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ABSTRACT OF THE THESIS

Essence: Machine Learning Approaches to Scalable
and Energy Efficient Sense-making for

Internet-of-Things (IoT)
by

Santanu Sarma
Master of Science in Computer Science

University of California, Irvine, 2015

Professor Nikil Dutt, Chair

This thesis presents an efficient and scalable sense-making framework using machine learn-
ing techniques for Internet-of-Things (IoTs) in order to understand users, contexts, and
their environments to make meaningful decisions. The proposed sense-making IoT frame-
work, called Essence, employs combination of participatory mobile crowdsensing along
with infrastructure sensing to perform sense-making using machine learning techniques.
While collaborative mobile crowdsensing enables information to be gathered and shared by
users who are directly involved (participatory sensing) or integrated seamlessly as needed
(opportunistic sensing) through user mobile platforms, the infrastructure sensing fabric of
the Essence framework provides sense-making support for scenarios where mobile sensing
platforms are inadequate. To address the scalability needs of the Essence framework, we
employ dimensionality reduction techniques such as principal component analysis (PCA)
based heterogeneous compressive sensing techniques for approximate gathering and pro-
cessing of diverse sensor data. This requires new mechanisms for sensor data collection,
tunable approximate processing and machine learning based decision making using a
hierarchical networking architecture to create a compressive collaborative sense-making
framework for IoTs. Essence uses our previous SenseDroid mobile sensing framework
with machine learning enabled decision and actuation components for IoT paradigms.
The Essence framework is build using a multi-tired hierarchical architecture for sensing
spatial variations of a parameter of interest, perceive spatio-temporal fields, and enable
energy efficient local mobile or infrastructure sensing with a small number of measure-
ments. This approximate, yet tunable approach combines different sensing approaches
opportunistically while trading scalability (and coverage) for data accuracy (and energy
efficiency). We demonstrate the application of Essence sense-making framework in pre-
dicting the presence of West Nile Virus (WNV) in a region using both compressed sensing
and Neural Networks (NN) as a case study. The thesis also discuss several challenges
associated with sense-making approaches for emerging IoT applications.
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Chapter 1

Introduction

1



1.1 Overview
The Internet of Things (IoT) allows people and things to be connected anytime, any-

place, with anything and anyone, ideally using any path/network and any service [47].
Internet of Things has provided a promising opportunity to build powerful industrial
systems and applications by leveraging the growing ubiquity of mobile, wireless, radio-
frequency identification (RFID), and sensor devices. While there is a growing interest in
IoTs in academia (Fig.1.1), a wide range of industrial IoT applications have been devel-
oped and deployed in recent years as illustrated in Fig. 1.2. As the Internet evolves from
connection of PCs to connection of mobiles, PCs, and people (Fig. 1.3), this combination
of multi-layered sensor network connecting various sensors and objects create the vision of
the new frontier of the Internet : the Internet-of-Things. In IoT, this layered architecture
may have additional number of sub layers as it is expected to comprises large variety of
sensing capabilities, multiple networking support, multiple services to satisfy users and
diverse applications as illustrated in Fig.1.3c.

According to economic analysis by Cisco Consulting Services [2], IoT will generate $8
trillion in value at stake over the next decade — $6.4 trillion in the private sector, and $1.6
trillion in the public sector. Value at Stake refers to the potential bottom-line value that
can be created, or that will migrate among private and public sector organizations, based
on their ability to harness the IoT over the next 10 years. This value will come from five
primary drivers: innovation and revenue ($2.1 trillion), asset utilization ($2.1 trillion),
supply chain and logistics ($1.9 trillion), employee productivity improvements ($1.2 tril-
lion), and enhanced customer and citizen experience ($700 billion). While IoT will impact
all private and public sector segments over the next decade, two-thirds of the estimated $8
trillion in IoT Value at Stake will be driven by three industries: manufacturing (including
energy/oil and gas), public sector (particularly cities), and retail.

While the Internet of Things (IoT) presents private and public sector organizations
with an unprecedented opportunity to drive new sources of value — including the potential
to automate up to 50 percent of manual processes [2], this value comes from improving
data and sense-making capabilities (integration, automation, and analysis) and overall
process agility. Sense-making from the data is the key aspect of the IoT paradigm that is
fundamental in deriving meaningful insights for developing innovative applications.

1.2 Sense-Making from IoT Data
As we are moving towards the Internet of Things (IoT), the number of sensors de-

ployed around the world is growing at a rapid pace. Market research has shown a signif-

2



(a) [47] (b) [16]

(c) [9] (d) [16]

Figure 1.1: (a) Definition of the Internet of Things (b)Gartner 2012 Hype Cycle of emerg-
ing technologies. Source: Gartner Inc. [16] (c) Google search trends since 2004 for terms
Internet of Things, Wireless Sensor Networks, Ubiquitous Computing. [16] (d) Number
of IoT Journal articles by year in Web of Knowledge. [9]

icant growth of sensor deployments over the past decade and has predicted a significant
increment of the growth rate in the future. These sensors continuously generate enormous
amounts of data. However, in order to add value to raw sensor data we need to understand
it. Collection, modeling, reasoning, and distribution of insights in relation to sensor data
plays critical role in this challenge. To capitalize on the wide range of IoT generated data,
organizations must overcome key challenge of sense-making from large volume of data.

Even though, sense-making has a wide history spanning from psychology to infor-
mation theory[20, 21], we use it from an information-theoretic perspective to mean the
process of understanding the connections (among people, places, environment, objects,
and events) in order to anticipate their trajectories and act effectively using empirical
data. Whether it is in the cloud or at the edge, IoT sense-making data must be analyzed
to identify actionable insights that can be used to create better outcomes in an energy
efficient way. Energy efficiency play a vital role in deploying IoT: they can reduce emis-
sion and pollution, exploit environmental conservation and surveillance, and minimize

3



Figure 1.2: Internet of Things schematic showing the end users and application areas
based on data. [16]

operational costs and power consumption, and increase the network operation life time
and resilience. Therefore, sense-making considering both energy efficiency and scalability
of the network are key challenges that need to be addressed in order to reap the immense
potential of the IoT paradigm.

1.3 Thesis Contribution and Organization
In this thesis, we present an energy efficient and scalable sense-making framework

using machine learning techniques for Internet-of-Things (IoTs) in order to understand
users, contexts, and their environments to make meaningful decisions. The proposed
sense-making framework, called Essence, employs combination of participatory mobile
crowdsensing along with infrastructure sensing along with compressive sensing techniques
for sense-making. To address the scalability needs of the Essence framework, we em-
ploy machine learning techniques such as principal component analysis (PCA) based het-
erogeneous compressive sensing techniques for approximate gathering and processing of
diverse sensor data. This requires new mechanisms for sensor data collection, tunable
approximate processing and machine learning based decision making using a hierarchical
networking architecture to create a compressive collaborative sense-making framework
for IoTs. Essence is an extension of our previous SenseDroid mobile sensing framework
with machine learning enabled decision and actuation components for IoT paradigms.

4



(a)

(b)

(c)

Figure 1.3: Evolution of the Internet to IoT (a) connected computers to connecting every
day objects to the Internet [37] (b) Layered structure of a sensor network (b) Service
oriented architecture for IoT [9].
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The Essence framework is build using a multi-tired hierarchical architecture for sensing
spatial variations of a parameter of interest, perceive spatio-temporal fields, and enable
energy efficient local mobile or infrastructure sensing with a small number of measure-
ments. This approximate, yet tunable approach combines different sensing approaches
opportunistically while trading scalability (and coverage) for data accuracy (and energy
efficiency). On the other hand, efficient implementation of neural networks (NN) and
regression based predictors, enable accurate sense and decision making that can be used
for several applications. We demonstrate the application of Essence sense-making frame-
work in predicting the temperature profile and its relationship with the presence of West
Nile Virus (WNV) in a locality as an example. The thesis also discuss several challenges
associated with sense-making approaches for emerging IoT applications.

The thesis is organized in five chapters. Chapter 1 provives a brief introduction to
the IoT and the need for efficient sense-making from vast IoT data. Chapter 2 discusses
the mobile and infrastructure sensing methods, tools, and application used and developed
in order to support the Essence framework. Chapter 3 discusses the use of compressive
sensing and its extension for heterogenous compressive sensing for scalable and energy
efficient data aggregation and sense-making. Chapter 3 also briefly discusses an example
to illustrate the applicability of the framework in predicting the temperature profile and
its relationship with the presence of West Nile Virus (WNV) in a region using few random
measurements. The analysis of the performance, energy, and scalability of the proposed
methods in Essence framework is studied analytically and through simulation in Chapter
4 followed by the conclusion and future works in Chapter 5.
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Chapter 2

Mobile and Infrastructure Sensing
for Internet-of-Things

7



2.1 Introduction
Mobile phones and smartphones have evolved to be very powerful devices that have

the potential to be utilized in many application areas apart from generic communication.
With each passing year, we see increasingly powerful smartphones being manufactured,
which have a plethora of powerful embedded sensors like microphone, camera, digital
compass, GPS, accelerometer, temperature sensors and many more [22] as shown in Fig.
2.1. They even support seamless external sensors connectivity that further equips such
devices with rich and unique sensing capabilities. Moreover, the ability to easily program
today’s smartphones, enables us to exploit these sensors, in a wide variety of application
such as personal safety, emergency and calamity response, situation awareness, remote
activity monitoring, transportation and environment monitoring [19, 22].

Broadly, the emerging field of mobile phone sensing can be categorized into partici-
patory sensing and opportunistic sensing [19]. While the user is directly involved in the
participatory sensing activity, this burden is alleviated in the opportunistic sensing by
delegating and automating the sensing task to the mobile phone sensing system. Differ-
ent from these two mechanisms, we propose a compressive collaborative sensing approach
where the users collaborate or cooperate to have better and reliable sensing information,
or missing sensing information from other users in absence of specific sensor in their own
phone, overcome nonavailability of specific sensor information by using infrastructure
sensors, energy-efficient sensing and computation using compressive sensing and oppor-
tunistic offloading, and context-aware adaptive information exchange. Collaboration can
be useful in generating more accurate and reliable information of spatial fields distributed
across geographical areas and region, for example, averaging of several temperature sensor
reading in a room would be more reliable than a single reading, and incident perimeter
assessment and high impact region localization during disaster and emergency response
operations. However, due to the lack of an existing collaborative sensing framework, the
development of any mobile collaborative applications using varied sensors is a difficult
and time consuming task.

In this chapter, we propose and take the initial steps toward building a mobile sensing
framework, called SenseDroid for the Android platform. We propose an unified two open
source sensing libraries framework to support compressive and collaborative sensing (as
well as opportunistic, participatory sensing modes) along with on-demand context-aware
information exchange. We implement the framework as a distributed middleware and
explore its use in several emerging mobile collaborative applications.

8



Figure 2.1: Increasing number of mobile phone sensors.

Figure 2.2: Compressive collaborative sensing as a new category under hybrid sensing of
mobile phones. Compressive collaborative sensing uses combination of both participatory
and opportunistic sensing and supports stochastic sampling.

Table 2.1: Mobile Phone Sensing Methods

Mobile	  Phone	  
Sensing	  

Par0cipatory	  
Sensing	  

Opportunis0c	  
Sensing	  

Collabora0ve	  
Sensing	  

User	  involvement	   Very	  High	   Very	  Low	   Very	  low	  -‐to-‐
Medium	  (Hybrid)	  

Data	  Collec?on	  
process	  	  

User	  	  Ini?ated	   Automa?c	  
(Passively)	  

Mixed	  (mostly	  
automa?c)	  

Sampling	  Method	   Determinis?c	   Determinis?c	   Determinis?c	  	  &	  
Stochas?c	  

Data	  Collec?on	  
Accuracy	  

Low	  (may	  miss	  
data)	  

High	  	   Very	  High-‐to-‐	  
Medium	  	  

Context	  SeGng	   User	  given	   Automa?c	   Medium	  

User	  Burden	   High	   Low	   Very	  Low	  -‐to	  -‐
Medium	  

Context	  
Processing	  

Low	   High	   Low-‐	  Medium	  
(Off-‐loading)	  	  

BaKery	  
Consump?on	  

Low	   High	   Very	  Low	  -‐to-‐
Medium	  	  
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Table 2.2: Sensors in Recent Android Mobile Phones

2.1.1 Mobile Sensing Based Context as Virtual Sensors
The SenseDroid framework provides individual probes for sensing available sensors,

basic preprocessing of the sensed data for calibration, and energy efficient compressive
context processing to achieve individual user situation, activities, and events. In the
terminology of SenseDroid framework, many of the context that are indirectly senses by
computational means is referred to as virtual sensors. Unlike the basic physical sensor
probes [1], SenseDroid provides several virtual sensing probes corresponding to different
types of contextual informations. The basic approach adopted by SenseDroid in creating
these physical and virtual sensor probes are shown in Fig. 3.3. Unlike the recent works
in [32, 25, 26] in context processing, SenseDroid differs in its approach, architecture, and
progressing by incorporating stochastic sampling and exploiting correlation among the
contexts.

2.2 Mobile Sensing API and Prototyping Platform
To illustrate and demonstrate several features of the framework we developed an An-

droid app which can be configured in either three mode, client, server, and client-server
to cater to support the collaboration architecture. The high level system architecture of
the mobile app as shown in Fig. 2.4.

In most scenarios the app operates in client-server mode where it can send and serve
request to and from other nodes through the broker. The broker also operates in the
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Figure 2.3: Compressive Context Processing for Personal Mobile Sensing.

Client Mode 

Server Mode 

Client-Server 
Mode 

Start 

First 
time? 

Configuration yes 
 

Figure 2.4: Android App system architecture for collaborative and compressive sensing.
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(a) Client Mode of Operation.
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(b) Server mode of application for the mobile app.

Figure 2.5: Mobile App architecture and data flow in different modes of operation.

client-server mode and have features and resources to perform processing on the collected
data and disseminate the date to the interested users. The basic data flow operation of
the app in the client and server mode is shown in Fig. 2.5.

The SenseDroid Android app implementation is broadly divided into two parts viz.
client side and server side modules. The client side module consists of all the packages
that a client node would be using. This includes several Java packages as shown in the
Fig. 2.5a. The local sensor monitoring module consists of several Java packages to probe
different sensor for user specified configurations. The client nodes update the middleware
broker (cluster head) based on different policies (e.g., periodically, at random, etc) once
commanded or receiving request from other participating nodes. The client mode of the
app uses the funf open sensing library as shown in Fig.2.6 in order to perform mobile
phone sensing and establishing communication connection to a cloud or remote source.
As one of the aim of this thesis is to support different sensor sampling schemes, several
function were modified and few added to support random and configurable sampling
schemes, which funf can not easily support.

Fig. 2.7 shows some of the setting of the SenseDroid app that was built using two
open source apps (funf and Androsens2). Most of the GUI and visualization supports are
provided by Anrodsens2, where as funf provides addition probes that Androsens2 does
not have. In addition to the combined feature, we include different sampling mechanism
(random and configurable) , basic machine learning functions, and collaboration features
in the app. Fig. 2.8 and Fig. 2.9show different sensor reading and data visualization in
the SenseDroid app which are logged in a file or SQLite database in the app.
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Figure 2.6: Open mobile sensing library.

Figure 2.7: SenseDroid configuration and sensor selections.

Figure 2.8: Gyroscope Sensor reading using the SenseDroid App.
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Figure 2.9: Rotation, GPS, and Proximity Sensor reading and data visualization.

2.2.1 Broker App
The broker coordinates the communications between the users, perform processing of

the sensor data and collective context, and disseminate to the users through one-to-one
or broadcast mode of communication. Communication sockets are used to implement
the communication and collaboration layers among the users. The broker periodically
sends heartbeats using UDP to maintain and keep updated network structure and topol-
ogy. The client nodes respond to the specific heartbeats in the discovery process and
join the network once authenticated. APIs are developed using the Android SDK and
Java libraries in the Eclipse environment. We leveraged open source and freely available
software to develop the application including the cloud interface. We used the LAMP
stack along with Drupal open-source CMS to collect the sensor data in the cloud. The
compressive sensing algorithm is implemented both in the client mobile nodes and the
Broker.

2.3 Infrastructure Sensing
In order to provide support for infrastructure sensing in the IoT paradigm, we use a

Xilinx Zynq FPGA based embedded SoC development kit [3] along with a Analog Devices
software defined radio development kit as shown in Fig. 2.10. The Linux OS and devices
drivers are developed and supported on these development board to perform infrastructure
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(a) (b)

Figure 2.10: Zynq-7000 AP SoC / AD9361 SoftwareDefined Radio Evaluation Kit.
.

Figure 2.11: Xilinx Zynq ZC 702 based software defined radio development board.

sensing and provide communication to the Internet through the ethernet interface of the
board. In addition to the Xilinx Zynq FPGA board, the infrastructure sensing setup is
extended with three popular development boards (the Intel Galileo, Raspberry Pi, and
Audruino) as in Fig. 2.12, which are supported by Linux with open source sensing APIs
and SDKs as listed in Appendix B.

2.3.1 Linux support for the industrial IO (IIO) subsystems [11]
The Industrial I/O subsystem is intended to provide support for devices that in some

sense are analog to digital or digital to analog converters (ADCs, DACs). Devices that
fall into this category are: ADCs, Accelerometers, Gyros, IMUs, Capacitance to Digital
Converters (CDCs), Pressure Sensors Color, Light and Proximity Sensors, Temperature
Sensors, Magnetometers, DACs, DDS (Direct Digital Synthesis), PLLs (Phase Locked
Loops), Variable/Programmable Gain Amplifiers (VGA, PGA).
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(a) (b) (c)

Figure 2.12: Infrastructure sensing boards (a) Intel Galileo (b) Raspberry Pi 2 (c) Ar-
duino.

Figure 2.13: Linux subsets support for IIO.
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The overall aim is to fill the gap between the somewhat similar hwmon and input
subsystems. Hwmon is very much directed at low sample rate sensors used in applications
such as fan speed control and temperature measurement. Input is, as its name suggests
focused on human interaction input devices.: Keyboard, Mouse, Touch Screen, Joystick.
In some cases there is considerable overlap between these and IIO. A typical device falling
into the IIO category would be connected via SPI or I2C. However typical DMA operated
devices such as ones connected to a high speed synchronous serial (McBSP, SPORT) or
high speed synchronous parallel (EPI, PPI) or FPGA peripherals are also subject to this
subsystem.

Functionality of IIO includes : basic device registration and handling, polled access
to device channels via sysfs, event chrdevs, hardware ring buffer support, trigger and
software ring buffer support, etc.

2.4 Summary
In this chapter we discussed mobile sensing framework using an open source libraries

and Android SDK to collect sensor and environment data, users and device contexts and
the ability to exchange among participating users. The app is built to support random
and configurable sampling and compressive sensing. We have implemented and tested
different sensor reading the mobile phone, logged the data, and visualized the sensed data
using several plots and graphs in the app. We also developed a infrastructure sensing
prototyping testbed along with Linux OS support with a light weight IP protocol to
communicate with the server through internet.
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Chapter 3

Compressed Sensing Approach to
Sense-making
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3.1 Introduction
The proliferation of device platforms and mobile applications (12 billion devices and

over 3 million apps by 2017) has changed how humans interact. These new interactions
enable the mobile device/user to be an active participant in the collection, sharing and
dissemination of information-end platforms/users capture and process local context and
communicate this information to other platforms/services using heterogeneous connectiv-
ities. We envision that the next generation mobile ecosystem will be far more sophisti-
cated, complex and diverse than what is currently used. With each passing year, we see
increasingly powerful smartphones being manufactured, which have a plethora of powerful
embedded sensors like microphone, camera, digital compass, GPS, accelerometer, temper-
ature sensors and many more [22]. Such platforms also support seamless external sensor
connectivity (e.g. on body for health and wellness monitoring) that further equips such
devices with rich and unique sensing capabilities. Moreover, the ability to easily program
today’s smartphones, enables us to exploit these sensors, in a wide variety of application
such as personal safety, emergency and calamity response, situation awareness, remote
activity monitoring, transportation and environment monitoring [19, 22]. Furthermore,
the ability to share the sensed content with other users and applications has enabled
crowds/humans (and their devices) to become information providers in a crowdsensing
ecosystem. Effective use of the sensed data relies on effective “sense-making” that trans-
forms the gathered data to meaningful information for improved situational awareness,
decision making and control. This thesis focuses on enabling such “sense-making” from
mobile users and devices.

Broadly, the emerging field of mobile phone sensing or crowdsensing can take multiple
forms [19]. In participatory sensing, the user is directly involved in the sensing activity;
this burden is alleviated in the opportunistic sensing paradigm by delegating and au-
tomating the sensing task to the mobile phone sensing system. In this thesis, we argue for
a collaborative sensing approach where the users collaborate or cooperate to have better
and reliable sensing information and obtain missing sensing information when specific
sensors are not available in their own devices. Collaboration can be useful in generating
more accurate and reliable information of spatial fields distributed across geographical
areas and region, e.g., multiple temperature sensor readings in a space would be more re-
liable than a single reading. We discuss some specific applications of collaborative sensing
and sense-making in following use case scenarios.

Disaster and emergency response: Mobile intelligent networks can play a key
role in emergency response, surveillance and security, and battlefield operations. Con-
sider a fire scenario where information from in-situ and mobile sensors can help in in-
cident perimeter assessment as well as rapid localization of regions with high impact.
Coordination among fire fighters is another important aspect in fire rescue operations. A
collaborative mobile crowdsensing framework can be used to coordinate among the fire-
fighters for their own safety and as well as quick evacuation. Collaborative sensing can
provide situation awareness of different users in a facility during the rescue operation.
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Based on the situations, rescue operations can be coordinated more effectively to reduce
response time and save precious lives.

Personal health monitoring and wellness: Mobile phone sensing has the potential
to continuously collect/sense data for health and wellness analysis. UbiFit Garden [8] is
a mobile phone sensing system jointly developed by Intel and University of Washington,
which uses small inexpensive on-body sensors and mobile phones along with machine
learning techniques for activity modeling to infer people’s activities throughout everyday
life. In [26], stress-level of mobile user was measured using mobile phones, while [25]
explored the use of smartphones in predicting the mode of the users. This can be extended
to a family or a group of related people to jointly infer their moods, and exercise routines,
exposures to pollutants etc. to find combined stress quotient. The same can also be used
to achieve a family health indicator.

Smart spaces and their effective utilization: Smart buildings and smart spaces
can use a collaborative sensing framework to monitor dynamic environmental conditions
and requirements (e.g air conditioning and lighting preferences) and allows individuals to
tailor lighting levels to their personal preferences and tasks to save energy footprints [33].
It can be used to understand the pattern of a facility usage (e.g. a library or a museum)
and understand group behavior to improve the facility and its service.

The rapid growth in mobile sensors (in addition to sensors in our surrounding en-
vironment) and sensing data possess a serious challenge to the existing and traditional
sense-making paradigm. Sense-making from large numbers of heterogeneous sensors, data,
and mobile platforms is an extremely challenging task - there is a need for new architec-
tures and softwares that can support sense-making both effectively and at scale. Another
interesting aspect has to do with the accuracy of sensing/sense-making. Applications
require information at different levels of accuracy and resolution - these tolerances can
be leveraged to tradeoff accuracy for scale. In this thesis, we propose a hierarchical and
extensible framework to support collaborative sensing at scale. In particular, we discuss
two strategies: the use of hierarchical sensing and the application of compressive sensing
techniques to address scalability/accuracy concerns in mobile crowdsensing. We imple-
ment the framework as a distributed middleware for mobile platforms, called Essence, and
explore its use in several emerging mobile collaborative applications. The key benefits of
the proposed collaborative sensing framework are as follows:

• ability to opportunistically set different sparsity levels to exploit regional fluctua-
tions

• ability to analyze a region with more emphasis based on criticality or knowledge
of events. Multi-resolution compressive thresholds i.e. number of sensing samples
collected from a region based on the size and importance.

• ability to use different basis and sensing matrix by exploiting prior available data
of different regions
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• ability to use heterogeneous sensors with different characteristics and quality (as in
different mobile phone)

• enable more energy-efficient sensing in the framework and context-aware information
exchange

3.2 Related Works
Mobile phone sensing has recently attracted extensive research attention from both

academia and industry due to its attractive applications. A comprehensive review of
these applications can be found in a recent survey paper [22]. Several issues relating to
sensing and coverage have been well studied for mobile sensor networks [53]. However,
only few works have addressed collaborative and compressive sensing specifically with
mobile phones. In [29], the authors presented analytical results on the rate of information
reporting by uncontrolled mobile sensors needed to cover a given geographical area, and
demonstrate the feasibility of using existing software and standard protocols for informa-
tion reporting and retrieval to support a large system of uncontrolled mobile sensors using
a test-bed. In [44], the authors proposed a protocol, Aquiba, that exploits opportunistic
collaboration of pedestrians to achieve energy efficiency and reduce data redundancy. Its
performance was studied via simulations. In [48], the authors introduced mechanisms
for automated mapping of urban areas that provide a virtual sensor abstraction to ap-
plications. They also proposed spatial and temporal coverage metrics for measuring the
quality of acquired data.

Luo et al. [27] were the first to examine the notion of compressive sensing over large
scale wireless sensor networks (WSN) to reduce the number of transmission. Their data
gathering compressive scheme reduced the number of transmission from O(N2) transmis-
sion to O(NM) where the number of measurement M � N , the cluster size. However,
they assume that the data field is smooth with uniform sensor characteristics, negligible
sensor noise and heterogeneity, and global constant sparsity without leveraging the local
or regional fluctuations of the signal field. Due to these assumptions as well as unique dif-
ferences between traditional WSN from mobile phone sensing (e.g. static vs high mobility,
limited computation and power resource vs considerable computational and rechargeable
energy resource, and mostly broadcast mode operation vs bidirectional multi-network op-
eration, limited number of sensors per node to varied types of sensor in a node), naive and
plain implementation of their technique can introduce redundant data communications
(e.g. from the leaf nodes) and reduction in overall network throughput [28]. Moreover, the
assumption of uniform compression threshold across the network regardless of the data
field characteristics and the inability to exploit regional fluctuations along with the sensor
characteristics in more realistic situations can result in poor compression efficiency and
thereby impacting the energy efficiency. We therefore propose a hierarchical distributed
architecture where the local field sparsity and sensing characteristics can be effectively
and jointly exploited at different levels for efficiency and scalability. Unlike WSN nodes
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that usually lack computation and power resources , the mobile phones being considerably
resourceful can adopt compressive sensing at each nodes for example in energy efficient
context processing as discussed in the subsequent sections.

3.3 Hierarchical Architecture andMiddleware for Sense-
Making

The key idea of our approach to achieve scalable sense-making is to exploit hierarchical
architecture combined with tunable/configurable compressive sensing both in spatial and
temporal dimensions at different levels. The conceptual architecture of the framework
supporting multi-tiered collaborative and compressive sensing is illustrated in Fig. 3.1
where the network is hierarchically organized and spatially distributed through multiple
local cluster (LCs) which in turn is formed from spatial distribution of nano cluster (NCs).
The NCs consists of mobile nodes connected to a central head or a broker. The head
broker in the LCs in turn communicate with other LCs and the public cloud in the next
hierarchy. The NCs are formed in the region of interest and the workload of the sink
nodes (i.e. broker) is distributed among multiple sink nodes in the LCs such that all the
mobile nodes need not flow the information to a single node to overcome network range
and scalability bottlenecks. This hierarchy allows the nodes to collaborate through the
broker (performing the operation of the sink node/collector) and concatenate the results
of the NCs for the local region.

The hierarchical approach is based on the observation that the number of random
observations from any region should correspond to the local spatio-temporal sparsity as
well as the NC size instead of the global sparsity. Intuitively, this should work better than
the global scheme as the local correlation among the nodes can be exploited in the local
area (i.e. LCs) than global area. Besides, local sparsity is easy to compute and often prior
available data about the local regions can be exploited to improve the sensing efficiency
and data transmission requirements thereby saving energy.

The Essence Middleware: We next present Essence, a collaborative sensing mid-
dleware platform that enables mobile phone based physical sensing and sensemaking. The
following are the key features in Essence:

• Mobile Phone & Infrastructure Sensing: Essence enables and provides data
capture from different sensors on (or attached to) mobile phones by providing con-
figurable sensing probes. The user can configure the sensing probes and sampling
techniques through a sensing API.

• Context Determination, Analysis & Processing: Essence enables the use
of the sensed information to determine high level features such as user activities,
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Figure 3.1: Multi-tiered hierarchical structured mobile cluster architecture for scalable collab-
oration and compressive sensing. The multi-tiered architecture consists of hierarchy of local
cluster which in turn consists of nano cluster.

physiological parameters, events, and their correlations. The shared sensing and
context are used to determine group context, behavior, and preferences.

• Decision Making and Control: Esssence using the sensemaking machine learning
approaches to perform meaningful decision and control that can physically actuate
based on distributed feedback. The Essence framework differs in this specific aspect
with respect to our previous SenseDroid framework. Multimodal information is
fused to obtain better inferences and predictions.

• Communication and Collaboration: Essence provides libraries and APIs for
communication, service discovery, and collaboration among mobile phones for dif-
ferent network topologies (e.g. client-server and peer-to-peer).

• Data Logging and Retrieval: Essence provides data management routines and
interface to a light weight database such as SQLite for data logging and efficient
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sensor data processing and storing.

• Query and Filtering: Essence supports on-demand query and filtering function-
ality from different participating users. Filtering helps deliver only the relevant
information to collaborating users.

We have developed and implemented an initial prototype application for Android smart-
phones to test some of the above functionalities of the Essence framework. In general, the
architecture and design features can be ported to other platforms. Essence is distributed
across the different levels of the hierarchical architecture described above.

Fig. 3.2 shows the details of the broker functionalities and the mobile node middleware
and application components necessary in an NC to supporting collaboration and compres-
sive sensing over proposed hierarchical network. Unlike a traditional WSN, the mobile
NC supports bidirectional data flow between the nodes and the broker using multiple net-
works like WiFi, GSM, bluetooth etc. that enables dissemination of collective information
and collaboration among the mobile nodes through the broker. However, in case of the
compressing sensing approach, the broker performs stochastic (random) spatial sampling
in various nodes. If N mobile sensors nodes are uniformly and randomly distributed in
an NC such that the compressive sample of given sparsity requires M random measure-
ments from these N nodes, the broker initiates these measurements by commanding and
telemetering the selected nodes with the sensor. The broker can also use measurement
from infrastructure sensors in absence of either enough sensor in the mobile nodes or to
off-load the burden of sensing cost from the mobile nodes.

The mobile phones /nodes in the NCs provide unique sensing abilities and capabilities
for both physical sensors as well as computationally enabled virtual sensors [42] as shown
in Fig. 3.3. The Essence framework provides individual probes for available physical
sensors along with their configurable measurement parameters such as sampling rate, du-
ration etc. and fuse these physical sensors measurements to construct more meaningful
sensors (e.g. orientation, compass and inclinometer sensors in Fig. 3.3). In similar ways,
indirect sensing by computational means can be used to derive computationally enabled
virtual sensors such as situation specific contexts pertaining to user location, activity,
environment, health, emotions, and social scenarios. Thus, in addition to basic physical
sensor probes [1], Essence provides several virtual sensing probes corresponding to differ-
ent types of contextual informations. Moreover, unlike some of the recent works in mobile
context processing [32, 25, 26], Essence employs compressive sensing in the temporal di-
mension to exploit the temporal correlation in the sensor measurements to achieve energy
efficient contexts determinations. As an example, we use compressive sampling instead
of continuous uniform measurement of the GPS and WiFi to derive the ’IsIndoor’ flag
with similar accuracy while saving energy consumptions. This ’IsIndoor’ flag spatial field
can be used, for instance, during an earthquake to assess the potential dangers to hu-
man life. Thus, unlike WSN and the work in [27], due to the considerable computational
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Figure 3.2: (a) Mobile phone sensing and collaboration architecture (b) basic components
of the mobile thin client and the broker in Essence framework.
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and programable resources in mobile phone, the use of configurable compressive sensing
at each node enables the unique ability to jointly perform spatio-temporal compressive
sensing of both physical and virtual sensors in the proposed framework. As an example,
Fig. 3.4 shows the reconstruction accuracy of a accelerometer signal of 256 samples from
just 30 random samples in determining the ’IsDriving’ context of the mobile node. When
the same is applied using the spatial compressive sensing over a region, can provide in-
dications to the traffic situations. We explain the details of spatio-temporal compressive
sensing approach and its fundamentals in the next section.
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Figure 3.3: Essence provides sensing probes for several physical sensors and ability to construct
virtual sensors using compressive context processing. The additional virtual sensing abilities
and probes provide unique opportunities for collaborative applications.

3.4 Collaborative Compressive Sensing for Hierar-
chical Sense-making

Essence framework supports multi-tiered data aggregation of spatio-temporal sparse
fields and its reconstruction. A sparse signal is a signal that can be represented with a
small number of nonzero coefficients and hence can contain most of its salient information
in a relatively small number of random projections. It follows that if a signal is compress-
ible in some orthonormal basis, then a very accurate reconstruction can be obtained from
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Figure 3.4: Accuracy of reconstruction as a function of number of measurements. As the
number of measurements (or compression ratio) increases, the reconstruction error is reduced.

random measurement and projections. This sampling approach is used in a hierarchical
architecture to show that signals and spatio-temporal sparse fields can be accurately re-
covered from fewer random measurements and projections contaminated with noise. In
order to achieve this, the total spatial field area is subdivided into zones and each zone is
covered by the mobile local cloud (LCs). The total spatial field is then the sum of the all
the subfields computed and processed by the local cloud. The multi-tiered hierarchical
structured architecture enables compressive processing as different levels of granularity
and accuracy. Increased emphasis, attention and resources can be directed to the areas
of most impact and effects.

Let f(i, j) be the two-dimensional spatial field map where i and j represents the
coordinate of the location within the two-dimensional spatial field of a zone as in Fig.
3.6. When the spatial field map is discretized to f [i, j], the coordinates i ∈ {1, 2, ..,W}
and j ∈ {1, 2, .., H} where W and H are the width and height of the discretized spatial
field map respectively. If we consider prior available data of a LC – a set of T spatial
fields F = {f1[i, j], f2[i, j], ..., fT [i, j]} taken at time instants t1, t2, .., tT , these can be used
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Figure 3.5: Compressive mobile context processing: sensing of the accelerometer during
walking. Determination of the IsWalking context with 50% less samples can save half the
sensing energy cost. The compression ratio adaptively selected by middleware according
to the sparsity of the signals used in the specific context determination.

to improve sensing by exploiting local correlation during reconstruction. Specifically, to
monitor a discrete spatial field map that has N = WH variable parameters ( and hence
N -dimensional), the number of sensors needed is less than equal to number of unknown
variable or parameters i.e. #Sensors ≤ #Parameters. By transforming the data, a low
dimensional representation is possible with a very less error. In the transformed domain,
the spatial field map can be represented using few principal components/parameters such
that K � N (with the assumption of sparsity [12, 6]).

Let the two-dimension spatial field map f [i, j] can be represented using a one-dimensional
vector x[k] where 1 ≤ k ≤ N and N = WH such that

x[k] = f

[
kmodH, floor

[
k

W

]]
. (3.1)

In other words, stack the columns of the two-dimensional map to transform into a vector
where N is the total no of grid points and x[k] represent the sensor measurement at
k-th grid point. The set of one dimensional spatial field traces Γ = {x1,x2, ...,xT} can
thus be represented as matrix X of size T × N with each row indicating a trace x. In
many scenarios , in spite of the sparsity of the field, the full spatial field x[k], k = 1..N
at all N locations is not available . Only M samples obtained from M spatial field
sensors (M � N) located at L = {i1, i2, ..., iM} is available. Let x(L) denotes the field
measurement at these locations. The spatial field characterization problem is then the
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Figure 3.6: Distributed collaborative compressive mobile sensing of spatio-temporal sparse
fields. Based on the type of sensing field, the signal sparsity, and accuracy requirement, the
middleware broker decides the compression ratio during data aggregation in each zone.

estimate the field at each of N points given measurement of M sensors at location L in a
LC.

Any vector x can be represented using a basis Φ as,

x[k] =
N∑
n=0

Φ[k, n]α[n],

x =Φα
(3.2)

where α[n] are the coefficients of the expansion over the basis Φ. Once we define a basis
Φ for the data, knowing the coefficients α is equivalent to knowing the spatial field map
x. The basis Φ is often selected as transformation matrix of FFT or DCT.

If the signal is k-sparse in the transformed domain, then the locations of the non-zero
K coefficients in α can be denoted by J = {j1, j2, ..., jK}. If M sensors are available at
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location L = {i1, i2, ..., iM}, then the sensor samples in (3.2) can be represented as:

x[i1] = Φ[i1, j1]α[j1] + · · ·+ Φ[i1, jK ]α[jK ]
... = ...

x[iM ] = Φ[iM , j1]α[j1] + · · ·+ Φ[iM , jK ]α[jK ]
(3.3)

x(L) = Φ(L, J)α(J). (3.4)

We can approximate spatial field map with x̂ with a linear combination of K columns of
Φ and K elements of α out of N as

x̂ =


Φ[1, 1] · · · Φ[1, K]

... . . . ...
Φ[N, 1] · · · Φ[N,K]



α[1]
...

α[K]

 = ΦKαK (3.5)

where the subscript Kindicates the selection of K columns .The spatial field map is now
defined by only K coefficients of αK in the basis ΦK given by:

αK = Φ†Kx̂ =
[
(Φ∗KΦK)−1 Φ∗K

]
x̂ (3.6)

where Φ†K is the pseudo inverse for the overdetermined system in (3.5). To solve (3.6) ,
we need the knowledge of the field x[k] at every location k = 1 · · ·N . For M available
sensors at location L = {i1, i2, ..., iM} , we can represent x(L) as:

xS =


Φ[i1, 1] · · · Φ[i1, K]

... . . . ...
Φ[iM , 1] · · · Φ[iM , K]



α[1]
...

α[K]

 = Φ̃KαK, (3.7)

where Φ̃K is a matrix formed from the rows of ΦK corresponding to the sensor location
L, xS is the sensor measurement (known). The coefficients αK are unknown in the sys-
tem in (3.7) and can be solved for two cases: (a) underdetermined case, M < K (b)
overdetermined case , M ≥ K. For the underdetermined case M < K solution with
infinite solutions, the coefficients are assumed to be sparse and only non-zero significant
coefficients are selected. The solution of αK can be uniquely determined by solving the
following optimization [6, 12]:

Minimize
αK

‖ αK ‖0

subject to xS = Φ̃KαK

(3.8)

where ‖ • ‖0 stands for L0 − norm of a vector i.e. the number of non-zeros in the vector.
Optimization in (3.8) attempts to minimize the number of non-zeros in αKwhile satisfying
the constraint for a unique solution that is as sparse as possible. The optimization problem
(3.8) is NP-hard and hence is extremely difficult to solve [12, 6]. A more efficient technique
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to find a sparse solution is based on L1 − norm regularization -a relaxed version of L0 −
norm [12, 6]:

Minimize
αK

‖ αK ‖1

subject to xS = Φ̃KαK

(3.9)

where ‖ • ‖1 stands for L1−norm of a vector i.e., the summation of the absolute value of
all elements in the vector. The L1−norm regularization in (3.9) can be re-formulated as
an Linear Programing (LP) problem and solved efficiently. As the cost function ‖ αK ‖1 is
not smooth, linear programing can not be directly applied. To apply LP, slack variables
are introduced {θi : i = 1, 2, .., K} such that −θi ≤ αi ≤ θi and (3.9) can be re-written as
[6]:

Minimize θ1 + θ2 + · · ·+ θK
αK, θ

subject to xS = Φ̃KαK
−θi ≤ αi ≤ θi

(3.10)

Intuitively, by minimizing the cost function in (3.10), all the constraints become active i.e.
| αi |= θi and hence (3.9) and(3.10) is equivalent. Roughly speaking, if the N -dimensional
vector αK contains K non-zeros and the linear equation x = ΦαK is well-conditioned, the
solution αK can be almost uniquely determined (with a probability nearly equal to 1)
from M sampling points, where M is in the order of O(K ∗ log(N)) [45, 12, 6]. Note that
M (the number of sensors or measurements) is a logarithmic function of N (the number
of unknown parameters).

A convenient closed form solution of αK based on ordinary least square estimate (OLS)
for well-conditioned overdetermined case [ i.e. M ≥ K and rank(Φ̃K) = K ] is given by :

αK = Φ̃†KxS =
[(

Φ̃∗KΦ̃K
)−1

Φ̃∗K
]
xS. (3.11)

On the other hand, a generalized least square (GLS) solution considering sensor hetero-
geneity and noisy measurement xS + w where the noise w is having a distribution with
covariance V and mean µ i.e. w ∼ N (µ,V) results in:

αK = Φ̃†KxS =
[(

Φ̃∗KV
−1Φ̃K

)−1
Φ̃∗KV

−1
]
xS (3.12)

The same problem can be re-written for full spatial field reconstruction for M sensors
located at L = {i1, i2, ..., iM} as a sparse regression problem, which can be formulated as
the following optimization [46]:

Minimize
α

‖ x−Φα ‖2
2

Subject to : ‖ α ‖0≤ K
. (3.13)
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The optimization problem in (3.13) can be effectively solved using the orthogonal matching
pursuit (OMP) algorithm [46].The solution to (3.13) is affected by the sensor noise and
errors, which in turn effects reconstruction accuracy. Total error ε introduced in the
reconstruction is sum of coefficient truncations or approximation error, εa , error due
to numerical ill-conditioning, εc, and measurement noise error, εm . Note that, once
we have fixed M , increasing K will in general increase the reconstruction error εc (worse
conditioning) and decrease the approximation error εa (better approximation). Therefore,
we should pick an optimal K such that the sum ε is minimal. In presence of sensor noise
and errors w, sensor measurement in (3.7) becomes

xs + w = Φ̃KαK. (3.14)

There is no exact solution to (3.14) for αK but a least square estimation (LSE) problem
is solved such that the error w.r.t. the measured field is minimized using the algorithm
in Fig. 3.7. The algorithm is primarily implemented in the brokers but is also used by
the nodes for context processing.

3.5 Application of Essence Framework for Predicting
the Presence of West Nile Virus

In this section we use the compressive sensing technique in Essence framework to
predict temperature profile of a region from few measurements and then extend the cor-
relation between the temperature and the presence of harmful viruses, called West Nile
Virus (WNV) [17, 30]. West Nile virus is most commonly spread to humans through
infected mosquitos. Around 20% of people who become infected with the virus develop
symptoms ranging from a persistent fever, to serious neurological illnesses that can result
in death. West Nile virus (WNV) is a leading cause of mosquito-borne disease in the
United States (Fig. 3.8a). Annual seasonal outbreaks vary in size and location. Predict-
ing where and when higher than normal WNV transmission will occur can help direct
limited public health resources.

The WNV virus presence has correlation with that of the temperature and weather
profile of the region. Above average annual temperature was associated with increased
likelihood of higher than normal WNV disease incidence, nationally and in most regions
as illustrated in Fig. 3.9a. Lower than average annual total precipitation was associated
with higher disease incidence in the eastern United States, but the opposite was true in
most western regions [17, 30]. Although multiple factors influence WNV transmission,
these findings show that anomalies in temperature and precipitation are associated with
above average WNV disease incidence.
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In 2002, the first human cases of West Nile virus were reported in Chicago. By 2004 the
City of Chicago and the Chicago Department of Public Health (CDPH) had established
a comprehensive surveillance and control program that is still in effect today. Every week
from late spring through the fall, mosquitos in traps across the city are tested for the virus.
The results of these tests influence when and where the city will spray airborne pesticides
to control adult mosquito populations. Given weather, location, testing, and spraying
data, this competition asks you to predict when and where different species of mosquitos
will test positive for West Nile virus. A more accurate method of predicting outbreaks of
West Nile virus in mosquitos will help the City of Chicago and CPHD more efficiently and
effectively allocate resources towards preventing transmission of this potentially deadly
virus. The location of all the traps and all the sprays that were carried out through out
the city is shown in Fig. 3.10.

Our objective is to make sense of the presence of the WNV virus from the various
earlier measurements and weather data and predict it as accurately as possible at location
through out the complete region. As accurate the prediction of the WNV virus requires
collection and time consuming test for detecting the presence of WNV virus, any reduction
in the number of tests required will reduce the overall time in making an early prediction
for the whole region. As the presence of the WNV virus in region is inherently a sparse
signal, we can directly apply random measurement results from different traps across the
city to reconstruct and recover the complete signal. Thus, without waiting for more test
to be carried out, the compressive sensing approach of the Essence framework can be used
to predict the presence of the virus quickly.

In order to do these, the CS framework assumes that traps nodes as sensing node
which can be randomly sampled to sense the presence of the WNV virus. Even though,
physical test needed to be conducted to find virus presence in the mosquitos in the trap,
we make the assumptions this information for any trap can be obtained seamlessly. If the
total no of traps are N , then M = KlogN random measurements would be sufficient to
predict the presence of the WNV virus in the remaining traps. Fig. 3.11 shows the target
and training input data. Fig. 3.12 shows the Matlab code for the simulation of the CS
based WNV prediction.

Fig. 3.13 shows the CS based recovery and prediction of for M = 900 measurements to
M = 1800 measurements out of 9000 signal points (traps). In other words, the results indicate
that if we make 900 random measurements of the mosquito traps, it may not be sufficient enough
to predict presence of the WNV virus in the 9000 traps. On the other hand, with 1500 random
measurement, the WNV virus can be predicted in all the traps as shown in Fig. 3.13. The effect
of the number of measurement on the signal recover is plotted in Fig. 3.14. A similar approach
is adopt for the temperature prediction across all the location based on few measurements.
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3.6 Summary
In this chapter we discussed the foundation for compressive sensing based sensor se-

lection, data aggregation, and data recovery in the sense-making process. We showed how
the compressive sensing approach can be applied in temporal as well as spatial dimension
in order to improve scalability while trading accuracy or vice versa. We extended the ap-
proach to consider heterogeneity of sensors in order to develop the capability to apply to
large class of applications. Lastly, we show an application of the framework in predicting
West Nile Virus with few measurements.
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Algorithm: Compressive Heterogeneous Sensing

Input: measured vector xS, target sparsity M( no of sensor measurement), and size of
full signal N
Output: Coefficient Indices J , Sensing matrix Φ̃K , reconstructed signal x̂

1. Initialize coefficient indexes J = ∅, residual er = xS, αK = ∅

2. Formation of the basis matrix Φ

3. While stop criteria not met do

(a) enew
r =Υ(er), where Υ is an interpolation function such that Υ : RK → RN

(b) αr = Φ†enewr

(c) Choose a subset of coefficient indices I ⊂ J from αr for deciding the significant
coefficients

(d) Update coefficient index set J = J ∪ I
(e) Find the coefficients using Ordinary Least Square (OLS) or Generalized Least

Square(GLS):
i. OLS Solution for homogenous sensors:
αK = Φ̃†KxS =

[(
Φ̃∗KΦ̃K

)−1
Φ̃∗K

]
xS

ii. GLS Solution for heterogenous sensors:
αK = Φ̃†KxS =

[(
Φ̃∗KV−1Φ̃K

)−1
Φ̃∗KV−1

]
xS where V is covariance

matrix of sensor accuracy characteristics.
(f) er = xS − Φ̃KαK

end while

4. Reconstructed signal x̂ = ΦKαK

Figure 3.7: Compressive Heterogeneous Sensing for IoTs.
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(a)

(b) (c)

Figure 3.8: (a)Annual average incidence of WNV in each county in USA (b)Annual aver-
age temperature in each county in USA, (c)Annual precipitation in each county in USA.
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(a) (b)

Figure 3.9: Correlation between presence of WNV and the temperature. (a)Minimum
temperature predicts reporting (b) WNV human cases and reporting per county.

Figure 3.10: Mosquito trap locations and all sprays in 2007-2014.
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(a) (b)

Figure 3.11: WNV target and train data. (a) WNV presence(1)/absence (0) at different
trap location (b) weather and other monitored parameters (total of 40 parameters) data
at the trap locations.
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%Matlab Code for WNV Virus predictions

% signal length
N = length(train_y);
% number of spikes in the signal
T = nnz(train_y);
% number of observations to make
M = 0.1*N*i;
% wnv signal
x=train_y’
% measurement matrix
disp(’Creating measurment matrix...’);
A = randn(M,N);
A = orth(A’)’;
disp(’Done.’);
% observations
y = A*x;
% initial guess = min energy
x0 = A’*y;
% solve the LP
tic
xp = l1eq_pd(x0, A, [], y, 1e-3); %using L1-magi toolbox
toc
%plot the results
figure(2)
set (2, ’color’, [1 1 1])
subplot(3,1,1)
stem(x)
title(’original wnv present/absent signal’)
subplot(3,1,2)
stem(y)
title(’Random Measurements’)
subplot(3,1,3)
stem(xp,’-r’)
title(’Predicted wnv present/absent signal’)
print(2, ’-dtiff’, [’wnv_k_’, num2str(i)])

Figure 3.12: Matlab code for the compressed sensing based WNV prediction.
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(a)

(b)

Figure 3.13: CS based recover and prediction of WNV for measurements (a) M = 900
(unable to recover) (b) M = 1800 (fully recovered).
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Figure 3.14: Effect of number of measurement M on the accuracy of prediction.
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Chapter 4

Performance, Energy, and Scalability
Analysis
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4.1 Introduction
The architecture of the Essence framework supporting collaborative sensing and multi-

tiered compressive sensing using the network architectures as illustrated in Fig. 4.1 and
Fig. 3.1 where the mobile nodes are connected to the cluster head (middleware bro-
ker) and configuration mechanism exists to support both. The end user in the Essence
framework can be an independent user, a participating node, or combination of both de-
pending on the application and usage. A participating node can receive, supply, or both
receive and supply simultaneously with other nodes and provision to enable duplex mode
of communication among the nodes receive on-demand data is considered. Processing
happens at the appropriate level and node, with the aim to perform the processing at
the right place and right time. In this analysis, we consider that the data is captured at
the edge of the network by the leaf nodes, and the “centre” of processing are the cluster
head (middleware broker) and the subsequent hierarchical levels. We interchangeable use
the term middleware broker with cluster head due to its capability to perform additional
processing (CS encoding, recovery and reconstruction). As our heterogenous hierarchical
network architecture consists of different mobile phone as sensor nodes with appreciable
amount of storage and processing capability along with infrastructure sensing nodes, some
amount of processing at the leaf nodes are also possible. This provides the capability of
compressing sensing of the several sensor time-series data at the leaf nodes, before the
data is being sent to the cluster head for further processing.

The Essence framework can be qualitatively assessed using several performance pa-
rameters to maintain a quality-of-service (QoS) for collaborative sensing. To evaluate
the performance of the Essence sense-making framework, we consider the execution time
and energy consumed as performance matrices to compare various sense-making methods.
Note that sense-making methods involve sensor selection/encoding, data aggregation, and
data processing and reconstruction. In order to analyze and perform quantitative com-
parisons of the sense-making scheme with the existing state of the art, we first define a few
parameters as listed in Table 4.1.We first consider the collaboration sense-making scheme
using client-server and mobile agent based models as discussed in [38] as our baseline in
order to compare collaborative sense-making using compressive sensing for one level of
hierarchy as shown in Fig. 4.1. The thesis then extend the same for multiple hierarchy
and advance sense-making compressive sensing approaches as discussed in Section 4.3.

4.2 Collaborative Compressive Sense-making
In collaborative processing, the most commonly used computing model is client/server

based, where individual sensors (the clients) send raw data or preprocessed data to a
processing center (the server) and data integration is carried out at the center. The
client/server-based computing generally requires many round trips over the network in
order to complete one transaction. Each transaction consumes network bandwidth and
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(a) NanoCluster (NC) in client/server mode

Broker/	  	  	  	  	  	  
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Cluster	  Head	  

Broker/	  
Cluster	  Head	  
	  

Nano 
Clusters 

(b) Cluster of non-overlapping NC forming a Local Cluster (LC)

Figure 4.1: Network Architecture for the Hierarchical Sense-Making Framework (a) Nan-
oCluster client-server architecture (b) Local Cluster hierarchical structured architecture.

communication energy. The network connection needs to be alive and healthy through
the entire time of the transaction, otherwise the transaction has to restart if it can at
all. In order to better illustrate how this computing model perform integration, Fig. 4.2
presents a temporal and spatial comparison of the life cycle of their migration units. In
the client/server-based model Fig. 4.2, the clients (Sj and Sk) first read the data files
into memory using toh overhead time, then transfer them to the server using transfer time
ttrans. Here, we assume Sj and Sk are identical nodes and can start data transfer at the
same time and thus these data files might arrive at the server simultaneously but can
only be processed serially. After receiving all the incoming data files, the server can start
processing, which would take tproc amount of time.
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Figure 4.2: Life cycle of Data in Client/Server Architecture [38].

A simplified version of the above scenario is the case when two nodes want to collab-
orate between them, exchange information / data with each other on-demand. In such a
case, the detailed sequence of steps involved in collaboration between two mobile sensing
nodes through the cluster head/broker is shown in Fig. 4.3. If the certain category of
information requested by a node from another node is not available and can be approx-
imated (e.g, by the data from a near by node or using compressive sensing), the server
(cluster head) process the request to generate an approximate result, and pass it to the
requesting node. We call this mode of collaboration as collaborative compressive sensing.

We analyze the performance (the total execution time) and the total energy con-
sumption for different aggregation method in the following subsections for the single level
hierarchy and then extend the results to multi-level hierarchy in the subsequent sections.

4.2.1 Execution Time
The execution time is the time spent to finish processing a task. In the proposed

system, it starts from the time a query is generated to the time the node returns with
results. For simplicity of discussion, we assume three sensors nodes Si , Sj and Sk and
assign Si as the processing center (i.e. Si as server, Sj , Sk as clients in the case of
client/server-based model). In the client/server-based model, it is from the time the
clients send out data to the time the data processing is finished and results are generated
at the server. The execution time consists of three components, ttrans, toh, and tproc, as
illustrated in Fig. 4.2, where ttrans is the time in transferring the sensor data from one
node to the other, represent the overhead time in accessing the data /file system, and
represents the processing time. A few factors that can affect the execution time include
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Figure 4.3: On-demand information exchange between two mobile nodes in cluster.

the network transfer rate vn , the data processing vd , the data file size sf (the size of raw
data each node collects), the overhead of file access of (the time used to read and write
a data file), the number of sensor nodes N .

Thus, for client/server-based computing, the data transfer time is

ttrans = N×sf /vn (4.1)

and the overhead time is

toh = 2N × of (4.2)

(assuming the time used to read and write the data file is the same); and the data
processing time is

tproc = N × sf/vd (4.3)

Therefore, the total execution time using the client/server-based model is

tBaseline = ttrans + toh + tproc = N × sf

vn
+ 2×N×of + N × sf

vd
. (4.4)
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In the analytical model described above, the component that is most difficult to mea-
sure is the data transfer time, where retransmission and error control are not considered.
Unfortunately, these factors occur quite often in sensor networks because of the use of
wireless link, where simulation models are developed for more accurate estimation of the
data transfer time ttrans.

In case of compressed sensing based measurement and aggregation, where the cluster
head makesM random measurements out of theN nodes, we define the signal compression
ratio γ as

γ = M/N. (4.5)
If the reconstruction of the complete signal from M random measurements incurs

treconst, the total execution time using the compressed sensing is

tCS = M × sf

vn
+ 2×M×of + M × sf

vd
+ treconst. (4.6)

We consider the reconstruction time to be proportional to the time complexity of the
reconstruction algorithm used. In CS data aggregation, each cluster head involves two
key data processing tasks: CS random measurements encoding process and CS recovery
process. For a general CS encoding process, the multiplication of an M ×N matrix and
an N × 1 vector requires (M × N + N + M) working storage and MN multiplications
and (N−1)M additions for computation operations. Therefore, the data encoding cost is
bounded by O(NM). If CoSaMP [34] is adopted to recover CS random measurements, it
has been proved that CoSaMP recovers N samples of data fromM random measurements
using O(N) working storage and O(NlogN) operations for each iteration [34]. Therefore,
the reconstruction time can be modeled as treconst ≤ ar ∗ (N ×M +Nlog(N)) + br, where
ar, br are constants. The time complexity of the model based compressive reconstruction
and encoding algorithm are shown in Table 4.1. and is found to be O(Nlog(N)) [4]. In
case of MCS, if a model based compressive sensing and reconstruction algorithm is used
[18], treconst ≤ ar ∗ (2∗Nlog(N))+ br. Thus the execution times for the conventional plain
compressive sensing (PCS) and model based compressive sensing (MCS) are given by:

tCS = M × sf

vn
+ 2×M×of + M × sf

vd
+ ar ∗ (N ×M +Nlog(N)) + br, (4.7)

tMCS = M × sf

vn
+ 2×M×of + M × sf

vd
+ ar ∗ (2 ∗Nlog(N)) + br, (4.8)

4.2.2 Energy Consumption
Sensor nodes are normally composed of four basic units: a sensing unit, a processing

unit, a communication unit, and a power unit. Among these units, communication and
sensing consume most of the energy.
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Table 4.1: Comparison of recovery times for compressive sensing algorithms.

Reference Measurement Bound Recovery Time Matrix multiplication time
MCS1[5] O(K) O(NK) O(NK)
MCS2[4] O(K log(N)

loglog(N)) O(NK) O(Nlog(N))
MCS [18] O(K) O(Nlog(N)) O(Nlog(N))

Similar to the formulation of the execution time, the energy consumption for the two
computing models depends on three components: energy consumed in data transfer Etrans
, overhead processing Eoh, and data processing Eproc.

According to [14], the energy consumed in data transfer can be modeled using a linear
equation ,

Etrans = c × size + d (4.9)
where d is a fixed component associated with device state changes and channel acquisition
overhead, size is the size of data being transferred, and c is a coefficient indicating the
amount of energy consumed by transferring 1 Byte of data. The values for c and d are
different between data transmission and data receiving. Therefore, we separate into two
parts,

Etx = ctx × size+ dtx (4.10)
for transmission and for receiving:

Erx = crx × size+ drx (4.11)
We use a similar linear equation to model the energy consumption in overhead pro-

cessing,

Eoh = cproc × size (4.12)
where cproc is the coefficient indicating the amount of energy consumed in processing per
byte of data. Since we only have knowledge of time spent for overhead processing and the
amount of data that can be processed in 1 sec, we can derive the size of data, the so-called
equivalent data size se , that takes of amount of overhead time to process, that is, seof
for the client/server-based model. Since se varies when the number of clients changes we
choose an average value as listed in Table 4.2 based on [38, 14].

Since no additional data processing takes place for the client/server model, we choose
to neglect Eproc . Similar to (4), the energy consumption model we use for client/server-
based model is given by [38]:

EBaseline = N × [(ctx × sf + dtx) + (crx × sf + drx) + 2 (cproc × se × of )] . (4.13)
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On the other hand, as addition processing is performed in CS based data aggregation, Eproc
need to be modeled to consider the effect of CS encoding and reconstruction algorithms.
In order to model the energy consumption of the reconstruction algorithm, we make
few assumption to simplify the derivation. If we consider creconst is the average power
consumed during the reconstruction process, the energy consumed Ereconst can be modeled
as Ereconst = creconst × treconst.

Thus the total energy consumed whenM random measurements in compressed sensing
mode are made is given by :

ECS = M ×
[
(ctx × sf + dtx) + (crx × sf + drx) + 2 (cproc × se × of ) + ECS

reconst

]
, (4.14)

EMCS = M ×
[
(ctx × sf + dtx) + (crx × sf + drx) + 2 (cproc × se × of ) + ECS

reconst

]
, (4.15)

where the reconstruction energy for CoSaMP and the MCS method is modeled as :

ECS
reconst = creconst × {ar ∗ (N ×M +Nlog(N)) + br} (4.16)

EMCS
reconst = creconst × {2 ∗ ar ∗Nlog(N) + br}. (4.17)

.

4.2.2.1 Effect of network size on execution time and energy

As the execution time and energy consumption of different collaborative sensing schemes
depends on the network size , we perform simulation study for different network size for
two levels of hierarchy. Fig. 4.4a shows the trend on the execution time as the network
size grows on different collaborative and compressive sensing methods. We observed that
as the network size increases, the execution time for client/server and mobile agent based
approach[38] increases linearly. The mobile agent based collaborative sensing approach
as discussed [38] shows reduced execution time compared to client/server based model.
With compressive sensing approach produces relatively lesser execution time compared
to client/server based model. The effect on execution time is much higher as compres-
sion ratio γ reduces. Among the two CS methods, the execution time with MCS method
[18] is relatively less than that of the CoSaMP [34]. While the MCS method [18] scales
almost linearly, the execution time for CoSaMP [34] always exceeds almost linear scaling
MCS. As the compression ratio γ approaches 1, the advances of the compressive sensing
methods are reduced compared to client/server method as expected.

A similar effect is seen on the energy consumption as shown in Fig. 4.4bfor different
methods as the network size increases. Since the energy consumed in the CS reconstruc-
tion stage of modeled based compressive sensing (MCS) method is relatively less than
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Table 4.2: Simulation Parameters

Sl No Variable Name Description Remarks
Si Mobile Sensor node Si
Sj Mobile Sensor node Sj
Sk Mobile Sensor node Sj
ttrans Transfer time form one node to other
toh Overhead time in accessing files/data
tproc Processing time
treconst processing time for reconstruction
tBaseline Total execution time in client/server model
tCS Total execution time in CS model
vn Network transfer rate 2 Mbps
vd Data processing rate 100 Mbps
sf Size of the data file each node collects 10 KB
of Overhead time of file access (read/write access) 0.0125 sec
oa Overhead time of broker agent
N Total no of sensing nodes 2- 1000
M No of measurement in a Local Cloud
ar, br Constant for CS reconstruction time
Etrans Energy consumed in data transfer
Eoh Energy consumed in overhead processing
Eproc Energy consumed in data processing
Ereconst Energy consumed in CS reconstruction
EBaseline Total energy consumed in client/server model
ECS Total energy consumed in CS model
c Coefficient, amount of energy consumed per byte
ctx Energy consumed per byte in transmission 1.9
crx Energy consumed per byte in receiving 1.425
d Fixed coefficient of energy
dtx Coefficient of energy in transmission 454
drx Coefficient of energy in receiving 356
cproc Energy consumed in processing per byte of data 0.7125
creconst power consumed in reconstruction per unit time
λ fractional constant 0–1
size Size of data being transferred
se Equivalent data size that take of sec time 470KB
Ai Area covered by the cluster in level i m2

T No of hierarchical levels in data aggregation
n No of sub-regions, degree of the hierarchical tree
s Speed of each mobile sensor node (m/s) m/s
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that of the CoSaMP method, the overall energy consumption for the MCS method is
relatively less than that of the CoSaMP [34] as the network size increases. Besides, as the
compressing ratio γ reduces, the energy consumption of both MCS and CoSaMP reduces
correspondingy. As compressing ratio γ approaches 1, the energy consumption of the
CS methods approaches that of the client/server based method. Thus, data compression
provides us with a specific knob (i.e., amount of compression) that allows us to save com-
munication energy between all tiers at the cost of some extra computation (required for
the compression process)

4.2.2.2 Effect of network size and data file size collected by each nodes on
execution time and energy

In order to study the effect of the size of the data file each node collects on the execution
time and the energy efficiency of the complete network, we summate the complete network
for given compression ratio γ and varying file size sf . Fig. 4.5a and Fig. 4.5b shows the
effect of the data file size on the execution time and energy consumed as the network size
increase. It can be observed from Fig. 4.5a that as the file size sf increase, the execution
time of sense-making increases for both CoSaMP and MCS method. The file size sf has
similar scaling effect as the compression ratio γ.

The effect on the energy consumed shows a similar in trends. As observed in Fig. 4.5b,
the relative energy saving between the CoSaMP and MCS method are marginal, however
if the data collected by each node can be reduced, the energy saving can be substantially
scaled for the same compression ratio γ.

4.3 Scalable Multi-Level Hierarchical Aggregation Based
Sense-making

The hierarchical aggregation of the data can be performed at a particular level in
several ways as shown in Fig. 4.6.

In this section we present the CS based multi-level hierarchical data aggregation
scheme that is based on a hierarchy of clusters and compressive sensing as discussed
in [50, 27, 49]. The aggregation method presented in this thesis is similar to the HDACS
approach in [50]with the difference of using new model based compressive sensing tech-
nique and inclusion of several overheads in the aggregation process that was ignored in
[50]. We first outline the clustering framework, where clusters represent non-overlapping
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(a)

(b)

Figure 4.4: Effect of network size (number of mobile sensing node N) on (a) the execution
time (b) Energy for different methods and compression ratios.
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(a)

(b)

Figure 4.5: Effect of file size sf on (a) execution time and (b) energy.
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Figure 4.6: Examples of Data Aggregation (a) non-compressive sensing (NCS) , same as
client-server model (b) plain-CS (PCS) (c) Hybrid-CS (HCS).

geographical regions. At level one, all the clusters are defined by identical regions each
with area A. Let’s assume that the hierarchy consists of T levels, number of clusters is
nT−i, and for cluster (l) at level i represents an area of size A(l)

i , which further combines n
subregions from level i−1, such that A(l)

i = n∗A(l)
i−1 = ni−1 ∗A. Following this procedure,

we get the relation between the entire monitored area Atotal and the initial cluster area A:
that is, Atotal = nT−1A. Let |Ci| represent the number of clusters at level i and we get the
relation between the number of clusters and the whole area: A(l)

i |Ci| = ni−1A|Ci| = Atotal.
So, the number of clusters at level i is |Ci| = Atotal

A
n1−i = nT−1n1−i = nT−i . For each

cluster l at level i , we define the following local parameters :

• c(l)
i : cluster head node

• v(l)
i : the list of logical children cluster head nodes

• A(l)
i : cluster area

• N (l)
i : the cluster size including all the nodes in the cluster

• M (l)
i : the number of CS random measurements or the amount of data transmitted

• d(j)
i : the distances between cluster head c(l)

i and its children node j, where j ∈ v(l)
i

• γ(l)
i : the compression ratio

• E(l)
i : total transmission energy for cluster l

The global parameters at level i are defined as follows:

• Ci: Collection of cluster heads, Ci = {c1
i , c

2
i , ...., c

|Ci|
i }

• |Ci|:the number of clusters, |Ci| = nT−i
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Leaf Level 

T-1  
Levels 

Figure 4.7: Multi-level Hierarchical Aggregation Architecture

• Mi: total amount of of data units for transmission Mi =
|Ci|∑
l=1
M

(l)
i

• Ei: the transmission energy cost for all the clusters, where Ei =
|Ci|∑
l=1
E

(l)
i

The logical relationship of clusters at different levels is shown in Fig. 4.7. The hierarchy
consists of n nodes at level i for i ≥ 2, or, in another words, the degree of the hierarchical
tree is n. We also assume the number of leaf nodes N (l)

1 ≥n for any cluster l at level one.
In order to meet these clustering requirements, we randomly deployed the sensors in a
2D network topology such that at least there are n nodes in each cluster at level 1. For
nT−1 clusters, n ∗ nT−1 = nT sensors are associated. The remaining N − nT sensors are
placed randomly following the uniform distribution within the entire region. The main
advantage of such a network deployment is that it is easily realizable in practical spatial
distribution of sensors. It also addresses issues when the condition of N = nT is not
satisfied. Besides, since the number of cluster heads are at most nT−1, the leaf nodes are
N − nT−1 ≥ nT − nT−1 = (n − 1)nT−1. If n > 2, N − nT−1 > nT−1, which implies that
only a small number of nodes will be involved with multiple level data processing and
aggregation and the only job of leaf nodes, indicated by dotted circles in Fig. 3.1, is to
send their data directly to their cluster heads. In other words, the number of leaf nodes
is much more than the number of cluster heads. The rules also ensure that the number
of nodes in one cluster at level i satisfies N (l)

i ∈ {ni, ni + 1, ..., ni+1 − 1}.
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4.3.1 Hierarchical Data Aggregation Based Multi-Level Com-
pressive Sensing (HMLCS)

Multi-level hierarchical aggregation enables scalable sense-making in large networks.
In order to study the impact of the multilevel hierarchy, we perform CS data aggregation
with several salient steps. In first step, at level 1 of the cluster hierarchy, leaf nodes send
their sensed data to their respective cluster heads directly; The cluster heads receive them
and takeM1 = K ∗ logN (l)

1 CS random measurements based on their local cluster size N (l)
1

where the superscript (l) is used to indicate the cluster l in level 1. In the second step,
at level i(i ≥ 2), cluster heads receive CS random measurements and they perform CS
recovery algorithm to extract original data. After accumulating all the data from their
children nodes, the cluster heads take M (l)

i = KlogN
(l)
i CS random measurements from

all the recovered data and send them to the parent cluster heads at level i + 1. In the
final step, second step is repeated until the cluster head at the top level, T gathers the
data from all the sensors.

Compared to the methods in [28, 49] where a global threshold M = KlogN is set
up for the entire network, in multi-level hierarchical scheme uses multiple thresholds
M

(l)
i = KlogN

(l)
i which are determined by the cluster sizes at different levels with upper

bound O(KlogN) at the highest level T . When the level i is low, the corresponding Mi

is also a relatively small number. This property hierarchy helps to reduce the data size
for communication and saves the energy spent on transmission.

4.3.1.1 Total Amount of Data Transmitted

Assume ni+1 ≥ N
(l)
i ≥ ni, (if N (l)

1 ≥ n2, the depth of the logical tree is T + 1, which
contradicts with the previous assumption that nT+1 > N = nT + N

′ ≥ nT . The same
requirement applies to the cluster size at other levels and the amount of data transmitted
M

(l)
i ∈ [iKlog(n), (i + 1)Klog(n)]. Therefore, the total number of measurements Mtotal

for transmission is:

Mtotal =
|C1|∑
l=1

(N (l)
1 − 1) +

T∑
i=2

|Ci|∑
l=1

(n− 1)M (l)
i−1 (4.18)

Let D1 = ∑T−1
i=1

i
ni and and D2 = ∑T−1

i=1
1
ni we get the closed form of D1:

D1 = 1/n(1−1/nT−1)
(1−1/n)2 − T−1

nT (1− 1/n) (4.19)

and

D2 = 1/n∗(1−1/nT−1)
1−1/n (4.20)

Therefore, the lower bound of Mtotal is:
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Figure 4.8: Comparison of trends in total amount of data transmission for different net-
work size.

Ω(Mtotal) = N−nT−1 +K(n−1)nT−1lognD1 (4.21)

and upper bound is

O(Mtotal) = N−nT−1 +K(n−1)nT−1logn(D1 +D2). (4.22)

In order to perform a fair comparison with the existing CS based schemes, the PCS,
and HCS methods are formulated in the hierarchical framework as well. The PCS
method implementing data aggregation task in our hierarchical framework would trans-
mit MPCS = NKlogN data [27]. Similarly, for the HCS method [28, 49] the number of
transmissions are

MHCS = N − nT−1 +K(n− 1)nT−1logND2 +O(NlogN) (4.23)

Fig. 4.8 compares these schemes assuming different network sizes assuming logical
cluster size at each level to be 4. These results show that compared to HMLCS scheme
the total amount of data transmitted in the PCS method increases at a much faster rate
with the increase in the network size. In terms of the amount of data transmitted, the
relative advantage of the HMLCS method over HCS is less significant because of the fact
that a bulk of sensors serve as leaf nodes at the first level, and transmit their raw data
directly to the cluster heads at level 1.

57



Figure 4.9: Comparison of compression ration at different levels of hierarchy.

4.3.1.2 Data Compression Ratio

The data compression ratio γ(l)
i is defined as the ratio of the amount of data transmitted

to the amount of data available and the expression is given by [50]:

γ
(l)
i =


M

(l)
1

N
(l)
1

= KlogN
(l)
1

N
(l)
1

if i = 1
M

(l)
i∑

j(l)∈v
(l)
i

M
(j(l))
i−1

if i≥2
, (4.24)

where γ(l)
i ∈ [ 1

n
(1 + 1

i−1), 1
n
(1 + 1

i
)] if i ≥ 2. For the PCS method, γPCS = 1, and

γi,HCS = M
(l)
i

N
(l)
i

when N (l)
i > KlogN satisfied for the first time; otherwise, γi,HCS = 1.

The tendency in data compression ratio at each level for different methods is shown
in Fig. 4.9. It’s observed that the PCS method provides no compression at all; the HCS
method yields compression only for the level where the size of data reaches to the global
threshold; however, the HMLCS method achieves a good compression ratio for each level
which is well below 0.5.

4.3.1.3 Energy Consumption for Transmission

The communication among sensors is the most power-consuming task and its energy
consumption analysis is a major concern. Transmission energy cost E(l)

i is normally a
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function of transmission distance d(l)
i and data size M (l)

i . Therefore, E(l)
i is modeled as

E
(l)
i = cs + ∑

j∈v(l)
i
c(d(j)

i )αM (l)
i [7, 15], where cs is a distance-independent term, and c is

a constant transmission cost per unit data per unit distance. The settings of c and cs
depend on the hardware and algorithms for various application tasks.

Assume d(l)
i = ∑n

t=1,(xt,yt)∈ci
[(xt−xci

)2 + (yt− yci
)2]1/2, where (xci

, yci
) and (xt, yt) are

the spatial coordinates of c(l)
i and its children nodes respectively. In a large dense uniform

randomly distributed sensor network, if i > 1 d
(l)
i = 4 (n−1)

si

´ bi

0
´ bi

0 (x2 + y2)1/2dxdy =
1
12πn

i−1
2 A1/2(n− 1), where bi = 1

2A
1/2
i . And for i = 1, d(l)

1 = 1
12πA

1/2(N (l)
1 − 1). For level

i > 1, we get E(l)
i = cs + cM

(l)
i

1+α 2−α(n− 1)πn(i−1)(α−1)/2A(α−1)/2. For notation simplicity, we
denote B1 = c

1+α2−απA(α−1)/2. The transmission energy in level i = 1 within cluster l is:
E

(l)
1 = cs +B1(N (l)

1 − 1). Therefore, the total transmission energy cost is:

Etotal = nT−1cs + (N − nT−1)B1 + nT−1csD2 +B1(n− 1)
∑

T
i=2
∑|Ci|

l=1KlogN
(l)
i−1n

(i−1)(α−1)/2

(4.25)
Let D3 = ∑T−1

i=1 in
i(α−3)/2, D4 = ∑T−1

i=1 n
i(α−3)/2 and D5 = ∑T−1

i=1 (i + 1)ni(α−3)/2. If α 6= 3 ,
we get the closed form expression of D3 as

D3 = n(α−3)/2(1−n(α−3)(T−1)/2)
(1−n(α−3)/2)2 −(T−1)n(α−3)T/2

1−n(α−3)/2 (4.26)

and the closed-form expression of D4:

D4 = n(α−3)/2(1− n(α−3)(T−1)/2)
1−n(α−3)/2 . (4.27)

Let D5 = D3 +D4. If α = 3, D3 = T∗(T−1)
2 , D4 = T − 1 and D5 = (T+2)∗(T−1)

2 . Therefore,
the lower bound of Etotal is

Ω(Etotal) = nT−1cs(1 +D2) +B1(N − nT−1) +B1K(n− 1)nT−1D3logn (4.28)

and upper bound of Etotal is

O(Etotal) = nT−1cs(1 +D2) +B1(N − nT−1) +B1K(n− 1)nT−1D5logn (4.29)

Following the same derivation, we get transmission cost in the PCS aggregation

EPCS = nT−1cs(1 +D2) +B1(N−nT−1)logN +B1K(n−1)nT−1D4logN (4.30)

Similarly, transmission cost in the HCS aggregation is:

EHCS = nT−1cs(1 +D2) +B1(N−nT−1) +B1K(n−1)nT−1logND4 +O(NlogN) (4.31)
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Figure 4.10: Comparison of trends in transmission energy consumption for different net-
work size.

Fig. 4.10 shows the trends in energy consumption for transmission with diverse net-
work scales under the assumption α = 2 [7, 15] Similar figures are obtained when α is
set as 3, 4, 5, 6, where the constant parameters in the energy model are assigned as :
c = 10−10J , cs = 10−7Jm − α/bit [7, 15], and K = 1. The result show the energy for
transmission required by the PCS method is far more than the HCS method and the
HMLCS method. Compared to other two methods, the HMLCS method consumes the
least transmission energy and achieves the best efficiency for multilevel hierarchy.

4.4 Summary
In this chapter, we derived the performance and energy consumption for several data

aggregation methods and compared them for various network size and compressive sens-
ing methods. The closed form derivation of the performance and energy consumption of
several schemes were derived by taking into account the reconstruction algorithm’s time
complexity and energy overhead in the formulations. The effect of network scaling, differ-
ent levels of hierarchy, and compression ratio on the performance and energy for different
methods are studied. The impact of file size that each sensor node collects has also been
studied and compared for different scheme. Unlike the existing sate-of-the-arts, this the-
sis introduced a model based compressive sensing (MCS) method in the reconstruction
and recovery stage of the processing and derived closed for performance and energy con-
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sumption models. Compared to the CoSaMP based recovery methods, the MCS methods
provides improved performance and energy efficient as the network size scales.
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Chapter 5

Neural Network Based Prediction
for Sense-Making in IoT Devices
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Table 5.1: Notations for symbols

Notations
Scalar Vector Matrix

e.g. Remark e.g. Remark e.g. Remark

Variable x italics x, X bold/caps italics X caps bold italics

Constant w Standard w, W bold/caps standard W caps bold standard

Estimation of Variable ŷ hat italics ŷ, Ŷ hat bold/caps italics Ŷ hat caps bold italics

5.1 Introduction
This chapter presents a prediction model for sense-making based on Artificial Neural

Network specifically targeting IoT devices. Implementing large-scale neural networks with
high computational complexity on low-cost IoT devices may inevitably be constrained
by limited computation resource, make the devices hard to respond in real-time, and
consume considerable computational energy and power making sense-making in different
scenarios difficult. As a result, it is crucial to understand the predictive models not only
from the perspective of performance accuracy but also considering their resource usage
and computation energy requirement as deemed necessary in most IoT applications. In
this chapter we study these predictive model’s basic concept, specification, architecture,
classification and training methodology in order to improve the performance in predicting
the presence of the WNV virus as discussed earlier.

5.2 Neural Network Based Predictions for Sense-Making

5.2.1 Basic Notations, Terms, and Definitions
• Neuron ℵ: An artificial neuron ℵ is a mathematical function ℵ : X → ŷ or
ŷ = ℵ(X), conceived as a model of biological neurons. Artificial neurons are the
constitutive units in an artificial neural network. The artificial neuron receives
one or more inputs (representing dendrites) and sums them to produce an output
(representing a neuron’s axon). Usually the sums of each node are weighted, and
the sum is passed through a non-linear function known as an activation function or
transfer function. The transfer functions usually have a sigmoid shape, but they may
also take the form of other non-linear functions, piecewise linear functions, or step
functions. They are also often monotonically increasing, continuous, differentiable
and bounded.

• Artificial Neural Network NN : A neural network is a connection of several
artificial neurons. An NN is is a mathematical function NN : X → Ŷ or Ŷ =
NN(X).

• Network Architecture NA: A data flow representation showing the connection,
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computations, and flow of information from inputs to output through the layers.

• ANN Inputs X : The artificial neuron ℵ receives one or more inputs (representing
dendrites). The inputs can be scalar x for single-input neuron, a vector X for a
multi-input neuron, or a matrix X for a multi-dimensional-input neuron.

• ANN Outputs Ŷ : The artificial neuron ℵ produce an output (representing a
neuron’s axon). The output can be scalar ŷ or a vector Ŷ (which approximates the
target observations Y for supervised learning).

• Target Output Y : The ideal output observed for a given inputs X, which is
approximated by the NN output Ŷ . The target Y is available as training data.

• Layers L: A design parameter for NN that indicates several layers of neurons (in
a multi-layer network).

• Training Observation Sample s: An observation s is a pair (x, y) such that
x ∈ X and y ∈ Y using which the function NN : X → Ŷ is an approximated.

• Nt: Total Number of Training Observations

• Training Set TS: The training set is a set of observations (usually a matrix) that
is the combination of the inputsX and the target outputs Y , such that TS = [XY ]
is used to train the neural network NN .

• Validation/Test Set V S: The validation/test set is a matrix that is the combi-
nation of the inputs Xv and the target outputs Yv, such that V S = [Xv Yv] is used
to validate/test the neural network NN .

• Validation Observation Sample v: An observation v is a pair (xv, yv) such that
xv ∈ Xv; xv /∈ X and yv ∈ Yv; yv /∈ Y using which the function NN : X → Ŷ is
validated / tested.

• Nv: Total Number of Validation Observations

• Weights W: The gains a neuron use to approximate the

• Learning: An optimization process that uses a learning algorithm to optimize a
cost function C. Mathematically, Given a specific task to solve, and a class of
functions F , learning means using a set of observations to find f ∗ ∈ Fwhich solves
the task in some optimal sense. This entails defining a cost function C : F → R
such that, for the optimal solution f ∗, C(f ∗) ≤ C(f)∀f ∈ F – i.e., no solution has
a cost less than the cost of the optimal solution.

• Learning Algorithm LA: Same as Learning, when formally represented as a
algorithm
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• Training Tr : Training a neural network model essentially means selecting one
model from the set of allowed models that minimizes the cost criterion. There are
numerous algorithms available for training neural network models; most of them
can be viewed as a straightforward application of optimization theory and statistical
estimation. The process of finding the weights W of the neural network NN given
the training set TS.

• Activation function f : A mathematical function that mimics the activation be-
havior of a biological neuron. Mathematically, f : u→ y or y = f(u) where u is the
activation input. The activation function for a ith neuron is yi = fi(ui).

• Transfer Function : same as activation function above. See Fig. 5.3.

• Feature(s) : An individual measurable property of a phenomenon being observed.
Choosing informative, discriminating and independent features is a crucial step for
effective algorithms in pattern recognition, classification and regression. Features
are usually numeric, but structural features such as strings and graphs are used
in syntactic pattern recognition. The concept of "feature" is related to that of
explanatory variable used in statistical techniques such as linear regression. A set
of numeric features can be conveniently described by a feature vector.

• Performance Measure: Its a mathematical representation to to quantify the
performance ( in terms of accuracy or error) of NN often measured in mean square
error (MSE), mean absolute error (MAE), mean absolute deviation (MAD) etc.

• Gradient: First derivative of the cost function w.r.t weights.

• Epoch E: An epoch is one complete presentation of the data set to be learned to a
learning machine. An epoch is a single step in training a neural network; in other
words when a neural network is trained on every training samples only in one pass
we say that one epoch is finished. So training process may consist more than one
epochs. Training a NN on each item of the set once is an epoch. So, if you want to
teach your network to recognize the letters of the alphabet, 100 epochs would mean
you have 2600 individual training trials.

• Training Time Ttr: The time need to train a NN .

• Computation Complexity O: The measure of time complexity and resource
(space ) complexity of a neural network as a function of its specifications ( number
of inputs, layers etc.).

5.2.2 Neural Network Architecture
A neuron with a single N -element input vector X of dimension (N × 1) with elements

(x1, x2, x3, ..., xN) is shown below. W is a weight matrix of dimension (1×N) with elements
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Figure 5.1: Model of Artificial Neuron.

(w1,1, w1,2, . . . w1,N). The weighted value is the dot product of the matrix W(1×N) and the
input vector X(N×1).The neuron has a bias b, a constant input of 1, which is summed
with the weighted inputs to form the net input u. The net inputu is the argument of the
transfer function f .

where, u = W(1×N).X(N×1)+b ,whereW = [w1,1w1,2w1,3...w1,N ]1×N andX =



x1
x2
x3
...
xN


N×1

.

Thus the input to the transfer function is given by :

u = [w1,1w1,2w1,3...w1,N ]1×N .



x1
x2
x3
...
xN


N×1

+ b (5.1)

Output is expressed as y = f(u)= f(W.X + b). The transfer function used in the
neural network is shown in Fig. 5.3.

In the above case output y is a scalar. Note that if there were more than one neuron,
the network output y would be a vector.

5.2.2.1 Single-layer Feed-forward Network

A one-layer network with N input elements and M neurons follows
For single layer, the number of inputs elements are N , number of nodes or neurons in

layer = M ,dim(u) = dim(b) = dim(y) = (M ×1), the dimensions of dim(X) = (N ×1),
the dimensions of W, dim(W) = (M ×N), the Weight matrix:
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Figure 5.2: Data flow representation of a Neural Network.

(a) Linear transfer function (b) Step function (Perceptron)

(c) Logistic sigmoid function (d) Hyperbolic tangent sigmoid transfer
function

Figure 5.3: Transfer function used in Neural Networks.
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Figure 5.4: Single-layer Neural Network

Figure 5.5

W =


w1,1 w1,2 . . . w1,N
w2,1 w2,2 . . . w2,N
... ... ... ...

wM,1 wM,2 . . . wM,N


In this network, N and M are number of elements in input vector and number of

neurons in layer respectively.Each element of the input vector X(N×1) is fed to each neuron
input through the weight matrix W. The ith neuron has a summer that gathers its
weighted inputs and bias to form its own scalar output ui, where i = 1, 2, 3, ...,M . The
various ui taken together form anM -element net input vector u(M×1). Finally, the neuron
layer outputs form a column vector y(M×1). The expression for y is shown at the bottom
of the figure.

Note that N is not necessarily equal to M .
Here X is an N -length input vector, W is an M ×N matrix, y and b are M -length

vectors.
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Figure 5.6: Multilayer feed forward network architecture.

u(M×1) = W(M×N).X(N×1) + b(M×1)
y1 = f(u1)
y2 = f(u2)
...
yM = f(uM)
y(M×1) = f(W(M×N).X(N×1) + b(M×1))

5.2.2.2 Multilayer Feed Forward Network/Multilayer Perception

To describe networks having multiple layers, it needs to make a distinction between
weight matrices that are connected to inputs and weight matrices that are connected
between layers. It also needs to identify the source and destination for the weight matrices.

We will call weight matrices connected to inputs input weights; we will call weight
matrices connected to layer outputs layer weights. Further, superscripts are used to
identify the source (second index) and the destination (first index) for the various weights
and other elements of the network. To illustrate, the one-layer multiple input network
shown earlier is redrawn in abbreviated form here.

5.3 Neural Network Toolbox
Neural Network Toolbox™ provides functions and apps for modeling complex nonlin-

ear systems that are not easily modeled with a closed-form equation. Neural Network
Toolbox supports supervised learning with feedforward, radial basis, and dynamic net-
works. It also supports unsupervised learning with self-organizing maps and competitive
layers. With the toolbox one can design, train, visualize, and simulate neural networks.
The Neural Network Toolbox can be used for applications such as data fitting, pattern
recognition, clustering, time-series prediction, and dynamic system modeling and control.
In this Appendix, we use the too box to train different class of neural network (NN) to
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predict the West Nile Viruses presence and the number of mosquitos that are collected in
different traps as discussed in Chapter 3.

5.4 West Nile Virus Prediction Model Using Neural
Networks

In order to design and compare various neural network architectures to predict the
presence of the West Nile Virus, we first define the train and the test data setting as
discussed in the Appendix A. We consider 33 parameters as input to predict the output
target the WNV presence, a multi-input-single-output (MISO) NN as in Fig. 5.7 . We
also develop another class of neural network of multi-input-multi-output (MIMO) class,
where we predict multiple outputs viz., the WNV presence and the number of mosquitos
in various traps. We develop three class of neural networks , the feedforward, cascade-
forward, and the fitnet that are supported by the Matlab Neural network toolbox. We
compare performance of MISO and MIMO NN and tabulate their results in Table5.2
through Table 5.4 for training and validation. We observe that the MISO NN performs
poorly compared to the MIMO NNs for all the tree categories. In addition, with the
increase in number of neurons in hidden layer from 5 to 30 for layer ranging from 1 to 5, the
performance does not improve drastically, rather at times the performance reduces with
number of layers. This behavior is observed with different training algorithms including
the back propagation. A judicial choice of the number of hidden layers will be subject
of future study, however as we focus in implementing these neural network in resource
constraint IoT devices, we observe that there is interesting trade-off between the number
of layers and neuron in each layer with that of the perfromance accuracy improvement
in prediuction as well as execution time. The limited design space exploration of the
NN prametric space for the particular example of WNV presence along with mosquitos
present in a trap is tabulated in Table. 5.5 It is observed that, for this particular exaple,
a single layer NN alost provides similar accuracy when compared to a multi-layer NN. In
other words, for a small improvement in perfromance (5-10%), a large computation time
or resource is required (almost 1.8×) in teh IoT device. Therefore, a judicious point where
the the resoureces in the IoT devices can best be ustilized for the maximum performance
need to be considered. In qaddition to the NN input and architectural parameter spaee, it
is also important to consider the implementation resources for an efficient implementation.
We discuss few implementation strategies to achieve that in the next section.
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(a) Feed forward architecture.

(b) Cascade forward architecture.

Figure 5.7: Architecture of a feedforward NN displayed using the Matlab Neural Network
Toolbox.

Table 5.2: Feedforward NN for WNV prediction.
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Table 5.3: Cascade-forward NN for WNV prediction.

Table 5.4: fitnet for WNV prediction.

Table 5.5: Feedforward NN for WNV and number of mosquito predictions.
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Figure 5.8: Validation of the performance of a feedforward neural network.

5.5 Strategies for Efficient Neural Network Imple-
mentation in IoT devices

In order to efficiently implement the proposed Neural network in the resource con-
straint IoT devices, we adopt the following strategies to improve performance and reduced
resource consumption.

• Floating point to fixed point conversion: we convert the floating point imple-
mentation of the NN to a fixed point implementation by using Matlab fixed point
tool box. This conversion to fixed point implementation reduces the memory, en-
ergy consumption, as well as computation time required to perform the NN based
predictions.

• Judicious Bit allocation : by discriminating the number of bit in the fixed point
representation of the NN, e.g., using 16 -bits instead of 32-bits for some layers, the
NN resource utilization can be reduced.

• Approximation : by tuning the approximation of synapse functions as well as auto
tuning the bits used in computation, the NN’s resource utilization can be improved.
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• Computation sharing: in case the NN is implemented in hardware, instead of
using dedicated multiplier and adders for each layer, a pipelined architecture sharing
the computation resources can be considered.

5.6 Summary
In this chapter we used neural network to build predictive models for sense-making

in IoT devices. We used the prediction models to predict the presence of a West Nile
Virus and number of mosquitoes as use case to showcase the use of the predictive models
for sense-making application in IoT devices. We also briefly describe four strategies to
implement the Neural network for resource constraint IoT devices by using fixed point
representation of the computations, judicious bit allocation across layers, approximation
of operations and transfer functions, and computation sharing e.g. use of lookup tables
(LUTs).
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Chapter 6

Summary and Future Works
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In this thesis we proposed a scalable and energy efficient sense-making framework using
a hierarchical compressive sensing for efficient collective understanding of users, contexts,
and their environments. To the best of our knowledge, a scalable spatio-temporal com-
pressive and collaborative mobile sensing framework for multi-tiered hierarchical network
configurations specifically supporting physical and virtual sensing has not been considered.
The proposed sense-making IoT framework, called Essence, employs combination of par-
ticipatory mobile crowdsensing along with infrastructure sensing to perform sense-making
using machine learning techniques such as PCA, compressive sensing, and heterogeneous
model based compressive sensing techniques for approximate gathering and processing
of diverse sensor data. We derived the performance and energy consumption for several
data aggregation methods and compared them for various network size and compressive
sensing methods. The closed form derivation of the performance and energy consumption
of several schemes were derived by taking into account the reconstruction algorithm’s
time complexity and energy overhead in the formulations. The effect of network scaling,
different levels of hierarchy, compression ratio on the performance and energy for differ-
ent methods are studied. The impact of file size that each sensor node collects has also
been studied and compared for different scheme. Unlike the existing state-of-the-arts,
this thesis introduced and used a model based compressive sensing (MCS) method in the
reconstruction and recovery stage of the processing and derived closed for performance
and energy consumption models. Compared to the CoSaMP based recovery methods, the
MCS methods provides improved performance and energy efficient as the network size
scales. We demonstrate the application of Essence sense-making framework in predicting
the presence of West Nile Virus (WNV) in a region as a case study.

This thesis presents an efficient and scalable sense-making framework using machine
learning techniques for Internet-of-Things (IoTs) in order to understand users, contexts,
and their environments to make meaningful decisions. The proposed sense-making IoT
framework, called Essence, employs combination of participatory mobile crowdsensing
along with infrastructure sensing to perform sense-making using machine learning tech-
niques. While collaborative mobile crowdsensing enables information to be gathered and
shared by users who are directly involved (participatory sensing) or integrated seamlessly
as needed (opportunistic sensing) through user mobile platforms, the infrastructure sens-
ing fabric of the Essence framework provides sense-making support for scenarios where
mobile sensing platforms are inadequate. To address the scalability needs of the Essence
framework, we employ machine learning techniques such as principal component analysis
(PCA) based heterogeneous compressive sensing techniques for approximate gathering
and processing of diverse sensor data. This requires new mechanisms for sensor data
collection, tunable approximate processing and machine learning based decision making
using a hierarchical networking architecture to create a compressive collaborative sense-
making framework for IoTs. Essence is an extension of our previous SenseDroid mobile
sensing framework with machine learning enabled decision and actuation components for
IoT paradigms. The Essence framework is build using a multi-tiered hierarchical archi-
tecture for sensing spatial variations of a parameter of interest, perceive spatio-temporal
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fields, and enable energy efficient local mobile or infrastructure sensing with a small num-
ber of measurements. This approximate, yet tunable approach combines different sensing
approaches opportunistically while trading scalability (and coverage) for data accuracy
(and energy efficiency). We demonstrate the application of Essence sense-making frame-
work in predicting the presence of West Nile Virus (WNV) in a region as a case study.
The thesis also discuss several challenges associated with sense-making approaches for
emerging IoT applications.

6.1 Challenges and Future Work
There are several challenges that need to be addressed and we pursue them as our

future research directions. Some of these research direction are briefly explained below:
Energy Efficiency : Power consumption and energy efficiency are serious issues

in mobile sensing, as continuous monitoring can largely drain the battery in a short
period of time. Energy-efficiency issues have been studied in the context of mobile phone
sensing recently in [43, 52, 39, 36, 31]. In [43], the authors showed that collaborative
sensing can achieve over 80% power savings compared to traditional sensing without
collaborations. Research in the direction of sensor scheduling, adaptive sampling, and
compressive sampling and their novel combinations within the framework provide new
research opportunities for energy-efficiency.

Privacy Regulation: Privacy is a major concern in collaborative sensing application.
To address this we have adopted transparency, full user control, and encryption of the data
that is shared. User can fully set or control their preferences, enable or disable features,
control of the type of sensors and parameter that can be shared in the application to
avoid any violations. In the worst case, the user can opt-out of any such applications.
Research addressing privacy in mobile phone sensing is in its infancy with initial research
work proposing privacy preserving incentive mechanisms [24, 51].

Incentive Mechanisms: Incentive mechanism to motivate participation and col-
laboration is an important aspect that need to researched to bring desirable economic
properties and appropriate utility in the collaboration framework. Few recent studies in
this direction looked into selecting well-suited participants for sensing services within re-
cruitment frameworks [40], sealed-bid second-price auction to motivate user participation
[10], and reverse auction based dynamic price incentive mechanisms [23]. A comparative
study of different incentive mechanisms for a client to motivate the collaboration of smart-
phone users on both data acquisition and distributed computing applications is evaluated
in [13].

Heterogeneity in Mobile Cloud: Heterogeneity manifests in several aspects (e.g.
networks, sensor types, sensor accuracy) of the collaborative sensing. Our present devel-
opment in primarily focused on using Wi-Fi based mobile ad-hoc networks for localize
environments specifically for the local cloud. However, support for more power efficient
networks like Bluetooth can considered to support the nanocloud architecture. Handling
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the heterogeneity in network architectures, mobile devices and sensors, as well as services
is challenging area of research and need to be further studied in the context of compressive
sensing [41].

Actions and Control: As a complement to sensing, the IoT offers us a way to con-
trol the physical world through displays, actuators, and switches. Many modern systems
benefit from remote control because it simplifies physical interaction design and extends
capabilities. In the Physical Web paradigm, anything with a display, actuator, or switch
can be controlled from a browser or through a Web service, thus making it easy to inte-
grate related information into control decisions. For example, emerging Web-connected
irrigation systems might provide an interface for specifying the plants in your garden and
use Web services to determine expert watering recommendations. Privacy and security
One of the primary challenges for the future will be avoiding the darker consequences of a
world with globally connected devices. The Physical Web could enable hackers to control
our devices unless precautions are taken. The conventional Web already has security mea-
sures in place that can be applied to the Physical Web, but it is unclear if these will be
suitable or even adequate for all IoT applications. In addition to hacking, social threats
can result when knowledge is leaked in unexpected ways. For example, knowledge that a
house is in an energy-saving mode could be a good indication that nobody is home and
thus invite a burglar. These challenges will become more pressing as use of the Physical
Web continues to grow.
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Appendix A

West Nile Virus Data Set
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In 2002, the first human cases of West Nile virus were reported in Chicago. By 2004 the
City of Chicago and the Chicago Department of Public Health (CDPH) had established
a comprehensive surveillance and control program that is still in effect today. Every week
from late spring through the fall, mosquitos in traps across the city are tested for the virus.
The results of these tests influence when and where the city will spray airborne pesticides
to control adult mosquito populations. Given weather, location, testing, and spraying
data, this competition asks to predict when and where different species of mosquitos
will test positive for West Nile virus. A more accurate method of predicting outbreaks of
West Nile virus in mosquitos will help the City of Chicago and CPHD more efficiently and
effectively allocate resources towards preventing transmission of this potentially deadly
virus.

Several modeling, laboratory and field studies have shown that WNV transmission is
associated with environmental factors such as temperature, precipitation, drought, and
land use, as well as biological factors such as bird community structure and anthropological
variables, including urbanization and human density 8,45. However, most of the studies
focused exclusively on particular states, counties, or regions based on the data available
to the researchers. There is a need for a concise, relatively simple model that can predict
early in the year when risk of human WNV may be elevated in order to inform public
health decisions, resource allocation, and public education.

A.1 Data Description for West Nile Virus Prediction
This data set is based on the data set provided in the Kaggle competion for West

Nile Virus prediction [35]. In this competition, weather data and GIS data provided to
analyzing and predicting whether or not West Nile virus is present, for a given time,
location, and species.

Every year from late-May to early-October, public health workers in Chicago setup
mosquito traps scattered across the city. Every week from Monday through Wednesday,
these traps collect mosquitos, and the mosquitos are tested for the presence of West Nile
virus before the end of the week. The test results include the number of mosquitos, the
mosquitos species, and whether or not West Nile virus is present in the cohort.

A.1.1 Main dataset
These test results are organized in such a way that when the number of mosquitos

exceed 50, they are split into another record (another row in the dataset), such that the
number of mosquitos are capped at 50.

The location of the traps are described by the block number and street name. For
convenience, these attributes are mapped into Longitude and Latitude in the dataset.
Please note that these are derived locations. For example, Block=79, and Street= "W
FOSTER AVE" gives us an approximate address of "7900 W FOSTER AVE, Chicago,
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IL", which translates to (41.974089,-87.824812) on the map.
Some traps are "satellite traps". These are traps that are set up near (usually within

6 blocks) an established trap to enhance surveillance efforts. Satellite traps are postfixed
with letters. For example, T220A is a satellite trap to T220.

Please note that not all the locations are tested at all times. Also, records exist only
when a particular species of mosquitos is found at a certain trap at a certain time. In
the test set, all combinations/permutations of possible predictions are asked and are only
scoring the observed ones.

A.1.2 Spray Data
The City of Chicago also does spraying to kill mosquitos. GIS data is given for their

spray efforts in 2011 and 2013. Spraying can reduce the number of mosquitos in the area,
and therefore might eliminate the appearance of West Nile virus.

A.1.3 Weather Data
It is believed that hot and dry conditions are more favorable for West Nile virus than

cold and wet. The dataset is provided from NOAA of the weather conditions of 2007 to
2014, during the months of the tests.

Station 1: CHICAGO O’HARE INTERNATIONAL AIRPORT Lat: 41.995 Lon: -
87.933 Elev: 662 ft. above sea level Station 2: CHICAGO MIDWAY INTL ARPT Lat:
41.786 Lon: -87.752 Elev: 612 ft. above sea level

A.1.4 Map Data
The map files mapdata_copyright_openstreetmap_contributors.rds and mapdata_copyright_openstreetmap_contributors.txt

are from Open Streetmap and are primarily provided for use in visualizations. Open
Streetmap are allowed to use in the models.

Here’s an example using mapdata_copyright_openstreetmap_contributors.rds, and
here’s one using mapdata_copyright_openstreetmap_contributors.txt.

A.1.5 File descriptions
train.csv, test.csv - the training and test set of the main dataset. The training set

consists of data from 2007, 2009, 2011, and 2013, while in the test set you are requested
to predict the test results for 2008, 2010, 2012, and 2014.

• Id: the id of the record

• Date: date that the WNV test is performed
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• Address: approximate address of the location of trap. This is used to send to the
GeoCoder.

• Species: the species of mosquitos

• Block: block number of address

• Street: street name

• Trap: Id of the trap

• AddressNumberAndStreet: approximate address returned from GeoCoder

• Latitude, Longitude: Latitude and Longitude returned from GeoCoder

• AddressAccuracy: accuracy returned from GeoCoder

• NumMosquitos: number of mosquitoes caught in this trap

• WnvPresent: whether West Nile Virus was present in these mosquitos. 1 means
WNV is present, and 0 means not present.

spray.csv - GIS data of spraying efforts in 2011 and 2013

• Date, Time: the date and time of the spray

• Latitude, Longitude: the Latitude and Longitude of the spray

weather.csv - weather data from 2007 to 2014. Column descriptions in noaa_weather_qclcd_documentation.pdf.
sampleSubmission.csv - a sample submission file in the correct format
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IoT Platforms and SDKs
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