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Abstract 

Representing a location in space requires two things: an anchor 

point, and a code (or coordinate system) to define other locations 

relative to that anchor point. Recent work has shed light on the 

latter, providing evidence that the default ‘format’ of visuospatial 

representation may be polar coordinates (i.e., angle/distance 

relations). Yet the former remains a topic of debate. For example, 

a classic distinction in the realm of spatial navigation research pits 

representation relative to landmarks against representation relative 

to boundaries. Here, we exploit the polar format of spatial 

representations to propose a new method for assessing the locus of 

spatial representation. Specifically, we show that from simple 

localization errors we can infer the anchor point from which 

observers localized a target point. We highlight a few basic 

demonstrations of this method and discuss possible applications for 

further research on spatial representation. 

Keywords: Space; spatial representation; format; polar; landmark 

Introduction 

Consider your favorite restaurant. Where is it located? The 

answer is not obvious: You cannot simply define its location in 

absolute terms. To answer this question, you must first refer to 

some other location in space, whether that be a familiar landmark 

or a nearby street (or perhaps some global coordinates, which are 

themselves defined relative to other points in space). The simple 

demonstrations highlight a key aspect of spatial representation: 

that all locations in space must be represented relative to some 

other location.   

There is debate regarding the nature of spatial representation. 

What coordinate system, if any, supports spatial representation 

(Yang & Flombaum, 2018; Yousif & Keil, 2021)? What role do 

landmarks vs. boundaries play in spatial representation (Bullens 

et al., 2010; Doeller & Burgess, 2008; Doeller et al., 2008)? Is 

the ‘cognitive map’ Euclidean or network-like (Kuipers et al., 

2003; O’Keefe & Nadel, 1978; Tolman, 1948; Warren et al., 

2017; Werner et al., 2000)? Naturally, the answers to some of 

these questions may be related: if the cognitive map is network-

like, it may be easier to imagine it being supported by polar 

coordinates (i.e., angle distance relations) than Euclidean 

coordinates. And perhaps a network-like cognitive map is more 

likely to depend on landmarks than boundaries.  

Here, we exploit one aspect of spatial representation to 

explore another. Recent work analyzed errors made in a simple 

localization task to infer the coordinate system observers use 

place an object (Yousif & Keil, 2021). In brief, this method 

depends on an inference based on correlations of errors across 

trials. The method assumes that if space is represented with a 

given coordinate system, errors in each dimension of that 

coordinate system should be random, or uncorrelated (if they are 

in fact represented as independent dimensions). In this way, the 

presence of error correlations indicates that a given coordinate 

system is an unlikely candidate for representation. Conversely, 

the absence of error correlations indicates that a given coordinate 

system is a good candidate for representation. Across several 

studies, observers defaulted to a polar coordinate system 

(although they used other coordinate systems flexibly, depending 

on the space; Yousif & Keil, 2021; see also Huttenlocher et al., 

1991; Yousif et al., 2020). 

This method may uncover more than merely how observers 

represent space; it may also reveal the locus of that 

representation. In prior work (Yousif & Keil, 2021), all analyses 

are conducted relative to other objects present in the display. But 

suppose the presence of other objects in the display was 

unknown. Would it be possible to infer the locations of the 

landmarks? In theory, the answer is yes: if the absence of 

correlation is evidence of representation, then one could ‘search’ 

the space for the point with the lowest error correlations. In other 

words, it should be possible to do a ‘searchlight’ analysis (akin to 

searchlight analyses in fMRI; Etzel et al., 2013) to find the 

regions of low error correlation — and from those low 

correlations infer the locus of representation.  

Current Study  

The present paper explores whether this ‘searchlight’ approach 

can reveal the locus of spatial representation. In three initial 

demonstrations, observers localized points in a space comprised 

of only a single landmark. Different sets of observers were shown 

different landmarks. We show that we can reliably infer where 

the landmark was located — based solely on localization errors 

observers made throughout the task. In one additional 

experiment, we explore how this method may apply in more 

complex spatial environments, i.e., ones with more than one 

landmark. Finally, we discuss how this method may be applied to 

other aspects of spatial cognition.   

Experiment 1: ‘Decoding’ landmarks 

Here, four separate groups of observers completed a visual 

matching task, modeled after that used by Yousif & Keil (2021). 

In the simplest version of this task, observers saw a grey dot 

paired with a separate blue dot in one corner of the screen. In the 

opposite corner of the screen, observers saw another grey dot, but 

no blue dot. Observers were instructed to place a new blue dot 

near the other grey dot, such that the relative position of the new  
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Figure 1. (A) A caricature of the method. In this example, observers must place a point to match the initially present blue point in the top left. 

The dotted grey lines represent the ‘functional’ region in which points can appear. (B) A representation of the error correlation analysis. Here, 

we are analyzing correlations between errors in the two dimensions of polar coordinates. In the basic analysis, each subject therefore has a unique 

correlation value that is used for subsequent analyses. (C) A representation of the ‘searchlight’ analysis. Here, error correlations are calculated 

relative to thousands of points in the space, as if each was the anchor point relative to which observers made their localization judgments. The 

resulting heatmap shows the regions of lowest correlation (in blue) indicating the likely presence of a landmark in that location. (D) A depiction 

of the primary analyses.  

 

blue dot relative to the second grey dot matched the relative 

position of the already-visible blue dot to its grey dot counterpart. 

See Figure 1 for an example display. The goal of the present study 

is to determine whether we can use a ‘searchlight’ error 

correlation analysis to infer the location of the landmark (grey 

dot) based solely on an analysis of observers’ localization 

errors.Method 

Participants Twenty observers were recruited via Amazon 

Mechanical Turk completed each task in exchange for monetary 

compensation (80 observers total). 

Design Observers completed 48 trials of the visual matching 

task, in which dots appeared in random locations within a 400 

pixel by 400 pixel region. In one experiment, the visible anchor 

point (grey dot) was presented in the bottom left of the functional 

region (as shown in Figure 1); in another, it was presented in the 

center; in another, it was presented in the top right; and in a final 

experiment, two separate anchor points were presented in 

opposite corners. 

Procedure On each trial, observers simply had to place the 

missing shapes to match the relative location of the 

corresponding shape, by moving and then clicking with the 

mouse (see Figure 1a).  The missing shape appeared upon mouse-

click, at which point observers could click additional times or 

drag and drop the dot to change its location.  Once observers were 

satisfied with the missing object’s location, they pressed a key to 

submit their response. If a response was recorded, then the 

display was replaced with a blank screen for 0.5s, after which the 

next trial began.  If no response was recorded within 7s, then the 

next trial automatically began (after .5s), and that trial was 

randomly shuffled back into the trial sequence. Observers were 

repeatedly instructed to ensure that they responded within the 

time limit. 

Each observer completed 48 trials. The location of each target 

object on each trial was randomized within and across observers. 

Observers completed two representative practice trials (the data 

from which were not recorded) before beginning the task. 

Analysis The key analysis is a correlation between errors in 

various spatial dimensions. Unlike Yousif & Keil (2021), only 

correlations among polar errors are analyzed. Further, these 

analyses are conducted relative to the entire visible space, rather 

than a single location (i.e., the same analysis will be conducted 

iteratively at 6561 points throughout the space).  

First, the original polar coordinates (i.e., the true polar 

coordinates of the initially visible blue dot relative to its 

counterpart grey dot) are calculated relative to a fixed point in the 

400 x 400 space.  Then, the polar coordinates of the new point 

(i.e., the point placed by the participant) are calculated relative to 

the same fixed point. The error in each dimension is calculated as  
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Figure 2. A depiction of the location of the anchor points in each experiment for Experiment 1 (A, B, C, and D). The dotted grey lines 

correspond to the ‘functional’ region of space in which points could appear; these lines were not visible to observers. The resulting 

heatmaps from the ‘searchlight’ error correlation in each experiment are also displayed (D, E, F, and G). Regions of lower correlation 

appear in blue; regions of higher correlation appear in red. 

  

the absolute difference between the original value and the new 

value in each dimension. Therefore, for each trial, there is a 

measure of error in the angle dimension and in the distance 

dimension. Then, at the subject level, the correlation between the 

errors in these two dimensions is calculated (across the 48 trials). 

This is done iteratively for each observer. Then, an average 

correlation value is calculated by averaging the correlation values 

across observers. 

This analysis (as explained in the previous paragraph) is 

conducted relative to 6561 different anchor points throughout the 

functional space. (There are anchor points every 5 pixels, starting 

at the point [-200, -200] and reaching to the points [200, 200], 

functionally resulting in 81 rows and 81 columns of anchor 

points.) Therefore, a unique average correlation value is 

calculated for each of those 6561 anchor points. These values will 

then be summarized via heatmaps. To quantify impressions 

gleaned from the heatmaps, we will subdivide the space into nine 

equivalent regions (see Figure 1D) and compare average 

correlations across regions. For example, if the anchor point was 

present in the top left corner, average correlations for the top left 

section should be lower than the other corner sections. The key 

statistical analysis will be t-tests between regions, not between 

individual points. 

Note that we analyzed only error correlations in polar 

dimensions, not Cartesian dimensions (as in Yousif & Keil, 

2021). There are two primary reasons for this. First, prior work 

has clearly demonstrated the use of polar coordinates in simple 

environments like these (Yousif & Keil, 2021). Despite this, if 

observers were not relying on polar coordinates, then the 

heatmaps should reveal no systematicity whatsoever. This means 

that, in practice, the studies here serve as a replication of that prior 

work; the method here only succeeds if observers are using polar 

coordinates.  

Second, it is impossible to create heatmaps for error-

correlations in Cartesian dimensions in the same way. Regardless 

of where we assume the Cartesian anchor point is, error-

correlations relative to any point in space will be the same. 

Whether Cartesian errors are highly correlated or not, the 

heatmaps would necessarily be uniform. (The equivalent analysis 

using Cartesian coordinates would involve rotation, not 

translation.) 

Results and Discussion 

Heatmaps for the four experiments are presented in Figure 2. As 

is evident from the figure, the decoding analysis was capable of 

identifying the location of the anchor point. 

For Experiment 1a, in which the anchor point was in the 

bottom-left corner, we compare the average correlation for the 

bottom-left section to the other three corner sections as well as 

the center section. Each region contained 27x27 separate points 

relative to which errors were calculated, resulting in 729 total 

points. T-tests were conducted comparing the 729 points of the 

target region to the 729 points of the non-target regions. There 

were indeed significantly lower correlations in the target corner 

(bottom-left) compared to the other three locations, ts>50, 

ps<.001, ds>1.80.  

For Experiment 1b, in which the anchor point was in the center 

section, we compare the average correlation for the center section 

to the four corner sections. There were significantly lower 

correlations in the relevant section, ts>54, ps<.001, ds>2.00. 

For Experiment 1c, in which the anchor point was in the top 

right section, we compare the average correlation for the top right 

section with the three other corner sections as well as the center 

section. Once again, there were significantly lower correlations 

in the relevant section, ts>78, ps<.001, ds>2.90. 

For Experiment 1d, in which there were two separate anchor 

points in opposite corners of the screen, we tested one key 

comparison: the diagonal on which the anchor points were 

situated vs. the opposite diagonal. In other words, we average the 

correlations for the top-right and bottom-left corners and  
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Figure 3. Representative heatmaps from individual observers in Experiment 1d. Regions of lower correlation appear in blue; regions of 

higher correlation appear in red. 

 

compared that to the average correlations for the top-left and 

bottom-right corners. (Note that the middle section is excluded 

from this analysis, as it would be redundant across the 

comparisons.) Surprisingly, the diagonal along which the anchor 

points sat had higher error correlations than the opposite 

diagonal, t(1457)=28.35, p<.001, d=.74. However, note that this 

effect, although significant, is significantly weaker than those in 

the previous experiment; note also that this pattern is not obvious 

from the heatmap itself. To understand this pattern, we created 

separate heatmaps for each observer (following the same 

procedure as before, but without averaging across observers). A 

representative set of these heatmaps are displayed in Figure 3.  

As seen in Figure 3, despite the ambiguity in the average 

heatmaps, the individual observer heatmaps are systematic — 

although sometimes in opposing directions. Some observers had 

the lowest correlations on the diagonal with the anchor points, 

whereas other observers had the lowest correlations on the 

opposite diagonal. We refrain from overinterpreting these 

impressions, although we think these results warrant additional 

investigation given the systematic bimodality of responses. 

These experiments serve as a proof of concept: when observers 

are localizing points relative to a stable location in space, we can 

‘decode’ the location of that anchor point using nothing but error 

correlations. Although results from Experiment 1d were mixed, 

it is clear that, on an individual level, meaningful systematicity is 

revealed from this method.  

General Discussion 

Here, we have proposed a novel ‘searchlight’ method for 

determining the locus of spatial representation. In three 

experiments, we showed how this approach can be used to 

identify landmarks in an environment. In a fourth experiment, we 

tested this method in a more complex spatial environment — one 

with multiple landmarks. The results of this latter experiment 

were mixed, although there were still signs of systematic, 

interpretable patterns of data. Below, we discuss some key 

strengths and limitations of this approach and highlight some 

ongoing research programs that could use a similar approach.  

Strengths of the searchlight approach 

First, the task employed here is exceedingly simple. The key 

measure here depends only on localization errors and no other 

explicit task. Unlike other spatial tasks that rely on relatively 

explicit measures (e.g., pointing behavior), this method could be 

framed as either a visual memory or a visual perception task; 

observers need not view this as a spatial task per se.  

Second, this method can be straightforwardly adapted to work 

in both 2D and 3D spatial environments. Although the 

environments we test here are simple 2D environments on a 

computer screen, this method could be readily applied to a 

localization task in both virtual and real-world 3D environments.  

Third, the method yields robust, easily appreciable results (at 

least in simple environments). From the heatmaps alone, it is 

obvious where the landmarks are located.   

Fourth, because this approach is maximally data-driven, it has 

the potential to reveal counterintuitive, unexpected pattern of 

results. (Of course, it is hard to predict what such results may be 

— otherwise we wouldn’t call them ‘counterintuitive’!) 

Fifth, this method has the potential to reveal observer-specific 

variations that may go unnoticed in other spatial tasks (which 

primarily rely on average behavior across many observers). 

Although the heatmaps in Experiment 1d produced no conclusive 

pattern, it is still clear from the heatmaps of individual observers 

that there are meaningful, systematic patterns for several 

observers.  

Limitations of the searchlight approach 

First, this method depends on the use of polar coordinates; the 

‘searchlight’ is specifically searching for regions of low polar 

error correlations. Of course, observers may in some cases rely 

on other forms of spatial representations (Yousif & Keil, 2021). 

In such cases, this exact analysis would yield no meaningful 

results.  

Second, this method depends on a correlation analysis that is 

sensitive. Although results are clear when we average across 

many trials and many observers, virtually any noise in the data 
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(i.e., a subset of trials in which observers responded randomly) 

may yield uninterpretable results. Certain exclusion criteria may 

eliminate this problem, but for now we have not yet established a 

clear ‘pre-processing’ plan for determining how data should be 

filtered. 

Third, we view the current version of this method as a 

prototype. This method could be improved in ways that would 

allow for its application to numerous other contexts. For example, 

if better criteria are established for filtering noisy data, then 

cleaner heatmaps may be obtainable, especially at the level of 

single observers. 

Possible applications 

This method could be used address numerous open questions in 

the fields of spatial cognition and navigation. It can be easily 

applied both to 2D and 3D spatial tasks, meaning that the range 

of applications is wide. For instance, perhaps this method could 

be used to address the use of landmarks vs. boundaries more 

directly (e.g., Doeller & Burgess, 2008; Doeller et al., 2008). It 

could also be used evaluate other aspects of spatial 

representation, e.g., whether spatial representation is supported 

by Cartesian vs. polar coordinates, or whether spatial 

representation operates in a metric format or a network-like 

format (see, e.g., Yousif & Keil, 2021).  

This method could also be applied to research questions 

beyond the domain of spatial cognition. The error correlation 

analysis presented here could, in theory, be applied to any 

dimensions that might may be represented integrally vs. 

separably in the mind (Garner & Felfoldy, 1970; for review see 

Algom & Fitousi, 2016). That said, this approach is flexible 

enough that we imagine there may be many yet-unforeseen 

applications.  

Conclusion 

We have presented a novel method for assessing representational 

content, which we have used to demonstrate that we can ‘decode’ 

the locus of spatial representation from mere localization errors. 

We have also provided some preliminary evidence that this 

method may be useful in addressing other questions of spatial 

representation, and we have speculated about how this method 

could be applied to other research questions (including non-

spatial domains). Future work can build on this approach in 

several ways. 
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