∈ PX then Pα = αP1 + (1−α)P2 ∈ PX is a mixture distribution. Moreover, if

there is a dominating measure µ such that f1 = dP1
dµ and f2 = dP2

dµ are the Radon-Nikodym

derivatives then dPα
dµ = αf1 +(1−α)f2. Now consider the constraint given in Equation (1.5).

For any two P1 and P2 that satisfy the constraint, Pα for any α ∈ [0,1] will satisfy it as well.

Hence the constraint set given by Equation (1.5) is a convex subset of PX . If such a set is

non-empty, then, because DKL(·||FX) is a strictly convex function on a convex set, the

infimization problem in Equation (1.4) has a unique solution (PX -almost everywhere) and

the infimum is achieved. Lemma 7 characterizes such a solution PX -almost everywhere.

1.I.1 Proof of Lemma 7

The proof is based on a result that appeared first in Donsker and Varadhan [1975].

More recently Ho [2020] has used a similar argument to characterize global sensitivity in a

Bayesian setting.
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Lemma 7 (Closed form solution). Let Assumptions 1, 2, 3 and 4 hold. Then: i) The infi-

mum in Equation (1.4) is achieved. Moreover F ∗
X , is characterized, PX-almost everywhere,

by:
dF ∗

X

dFX
(x) = exp(−λ(τ(x)− τ̃))∫

X exp(−λ(τ(x)− τ̃))dFX(x) (1.8)

where dF ∗
X

dFX
is the Radon-Nikodym derivative of dF ∗

X with respect to dFX and λ is the

Lagrange multiplier implicitly defined by the equation:

∫
X

exp(−λ(τ(x)− τ̃))(τ(x)− τ̃)dFX(x) = 0 (1.9)

ii) The value of the robustness metric δ∗(τ̃) is given by:

δ∗(τ̃) =DKL(F ∗
X ||FX) =− log

(∫
X

exp(−λ(τ(x)− τ̃))dFX(x)
)

(1.10)

First note that, by the Radon-Nikodym theorem, dF ∗
X

dFX
exists and supp

(
dF ′

X
dFX

)
⊂X .

Recall τ(x) = E[Y1|X = x]−E[Y0|X = x]. Then:

inf
F ′
X : P ′

X≪PX ;P ′
X(X )=1

DKL(F ′
X ||FX)

s.t.
∫

X
τ(x)dF ′

X(x) = τ̃

is equivalent to:

inf
F ′
X : P ′

X≪PX
DKL(F ′

X ||FX)

s.t.
∫

X
τ(x)dF

′
X

dFX
dFX(x) = τ̃

P ′
X(X ) = 1

I adapt a lemma from Donsker and Varadhan [1975]:
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Lemma 24. Let F ∗
X satisfy dF ∗

X
FX

= exp(−λ(τ(x)−τ̃))∫
X exp(−λ(τ(x)−τ̃))dFX

. For any probability measure F̃X

such that F̃X ≪ FX we have:

log
(∫

X
exp(−λ(τ(x)− τ̃))dFX

)
=−

[∫
X
λ(τ(x)− τ̃)dF̃X(x)+DKL(F̃X ||FX)

]
+DKL(F̃X ||F ∗

X)

Proof. First by definition of the KL-divergence we have:

DKL(F̃X ||F ∗
X) =

∫
X

log
(
dF̃X
dF ∗

X

)
dF̃X

=
∫

X
log

 dF̃X
dFX
dF ∗

X
dFX

dF̃X
=
∫

X

(
log

(
dF̃X
dFX

)
− log

(
dF ∗

X

dFX

))
dF̃X

=
∫

X
log

(
dF̃X
dFX

)
dF̃X −

∫
X

log
(

exp(−λ(τ(x)− τ̃)∫
X exp(−λ(τ(x)− τ̃)dFX

)
dF̃X

=DKL(F̃X ||FX)+
∫

X
λ(τ(x)− τ̃)dF̃X

+
∫

X
log

(∫
X

exp(−λ(τ(x)− τ̃))dFX
)
dF̃X

=DKL(F̃X ||FX)+
∫

X
λ(τ(x)− τ̃)dF̃X +log

(∫
X

exp(−λ(τ(x)− τ̃))dFX
)

since F̃X ≪ F ∗
X ≪ FX and simple algebra. Rearranging we get:

log
(∫

X
exp(−λ(τ(x)− τ̃)dFX

)
=DKL(F̃X ||F ∗

X)−
[∫

X
λ(τ(x)− τ̃)dF̃X +DKL(F̃X ||FX)

]

Proof. i) From the lemma above we have:

log
(∫

X
exp(−λ(τ(x)− τ̃))dFX

)
=DKL(F̃X ||F ∗

X)−DKL(F̃X ||FX)−
∫

X
λ(τ(x)− τ̃)dF̃X
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Now observe that, since the term log(
∫
X exp(−λ(τ(x)− τ̃)dFX) does not depend on F̃X

we must have:

arg min
F̃X≪FX

DKL(F̃X ||F ∗
X) = arg max

F̃X≪FX

−
∫
X
λ(τ(x)− τ̃)dF̃X −DKL(F̃X ||FX)

= arg min
F̃X≪FX

∫
X
λ(τ(x)− τ̃)dF̃X +DKL(F̃X ||FX)

but clearly F ∗
X = argminF̃X≪FX

DKL(F̃X ||F ∗
X) so we must have

F ∗
X = arg min

F̃X≪FX

DKL(F̃X ||FX)+λ
∫
X

(τ(x)− τ̃)dF̃X

which is the desired result. ii) Observe that DKL(F ∗
X ||F ∗

X) = 0 hence the value of the

minimization problem:

min
F̃X≪FX

DKL(F̃X ||FX)+λ
∫
X

(τ(x)− τ̃)dF̃X

= min
F̃X≪FX

DKL(F̃X ||F ∗
X)− log

(∫
X

exp(−λ(τ(x)− τ̃))dFX
)

=− log
(∫

X
exp(−λ(τ(x)− τ̃))dFX

)

1.I.2 Proof of Fact 9

Proof. First, in this setting F ∗
X ≪ FX simply implies p1 = 0 =⇒ p∗

1 = 0. Excluding such a

trivial case, 1.12 characterizes p∗
1
p1

. First we solve for the Lagrange multiplier λ in 1.12 by
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noting that:

τ̃ =
∫

X
τ(x)dF ∗

X

= exp(−λ(τ(1)− τ̃))τ(1)p1 +exp(−λ(τ(0)− τ̃))τ(0)(1−p1)
exp(−λ(τ(1)− τ̃))p1 +exp(−λ(τ(0)− τ̃))(1−p1)

rearranging the denominator and since τ̃ is a constant, we obtain

exp(−λ(τ(1)− τ̃))τ(1)p1 +exp(−λ(τ(0)− τ̃))τ(0)(1−p1)

= exp(−λ(τ(1)− τ̃))τ̃ p1 +exp(−λ(τ(0)− τ̃))τ̃(1−p1)

which gives the condition:

exp(−λ(τ(1)− τ̃))(τ(1)− τ̃)p1 +exp(−λ(τ(0)− τ̃))(τ(0)− τ̃)(1−p1) = 0

And isolating each side and taking logs we obtain:

−λ(τ(1)− τ(0)) = log
(

(τ̃ − τ(0))(1−p1)
(τ(1)− τ̃)p1

)

so that

−λ= 1
(τ(1)− τ(0)) log

(
(τ̃ − τ(0))(1−p1)

(τ(1)− τ̃)p1

)

Finally, replacing −λ in 1.11 we have:

p∗
1
p1

=
exp

(
log

( (τ̃−τ(0))(1−p1)
(τ(1)−τ̃)p1

)
τ(1)−τ̃
τ(1)−τ(0)

)
exp

(
log

( (τ̃−τ(0))(1−p1)
(τ(1)−τ̃)p1

)
τ(1)−τ̃
τ(1)−τ(0)

)
p1 +exp

(
log

( (τ̃−τ(0))(1−p1)
(τ(1)−τ̃)p1

)
τ(0)−τ̃
τ(1)−τ(0)

)
(1−p1)
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Finally rearranging and combining terms we have:

p∗
1 =

exp
(
log

( (τ̃−τ(0))(1−p1)
(τ(1)−τ̃)p1

)
τ(1)−τ̃
τ(1)−τ(0)

)
p1

exp
(
log

( (τ̃−τ(0))(1−p1)
(τ(1)−τ̃)p1

)
τ(1)−τ̃
τ(1)−τ(0)

)
p1 +exp

(
log

( (τ̃−τ(0))(1−p1)
(τ(1)−τ̃)p1

)
τ(0)−τ̃
τ(1)−τ(0)

)
(1−p1)

=

( (τ̃−τ(0))(1−p1)
(τ(1)−τ̃)p1

) τ(1)−τ̃
τ(1)−τ(0) p1( (τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

) τ(1)−τ̃
τ(1)−τ(0) p1 +

( (τ̃−τ(0))(1−p1)
(τ(1)−τ̃)p1

) τ(0)−τ̃
τ(1)−τ(0) (1−p1)

= 1

1+
( (τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

) τ(0)−τ̃
τ(1)−τ(0) − τ(1)−τ̃

τ(1)−τ(0) (1−p1)
p1

= 1

1+
( (τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)−1 (1−p1)
p1

= 1
1+ τ̃−τ(0)

τ(1)−τ(0)

= 1
τ(1)−τ(0)
τ̃−τ(0)

= τ̃ − τ(0)
τ(1)− τ(0)

which, with τ̃ = 0, is the solution obtained in Equation (1.11).

1.I.3 Proof of Proposition 10

Proposition 10 (Local to boundary τ̃). Let Assumptions 1-3 hold and let τ̃m → τ̃b ∈

∂L(PX). Assume that the pre-image τ−1(τ̃b) = Xb = {xb} ∈ X o is a singleton. Further,

let X be compactly supported, with density f(x) <M on X . Then the sequence of least

favorable distributions for the policy-maker’s problem with parameter τ̃m, denoted F ∗
X,m,

converges weakly to δxb, the Dirac delta distribution with point mass at xb, that is:

lim
m→∞

∫
X
g(x)dF ∗

X,m(x)→
∫

X
g(x)δxb := g(xb)

for g ∈ Cb(X ), the space of all continuous, bounded functions on X .
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Proof. First observe that by Lemma 7 and the fact that each τm ∈Lo(PX) we can construct

the sequence of least favorable distributions F ∗
m,X satisfying:

dF ∗
m,X

dFX
(x) = exp(−λm(τ(x)− τ̃m))∫

X exp(−λm(τ(x)− τ̃m))dFX

λm :
∫

X
exp(−λm(τ(x)− τ̃m))(τ(x)− τ̃m)dFX = 0

Without loss of generality consider the case where τ̃b = maxX τ(x). First notice that

the sequence of λm defined above is decreasing and unbounded below. To see that it’s

decreasing observe that implicitly differentiating λ(τ̃):

∂

∂τ̃

∫
X

exp(−λm(τ(x)− τ̃m))(τ(x)− τ̃m)dFX(x)

=−∂λ
∂τ̃

(τ̃)
∫

X
exp(−λ(τ̃)(τ(x)− τ̃))(τ(x)− τ̃)2dFX

+λ(τ̃)
∫

X
exp(−λ(τ̃)(τ(x)− τ̃))(τ(x)− τ̃)dFX

−
∫

X
exp(−λ(τ̃)(τ(x)− τ̃))dFX = 0

by the Dominated Convergence Theorem with envelope g = exp(2M) ·2M . Note that by

the definition of λ(τ̃) the second term is equal to 0. Isolating the derivative of λ with

respect to τ̃ we have:

∂λ

∂τ̃
(τ̃) =−

∫
X exp(−λ(τ̃)(τ(x)− τ̃))dFX∫

X exp(−λ(τ̃)(τ(x)− τ̃))(τ(x)− τ̃)2dFX
< 0

so λ(τ̃) is strictly decreasing on its domain. Suppose λm ≥−B for all m ∈N , with B > 0.

Then:

∫
X

exp(−λm(τ(x)− τ̃m))(τ(x)− τ̃m)dFX ≤
∫

X
exp(B(τ(x)− τ̃m))(τ(x)− τ̃m)dFX
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so taking the limit fro m→∞, if PX(τ(x) ̸= τ̃b)> 0:

lim
m→∞

∫
X

exp(−λm(τ(x)− τ̃m))(τ(x)− τ̃m)dFX

≤ lim
m→∞

∫
X

exp(B(τ(x)− τ̃m))(τ(x)− τ̃m)dFX(x)

≤
∫

X
exp(B(τ(x)− τ̃b))(τ(x)− τ̃b)dFX(x)< 0

Then, there exist m∗ ∈ N such that
∫
X exp(λm∗(τ(x)− τ̃m∗))(τ(x)− τ̃m∗)dFX < 0 which

is a contradiction. So λm must be unbounded below. Because it’s a strictly decreasing,

unbounded below sequence, it must be the case that λm→−∞ as τ̃m→ τ̃b. Now we show

convergence in distribution to δxb . Let φ(·) ∈ Cb. We want to show:

lim
m→∞

∫
X
φ(x)dF ∗

X,m(x)→
∫

X
φ(x)δxb(x) = φ(xb)

We have:

∫
X
φ(x)dF ∗

X,m(x) =
∫

X
φ(x) exp(−λm(τ(x)− τ̃b))dFX(x)∫

X exp(−λm(τ(x)− τ̃b))dFX(x)

=
∫

X
φ(x) exp(−λm(τ(x)− τ̃b))dFX(x)∫

X exp(−λm(τ(x)− τ̃b))dFX(x)

Noticing that λm < 0. Consider the change of variables y =
√
−λm(xb−x). Then x =
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xb− y√
−λm

, dx=− dy√
−λm

. By the change of variable formula:

∫
X
φ(x) exp(−λm(τ(x)− τ̃b))f(x)dx∫

X exp(−λm(τ(x)− τ̃b))f(x)dx

=
∫
Rk φ

(
xb− y√

−λm

)
exp

(
−λm

(
τ
(
xb− y√

−λm

)
− τ(xb)

))
f
(
xb− y√

−λm

)
1Y(λm)(y) 1√

−λm
dy∫

Rk exp
(
−λm

(
τ
(
xb− y√

−λm

)
− τ(xb)

))
f
(
xb− y√

−λm

)
1Y(λm)(y) 1√

−λm
dy

=
∫
Rk φ

(
xb− y√

−λm

)
exp

(
−λm

(
τ
(
xb− y√

−λm

)
− τ(xb)

))
f
(
xb− y√

−λm

)
1Y(λm)(y)dy∫

Rk exp
(
−λm

(
τ
(
xb− y√

−λm

)
− τ(xb)

))
f
(
xb− y√

−λm

)
1Y(λm)(y)dy

Note that, if X is compactly supported then f(x) = 0 outside of a compact set K ⊆ Rk

hence. Moreover, if f(x)<M we have the dominating function given by:

φ

(
xb−

y√
−λm

)
exp

(
−λm

(
τ

(
xb−

y√
−λm

)
− τ(xb)

))
f

(
xb−

y√
−λm

)
1Y(λm)(y)dy

≤ ∥φ∥∞M1K(y)

on Rk and
∫
Rk∥φ∥∞M1K(x)dx= ∥φ∥∞ ·M ·vol(K)<+∞. hence the assumptions of the

Dominated Convergence theorem hold. Then we have:

= lim
m→∞

∫
Rk
φ

(
xb−

y√
−λm

)
exp

(
−λm

(
τ

(
xb−

y√
−λm

)
− τ(xb)

))

×f
(
xb−

y√
−λm

)
1Y(λm)(y)dy

=
∫
Rk

lim
m→∞φ

(
xb−

y√
−λm

)
exp

(
−λm

(
τ

(
xb−

y√
−λm

)
− τ(xb)

))

×f
(
xb−

y√
−λm

)
1Y(λm)(y)dy

Now consider Taylor expanding τ(·) around xb. Because xb is a maximizer, the Jacobian
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Jτ (xb) : Rk→ R is the zero matrix, from first order conditions. Hence:

exp
(
−λm

(
τ

(
xb−

y√
−λm

)
− τ(xb)

))

= exp
(
−λm

(
τ(xb)−Jτ (xb)

(
y√
−λm

)
+ 1

2 ·
1
−λm

yTHτ (xb)y− τ(xb)
))

= exp
(1

2y
THτ (xb)y+o(1)

)

where Hτ (xb) is the k×k Hessian matrix of τ , evaluated at the maximizer xb. Moreover:

∫
Rk

lim
m→∞φ

(
xb−

y√
−λm

)
exp

(
−λm

(
τ

(
xb−

y√
−λm

)
− τ(xb)

))
f

(
xb−

y√
−λm

)
1Y(λm)(y)dy

=
∫
Rk
φ(xb)exp

(1
2y

TH(xb)y
)
f(xb)dy

= φ(xb)
∫
Rk

exp
(1

2y
TH(xb)y

)
f(xb)dy

Now the denominator can be treated identically to have:

∫
Rk

lim
m→∞exp

(
−λm

(
τ

(
xb−

y√
−λm

)
− τ(xb)

))
f

(
xb−

y√
−λm

)
1Y(λm)(y)dy

=
∫
Rk

exp
(1

2y
TH(xb)y

)
f(xb)dy

Now because xb is a maximizer, H(xb) is negative definite so the quantities above are finite
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and the numerator is greater than 0. Finally:

lim
m→∞

∫
X
φ(x)dF ∗

X,m(x)

= lim
m→∞

∫
X φ(x)exp(−λm(τ(x)− τ̃b))f(x)dx∫

X exp(−λm(τ(x)− τ̃b))f(x)dx

= limm→∞
∫
X φ(x)exp(−λm(τ(x)− τ̃b))f(x)dx

limm→∞
∫
X exp(−λm(τ(x)− τ̃b))f(x)dx

=
φ(xb)

∫
Rk exp

(
1
2y
TH(xb)y

)
f(xb)dy∫

Rk exp
(

1
2y
TH(xb)y

)
f(xb)dy

= φ(xb)

Since φ(·) ∈ Cb was arbitrary, by the Portmanteau theorem, dF ∗
X,m

d→ δxb .

In the general case where Xb is not a singleton, it seems that the least favorable

distribution still concentrates around the uniform distribution on the Xb, rather than any

distribution like the figure below suggests. I leave this interesting case for future work.
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Figure 1.I.1: Here τ(x) is quadratic, experimental distribution is uniform and there
are two peaks. It appears that the least favorable distribution concentrates around both
peaks.

1.I.4 Proof of Proposition 19

Proposition 19 (Quadratic-Normal least favorable closed-ness). The parametric class

N (µ,σ2) is least favorable closed for quadratic Conditional Average Treatment Effects.

That is, if X ∈Rk follows the multivariate normal distribution X ∼N (µµµ,ΣΣΣ) where ΣΣΣ is p.d.

and τ(x) = xTAxxTAxxTAx+xTβxTβxTβ+ c for βββ ∈ Rk then F ∗
X is the measure induced by X∗ ∼N (µ∗µ∗µ∗,Σ∗Σ∗Σ∗)

with µµµ∗ = (ΣΣΣ−1 +2λAAA)−1(ΣΣΣ−1µµµ−λβββ) and Σ∗Σ∗Σ∗ = (ΣΣΣ−1 +2λAAA)−1, provided that (ΣΣΣ−1 +2λAAA)−1

is p.d. The parameter λ is defined as in Equation (1.9).

Proof. Suppose X = Rk, X ∼N (µµµ,σσσ) and τ(x) =xTAxxTAxxTAx+xTβxTβxTβ+c. By Lemma 7 the Radon-

Nikodym derivative of the least favorable distribution is given by Equation (1.8) so the

distribution of F ∗
X must have density:
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dµ∗
X :=

exp(−λ(τ(x)− τ̃)) exp(− 1
2 (xxx−µµµ)TΣΣΣ−1(xxx−µµµ))√

(2π)k det(ΣΣΣ)
dx∫

X
exp(−λ(τ(x)− τ̃))

exp
(
−1

2 (xxx−µµµ)TΣΣΣ−1(xxx−µµµ)
)√

(2π)k det(ΣΣΣ)
dx

=
exp(−λ(xxxTAxAxAx+xxxTβββ+ c− τ̃)) exp(− 1

2 (xxx−µµµ)TΣΣΣ−1(xxx−µµµ))√
(2π)k det(ΣΣΣ)

dx∫
X

exp(−λ(xxxTAxAxAx+xxxTβββ+ c− τ̃))
exp

(
−1

2 (xxx−µµµ)TΣΣΣ−1(xxx−µµµ)
)√

(2π)k det(ΣΣΣ)
dx

=

exp(−λ(xxxTAxAxAx+xxxTβββ+c−τ̃)− 1
2 (xxx−µµµ)TΣΣΣ−1(xxx−µµµ))√

(2π)k det(ΣΣΣ)
dx∫

X

exp(−λ(xxxTAxAxAx+xxxTβββ+ c− τ̃)− 1
2 (xxx−µµµ)TΣΣΣ−1(xxx−µµµ))√

(2π)k det(ΣΣΣ)
dx

=
exp(−λ(xxxTAxAxAx+xxxTβββ+ c− τ̃)− 1

2 (xxx−µµµ)TΣΣΣ−1(xxx−µµµ))dx∫
X

exp(−λ(xxxTAxAxAx+xxxTβββ+ c− τ̃)− 1
2(xxx−µµµ)TΣΣΣ−1(xxx−µµµ))dx

=
exp(−1

2 (xxx− (ΣΣΣ−1 +2λAAA)−1(ΣΣΣ−1µµµ−λβββ))(ΣΣΣ−1 +2λAAA))(x− (ΣΣΣ−1 +2λAAA)−1(ΣΣΣ−1µµµ−λβββ))dx∫
X

exp(−1
2(x− (ΣΣΣ−1 +2λAAA)−1(ΣΣΣ−1µµµ−λβββ))(ΣΣΣ−1 +2λAAA))(x− (ΣΣΣ−1 +2λAAA)−1(ΣΣΣ−1µµµ−λβββ))dx

×
exp(λc+λτ̃ − 1

2µµµ
TΣΣΣ−1µµµ− 1

2 (ΣΣΣ−1µµµ−λβββ)(ΣΣΣ−1 +2λβββ)−1(ΣΣΣ−1µµµ−λβββ))
exp(λc+λτ̃ − 1

2µµµ
TΣΣΣ−1µµµ− 1

2 (ΣΣΣ−1µµµ−λβββ)(ΣΣΣ−1 +2λβββ)−1(ΣΣΣ−1µµµ−λβββ))

=
exp(−1

2 (xxx− (ΣΣΣ−1 +2λAAA)−1(ΣΣΣ−1µ−λβββ))(ΣΣΣ−1 +2λAAA))(x− (ΣΣΣ−1 +2λAAA)−1(ΣΣΣ−1µµµ−λβββ))dx∫
X

exp(−1
2(xxx− (ΣΣΣ−1 +2λAAA)−1(ΣΣΣ−1µµµ−λβββ))(ΣΣΣ−1 +2λAAA))(xxx− (ΣΣΣ−1 +2λAAA)−1(ΣΣΣ−1µµµ−λβββ))dx

from which we can recognize the form of the normal distribution with mean µµµ∗ and

variance covariance matrix ΣΣΣ∗. The steps above follow from completing the square and

from the properties of exp(·).

75



1.I.5 Proof of Proposition 13

Proposition 13. The de-biased GMM nonparametric influence function based on moment

function g(·) is:

ϕ(w,θ,γ0,α0) =

 exp
(
−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)

)
· (−λ)

exp
(
−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)

)
· (1−λ · (γ1,F0(x)−γ0,F0(x)− τ̃))


×
(
d(y−γ1,F0(x))

πF0(x) − (1−d)(y−γ0,F0(x))
1−πF0(x)

)

which could be written in the form:

ϕ(w,θ,γ0,α0) =

 exp
(
−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)

)
· (−λ)

exp
(
−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)

)
· (1−λ · (γ1,F0(x)−γ0,F0(x)− τ̃))



×


α1,F0(x)

α0,F0(x)


T  d(y−γ1,F0(x))

(1−d)(y−γ0,F0(x))




with αF0(x) :=

α1,F0(x)

α0,F0(x)

=


1

πF0(x)

1
1−πF0(x)

.

Proof. Let Fr = (1−r)F0 +rH for an arbitrary distribution H that satisfies unconfounded-

ness. Then Fr is a distribution because it’s a convex combination of two distributions, and

it satisfies unconfounded-ness. Therefore we can refer to the identification results:

EFr [Y1|X] = EFr [Y |D = 1,X]

EFr [Y0|X] = EFr [Y |D = 0,X]

and derive the distributional derivative of EFr [Y |D = 1,X]−EFr [Y |D = 0,X] with respect

to r and evaluate it at r = 0. Alternatively one may start with the propensity score
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weighting identification result below:

EFr

 Y ·D
πFr(X) −

Y · (1−D)
πFr(X)

∣∣∣∣∣∣X
= EFr [Y1−Y0|X]

and proceed as above to derive the distributional derivative of EF [g(W,θ,γ(Fr))]. The
second approach is more cumbersome so we present the proof for the regression adjustment
method but note that both would be valid approaches to find the nonparametric influence
function. Computing the derivative of the moment condition with respect to r and
evaluating it at r = 0 we have:

dE[g(W,θ,γ(Fr))]
dr

∣∣∣∣∣
r=0

= d

dr
E

 exp(−λ0(γ1,Fr (x)−γ0,Fr (x)− τ̃))−ν]

exp(−λ0(γ1,Fr (x)−γ0,Fr (x)− τ̃))(γ1,Fr (x)−γ0,Fr (x)− τ̃)]

∣∣∣∣∣
r=0

=
∫

X

d

dr

 exp(−λ0 · (γ1,Fr (x)−γ0,Fr (x)− τ̃))

exp(−λ0 · (γ1,Fr (x)−γ0,Fr (x)− τ̃))(γ1,Fr (x)−γ0,Fr (x)− τ̃)

f0(x)dx

∣∣∣∣∣
r=0

=
∫

X

 exp(−λ0 · (γ1,Fr (x)−γ0,Fr (x)− τ̃)) · (−λ0)

exp(−λ0 · (γ1,Fr (x)−γ0,Fr (x)− τ̃)) · (1−λ · (γ1,Fr (x)−γ0,Fr (x)− τ̃))


× ∂

∂r
(γ1,Fr (x)−γ0,Fr (x))f0(x)dx
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In order to characterize the contribution of the functional we have:

∂

∂r
(γ1,Fr (x)−γ0,Fr (x))

= ∂

∂r

∫
Y

y∫
Y(1− r)dF0(y,1,x)+ rdH(y,1,x)

((1− r)dF (y,1,x)+ rdH(y,1,x))

− ∂

∂r

∫
Y

y∫
Y(1− r)dF0(y,0,x)+ rdH(y,0,x)

((1− r)dF (y,0,x)+ rdH(y,0,x))

=
∫

Y y · [dH(y,1,x)−dF0(y,1,x)]
∫

Y(1− r)dF0(y,1,x)+ rdH(y,1,x)(∫
Y(1+ r)dF0(y,1,x)+ rdH(y,1,x)

)2

−
∫

Y y[dH(y,1,x)−dF0(y,1,x)]((1− r)dF0(y,1,x)−dH(y,1,x))(∫
Y(1+ r)dF0(y,1,x)+ rdH(y,1,x)

)2

−
∫

Y y · [dH(y,0,x)−dF0(y,0,x)]
∫

Y(1− r)dF0(y,0,x)+ rdH(y,0,x)(∫
Y(1+ r)dF0(y,0,x)+ rdH(y,0,x)

)2

+
∫

Y y[dH(y,0,x)−dF0(y,0,x)]((1− r)dF0(y,0,x)−dH(y,0,x))(∫
Y(1+ r)dF0(y,0,x)+ rdH(y,0,x)

)2

Below f0(d,x) =
∫
Y dF0(y,d,x) and the same holds for h(·). Evaluating this expression at

r = 0 one obtains:

∫
y · dH(y,1,x)

f0(1,x) −
∫
y · h(1,x) ·dF0(y,1,x)

f0(1,x)2 −
∫
y · dH(y,0,x)

f0(0,x) +
∫
y · h(0,x) ·dF0(y,0,x)

f0(0,x)2

Combining this with the derivative of the moment condition with respect to the γ we have:

dE[g(W,θ,γ(Fr))]
dr

=
∫

Y×{0,1}×X

 exp(−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)) · (−λ)

exp(−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)) · (1−λ · (γ1,F0(x)−γ0,F0(x)− τ̃))


×
(
d(y−γ1,F0(x))

πF0(x) −
(1−d)(y−γ0,F0(x))

1−πF0(x)

)
dH(y,d,x)
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or dE[g(W,θ,γ(Fr))]
dr =

∫
Y×{0,1}×X ϕ(w,θ,γ(F0),α(F0))dH(w) for

ϕ(w,θ,γ,α) =

 exp
(
−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)

)
· (−λ)

exp
(
−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)

)
· (1−λ · (γ1,F0(x)−γ0,F0(x)− τ̃))


×
(
d(y−γ1,F0(x))

πF (x) − (1−d)(y−γ0,F0(x))
1−πF (x)

)

=

 exp
(
−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)

)
· (−λ)

exp
(
−λ · (γ1,F0(x)−γ0,F0(x)− τ̃)

)
· (1−λ · (γ1,F0(x)−γ0,F0(x)− τ̃))



×


α1,F0(x)

α0,F0(x)


T  d(y−γ1,F0(x))

(1−d)(y−γ0,F0(x))




and αF0(X) :=

α1,F0(x)

α0,F0(x)

=


1

πF0(X)

1
1−πF0(X)

. Note that above ϕ(·) is the Riesz representer of

the linear functional dE[g(W,θ,γ(Fr))]
dr

∣∣∣∣∣∣
r=0

:H→ R2 which maps H to R2.

Observe that EF0 [ϕ(W,θ,γ0(X),α0(X)] = 0 by the law of iterated expectations.

Moreover, for any distribution F , EF

D(Y−EF [Y |D=1,X])
πF (X) − (1−D)(Y−EF [Y |D=0,X]

1−πF (X)

∣∣∣∣∣∣X
 = 0.

1.I.6 Proof of Proposition 14

Proposition 14. Equation (1.16) satisfies Neyman orthogonality.

Proof. To show that they are Neyman orthogonal we verify the conditions for Theorem

1 in Chernozhukov et al. [2020] in the Appendix. Let γ1,F (X),γ0,0(X) denote EF [Y |D =

1,X],EF [Y |D = 0,X] respectively.

i) Equation (1.15) holds. This has been verified above.

ii)
∫
Y0×Y1×X ϕ(w,γ(Fr), θ,α(Fr))Fr(dw) = 0 for all r ∈ [0, r̃):
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This is immediate by the law of iterated expectations

EFr [ϕ(W,γ(Fr), θ,α(Fr)]

= EFr [EFr [ϕ(W,γ(Fr), θ,α(Fr)|X]]

= EFr

v(X) ·EFr

(d(y−γ1,Fr(X))
πFr(X) − (1−d)(y−γ1,Fr(X))

1−πFr(X)

)∣∣∣∣∣∣X


= EFr [v(X) ·0]

= 0

for v(X) =

 exp
(
−λ · (γ1,Fr(x)−γ0,Fr(x)− τ̃)

)
· (−λ)

exp
(
−λ · (γ1,Fr(x)−γ0,Fr(x)− τ̃)

)
· (1−λ · (γ1,Fr(x)−γ0,Fr(x)− τ̃))


iii)

∫
Y0×Y1×X ϕ(w,γ(Fr), θ,α(Fr))H(dw) and

∫
Y0×Y1×X ϕ(w,γ(Fr), θ,α(Fr))F0(dw) are con-

tinuous at r = 0.

For a given H, we show that function b : r 7→
∫
Y0×Y1×X ϕ(w,γ(Fr), θ,α(Fr))H(dw) is contin-

uous at r= 0. Take a sequence rm→ r= 0, then ϕn(w) := ϕ(w,γ(Frm), θ,α(Frm)) converges

H-almost everywhere to ϕ0(w) :=ϕ(w,γ(F0), θ,α(F0)). Moreover we have ϕm(w)≤F (w) for

all m ∈ N with F ∈ L1(H). By the dominated convergence theorem we have: b(rm)→ b(0)

which is the desired result.

An analogous argument applies to the integral with respect to F0. As a consequence

of Theorems 1,2 and 3 in Chernozhukov et al. [2020] ψ(w,γ,θ,α) is Neyman orthogonal.

We can also verify Neyman orthogonality directly from the form of the ψ̄ function. In

particular:
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∂

∂r
E[ψ(W,θ,γFr ,αFr )]

∣∣∣∣∣
r=0

= ∂

∂r
E[g(W,θ,γ)+ϕ(W,θ,γ,α)]

∣∣∣∣∣
r=0

= E

[
∂

∂r

 exp(−λ0 · (γ1,Fr (X)−γ0,Fr (X)− τ̃))

exp(−λ0 · (γ1,Fr (X)−γ0,Fr (X)− τ̃))(γ1,Fr (X)−γ0,Fr (X)− τ̃)


+ ∂

∂r

( exp(−λ · (γ1,Fr (X)−γ0,Fr (X)− τ̃)) · (−λ)

exp(−λ · (γ1,Fr (X)−γ0,Fr (X)− τ̃)) · (1−λ · (γ1,Fr (X)−γ0,Fr (X)− τ̃))


×
(
D(Y −γ1,Fr (X))

πFr (X) −
(1−D)(Y −γ0,Fr (X))

1−πFr (X)

))]

= E

[ exp(−λ · (γ1,F0(X)−γ0,F0(X)− τ̃)) · (−λ)

exp(−λ · (γ1,F0(X)−γ0,F0(X)− τ̃)) · (1−λ · (γ1,F0(X)−γ0,F0(X)− τ̃))


×

(
∂γ1,Fr (X)

∂r
−
∂γ0,Fr (X)

∂r

)∣∣∣∣∣
r=0

−

 exp(−λ · (γ1,F0(X)−γ0,F0(X)− τ̃)) · (−λ)

exp(−λ · (γ1,F0(X)−γ0,F0(X)− τ̃)) · (1−λ · (γ1,F0(X)−γ0,F0(X)− τ̃))


×

(
D

πF0(X) ·
∂γ1,Fr (X)

∂r

∣∣∣∣∣
r=0

− (1−D)
1−πF0(X) ·

∂γ0,Fr (X)
∂r

∣∣∣∣∣
r=0

)

+

 exp(−λ · (γ1,F0(X)−γ0,F0(X)− τ̃)) · (λ)2

exp(−λ · (γ1,F0(X)−γ0,F0(X)− τ̃)) · (−λ) · (2−λ · (γ1,F0(X)−γ0,F0(X)− τ̃))


×

(
∂γ1,Fr (X)

∂r
−
∂γ0,Fr (X)

∂r

)∣∣∣∣∣
r=0

×
(
D(Y −γ1,F0(x))

πF0(X) −
(1−D)(Y −γ0,F0(X))

1−πF0(X)

)]

+

 exp(−λ · (γF0(X)− τ̃)) · (−λ)

exp(−λ · (γ1,F0(X)−γ0,F0(X)− τ̃)) · (1−λ · (γ1,F0(X)−γ0,F0(X)− τ̃))


×

(
D(Y −γ1,F0(X)) · ∂

∂r

(
1

πFr (X)

)∣∣∣∣∣
r=0

− (1−D)(Y −γ0,F0(X)) · ∂
∂r

(
1

1−πFr (X)

)∣∣∣∣∣
r=0

)

= 0

The last equality follows by the law of iterated expectations. The first and second

term cancel out since E
[

D
πF0(X)

∣∣∣∣X] = 1,E
[

1−D
1−πF0(X)

∣∣∣∣X] = 1. The third term is 0 be-
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cause the nonparametric influence function is centered at 0 conditional on X. Moreover,

E
[
D(Y −E[Y |D = 1,X]

∣∣∣∣X] = 0 and E
[
(1−D)(Y −E[Y |D = 0,X]

∣∣∣∣X] = 0 so whenever
∂
∂r

(
1

πFr (X)

)∣∣∣∣
r=0

and ∂
∂r

(
1

1−πFr (X)

)∣∣∣∣
r=0

are integrable, the fourth term is also 0, since

they are measurable with respect to σ(X). So ∂
∂rE[ψ(W,θ,γFr ,αFr)]

∣∣∣∣
r=0

= 0. Observe that

this result implies Neyman orthogonality with respect to the γ and α functions separately

as well. To show the Neyman orthogonality with respect to γ and to set up the further

results contained in Theorem 3 in Chernozhukov et al. [2020], we build the following

construction. Consider the linear space of square integrable functions of X (with respect

to some dominating measure), denoted as Γ = L2(X ). H is the closed set of distributions

which is a closed subset of the Banach space L1(Y0×Y1×X ,µ) under some appropriate

dominating measure µ. Denote the Hadamard differential of the conditional mean function

at F0 as ∂γ(Fr)
∂r : H→ Γ. Denote the Hadamard differential for ψ̄(γ(Fr),α0, θ) at F0 as

∂E[ψ(W,γ(Fr),α(Fr),θ)]
∂r :H→ R2. Finally denote the Hadamard differential of ψ̄(γ,θ) with

respect to γ as ∂ψ̄(γ,α,θ)
∂γ : Γ→ R2. Then the following diagram commutes by Proposition

20.9 in Van der Vaart [2000].

Γ

H R2

∂ψ̄(γ,α0,θ)
∂γ

∂γ(Fr)
∂r

∂E[ψ(W,γ(Fr),α0,θ)]
∂r

By Neymann orthogonality with respect to the distribution Fr, ∂E[ψ(W,γ(Fr),α0,θ)]
∂r ≡ 0.

∂ψ̄(γ,θ)
∂γ is onto Γ which satisfies Chernozhukov et al. [2020] Theorem 3 condition iv). Then,

by linearity of the Hadamard derivative and the commutativity of the above diagram it

must be the case that ∂ψ̄(W,γ,α0,θ)
∂γ ≡ 0. That is, the Hadamard derivative is the 0 function

from Γ→ R2. Note that this is the case because ∂γ(Fr)
∂r is onto L2(X ). According to the
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above calculations we have, for δH := ∂γ1,Fr
∂r −

∂γ0,Fr
∂r

∣∣∣∣
r=0
∈ L2(X ). Then as specified above:

∂E[ψ̄(θ,α0,γ)]
∂γ (δH) is a linear map from L2(X)→ R2 in δH . In particular it maps to 0 ∈ R2

for any δH(X), so it’s the 0 map. Hence we verified Neyman orthogonality with respect to

γ directly.

1.I.7 Proof of Theorem 15

Lemma 25. For ψ̄(θ,γ,α) = E[ψ(w,θ,γ,α)] we have:

i) ψ̄(γ,α0, θ0) is twice continuously Frechet differentiable in a neighborhood of γ0.

ii) If Λ is bounded then ∀θ ∈Θ, ψ̄(γ,α0, θ)≤ C̄∥γ−γ0∥2L2.

Proof. Endow the spaces Γ with the L2(X ,µ) norm and R2 with the standard Euclidean
norm ∥·∥. We directly compute the directional derivative of ψ̄(θ,γ,α) with respect to γ.

∂

∂r
ψ̄(γ,θ,α0)

=E
[[ exp

(
−λ · ((1 − r)(γ1,0(X) −γ0,0(X)) + r(γ1(X) −γ0(X)) − τ̃)

)
· (λ)2

exp
(

−λ · ((1 − r)(γ1,0(X) −γ0,0(X)) + r(γ1(X) −γ0(X)) − τ̃)
)

· (−λ) · (2 −λ · ((1 − r)(γ1,0(X) −γ0,0(X)) + r(γ1 −γ0) − τ̃))

]
×
(
D(Y − (1 − r)γ1,0(X) − rγ1(X))

πF0 (X)
−

(1 −D)(Y − (1 − r)γ0,0(X) − rγ0(X))
1 −πF0 (X)

)
[(γ1 −γ1,0) − (γ0 −γ0,0)]

]

where we emphasized linearity in [(γ1−γ1,0)− (γ0−γ0,0)], the discrepancy between

the estimated CATE and the true one. The second order Frechet derivative, if it exists, is a

bi-linear operator given below, obtained by differentiating the first order Frechet derivative

with respect to r. Then:
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∂

∂r

∂ψ̄(γ,θ,α0)
∂r

=E
[{[

exp(−λ((1 − r)(γ1,0(X) −γ0,0(X)) + r(γ1(X) −γ0(X)) − τ̃))(−λ)3

exp(−λ((1 − r)(γ1,0(X) −γ0,0(X)) + r(γ1(X) −γ0(X)) − τ̃))(−λ)2(3 − (1 − r)(γ1,0(X) −γ0,0(X)) + r(γ1(X) −γ0(X)) − τ̃))

]
×
(
D(Y − (1 − r)γ1,0(X) − rγ1(X))

πF0 (x)
−

(1 −D)(Y − (1 − r)γ0,0(X) − rγ0(X))
1 −πF0 (x)

)
×[(γ1 −γ1,0) − (γ0 −γ0,0); (γ1 −γ1,0) − (γ0 −γ0,0)]

+

[
exp
(

−λ · ((1 − r)(γ1,0(X) −γ0,0(X)) + r(γ1(X) −γ0(X)) − τ̃)
)

· (λ)2

exp
(

−λ · ((1 − r)(γ1,0(X) −γ0,0(X)) + r(γ1(X) −γ0(X)) − τ̃)
)

· (−λ) · (2 −λ · ((1 − r)(γ1,0(X) −γ0,0(X)) + r(γ1 −γ0) − τ̃))

]
×[(γ1 −γ1,0) − (γ0 −γ0,0)]

(
D

πF0 (X)
[γ1(X) −γ1,0(X)] −

1 −D

1 −πF0 (X)
[γ0(X) −γ0,0(X)]

)}]

Evaluated at r = 0 the second order directional derivatives are:

E
[ exp(−λ · ((γ1,0(X)−γ0,0(X))− τ̃)) · (λ)2

exp(−λ · (γ1,0(X)−γ0,0(X))− τ̃)) · (−λ) · (2−λ · ((γ1,0(X)−γ0,0(X))− τ̃))


× [(γ1(X)−γ1,0(X))− (γ0(X)−γ0,0(X)); (γ1(X)−γ1,0(X))− (γ0(X)−γ0,0(X))]

}]

by the law of iterated expectations. We emphasized that the above expression, is bi-linear
15 in (γ1(X)−γ1,0(X))− (γ0(X)−γ0,0(X). If the bi-linear map is continuous at (γ1,0,γ0,0)

with respect to the operator norm then ψ̄ is Frechet differentiable at (γ1,0,γ0,0) and the

directional derivative and the Frechet derivative coincide. A sufficient condition is given by:

∥∥∥∥∥∥ ∂
2

∂r2 ψ̄(γ,θ,α0)

∥∥∥∥∥∥
L2

<∞

15Denote the space of linear maps from Banach spaces X to Y as B(X,Y ). It is itself a Banach space.
Then one may identify B(L2(X )2,B(L2(X )2;R2)) with B(L2(X )2×L2(X )2;R2). Then the second order
Frechet derivative is a bi-linear map from L2(X )2×L2(X )2R2.
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which translates to

∥∥∥∥∥∥

 exp(−λ · ((γ1,0(X)−γ0,0(X))− τ̃)) · (λ)2

exp(−λ · (γ1,0(X)−γ0,0(X))− τ̃)) · (−λ) · (2−λ · ((γ1,0(X)−γ0,0(X))− τ̃))


× [(γ1(X)−γ1,0(X))− (γ0(X)−γ0,0(X)); (γ1(X)−γ1,0(X))− (γ0(X)−γ0,0(X))]


∥∥∥∥∥∥

L2

<∞

Then Frechet differentiability follows from Holder’s inequality with p = q = 2. Under a

slightly stronger condition which holds uniformly over r ∈ [0,1] one can obtain stronger

results. Then Theorem 3 ii) in Chernozhukov et al. [2020] can be applied and we have:

ψ̄(γ,α0, θ0)≤ C∥γ1(X)−γ1,0(X)− (γ0(X)−γ0,0(X))∥2L2 ≤ C

∥∥∥∥∥∥
γ1(X)−γ1,0(X)

γ0(X)−γ0,0(X)


∥∥∥∥∥∥

2

L2,E

where the E denotes the Euclidean norm on R2. More generally consider C(λ) defined

below:

C(λ) :=
∥∥∥∥∥ sup
r∈(0,1)


exp(−λ · ((1− r)(γ1,0(X)−γ0,0(X))+ r(γ1(X)−γ0(X))− τ̃))

exp(−λ · ((1− r)(γ1,0(X)−γ0,0(X))+ r(γ1(X)−γ0(X))− τ̃))


(λ)2 0

0 (−λ)(2−λ · ((1− r)(γ1,0(X)−γ0,0(X))+ r(γ1−γ0)− τ̃))



∥∥∥∥∥
E

For a general bound here the constant depends on C(λ). If Λ is compact then we can

afford a representation of the theorem which is uniform across values for λ0 which gives

a much stronger version of the approximating function in λ and gets rid of some terms.

For C̄ = supλ∈ΛC(λ) then ψ(γ,θ,α0) ≤ C∥γ − γ0∥2L2 and Frechet differentiability in a

neighborhood of λ0 follows in a straightforward way from the continuity of C(λ) and the

compactness of Λ.
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Remark 26. Compactness of Λ would follow, for example, from Assumption 4 which

restricts λ to be finite. We note that a condition in the form of C̄ <∞ is sufficient and

does not require compactness of Λ.

Lemma 27 (
√
n - consistency). proposition Let Assumption 5 hold. Then

1√
n

K∑
k=1

∑
i∈Ik

g(Wi, θ, γ̂−k)+ϕ(Wi, θ̃−k, γ̂−k, α̂−k) = 1√
n

n∑
i=1

ψ(Wi, θ,γ0,α0)+oP (1)

Proof. The proof mirrors the blueprint of Theorem 15 in Chernozhukov et al. [2020]. We

have:

g(Wi, θ0, γ̂−k)+ϕ(Wi, γ̂−k, θ̃−k, α̂−k)−ψ(Wi,γ0, θ0,α0)

= g(Wi, θ0, γ̂−k)−g(Wi, θ0,γ0)︸ ︷︷ ︸
R̂1i,−k

+ϕ(Wi, θ0, γ̂−k,α0)−ϕ(Wi, θ0,γ0,α0)︸ ︷︷ ︸
R̂2i,−k

+ϕ(Wi, θ̃−k,γ0, α̂−k)−ϕ(Wi, θ0,γ0,α0)︸ ︷︷ ︸
R̂3i,−k

+ϕ(Wi, θ̃−k, γ̂−k, α̂−k)−ϕ(Wi, θ̃,γ0, α̂−k)+ϕ(Wi, γ̂−k,α0, θ0)−ϕ(Wi,γ0,α0, θ0)︸ ︷︷ ︸
∆̂i,−k

+g(Wi, θ0,γ0)+ϕ(Wi, θ0,γ0,α0)

−ψ(Wi, θ0,γ0)

= R̂1i,−k + R̂i2,−k + R̂i3,−k +∆̂i,−k
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Conditioning on the set not used in the nonparametric estimation we have:

E[R̂1i,−k + R̂2i,−k|Ick] =
∫

X
(g(w,θ0, γ̂−k,α0)+ϕ(w,θ0, γ̂−k,α0))dF0(w)

=
∫

X
ψ(w,θ0, γ̂−k,α0)dF0(w)

= ψ̄(θ0, γ̂−k,α0)

The third term’s expected value, conditional on the subsample is given by E[R̂i3,−k|Ik] =∫
X ϕ(Wi, θ̃−k,γ0, α̂−k)dF0(w) = 0. Finally consider the term:

1√
n

∑
i∈Ic

R̂1i,−k + R̂i2,−k + R̂i3,−k−E[R̂1,−k + R̂2,−k|Ick]+E[R̂1,−k + R̂2,−k|Ick]

Now by Kennedy et al. [2020] Lemma 2 we have:

1√
n

∑
i∈Ic

R̂1i,−k + R̂i2,−k−E[R̂1,−k + R̂2,−k|Ick] =OP (∥ψ(Wi, θ0, γ̂k,α0)−ψ(Wi, θ0,γ0,α0)∥2L)

=OP (∥γ̂k−γ0∥2L)

where the last equality follows form proposition 25 ii).

Again by Kennedy et al. [2020] Lemma 2

1√
n

∑
i∈Ik

R̂i3,−k−E[R̂i3,−k|Ik] =OP (∥ϕ(Wi, θ̃−k,γ0, α̂−k)−ϕ(Wi, θ0,γ0,α0)∥L2)

=OP (∥α̂−α0|2L)+OP (∥θ̃− θ0∥R2)

since ϕ(·) is linear in α and differentiable in θ. Then Assumption 5 guarantees that these

last two terms are oP (1). Furthermore, by Proposition 25 ii) for n sufficiently large we
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have:

E[R̂1,−k + R̂2,−k|Ik]≤
√
nC∥γ̂k−γ0∥2

for C̄ given in proposition 25. A similar argument shows 1√
n

∑
i∈Ick ∆i,−k = oP (1). If that’s

the case, we conclude that:

1√
n

∑
i∈Ik

g(Wi, θ0, γ̂−k)+ϕ(Wi, θ̃k, γ̂k, α̂−k) = 1√
n

∑
i∈Ik

ψ(Wi,γ0, θ0, α̂0)+oP (1)

Lemma 28 (Jacobian consistency). For Jacobian G of the debiased moment conditions:

G= E[Dψ(w,θ0,γ0,α0)] = E
[
∂

∂θ
ψ(w,θ0,γ0,α0)

]
(A1.26)

and θ̂ p→ θ0 we have ∥∂ψ̂(θ̂)
∂θ −G∥= oP (1).

Proof. First observe that at γ = γ0 and α = α0:

E
[
∂

∂θ
ψ(w,θ,γ,α)

]
= E

[
∂

∂θ
g(w,θ,γ,α)

]
+E

[
∂

∂θ
ϕ(w,θ,γ,α)

]

= E
[
∂

∂θ
g(w,θ,γ)

]
+0

= E
[
∂

∂θ
g(w,θ,γ)

]

by the law of iterated expectations. (N.B: if α0 is the propensity score than this holds in a

neighborhood of the true F0). Now, to show the result we verify the conditions in Lemma
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17 of Chernozhukov et al. [2020]. First notice that for ∂g(w,θ,γ)
∂θ , each of the functions:

θ 7→ −1

θ 7→ 0

θ 7→ −exp(−λ(τ(x)− τ̃))(τ(x)− τ̃)

θ 7→ −exp(−λ(τ(x)− τ̃))(τ(x)− τ̃))2

is continuously differentiable in θ at θ0. The first two are constants and the other two

derivatives are, respectively:

exp(−λ(τ(x)− τ̃))(τ(x)− τ̃)2

exp(−λ(τ(x)− τ̃))(τ(x)− τ̃))3

Hence if E[exp(−λ0(τ(x)− τ̃))(τ(x)− τ̃)2]<∞ and E[exp(−λ0(τ(x)− τ̃))(τ(x)− τ̃)3]<∞.

In particular Assumption 2 is a sufficient condition for locally bounded derivatives which

satisfies Assumption 4 ii) in Chernozhukov et al. [2020]. Assumption 4 iii), namely∫
(∂gj∂θl

(w,θ, γ̂k)−
∂gj
∂θl

(w,θ,γ0))dF0(w) follows from the continuous mapping theorem and

continuity of the the maps above with respect to γ(·) = τ(·) in the ∥·∥L2 norm.

We are finally ready to prove 15 using the lemmas above.

Theorem 15 (Asymptotic normality of θ). Let Assumptions 1–5. For θ̂ defined in Equation
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(1.17):

√
n(θ̂− θ0) d→N (0,S)

S := (G)−1Ω(G′)−1

G := E[Dθψ(w,θ,γ0,α0)]

Ω := E[ψ(w,θ0,γ0,α0)ψ(w,θ0,γ0,α0)T ]

and Dθψ(·) is the Jacobian of the augmented moment condition with respect to the parameters

in θ.

Denote Ĝ= ĝ(w,θ̂,γ̂)
∂θ . First note that by Lemma 28 we have ∥Ĝ−G∥= oP (1). Then,

like in Chernozhukov et al. [2018] we have:

Ĝ−1−G−1 = (G+∆̂n)−1−G−1

= (G+∆̂n)−1(GG−1)− (G+∆̂n)G−1

= (G+∆̂n)−1(G− (G+∆̂n))G−1

= (G+∆̂n)−1∆̂nG
−1

Then like in Chernozhukov et al. [2018] from the basic matrix inequalities we have:

∥Ĝ−1−G−1∥= ∥(G+∆̂n)−1∆̂nG
−1∥

= ∥(G+∆̂n)−1∥ · ∥∆̂n∥ · ∥G−1∥

=OP (1) ·oP (1) ·OP (1)

= oP (1)
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Now by the central limit theorem and Lemma 27 we have:

1
|K|

∑
k∈K

( 1√
n

∑
i∈Ik

g(Wi, θ,γ0)+ϕ(Wi, θ̃−k, γ̂−k, , α̂−k)
)

= 1
|K|

∑
k∈K

1√
n

∑
i∈Ik

ψ(Wi, θ,γ0,α0)+oP (1) d→N (0,Ω)

where Ω = E[ψ(w,θ0,γ0,α0)ψ(w,θ0,γ0,α0)]. Finally observe that a standard GMM Taylor

linearization gives:

√
n

ν−ν0

λ−λ0

=

 ∂

∂θ
ψ̂(w,θ0, γ̂, α̂)′V

∂

∂θ
ψ̂(w,θ0, γ̂, α̂)


−1

∂

∂θ
ψ̂(w,θ0, γ̂, α̂)′V

× 1
|K|

∑
k∈K

( 1√
n

∑
i∈Ik

g(Wi, θ, γ̂−k)+ϕ(Wi, θ̃−k, γ̂−k)
)

= (G′V G)−1G′V

 1
|K|

∑
k∈K

1√
n

∑
i∈Ik

ψ(Wi, θ,γ0,α0)
+oP (1) d→N (0,S)

which is the desired result.

1.I.8 Auxiliary Lemmas

Lemma 29. (Kennedy et al. [2020]-Lemma 2)

Let ĝ(·) be a function estimated from the Ick sample and evaluated on the Ik sample.

Then (Pn−P)(ĝ−g0) =OP
( |ĝ−g0|√

n

)
.

Proof. The proof follows from independence of Ik and Ick, the computation of conditional

variance and Markov’s inequality. See Kennedy et al. [2020] for a detailed treatment.

1.J Additional Figures and Examples

In this section I include some additional visualizations and examples:
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Example 30. To visualize Corollary 20 consider the case where the dimension of the

covariate space is k= 2. The original data is normal N (µ,Σ) with µ= (4,3)T Σ =

 2 0.5

0.5 2

.

τ(x) =XTβ is linear with β = (4,1)T . Experimental ATE = 18.98. Target ATE = 15.

Figure 1.J.1: least favorable distribution for normally distributed data. First panel

in red shows the density of N (µ,Σ)∼N
(
µ=

[
4
3

]
;Σ =

[
2 0.5

0.5 2

])
, the experimental

distribution. The second panel shows CATE =XTβ, linear in X with β = (4,1)T . The
third panel shows the parameter shift of the least favorable distribution.

Here λ0 = 0.396. µ∗ = (3.1288,2.4852). The KL divergence, for two multivariate

normal distributions (µ1,Σ1),(µ2,Σ2) is given by:

KL(X1||X2) = 1
2

[
log

( |Σ2|
|Σ1|

)
−k+(µ2−µ1)TΣ−1

2 (µ2−µ1)+ tr(Σ−1
2 Σ1)

]
. One could always

compute the value of the KL divergence applying the nonparametric formula

δ∗ =
∫

X
exp(−λ0(τ(X)− τ̃))dµX

or in this case, the “parametric” formula given by the KL divergence between two normal

distributions.16 In this example both ways of computing the correspond to δ∗ = 0.789
16The “parametric” formula to compute the KL divergence would not be valid in general since the least
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corresponding to the mean shift illustrated above.

Figure 1.J.2: Piece-wise Linear CATE, experimental distribution is N (50,102). Ex-
perimental ATE is 0.433, while τ̃ = 0.5. Because the experimental ATE is lower than
the least favorable , F ∗

X down-weights FX on the subset of R where the τ(x) is greater
than τ̃ and up-weights it where it’s lower. The blue curve is the closest curve to the red
one, in KL-divergence, among the ones that satisfy τ ≥ 0.5.

favorable distribution may belong to a different class than the experimental distribution. Conversely, the
“nonparametric” formula is always valid.
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Figure 1.J.3: Piecewise Quadratic CATE, experimental distribution is N (50,102).
Experimental ATE is 0.484 while τ̃ = 0.5. Because the experimental ATE is lower than
the least favorable , F ∗

X down-weights FX on the subset of R where the τ(x) is smaller
than τ̃ and up-weights it where it’s greater. The blue curve is the closest curve to the
red one, in KL-divergence, among the ones that satisfy τ ≥ 0.5.

Example 31. Let’s now see graphically how to construct an example for a one dimensional

continuous variable example. In Figures 1.J.2 and 1.J.3 conditional treatment effects, given

the 1-dimensional variable X are in green, the experimental distribution is N (50,102) is

in red. Suppose that the policy-maker’s wants to maintain the claim ATE ≤ 0.5. The

experimental ATE and the “least favorable” ATE are obtained by integrating the green curve

τ(x) against the red curve dFX(x) (which has density fX(x)) and the blue curve dF ∗
X(x)

(which has density f∗
X(x) respectively. The blue curve is the closest distribution to the

experimental distribution in red, as measured by the KL divergence, that delivers the “least

favorable ” ATE τ̃ = 0.5.
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Chapter 2

Generalized Robustness Test:

Coefficient Stability across Causal

Specifications

2.1 Introduction

Many applied economics studies use observational data to tease out causal relation-

ship between policy variables of interest. Often, the identification of the main estimand

requires imposing assumption on the causal mechanism that governs the data generating

process. Because such assumptions involve constraints on the distribution of unobserv-

ables, they may not be fully testable. On the other hand, because of the crucial role that

the assumptions play in the identification strategy, many researchers propose robustness

exercises to convince their research audience that their estimate are sensible and robust.

A typical tool used in these situations is a “robustness check” which involves a

comparison of estimated coefficients across several specifications. While robustness checks

typically involve comparisons across multiple regression specifications, the heuristic of
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this exercise can be captured with a simple example involving a single comparison. A

researcher is interested in delivering estimates of the causal effect of a policy variable

X on an outcome variable Y . A set of control variables {Z,W} is available. Given the

observational data, the researcher specifies an identification strategy for the causal effect of

interest. The baseline specification only uses variables in Z as controls. As they anticipates

some criticism regarding their baseline identification strategy, they seek to corroborate the

causal estimate with a “robustness check” regression that uses both Z and W as additional

controls. The most straightforward example of a robustness checks is described in Table

2.1.1.
Table 2.1.1: Robustness check table: βX|Z is the OLS regression coefficient when the
set of Z controls is included in the regression, βX|ZW is the OLS regression coefficient
when both the set Z and W are included in the regression

Baseline Robustness Check
Coefficient of interest βX|Z βX|ZW

se(βX|Z) se(βX|ZW )
Z controls Yes Yes
W controls No Yes

The heuristic for interpreting the table above is the following: if the baseline

identification (which controls for variables in Z) is correct and if the additional covariates

W in the augmented regression are valid controls, the coefficient of the augmented regression

and the baseline regression should be very close. Conversely, if the estimated coefficients

are sufficiently different, one should reconsider the validity of the identification strategy.1

In the stylized robustness exercise above, the identification strategy and the ro-

bustness exercise are based on a combination of causal (or structural) assumptions and

ad-hoc functional form assumptions (linearity). While the causal assumptions are usually

motivated by domain knowledge and/or institutional background, the functional form
1This particular use of the robustness check is particularly popular in the scope of difference in difference

estimators where the alternative specification is triple differences. For example Muralidharan and Prakash
[2017] conducts such an exercise in estimation of the effect of providing bicycles on secondary school
enrollment. For additional examples see Baez et al. [2017] and Cai [2016].
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assumptions are usually motivated by convenience: they usually result in a simplification

of the estimation strategy or reduce the computational burden. The combination of these

two types of assumptions has implications for what type of causal parameters one can

hope to identify as well as for the robustness exercises associated to identification. I argue

that the functional form assumption are at best superfluous and at worst can result in

misleading robustness exercises when they are mis-specified. I show that the heuristic of

comparing the coefficients of two (or more) regressions can be grounded exclusively in

the causal (or structural) assumptions. As such, it is valid nonparametrically, enlarging

the class of models and causal parameters that it can be applied to. Finally, I propose a

robustness test that upgrades the heuristic of Table 2.1.1 into a formal statistical procedure.

My proposed test is nonparametric and removes the limitations arising from functional

form specifications.

In a recent paper, Oster [2017] has drawn attention to the practice of robustness

checks in applied work. In her piece, she cautions against a näıve comparison between

the coefficients of the baseline and augmented regression. Instead, she advocates for a

weighted comparison that captures variation in the R2 of the regression as a measure of the

unobserved variation that the new covariate explains. While the robustness exercise in her

case is geared towards sensitivity analysis, it does not constitute a robustness test per-se.

Because it requires the user to specify a parameter, the degree of proportionality between

selection on observables and unobservables, it can be though of as a complementary tool to

evaluate robustness. The robustness test that I propose instead, does not require such a

parametrization.

At the core of the “robustness check” in Table 2.1.1 there is a notion that, if the

baseline identification with Z is valid, controlling for the additional covariates in W is

redundant. Either omitting or including W would not bias the identification. Covariates

that may introduce bias in the estimation of the causal effect of interest when included in the
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regression have been known as “bad controls” Angrist and Pischke [2008]. Their inclusion

in the regression in this context should be cautioned against since it would undermine

the very nature of the robustness exercise: while the baseline causal identification may

have been correctly specified, the introduction of a bad control must necessarily produce a

shift in the coefficients of interest since W introduces endogeneity Chen and Pearl [2015].

Based on the heuristic, the “robustness check” would raise concern over an originally valid

identification strategy because the estimated βX|ZW and βX|Z are different. But this gives

the opposite answer of what the robustness check was designed to detect! Lu and White

[2014] and Chen and Pearl [2015] and Cinelli et al. [2020] provide an excellent discussion

on “bad controls” that the interested reader can consult. In the main body of this paper I

will focus on control variables W that are valid. A discussion of the identification failures

arising from the inclusion of a“bad control” is presented in the Appendix.

The authors also highlight the conditions for informative versus misleading robust-

ness tests describing which covariates cannot serve the purpose of detecting violations of

identification. In a similar spirit, Chen and Pearl [2015] provide a characterization of the

conditions that guarantee that a robustness check is valid and informative. The authors’

notions rule out robustness checks that hinge on a set of controls W which “opens a spurious

path between the causal variable of interest and the outcome”. This class of problematic

controls includes, but is not limited to alternative outcome variables directly caused by the

variable interest. When a “bad control” is added in the robustness check regression, the

baseline model is correctly identified but the augmented model is not. Hence, a shift in the

causal coefficient of interest cannot be regarded as informative.

Lu and White [2014] proposed a robustness test in linear models, providing an

advancements relative to the “robustness checks” heuristic above. Their procedure requires

imposing a combination of causal and functional form assumptions, making a rejection

in their test hard to interpret. It can signal either a violation of the hypothesized causal
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structure or a mis-specification of the functional form. The two types of violations have very

different consequences for a researcher. The former violation requires that the researcher

reassesses her identification strategy, the latter can be simply accommodated by a more

flexible model. Because their test cannot distinguish between these two cases, it is not

specific. A small example of this feature is given below 32.2

Example 32. Consider the simple example where the data is generate according to:

W = v

Z = q+u

X = Z2 +W + s

Y = β ·X2 +Z ·X+γ ·Z+u

and v,u,s,q are all independent N (0,1). Then AMTE(x0) defined below is nonparamteri-

cally identified using either Z only or both Z and W . On the other hand, the conditional

mean functions are nonlinear. Even with such a mild non-linearity, the test proposed by Lu

and White [2014], out of M = 1000 trials, rejects all the time .

The good news is that the driving principle in the robustness test does not requires

imposing the functional form assumption and is more generally valid in a nonparametric

setting. There are two main advantages to constructing a test based on nonparametric

identification. First, it exclusively tests for causal assumptions while accommodating a

flexible treatments of the functional form. Second, it eliminates the need for pre-testing

procedures to evaluate functional form assumptions which may affect post-estimation

inference in an unclear way.

This paper is also related to the literature on testing the implications of the
2Lu and White [2014] suggest pre-testing for linearity of the structural function and/or linearity of the

conditional mean function as separate tests from the ones aimed at detecting causal mis-specification.
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conditional independence assumptions. From an identification point of view, it is possible

to directly test whether the distribution of the data satisfies a conditional independence

assumption for both conditioning sets of covariates Z and (Z,W ). There is a large body of

work on testing unconfounded-ness and conditional independence in a nonparametric setting,

spanning a variety of nonparametric estimation techniques including kernel Cai et al. [2019],

Huang et al. [2016], matching de Luna and Johansson [2014] and weighting Donald et al.

[2014]. In practice though, an applied researcher may not be interested in testing conditional

independence per-se. Rather, they only care about whether failures of nonparametric

identification may affect the value of the causal estimand of interest. Because this latter

quantity is a functional of the distribution of the data. testing for conditional independence

is strictly more general than testing for equality of two nonparametrically estimated

coefficients. Because it targets the particular functional of interest, I view my approach

as striking a balance between generality and specificity. As such, it is complementary to

testing the more general unconfounded-ness assumption in a nonparametric setting and

the user may determine which, among the available procedures, suits best the needs of her

specific research design.

The objective of this paper is to provide a method to disentangle the robustness

test from the functional form assumption and provide a transparent procedure that is

statistically sound. After defining the Average Marginal Treatment Effect (AMTE), the

causal estimand of interest, I develop a fully nonparametric method to both compute the

AMTE and conduct a robustness test of causal identification. The test follows from a

simple heuristic. When the model is correctly specified, there are two procedures that

identify the same population quantity. Thus, asymptotically, the relative sample estimators

must converge to the same quantity. Alternatively, when the causal structure is not

correctly specified, at least one of the estimators will be biased and the robustness check

will falsify the equivalence of the two proposed identification strategies. For simplicity I
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focus on AMTE though the framework is flexible enough to accommodate a wide variety

of functionals of the counterfactual distribution.

The contribution of this method is three-fold. First, it delivers a transparent

procedure that captures the intuitive heuristic of coefficient stability discussed above.

Second, it abstracts from the problem of identification through functional form. Third,

it can be easily computed and adapted to semi-parametric settings. Section 2 introduces

notation, the causal parameter of interest and the main identification result. Section

3 discusses the estimation method and the testing procedure. Section 4 derives their

asymptotic properties. Section 5 briefly concludes.

2.2 Set Up and Identification Results

To fix ideas, consider a researcher interested in the effect of a continuous policy

variable X on an outcome of interest Y . The outcome is jointly caused by the policy

variable as well as other unobservable factors U . One may think of a particular realization

of U = u as a state of the world that can make the policy variable X on the outcome more or

less effective. Similarly, one may interpret a realization U = u as an indexing of individuals

such that for each unobserved ui there is an idiosyncratic reference policy environment

that individual i experiences. One can consider the rather general non-separable structural

equation:

Y = C(X,U) (2.1)

Here C is an unspecified structural function. For the definition of the Average Marginal

Treatment Effect, which will be the main policy effect of interest, it is convenient to require

C ∈ C1(X ×U), the space of continuously differentiable functions that take values in R. Let

the support of random variables X and U be denoted X ⊆ RdX and U ⊆ RdU respectively.

The researcher observes a data set composed of n observations (Xi,Yi,Zi,Wi)ni=1 where
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Z,W are additional (sets of) control variables. The researcher is interested in the Average

Marginal Treatment Effect across the population of individuals as defined below.

Definition 33. Average Marginal Treatment Effect

Let fu(u) denote the density of the absolutely continuous distribution function FU . The

Average Marginal Treatment Effect at the pre-specified point x0 ∈ X is defined as:

AMTE(x0) :=
∫
∇C(x0,u)fU (u) =

[∫ ∂C

∂x1 (x0,u)fu(u)du, · · · ,
∫ ∂C

∂xdX
(x0,u)fu(u)du

]′

(2.2)

Equation (2.2) defines AMTE(x0) as the effect of increasing the policy variable(s)

X by one unit on the level of the outcome variable Y , starting from pre-specified level x0,

averaged across the unobserved, individual specific, realization of the policy environment

U = u.

Remark 34. The notion of AMTE(x0) generalizes the notion of the slope coefficient(s) of

a linear model. In fact one can immediately see that if Y =XTβ+u then AMTE(x0) = β

for all x0.

To understand why a researcher may be interested in the AMTE(x0) as a policy

parameter, consider a policy-maker who is deciding whether a given level x0 should be

increased or decreased to maximize the outcome Y . For example, for policy-making in

education, X may represent the years of education and the point x0 may be the existing

threshold for mandatory schooling. The policymaker may be interested in the effect of

marginally raising the threshold, which was previously set at x0, on a policy outcome like

employment or incarceration. Then the value of AMTE(x0) is the meaningful parameter of

interest. In many applications where the policy-maker may want to set optimal thresholds,

a natural comparison for AMTE(x0) is 0, which translates to a first order condition for
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optimally setting the policy threshold. Naturally, it is only meaningful for x0 ∈ X since,

for points outside of the support, there is no hope to identify the effect of a variation

that is never observed. For a given x0 ∈ X , how should one identify AMTE(x0)? In

observational studies, individual’s realizations of Xi may depend on the individual’s ui,

which are unobserved. One may denote such endogenous dependence by writing X(u).

Returning to the education example, the choice to drop-out or to remain in school for X

years is potentially correlated with other individual characteristics that are part of u. See

Lochner and Moretti [2004] for a reference in this context.

More generally, whenever u jointly determines X and Y , if there are no additional

variables which control for the dependence between X and Y through u, the AMTE(x0)

will not be identified. The causal diagram3 clarifies this point.

u

Y X

Figure 2.2.1: Non-identifiable AMTE(x0)

Suppose the researcher has additional covariates available: {Zi,Wi}ni=1 with (Z,W )∈

Z×W and Z×W ⊆RdZ ×RdW .

She hypothesizes that the data generating process follows one of two causal models:

a baseline model MB and an augmented model MR, whose causal diagrams are displayed

in Figures 2.2.2 and 2.2.3 below.4 According to MB, if the researcher knew the joint
3Causal diagrams are a useful tool to present the identifying assumptions without resorting to functional

form. They have been popularized by the work of Pearl [2000]. If there are paths connecting X and Y
other than the direct arrow X→ Y the identification of the causal effect of interest hinges on the possibility
of blocking such paths with an appropriate selection of control variables. A path between X and Y that is
unblocked results in biased identification of the causal object of interest for almost all parametrizations of
the model.

4In general, there are multiple causal graphs that would imply the same conditional independence
restrictions on the joint distribution of (X,Z,W,Y ). All causal graphs in the same equivalence class are
observationally equivalent and they all allow identification of AMTE(x0).
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distribution of the observables (X,Z,Y ), she would be able to identify AMTE(x0) by

appropriately controlling for Z. Under MB, the additional information in W is not strictly

necessary for the identification of AMTE(x0). Contrast this case with the augmented

model MR. Under MR, controlling for Z is not sufficient to identify AMTE(x0); the full

set of controls (Z,W ) is needed.

u

W Z

Y

X

Figure 2.2.2: Example of MB: The quantity AMTE(x0) is identified by including
either Z or (Z,W ) in the control set

The researcher anticipates some skepticism about the identification of AMTE(x0)

using only Z as control in the baseline specification. She seeks to conduct a robustness

exercise to convince the audience that using MB correctly identifies the AMTE(x0). She

includes the information carried by the variable W in the estimation of the AMTE(x0) and

compares the results with the baseline model. If the identification strategy is valid when

either just {Z} or the full set {Z,W} are included, then both procedures should identify the

same population parameter. If instead including just Z would result in biased estimation

of AMTE(x0), the two procedures will generally lead to different results. Importantly, this

heuristic did not rely on any specific functional form. As I show below, there is no need to

impose parametric restrictions on the function C(·) like in Lu and White [2014] because

the equality of the estimated AMTE(x0) holds nonparametrically.
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u

W Z

Y

X

Figure 2.2.3: Example of MR: The quantity AMTE(x0) is identified only by including
(Z,W ) in the control set. Simply including Z would result almost surely in a bias

2.2.1 Nonparametric Identification

In this section I formalize the researcher’s heuristic by showing that, under model

MB, the AMTE(x0) is nonparametrically identified by controlling for either {Z} or the

joint set {Z,W}.

Definition 35. (Potential Outcomes Yx) Given C ∈ C1(X ,U) define the potential outcome

Yx as the level of Y that would be attained if X is set at x in C(X,U)

Yx := C(x,U) (2.3)

Remark 36. The definition is a matter of indexing. Naturally, C(x,U) is a measurable

map from Ω→ R so Yx ◦U , for each x ∈ X is a random variable5. The reader will find

the notation closely related to the potential outcome notation of Imbens and Rubin [2015].

In the case where X = {0,1} the random variables Yx can be written in the familiar

format Y1,Y0. In structural work the reader may have encountered the following notation:

Y1 = C(1,U1),Y0 = C(0,U0). Because the dimension of U is unrestricted, the notation

Y = C(x,U) is without loss of generality as as one can take U = (U0,U1).
5Trivially notice the following. U : Ω→ R and C(x, ·) : R→ R so the composition Yx := C(x, ·)◦U is a

map from Ω→R. C(x, ·) is measurable because it’s the restriction of C to the set {x}×U . Then Yx is the
composition of two measurable maps, hence measurable.
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I now show the key identification result. The distinctive feature of the present iden-

tification framework will require that the AMTE(x0) be identified regardless of particular

parametric assumption on the structural function C(·). That is, identification only relies

on the conditional independence assumptions modeled in the causal diagrams above and

some mild regularity conditions that allow AMTE(x0) to be defined. A causal quantity is

nonparametrically identified if it can be expressed as a function of the conditional distribu-

tions of observable and/or estimable quantities. I explicitly consider the possibility of an

estimable quantity because this includes estimators based on a control function approach or

a two-step procedure. In that context, while a particular variable is not directly observable,

it is still estimable. I now introduce an assumption that would be needed to prove the

identification results as well as the main asymptotic results in Section 4.

Assumption 6. The following conditions hold:

i) (Yi,Xi,Wi,Zi) are independent and identically distributed

ii) X ×Z×W is compact

iii) m0 := E[Y |X,Z,W ] ∈ Cp(X ×Z×W) with p > 3/26.

Assumption 6 i, ii) contain standard assumptions on the data generating process;

iii) requires sufficient smoothness of the conditional expectation function.

Proposition 37 (Identification). Let U ⊥⊥X|Z,W and Assumption 1 hold. Then: i) the

AMTE(x0) is nonparametrically identified by the following formula:

AMTE(x0) =
∫ ∂E[Y |X,Z,W ]

∂x
(x0, z,w)dFZW (z,w) (2.4)

ii) Let instead U ⊥⊥X|Z and Assumption I hold. Then AMTE(x0) is nonparametrically
6The reader may recognize this condition as an adapted version of the conditions in Chen [2007]
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identified by the following formula:

AMTE(x0) =
∫ ∂E[Y |X,Z]

∂x
(x0, z)dFZ(z) (2.5)

Proof. The proof leverages the fact that AMTE(x0) is a functional of the counterfactual

distribution, which can be identified through the joint distribution of the observables under

the conditional independence statements of Proposition 37. See Appendix for details.

Corollary 38. Let U ⊥⊥ X|Z,W and U ⊥⊥ X|Z both hold, together with assumption 1.

Then:

AMTE(x0) =
∫ ∂E [Y |X,Z,W ]

∂x
(x0, z,w)fzw(z,w)dzdw

=
∫ ∂E [Y |X,Z]

∂x
(x0, z)fz(z)dz

Proof. It follow immediately from the two conditional independence statements and Propo-

sition 37.

Note that, since the conditional independence statements do not imply one an-

other, we need to require both to hold jointly to obtain the result in Corollary 38. If

only one, or neither of them holds, then the expressions in Equation (2.4) and (2.5) in

general identify distinct objects. The identification of AMTE(x0) hinges on specifying

the relevant conditional independence assumption appropriately. In the baseline model

MB two conditional independence statements hold and the AMTE(x0) can be identified

in two ways. In the augmented model MR, controlling for {Z} only would not eliminate

all confounding factors between X and Y and therefore the weighted derivative of the

conditional mean will generally not identify the causal effect of interest. In practice, the

researcher has no idea of which model is correct. The key idea is that the difference in the

two population objects is still informative as it raise concerns about the robustness of the
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identification. The comparison of the two quantities in 38 is exactly the type of exercise

that is performed by the familiar parametric robustness checks of Table 2.1.1. In the linear

case, it corresponds to the equality of βX|Z and βX|ZW discussed in Lu and White [2014].

The difference here is that only nonparametric identification matters.

At a high level, the notion of coefficient stability is appealing because it is both

intuitive and is applicable to nonparametric contexts. On the other hand, it is important

to discuss what can be learned from a coefficient stability type of exercise: when is

the comparison based on Corollary 38 informative for the researcher? If we construct a

nonparametric test based on it, what would we learn from a rejection? In the discussion

below I consider the more parsimonious notion of S-identifiability, which focuses on using

the set of variables S to allow identification of AMTE(x0).

Definition 39. Let S be a set of observables.

A model M is S-identifiable if AMTE(x0) is identified by
∫ (∂E[Y |X,S](x0,s)

∂x

)
fS(s)ds.

For example, Z-identifiability requires that the baseline model nonparametrically

identifies the causal effect of interest by controlling for Z. Because Z is the researchers

baseline specification, this is the condition that the coefficient stability robustness test aims

to falsify. Consider a model that is indeed Z-identifiable. Now suppose we run a robustness

test with additional control W based on the heuristic that the AMTE(x0) that is identified

including both W and Z as controls must be the same as the AMTE(x0) identified using

just Z as a control. The researcher observes that the test provides evidence against the

null hypothesis. How should she interpret the result? Clearly, one of two situations may

have arisen:

• The baseline model was correctly identified but the introduction of W has introduced

bias resulting in different values for the two estimates AMTEs

• The baseline model was not correctly identified and the introduction of W estimates
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a different effect

The first scenario may happen if W contains what is known as a “bad control”. In

order for the robustness check or test to be informative, it is paramount to rule out such

a case, as discussed in Chen and Pearl [2015]. It suffices to requite that the underlying

model satisfies:

M is Z-identifiable =⇒ M is ZW -identifiable. (2.6)

This condition is the desirable property of a robustness check needed to avoid the bad

control scenario above.

In practice this assumption guides the researcher to specify a set of robustness check

variables that would not introduce additional bias. This is not very restrictive, since the

hypothesis contained in the causal diagram should guide in the selection of controls. One

can then formalize the robustness exercise in as a null hypothesis, involving two estimable

quantities:

H0 :
∫ (∂E [Y |X = x0,Z]

∂x

)
fz(z)dz =

∫ (∂E [Y |X = x0,Z,W ]
∂x

)
fzw(z,w)dzdw (2.7)

One can view the formulation in Equation (2.7) as a middle ground between two approaches.

The first would be to test for the full equality of two (or more) conditional distributions,

say (Y |X,Z,W = w) d= (Y |X,Z) for any w ∈W but this may clearly be false even when

Equation (2.7) is true. The second one would be the approach taken by Lu and White

[2014] where equality of βX|Z and βX|ZW is considered. As I will show in a later section,

when the data generating process is sufficiently nonlinear, βX|Z ̸= βX|ZW (and in particular,

neither will be equal to AMTE(x0)) even when (2.7) indeed holds. This is problematic

because the rejection is entirely due to non-linearity but it will be interpreted as a failure of

the identification strategy. The approach presented in this paper is indeed a middle ground
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between the two described above. First it directs power to the object of interest rather

than to the conditional independence assumption itself (which is helpful insofar it allows to

test the identification of AMTE(x0)). Second, because of the flexibility in accommodating

nonlinear DGPs, it does not lead to spurious rejections.

2.3 Estimation

In this section I consider how to derive estimators for the causal estimand of interest.

Under H0, which is the testable implication derived from Corollary 38 the comparison of

these two (or more) estimators will serve as the statistic for the nonparametric coefficient

stability robustness test. I restrict the attention to the core example of the robustness

exercise, which involves a comparison between the estimator of AMTE(x0) obtained using

a small set of controls {Z} and the one obtained using a larger set of controls {Z,W}.

While in principle the nonparametric identification allows to design robustness tests based

on several nonparametric and semiparametric estimation methods, in practice it may be

difficult to obtain their joint asymptotic distribution which is required to carry out the

test. For this reason I focus on a robustness test based on sieve estimators, for which the

asymptotic theory is well-developed. Extensions of the robustness test presented in this

paper to accommodate other methods could leverage the development of asymptotic theory

for different classes of nonparametric estimators developed for example in Athey et al.

[2016], Chetverikov et al. [2021] and Farrell et al. [2021]. This extension would provide

even more flexibility on how a robustness test for coefficient stability can be carried out,

which may be important in a context where high dimensional control variables are used. I

leave this exciting direction for future research.

This choice of sieve estimators is motivated by the fact that the causal estimand of

interest, AMTE(x0), can be expressed as a functional of the conditional mean function.

110



Under the baseline model, Corollary 38 says that AMTE(x0) can be obtained as a functional

of either mZW (x,z,w) := E[Y |X = x,Z = z,W =w] or mZ(x,z) := E[Y |X = x,Z = z]. This

suggests a plug-in approach. The techniques developed in the large body of literature

on functionals of sieve estimators carry over directly, greatly simplifying the treatment.7

Before discussing the estimation of the conditional mean function itself, we can show that

the AMTE(x0) is a continuous linear functional with respect to the strong norm. Let’s

first introduce some notation.

Definition 40. Let CdS be the space of k times continuously differentiable functions on

X ×S. The “strong” norm on CdS is given, for a generic m ∈ CdS by:

∥m∥d := max
λ≤d

sup
X ×S

∣∣∣∣∣∂|λ|m

∂x|λ|

∣∣∣∣∣
Definition 41. Bounded functional

A functional L :H→ R is bounded with respect to the norm ∥·∥H if there exists a constant

M such that:

|L(h)| ≤M∥h∥H

for all h ∈H.

For a weighting function ω : S → R+,
∫
S ω(s)ds = 1, ΓS : CdS(X ×S)→ R be the

functional from the space of d-continuously differentiable functions to R defined below:

ΓS,ω(m) :=
∫ ∂m

∂x
(x,s)|x=x0ω(s)ds

This is a composition of three linear maps: the differentiation operator, the evaluation

map at x0 and the integration against the “weight” ω(s). It turns out that the under the
7A similar estimation method is suitable for nonparametric instrumental variables framework and for

robustness tests that arise from identification through instrumental variables. The reader can find the
relevant results in Chen [2007].
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string norm, ΓS,ω. This is in general not true under weaker norms because the evaluation

functional is not continuous with respect to the weak norm.

Lemma 42 (Bounden-ness). For any S and any ω with
∫
S ω(s)ds, ΓS,ω is bounded with

respect to the “strong” norm.

Proof. See Appendix.

Proposition 43 (Linearity and Continuity). For any S, and any ω ΓS,ω is a continuous

linear functional with respect to the strong norm.

Proof. To show linearity it suffices to show ΓS,ω(αm1 +βm2) = αΓS,ω(m1)+βΓS,ω(m2) for

α,β ∈ R,m1,m2 ∈ Ck(X ×S).

ΓS,ω(αm1 +βm2) =
∫ ∂αm1 +βm2

∂x
(x,s)|x=x0ω(s)ds

=
∫ [

α
∂m1
∂x

(x,s)+β
∂m2
∂x

(x,s)
]
|x=x0ω(s)ds

=
∫ [

α
∂m1
∂x

(x,s)|x=x0 +β
∂m2
∂x

(x,s)|x=x0

]
ω(s)ds

= α
∫ ∂m1

∂x
(x,z,w)|x=x0ω(s)ds+β

∫ ∂m2
∂x

(x,s)|x=x0ω(s)ds

= αΓS,ω(m1)+βΓS,ω(m2)

This is straightforward: the functional of interest in the composition of the partial derivative

map, the evaluation map and integration against a particular weight ω(s) all of which are

linear maps. A linear functional on a Banach space is continuous if and only if it’s bounded.

Lemma 42 shows that ΓS,ω(·) is bounded with respect to the strong norm which finishes

the proof.

If we set S = {Z} and S = {Z,W} respectively, the choice of weights

ω(z,w) = fZW (z,w),ω(z) = fZ(z)
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respectively implies, through Proposition 37, that U ⊥⊥ X|Z,W implies AMTE(x0) =

ΓZW (mZW ) and U ⊥⊥X|Z implies AMTE(x0) = ΓZ(mZ).

In the context of this paper the plug-in approach boils down to using:

ÂMTE(x0) = Γ(m̂S) (2.8)

We now turn to the implementation for linear sieve spaces. There are four conceptual steps

in the estimation process. For the generic conditional mean function mS with control set S:

• Obtain the nonparametric sieve estimators for the conditional mean functions based

on mS(x,s).

• Compute the sieve estimator of the derivative, denoted m′
S(x,s). For linear sieve

spaces, this will amount to taking the linear combination of the images of the basis

functions under the operator ∂
∂x with linear coefficients estimated for mS(x,s)

• Evaluate the estimator at the desired x0, obtaining m′
S(x0, s)

• Integrate the functions m′
S(x0, s) against the empirical distribution of S to recover

AMTE(x0)

The approach for computing the derivative is similar to the one undertaken by

Cattaneo et al. [2018] who consider estimating the density function of interest by estimating

the distribution function by local polynomials and extracting the (slope) linear coefficient of

the local polynomial regression. By using a linear sieve space, one obtains an approximate

representation of a function m0S(x,s) as the linear combination of suitably chosen basis

functions. The estimated derivative has the same linear coefficients but the basis functions

are the images of the original basis function under the partial derivative operator. After

obtaining the nonparametric estimator m̂ZW (x,z,w) the theory for the the plug-in estimator

Γ(m̂ZW ) as well as the robustness test is relatively straightforward.
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2.3.1 Notation & Sieve Estimator

In this section we discuss the estimation of the conditional means using linear sieve

spaces. To lighten the notation we can focus on the estimation of mZW and consider the

special case where dz = 1,dw = 1 and note that the general case follows similarly. Let

Θ = Cd(X ×Z×W). In this case our estimation target m0 is the function: mZW . In order

to approximate m0 ∈Θ it is enough to consider the approximating sieve spaces Θn given by

ΘZW,n := span(ϕj(x)ψk(z)φl(w)) for j = 1,2, · · · ,Jn; k = 1,2, · · · ,Kn; l = 1,2, · · · ,Ln

where the functions ϕj(x),ψk(z),φl(w) are a deterministic set of basis functions. We can

define ΘZ,n in an analogous way. I discuss the choices of an appropriate basis of functions

to Section 2.3.2. Each Θn is the linear span of basis functions, each of which is the product

of three univariate functions8. As noted by Chen [2007] the dimension of the sieve space

is given by dim(Θn) = Ln · Jn ·Kn. As such, a generic function m ∈ Θn can always be

expressed as a linear combination of the basis elements in the following way:

m(x,z,w) =
Jn∑
j=1

Ln∑
l=1

Kn∑
k=1

ϕj(x)ψk(z)φl(w)βj,k,l (2.9)

How does one guarantee that the function m0 can be approximated by the increasingly

complex functions in Θn? We have the following result:

Theorem 44 (Stone-Weierstrass). Let K be a compact metric space and A[k] an sub-algebra

of functions, (that is, a closed subset of C(K,R)) which separates points and contains a

constant function. The A[k] is dense in C(K,R).9

8For estimation purposes it is sufficient to consider the tensor product of simpler functions spaces, the
construction is in the Appendix.

9Here dense is meant with respect to the topology of uniform convergence induced by the sup-norm on
C(K,R). This is the reason to require the point separation property which says that for k ̸= k′ in K there
exist a ∈A[k] such that a(k) ̸= a(k′).
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This result says that, if the basis functions in the collection are sophisticated enough

to tell apart , a large number of them can guarantee a arbitrarily good approximation over

the whole domain of the function. Then by the Stone-Weierstrass, for a generic m ∈ Θ

there exist N such that for all n≥N we have:

∥m0−mN∥d < ϵ

in the strong norm, where mN ∈ ΘN . Theorem 44 is often stated with A[k] is the sub-

algebra of polynomials but there are several other classes of sieve spaces that may be

more useful in practice. Because the estimation strategy is not the main feature of the

paper, I consider two basic cases, polynomials and splines. Polynomials are constructed as:

Θn = PolJn(X )×PolKn(Z)×PolLn(W). Constructing splines is a bit more involved and

we discuss it in the Appendix. Because I use splines to estimate derivatives, I require that

the degree of the splines sieve space is at least 2 since that would ensure that the derivative

is continuously differentiable. No such requirement is needed for polynomials since they

are smooth.

In order to estimate the coefficients β := [β1,1,1,β1,1,2, · · · ,βJn,Kn,Ln ] from the obser-

vations {Yi,Xi,Zi,Wi}ni=1 we use a nonparametric version of least squares. The construction

proceeds as detailed below. Denote ϕJni the (Jn×1) vector:

ϕJni := (ϕ1(Xi),ϕ2(Xi),ϕJn(Xi))′

Now denote the (Jn · · ·Kn ·Ln×1) vector Φi:

Φi := vec
(
ϕJni ⊗ψ

Kn
i ⊗φ

Ln
i

)
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and for all i= 1 ·n gather these into the (Jn ·Kn ·Ln×n) matrix:

Φ := (Φ1,Φ2, · · · ,Φn)′

Then the nonparametric sieve estimator of m0 is given by:

m̂(x,z,w) =
Jn∑
j=1

Kn∑
l=1

Ln∑
k=1

ϕj(x)ψk(z)φl(w)β̂j,l,k

where β̂j,k,l is the element of the vector of estimated nonparametric least-square coefficients

β̂LS = (Φ′Φ)−1Φ′Y corresponding to the (j,k, l)-product of basis functions.

2.3.2 Selection of the Sieve Spaces

In practice, different sieve spaces may be more appropriate for the construction

of functions that satisfy particular desirable properties. These may include positivity,

monotonicity or other shape restrictions. Other spaces may be chosen for computational

convenience. In particular PolJn(X ) is known to suffer from near-multicollinearity issues

when the Jn grows. Intuitively this is due to the fact that while polynomials separate

points, high powers like x46 behave too similarly to x47 for values of x ∈ X that are not

very large. An interesting thing to note is that, while each approximating class A[k]

that satisfies the assumption of the Stone-Weierstrass theorem is sufficient to obtain a

uniform approximation, in finite samples there might be an interest in using more than one

approximating class simultaneously.10 To build intuition, consider the 1-dimensional case

where we are trying to approximate the function f(x) = x · sin(x). If we take PolJn(x) or

TriPolJn(x), the class of polynomials and trigonometric polynomials respectively, f ̸∈Θn

for any n. Of course this in not an issue asymptotically because each class can approximate
10I thank Yixiao Sun for this meaningful suggestion.
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f uniformly. On the other hand, observe that f ∈ Pol1(x)Tri1(x) so the tensor product of

these two classes will have a better performance. Conversely, the finite sample performance

of each sieve space taken separately may be unsatisfactory since a function like f(x) may

be poorly approximated by polynomials (because of the sin(x) component) and poorly

approximated by trigonometric polynomials (because of the linear x component) when

Jn is small. In some extensions of this work, I consider a richer procedure in which all

basis functions are considered simultaneously and a LASSO-type procedure can be used to

select redundancies. This idea is broadly inspired by the idea of over-parametrization and

it would be very interesting to explore in future research. Here I simply note that one can,

in general, over-parametrize the sieve spaces by considering the larger space

ΘZW,n =

∑
q

Jn∑
j=1

Kn∑
k=1

Ln∑
l=1

ϕjq(x)ϕkq(z)ϕlq(w)βqjkl


where j,k, l = {1,2, · · ·Jn}, q ∈ {PolJn ,T riPolJn ,SplJn ,GaussJn , · · ·}

Here q is ranging over a variety of collections of standard sieve spaces. Different sieve

spaces are know to be best suited to approximate well functions with particular properties.

A brief review of their properties is given in Appendix B, for a thorough treatment consider

Chen [2007].
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2.3.3 Estimation of the conditional mean functions mZ(·) and

mZW (·) and its derivatives

The discusssion in the previous section has highlighted the simplicity of the sieve

approach. The estimated conditional mean function in Θn has the representation below:

m̂(x,z,w) =
Jn∑
j=1

Kn∑
k=1

Ln∑
l=1

ϕj(x)ψk(z)φl(w)β̂j,k,l

=
Jn∑
j=1

Kn∑
k=1

Ln∑
l=1

ϕj(x)ψk(z)φl(w)((Φ′Φ)−1Φ′Y )j,k,l

Throughout this paper I will denote β̂Z as the coefficient vector of the βLS sieve estimator

obtained including only the (set) of variables Z in the regression, i.e, the baseline regression.

β̂ZW will denote the coefficient vector of the sieve estimator for the robustness check

regression.

First consider the sieve estimator for the conditional mean function:

m̂ZW (x,z,w) =
Jn∑
j=1

Kn∑
k=1

Ln∑
l=1

ϕj(x)ψk(z)φl(w)β̂j,k,l

Then, an approach would be to consider the estimator for the partial derivative of m with

respect to x given by:

m̂′
ZW (x) =

Jn∑
j=1

Kn∑
k=1

Ln∑
l=1

ϕ′
j(x)ψk(z)φl(w)β̂j,k,l

where ϕ′
j(·) is the derivative of ϕj(·) with respect to x.

Remark 45. Here the key hyper-parameter is the number of terms in the series estimator,

namely Jn,Kn and Ln which informs the bias-variance trade-off for the estimation of mZ

and mZW respectively. While the standard procedure is to use cross validation to select such
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a hyper-parameter, the CV-rule is built on optimizing the performance for the conditional

mean. Arguably though, the true targets (in the spirit of targeted learning) are different:

the average of the derivative of the conditional mean function is the actual estimator for

AMTE(x0) and it is not clear that the optimal choice of Jn,Kn,Ln carries over to the

optimal choice of terms for the average derivative. I leave this issue for further research.

Now that we have developed the construction of the (linear) sieve estimator above

estimator and we have shown that the functional of interest is linear in the conditional

mean and continuous with respect to the string norm, we can obtain the results for the

joint distribution of the two estimators of AMTE(x0) under the null hypothesis that the

model is both Z and ZW -identifiable. After that, constructing our robustness test is

straightforward.

2.4 Asymptotic Properties

In this section I characterize the asymptotic normality of the estimator as well

as the asymptotic distribution of the nonparametric robustness test. Relying on the

key identification result of 38 we will construct two estimators of AMTE(x0) which

under the null will converge to the same quantity. Fortunately, as shown in the previous

section, we can interpret the AMTE(x0) as a linear functional of the sieve estimators

m̂ZW (x,z,w) and m̂Z(x,z): it is the composition of the derivative map, evaluation at x0

and integration against the empirical distribution. As a result the frameworks discussed in

Newey [1997] and Chen [2007] are applicable. For convenience I will denote TZn = Jn ·Kn

and TZWn = Jn ·Kn ·Ln.
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2.4.1 Main Result

Consider a generic functional a which maps the sieve estimator to R2. In order

to obtain the main result of consistency and asymptotic normality of the AMTE(x0)

estimator I introduce a key result by Newey [1997]. Mirroring the treatment in Chen [2007],

define the following quantities below (with dimensions in parenthesis). Moreover, define

ϵZ := Y −E[Y |X,Z], ϵZW := Y −E[Y |X,Z,W ] to be the conditional expectation residuals.
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QZW

(TZWn ×TZWn )
:= E[Φ(X,Z,W )Φ(X,Z,W )′] (2.10)

QZ

(TZn ×TZn )
:= E[Φ(X,Z)Φ(X,Z)′] (2.11)

Q :=

QZW 0

0 QZ

 (2.12)

ΣZW

(TZWn ×TZWn )
:= E[Φ(X,Z,W )Φ(X,Z,W )′E(ϵ2Z |X,Z,W )] (2.13)

ΣZ

(TZn ×TZn )
:= E[Φ(X,Z)Φ(X,Z)′E(ϵ2ZW |X,Z)] (2.14)

Σ×
(TZWn ×TZn )

:= E[Φ(X,Z,W )Φ(X,Z)′E(ϵZW |X,Z,W ) ·E(ϵZ |X,Z)] (2.15)

Σ :=

ΣZ Σ′
×

Σ× ΣZW

 (2.16)

AZ
(TZn ×1)

:= ∂a(Φ(X,Z)′β)
∂β

∣∣∣
β∗
n

(2.17)

AZW
(TZWn ×1)

:= ∂a(Φ(X,Z,W )′β)
∂β

∣∣∣
β∗
n

(2.18)

A
(TZn +TZWn ×2)

:=

(AZ)′ 0

0 (AZW )′


′

(2.19)

Vn
(2×2)

:= A′Q−1ΣQ−1A (2.20)

ζ0(TZWn ) := sup
X ×Z×W

∥Φ(x,z,w)∥ (2.21)

ζd(TZWn ) := max
λx+λz+λw≤d

(
sup

X ×Z×W

∥∥∥∥∥ ∂Φ(x,z,w)
∂xλx∂zλz∂wλw

∥∥∥∥∥
)

(2.22)

Consider the following set of assumptions:

Assumption 7. Suppose:

i) sup(x,y,z)∈X ×Z×W E[Y −m0(X,Z,W )|X,Z,W ]4 <∞ and Var(Y |X,Z,W )> ϵ > 0
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ii) infnminTn λ(Q)> 0

iii) there exist αZ ,αZW > 0,β∗
n such that, for TZWn = Jn ·Kn ·Ln, TZn =Kn ·Ln,

infg∈ΘZ,n∥g−m0∥d = ∥ΦTZWn
(x,z,w)′β∗

ZW,n−m0∥d =O((TZWn )−αZW ) and

infg∈ΘZW,n∥g−m0∥d = ∥ΦTZn
(x,z)′β∗

Z,n−m0∥d =O((TZn )−αZ )

Assumption 8. Suppose:

i) limn→∞
TZWn ζ0(TZWn )2

n = 0 and a(h) is linear in h or

ii) limn→∞
(TZWn )2ζs(TZWn )4

n = 0 and there is a linear map D(h, h̃) such that is linear in h∈Θ

and there are numbers c1, c2, ϵ > 0 so that for any h̃ and h̄ with ∥h̃−h0∥d < ϵ, ∥h̄−h0∥d < ϵ

we have:

|a(h)−a(h̃)−D(h− h̃, h̃)| ≤ c1(∥h− h̃∥d)2

|D(h, h̄)−D(h, h̃)| ≤ c2∥h∥d∥h̄− h̃∥d

Assumption 9. Suppose:

i) there is a positve constant c such that |D(h,h0)| ≤ c∥h∥d

ii) there is an hn ∈ΘZW,n such that E[hn(X,Z,W )2]→ 0

Assumption 1 requires three regularity conditions. Condition i) is a lower bound on

the conditional variance of the outcome variable, requiring it to be nontrivial. Condition

ii) requires a bound on the minimal eigenvalue of the block-diagonal matrix Q. It avoids

the limiting case of near-multicollinearity whose practical considerations were described in

subsection 2.3.2. Finally condition iii) specifies the rate of convergence of the approximation

of the sieve spaces ΘS,n as anticipated when introducing the Stone-Weierstrass theorem.

This is the order of the bias incurred because, for any finite n, the target m0,S may not

be in ΘS,n. Assumption 2 concerns the type of functionals of sieve estimators that we
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can accommodate. The condition requires that the functional is linear or it has a linear

approximation function that is Lipschitz in both arguments with respect to the strong

norm. Finally Assumption 3 requires continuity of the linear approximation in the strong

norm.

Theorem 46 (Newey 1997). Suppose the assumptions I and 1-3 hold. For a set of variables

S = {Z} or {ZW}, let ĥS,n be the sieve estimator of h0,S based on the linear sieve ΘS,n,

among one of the classes considered above. If limn→∞
√
nT−αS

S,n → 0, then:

√
n

VS,n

(
a(ĥS,n)−a(hS,0)

)
d−→N (0,1)

where VS,n is the entry of Vn corresponding to S = {Z} or {ZW}.

Theorem 47 (Joint Asymptotic Normality). Assume limn→∞
TZWn ζd(TZWn )2

n = 0 and

limn→∞
TZn ζd(TZn )2

n = 0. Further let Assumptions 1 hold and the model is both Z and

ZW -identifiable. We have:

√
nV

− 1
2

n

 ÂMTEZ(x0)−AMTE(x0)

ÂMTEZW (x0)−AMTE(x0)

 d−→N (0, I)

Here V − 1
2

n is the unique (by positive definiteness) matrix M such that M2 = Vn.

Theorem 47 says that, under the baseline model, the plug-in estimators of AMTE(x0)

using either the control set Z or the control set (Z,W ) will be jointly normal and, in

particular, both centered around the true AMTE(x0). The proof of Theorem 47 will

amount to verify conditions on the theorem by Newey [1997], which I discuss below, and to

apply the Cramér-Wold device.

Proof. The terms TZWn and TZn satisfy the requirement of Assumption 2 i). Proposition

43 guarantees that linearity of the functionals of interest, ΓZW and ΓZ holds, satisfying
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the second part of Assumption 2 i). Similarly, Assumption 3 i) requires continuity with

respect to the strong norm, again guaranteed by Proposition 43. Here we may rewrite the

functional ΓZW in a more convenient format:

a(m̂n) = a

 Jn∑
j=1

Kn∑
k=1

Ln∑
l=1

ϕj(x)ψk(z)φl(w)β̂j,k,l


=
∫  Jn∑

j=1

Kn∑
k=1

Ln∑
l=1

ϕj(x)ψk(z)φl(w)β̂j,k,l

dFZW
=

Jn∑
j=1

ϕ′
j(x0)

∫ Kn∑
k=1

Ln∑
l=1

ψk(z)φl(w)dFZW

 β̂ZWjkl
=

Jn∑
j=1

Kn∑
k=1

Ln∑
l=1

ϕ′
j(x0)

(∫
ψk(z)φl(w)dFZW

)
β̂ZWjkl

=
Jn∑
j=1

Kn∑
k=1

Ln∑
l=1

Ajklβ̂
ZW

= A′β̂ZWjkl

A similar rewriting can be applied to the functional ΓZ to obtain:

AZWjkl := ϕ′
j(x0)

(∫
ψk(z)φl(w)dFZW

)
AZjk := ϕ′

j(x0)
(∫

ψk(z)dFZW
)

where Ajkl = ϕ′
j(x0)(

∫
ψk(z)φl(w)dFZW ) and the sum is written in terms of a simple

dot product. Incidentally, because it is a linear functional, the A matrix does not depend

on the particular value of the pseudo-true value11. Theorem 46

The weighted formula above can be further simplified so that AZWjkl , the weight

11Essentially, the AZW and AZ matrices depend on the choice of sieve basis functions chosen but does
not depend on the pseudo-true value.
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corresponding to the β̂jkl term, has the format:

ϕ′
j(x0)E[ψk(Z)φl(W )]

i.e. the weights are given by the expectation of the basis functions of the control variables

multiplied by the derivative of the jth basis function for the policy variable X evaluated at

the point of interest x0. Notice how the weights depend on the pre-specified point x0.12

It is possible to show that the convergence rate of the AMTE(x0) can be derived

the Euclidean norm of A which coincides with the norm of the linear operator. Because

VZ,n ∝ ∥AZ∥2E and VZW,n ∝ ∥AZW∥2E we are interested in characterizing the order of ∥A∥2E .

We have:

∥An∥2E :=

√√√√√
 Jn∑
j=1

Kn∑
k=1

Ln∑
l=1

(
ϕ′
j(x0)E[ϕk(Z)φl(W )]

)2
 (2.23)

Following De Jong [2002] one can show that ∥AZn ∥2E =O((TZn )3), ∥AZWn ∥2E =O((TZWn )3).

Hence, the rate of convergence for ΓS(m̂) to ΓS(m0) in the intrinsic norm is given by:

Op

(
(TSn )3
√
n

+(TSn )−αS
)

(2.24)

This rate of convergence is slower than the parametric rate. If one views this result

in light of the parametric test proposed by Lu and White [2014], an interesting trade-off

arises. On the one hand the nonparametric test has a slower convergence rate than the

parametric test. On the other hand, the functional form imposed by the parametric test

may be severely mis-specified. Hence, it is not clear in which situations the naive test
12The estimator Âjkl is

√
n-consistent under the weak condition that E[ϕk(Z)φl(W )] <∞ ∀ l,k. In

particular choosing r-splines as a basis amounts to bounded (r− 1) cross moments, a relatively easy
condition to satisfy. In this paper all functions have bounded support so the existence of these moments is
trivially satisfied.
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performs better than its nonparametric counterpart. The quantities described in Equations

(10)-(20) here are population objects. For the implementation, the sample analogs for the

quantities A,Q and Σ and V are a natural choice of consistent estimators. Taking the

nonparametric regression with both Z and W as an example they can be written as:

Q̂ZWn := 1
n

(
Φ(X,Z,W )Φ(X,Z,W )′

)
(2.25)

Σ̂ZW := 1
n

(
Φ(X,Z,W )Φ(X,Z,W )′V̂ ar(Y |X,Z,W )

)
(2.26)

Âjkl := ϕ′
j(x0) 1

n

n∑
i=1

ψk(Zi)φl(Wi) (2.27)

V̂n := Â′(Q̂ZW )−1Σ̂ZW (Q̂ZW )−1Â (2.28)

With the result of Theorem 47, we can state Corollary 48 which is based on testing

the difference between the two estimators we have obtained above for the AMTE(x0) using

the full control set {Z,W} or the restricted set {Z}.

Corollary 48 (Robustness Test). Assume limn→∞
TZWn (ζd(TZWn )2

n = 0, limn→∞
TZn (ζd(TZn )2

n =

0, and Assumption 6. Further assume H0 is true. For R =
[
+1 −1

]
, we have the test

statistic:

R̂n := n ·

 ÂMTEZ(x0)

ÂMTEZW (x0)


′

R′(RV̂nR′)−1R

 ÂMTEZ(x0)

ÂMTEZW (x0)

 d−→ χ2(1)

We have recovered a nonparametric test that extends the linear Lu and White [2014]

robustness approach. Because this test does not rely on linearity of the conditional mean

function but instead flexibly models it through the sieve approach, we can expect rejections

from this test to come exclusively from a violation of the causal assumptions that allow

identification of the AMTE(x0). Which information carried by the causal structure are

being tested by the estimator in Corollary 48? In the spirit of causal diagrams one could
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look at the robustness test as a validation exercise of model MB against model MR. i.e.

the test is testing for the presence of the red link in the picture below.

u

W Z

Y

X

Figure 2.4.1: Falsification of MB against MR. If the red arrow is present, consistent
estimation of AMTE(x0) requires estimating E[Y |X,Z,W ] since E[Y |X,Z] has no
causal interpretation.

2.5 Conclusion

In this paper I provide a theoretical framework to extend the notion of robustness

test to a nonparametric setting. The procedure preserves the simple heuristic of coefficient

stability: look at the result of two (or more) regression coefficients, if they are too far apart,

reject your identification strategy. In contrast to available alternatives in the literature,

which require restrictive assumptions like linearity, my procedure allows flexible functional

forms estimation. This framework has a number of desirable properties. The proposed

test is transparent: if identification is correct, the two available ways of estimating the

causal object of interest must agree; if they don’t, one of the models must be wrong.

In the same spirit of Lu and White [2014], the proposed test upgrades the robustness

check to a robustness test and characterizes its asymptotic distribution allowing for a

rigorous statistical procedure. The focus on nonparametric identification circumvents the
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problems of identification through functional form. Because the approach uses only the

conditional independence assumptions from the causal diagram13 the proposed test does

not suffer from the generic rejection problem of its parametric counterpart. The estimation

through the sieve approach accommodates a large degree of flexibility without an excessive

computational burden.

There are several promising directions for future research. First, it would be

important to characterize the power of the nonparametric test versus the parametric

available versions. For certain data generating processes and certain points of evaluation,

the trade off between simplicity and accuracy may favor the naive OLS test. Second,

the heuristic of coefficient stability can be further extended to accommodate many other

nonparametric methods though the characterization of the asymptotic distribution of the

two or more estimators may be challenging in this general case.
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Appendix

2.A Other definitions

Definition 49. Holder class

Let p ∈ R+. Then write p = α+ [p] where [p] denotes the largest integer smaller than p,

with α ∈ [0,1). Let X and Y be Banach spaces and m :H→Y be a function between them.

Then m is said to be p-smooth if it is [p]-times continuously differentiable and for x,x′ ∈H

we have:

sup
x̸=x′∈X

∥m[p](x)−m[p](x′)∥
∥x−x′∥α

<∞

Definition 50. Holder Ball

A Holder ball with smoothness p is defined as:

Λpc(X ) :=
{
m ∈ C [p](X ) : |m

[p](x)−m[p](x′)|
|x−x′|α

≤ c; ∥m∥d ≤ c
}

Essentially, a Holder ball is a class of functions whose derivatives are Holder

continuous with exponent α. A p-smooth functions can be approximated by some basis

functions with some well behaved approximation error.

Definition 51. Tensor Product Hilbert spaces

Let H1 and H2 be two Hilbert spaces with bases {ϕk} and {ψl} respectively. The tensor

product H1⊗H2 is a Hilbert space P together with a bi-linear mapping b : (H1,H2)→P
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such that:

• the closed linear span of b(ϕ,ψ) = P

• ⟨b(ϕ1,ψ1), b(ϕ2,ψ2)⟩P = ⟨ϕ1,ϕ2⟩H1 · ⟨ψ1,ψ2⟩H2

Then {ϕk⊗ψl} is an orthonormal basis for the tensor product space H1⊗H2.

2.B Extensions

In this section I discuss three extension of the main framework of the paper to

incorporate three cases of interest beyond the standard control variable approach. The

first extension discusses robustness test for an a conditionally valid instrumental variable

estimator. The procedure is based on the control function approach and follows the same

heuristic underlying Theorem 38. The second extension draws a connection between the

type of robustness tests based on coeffcient stability and a Sargan type falsification test in

the presence of multiple instruments. The third extension discusses a robustness test in the

context of mediation analysis. From the perspective of a causal diagram, mediation analysis

carries similar types of causal restrictions as an instrumental variable model and therefore is

suitable for the same type of analysis. While not very popular among economists, mediation

analysis has recently gained some interest in Imbens [2019] and Bellamare and Bloem

[2019]. The extension of a robustness test in this context is straightforward.

2.B.1 Conditionally valid instrumental variables

In the main body of the paper we considered the testable implication of the coefficient

stability exercise arising from a “controlling for observables” procedure. In this subsection

I consider the case of instrumental variables estimation. Consider the following familiar

situation in applied research: a researcher proposes identification of the effect of X on

Y through an available instrument Z. The baseline identification structure hinges on,
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U

W0 W1

X

Z

Y

V

Figure 2.B.1: AMTE(x0) is not identified by including W0,W1 in the control set
because of the path Y ←U→X. On the other hand, variable Z is a potential instrument,
if appropriate control variables are included. Z is a valid instrument if either W0 or
both W0 and W1 are included in the control set. The dashed green arrow represents the
(reduced form) regression of Y on Z. The lack of solid arrows from Z to Y amounts to
the exclusion restriction.

Z ⊥⊥U |W0. This is not a testable assumption, and is usually justified by domain knowledge

that may reflect the institutional background of the observable variables. Suppose there

is a (set of) additional controls W1 available and that W1 does not contain bad controls

(that is, Z ⊥⊥ U |W0 =⇒ Z ⊥⊥ U |W0,W1). That is, Z is a valid instrumental variable given

both the control set W0 as well as the larger control set {W0,W1} like depicted in Figure

2.B.1. In this case, there is an opportunity for a coefficient stability robustness exercise to

convince a reader that identification based on Z ⊥⊥ U |W0 is realistic.

Note that, in the model considered in this section, the AMTE(x0) generally fails

to be nonparametrically identified without additional restrictions, as discussed in Pearl

[2000]. As such, I impose some sufficient conditions on the structural functions to ensure

identifiability and postpone the discussion of the fully general model to a later section of
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U

W0 W1

X

Z

Y

V

Figure 2.B.2: Here, a link between U and Z is present through two variables, W0
and W1. Notice again AMTE(x0) is not identified by including W0,W1 in the control
set because of the path Y ← U ---V →X. On the other hand, variable Z is a potential
instrument, if appropriate control variables are included. Z is a valid instrumental
variable only if W0 and W1 are included in the control set. Simply including W0 and
using an IV approach would result almost surely in a bias. The dashed green arrow
represents the (reduced form) regression of Y on Z. Notice the lack of solid arrows from
Z to Y amounts to the exclusion restriction.
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this Appendix. Namely, here we require separability in the structural equation for X:

Y = C(x,u)

X = F (z)+v

Here Z is a conditionally valid instrument provided that Z ⊥⊥ U |W0 in the baseline model.

The robustness test in this context will gauge at whether Z ⊥⊥ U |W0 and Z ⊥⊥ U |W0,W1

jointly hold by comparing the two estimates of the AMTE(x0) that one can get through

the control function approach. The structural function is additively separable in a function

of the observable Z and unobservable v. Then one can identify the AMTE(x0) using a

control function approach that follows similar steps to the main procedure discussed in

Section 2.3

• Estimate E[X|Z,W0,W1] with the sieve approach

• Obtain estimates of v =X−E[X|Z,W0,W1]

• Use U ⊥⊥X|v to estimate E[Y |X,v,W0,W1] using the sieve approach

• Recover the causal estimand of interest by taking: ∂E[Y |X=x,W0,W1,v]
∂x and evaluate it

at x0 and integrating out the distribution of the conditional controls

One can immediately notice how the separability in X allows to tease out the

residual v in the second step. The separability requirement can be slightly generalized to

allow a X to be expressed as known function of F (z) and v but it is hard to think about a

case where this is relevant in practice.

Remark 52. In practice, the diagram portrayed in Figure 2.B.1 and Figure 2.B.2 may

be further enriched with additional covariates that are directly factored into the structural

equation for Y . The control function approach may easily accommodate these changes by
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appropriately incorporating the additional control variables in the first stage, second stage,

or both.

Proposition 53 (Identification). AMTE(X0) is identified by the equation:

∫
V

∫
W0×W1

∂E[Y |X = x,w0,w1,v]
∂x

(x0,v)fV (w0,w1,v)dw0dw1dv (A2.29)

Proof. Observe that if V was observable, the following conditional independence holds:

u ⊥⊥ X|W0,W1,v. Then, one may proceed to identify the AMTE(x0) with the control
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function approach.

∫
U

∂C

∂x
(x0,u)fU (u)du (A2.30)

=
∫
U

∫
V

∫
W0×W1

∂C

∂x
(x0,u)fU (u|v,w0,w1)f(v,w0,w1)dw0dw1dvdu (A2.31)

=
∫
V

∫
W0×W1

(∫
U

∂C

∂x
(x0,u)fU (u|v,w0,w1)du

)
f(v,w0,w1)dw0dw1dv (A2.32)

=
∫
V

∫
W0×W1

(∫
U

lim
∆x→0

Yx0+∆x(u)−Yx0(u)
∆x fU (u|v,w0,w1)du

)
(A2.33)

×f(v,w0,w1)dw0dw1dv (A2.34)

=
∫
V

(
lim

∆x→0

∫
U Yx0+∆x(u)fU (u|v,w0,w1)du−

∫
U Yx0(u)fU (u|v,w0,w1)du

∆x

)
(A2.35)

×f(v,w0,w1)dw0dw1dv (A2.36)

=
∫
V

∫
W0×W1

lim
∆x→0

1
∆x

∫
U
Yx0+∆x(u)fU (u|x0 +∆x,w0,w1,v)du

−
∫
U
Yx0(u)fU (u|x0,w0,w1,v)du

f(v,w0,w1)dw0dw1dv (A2.37)

=
∫
V

∫
W0×W1

lim
∆x→0

1
∆x

E[Yx0+∆x|X,W0,W1,V ](x0 +∆x,w0,w1,v)

−E[Yx0|X,W0,W1,V ](x0,w0,w1,v)
f(v,w0,w1)dw0dw1dv (A2.38)

=
∫
V

∫
W0×W1

lim
∆x→0

1
∆x

E[Y |X,W0,W1,V ](x0 +∆x,w0,w1,v)

−E[Y |X,W0,W1,V ](x0,w0,w1,v)
f(v,w0,w1)dw0dw1dv (A2.39)

=
∫
V

∫
W0×W1

∂E[Y |X,W0,W1,V ]
∂x

(x0,w0,w1,v)f(v,w0,w1)dw0dw1dv (A2.40)

Equation (A2.31) follows from conditioning on v, (A2.32) follows from Fubini’s

theorem because C ∈ Cp(X ×U). Equation (A2.34) is the definition of Yx, Equation

(A2.36) follows from the dominated convergence theorem. Equation (A2.37) follows from
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the conditional independence of U and X given (W0,W1,v) and Equation (A2.38) from

the definition of conditional expectation. Equation (A2.39) follows from the consistency

of Yx with observed outcome Y and Equation (A2.40) from the definition of derivative.

Although v is not observable, it may be consistently estimated by a first stage nonparametric

regression of X on Z,W0,W1.

E[X|Z,W0,W1] = E[F (Z)+v|Z,W0,W1] (A2.41)

= E[F (Z)|Z,W0,W1]+E[v|Z,W0,W1] (A2.42)

= F (Z)+E[v|Z,W0,W1] (A2.43)

= F (Z) (A2.44)

Equation (A2.41) follows from the additive separability of the structural equation, Equation

(A2.42) from linearity of conditional expectations, Equation (A2.43) from F (Z) being

measurable with respect to σ(Z,W0,W1). Finally an observation on E[v|Z,W0,W1] = 0.

Because X is not included in the conditioning set there is no bias from conditioning on a

common outcome of Z and v. Further, because both the controls W0 and W1 are in the

conditioning set, Z is a valid instrument and as such we have Z ⊥⊥ {u,v}|W0,W1. Hence

one may recover v =X−E[X|Z,W0,W1] and use it to estimate E[Y |X,V ]. This finises the

proof.

Consider the conditions under which such an exercise would be revealing of identifi-

cation failures. In a similar vein as discussed in the main paper, the proposed robustness

test would reject if:

• Z ⊥⊥ Y |W0 is false while Z ⊥⊥ Y |W0,W1 is true

• Z ⊥⊥ Y |W0 is true while Z ⊥⊥ Y |W0,W1 is false

Like in the standard case, we must guarantee that rejections that depend on ii) are
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ruled out. A sufficient condition, analogous to Equation (2.6) is that W1 does not contain

“bad controls” discussed in the introduction so that we maintain Z ⊥⊥ Y |W0 =⇒ Z ⊥⊥

Y |W0,W1. There is a natural adaptation of Theorems 47 and 48 for the control function

approach IV estimator. We leave the characterization of its asymptotic distribution for

future work.

2.B.2 Non-additively separable models

We now explore the generalization of the above model where the structural function

that disciplines the behavior of the dependent variable is not necessarily additively separable

in Z. The system of structural equations is then given by

Y = C(x,u)

X = g(z,v)

One may look at the average change we can induce in Y through an exogenous

change in Z and consider the reduced form relationship below:

E
[
∂C(X(z,v),u)

∂z
(x0,U)

]
= E

[
∂C

∂x
(x0,u) · ∂g

∂z
(z,v)

]
(A2.45)

Focusing on the left hand side:
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∫
U

∂C(X(z,v),u)
∂z

fU (u)

=
∫

W0×W1

(∫
U

∂C(X(z,v),u)
∂z

fU (u|w0,w1)du
)
fW (w0,w1)dw0dw1

=
∫

W0×W1

(∫
U

lim
∆z→0

Y (Xz+∆z(v),u)−Y (Xz(v),u)
∆z fU (u|w0,w1)du

)
fW (w0,w1)dw0dw1

=
∫

W0×W1

(∫
U

lim
∆z→0

Y (Xz+∆z(v),u)−Y (Xz(v),u)
∆z fU (u|z,w0,w1)

)
fW (w0,w1)dw0dw1

=
∫

W1×W2

(
lim

∆z→0

∫
U

Y (Xz+∆z(v),u)−Y (Xz(v),u)
∆z fU (u|z,w0,w1)

)
fW (w0,w1)dw0dw1

=
∫

W0×W1

(
lim

∆z→0

E[YXz+∆z −YXz |Z = z,W0 = w0,W1 = w1]
∆z

)
fW (w0,w1)dw0dw1

=
∫

W0×W1

∂E[YXz |Z = z,W0 = w0,W1 = w1]
∂z

fW (w0,w1)dw0dw1

=
∫

W0×W1

∂E[Y |Z = z,W0 = w0,W1 = w1]
∂z

fW (w0,w1)dw0dw1

So the LHS is identified by the derivative of the conditional mean function of Y

given instrument Z and control variables W0,W114. The right hand side can be rearranged

as:

∫
U×V

∂C

∂x
(x0,u) · ∂g

∂z
(z,v)fUV (u,v)dudv

=
∫

W0×W1

∫
U×V

(
∂C

∂x
(x0,u) · ∂g

∂z
(z,v) ·fUV (u,v|w0,w1)dudv

)
fW (w0,w1)dw0dw1

=
∫

W0×W1

∫
U×V

(
∂C

∂x
(x0,u) · ∂g

∂z
(z,v) ·fUV (u,v|z,w0,w1)dudv

)
fW (w0,w1)dw0dw1

=
∫

W0×W1

∫
U×V

(
∂C

∂x
(x0,u) · lim

∆Z→0

Xz+∆z(v)−Xz(v)
∆z fUV (u,v|z,w0,w1)dudv

)
fW (w0,w1)dw0dw1

The LHS is the nonparametric regression of Y on Z, W0 and W1. In a fully

nonparametric, possibly non-separable model, it is hard to isolate a reduced form object in
14The reader will notice that this reduced form is obtained precisely as the estimator in section 2, with

the exception that this statistical object does not have any causal interpretation per-se.

138



the second term. RHS is the marginal effect of increasing x by one unit in policy environment

u, ∂C∂x (x0,u), weighted by the derivative of the conditional mean of X given the instrument

Z and the controls W0,W1 for policy environment U = u. Ultimately, the presence of the v

in the second term makes it hard to isolate a reduced form object on the right hand side.

Clearly, since the two objects ∂E[Y |Z=z,W0=w0,W1=w1]
∂z and E[X|Z=z,W0=w0,W1=w1]

∂z depend

uniquely on observed variables, they are identified. In general, the solution to (A2.45)

is not unique. A sufficient condition for uniqueness is completeness of the conditional

expectation of X given Z and the controls W0,W1.

2.B.3 A connection to over-identification tests in instrumental

variables models

Perhaps not surprisingly, robustness tests based on coefficient stability can be related

to the well-known Sargan-Hansen test for over-identifying restrictions in the context of

instrumental variables regression. This section highlights the connection and shows that

both can be seen as particular cases of falsification tests. The procedure in a standard

over-identified restriction test still hinges on the general heuristic of coefficient stability

discussed in this paper: if the identification structure is correct, there are two equivalent

ways of identifying the causal effect of interest. Conversely, if the two procedures lead to

different estimates, then the proposed identification may not hold. The example below

shows that the very well studied Sargan-Hansen test may be given a coefficient stability

interpretation. To keep things simple, I focus on linear instrumental variable models with

just one regressor and two instruments: there is a single over-identifying restriction. The

procedure can be generalized to multiple over-identified restrictions and to the context of

GMM estimators. Consider the following causal diagram:
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u

X Y

Z1 Z2

Figure 2.B.3: Over-identified instrumental variables system

To highlight the connection between robustness test and over-identification tests we

can further assume that the structural functions are linear. The dashed lines represent the

relationship one would obtain if they regressed Y on Z1 and Z2 respectively. As such, the

lines purely represent reduced forms and the absence of the solid lines pointing to Y from

either of the instruments Z represents the exclusion restriction. If the hypothesized causal

structure is correctly specified one has two possibilities to estimate the AMTE(x0).

• Obtain the 2SLS regression of Y on X using Z2

• Obtain the 2SLS regression of Y on X using Z1

Under the hypothesized model both regressions lead to the same estimated causal

effect. If the two estimates differ, the robustness test falsifies the model. In this light, the

Sargan-Hansen J test for over-identifying restrictions reflects exactly the same heuristic of

coefficient stability described in the main paper.

Proposition 54 (Coefficient Stability and over-identifying restrictions). Let (γ1,γ2) be the

regression coefficient from the reduced form regression of Y on (Z1,Z2)′ and (α1,α2) be the

regression of X on (Z1,Z2)′. The Sargan J test is testing:

H0 : γ1
α1

= γ2
α2
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Proof. Denoting û as the vector of residuals from the instrumental variable regression of Y

on X using instruments {Z1,Z2}, in case of conditional homoskedasticity, the standard J

statistic may be written as:

J = 1
σ̂2 · û

′Z(Z ′Z)−1Z ′û

= 1
σ̂2 · (y−X(X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y)′Z(Z ′Z)−1Z ′

×Z(Z ′Z)−1Z ′(y−X(X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y)

= y′Z(Z ′Z)−1Z ′−y′Z(Z ′Z)−1Z ′X(X ′Z(Z ′Z)−1Z ′X)−1X ′

× (Z ′Z)−1Z ′y− (Z ′Z)−1Z ′X(X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y

=


γ̂1

γ̂2

−
α̂1

α̂2

 β̂2SLS


′

Z ′Z

σ̂2


γ̂1

γ̂2

−
α̂1

α̂2

 β̂2SLS



which is a quadratic form in the coefficients of interest, testing the restriction:

β = γ1
α1

= γ2
α2

which is the coefficient stability restriction.

2.B.4 Optimal Robustness Test Selection

Lu and White [2014] implement a Feasible Optimally combined GLS estimator.

In their context, a menu of valid robustness check regressions is available. Using the

notation of the main body of this paper I denote the additional (sets of) covariates as

W1,W2,W3, · · · ,WJ . The natural robustness test takes advantage of the GLS structure

and essentially carries out all robustness regression comparisons simultaneously. While

theoretically possible, carrying out such a procedure in a nonparametric context may be

computationally unfeasible.
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2.C Some additional results

2.C.1 Binary Treatment

The definition of AMTE(x0) above is only meaningful when C(·,u) is a differentiable

function for almost every x ∈ X . In several applications the interest lies in the effect of a

binary treatment. In such cases we need a different definition of AMTE.

Definition 55. Let X = {0,1}. Then we define:

ATE :=
∫
C(1,u)−C(0,u)fU (u)du (A2.46)

Then there is an analogous result to proposition 3 for the continuous case above.

Proposition 56. i) Let U ⊥⊥X|Z,W .

Then ATEB =
∫
(E[Y |X = 1,Z,W ]−E[Y |X = 0,Z,W ])fZW (z,w)dzdw.

ii) Let instead U ⊥⊥X|Z. Then ATE =
∫
(E[Y |X = 1,Z]−E[Y |X = 0,Z])fZ(z)dz

Proof.

ATEBZW (A2.47)

:=
∫

(C(1,u)−C(0,u))fu(u)du (A2.48)

=
∫ ∫

Z×W
(C(1,u|z,w)−C(0,u|z,w)fU (u|z,w)fZW (z,w)dzdw)du (A2.49)

=
∫

Z×W

∫
(C(1,u|z,w)−C(0,u|z,w)fU (u|z,w)du)fZW (z,w)dzdw (A2.50)

=
∫

Z×W

∫
(C(1,u|x,z,w)−C(0,u|x,z,w)fU (u|x,z,w)du)fZW (z,w)dzdw (A2.51)

=
∫

Z×W
(E[Y |X = 1, z,w)]−E[Y |X = 0, z,w)])fZW (z,w)dzdw (A2.52)

which is the desired result. The proof for ii) is identical and omitted for brevity.

Similar to the continuous treatment case we have the immediate corollary.

142



Corollary 57. U ⊥⊥X|Z,W as well as U ⊥⊥X|Z. Then, ATEZW = ATEZ .

2.C.2 Asymptotic bias

Suppose now that the baseline model is causally mis-specified so that omitting

W does not allow identification of the causal effect of interest. How does omitting the

control variable W impact the asymptotic bias in the AMTE(x0)? For simplicity here

assume U = supp(f(u|x,z) = supp(f(u|x′, z)) for any x,x′ ∈ X . This says that, while the

conditional distribution of U given Z,X may depend on the choice of x, the support of the

density does not vary with the choice of x.

Proposition 58 (Asymptotic Bias). The asymptotic bias resulting from the exclusion of

W is characterized by the expression below.

AsyBias=
∫

Z

∫
W

∂fW |X,Z
∂x

(w|x0, z)
∫
U
C(x0,u)fU (u|w,z)dudwfZ(z)dz (A2.53)

Proof. See Appendix 2.D.

2.C.3 What does a bad control estimate?

In the main paper we required the additional controls to be valid, in the sense that

if the model is Z-identifiable then it is W -identifiable. This is required in order to rule out

the possibility of introducing a bad control in a model that would otherwise be correctly

identifying the AMTE(x0).

Proposition 59 (Bad Control). Let the model be Z-identifiable but not ZW -identifiable.

The bias in the population for introducing a “bad” control variable W is given by the formula
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below:

ÃMTE(x0)bad (A2.54)

=
∫

W

∫
Z

(
∂E [Y |X = x,Z,Wbad]

∂x
(x0, z)

)
fZ|W (z|w)fW (w)dzdw (A2.55)

=
∫

W

∫
Z

 lim
∆x→0

1
∆x

E [Y |X = x,Z,Wbad] (x0 +∆x,z,w)

−E [Y |X = x,Z,Wbad] (x0, z,w)
fZ|W (z|w)fW (w)dzdw (A2.56)

=
∫

W

∫
Z

 lim
∆x→0

1
∆x

E[Yx0+∆x|X = x,Z,Wbad

]
(x0 +∆x,z,w)

−E [Yx0|X = x,Z,Wbad] (x0, z,w)
fZ|W (z|w)fW (w)dzdw (A2.57)

=
∫

W

∫
Z

 lim
∆x→0

1
∆x

∫
U
C(x0 +∆,u)fU (u|x0 +∆x,z,wbad)

−
∫

U
C(x0,u)fU (u|x0, z,wbad)

fZ|W (z|w)fW (w)dzdw (A2.58)

=
∫

W

∫
Z

∫
U

lim
∆x→0

1
∆x(C(x0 +∆,u)fU (u|x0 +∆x,z,wbad)

−C(x0,u))fU (u|x0, z,wbad)
fZ|W (z|w)fW (w)dzdw (A2.59)

=
∫

W

∫
Z

∫
U

∂C

∂x
(x0,u)fU (u|x0, z,wbad)

+
∫

U
C(x0,u)

∂fU |x,w,z
∂x

(u|x0, z,wbad)
fZ|W (z|w)fW (w)dzdw (A2.60)

Together with proposition 58, 59 says that failures of identification may arise either

from failing to control for variables that are needed for identification, or from controlling for

variables that introduce endogeneity that breaks identification. In this sense, any robustness

test that one may design should use variables that are in neither category. The testable

restriction given by coefficient stability presumes that the researcher has hypothesised a
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minimally identifying set and that the additional variables are neither needed nor harmful

for identification.

2.C.4 What would OLS be estimating

The previous section has discussed the nonparametric estimation strategy for the

AMTE(xo). What would happen if one simply considers the naive OLS estimator and

attempts to use it to conduct the robustness exercise for causal identification. First we

immediately note that the design point, x0 bears no relevance to the OLS estimator since it

is never required as an input in the estimation process. As such, OLS necessarily estimates

some aggregate effect over all feasible estimation points. One may then hope that β̂OLS

can still be given an interpretation as a pseudo-true value, i.e some particular average of

AMTE(x0) with weights coming from the empirical distribution of X. I show below that

this is not the case.

Proposition 60 (Representation). The estimator βZW could be represented as:

βZW =
∫
X
∫
Z×W m′(t,z,w)ρ(z,w,t)dFZ,Wdt∫

X
∫
Z×W ρ(z,w,t)dFZ,Wdt

ρ(z,w,t) := (E[|X ≥ t|Z,W ]−E[|X < t|Z,W ]) (P(X ≥ t|Z,W ])(1−P(X ≥ t|Z,W ]))

Proof. Following Angrist and Pischke [2008] we may recover:

βZW = E[Y (X−E[X|Z,W ])]
E[X(X−E[X|Z,W ])]
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Looking at the numerator one has:

E[Y (X−E[X|Z,W ])] (A2.61)

= E[E[Y (X−E[X|Z,W ])]|X,Z,W ] (A2.62)

= E[E[Y |X,Z,W ](X−E[X|Z,W ])] (A2.63)

=
∫

Z×X ×W
E[Y |X,Z,W ](x−E[X|Z = z,W = w])]dFX,Z,W (A2.64)

=
∫

Z×X ×W
m(x,z,w)(x−E[X|Z = z,W = w])dFX,Z,W (A2.65)

=
∫

Z×X ×W

(
lim

x→−∞
m(x)+

∫ x

−∞
m′(t,z,w)dt

)
(x−E[X|Z = z,W = w])dFX,Z,W

(A2.66)

=
∫

Z×X ×W

∫ x

−∞
m′(t,z,w)(x−E[X|Z = z,W = w])dtdFX,Z,W (A2.67)

=
∫

Z×W

∫
X

∫ x

−∞
m′(t,z,w)(x−E[X|Z = z,W = w])dtdFX|Z,WdFZ,W (A2.68)

=
∫

Z×W

∫
X

∫ ∞

t
m′(t,z,w)(x−E[X|Z = z,W = w])dFX|Z,WdtdFZ,W (A2.69)

=
∫

Z×W

∫
X
m′(t,z,w)

∫ ∞

t
(x−E[X|Z = z,W = w])dFX|Z,WdtdFZ,W (A2.70)

=
∫

Z×W

∫
X
m′(t,z,w)ρ(z,w,t)dtdFZ,W (A2.71)

=
∫

X

∫
Z×W

m′(t,z,w)ρ(z,w,t)dFZ,Wdt (A2.72)

ρ(z,w,t) := (E[|X ≥ t|Z,W ]−E[|X < t|Z,W ]) (P(X ≥ t|Z,W ])(1−P(X ≥ t|Z,W ])

(A2.73)

(A2.62) follows from the Law of Iterated Expectations, (A2.63) from the conditioning

property since (X−E[X|Z,W ] is a measurable function of the variables in the conditioning

set. (A2.64) follows from expanding the outer expectation, (A2.65) from the fundamental

theorem of calculus applied to m(x,z,w). Equation (A2.66) follows from the fact that

E [X−E[X|Z = z,W = w]] = 0. Equations (A2.67) and (A2.68) are rearrangements based

on Fubini’s theorem and reversing the order of integration. Equation (A2.70) follows from
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Angrist and Pischke [2008] and (A2.71) follows again from Fubini’s theorem. Now for the

denominator, it is entirely straightforward to characterize given the result in Angrist and

Pischke [2008]. I report it here for completeness:

E[X(X−E[X|Z,W ])] (A2.74)

= E[E[X(X−E[X|Z,W ])]|X,Z,W ] (A2.75)

= E[E[X|X,Z,W ](X−E[X|Z,W ])] (A2.76)

=
∫

Z×X ×W
x(x−E[X|Z = z,W = w])]dFX,Z,W (A2.77)

=
∫

Z×X ×W

(∫ x

−∞
dt
)

(x−E[X|Z = z,W = w])dFX,Z,W (A2.78)

=
∫

Z×X ×W

∫ x

−∞
(x−E[X|Z = z,W = w])dtdFX,Z,W (A2.79)

=
∫

Z×W

∫
X

∫ x

−∞
(x−E[X|Z = z,W = w])dtdFX|Z,WdFZ,W (A2.80)

=
∫

Z×W

∫
X

∫ ∞

t
(x−E[X|Z = z,W = w])dFX|Z,WdtdFZ,W (A2.81)

=
∫

Z×W

∫
X

∫ ∞

t
(x−E[X|Z = z,W = w])dFX|Z,WdtdFZ,W (A2.82)

=
∫

Z×W

∫
X
ρ(z,w,t)dtdFZ,W (A2.83)

=
∫

X

∫
Z×W

ρ(z,w,t)dFZ,Wdt (A2.84)

ρ(z,w,t) := (E[|X ≥ t|Z,W ]−E[|X < t|Z,W ]) (P(X ≥ t|Z,W ])(1−P(X ≥ t|Z,W ])

(A2.85)

Observe that, if the term ρ(z,w,t) did not depend on z,w then the OLS estimator
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could indeed be interpreted as a weighted average of true causal effects since:

∫
X
∫
Z×W m′(t,z,w)ρ(z,w,t)dFZ,Wdt∫

Z×W
∫
X ρ(z,w,t)dtdFZ,W

=
∫
X
∫
Z×W m′(t,z,w)ρ(t)dFZ,Wdt∫
Z×W

∫
X ρ(z,w,t)dtdFZ,W

=
∫
X ρ(t)

∫
Z×W m′(t,z,w)dFZ,Wdt∫

Z×W
∫
X ρ(z,w,t)dtdFZ,W

=
∫
X AMTE(t)ρ(t)dt∫

Z×W
∫
X ρ(t)dtdFZ,W

But this is clearly not possible in any case of interest since by definition of ρ(z,w,t) this

would in general require X ⊥⊥ Z,W which is certainly false as readily checked from the

causal diagram.

2.D Proofs

2.D.1 Proof of Proposition 37

Proposition 37 (Identification). Let U ⊥⊥X|Z,W and Assumption 1 hold. Then: i) the

AMTE(x0) is nonparametrically identified by the following formula:

AMTE(x0) =
∫ ∂E[Y |X,Z,W ]

∂x
(x0, z,w)dFZW (z,w) (2.4)

ii) Let instead U ⊥⊥X|Z and Assumption I hold. Then AMTE(x0) is nonparametrically

identified by the following formula:

AMTE(x0) =
∫ ∂E[Y |X,Z]

∂x
(x0, z)dFZ(z) (2.5)

Proof. I show the first statement since the proof is identical for the second one. Here we

further assume that (Z,W ) are continuous random variables with joint density fZW (z,w)
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although it is not necessary for the scope of the proof. We have:

AMTE(x0) (A2.86)

:=
∫

U

∂C

∂x
(x0,u)fu(u)du (A2.87)

=
∫

U
lim

∆x→0

[
Yx0+∆x(u)−Yx0(u)

]
∆x fu(u)du (A2.88)

=
∫

U

∫
Z×W

lim
∆x→0

[
Yx0+∆x(u)−Yx0(u)

]
∆x fu(u|z,w)fZW (z,w)dzdw

du (A2.89)

=
∫

Z×W

∫
U

lim
∆x→0

[
Yx0+∆x(u)−Yx0(u)

]
∆x fu(u|z,w)du

fZW (z,w)dzdw (A2.90)

=
∫

Z×W

 lim
∆x→0

∫
U

[
Yx0+∆x(u)−Yx0(u)

]
∆x fu(u|z,w)du

fZW (z,w)dzdw (A2.91)

=
∫

Z×W
lim

∆x→0

∫
U Yx0+∆x(u)fu(u|z,w)du−

∫
U Yx0(u)fu(u|z,w)du

∆x

×fZW (z,w)dzdw (A2.92)

=
∫

Z×W
lim

∆x→0

∫
U Yx0+∆x(u)fu(u|x0 +∆x,z,w)du−

∫
U Yx0(u)fu(u|x0, z,w)du

∆x

×fZW (z,w)dzdw (A2.93)

=
∫

Z×W
lim

∆x→0

E
[
Yx0+∆x|X,Z,W

]
(x0 +∆x,z,w)−E [Yx0 |X,Z,W ] (x0, z,w)

∆x

×fZW (z,w)dzdw (A2.94)

=
∫

Z×W
lim

∆x→0

E [Y |X,Z,W ] (x0 +∆x,z,w)−E [Y |X,Z,W ] (x0, z,w)
∆x

×fZW (z,w)dzdw (A2.95)

=
∫

Z×W

(
∂E [Y |X = x,Z,W ]

∂x
(x0, z,w)

)
fZW (z,w)dzdw (A2.96)

Equation (A2.87) is the definition of AMTE(x0). Equation (A2.88) follows form the

potential outcome notation and the definition of derivative, Equation (A2.89) follows from

conditioning on both Z and W . Equation (A2.90) follows from Fubini’s theorem. Equation
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(A2.91) follows form the Dominated Convergence theorem, Equation (A2.92) from linearity

and Equation (A2.93) from conditional independence U ⊥⊥ X|Z,W , Equation (A2.94)

follows from the definition of conditional expectation. Equation (A2.95) is consistency of

Yx0 and Yx0+∆x at X = x0 and X = x0 + ∆x respectively. Finally, Equation (A2.96) is the

definition of derivative of the conditional expectation function at X = x0. Since it depends

exclusively on observed quantities, the AMTE(x0) is identified by the above population

quantity.

2.D.2 Proof of Proposition 58

Proposition 58 (Asymptotic Bias). The asymptotic bias resulting from the exclusion of

W is characterized by the expression below.

AsyBias=
∫

Z

∫
W

∂fW |X,Z
∂x

(w|x0, z)
∫
U
C(x0,u)fU (u|w,z)dudwfZ(z)dz (A2.53)
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Proof. Using the same technique presented in Proposition 37 we have:

ÃMTE(x0) (A2.97)

=
∫

Z

(
∂E [Y |X = x,Z]

∂x
(x0, z)

)
fZ(z)dz (A2.98)

=
∫

Z

(
lim

∆x→0

E [Y |X,Z] (x0 +∆x,z)−E [Y |X,Z] (x0, z)
∆x

)
fZ(z)dz (A2.99)

=
∫

Z

 lim
∆x→0

1
∆x ·

∫
W

∫
U
Yx0+∆x(u)fu(u|x0 +∆x,z,w)duf(w|x0 +∆x,z)dw

−
∫

W

∫
U
Yx0(u)fu(u|x0, z,w)duf(w|x0, z)dw

fZ(z)dz (A2.100)

=
∫

Z

 lim
∆x→0

1
∆x ·

∫
W

∫
U
Yx0+∆x(u)fu(u|z,w)duf(w|x0 +∆x,z)dw

−
∫

W

∫
U
Yx0(u)fu(u|z,w)duf(w|x0, z)dw

fZ(z)dz (A2.101)

=
∫

Z

∫
W

 lim
∆x→0

1
∆x ·

∫
U
Yx0+∆x(u)fu(u|z,w)duf(w|x0 +∆x,z)dw

−
∫

U
Yx0(u)fu(u|z,w)duf(w|x0, z)dw

fZ(z)dz (A2.102)

=
∫

Z

∫
W

 lim
∆x→0

1
∆x ·

∫
U
C(x0 +∆x,u)fu(u|z,w)duf(w|x0 +∆x,z)dw

−
∫

U
C(x0,u)fu(u|z,w)duf(w|x0, z)dw

fZ(z)dz (A2.103)

=
∫

Z

∫
W

∫
U

∂C

∂x
(x0,u)fu(u|z,w)f(w|x0, z)du

+
∂fw|x,z
∂x

(w|x0, z)
∫
U
C(x0,u)f(u|w,z)du

dwfZ(z)dz (A2.104)

=
∫

Z

∫
W

∫
U

∂C

∂x
(x0,u)fu(u|z,w)f(w|x0, z)dudwfZ(z)dz

+
∫

Z

∫
W

∂fw|x,z
∂x

(w|x0, z)
∫
U
C(x0,u)f(u|w,z)dudwfZ(z)dz (A2.105)
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There are two terms in Equation (A2.105). The first one corresponds to the

AMTE(x0) with the caveat that the integration alongW is with respect to the conditional

density f(w|x0, z) rather than the conditional density f(w|z). The second term arises

because an incremental change in x about x0 changes the distribution of the control W

conditional on X. If W ⊥⊥ X|Z then the estimator that controls only for Z correctly

identifies the causal effect of interest, as noted in Proposition 37. Equation (A2.105)

explains why this is the case. When W ⊥⊥ X|Z, f(w|x0, z) = f(w|z) and the first term

exactly equals the AMTE(x0). Moreover, W ⊥⊥X|Z also implies that ∂fw|x,z
∂x (w|x0, z) is the

0 function, which in turn makes the whole second term 0. Hence ÃMTE(x0) =AMTE(x0)

In general though, if W is needed for the identification of AMTE(x0) omitting it would

induce the bias formula characterized above.

2.D.3 Proof of Proposition 62

Definition 61. Operator norm

Let V and W be two normed vector spaces over R and T : V →W . Then the operator norm

of T is given by:

∥T∥op := inf{c such that ∥Av∥W ≤ c∥v∥V , for all v ∈ V }

Lemma 62 (Operator Norms). i) Let V1 = Ck(X ×Z×W) and V2 = Ck−1(X ×Z×W)

both endowed with the strong norm and let D be the partial differentiation operator, i.e.

D : f 7→ ∂f

∂x

Then ∥D∥op ≤ 1.

ii) Let V3 = Ck−1(Z×W) endowed with the operator norm. Let the (·)x=x0 : V2→ V3 be the
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evaluation at x0 map, i.e.

(·)x=x0 : f(x,z,w) 7→ f(x0, z,w)

Then ∥(·)x=x0∥op ≤ 1.

iii) Let I : V3→ R be the functional:

I : f(x0, z,w) 7→ E[f(x0, z,w)]

Then ∥I∥op ≤ 1.

Proof. i) Let f ∈ V1.

∥Df∥d,V2 = max
λx+λz+λw≤k−1

 sup
(x,z,w)∈X ×Z×W

∣∣∣∣∣∣ ∂λ(∂f∂x)
∂xλx∂zλz∂wλw

∣∣∣∣∣∣


≤ max
λx+λz+λw≤k

 sup
(x,z,w)∈X ×Z×W

∣∣∣∣∣ ∂λf

∂xλx∂zλz∂wλw

∣∣∣∣∣


= ∥f∥d,V1

So by the definition of operator norm we must have ∥D∥op ≤ 1.

ii) Now take g ∈ V2. We have:

∥(·)|x=x0g∥d,V3 = max
λz+λw≤k

 sup
(z,w)∈×Z×W

∣∣∣∣∣∂λg(x0, z,w))
∂zλz∂wλw

∣∣∣∣∣


= max
λx+λz+λw≤k

 sup
(x,z,w)∈X ×Z×W

∣∣∣∣∣ ∂λ(g)
∂xλx∂zλz∂wλw

∣∣∣∣∣


= ∥g∥d,V2
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iii) Finally take, h ∈ V3. We have:

∥(Ih)∥= E[|h(Z,W )|]

≤ E

 max
λz+λw≤k

 sup
(z,w)∈Z×W

∣∣∣∣∣ ∂λh

∂zλz∂wλw
(Z,W )

∣∣∣∣∣


= max
λz+λw≤k

 sup
(z,w)×Z×W

∣∣∣∣∣ ∂λh

∂zλz∂wλw

∣∣∣∣∣


= ∥h∥d,V3

2.D.4 Proof of Lemma 42

Proposition 43 (Linearity and Continuity). For any S, and any ω ΓS,ω is a continuous

linear functional with respect to the strong norm.

Proof. Recall that, for V1,V2,V3,V4 be normed linear spaces and T1 : V1→ V2,T2 : V2→

V3,T3 : V3→ V4 linear mappings between these spaces we have the following operator norm

inequality:

∥T1 ◦T2 ◦T3∥op ≤ ∥T1∥op∥T2∥op∥T3∥op

By Lemma 62 and the operator norm inequality, we have:

∥(I ◦ (·)|x=x0 ◦D)∥op ≤ ∥I∥op · ∥(·)|x=x0∥op · ∥D∥op

≤ 1 ·1 ·1

= 1

Therefore, by the definition of the operator norm, Γ is bounded with respect to the strong

norm. But then because bounded-ness implies continuity we conclude that the functional
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of interest is continuous with respect to the strong norm.
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Chapter 3

Marginal Treatment Effects with

Misspecification

3.1 Introduction

Marginal treatment effects (MTEs) have unified the identification theory of several

policy parameters. While the MTE framework is essentially non-parametric,1 it is required

that the recipient’s participation into treatment follows a (generalized) Roy model. This is

often referred to as additive separability: an “additive” comparison of costs and benefits

determines selection. On the other hand, identification of the MTE is achieved via the local

instrumental variable (LIV) approach (Heckman and Vytlacil [2001, 2005]). An excellent

survey is provided by Mogstad and Torgovitsky [2018]. An early effort to analyze MTE

under misspecification can be found in the appendix of the seminal paper by Heckman

and Vytlacil [2001]. They consider a case where the additive separability in the selection

equation does not hold. The most serious consequence is that the LIV approach does not

identify the MTE curve.
1Linearity is sometimes assumed to facilitate estimation. See, e.g., Appendix B in Heckman et al. [2006]
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In this paper we analyze a different type of misspecification. We model a situation

in which, under additive separability, a proportion of the population does not take into

account the instrumental variable when deciding whether to take up treatment or not. We

refer to them as non-responders. To analyze the resulting bias, we define a pseudo-MTE

curve which results from the LIV approach. Under no misspecification, the pseudo-MTE

curve would coincide with the MTE curve. The resulting bias can be interpreted as a

location-scale change of the MTE curve, parameterized by the proportion of non-responders

and their propensity score.

We have two main results. The first one shows that the ability to recover the

conditional average treatment effect (CATE) for the subpopulation of responders depends

on the proportion of non-responders only through the support of the responders’ propensity

score. Indeed, when the support of the propensity score is the unit interval, it is possible

to identify the CATE without having to recover the true MTE curve in the first place. In a

nutshell, ignoring misspecification and integrating under the pseudo-MTE curve over the

support of observed propensity score yields the correct CATE for the subpopulation of

responders.

While the previous identification result for the CATE is independent of the proportion

of non-responders, this is not true of the MTE curve and other parameters derived from it

such as LATE and MPRTE. However, in our second result, we show how to recover the

MTE curve for responders by undoing the location-scale change induced by the presence of

non-responders. The correction is based on an estimate of the support of the propensity

score and requires only observable data. It gives an estimator of the policy parameter of

interest that is simple to implement. Cases where the propensity score is fully supported

are relevant in practice. For a recent example, see the survey approach of Briggs et al.

[2020] the probability of having a child is supported on the full unit interval.

Recently, Acerenza et al. [2021] and Possebom [2021] focus on the effect of mea-
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surement error in treatment status on the MTE curve. We complement such results by

noting that a simple change to our setup can cover the case of misclassification. In a

setting where treatment status is misclassified, the observed outcome is generated with

the true treatment status. In our setting of misclassification, the observed outcome can be

regarded as a mixture of responders and non-responders. The proportion of non-responders

is analogous to the proportion of misreporters. Indeed, our results also hold if instead of

having a fraction of non-responders, we have a fraction of misreporters.

Another consequence of the presence of non-responders in the sample is that the

effect of the instrumental variable on the propensity score is attenuated. Motivated by

this, we model a situation where the proportion of non-responders approaches 1, analogous

to the setting of weak instruments of Staiger and Stock [1997]. Thus, we can derive

weak-instrument-like asymptotic distributions for the parameters derived from the MTE

curve.

The rest of the paper is organized as follows: section 3.2 introduces the model;

section 3.3 contains the main identification results; section 3.4 provides bounds for the case

where the propensity score is not fully supported in the unit interval; section 3.5 traces

the connection to the weak IV literature; and section 3.7 concludes. While this paper only

deals with identification, we expect to extend our results to cover estimation and inference.

3.2 Misspecification and MTE

In this section we introduce our model for misspecification in the MTE framework

(Bjorklund and Moffitt [1987], Heckman and Vytlacil [2001, 2005]). We analyze the

consequences of misspecification from the identification point of view.
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3.2.1 The Model

We start with a general non-separable potential outcome model

Y (0) = h0(X,U0),

Y (1) = h1(X,U1),

Y =D∗Y (1)+(1−D∗)Y (0),

where D∗ is the observed treatment status, X are observable covariates with support

denoted by X , and {Y (0),Y (1)} ,Y are potential and observed outcomes, respectively. The

functions h0 and h1 are unknown.

We model misspecification as a situation where there are two types of individuals:

responders and non-responders. Responders select into treatment taking into account the

incentives in Z. Their selection equation is given by D = 1{µ(X,Z)≥ V }. On the other

hand, non-responders do not react to incentives in Z at all. Their selection equation is

given by D̃ = 1

{
µ̃(X)≥ Ṽ

}
. Notice how Z is not featured in µ̃(·). For the non-responders,

Z fails the relevance condition of the standard MTE model.

Let S be the latent status of an individual: S = 1 for a responder and S = 0 for a

non-responder. The observed treatment status D∗ is given by:

D∗ = S ·D+(1−S) · D̃. (3.1)

We allow for the proportion of non-responders may vary with X. To this end, we

define δX = Pr(S = 0|X) = Pr(D∗ = D̃|X). Thus, for every subpopulation with charac-

teristics X = x there is a proportion δx = Pr(S = 0|X = x) ∈ [0,1) of non-responders. We

consider values where supx∈X δx < 1 to avoid a situation where no-one responds to the

instrumental variable.
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Remark 63. We observe Y according to Y =D∗Y (1)+(1−D∗)Y (0), which is given by

the actual choice D∗. If, instead, we have Y =DY (1)+(1−D)Y (0), then we can interpret

D∗ as a misclassified treatment status. In this case, all individuals decide according to

D = 1{µ(X,Z)≥ V }, but a fraction of them reports according to D̃ = 1

{
µ̃(X)≥ Ṽ

}
See

Acerenza et al. [2021] and Possebom [2021] for recent studies on MTE under misclassifica-

tion.

The econometrician observes a cross section of (Yi,D∗
i ,Xi,Zi). When δX = 0 almost

surely, then D∗ =D and we are in the familiar MTE framework of Heckman and Vytlacil

[2001, 2005]. Otherwise, if δX ̸= 0 almost surely, for an observation of D∗
i , we do not know

whether we are observing the treatment status of a non-responder or of a responder. That

is, it is unknown if we are observing Di or D̃i.

Assumption 10. Type Independence. S ⊥ Z∥X.

Assumption 10 states that once we control for X, the latent status of a individuals

does not vary with the instrumental variable Z.

Assumption 11. Relevance and Exogeneity

1. µ(X,Z) is a nondegenerate random variable conditional on X.

2. (U0,U1,V, Ṽ ) are independent of Z conditional on X.

Note that, for the subpopulation of non-responders, the instrument is valid but

totally irrelevant. The larger the value of δx, the “weaker” the instrument Z, since most

participants with X = x are non-responders. With the exception of the requirement that

Ṽ ⊥ Z∥X, these are the same conditions of Heckman and Vytlacil [2001, 2005]. Our

additional requirement covers the subpopulation of non-responders: neither the “cost” of

treatment Ṽ nor the “benefit” µ̃(X) depend on Z when conditioned on X.

Example 64. To fix ideas, we can think of a two part cost of providing the incentive. A

fixed cost associated to targeting a particular subpopulation with covariates X = x and the
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cost of the incentive itself. If Z is a voucher, there could be administrative costs associated

to making it available to subpopulation X = x. For non-responders who do not redeem the

voucher, the cost of the incentive is zero. Such a scenario would satisfy Assumption 11.

The misclassification structure of Equation (3.1) allows to define three different

propensity scores. An observed/identified one which is based on the observables (D∗,X,Z),

and two latent/unobserved propensity scores: one for the responders and one for the

non-responders. Formally, they are given by

P ∗(X,Z) := Pr(D∗ = 1|X,Z) (Observed)

P (X,Z) := Pr(D = 1|S = 1,X,Z) (Responders)

P̃ (X) := Pr(D̃ = 1|S = 0,X) (Non-responders)

The next result takes (mainly) advantage of Assumption 10 to derive a useful affine relation

between them.

Lemma 65. Under Assumptions 10 and 11.2 we can relate the different propensity scores

by

P ∗(X,Z) = (1− δX) ·P (X,Z)+ δX · P̃ (X). (3.2)

Proof. Starting with the model in (3.1) we can write

Pr(D∗ = 1|X,Z) = Pr(S = 1|X,Z) ·Pr(D = 1|S = 1,X,Z)

+Pr(S = 0|X,Z) ·Pr(D̃ = 1|S = 0,X,Z).

Assumption 10 simplifies the mixing probabilities to Pr(S = 1|X) = 1− δX and Pr(S =
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0|X) = δX . We obtain

Pr(D∗ = 1|X,Z) = (1− δX) ·Pr(D = 1|S = 1,X,Z)+ δX ·Pr(D̃ = 1|S = 0,X,Z).

To see that Pr(D̃ = 1|S = 0,X,Z) = Pr(D̃ = 1|S = 0,X), we note that By Assumptions 10

and 11.2:

Pr(D̃ = 1|S = 0,X,Z) = Pr(µ̃(X)≥ Ṽ |S = 0,X,Z)

= Pr(µ̃(X)≥ Ṽ |X)

= Pr(D̃ = 1|S = 0,X).

Therefore

Pr(D∗ = 1|X,Z) = (1− δX) ·Pr(D = 1|S = 1,X,Z)+ δX ·Pr(D̃ = 1|S = 0,X)

= (1− δX) ·P (X,Z)+ δX · P̃ (X).

For a fixed X = x, the result in Lemma 65 shows that the observed propensity (still

random through Z) is a linear transformation of the propensity score for the responders.

If, additionally, we take two different values of Z, for example z and z′, we can remove the

contribution of P̃ (X), which is invariant with respect to z and obtain2

P ∗(x,z)−P ∗(x,z′) = (1− δx) ·
[
P (x,z)−P (x,z′)

]
(3.3)

Equation (3.3) says that the changes on the observed propensity score induced by varying

Z are proportional to the changes on the true propensity score induced by varying Z. Thus,
2We write P ∗(x,z) for Pr(D∗ = 1|X = x,Z = z), and P (x,z) for Pr(D = 1|S = 1,X = x,Z = z).
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if we knew δx, we could recover the change in the propensity score for the responders.

When Z is continuous, we can take a limiting version of this argument, e.g., as z′→ z, to

obtain

∂P ∗(x,z)
∂z

= (1− δx) · ∂P (x,z)
∂z

. (3.4)

Both the discrete (equation (3.3)), and the continuous (equation(3.4)) change in the

propensity score play a role in the relationship between the MTE curve (defined below)

and certain parameters of interest.

3.2.2 The MTE for Responders

For the subpopulation of responders, the standard MTE framework holds. This

motivates us to define an MTE curve for this subpopulation. In doing so, we are implicitly

assuming that this is our object of interest. The reason for this is that many times we can

also control the instrumental variable Z. Thus, to asses the effects of manipulations of Z

we look at the MTE curve for responders.

Let Px and P∗
x denote the support of P (x,Z) := Pr(D= 1|X = x,Z) and P ∗(x,Z) :=

Pr(D∗ = 1|X = x,Z) respectively. For the subpopulation of responders, we rewrite the

selection equation as D = 1{P (X,Z)≥ UD} where UD ∼ U(0,1).3 Thus, we define the MTE

curve for responders as

MTE(u,x) := E [Y (1)−Y (0)|S = 1,UD = u,X = x] .
3This follows from D = 1{FV |S,X,Z(µ(X,Z)|1,X,Z)≥ FV |S,X,Z(V |1,X,Z)}. Noting that by assump-

tions 11.(2) and 10, we have D = 1{P (X,Z)≥ FV |S,X(V |1,X)}. Finally, we take UD := FV |S,X(V |1,X).
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By the LIV approach we have the following equivalence result:4

MTE(u,x) = ∂E [Y |S = 1,P (X,Z) = u,X = x]
∂u

for u ∈ Px. (3.5)

Since we do not observe P (X,Z), this is not an identification result in our setting. In a

similar fashion, we define the following pseudo-MTE curve:

MTE∗(u,x;δx) := ∂E [Y |P ∗(X,Z) = u,X = x]
∂u

for u ∈ P∗
x. (3.6)

We emphasize that the pseudo-MTE curve is indexed by δx because it depends

implicitly on the proportion of the nonresponders. From the data only, we can only

compute MTE∗(u,x;δx), not MTE(u,x). The pseudo-MTE curve is the curve that would

be mistakenly taken to be the MTE curve. Indeed, in the absence of non-responders,

MTE∗(u,x;0) = MTE(u,x). If non-responders are present in the X = x subpopulation,

that is if δx > 0, the observed MTE∗(u,x;δx) does not identify MTE(u,x). In another

words, the LIV approach is biased. We can now fully characterize the bias induced by δx

on the MTE curve.

Lemma 66. Under Assumptions 10 and 11, we can write

MTE(v,x) = (1− δx)MTE∗
(
(1− δx)v+ δxP̃ (x),x;δx

)
for v ∈ Px. (3.7)

Proof. Using (3.2), for u ∈ P∗
x, we can write

E [Y |P ∗(X,Z) = u,X = x] = E
[
Y |(1− δx) ·P (X,Z)+ δx · P̃ (X) = u,X = x

]
= E

[
Y

∣∣∣∣∣P (X,Z) = u− δxP̃ (x)
1− δx

,X = x

]
4See Heckman and Vytlacil [2001] for sufficient conditions.
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Differentiating with respect to u, we obtain

MTE∗(u,x;δx) = 1
1− δx

MTE
(
u− δxP̃ (x)

1− δx
,x

)
for u ∈ P∗

x. (3.8)

since u−δxP̃ (x)
1−δ ∈ Px by (3.2). Alternatively, we can write

MTE(v,x) = (1− δx)MTE∗
(
(1− δx)v+ δxP̃ (x),x;δx

)
for v ∈ Px.

Lemma 66 shows that the bias is in the form of both location and scale. Equation

(3.8), which is equivalent to Equation (3.7),5 shows that MTE∗ is obtained by changing

the location from u to u− δxP̃ (x), and rescaling by (1− δx)−1. Thus, as in a location-scale

family of densities, we can regard MTE∗ as a family of curves, defined over P∗
x, which is

indexed by δx and P̃ (x).

3.3 Automatic and explicit de-biasing

We now introduce our two main results. We show that, for any subpopulation X = x

where the instrument is strong enough to induce a propensity score supported on the full

unit interval [0,1], the associated CATE(x) can be identified for responders. This is true

even if the MTE∗(u,x,δx) curve is biased for MTE(u,x). We note that the identified

CATE(x) parameters corresponds to the subpopulation of responders.

Assumption 12. Full Support. The support of P (x,Z) is Px = [0,1] for every x in a

subset XB ⊆X .

Assumption 12 says that the incentive in the instrument Z is strong enough to induce
5Note the changes in the domain of integration between (3.7) and (3.8).
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any individual in the X = x subpopulation into or out of treatment. Perhaps surprisingly,

the CATE(x), can be recovered only by resorting to the full support assumption. That

is, to correctly compute the CATE(x) we do not need to recover the true MTE curve for

responders.

Theorem 67. Let Assumptions 10, 11, and 12 hold. Then, for any x ∈ XB:

CATE(x) =
∫ supP∗

x

inf P∗
x

MTE∗(u,x;δx)du.

Proof. The Conditional Average Treatment Effect, CATE(x), could be computed using the

true MTE curve (if it was observed) as

CATE(x) =
∫ 1

0
MTE(u,x)du.

Given that Px = [0,1], then P∗
x := [p∗

x,p
∗
x] where p∗

x := infP∗
x = δxP̃ (x) and p∗

x := supP∗
x(1−

δx) + δxP̃ (x)]. Consider the integrating the pseudo-MTE curve over the support of the

observed propensity score:

∫ (1−δx)+δxP̃ (x)

δxP̃ (x)
MTE∗(u,x;δx)du.

Using (3.8), we have

∫ (1−δx)+δxP̃ (x)

δxP̃ (x)
MTE∗(u,x;δx)du=

∫ (1−δx)+δxP̃ (x)

δxP̃ (x)

1
1− δx

MTE
(
u− δxP̃ (x)

1− δx
,x

)
du

=
∫ 1

0
MTE(u,x)du

= CATE(x)

166



where we have done the change of variables

v = u− δxP̃ (x)
1− δx

.

Remark 68. The result of Theorem 67 states that by integrating the observed (and biased)

marginal treatment effect curve over the support of the observed (and biased) propensity

score leads to the CATE(x) provided that the propensity score for responders has full support.

Thus, under the type of misspecification described in (3.1), CATE(x) is robust to δx ̸= 0.

Remark 69. This result also hold in a setting of misclassification and was our original

motivation. That is, in a setting where instead of Y = D∗Y (1) + (1−D∗)Y (0), we have

Y =DY (1)+(1−D)Y (0) and we interpret D∗ as a misclassified treatment status.

Unfortunately, the automatic “de-biasing” in Theorem 67 does not hold for the

other policy parameters that can be obtained via the MTE curve. On the other hand,

we show that the full support assumption can be used to identify δx which allows an

explicit “de-biasing” procedure. Given that P∗
x := [p∗

x,p
∗
x] = [δxP̃ (x),(1− δx)+ δxP̃ (x)] we

can actually identify both δx and P̃ (x). It follows then from Lemma 66 that we can recover

the MTE(u,x) curve.

Proposition 70. Let Assumptions 10, 11, and 12 hold. Then δx is identified for any

x ∈ XB through:

δx = 1− (p∗
x−p∗

x)

Proof. According to Equation (3.2), the range of the observed propensity score is given by

P∗
x = [δxP̃ (x),(1− δx)+ δxP̃ (x)]. For each x, the observed propensity score P ∗(·) can be

viewed as an affine function of P (·). This affine function is parameterized by δx and P̃x.
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For the endpoints p
x

and px of the true propensity score, we have the mappings:

px 7→ (1− δx)px+ δxP̃ (x)

px 7→ (1− δx)px+ δxP̃ (x)

The images of this collection of mapping are observed. They are the endpoints of the

observed propensity score P ∗(Z,x). If the original endpoints of the true P (·) are known to

be px = 0 and px = 1, like stated in Assumption 12, the mapping above can be recovered

by the following system of two equations in two unknowns: P̃ (x) and δx.

p∗
x = δxP̃ (x)

p∗
x = (1− δx)+ δxP̃ (x)

which implies that

δx = 1− (p∗
x−p∗

x)

P̃ (x) = p∗
x ·

1
δx

The intuition for this result is simple. Because the original propensity score P (Z,x),

for any fixed x, is supported on the unit interval, the observed support P∗
x = [p∗

x,p
∗
x] will

contain enough information to identify δx. This is summarized Figure 3.3.1.

Having identified δx, then we use Equation (3.8) to identify the MTE curve.

Corollary 71. Let Assumptions 10, 11, and 12 hold. Then, the MTE curve is identified:

MTE(v,x) = (p∗
x−p∗

x)MTE∗
(
(p∗
x−p∗

x)v+p∗
x,x;1− (p∗

x−p∗
x)
)

for v ∈ Px = [0,1].
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Figure 3.3.1: Identifying δx: The figure shows the link between the non-responders
propensity score, the proportion of non-responders and the observed propensity score.
Because the non-responders propensity score does not vary with the instrument Z and
supp(P (Z,x)) = [0,1] the δx can be recovered from observing the discrepancy from the
observed support P ∗(Z,x) and [0,1]. The picture shows one of those points, x0.

where p∗
x = infP∗

x and p∗
x = supP∗

x.

This corollary provides the correct “de-biasing” to be performed on the observed

MTE curve to match the true MTE curve. However, it is possible to recover parameters

that are based on the MTE curve without having to recover the MTE curve in the first

place. We provide two examples.

Example 72 (LATE). Consider the LATE, for P (x,z′) < P (x,z) with z,z′ ∈ Z, which

can be obtained from MTE curve as

LATE(x,P (x,z),P (x,z′)) = 1
P (x,z)−P (x,z′)

∫ P (x,z)

P (x,z′)
MTE(u,x)du.
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Under misspecification, for the same z,z′ ∈ Z, we have

LATE∗(x,P ∗(x,z),P ∗(x,z′)) = 1
P ∗(x,z)−P ∗(x,z′)

∫ P ∗(x,z)

P ∗(x,z′)
MTE∗(u,x;δx)du

= (1− δx)−1

P (x,z)−P (x,z′)

∫ (1−δx)P (x,z)+δxP̃ (x)

(1−δx)P (x,z′)+δxP̃ (x)

1
1− δx

×MTE
(
u− δxP̃ (x)

1− δx
,x

)
du.

Note that to go from MTE∗ to MTE we used Lemma 66. We did not use Corollary 71.

Defining the change of variables ũ= u−δxP̃ (x)
1−δx , we get (1− δx)dũ= du. We then write

LATE∗(x,P ∗(x,z),P ∗(x,z′)) = (1− δx)−1

P (x,z)−P (x,z′)

∫ (1−δx)P (x,z)+δxP̃ (x)

(1−δx)P (x,z′)+δxP̃ (x)

1
1− δx

×MTE
(
u− δxP̃ (x)

1− δx
,x

)
du

= (1− δx)−1

P (x,z)−P (x,z′)

∫ P (x,z)

P (x,z′)
MTE(u,x)du

= 1
1− δx

LATE(x,P (x,z),P (x,z′)).

Now, since δx = 1− (p∗
x−p∗

x) by Proposition 70, the explicit de-biasing is achieved by

(p∗
x−p∗

x)LATE∗(x,P ∗(x,z),P ∗(x,z′)) = LATE(x,P (x,z),P (x,z′)).

The left hand side can be computed from the data.

Example 73 (MPRTE). The marginal policy relevant treatment effect (MPRTE) is an

average of the MTE(u,x) along the margin of indifference: when UD = P (X,Z). It is given

by

MPRTE(x) =
∫

Z
MTE(P (x,z),x)∂P (x,z)

∂z

(
E

[
∂[P (x,Z)]

∂z

])−1
fZ|X(z|x)dz
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Then, using Equations (3.4) and (3.7) we get

MPRTE∗(x) =
∫

Z
MTE∗(P ∗(x,z),x;δx)∂P

∗(x,z)
∂z

(
E

[
∂[P ∗(x,Z)]

∂z

])−1
fZ|X(z|x)dz

=
∫

Z

1
1− δx

MTE(P (x,z),x)∂P (x,z)
∂z

(
E

[
∂[P (X,Z)]

∂z

])−1
fZ|X(z|x)dz

= 1
1− δx

MPRTE(x).

Thus, again, by Proposition 70, we obtain

(p∗
x−p∗

x)MPRTE∗(x) = MPRTE(x).

In the previous examples, proceeding as if there were no misspecification, yields

biased parameters. Thus, the automatic “de-biasing” in CATE is the exception rather than

the rule.

3.4 Bounds under limited support

Instead of assuming full support, now we allow for limited support of the propensity

score P (x,Z), but we still require that it is an interval.

Assumption 13. Limited Support. The support of P (x,Z) is Px = [px,px]⊂ [0,1].

Under Assumption 13, and using (3.2), we have that the observed support of

P ∗(X,Z) is

[p∗
x,p

∗
x] = [(1− δx)px+ δxP̃ (x),(1− δx)px+ δxP̃ (x)].

Taking the difference we obtain that p∗
x−p∗

x = (1− δx)(px−px). Since px−px ≤ 1, then

p∗
x−p∗

x ≤ (1− δx), so that a lower bound for δx is δx ≥ 1− (p∗
x−p∗

x).
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In general, it is not possible to provide an upper bound for δx. This is similar

to the case of misclassification. Following that literature (see Assumption 4 in Acerenza

et al. [2021], and references therein), we assume it is known that for some δx: δx ≤ δx < 1.

Thus, we can write 1− (p∗
x−p∗

x)≤ δx ≤ δx. The correction factor in Examples 72 and 73 is

(1− δx). Now, it bounded by 1− δx ≤ 1− δx ≤ p∗
x−p∗

x. Thus, we can bound both LATE

and MPRTE using this:

(1− δ)LATE∗(x,P ∗(x,z),P ∗(x,z′))≤ LATE(x,P (x,z),P (x,z′))

≤ (p∗
x−p∗

x)LATE∗(x,P ∗(x,z),P ∗(x,z′)),

and

(1− δ)MPRTE∗(x)≤MPRTE(x)≤ (p∗
x−p∗

x)MPRTE∗(x).

Naturally, if δx is not known, we can only provide upper bounds.

Again, we stress that is not necessary to bound the MTE curve in the first place.

Such a bound can be complicated to obtain since, by Lemma 66, δx enters in three different

ways in the observed MTE curve.

3.5 Misspecification as a weak instrument

We can frame our model as the triangular scheme of Staiger and Stock [1997] and

consider a sequence {δx,n}∞n=1 such that limn→∞ δx,n = 1 at a certain rate as n→∞. Thus,

as n→∞, the instrument becomes irrelevant in the model. A possible indicator of the

presence of a large value of δx,n can be the average derivative of the observed propensity

score. This equals an attenuated version of the average derivative of the true propensity
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score. For a given value of δx,n, by equation (3.4), we have

E

[
∂P ∗(x,Z)

∂z

]
= (1− δx,n)E

[
∂P (x,Z)

∂z

]

Thus a “small” value can be an indication that δx,n is close to 1. This is similar to a first

stage regression in the linear model. We take the derivative with respect to z to get rid of

the propensity score that does not respond to Z. We average, because this likely to be a

non-linear expression. Thus, (1− δx,n) can be thought of as the counterpart of C/
√
T in

the notation of Staiger and Stock [1997]. Indeed, define

Covx(Z,D∗) := E[ZD∗|X = x]−E[Z|X = x]E[D∗|X = x].

We have

E[ZD∗|X = x] = E[ZSD|X = x]+E[Z(1−S)D̃|X = x]

= E[ZSD|X = x]+E[Z|X = x]E[(1−S)D̃|X = x]

and

E[D∗|X = x] = E[SD|X = x]+E[(1−S)D̃|X = x]

Thus,

Covx(Z,D∗) = E[ZSD|X = x]−E[Z|X = x]E[SD|X = x]

+E[Z|X = x]E[(1−S)D̃|X = x]−E[Z|X = x]E[(1−S)D̃|X = x]

= Covx(Z,SD)
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which is the covariance between the instrument and treatment status for the responders

with X = x. To see the role of the rate at which δx,n converges to 1, suppose for a second

that we know the functional form of P ∗(x,Z), and we estimate the average derivative using

a sample mean:

Ê

[
∂P ∗(x,Z)

∂z

]
= 1
n

n∑
i=1

∂P ∗(x,Zi)
∂z

= (1− δx,n) 1
n

n∑
i=1

∂P (x,Zi)
∂z

Then

Ê

[
∂P ∗(x,Z)

∂z

]
−E

[
∂P ∗(x,Z)

∂z

]
= (1− δx,n)

(
1
n

n∑
i=1

∂P (x,Zi)
∂z

−E
[
∂P (x,Z)

∂z

])

In order to investigate possible discontinuities in the limiting distributions, we follow

Hahn and Kuersteiner [2002], and we let (1− δx,n) = nνx , for νx < 0. We obtain

Ê

[
∂P ∗(X,Z)

∂z

]
−E

[
∂P ∗(X,Z)

∂z

]
=Op(nνx−1/2).

Then, we obtain a degenerate limit:

√
n

(
Ê

[
∂P ∗(X,Z)

∂z

]
−E

[
∂P ∗(X,Z)

∂z

])
= op(1)

Now consider the MPRTE. Recall that, by Example 73, under the full support

guaranteed by Assumption 12,

nνxMPRTE∗(x) = MPRTE(x).

Assume that, if δx = 0, there exists ˆMPRTE(x), a
√
n-consistent estimator of MPRTE(x)
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such that

ˆMPRTE
∗
(x)−MPRTE∗(x) = n−νx

( ˆMPRTE(x)−MPRTE(x)
)
.

Thus, if νx =−1/2, then ˆMPRTE
∗
(x) does not converge in probability. In future work, we

will use these results to construct confidence intervals for the parameters of interest.

3.6 Simulations

Consider a linear model for the potential outcomes:

Y (0) = β0X+U0,

Y (1) = β1X+U1.

The selection equations are

D = 1{X+Z ≥ V } ,

D̃ = 1

{
X ≥ Ṽ

}
.

To carry out the simulations, we assume that the vector (U0,U1,V, Ṽ )′ is jointly normal

with zero mean and variance-covariance matrix:

Σ =



σ2
U0 σU0,U1 σU0,V σU0,Ṽ

σU0,U1 σ2
U1 σU1,V σU1,Ṽ

σU0,V σU1,V σ2
V σṼ ,V

σU0,Ṽ
σU1,Ṽ

σṼ ,V σ2
Ṽ


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Likewise, X and Z are jointly (bivariate) normal with zero mean and variance-covariance

matrix:

Ξ =

 σ2
X σX,Z

σX,Z σ2
Z



Finally, for the latent type, we consider: S = 1{X ≥ ξ}, where ξ is normal with mean

zero a variance σ2
ξ , correlated with V, but independent of X and Z. The MTE curve for

responders is

MTE(u,x) : = E [Y (1)−Y (0)|S = 1,UD = u,X = x]

= (β1−β0)x+E [U1−U0|S = 1,UD = u,X = x]

where we have used the fact that X ⊥ U0,U1,V,ξ. Since it is very hard to obtain a close

form expression for E [U1−U0|x≥ ξ,FV (V ) = u] we an infeasible non-parametric estimator

based on draws of (U0,U1, ξ,V ). The estimator is based on:

Ê [U1−U0|S = 1,UD = u,X = x] =
∑
i:Si=1Kh(Xi−x)Kh(UDi−u)(U1i−U0i)∑

i:Si=1Kh(Xi−x)Kh(Ui−u)

where Kh(u) = 1/hK(u/h) for a given kernel K and bandwidth h.

3.7 Conclusion

In this paper we use the MTE framework to model a proportion of individuals who

do not respond to the incentives of the instrumental variable. We show that in the special

case where the observed propensity score is fully supported on the unit interval, i) the

CATE is automatically identified regardless of the non-responders, and ii) we can identify

the proportion of non-responders and use it to recover the MTE curve, and we can recover
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any parameter associated with it. We show that for some parameters, such as LATE and

MPRTE, it is even possible to bypass the recovery of the MTE curve, and directly recover

these parameters. Moreover, if the propensity has limited support, we find bounds for the

LATE, the MPRTE, and the MTE curve. When we let the proportion of non-responders

approach 1 at a certain rate, the framework resembles that of weak instruments. In future

research we hope to leverage the results in this literature to construct valid confidence

intervals for the MTE curve and related parameters.
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