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Variability in Cognitive Task Performance in Early
Adolescence Is Associated With Stronger
Between-Network Anticorrelation and Future
Attention Problems

Sarah E. Chang, Agatha Lenartowicz, Gerhard S. Hellemann, Lucina Q. Uddin, and
Carrie E. Bearden
ABSTRACT
BACKGROUND: Intraindividual variability (IIV) during cognitive task performance is a key behavioral index of attention
and a consistent marker of attention-deficit/hyperactivity disorder. In adults, lower IIV has been associated with
anticorrelation between the default mode network (DMN) and dorsal attention network (DAN)—thought to underlie
effective allocation of attention. However, whether these behavioral and neural markers of attention are 1)
associated with each other and 2) can predict future attention-related deficits has not been examined in a
developmental, population-based cohort.
METHODS: We examined relationships at the baseline visit between IIV on 3 cognitive tasks, DMN-DAN
anticorrelation, and parent-reported attention problems using data from the Adolescent Brain Cognitive
Development (ABCD) Study (N = 11,878 participants, ages 9 to 10 years, female = 47.8%). We also investigated
whether behavioral and neural markers of attention at baseline predicted attention problems 1, 2, and 3 years later.
RESULTS: At baseline, greater DMN-DAN anticorrelation was associated with lower IIV across all 3 cognitive tasks
(B = 0.22 to 0.25). Older age at baseline was associated with stronger DMN-DAN anticorrelation and lower IIV
(B = 20.005 to 20.0004). Weaker DMN-DAN anticorrelation and IIV were cross-sectionally associated with
attention problems (B = 1.41 to 7.63). Longitudinally, lower IIV at baseline was associated with less severe
attention problems 1 to 3 years later, after accounting for baseline attention problems (B = 0.288 to 0.77).
CONCLUSIONS: The results suggest that IIV in early adolescence is associated with worsening attention problems in
a representative cohort of U.S. youth. Attention deficits in early adolescence may be important for understanding and
predicting future cognitive and clinical outcomes.

https://doi.org/10.1016/j.bpsgos.2022.11.003
Momentary lapses in attention can interfere with goal-directed
behaviors. In individuals with attention deficits, these lapses
are persistent and can hinder task completion at work or
concentrating in school. A key metric of attentional lapses is
intraindividual variability (IIV), which is defined as trial-by-trial
fluctuation in reaction time during a timed cognitive task (1).
Higher IIV is a robust behavioral marker of attention-deficit/
hyperactivity disorder (ADHD) (Hedges’ g = 0.76; individuals
with ADHD vs. control subjects) (2,3). Across the lifespan, IIV
exhibits a U-shaped trajectory, with dramatic reductions during
childhood and adolescence corresponding with a major
developmental shift in sustained attention (4–7). At the same
time, adolescence is a sensitive period involving increased risk
for onset of many psychiatric disorders (8). Investigating the
spectrum of attention variability at this juncture of development
may be important for understanding and predicting future
cognitive and clinical outcomes.
ª 2022 THE AUTHORS. Published by Elsevier Inc on behalf of the
open access article under the CC BY-NC-ND license (http://creativ
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While greater IIV has been established as a robust marker of
attention deficits, its neural bases remain an open question.
Studies using resting-state functional magnetic resonance
imaging (fMRI) implicate dysfunction of functional brain net-
works in greater IIV and attention problems (9–14). In particular,
resting-state fMRI studies have identified the default mode
network (DMN) and task-positive networks, including the dor-
sal attention network (DAN), and the balance between these
networks as key for attention allocation (11). The DMN is
engaged during internally directed processes, like self-
referential processing, and its activity is typically reduced
when individuals complete tasks requiring visuospatial atten-
tion (15–18). The DMN includes nodes in the medial prefrontal
cortex, posterior cingulate cortex, temporoparietal junction,
and lateral and medial temporal lobes (15,17,18). The DAN
includes nodes in the frontal eye fields and the inferior parietal
sulcus and is involved in top-down attention (19–21).
Society of Biological Psychiatry. This is an
ecommons.org/licenses/by-nc-nd/4.0/).
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The DMN and DAN typically exhibit negatively correlated
(anticorrelated) patterns of activity: as activity in the regions of
the DAN increases when engaging in an attention-demanding
task, activity in the DMN decreases (17,22–25). Evidence
from fMRI and electroencephalography studies suggests that
excess DMN activity during tasks is associated with less effi-
cient cognitive performance (10,26–28). Furthermore, DMN
deactivation during attentional tasks is associated with better
cognitive performance (29,30). The anticorrelation of these two
networks may be a fundamental property of brain organization
that supports effective attention allocation by focusing on the
task at hand and suppressing internally directed thoughts to
support neurocognitive performance (11,17,31).

Consistent evidence from resting-state fMRI research
across the lifespan and studies of ADHD links DMN-DAN
anticorrelation with attention allocation. These networks
become increasingly anticorrelated in infancy through
adolescence and less anticorrelated through older adulthood
(32–34). Kelly et al. (11) were the first to link DMN-DAN anti-
correlation during rest and task with reduced IIV in healthy
adults, which was later replicated and extended through task-
based fMRI and electroencephalography studies (33,35–39).
Recently, Owens et al. (40) linked DMN-DAN anticorrelation
with less severe parent-reported attention problems using
baseline data from the Adolescent Brain Cognitive Develop-
ment (ABCD) Study. From the ADHD literature, a meta-analysis
found that anticorrelation between DMN and task-positive
networks was diminished in children and adolescents with
ADHD compared with typically developing youth (41).
Furthermore, evidence from dynamic functional connectivity
(FC) analyses, a method that measures moment-to-moment
shifts in connectivity (42), suggests that children with ADHD
spent less total time in, and switched out of, anticorrelated
states involving the DMN and task-relevant networks more
frequently compared with typically developing children (43).

While this cogent body of literature supports the notion that
DMN-DAN anticorrelation is linked with IIV, several clinically
relevant questions and literature gaps remain. While IIV is a
robust marker of ADHD, it is unclear whether IIV can be used in
the general population to predict future attention problems (3).
Case-control study design does not capture the full spectrum
of attention problems because individuals with milder symp-
toms that do not reach clinical impairment may be excluded
(39,43,44). Importantly, studies linking DMN-DAN anti-
correlation at rest to IIV have only been established in adult-
hood and are relatively small (11,36). Yet, studying IIV in early
adolescence is particularly important. Evidence from executive
function task performance from N . 10,000 participants, ages
8 to 35 years, has shown that executive function (including
inhibitory attention) undergoes the most rapid development in
early adolescence (45). Whether DMN-DAN anticorrelation
develops alongside, prior to, or in response to this dynamic
development is unknown. Last, whether DMN-DAN anti-
correlation can be used to predict future attention problems
has not been examined in a large, population-based sample.
Deviations in these neural or behavioral markers of attention
during this important stage of cognitive development may lead
to poorer cognitive outcomes in adulthood.

To address these questions, we examined the relationship
between IIV in timed cognitive tasks and resting-state FC from
Biological Psychiatry: Global O
the ABCD Study, a population-based, longitudinal cohort of
11,878 children ages 9 to 10. First, in contrast to previous
work, this study captured the full spectrum of attention prob-
lems during a period of dynamic cognitive and neural
development (46,47). The main hypotheses tested using cross-
sectional data at baseline were the following: 1a) stronger
DMN-DAN anticorrelation would be associated with lower IIV,
across cognitive tasks; 1b) within these models, older baseline
age would be associated with stronger DMN-DAN anti-
correlation; and 1c) within these models, older baseline age
would be associated with lower IIV. Second, we examined the
cross-sectional relationship of lab-based cognitive and neu-
roimaging measures (IIV and DMN-DAN anticorrelation) with
the parent report of their child’s attention problems. We pre-
dicted that both 2a) weaker DMN-DAN anticorrelation and 2b)
higher IIV would be associated with more severe attention
problems. Last, we tested 2 hypotheses using longitudinal
data: 3a) weaker DMN-DAN anticorrelation and/or 3b) greater
IIV would be associated with future attention symptoms at 1-,
2-, and 3-year follow-up time points, after accounting for
baseline attention symptoms.

In addition to these a priori hypotheses based on work
conducted in adults (11), we also conducted 3 exploratory
analyses. First, we examined brain-behavior associations via
ex-Gaussian distribution modeling that parses the reaction
time distribution into the variability of extremely slow (tau)
versus fast (sigma) responses. Individuals with ADHD exhibit
greater tau and greater sigma on reaction time tasks, and
neural mechanisms supporting tau and sigma may differ
because they follow different developmental patterns
(1,5,48–51). Therefore, we investigated whether DMN-DAN
anticorrelation was differentially associated with tau or
sigma, to better characterize the nature of attentional vari-
ability. Second, we evaluated additional putative anticorrelated
networks (DMN–cingulo-opercular network, DMN–
frontoparietal network, DMN–ventral attention network) and
their behavioral associations. Last, we evaluated whether IIV
and/or DMN-DAN anticorrelation are linked with externalizing
symptoms, as deficits in attention may contribute to problems
with self-regulation more broadly (52–54).

METHODS AND MATERIALS

Participants

Data from 11,878 participants were obtained through the
ABCD Study, a prospective, longitudinal study tracking 9- to
11-year-olds for the following 10 years, across 20 research
collection sites in the United States (55). Each site obtained
informed consent from parents and assent from children,
approved by each site’s Institutional Review Board, with
centralized Institutional Review Board approval at the Univer-
sity of California San Diego. All de-identified raw and pro-
cessed data for these analyses were from ABCD Data Release
4.0, accessed through the National Institute of Mental Health
Data Archive (Collection 2573). Due to use of de-identified
data, this study was exempt from Institutional Review Board
approval. Exclusion criteria included 1) missing demographic
information, such as parental income (n = 1022) or race/
ethnicity (n = 2); 2) missing trialwise data for the flanker (n =
1310), dimensional change card sort (n = 1687), or pattern
pen Science October 2023; 3:948–957 www.sobp.org/GOS 949
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comparison processing speed (n = 1316) tasks; or 3) missing
psychiatric symptom data at baseline (n = 10). In concordance
with previous work, further exclusion criteria for neuroimaging
analyses can be found in the Supplement (56–58). Baseline
demographic characteristics are reported in Table 1; see the
Supplement for demographic tables for years 1, 2, and 3
follow-up time points.

Measures

Neuropsychological Test Battery. Participants completed
a developmentally appropriate neurocognitive battery, the NIH
Toolbox (55), which includes 7 tasks covering episodic memory,
executive function, attention, working memory, processing
speed, and language abilities. This neurocognitive battery was
designed to comprehensively assess these domains, has been
used in longitudinal studies across childhood and adolescence,
and is psychometrically sound (55).

The current study used the timed reaction time tasks from
NIH Toolbox, which include the flanker, pattern comparison
processing speed, and dimensional change card sort tasks.
The flanker and dimensional change card sort task show
excellent test-retest reliability (intraclass correlation coeffi-
cient = 0.92 for both measures) and the processing speed task
shows good test-retest reliability (intraclass correlation coeffi-
cient = 0.84) in children and adolescents over a 2-week interval
(59,60). Details of these tasks have been published elsewhere
(55,61).

IIV for each task and participant was operationalized as the
standard deviation in reaction time across all correct trials. To
remove extreme outliers that suggest invalid task performance,
IIV was winsorized at 3 standard deviations for each task.
Because the flanker task assesses attention, we focused first
Table 1. Baseline Demographics, Based on Imaging
Inclusion Criteria (N = 8446)

Characteristic Mean (SD) or n (%)

Sex

Female 4201 (49.75%)

Male 4245 (50.25%)

Age, Years 9.94 (0.63)

Parent Report of Child’s Race/Ethnicity

Asian 164 (1.94%)

Black 1202 (14.23%)

Hispanic 1698 (20.11%)

White 4474 (52.97%)

Other 906 (10.73%)

Income Category

,$50,000 2219 (26.28%)

$50,000–$99,999 2232 (26.43%)

$100,0001 3321 (39.31%)

Refuse to report income 332 (3.93%)

Don’t know income 340 (4.03%)

Parental Education, Years 16.67 (2.67)

CBCL Attention T Score 53.73 (6.04)

CBCL Externalizing T Score 45.57 (10.24)

Framewise Displacement, Mean (SD) 0.22 (2.34 3 1025)

CBCL, Child Behavior Checklist.

950 Biological Psychiatry: Global Open Science October 2023; 3:948–
on testing our analyses using flanker IIV. Then, we examined
associations using IIV from the dimensional change card sort
and the pattern comparison processing speed tasks, to assess
whether the associations would generalize to these related
cognitive domains. To verify these results, we also analyzed
these associations using the raw reaction time data to derive
IIV (Supplement). Last, we generated ex-Gaussian parameters
(tau, sigma, and mu) from the raw reaction time data for each
task and participant by applying the retimes package in R
version 4.1.1 (R Foundation for Statistical Computing).

Imaging Procedure: Acquisition. ABCD imaging collec-
tion, acquisition, and analysis has been previously described
(62–64). All participants were scanned on 3T scanners
including Prisma (Siemens), Discovery MR750 (GE Healthcare),
and Achieva dStream or Ingenia CX (Philips) with a 32-channel
head coil. Participants completed T1-weighted and T2-
weighted structural scans, as well as four 5-minute resting-
state blood oxygen level–dependent scans, with their eyes
open, fixed at a crosshair. Further details about the resting-
state imaging acquisition that varied by 3T scanner have
been detailed previously (62).

Imaging Procedure: Processing. The ABCD Data Anal-
ysis, Informatics and Research Center performs centralized
processing of MRI data from the ABCD Study using the multi-
modal processing stream (see Supplement) (64). After pro-
cessing, between-network connectivity was calculated by
computing pairwise correlations between each region of in-
terest within a given network and each region of interest within
another network, defined by the Gordon parcellation (65) These
correlations were averaged and Fisher z transformed to
generate a summary metric of between-network connectivity
strength, which we considered anticorrelation if significantly
negatively correlated.

Attention Problems and Externalizing Symp-
toms. Caregivers of the participants completed the Child
Behavior Checklist (CBCL), a 112-item questionnaire used
to detect emotional and behavioral problems in youth (66).
The longitudinal analyses use the CBCL attention and
externalizing T scores from follow-up years 1, 2, and 3.
Demographic characteristics of participants by follow-up
year, based on availability of the CBCL data, are included
in the Supplement.

Statistical Analyses

Linear mixed models were conducted in R version 4.1.1 lmer
package, with research site and family unit (nested within site,
to account for 1336 twins and 23 triplets in this study sample)
as random effects and age, sex, race/ethnicity, parental in-
come, and parental education modeled as covariates (67).
Imaging analyses additionally included mean framewise
displacement as a covariate. All results reported were false
discovery rate corrected.

Linear mixed models were used to test the following cross-
sectional predictions: 1a) across cognitive tasks (each in a
separate model), lower IIV would be associated with stronger
DMN-DAN anticorrelation; 1b) there would be an age effect,
957 www.sobp.org/GOS
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such that greater baseline age would be associated with
stronger DMN-DAN anticorrelation; and 1c) there would be an
age effect, such that greater baseline age would be associated
with lower IIV. Furthermore, we tested the following hypothe-
ses regarding associations between the lab-based measures
and neurobehavioral symptoms: 2a) greater IIV and/or 2b)
weaker DMN-DAN anticorrelation would be linked with worse
attention symptoms at baseline. Last, we tested the following
predictions using longitudinal data: 3a) across cognitive tasks
(each in a separate model), greater IIV and 3b) weaker DMN-
DAN anticorrelation, all assessed at baseline, would be asso-
ciated with subsequent attention problems, 1, 2, and 3 years
later, after accounting for baseline CBCL attention problems.
Results are expressed as standardized coefficients with 95%
confidence intervals. As a control analysis, we hypothesized
that IIV and parent-reported attention problems would not be
associated with between-network connectivity between audi-
tory and retrosplenial networks, as the flanker, dimensional
change card sort, and pattern comparison processing speed
tasks are not thought to engage either network (68). When
investigating behavioral and neural measures of attentional
variability, we examined other key factors associated with
these variables, including sex, race/ethnicity, and parental in-
come, to better contextualize these associations.
RESULTS

DMN-DAN Anticorrelation and Behavioral Variability

As hypothesized, lower IIV across all 3 neurocognitive tasks,
modeled in separate linear mixed models, was associated with
stronger anticorrelation between the DMN and DAN (Figure 1
and Table 2; see the Supplement for estimated marginal
means visualization). Within this model, older baseline age was
associated with stronger DMN-DAN anticorrelation. Of the
other covariates, head motion, sex, race/ethnicity, and family
income were associated with DMN-DAN anticorrelation across
models.
Biological Psychiatry: Global O
Age and Behavioral Variability

We replicated the neuropsychological literature showing that
younger baseline age was also associated with greater IIV,
across all 3 tasks after adjusting for covariates (4,5). Within
these 3 models, there were also effects of race/ethnicity,
parental income, and sex (Supplement). In a supplemental
analysis, greater baseline age was also related to greater ac-
curacy (Supplement).

Behavioral and Neural Associations With
Attentional and Externalizing Symptoms at Baseline

Higher IIV across the flanker, pattern comparison processing
speed, and dimensional change card sort tasks was associ-
ated with more severe baseline attention symptoms (Table 3).
Furthermore, weaker DMN-DAN anticorrelation was associ-
ated with more severe attention symptoms (Table 3).

In an exploratory analysis, higher IIV across all cognitive
tasks and weaker (less negative) DMN-DAN anticorrelation
was associated with more severe externalizing symptoms, all
measured contemporaneously at baseline (Supplement). Of
the covariates, several effects are consistent across all 8
models (Table 3 for attentional symptoms and the Supplement
for externalizing symptoms); sex, parental income, and race/
ethnicity were associated with attention and externalizing
symptoms.

Prospective Behavioral and Neural Associations
With Attentional Symptoms, 1 to 3 Years Later

Next, we evaluated if either IIV or DMN-DAN connectivity at
baseline was predictive of attention symptoms 1, 2, and 3
years after the baseline visit. For all 3 tasks, higher IIV at
baseline predicted more severe attention symptoms at the
participants’ 1-, 2-, and 3-year follow-up visits, after controlling
for baseline attention problems (the flanker task in Table 4,
other tasks in the Supplement). After accounting for baseline
attention problems and covariates included in baseline
Figure 1. Default mode network (blue) and dorsal
attention network (red) from the Gordon parcellation.

pen Science October 2023; 3:948–957 www.sobp.org/GOS 951
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Table 2. Associations Between IIV and DMN-DAN Functional Connectivity

Predictor

Flanker IIV DCCS IIV
Pattern Comparison
Processing Speed IIV

b 95% CI b 95% CI b 95% CI

DMN-DAN Anticorrelation 0.04a 0.02 to 0.06 0.05b 0.02 to 0.07 0.03c 0.01 to 0.05

Age 20.09b 20.11 to 20.07 20.13b 20.15 to 20.11 20.08b 20.11 to 20.06

Sex 0.02 20.02 to 0.06 0.07a 0.02 to 0.11 0.12b 0.07 to 0.16

Mean FD 0.10b 0.07 to 0.12 0.11b 0.09 to 0.13 0.07b 0.05 to 0.09

Income $50,000–$99,999 20.23b 20.29 to 20.17 20.30b 20.36 to 20.23 20.11b 20.17 to 20.04

Income $100,0001 20.34b 20.40 to 20.28 20.35b 20.41 to 20.29 20.15b 20.22 to 20.09

Non-White 0.19b 0.13 to 0.24 0.17b 0.12 to 0.22 0.12b 0.07 to 0.18

Parental Education 20.02 20.04 to 0.00 20.02 20.04 to 0.01 20.00 20.03 to 0.02

Reference categories: sex (female), income (,$50,000), race/ethnicity (White). Greater magnitude in negative values indicate stronger DMN-DAN anticorrelation.
DAN, dorsal attention network; DCCS, dimensional change card sort; DMN, default mode network; FD, framewise displacement; FDR, false discovery rate; IIV,

intraindividual variability.
ap , .01, FDR corrected.
bp , .001, FDR corrected.
cp , .05, FDR corrected.
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models, DMN-DAN connectivity did not predict future attention
symptoms (Supplement).

Prospective Behavioral and Neural Associations
With Externalizing Symptoms, 1 to 3 Years Later

Higher IIV at baseline was also associated with increased
externalizing symptoms at the 1-year follow-up visit after
controlling for baseline externalizing symptom scores but not
at later time points (Supplement). Furthermore, DMN-DAN
anticorrelation did not predict future externalizing symptoms
at any time point after controlling for baseline externalizing
symptoms.

Ex-Gaussian Distribution Modeling

Using ex-Gaussian approaches to parse reaction time distri-
bution into variability in slow (tau) versus fast (sigma) re-
sponses, we found that stronger DMN-DAN anticorrelation
was associated with both lower sigma and lower tau, across all
Table 3. Behavioral and Neural Associations With Attention Pro

Predictor

CBCL Attention BV CBC

b 95% CI b

Flanker IIV 0.12a 0.10 to 0.14 –

DCCS IIV – – 0.13a

Pattern Comparison Processing Speed IIV – – –

DMN-DAN Anticorrelation – – –

Mean FD – – –

Age 0.01 20.01 to 0.03 0.01

Sex 0.11a 0.07 to 0.15 0.10a

Income $50,000–$99,999 20.15a 20.21 to 20.10 20.14a

Income $100,0001 20.25a 20.30 to 20.19 20.24a

Non-White 20.01 20.05 to 0.04 20.01

Parental Education 20.01 20.03 to 0.01 20.01

Reference categories: sex (female), income (,$50,000), race/ethnicity (White). Grea
BV, baseline visit; DAN, dorsal attention network; DCCS, dimensional change card so

rate; IIV, intraindividual variability.
ap , .001, FDR corrected.
bp , .01, FDR corrected.

952 Biological Psychiatry: Global Open Science October 2023; 3:948–
3 tasks, after controlling for covariates (Supplement). We also
found that DMN-CON anticorrelation was specifically associ-
ated with lower tau and lower sigma in the dimensional change
card sort task but not the other 2 tasks.

Specificity and Robustness Analyses at Baseline

To demonstrate specificity, we tested an association between
IIV and between-network connectivity between the auditory
and retrosplenial networks. The cognitive tasks require visuo-
spatial attention but not auditory processing. Furthermore,
these tasks require in-the-moment attention, and not the range
of cognitive functions linked with the retrosplenial network,
including episodic memory, navigation, imagination, and
planning for the future (68). The auditory-retrosplenial network
connectivity was not associated with the flanker IIV (p = .753)
or CBCL attention T score (p = .857) at baseline, after ac-
counting for the covariates included in previous models
(Supplement).
blems at Baseline

L Attention BV CBCL Attention BV CBCL Attention BV

95% CI b 95% CI b 95% CI

– – – – –

0.11 to 0.15 – – – –

– 0.11a 0.09 to 0.13 – –

– – – 0.07a 0.05 to 0.09

– – – 0.05a 0.02 to 0.07

20.01 to 0.03 0.00 20.01 to 0.02 0.01 20.02 to 0.03

0.06 to 0.14 0.10a 0.06 to 0.14 0.06b 0.02 to 0.11

20.20 to 20.08 20.17a 20.23 to 20.12 20.17a 20.23 to 20.11

20.30 to 20.19 20.28a 20.33 to 20.22 20.28a 20.34 to 20.22

20.06 to 0.03 20.00 20.05 to 0.04 20.01 20.06 to 0.04

20.03 to 0.01 20.01 20.03 to 0.01 – –

ter magnitude in negative values indicate stronger DMN-DAN anticorrelation.
rt; DMN, default mode network; FD, framewise displacement; FDR, false discovery

957 www.sobp.org/GOS
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Table 4. Prospective Behavioral Associations With Attentional Symptoms, 1 to 3 Years Later

Predictor

CBCL Attention Y1 CBCL Attention Y2 CBCL Attention Y3

b 95% CI b 95% CI b 95% CI

(Intercept) 0.05a 0.01 to 0.09 0.08b 0.02 to 0.13 0.08a 0.01 to 0.15

Flanker IIV 0.02b 0.01 to 0.03 0.03b 0.01 to 0.04 0.03a 0.01 to 0.05

Baseline CBCL Attention 0.73c 0.71 to 0.74 0.68c 0.66 to 0.70 0.61c 0.59 to 0.63

Age 20.00 20.02 to 0.01 0.01 20.01 to 0.03 0.01 20.01 to 0.03

Sex 0.01 20.02 to 0.04 20.01 20.05 to 0.02 20.06a 20.10 to 20.01

Income $50,000–$99,999 20.02 20.06 to 0.02 20.06a 20.10 to 20.01 20.04 20.10 to 0.03

Income $100,0001 20.07c 20.11 to 20.04 20.06a 20.11 to 20.01 20.06a 20.13 to 20.00

Non-White 20.04a 20.07 to 20.01 20.07c 20.11 to 20.03 20.05 20.10 to 0.00

Parental Education 0.00 20.01 to 0.02 0.00 20.02 to 0.02 0.01 20.01 to 0.04

Reference categories: sex (female), income (,$50,000), race/ethnicity (White). Greater magnitude in negative values indicate stronger DMN-DAN anticorrelation.
DAN, dorsal attention network; CBCL, Child Behavior Checklist; DMN, default mode network; FDR, false discovery rate; IIV, intraindividual variability; Y1, year 1 follow-

up; Y2, year 2 follow-up; Y3, year 3 follow-up.
ap , .05, FDR corrected.
bp , .01, FDR corrected.
cp , .001, FDR corrected.
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To evaluate the robustness of these results, we also
formally tested 1) the effect of site and examined our hypoth-
eses using 2) raw reaction time data to calculate IIV and 3)
using a subset of low-motion subjects. First, we modeled site
as a predictor using general linear models to compare site
effects with the main effects in aims 1 to 3. Our main findings
remained significant, though a minority of sites were significant
in these models (Supplement). Using raw nonwinsorized data,
all the results remain significant, with the only exception being
that pattern comparison processing speed IIV was no longer
associated with DMN-DAN anticorrelation (Supplement). Last,
we applied a more stringent motion threshold that only
included participants with 60% of resting-state frames or
higher with framewise displacement ,0.2 mm (n = 7003).
Greater DMN-DAN anticorrelation remained significantly
associated with lower IIV in the flanker and dimensional
change card sort tasks, greater baseline age, and less severe
baseline attention symptoms (Supplement).
DISCUSSION

The current study provides the first evidence linking anti-
correlation between brain networks at rest and neurocognitive
measures of attentional variability in early adolescence.
Importantly, both lab-based resting-state FC and neuro-
cognitive markers of attentional variability were associated
with parent-reported attention symptoms at baseline. We also
provide novel evidence that worse scores on lab-based mea-
sures of attentional variability (IIV) at ages 9 to 10 predict
subsequent parent-reported attentional problems at 1-, 2-, and
3-year follow-up visits. Leveraging the ABCD cohort to eval-
uate longitudinal associations between functional connectivity,
neurocognitive measures, and symptoms allows us to evaluate
potential markers for attentional dysfunction in the general
population and to understand the relationships between neural
and behavioral development in adolescence.

We provide the first evidence linking stronger DMN-DAN
anticorrelation and lower IIV in early adolescence, connecting
resting-state and neurocognitive literature, which have been
Biological Psychiatry: Global O
largely investigated independently as measures of attention
variability. Previous studies have shown that the DMN and DAN
have an intrinsically antiphase relationship, first established 1
year after birth, increasing during development, and decreasing
in older adulthood (17,22,32–34,69). Kelly et al. (11) were the
first to link stronger DMN-DAN anticorrelation with lower flanker
IIV in 20 adults. The current results extend this work to early
adolescence and to other goal-directed, cognitive tasks,
showing that stronger DMN-DAN anticorrelation is associated
with greater baseline age and lower IIV across cognitive do-
mains. Furthermore, using ex-Gaussian distribution modeling,
stronger DMN-DAN anticorrelation is also related to both lower
tau and lower sigma across all tasks, indicating lower variability
of slow and fast responses, respectively. Taken together, both
Gaussian and ex-Gaussian approaches suggest that segrega-
tion of the DMN and DAN may be relevant to cognitive devel-
opment during early adolescence.

These results also indicate a remarkably consistent effect of
age on neural and behavioral markers of attention, in a narrow
age range from 9 to 11 years that aligns with previous work in
smaller samples (4–7). The neuropsychological task literature
indicates that IIV decreases dramatically during childhood and
adolescence, in conjunction with improved sustained attention
(4–7). However, most of this literature has focused on IIV
across the lifespan. Here, we focused on ages 9 to 11 and
found that older baseline age was associated with lower IIV
across the flanker, pattern comparison processing speed, and
dimensional change card sort tasks. These consistent behav-
ioral findings suggest that attentional variability is improving
across different cognitive demands in early adolescence, even
within the narrow age band of 9 to 11 years.

The current study also found that higher IIV across 3
cognitive tasks was cross-sectionally associated with more
severe attention symptoms. Previous work indicated that
higher IIV robustly identifies ADHD versus typically developing
youth (2,3)—a binary approach to attention problems
(39,46,48). However, continuous approaches are closer to the
phenomena of attention and its underlying neurobiological
processes (70–73). As such, this study takes a dimensional
pen Science October 2023; 3:948–957 www.sobp.org/GOS 953
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approach to include the full spectrum of attention problems in
the ABCD sample (3,74). The current findings are consistent
with previous work in children with ADHD and generalize to a
representative sample of U.S. youth (2).

The current results are the first to show that IIV assessed at
ages 9 to 10 is a consistent, proximal marker of worsening
attention during early adolescence (1, 2, and 3 years later).
These results align with 2 longitudinal, developmental studies
(nondiverse, smaller samples) that controlled for attention
symptoms at baseline and used IIV to predict overall func-
tioning and symptoms of inattention (75,76). By controlling for
attention problems at baseline, the current results highlight the
relationship between a lab-based measure of attentional vari-
ability in early adolescence and future worsening of attention
symptoms, over and above early parent-reported attention
deficits. In early adolescence, worsening attention problems
may be a broad indicator of functional impairment, regardless
of specific etiology or diagnoses that may emerge later (8).
Research on other neurodevelopmental disorders with onset in
late adolescence (i.e., psychotic disorders) indicates that early
intervention can be key for improving future symptom trajec-
tories (77–82). Because the ABCD Study will continue to
collect data prospectively on participants through late
adolescence, future work could examine IIV as a predictor of
altered trajectories of cognitive development and mental health
outcomes (8).

While we found that greater DMN-DAN anticorrelation was
linked with lower contemporaneous attention problems, we did
not find an association between DMN-DAN connectivity and
future attention symptoms. The cross-sectional DMN-DAN FC
-attention symptom association aligns with work using a pre-
vious release of the ABCD data (40). However, this work also
stands in contrast with previous studies that have found no
association between anticorrelated networks and attention
symptoms, albeit in much smaller adult samples (83,84). Using
multivariate approaches may improve prediction abilities (85).
Notably, Rosenberg et al. (86) used a connectome-based
predictive model to predict future sustained attention in
adults. Therefore, other metrics of resting-state FC may be
important neural predictors of symptom onset or progression.

In exploratory analyses, we evaluated whether additional
task-positive networks were anticorrelated with the DMN and
determined that only the DMN and CON were significantly
anticorrelated. Because DMN-CON anticorrelation was signif-
icantly associated with Gaussian and ex-Gaussian measures
of variability for the dimensional change card sort task but not
the other 2 tasks, these findings may suggest that this circuitry
specifically supports fluctuation in cognitive flexibility, as
opposed to variability in cognitive performance broadly. In
addition to attention problems, we found that more severe
externalizing symptoms were cross-sectionally associated
with greater IIV and weaker DMN-DAN anticorrelation. Further,
greater IIV at baseline predicted more severe externalizing
symptoms at the following year, after controlling for external-
izing symptoms at baseline. These results give credence to the
possibility that attention is an important feature in self-
regulation. Focusing on the task at hand, while suppressing
internally directed cognition, may be critical for controlling
one’s behavior in relation to current and future goals (52–54).
954 Biological Psychiatry: Global Open Science October 2023; 3:948–
Limitations and Future Directions

This study leverages the largest imaging and behavior study of
adolescence to date to examine a key developmental shift in
attentional variability and its neural correlates; however, some
limitations should be noted. Global signal regression (GSR) is
included in the standard ABCD data analysis pipeline, used in
the current analyses. While GSR is a powerful tool to remove
spurious artifacts due to motion, respiration, and physiological
noise that is prominent in developmental populations (87), it
also can introduce negative correlations into the data. This has
called into question whether DMN-DAN anticorrelation may be
an artifact of GSR (88,89). However, anticorrelation between
the DMN and task-positive networks has been detected in
studies both with and without GSR, indicating that that anti-
correlation is not a result of GSR (89–91). Because of the
consistency of anticorrelated networks, whether GSR is
included or not, we have chosen to replicate and extend the
majority of studies using GSR that show 1) development of
anticorrelated networks or 2) that anticorrelation is linked with
superior cognitive performance (11,32–34,39,46). Furthermore,
Nomi et al. (92) discovered complex linear and quadratic as-
sociations between GSR and age with different brain regions
and networks. Though the impact of GSR is minimal on the
linear and quadratic associations of the DMN-DAN anti-
correlation with age, this question warrants future investigation
in lifespan studies of functional connectivity. Last, we note that
although large-scale brain networks undergo development
during adolescence, no adolescent-specific brain parcellations
exist to date. Ongoing work addresses this issue by creating
age-specific parcellations (93).

With regard to capturing attention problems, the CBCL
inattention scale includes a variety of attention symptoms,
including both hyperactivity and inattentiveness, which may
warrant separate investigation in future studies (66). As a
parent-report measure, the CBCL may be biased due to rater;
multiple informants including teachers would be ideal to cap-
ture inattentive behavior across contexts. Though ABCD used
a structured interview to assess categorical psychiatric disor-
ders, ADHD diagnoses were not available in the current data
release due to errors in the programming algorithm. Regard-
less, our current work focuses on dimensional phenotypes of
attention dysfunction. In the future, we will investigate these
questions in the context of ADHD when accurate diagnoses
are available.

The results of the current study demonstrate the functional
significance of lab-based measures of attentional variability,
linking them to attentional impairment in early adolescence.
Increased IIV across 3 goal-directed behavioral tasks was
robustly linked with more severe attention deficits at baseline
as well as 1, 2, and 3 years later. While higher IIV is a well-
known hallmark of current ADHD (2,3), these results show
that IIV may be a useful index to identify worsening attention
symptoms in the general population. Further, we have shown
that stronger negative anticorrelation between the DMN and
DAN is cross-sectionally associated with lower IIV across
multiple tasks, better attention, and older age. These results
suggest that the segregation of brain networks is associated
with developmental improvements in cognition. In future
studies, focusing on altered longitudinal patterns of DMN-DAN
957 www.sobp.org/GOS

http://www.sobp.org/GOS


Variability in Cognition Predicts Attention Problems
Biological
Psychiatry:
GOS
anticorrelation may be informative for predicting functional
outcome.
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