
UCSF
UC San Francisco Previously Published Works

Title

Animal Models and Their Role in Imaging-Assisted Co-Clinical Trials

Permalink

https://escholarship.org/uc/item/18c8k17c

Journal

Tomography, 9(2)

ISSN

2379-1381

Authors

Peehl, Donna M
Badea, Cristian T
Chenevert, Thomas L
et al.

Publication Date

2023

DOI

10.3390/tomography9020053
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/18c8k17c
https://escholarship.org/uc/item/18c8k17c#author
https://escholarship.org
http://www.cdlib.org/


Citation: Peehl, D.M.; Badea, C.T.;

Chenevert, T.L.; Daldrup-Link, H.E.;

Ding, L.; Dobrolecki, L.E.; Houghton,

A.M.; Kinahan, P.E.; Kurhanewicz, J.;

Lewis, M.T.; et al. Animal Models

and Their Role in Imaging-Assisted

Co-Clinical Trials. Tomography 2023, 9,

657–680. https://doi.org/10.3390/

tomography9020053

Academic Editors: Mami Iima

and Emilio Quaia

Received: 26 January 2023

Revised: 8 March 2023

Accepted: 8 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Animal Models and Their Role in Imaging-Assisted Co-Clinical Trials
Donna M. Peehl 1,*, Cristian T. Badea 2, Thomas L. Chenevert 3 , Heike E. Daldrup-Link 4, Li Ding 5,
Lacey E. Dobrolecki 6, A. McGarry Houghton 7, Paul E. Kinahan 8, John Kurhanewicz 1 , Michael T. Lewis 9 ,
Shunqiang Li 5, Gary D. Luker 3,10 , Cynthia X. Ma 5 , H. Charles Manning 11, Yvonne M. Mowery 12,13 ,
Peter J. O’Dwyer 14, Robia G. Pautler 15 , Mark A. Rosen 14,16, Raheleh Roudi 4 , Brian D. Ross 3,17 ,
Kooresh I. Shoghi 18, Renuka Sriram 1 , Moshe Talpaz 19,20, Richard L. Wahl 18 and Rong Zhou 14,16

1 Department of Radiology and Biomedical Imaging, University of California San Francisco,
San Francisco, CA 94158, USA; john.kurhanewicz@ucsf.edu (J.K.); renuka.sriram@ucsf.edu (R.S.)

2 Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA;
cristian.badea@duke.edu

3 Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine,
Ann Arbor, MI 48109, USA; tlchenev@umich.edu (T.L.C.); gluker@umich.edu (G.D.L.);
bdross@umich.edu (B.D.R.)

4 Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University,
Stanford, CA 94305, USA; heiked@stanford.edu (H.E.D.-L.); roudi@stanford.edu (R.R.)

5 Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
lding@genome.wustl.edu (L.D.); shunqiangli@wustl.edu (S.L.); cynthiaxma@wustl.edu (C.X.M.)

6 Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; dobrolec@bcm.edu
7 Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; houghton@fredhutch.org
8 Department of Radiology, University of Washington, Seattle, WA 98105, USA; kinahan@uw.edu
9 Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine,

Houston, TX 77030, USA; mtlewis@bcm.edu
10 Department of Microbiology and Immunology, University of Michigan School of Medicine,

Ann Arbor, MI 48109, USA
11 Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center,

Houston, TX 77030, USA; hcmanning@mdanderson.org
12 Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708, USA;

yvonne.mowery@duke.edu
13 Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine,

Durham, NC 27708, USA
14 Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA;

peter.odwyer@uphs.upenn.edu (P.J.O.); mark.rosen@pennmedicine.upenn.edu (M.A.R.);
rongzhou@upenn.edu (R.Z.)

15 Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA;
rpautler@bcm.edu

16 Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
17 Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
18 Mallinckrodt Institute of Radiology (MIR), Washington University School of Medicine,

St. Louis, MO 63110, USA; shoghik@wustl.edu (K.I.S.); rwahl@wustl.edu (R.L.W.)
19 Division of Hematology/Oncology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA;

mtalpaz@med.umich.edu
20 Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
* Correspondence: donna.peehl@ucsf.edu

Abstract: The availability of high-fidelity animal models for oncology research has grown enormously
in recent years, enabling preclinical studies relevant to prevention, diagnosis, and treatment of cancer
to be undertaken. This has led to increased opportunities to conduct co-clinical trials, which are
studies on patients that are carried out parallel to or sequentially with animal models of cancer
that mirror the biology of the patients’ tumors. Patient-derived xenografts (PDX) and genetically
engineered mouse models (GEMM) are considered to be the models that best represent human
disease and have high translational value. Notably, one element of co-clinical trials that still needs
significant optimization is quantitative imaging. The National Cancer Institute has organized a
Co-Clinical Imaging Resource Program (CIRP) network to establish best practices for co-clinical
imaging and to optimize translational quantitative imaging methodologies. This overview describes
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the ten co-clinical trials of investigators from eleven institutions who are currently supported by
the CIRP initiative and are members of the Animal Models and Co-clinical Trials (AMCT) Working
Group. Each team describes their corresponding clinical trial, type of cancer targeted, rationale for
choice of animal models, therapy, and imaging modalities. The strengths and weaknesses of the
co-clinical trial design and the challenges encountered are considered. The rich research resources
generated by the members of the AMCT Working Group will benefit the broad research community
and improve the quality and translational impact of imaging in co-clinical trials.

Keywords: co-clinical trials; animal models; imaging; prostate cancer; sarcoma; colorectal cancer;
osteosarcoma; pancreatic cancer; myelofibrosis; breast cancer; lung cancer

1. Introduction

The Co-clinical Imaging Research Resource Program (CIRP) of the National Cancer
Institute (NCI) focuses on the optimization and dissemination of quantitative imaging
methods and protocols employing genetically engineered mouse models (GEMM) and
patient-derived xenografts (PDX) to improve co-clinical precision medicine research [1]. The
CIRP network includes ten research resources from nine teams at Washington University
St. Louis, Duke University, University of Texas’s MD Anderson Cancer Center (MDACC)
(originally at Vanderbilt University), University of Pennsylvania (Penn), Baylor College
of Medicine/University of Texas Austin (UT Austin)/Stanford University, University
of Michigan, University of California, San Francisco (UCSF), Stanford University, and
University of Washington/Fred Hutchinson Cancer Center. Investigators from each team
participate in working groups (WGs)—Animal Models and Co-clinical Trials (AMCT),
Imaging Acquisition and Data Process (IADP), and Informatics and Outreach (IMOR)—to
address common issues across the board concerning quantitative imaging. The mission of
the AMCT WG is to optimize murine models of cancer to mimic the biology and response
to treatment of human malignancies. The group aims to reach a consensus regarding best
practices for employing animal models in co-clinical trials with preclinical quantitative
imaging and to generate resources that facilitate successful implementation of reproducible
animal models in co-clinical studies. The AMCT WG considers the current practices,
strengths, and challenges of animal models used for co-clinical studies versus human
clinical trials.

The members of the AMCT WG possess a wealth of experience in applying a multi-
tude of imaging technologies to diverse animal models treated using a variety of therapies.
Cancers targeted include triple-negative breast cancer, estrogen receptor-positive breast
cancer, small cell neuroendocrine prostate cancer, osteosarcomas, high-risk localized soft
tissue sarcoma of the extremity, colorectal cancer, pancreatic ductal adenocarcinoma, and
non-small cell lung cancer and myelofibrosis. Murine hosts of PDX include SCID/beige,
athymic nude, and NOD scid gamma (NSG) immunocompromised mice, and immunocom-
petent Balb/c, C57BL/6J and 129/SvJae mice are used for GEMM and murine tumors. Sites
of tumors targeted for therapy and imaging include the orthotopic mammary fat pad, bone
and muscle, and metastatic sites of the bone and liver. The biological fidelity of models has
been confirmed by characteristics such as histologic appearance, genomics, transcriptomics,
proteomics, metabolomics, and clinical progression (i.e., development of metastases). Treat-
ments utilized in the co-clinical trials range from standard chemo- and immuno-therapies
(platinum-based drugs, methotrexate, anthracyclines, taxanes, anti-PD-1 or PD-L1 antibod-
ies), targeted therapies (anti-EGFR antibody panitumumab), hormonal therapy, surgery,
and radiotherapy, to a novel CD47 monoclonal antibody, glutaminase inhibition, the JAK2
inhibitor ruxolitinib, a vitamin D receptor ligand, the CDK4/6 inhibitor abemaciclib, and
an inhibitor of CXCL1/2. Endpoints selected for the co-clinical trial include tumor growth
inhibition, local recurrence-free survival, metastasis-free survival, and disease-free survival.
Imaging technologies include ultrasound, micro-computed tomography (CT), positron
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emission tomography (PET), magnetic resonance imaging (MRI), and hyperpolarized 13C
MRI.

An overview of the co-clinical studies in the CIRP network is provided in Table 1.
In the following sections, members of the CIRP AMCT WG describe their approaches to
conducting co-clinical studies incorporating quantitative imaging. The clinical trial and
endpoints, rationale for selection of animal model, selected therapy, imaging modalities,
and strengths and weaknesses of the co-clinical trial design are considered by each member.

Table 1. Overview of projects in the AMCT WG of the CIRP network.

Institution Cancer/Disease Model Site Disease
Development Therapy Imaging

Baylor/UT
Austin/Stanford

Triple-negative
breast cancer PDX Orthotopic 2–6 weeks Chemotherapy mpMRI

Duke Soft tissue
sarcoma GEMM Orthotopic Median 54 days

Immunotherapy
Radiation
Surgery

mpMRI
CT

MDACC Colorectal cancer PDX Subcutaneous 3 weeks Targeted therapy PET

Stanford Osteosarcoma xenografts Orthotopic 2–3 weeks Immunotherapy T2-weighted
MRI

UCSF
Small cell

neuroendocrine
prostate cancer

PDX Bone, liver 1–4.5 months to
reach 0.3 cc Chemotherapy HP MRI,

mpMRI

U Mich Myelofibrosis GEMM Orthotopic 21 days Targeted therapy mpMRI

U Penn Pancreatic ductal
adenocarcinoma GEMM Orthotopic 17–19 weeks

Chemoimmuno&
stromal-

targeted therapy
mpMRI

U Wash Non-small cell
lung cancer GEMM Orthotopic 20–30 weeks Immunotherapy PET/CT

WUSTL Triple-negative
breast cancer PDX Orthotopic 4 weeks–6

months Chemotherapy PET/MRI

WUSTL ER+ breast cancer PDX Orthotopic ~3–4 months Endocrine therapy
Targeted therapy PET

2. Co-Clinical Trials
2.1. The UCSF Co-Clinical Quantitative Imaging of Small Cell Neuroendocrine Prostate Cancer
Using Hyperpolarized 13C MRI

The co-clinical study at UCSF focuses on small cell neuroendocrine prostate cancer
(SCNC), a lethal variant of metastatic castration-resistant prostate cancer (mCRPC) that is
becoming increasingly prevalent in the era of treatment with second-generation androgen
signaling inhibitors (ASI) [2]. While lymph nodes are the most common sites for metastases,
bone and liver metastases are more lethal. At these sites, SCNC may exist alone or admixed
with the more common adenocarcinoma type of mCRPC. The project uses three PDX—
LuCaP 93, LTL352, and LTL610—with genetic, transcriptomic, and immunohistologic
features characteristic of SCNC [3,4]. These PDX are propagated in the tibia and liver of
male NSG mice to mimic the microenvironment of bone and liver metastases.

The corresponding clinical study at UCSF (ClinicalTrials.gov ID: NCT04346225) aims
to assess the response of SCNC to standard-of-care carboplatin chemotherapy using hy-
perpolarized (HP) [1-13C]pyruvate MRI. Patients who have mCRPC and prior progression
on ASI undergo standard-of-care cross-sectional imaging of the abdomen/pelvis using
either CT or MRI to guide the selection of a target lesion. Following baseline HP 13C MRI,
patients undergo paired CT image-guided percutaneous core needle biopsies of metastases
within 14 days to confirm the presence of SCNC and are given carboplatin. Consistent with

ClinicalTrials.gov
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standard clinical practice, the patients undergo re-staging with cross-sectional imaging
of the abdomen/pelvis every 8 weeks thereafter to determine tumor response (defined
as >30% reduction in longest diameter of target lesion). Patients undergo follow-up HP
13C MRI after 1 cycle of treatment (carboplatin area under the curve (AUC) 5 through
intravenous (IV) line every 3 weeks) to investigate the reduction in the HP 13C MRI metric
(apparent rate of conversion of [1-13C]pyruvate to [1-13C]lactate, kPL) as an early marker
of response to chemotherapy. The multiparametric (mp) 1H MRI/dynamic HP 13C MRI
protocol used includes T1- and T2-weighted anatomic, diffusion weighted, and dynamic
contrast-enhanced (DCE) imaging and 2D dynamic HP [1-13C]pyruvate MRI for both
clinical and preclinical protocols.

The co-clinical trial closely mimics the clinical trial, with baseline imaging and sub-
sequent post-therapy imaging after one cycle (Figure 1). In patients, administration of
carboplatin is based on the AUC of concentration-versus-time [5]. Consequently, the dose
used in the clinical trial of AUC 5 through IV every 3 weeks corresponds to a maximum
dose of 75 mg of carboplatin. Operating under the same constraint of a similar AUC and
extrapolating from the LD10 in mice of 495 mg/m2 translates to 9 mg maximum dose/week
for mice [6]. Considering the differences in tumor growth rate between men (doubling
time of ~90 days) [7] and mice (~20 days in the PDX), the dose would be ~66 mg/kg/week
for the co-clinical study. Based on preliminary studies with the PDX, this dose should
yield a significant difference in tumor growth rate between control and treated groups
and is well within the range of doses found in the literature (40–90 mg/kg/week) for
murine studies [8]. Neither the clinical nor preclinical trial includes relapse/recurrence
after treatment as an outcome variable.
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Figure 1. The UCSF co-clinical project schema. The project focuses on assessing the response
of SCNC to standard-of-care platinum-based chemotherapy using HP [1-13C]pyruvate MRI. The
co-clinical project uses three established SCNC PDX that are propagated in the murine kidney,
digested into single cells, and inoculated in the murine tibia and liver to match the metastatic
SCNC patient population under study in the clinical trial. Upon reaching a volume of ~0.3 cc,
assessed by MRI, tumors are characterized by baseline dynamic HP [1-13C]pyruvate MRI and mp-
MRI. Following one cycle of treatment with carboplatin or placebo, tumors are again evaluated by
combined dynamic HP [1-13C]pyruvate MRI and mp-MRI to investigate the reduction in the HP
13C MRI metric (apparent rate of conversion of [1-13C]pyruvate to [1-13C]lactate, kPL) as an early
marker of response to chemotherapy. As a part of both clinical and pre-clinical protocols, kPL maps
are overlaid on the corresponding T2 weighted anatomic images and correlated with changes in ADC
images and tumor growth rate with treatment.
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The preclinical trial provides several advantages compared to the clinical study, in-
cluding a vehicle-treated control, the standardization of the initial volume of tumors, and
the ability to image mice more frequently than patients to quantitatively measure tumor
response over time. Importantly, the study permits the reverse engineering of clinical
acquisition and processing protocols for the development and optimization of associated
preclinical protocols. The SCNC PDX have a more homogeneous phenotype compared
to the mixed adenocarcinoma/SCNC and/or other variants often observed in mCRPC
patients, which may be advantageous for preclinical studies but is not completely repre-
sentative of the clinical presentation. The implantation of PDX cells into the bone or liver
does not capture the metastatic process but does enable more clinically relevant studies
on the treatment of SCNC than models involving the implantation of non-human cells or
immortalized cell lines at sites that have significantly different microenvironments, such
as the murine flank. Organ-specific prostate cancer responses have been observed in both
clinical and preclinical studies [9–12], emphasizing the importance of the site of implan-
tation in co-clinical studies. The absence of an immune microenvironment in NSG mice
could impact both therapeutic response and imaging parameters. Cardiac and respiratory
motion has not been an issue in studying SCNC bone metastases. However, respiratory
motion can be an issue for studies on liver metastases. We are currently testing a very fast
2D Dynamic HP 13C Spectral–Spatial (SPSP) EPI acquisition used clinically and comparing
it with standard 2D Dynamic HP 13C chemical shift imaging to evaluate the impact of
motion/respiration in test–retest studies.

2.2. The Duke Preclinical Research Resources for Quantitative Imaging Biomarkers

The Duke co-clinical study mirrors an ongoing multi-institutional, randomized phase
II clinical trial (ClinicalTrials.gov ID: NCT03092323) investigating whether the addition of
neoadjuvant and adjuvant pembrolizumab, a monoclonal antibody targeting programmed
cell death protein-1 (PD-1), to preoperative radiotherapy (RT) and surgical resection im-
proves disease-free survival compared to neoadjuvant RT (50 Gy in 25 fractions) and
surgery for patients with high-risk soft tissue sarcoma of the extremity (undifferentiated
pleomorphic sarcoma [UPS] or dedifferentiated/pleomorphic liposarcoma [LPS]) [13]. Clin-
ical and preclinical imaging to evaluate tumor response and monitor for metastatic disease
involve MRI of the primary sarcoma and serial chest CT to evaluate for lung metastases.

To mimic gradual sarcoma development under immune surveillance and the frequent
development of lung metastases in sarcoma patients, the preclinical arm of the co-clinical
trial utilized a carcinogen-induced GEMM of sarcoma [14] that develops spontaneous lung
metastases in immunocompetent mice (Figure 2). To recapitulate the genetic complexity,
variable mutational load, and frequent mutation of TP53 observed in human UPS and
dedifferentiated/pleomorphic LPS [15], primary sarcomas were generated in wild-type
129/SvJae mice aged 6 to 10 weeks through the injection of adenovirus-expressing Cas9
endonuclease and sgRNA-targeting Trp53, followed by injection of 3-methylcholanthrene
(MCA) into the gastrocnemius muscle (p53/MCA model). Tumors (detected by palpation)
developed in the hind limb 7–12 weeks after induction. Primary p53/MCA sarcomas
resemble human UPS in both histologic appearance and gene expression profile [16].
Without treatment, mice were euthanized within 3 weeks of tumor detection due to rapid
tumor growth. To allow time for metastatic disease development, amputation of the
tumor-bearing hind limb achieved primary tumor control.

Sarcoma-bearing mice were randomized into four treatment groups when tumors
reached 75–125 mm3: isotype control antibody (ISO), anti-PD-1 antibody, ISO + 20 Gy
(ISO + RT), and anti-PD-1 + 20 Gy (anti-PD-1 + RT). Anti-PD-1 or the isotype control
antibody (200 µg) was administered by intraperitoneal injection on Day 0 (pre-amputation),
Day 7 (day of amputation), and Day 14 (post-amputation). Sarcomas were treated with
sham RT or 20 Gy (single fraction) on Day 0. Due to rapid p53/MCA tumor growth, the
fractionated 5-week RT regimen and the every 3-week dosing of 200 mg pembrolizumab
utilized in the clinical trial was not feasible. Primary sarcomas were imaged using micro-

ClinicalTrials.gov
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MRI, and respiratory-gated micro-CT was used to detect lung metastases with high spatial
resolution [17]. Compared to surgery with isotype control, the combination of anti-PD-1,
RT, and surgery improved local recurrence-free survival and disease-free survival, but
not metastasis-free survival [18]. Mice treated with RT and surgery, but not anti-PD-1
and surgery, showed significantly improved local recurrence-free survival and metastasis-
free survival over surgery alone. A challenge was the low rate of metastases (~12%)
in mice treated with isotype control and surgery, leading to an underpowered study
for the metastasis-free survival endpoint despite > 60 mice/group. To address this, we
are evaluating alternative high-mutational load primary sarcoma models with greater
propensity for lung metastases for a follow-up study.
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For patients enrolled in the clinical trial SU2C-SARC032, pre-treatment tumor samples
are undergoing both whole exome sequencing (with matched normal tissue) and RNA
sequencing. The surgical resection specimen obtained after neoadjuvant radiation (with
or without neoadjuvant anti-PD-1 therapy) is also undergoing RNA sequencing. While
some patients have developed new metastases after undergoing sequencing, these results
remain blinded. For the murine co-clinical trial, a subset of sarcoma samples obtained from
hind limb amputation after neoadjuvant radiation with or without neoadjuvant anti-PD-1
therapy underwent whole exome sequencing. The mice received one additional dose of
anti-PD-1 antibody or isotype control after amputation. Tumor samples were taken from
mice who developed local recurrences after amputation of the tumor-bearing hind limb,
and the recurrent tumor also underwent whole exome sequencing. These mice did not
develop new metastases after genetic sequencing.

2.3. The MDACC PET Imaging Resource to Enhance Delivery of Individualized Cancer
Therapeutics (PREDICT) for Wild-Type KRAS Colorectal Cancer

The co-clinical study at MDACC utilizes PET imaging and radiotracers of glutamine
metabolism to assess the response of individualized cancer therapeutics for wild-type (WT)
KRAS colorectal cancer (CRC) patients.

Approximately 50% of CRC are known to have a mutated KRAS gene, indicating that
the remaining 50% of CRC patients might respond to anti-epidermal growth factor receptor
(EGFR)-targeted therapy [19,20]. However, 40–60% of WT KRAS tumors with or without
BRAF mutations, which are usually mutually exclusive with KRAS mutations, represent
5–15% of advanced CRC [21] and do not respond to such therapy [20]. Even though
BRAF mutations may confer resistance to anti-EGFR therapy, the role of KRAS and BRAF
mutations in CRC survival and response to standard chemotherapy regimens remains
inconclusive [22,23]. To overcome the unmet needs, methods to guide the selection of the
appropriate treatment for patients including treatment with EGFR monoclonal antibodies
(e.g., mAbs; cetuximab and panitumumab) and novel therapeutic cocktails are needed.

The mitogen-activated protein kinase (MAPK) pathway, one of the most frequently
deregulated signaling cascades in CRC, follows the ligand-mediated activation of EGFR
and requires glutamine; furthermore, glutamine can induce MAPK-mediated proliferation
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in an EGFR-independent manner [24,25]. Indeed, we evaluated the improved therapeutic
efficacy of combined blockade of EGFR and glutamine metabolism in preclinical CRC
models [25]. We also demonstrated the superiority of PET imaging with radiotracers of
glutamine metabolism for monitoring tumors rather than utilizing 18F-fluorodeoxyglucose
(FDG) PET preclinically [26] and clinically [27,28].

Currently, we are conducting two clinical trials using PET imaging with 11C-Glutamine
and (S)-4-(3-18F-Fluoropropyl)-L-glutamic acid (18F-FSPG) in WT KRAS CRC. In collabora-
tion with the Vanderbilt University Medical Center, we are conducting a Phase II clinical
trial combining an anti-EGFR antibody, panitumumab, with a glutaminase (GLS1) inhibitor,
CB-839 (ClinicalTrials.gov ID: NCT03263429). Patients participating in this trial receive
glutaminase inhibitor CB-839 orally twice a day (PO BID [29]) on Days 1–28, panitumumab
IV over 60–90 min on Days 1 and 15, and irinotecan hydrochloride IV over 90 min on Day 1
and 15 (Phase I only). The treatment course repeats every 28 days in the absence of disease
progression or unacceptable toxicity. The tumor lesions are monitored by 11C-Glutamine
and 18F-FSPG PET/CT imaging pre-treatment and up to 8 weeks post-treatment. The
baseline and post-treatment PET imaging provides a measure of glutamine avidity of the
tumors and is evaluated as a predictor of treatment response. Additionally, the imaging
data will be correlated to genetic (RNA-seq) and immunohistochemistry (IHC) data. In the
second study, a Phase I clinical trial, baseline glutamine PET imaging with 11C-Glutamine
and 18F-FSPG is evaluated in patients with metastatic WT KRAS CRC undergoing treatment
with EGFR-targeted antibody therapy (ClinicalTrials.gov ID: NCT03275974). The goal is to
identify a predictive imaging biomarker of response which would guide therapy selection
for patients.

The preclinical trial uses avatar PDX athymic nude mouse models (Figure 3). Gene
sequencing is conducted in both patients and PDX prior to treatment. The mice are
treated with either vehicle or a combined regimen of CB-839 (200 mg/kg PO BID [29]) and
panitumumab (40 mg/kg every 72 h [30,31]) for 3 weeks, similar to the Phase I/II clinical
trial. Tumor volumes are measured manually by calipers every third day, and treatment
continues until either complete regression or tumor volume exceeds the Institutional
Guidelines for mouse health (1000-mm3), at which point mice will be sacrificed. The
preclinical PET/CT scans with 18F-4-fluoro-glutamine and 18F-FSPG are conducted pre-
and 1-week post-treatment. We are also using RNA-seq data from these PDX to develop
imaging-derived gene signatures associated with treatment response. These gene signatures
could provide rationale and guidance for the appropriate treatment selection with combined
blockade of EGFR and glutamine metabolism.
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2.4. Stanford University Co-Clinical Research for Imaging Tumor-Associated Macrophages

The overall goal of the project at Stanford University is to optimize and validate
preclinical and clinical quantitative imaging techniques for in vivo quantification of tumor
associated macrophages (TAM) in osteosarcomas. This goal will be accomplished by
optimizing and validating preclinical quantitative imaging methods for TAM imaging,
implementing the optimized methods in a co-clinical trial, and populating a web-accessible
research resource.

While the outcome of patients with localized bone sarcomas has significantly im-
proved over the last two decades, the overall survival of patients with metastatic disease
continues to be less than 30% [32–37]. Hence, new therapeutic targets are desperately
needed for patients with bone sarcomas. Important predictors of outcome for newly di-
agnosed bone sarcomas include patient age, tumor size, location, grade/histology, and
stage [38]. However, these parameters do not define specific biologic tumor characteristics
which could serve as targets for individualized therapies. TAMs have been recognized as
an independent predictor of tumor prognosis and a powerful target for novel immuno-
therapies. CD47 is a surface molecule on cancer cells that functions as a “don’t eat me”
signal for TAM by engaging signal-regulatory protein alpha (SIRPα), an inhibitory receptor
on macrophages [39,40]. CD47 mAbs inhibit the interaction between CD47 and SIRPα
and thereby activate TAM to phagocytose cancer cells [41–45]. Combining TAM-activating
immunotherapies with clinical standard chemotherapy in patients with osteosarcomas
is difficult because there are no clinically established biomarkers that can monitor TAM
responses in vivo. The Stanford team have developed a clinically available TAM imaging
test that relies on intravenous injection of the FDA-approved iron supplement ferumoxytol
(FerahemeTM) [46–49]. Ferumoxytol is composed of nanoparticles which are phagocytosed
by TAM and can be detected by MRI [50,51]. The purpose of this study is to optimize and
validate this preclinical and clinical quantitative imaging technique for in vivo quantifica-
tion of TAM in osteosarcomas.

The Stanford co-clinical trial design is outlined in Figure 4. The team investigates
mice with orthotopically implanted murine or human osteosarcomas and treats them
with CD47 mAb or IgG1 control antibody. The expression of CD47 was assessed in de-
identified osteosarcoma specimens from eight chemotherapy-naïve human patients, one de-
identified osteoma specimen, one de-identified normal bone specimen (Cooperative Human
Tissue Network), three human osteosarcoma cell lines (U-2 OS, Saos-2, and MNNG/HOS)
and a normal bone cell line (hFOB 1.19) by qPCR, using glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) as a control marker [50].
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Animals undergo MRI scans before and after treatment as well as before and after
undergoing intravenous infusion of ferumoxytol or Mega Pro iron oxide nanoparticles.
Doses of CD47 mAb and iron oxide nanoparticle are adjusted according to the weight of the
mouse or patient [50,51]. Ferumoxytol doses in mice are 30 mg Fe/kg, whereas in human
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patients, doses are 5 mg Fe/kg. Mice receive a higher dose due to faster biodistribution.
Mice bearing murine tumors are treated with CD47 mAb (clone MIAP301) at a dose of
10 mg/kg and mice bearing human tumors are treated with CD47 mAb (clone B6H12) at
a dose of 10 mg/kg on Days 1, 3, and 5. MRI is performed at various time points after
treatment using repeated T2 * (the decay of transverse magnetization seen with gradient-
echo sequences) mapping, which is followed by histopathological correlations of MRI
findings.

Results have shown stronger hypointense (dark) nanoparticle enhancement of intrati-
bial osteosarcomas after treatment with CD47 mAb compared with IgG1 control antibody.
The DT2 * enhancement, quantified as the difference between pre- and post-contrast
T2 *-values, was significantly higher in CD47 mAb-treated tumors compared to IgG1-
treated tumors (p = 0.03). In addition, the tumor DT2 * enhancement positively correlated
with the quantity of CD80 and inducible nitric oxide synthase (iNOS)-positive TAM on
the histology and the tumor size on post-treatment scans. Reproducibility studies are
ongoing to determine variables that might affect our quantitative measures. Preliminary
results demonstrated less than 10% inter- and intra-individual variations in quantitative
MRI measures of TAM. Important variables that affected quantitative T2 * mapping results
included magnetic field strength, tumor type, tumor size, and nanoparticle type, as well
as pulse sequence parameters and the approach for image analysis. Statistical analyses of
these variables are ongoing.

Meanwhile, the team started imaging studies of patients enrolled in a clinical trial
for the evaluation of the efficacy of CD47 mAb. The team obtained MRI scans before
CD47 mAb therapy, including a precontrast MRI scan on Day 1, intravenous infusion of
ferumoxytol at a dose of 5 mg Fe/kg, and a postcontrast scan at 24 h after intravenous
ferumoxytol infusion, using T2 *-weighted MR images. Before nanoparticle infusion, the
tumor tissue was hyperintense compared to adjacent muscle. After the intravenous infusion
of ferumoxytol, the tumor tissue became hypointense (dark), as expected based on results
from our preclinical studies. While the accrual of patients is ongoing, the imaging findings
will be correlated with the degree of tumor necrosis after tumor resection.

Next, the team developed a web-based server application with detailed records of both
individual images and experimental data relevant to our project, which includes a web-
based 3D/4D image viewer to easily and quickly view and evaluate images. The application
uses a data-driven, bottom-up approach to record each piece of data and its relationship to
specific experiments, studies, and projects. The original unstructured data collected from
various imaging modalities and related animal preparation experiments are annotated
and stored in a structured hierarchical database. Data can be managed, accessed, and
shared through either private or public web clients for better data security and accessibility.
The application also includes a robust image viewer and modular processing tools for
various computationally intensive and artificial intelligence (AI) applications. A centralized
distributed data storage is used for accessibility, scalability, security, and performance. The
application provides easy access to send images to a publicly accessible image repository
portal. Using this web portal, data sharing can be performed easily, provided the receiver
has authorized login credentials for the application. Users can choose to send their private
images to this image gallery for public viewing. Images in the public portal can be searched
for using search parameters, such as user info and date of acquisition, and by selected
keywords. Data sharing is fully controlled and protected by credentials accessible only to
authorized users. An integrated image viewer can be used to visualize one or more selected
images. The viewer features an easily navigable set of standard medical image viewing
tools, such as annotation and segmentation tools. The viewer is capable of loading and
overlaying multiple images in both 3D and 4D image formats, making it easy to view and
compare multiple related images simultaneously.

This quantitative imaging (QI) tool for TAM imaging is readily clinically translatable
and will provide important quantitative information about tumor response to cancer
immunotherapy, which will inform personalized treatment protocols. Therefore, this new
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QI tool test will have significant impact on clinical outcomes and enable broad applications
beyond the team’s immediate research focus.

2.5. Penn Quantitative MRI Resource for Pancreatic Cancer

The co-clinical trial of the University of Pennsylvania focuses on pancreatic ductal
adenocarcinoma (PDA), employs a GEMM in the preclinical arm, and enrolls resectable
PDA patients in the clinical trial (ClinicalTrials.gov ID: NCT03519308) (Figure 5). The dense
extracellular matrix (stroma) in PDA harbors a unique tumor microenvironment (TME)
that is immune suppressive and underlies a resistance of PDA to chemotherapy. Hence, the
treatment tested in the co-clinical trial includes a stromal-directed agent (vitamin D receptor
ligand) because earlier studies have shown that the activation of vitamin D receptors on
stromal cells using synthetic vitamin D such as Paricalcitol reprograms the dense stroma in
PDA, leading to decreased fibrosis, increased delivery of gemcitabine, and delayed tumor
growth in animal models [52]. The primary goal of the co-clinical trial is to test the utility
of diffusion-weighted (DW)-MRI- and dynamic contrast-enhanced (DCE)-MRI-derived QI
markers for detecting the effect of a stromal-directed agent combined with chemotherapy
on tumor progression and TME features such as microvascular perfusion and the extent
of fibrosis (e.g., collagen deposition). One important aspect of the co-clinical trial is to
develop motion-robust DW- and DCE-MRI methods since DW-MRI of mouse abdomen is
challenged by the corruption and artefacts induced by the high rate of respiratory motion,
which also causes blurs and suboptimal image quality in DCE-MRI of abdominal cancers.
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Figure 5. Co-clinical trial design for assessing MRI markers of tumor microenvironment changes
in pancreatic cancer in response to a stroma-directed drug combined with chemo and immune
checkpoint inhibitor.

Patients with resectable PDA are randomized into one of two arms: chemoimmunother-
apy (gemcitabine, cisplatin, nab-paclitaxel, and nivolumab), or chemoimmunotherapy plus
vitamin D receptor ligand, Paricalcitol. After two cycles of treatments, patients undergo sur-
gical resection of PDA and tumor specimens are examined by IHC. DW-MRI and DCE-MRI
are performed at baseline and after one cycle of treatment.

In GEMM, the initiation and progression of PDA are driven by pancreatic epithelial-
specific mutations of the KRAS oncogene and the TP53 tumor-suppressor gene (KrasG12D:
Trp53R172H:Pdx1-Cre), referred to as KPC, and resemble key features of human PDA in-
cluding a dense stroma [53,54]. KPC mice w bred at the Mouse Hospital of the Abramson
Cancer Center, University of Pennsylvania. KPC mice spontaneously developed premalig-
nant Pancreatic Intraepithelial Neoplastic (“PanIN”) lesions at 7–10 weeks of age, leading
to invasive PDAC at 17–19 weeks with high penetrance. Tumor screening was undertaken
via weekly abdominal palpations starting at 11 weeks of age, followed by ultrasound exam-
ination to estimate the tumor sizes. KPC mice (both sexes, 18–25 weeks old) with tumors of
sizes in the range of 70–130 mm3 confirmed by MRI were enrolled in the treatment study.

KPC mice are randomized and enrolled in one of four groups: (1) control (saline);
(2) chemotherapy only; (3) chemotherapy + Calcipotriol (a synthetic vitamin D for mice);
(4) chemotherapy + Calcipotriol + PD-L1 mAb, where chemotherapy is a combination of
three agents (gemcitabine/cisplatin/nab-paclitaxel administered at dose of 266/8/4 mg/kg),
PD-L1 antibody (200 µg/mouse), and Calcipotriol (60 µg/kg). Treatment and MRI study
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last for 2 weeks for the preclinical trial arm. Chemotherapeutic drugs are administered on
Day 0 and Day 7; calcipotriol on Monday to Friday skipping Saturday and Sunday; and
PD-L1 mAb twice a week. T2W, DW-, and DCE-MRI are applied on Day 0 (baseline) and
Day 7 followed by scheduled drug treatments, and finally, T2W and DW-MRI are applied on
Day 14 followed by euthanasia and the harvesting of tumor tissues for IHC and for single
cell RNA-seq.

Quantitative imaging biomarkers (QIB) including tumor size, apparent diffusion
coefficient (ADC), Ktrans, Ve, and T1 relaxation time of the tumor are obtained for the
co-clinical trial. We developed motion-resistant radial k-space sampling acquisition and
image reconstruction protocols [55,56]. Further optimization of these protocols has led to
respiratory motion-free DW and DCE images acquired from free-breathing mice without
the need for respiration gating [56,57]; a deep-learning method to accelerate the DW-MRI
acquisition is being developed. Tumor ADC and Ktrans maps are shown in Figure 6 and
capture the spatial heterogeneities of these features. With optimized protocols, we found
that the ADC and Kurtosis index, both derived from DW-MRI, can differentiate between
IPMN (intraductal papillary mucinous neoplasm) versus PDA, represented by respective
GEMM [57].

Tomography 2023, 9, FOR PEER REVIEW 12 
 

 

 
Figure 6. ADC maps (upper row) and Ktrans maps (bottom row) of PDA tumor from a KPC mouse. 
Parametric maps are overlaid on T2W images and displayed in pseudo color using the color bars on 
the right. Suitable phantoms for DW- and DCE-MRI are scanned with the mouse for quality control. 

Strengths of the co-clinical trial design include: (1) the neoadjuvant setting of the clin-
ical trial allows for mechanistic insights of the treatment by detailed IHC analyses; (2) 
GEMM captures the stromal and other key features of human PDA; (3) there are closely 
matched clinical and preclinical trial designs in treatment and endpoints, while animal 
studies include more groups to dissect the effect of chemo, immune and stromal treat-
ment; and (4) the co-clinical trial allows for the assessment of fibrosis and tumor immune 
microenvironment in both human subjects and in KPC mice. Weaknesses include the fact 
that resectable PDA accounts for only 20% of all PDA, and subtyping a biopsied tumor is 
required before enrollment, limiting the sample size of the clinical trial and impacting the 
statistical power. 

2.6. University of Michigan Quantitative Bone Marrow MRI in Myelofibrosis 
The University of Michigan co-clinical study centers on myelofibrosis (MF), a 

chronic, ultimately fatal hematologic cancer that arises either as a primary malignancy or 
secondary to other rare myeloproliferative neoplasms (MPNs), polycythemia vera (PV), 
or essential thrombocythemia (ET). Major driver mutations causing MPNs constitutively 
activate JAK2 kinase signaling in hematopoietic stem and progenitor cells (HSCs). Pa-
tients with primary or secondary MF commonly develop debilitating systemic inflamma-
tory symptoms, progressive fibrosis of bone marrow and other organs, and clonal prolif-
eration of HSCs in organs outside of bone marrow. These hallmark phenotypes distin-
guish MF from other MPNs. Treatment options for MF remain very limited. The U.S. Food 
and Drug Administration (FDA) has approved only three drugs for MF, which alleviate 
symptoms in ~50% of patients but do not eliminate malignant HSCs or reverse major or-
gan pathologies. Most of these patients discontinue treatment within three years because 
of side effects or drug resistance. 

Biopsy remains the current standard for analyzing bone marrow in patients. This 
technique has notable limitations, including sampling only a very small amount of bone 
marrow from one site (iliac crest) in a disease known to exhibit marked heterogeneity 
within bone marrow. In patients with advanced MF, biopsy may yield no diagnostic in-
formation, inflicting the pain of the procedure on a patient without any benefit. Imaging 
in clinical trials for MF has been restricted to quantifying changes in spleen volume, with 
a 35% reduction after six months of treatment being the standard for FDA approval of a 
therapy. Imaging has not been part of clinical management of patients with MF. The ob-
jective of this research is to develop quantitative imaging methods which can be validated 
for use in analyzing bone marrow pathology in MF, the major site of disease, in mouse 
models and human participants undergoing therapy. If the establishment of validated 
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Strengths of the co-clinical trial design include: (1) the neoadjuvant setting of the
clinical trial allows for mechanistic insights of the treatment by detailed IHC analyses;
(2) GEMM captures the stromal and other key features of human PDA; (3) there are
closely matched clinical and preclinical trial designs in treatment and endpoints, while
animal studies include more groups to dissect the effect of chemo, immune and stromal
treatment; and (4) the co-clinical trial allows for the assessment of fibrosis and tumor
immune microenvironment in both human subjects and in KPC mice. Weaknesses include
the fact that resectable PDA accounts for only 20% of all PDA, and subtyping a biopsied
tumor is required before enrollment, limiting the sample size of the clinical trial and
impacting the statistical power.

2.6. University of Michigan Quantitative Bone Marrow MRI in Myelofibrosis

The University of Michigan co-clinical study centers on myelofibrosis (MF), a chronic,
ultimately fatal hematologic cancer that arises either as a primary malignancy or secondary
to other rare myeloproliferative neoplasms (MPNs), polycythemia vera (PV), or essential
thrombocythemia (ET). Major driver mutations causing MPNs constitutively activate JAK2
kinase signaling in hematopoietic stem and progenitor cells (HSCs). Patients with primary
or secondary MF commonly develop debilitating systemic inflammatory symptoms, pro-
gressive fibrosis of bone marrow and other organs, and clonal proliferation of HSCs in
organs outside of bone marrow. These hallmark phenotypes distinguish MF from other
MPNs. Treatment options for MF remain very limited. The U.S. Food and Drug Adminis-
tration (FDA) has approved only three drugs for MF, which alleviate symptoms in ~50% of
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patients but do not eliminate malignant HSCs or reverse major organ pathologies. Most
of these patients discontinue treatment within three years because of side effects or drug
resistance.

Biopsy remains the current standard for analyzing bone marrow in patients. This
technique has notable limitations, including sampling only a very small amount of bone
marrow from one site (iliac crest) in a disease known to exhibit marked heterogeneity within
bone marrow. In patients with advanced MF, biopsy may yield no diagnostic information,
inflicting the pain of the procedure on a patient without any benefit. Imaging in clinical
trials for MF has been restricted to quantifying changes in spleen volume, with a 35%
reduction after six months of treatment being the standard for FDA approval of a therapy.
Imaging has not been part of clinical management of patients with MF. The objective of
this research is to develop quantitative imaging methods which can be validated for use
in analyzing bone marrow pathology in MF, the major site of disease, in mouse models
and human participants undergoing therapy. If the establishment of validated quantitative
imaging biomarkers is successful, we anticipate the establishment of a new paradigm for
staging MF patients and monitoring the response to therapy. Employing quantitative MRI
methods for the detection of stabilization or reversion of bone marrow toward a healthy
state would provide a new and important approach for clinical patient management.

The clinical study at the University of Michigan (ClinicalTrials.gov ID: NCT01973881)
is currently open and enrolling participants with MF who are beginning treatment with a
new drug. Patients typically undergo DNA sequencing for somatic mutations associated
with myelofibrosis. There is no repeat sequencing after therapy. Studies to date have fo-
cused on patients beginning treatment with the JAK2 inhibitor ruxolitinib dosed according
to the clinical judgement of the oncologist. MR imaging studies are conducted within one
month of therapy initiation and follow-up scans are acquired after 1, 3, and 6 months of
treatment. If a participant remains on the same therapy, they may opt to have additional
imaging studies at 12 and 24 months of treatment. For all imaging studies, measurement
of spleen volume is accomplished by anatomic imaging and bone marrow is monitored
using the following MRI parameters in the lumbar spine, pelvis, and proximal femurs:
(1) ADC for changes in cellularity; (2) magnetization transfer ratio (MTR) for extracellular
macromolecules such as reticulin and collagen fibrosis; and (3) proton density fat fraction
(PDFF) for amounts of fat and water (cells) content in the bone marrow. MTR images are
only acquired in the pelvis because of imaging time and energy (radiofrequency deposition)
constraints. MRI parameters are quantified to determine site-specific anatomic changes
over the course of therapy. In addition, imaging data are also evaluated for correlation
with multiple clinical metrics, including complete blood counts, biopsy, clinical symptom
score according to the Dynamic International Prognostic Scoring System (DIPSS), and
somatic mutations identified by targeted genomic sequencing. These data will enable the
determination of the extent of response to therapy that quantitative bone marrow MRI
metrics detect and the evaluation of discordance between effects of therapy on spleen
volume versus bone marrow changes.

Mouse models of MF consist of a bone marrow transplantation model to establish MF
in immunocompetent mice (Figure 7). In this model, HSCs from donor mice are transduced
with retroviruses expressing one of three major driver mutations for MF. Alternatively,
HSCs from mice genetically modified to encode a driver mutation for MF are also available.
Transplantation of HSCs into recipient Balb/c mice is accomplished, which reconstitutes the
bone marrow of sub-lethally irradiated mice and then proliferates to produce characteristic
disease phenotypes of MF. This co-clinical trial uses the same imaging and data analysis
methods as the clinical study, although imaging of mouse bone marrow in mice is focused
only on the tibia due to the use of an rf cryo-probe to improve the signal-to-noise ratio
and resolution [58]. Mice have haematopoietically active bone marrow throughout the
appendicular skeleton, so this approach images bone marrow that changes dynamically
during disease progression and therapy. As an example, baseline images are obtained
prior to the initiation of therapy with ruxolitinib, which is administered twice daily by oral
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gavage [59]. Imaging of mice continues at approximately 7–10-day intervals throughout
therapy. Intervals between imaging studies are shorter because of the accelerated time
course of disease progression in the bone marrow transplantation model of MF. The mouse
model allows for testing and optimization of MRI methods for translation to human studies.
The availability of mouse histology sections from the entire tibia of mice also allows for
validation of imaging findings at desired time points, enabling validation of defined MRI
metrics. Our work to date shows a high (0.9 or greater) correlation between MRI metrics and
histologic features of the disease, establishing that MRI can detect the extent, magnitude, and
heterogeneity of bone marrow abnormalities in MF, including treatment reversal. Our group
has also validated the reproducibility of MRI metrics through test-retest studies. Overall,
the ability to integrate quantitative MRI biomarkers into treatment studies in our mouse
model of MF provides for a unique, clinically translatable approach to testing established
and new therapeutic interventions for improving the outcomes of patients with MF.
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2.7. Washington University St. Louis Co-Clinical Quantitative Imaging of Breast Cancer to
Predict Response to Therapy

Washington University (WU) School of Medicine in St. Louis has two projects focused
on predicting response to therapy in breast cancer (BCa) under the umbrella of the Wash-
ington University Co-Clinical Imaging Research Resource (WU-C2IR2). The first project
focused on predicting response to carboplatin/docetaxel therapy in triple-negative breast
cancer (TNBC), while the new project is focused on predicting response to endocrine ther-
apy (ET) in advanced estrogen receptor-positive (ER+) BCa. The resource generates PDX
matched to the patient’s tumor subtype and PDX generated from patient-specific tumor
biopsies/engraftments. The use of PDX enables bi-directional translation as a test-bed for
both imaging and therapeutic strategies, mindful of the limitations of PDX as summarized
previously [1]. QI algorithms are harmonized, optimized, and validated in both settings
and implemented in the co-clinical imaging trial to assess/predict response to therapy
in BCa. Genoproteomic discovery follows both the clinical and preclinical protocols to
correlate imaging biomarkers to genomic and proteomic biomarkers.
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TNBC is a highly heterogeneous and aggressive tumor characterized by poor out-
come and higher relapse rates compared to other subtypes of BCa. Pathologic complete
response (pCR) is often used as an important endpoint in the treatment of TNBC follow-
ing neoadjuvant chemotherapy (NAC) as it is often associated with favorable long-term
outcome. Therefore, it is critical to identify patients who will respond to NAC, and thus
avoid the use of ineffective treatments in nonresponding patients with an opportunity to
devise adaptive treatment strategies. Patients with newly diagnosed clinical stage II or III
BCa with complete surgical excision of the cancer after NAC were recruited to the now
completed clinical trial (ClinicalTrials.gov ID: NCT02124902). In clinical studies, docetaxel
was administered intravenously at a dose of 75 mg/m2 over 60 min on Day 1 of each
21-day cycle. Carboplatin AUC 6 was administered intravenously over 30 min on Day 1
of each 21-day cycle immediately following docetaxel infusion. A total of six cycles were
given. In preclinical studies, PDX were treated with combined docetaxel (20 mg/kg) and
carboplatin (50 mg/kg) weekly for six weeks, during which period the tumor growth
profile was monitored. A multi-parametric PET/MR imaging protocol including FDG-PET,
T1w–T2w, DWI- and DCE-MRI was implemented in the clinical setting to predict response
to therapy. Subjects were imaged at baseline (B) and again at the conclusion of the first cycle
of NAC, and before starting the second cycle (Figure 8A). The preclinical imaging protocol
was similar to the clinical imaging protocol, in that PDX were imaged on Days 5 and 12
post-baseline imaging (Figure 8B). We generated a panel of six PDX based on the TNBC
PAM50 subtyping [60] matching patients’ tumor subtypes. These six TNBC PDX subtypes
were used as a platform to optimize quantitative preclinical imaging pipelines. Thus far,
we have optimized FDG-PET quantification in PDX to predict response to therapy in the
co-clinical trial; characterized the impact of diet/animal stress on FDG-PET QI metrics in
PDX [61]; optimized the location of orthotopic PDX tumor in the fourth mammary fat pad
and developed a 1-h multi-parametric MRI protocol to suppress respiratory motion [62];
assessed and harmonized the sensitivity of radiomic features to tumor volume, image
noise and resolution in preclinical PDX and clinical T1-weighted and T2-weighted MR
imaging [63]; developed and validated an automated segmentation pipeline of PDX tumors
in MR imaging for high throughput QI analytics [64]; optimized a FDG-PET radiomic
signature to predict response to therapy in PDX; and implemented the optimized signature
across the co-clinical trial to predict response to therapy [65].
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As noted above, the new project is focused on predicting response to ET in advanced
ER+ BCa. Approximately 70% of BCa are ER+ and human epidermal growth factor receptor
2-negative (HER2-) [66]. ET reduces recurrence risk and improves survival for many in
this group. However, despite standard of care (SoC) adjuvant ET, over 20% of patients
with ER+/HER2-BCa experience metastatic recurrence in the years to come, and virtu-
ally all patients with metastatic disease eventually experience disease progression on ET
due to intrinsic or acquired resistance mechanisms. There are currently no biomarkers
that reliably identify which of these advanced BCa patients will benefit from these ET-
based approaches so that chemotherapy could be avoided or delayed. The progesterone
receptor (PgR) gene is highly regulated by ER at the RNA and protein level, and thus
expression of PgR in ER+ BCa would be indicative of the functional status of ER and the
associated predictive benefit from ET. In the new project, we will develop co-clinical quan-
titative PET/CT imaging strategies to predict response to ET in patients with ER+/HER2−
metastatic BCa. We will optimize, validate, and implement 18F-fluoroestradiol (FES)-PET
and 18F-fluorofuranylnorprogesterone (FFNP)-PET QI strategies to assess the heterogeneity
of hormone receptor status as predictors of response to ET in a panel of subtype-matched
PDX to assess and compare the efficacy of FES-PET- and FFNP-PET-optimized QI metrics
to predict response to therapy, and to correlate with mutation status and gene signatures
of ER and PgR response to therapy. The co-clinical trial will interface with a recently
funded phase II multicenter translational BCa research consortium (TBCRC) trial (PI: Dr.
Farrokh Dehdashti; Co-PI: Dr. Hannah Linden) sponsored by the breast cancer research
foundation (BCRF) to assess the accuracy of FFNP-PET in predicting response to abe-
maciclib, a CDK4/6i, plus ET in patients with ER+/HER2- metastatic BCa (Figure 9A).
Patients will receive abemaciclib at a dose of 150 mg by mouth twice daily throughout every
28-day cycle. In the preclinical setting, PDX will be randomized to receive vehicle or study
drug therapy with fulvestrant [5 mg intramuscular (IM) × 1 each week] or abemaciclib
(50 mg/kg PO daily) or the combination of fulvestrant and abemaciclib (Figure 9B). Biop-
sies provided through multicenter trial and tumors from the PDX will provide high-value,
multi-scale analytic data, including whole exome sequencing (WES), RNA Seq, spatial tran-
scriptomics, circulating tumor (ctDNA), pathology, and multifunctional CODetection by
indEXing (CODEX) to integrate with QI and to provide mechanistic insight into differences
in response to therapy.
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Overall, these projects aim to have high, far-reaching impact on the implementation of
co-clinical imaging strategies in identifying, stratifying, and predicting response to therapy
in TNBC and ER+/HER2 − BCa, integrating QI with genoproteomic discovery. In addition,
high-value, multi-scale analytic data will be generated to interrogate and characterize tumor
heterogeneity. All publications, data, and protocols are available through the WU-C2IR2
Resource website at https://c2ir2.wustl.edu (accessed on 20 January 2023).

2.8. Baylor/UT Austin/Stanford University Integration of Omics and Quantitative Imaging Data
in Co-Clinical Trials to Predict Treatment Response in Triple-Negative Breast Cancer

The collaborative team at Baylor College of Medicine (BCM)/UT Austin/Stanford
University is building MIRACCL (Molecular and Imaging Response Analysis of Co-Clinical
Trials; https://miraccl.research.bcm.edu/miraccl), a web-based resource to store, manage,
analyze, and display comparative imaging and omics analyses in co-clinical trials. MIRACCL
integrates three existing web platforms: (1) the BCM PDX Portal (https://pdxportal.research.
bcm.edu/pdxportal/), (2) ePad [67], and (3) Linked-omics [68]. The ultimate intention is to
use MIRACCL to analyze and visualize data from a co-clinical trial which will evaluate four
cycles of combination carboplatin/paclitaxel in both a patient cohort and a biosimilar PDX
cohort, with MRI prior to, after the first cycle of, and after the completion of treatment (if
medically necessary). The clinical trial has not yet been initiated, but the PDX studies have
begun.

TNBC PDX models [69] are chosen based on previously determined resistance or sen-
sitivity to combination docetaxel and carboplatin treatment [70]. Fresh PDX tumor tissues
are transplanted into the cleared #4 fat pad (right inguinal) of four-week-old SCID/beige
(C.B-17/IcrHsd-PrkdcscidLystbg-J) mice [71]. On average, it takes 2–6 weeks to detect tu-
mors after tissue fragment implantation. Across all models, it can take anywhere from
4–10 weeks before the average tumor size of the cohort reaches the appropriate volume to
initiate the study (175 mm3). Once tumors are visible and/or palpable, caliper measure-
ments are used to determine the size (LxW2/2).

When tumors reach an average size of ~175 mm3, the animals are randomized (n = 3)
onto one-week or four-week treatment arms and pre-treatment MRI is performed (Table 2).
After imaging, animals are treated intraperitoneally with 50 mg/kg carboplatin and
33 mg/kg paclitaxel. Six to seven days later, on-treatment MRI is performed on ani-
mals in the one-week treatment group. After imaging, the animals are euthanized, tumor
tissue is collected for snap frozen fragments, and slices are processed for formalin-fixed
paraffin-embedded (FFPE) blocks. Portions of tissue from the brain, liver, and lungs are
also collected for FFPE blocks and the remaining tissue is minced and snap frozen. Whole
lymph nodes and ovaries are collected for FFPE and snap frozen specimens are collected
as well. The remaining three animals in the four-week treatment group are treated once
a week with carboplatin and paclitaxel. One week after the fourth dose, animals receive
post-treatment MRI. The animals are euthanized, and tissues collected in the same manner
as the one-week cohort. WES and RNAseq are performed on the PDX and patient tumor
tissue that created the PDX model, when available, to provide a baseline. WES and RNA-
seq were performed on early-generation (transplant generations 2–6), untreated PDX tissue.
Mutational changes have been detected in PDX models that were collected from the same
patient but at different points in their treatment regimen.

Table 2. Treatment schedule of preclinical trial of TNBC PDX.

Drug Vendor Catalog
Number

Dose
(mg/kg)

Concentration
(mg/mL) Vehicle Route Schedule

Carboplatin
(Carbo)

McKesson
(Teva) 740278 50 10 10 mg Mannitol per 1 mL

Water IP Weekly

Paclitaxel
(Pac)

Millipore
Sigma T7402 33 1 90% Saline/5% Kolliphor/5%

Ethanol IP Weekly

https://c2ir2.wustl.edu
https://miraccl.research.bcm.edu/miraccl
https://pdxportal.research.bcm.edu/pdxportal/
https://pdxportal.research.bcm.edu/pdxportal/
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From an imaging point of view, there are several issues that could potentially confound
interpretation. For example, the location of the tumor in a mammary fat pad makes it
susceptible to motion artifacts due to its proximity to the lung, thereby making quantitative
DW-MRI and DCE-MRI more difficult. The use of axial slices (as opposed to coronal or
sagittal) appears to reduce these artifacts. Additionally, this location makes identification
of an arterial input function for quantitative MRI difficult, yielding data that can only
be analyzed with a semi-quantitative metric (e.g., the signal enhancement ratio) or by a
reference region method [72].

2.9. University of Washington/Fred Hutchinson Cancer Center Quantitative FDG PET Imaging of
Non-Small Cell Lung Cancer in a Co-Clinical Immune Checkpoint Inhibitor Therapy Study

The University of Washington and Fred Hutchinson Cancer Center are collaborating
on a co-clinical study of immune checkpoint inhibitor (ICI) therapies in non-small cell lung
cancer (NSCLC). This project uses a GEMM of lung adenocarcinoma to develop, test, and
implement ICI therapies of this deadly disease. The Houghton lab has developed a novel
mouse model of lung cancer suitable for the study of immunotherapies by exposing LSL-
Kras mutant mice to cigarette smoke (KSM) [73]. Tumors in this model harbor hundreds
of single nucleotide variants (SNVs) and display the classic cigarette smoking signature
highlighted by G-to-T transversions and non-synonymous to synonymous SNV ratio, such
that the types of mutations to be studied here are identical to those found in humans.
Carcinogen exposure, e.g., a urethane-induced tumor, does not reproduce these features,
and non-smoking Kras mice possess very few SNVs and so are not sufficiently antigenic
to elicit immune responses [74]. The Houghton lab has also shown that neutrophils are
the most common immune cell population present in NSCLC and inversely correlate with
CD8+ content [75]. More recently, the group has shown that neutrophils preclude the
presence of the IFNγ signature predictive of ICI treatment success and also preclude the
infiltration of CD8+ cells into the malignant portions of tumor [76]. Based on these findings,
the co-clinical trial project is using the KSM mouse model to identify the mechanistic
determinants of ICI treatment success vs. failure and evaluate the impact of neutrophil
antagonism on ICI treatment efficacy by performing a co-clinical trial in patient and smoke-
exposed mice combining a novel small molecule dual-inhibitor of CXCR1 and CXCR2 (for
neutrophil depletion), with anti-PD1 antibody therapy (pembrolizumab). In addition, the
Ptenfl/fl/Lkb1fl/fl (PL) mouse model of lung squamous cell carcinoma will be utilized as
adenocarcinomas and squamous cell carcinomas together account for >90% of all NSCLC.

The scheme of the co-clinical trial is illustrated in Figure 10. Tumor formation will be
initiated in KSM and PL mice via administration of intratracheal adenoviral cre (AdCre).
The mice will undergo MRI every two weeks until tumors are visible, at which time PET/CT
imaging will be initiated. The mice will have PET/CT scans over the timeframe in which they
typically form lung tumors (20 weeks for KSM and 30 weeks for PL mice). Selected tumors
will be harvested post-treatment from control and treated mice for genetic analyses. Initial
efforts have centered around optimizing imaging [77] and handling protocols for reliable
and reproducible results. We have encountered challenges related to the fast-growing nature
of the lung tumors and drastically reduced lung capacity in the afflicted animals.
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3. Discussion

The number of different types of animal models and their relative value for transla-
tion research in oncology have grown enormously in recent years [78,79]. Using animal
models to assess therapeutic response is widespread, and the elements of experimental
design needed to increase translational success have been extensively considered [80,81].
In addition, sophisticated technologies are being applied for the detection, characterization,
and monitoring of cancer in animal models, generating comprehensive information about
the structure, metabolism, and function of cancer cells and their microenvironment [82].
Studies focused on using animal models for imaging translation, however, have additional
challenges [83]. In 2017, a consensus group assembled by Cancer Research UK and the
European Organisation for Research and Treatment of Cancer published 14 key recommen-
dations for accelerating the clinical translation of imaging biomarkers [84]. Several of these
recommendations emphasized the importance of biological validation in preclinical models
and the need to share, store, and curate data.

The co-clinical quantitative imaging projects of the AMCT WG of the CIRP network
aim to incorporate many of these recommendations. Notable strengths among the various
projects include high fidelity between tumors targeted in the clinical trial and PDX or
GEMM in the co-clinical study, attempts to use human-equivalent doses of therapeutic
drugs, the orthotopic location of tumors or tumors grown at cancer type-specific sites of
metastases, immunocompetent hosts for murine models, and gender-appropriate murine
hosts. Preclinical studies offer certain advantages compared to clinical trials, including
the ability to add additional control arms, standardization of tumor volume at initiation
of therapy, and more frequent imaging. Some projects take advantage of the opportunity
to reverse engineer clinical acquisition and processing protocols for the optimization of
associated preclinical protocols, or to optimize imaging methods preclinically for translation
to human studies. The co-clinical trials aim to employ therapeutic outcomes similar to those
in the clinical studies, such as tumor regression or recurrence-, disease-, and metastasis-
free survival. Quantitative imaging biomarkers are sought to predict response, provide
early evidence of treatment efficacy, or monitor response and/or recurrence. Several
projects focus on imaging the tumor microenvironment to monitor the response of TAMs to
immunotherapy or to evaluate changes in microvascular perfusion and fibrosis in response
to a stromal-targeted therapy. Most projects include correlative biological studies to validate
the imaging findings.

Common drawbacks among the projects include difficulty in capturing cancer het-
erogeneity with the small number of animal subjects in preclinical studies, the more rapid
growth rate of tumors in mice compared to humans, the age of mice versus humans, and
the absence of an immune microenvironment in PDX propagated in immunocompromised
mice. Depending on the location of the tumors, respiratory motion impacts imaging. Means
to overcome this problem include faster acquisition of images and respiratory gating.

Together with the Imaging Acquisition and Data Process (IADP) and Informatics and
Outreach (IMOR) WGs, the activities of the AMCT WG contribute to the mission of the NCI
CIRP to advance the practice of precision medicine by establishing consensus-based best
practices for co-clinical imaging and developing optimized state-of-the-art translational
quantitative imaging methodologies to enable disease detection, risk stratification, and
assessment/prediction of response to therapy. The web-based resources generated by each
project, including methods, protocols, software, and imaging data, will advance the efforts
of the cancer research community to develop clinically translatable imaging biomarkers.

4. Conclusions

This article is meant to serve as a resource or handbook to investigators interested
in designing co-clinical trials involving quantitative imaging. The intent is to highlight
the ongoing activities of the nine teams that are part of the CIRP network and provide
examples that might serve as templates for other co-clinical studies. Each section describes
the associated clinical trial, the experimental approach, the rationale for the animal models
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selected, the imaging platforms, and pros and cons of the various elements of the co-clinical
trial of each team. Work is in progress and findings will be the subject of future publications.
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