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Towards Trustworthy Explanation: On Causal Rationalization

Wenbo Zhang 1 Tong Wu 2 Yunlong Wang 2 Yong Cai 2 Hengrui Cai 1

Abstract
With recent advances in natural language pro-
cessing, rationalization becomes an essential self-
explaining diagram to disentangle the black box
by selecting a subset of input texts to account for
the major variation in prediction. Yet, existing
association-based approaches on rationalization
cannot identify true rationales when two or more
snippets are highly inter-correlated and thus pro-
vide a similar contribution to prediction accuracy,
so-called spuriousness. To address this limita-
tion, we novelly leverage two causal desiderata,
non-spuriousness and efficiency, into rationaliza-
tion from the causal inference perspective. We
formally define a series of probabilities of causa-
tion based on a newly proposed structural causal
model of rationalization, with its theoretical iden-
tification established as the main component of
learning necessary and sufficient rationales. The
superior performance of the proposed causal ratio-
nalization is demonstrated on real-world review
and medical datasets with extensive experiments
compared to state-of-the-art methods.

1. Introduction
Recent advancements in large language models have drawn
increasing attention and have been widely used in extensive
Natural Language Processing (NLP) tasks (see e.g., Vaswani
et al., 2017; Kenton & Toutanova, 2019; Lewis et al., 2019;
Brown et al., 2020). Although those deep learning-based
models could provide incredibly outstanding prediction per-
formance, it remains a daunting task in finding trustworthy
explanations to interpret these models’ behavior, which is
particularly critical in high-stakes applications in various
fields. In healthcare, the use of electronic health records
(EHRs) with raw texts is increasingly common to forecast
patients’ disease progression and assist clinicians in making
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decisions. These raw texts serve as abstracts or milestones
of a patient’s medical journey and characterize the patient’s
medical conditions (Estiri et al., 2021; Wu et al., 2021).
Beyond simply predicting clinical outcomes, doctors are
more interested in understanding the decision-making pro-
cess of predictive models thereby building trust, as well as
extracting clinically meaningful and relevant insights (Liu
et al., 2015). Discovering faithful text information hence
is particularly crucial for improving the early diagnostic of
severe disease and for making efficient clinical decisions.

Disentangling the black box in deep NLP models, however,
is a notoriously challenging task (Alvarez Melis & Jaakkola,
2018). There are a lot of research works focusing on pro-
viding trustworthy explanations for models, generally clas-
sified into post hoc techniques and self-explaining models
(Danilevsky et al., 2020; Rajagopal et al., 2021). To provide
better model interpretation, self-explaining models are of
greater interest, and selective rationalization is one popu-
lar type of such a model by highlighting important tokens
among input texts (see e.g., DeYoung et al., 2020; Paranjape
et al., 2020; Jain et al., 2020; Antognini et al., 2021; Vafa
et al., 2021; Chan et al., 2022). The general framework of
selective rationalization as shown in Figure 1 consists of
two components, a selector and a predictor. Those selected
tokens by the trained selector are called rationales and they
are required to provide similar prediction accuracy as the
full input text based on the trained predictor. Besides, the
selected rationales should reflect the model’s true reason-
ing process (faithfulness) (DeYoung et al., 2020; Jain et al.,
2020) and provide a convenient explanation to people (plau-
sibility) (DeYoung et al., 2020; Chan et al., 2022). Most of
the existing works (Lei et al., 2016; Bastings et al., 2019;
Paranjape et al., 2020) found rationales by maximizing the
prediction accuracy for the outcome of interest based on
input texts, and thus are association-based models.

The major limitation of these association-based works (also
see related works in Section 1.1) lies in falsely discovering
spurious rationales that may be related to the outcome of
interest but do not indeed cause the outcome. Specifically,
when two or more snippets are highly intercorrelated and
provide a similar high contribution to prediction accuracy,
the association-based methods cannot identify the true ra-
tionales among them. Here, the true rationales, formally
defined in Section 2 as the causal rationales, are the true
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Figure 1: This figure shows a standard selective rationalization framework for a beer review, which can be seen as a
select-predict pipeline where firstly rationales are selected and then fed into the predictor.

Figure 2: Motivating example from the Beer review data.
Red highlights the text related to the aroma (denoted as Z2)
and blue highlights the text related to the palate (denoted
as Z1). The texts of aroma and palate are highly correlated
with each other, which makes them indistinguishable in
terms of predicting the sentiment of interest.

sufficient rationales to fully predict and explain the out-
come without spurious information. As one example shown
in Figure 2, one chunk of beer review comments covers
two aspects, aroma, and palate. The reviewer has a nega-
tive sentiment toward the beer due to the unpleasant aroma
(highlighted in red in Figure 2). While texts in terms of the
palate as highlighted in blue can provide a similar prediction
accuracy as it is highly correlated with the aroma but not
cause the sentiment of interest. Thus, these two selected
snippets can’t be distinguished purely based on the associ-
ation with the outcome when they all have high predictive
power. Such troublesome spuriousness can be introduced in
training as well owing to over-fitting to mislead the selector
(Chang et al., 2020). The predictor relying on these spurious
features fails to achieve high generalization performance
when there is a large discrepancy between the training and
testing data distributions (Schölkopf et al., 2021).

In this paper, we propose a novel approach called causal
rationalization aiming to find trustworthy explanations for
general NLP tasks. Beyond selecting rationales based on
purely optimizing prediction performance, our goal is to
identify rationales with causal meanings. To achieve this
goal, we introduce a novel concept as causal rationales by
considering two causal desiderata (Wang & Jordan, 2021):
non-spuriousness and efficiency. Here, non-spuriousness
means the selected rationales can capture features causally
determining the outcome, and efficiency means only essen-
tial and no redundant features are chosen. Towards these
causal desiderata, our main contributions are threefold.

• We first formally define a series of the probabilities of cau-
sation (POC) for rationales accounting for non-spuriousness
and efficiency at different levels of language, based on a
newly proposed structural causal model of rationalization.
• We systematically establish the theoretical results for iden-
tifications of the defined POC of rationalization at the in-
dividual token level - the conditional probability of neces-
sity and sufficiency (CPNS) and derive the lower bound
of CPNS under the relaxed identification assumptions for
practical usage.
• To learn necessary and sufficient rationales, we propose a
novel algorithm that utilizes the lower bound of CPNS as
the criteria to select the causal rationales. More specifically,
we add the lower bound as a causality constraint into the
objective function and optimize the model in an end-to-end
fashion, as shown in Figure 3.

With extensive experiments, the superior performance of
our causality-based rationalization method is demonstrated
in the NLP dataset under both out-of-distribution and in-
distribution settings. The practical usefulness of our ap-
proach to providing trustworthy explanations for NLP tasks
is demonstrated on real-world review and EHR datasets.

1.1. Related Work

Selective Rationalization. Selective rationalization was
firstly introduced in Lei et al. (2016) and now becomes
an important model for interpretability, especially in the
NLP domain (Bao et al., 2018; Paranjape et al., 2020; Jain
et al., 2020; Guerreiro & Martins, 2021; Vafa et al., 2021;
Antognini & Faltings, 2021). To name a few recent devel-
opments, Yu et al. (2019) proposed an introspective model
under a cooperative setting with a selector and a predic-
tor. Chang et al. (2019) extended their model to extract
class-wise explanations. During the training phase, the ini-
tial design of the framework was not end-to-end because
the sampling from these selectors was not differentiable.
To address this issue, some later works adopted differen-
tiable sampling, like Gumbel-Softmax or other reparame-
terization tricks (see e.g., Bastings et al., 2019; Geng et al.,
2020; Sha et al., 2021). To explicitly control the sparsity
of the selected rationales, Paranjape et al. (2020) derived
a sparsity-inducing objective by using the information bot-
tleneck. Recently, Liu et al. (2022) developed a unified
encoder to induce a better predictor by accessing valuable
information blocked by the selector.
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Figure 3: The framework of the proposed causal rationalization. Compared with the traditional selective rationalization in
Figure 1, our method adds the causal component (highlighted in gray) to generate counterfactual rationales.

There are few recent studies that explored the issue of spu-
riousness in rationalization from the perspective of causal
inference. Chang et al. (2020) proposed invariant causal
rationales to avoid spurious correlation by considering data
from multiple environments. Plyler et al. (2021) utilized
counterfactuals produced in an unsupervised fashion using
class-dependent generative models to address spuriousness.
Yue et al. (2023) adopted a backdoor adjustment method
to remove the spurious correlations in input and rationales.
Our approach is notably different from the above methods.
We only use a single environment, as opposed to multiple en-
vironments in Chang et al. (2020). This makes our method
more applicable in real-world scenarios, where collecting
data from different environments can be challenging. Addi-
tionally, our proposed CPNS regularizer offers a different
perspective on handling spuriousness, leading to improved
generalization in out-of-distribution scenarios. Our work
differs from Plyler et al. (2021) and Yue et al. (2023) in
that we focus on developing a regularizer (CPNS) to mini-
mize spurious associations directly. This allows for a more
straightforward and interpretable approach to the problem,
which can be easily integrated into existing models.

Explainable Artificial Intelligence (XAI). Sufficiency and
necessity can be regarded as the fundamentals of XAI since
they are the building blocks of all successful explanations
(Watson et al., 2021). Recently, many researchers have
started to incorporate these properties into their models.
Ribeiro et al. (2018) proposed to find features that are suffi-
cient to preserve current classification results. Dhurandhar
et al. (2018) developed an autoencoder framework to find
pertinent positive (sufficient) and pertinent negative (non-
necessary) features which can preserve the current results.
Zhang et al. (2018) considered an approach to explain a
neural network by generating minimal, stable, and symbolic
corrections to change model outputs. Yet, sufficiency and
necessity shown in the above methods are not defined from
a causal perspective. Though there are a few works (Joshi
et al., 2022; Balkir et al., 2022; Galhotra et al., 2021; Watson
et al., 2021; Beckers, 2021) defining these two properties
with causal interpretations, all these works focus on post hoc

Figure 4: Causal diagram of rationalization. It describes the
data-generating process for the text X , the true rationales Z,
and the label Y . Solid arrows denote causal relationships.

analysis rather than a new model developed for rationaliza-
tion. To the best of our knowledge, Wang & Jordan (2021)
is the most relevant work that quantified sufficiency and
necessity for high-dimensional representations by extending
Pearl’s POC (Pearl, 2000) and utilized those causal-inspired
constraints to obtain a low-dimensional non-spurious and
efficient representation. However, their method primarily as-
sumed that the input variables are independent which allows
a convenient estimation of their proposed POC. In our work,
we generalize these causal concepts to rationalization and
propose a more computationally efficient learning algorithm
with relaxed assumptions.

2. Framework
Notations. Denote X = (X1, · · · , Xd) as the input text
with d tokens, Z = (Z1, · · · , Zd) as the corresponding
selection where Zi ∈ {0, 1} indicates whether the i-th token
is selected or not by the selector, and Y as the binary label
of interest. Let Y (Z = z) denote the potential value of
Y when setting Z as z. Similarly, we define Y (Zi = zi)
as the potential outcome when setting the Zi as zi while
keeping the rest of the selections unchanged.

Structural Causal Model for Rationalization. A structural
causal model (SCM) (Schölkopf et al., 2021) is defined by
a causal diagram (where nodes are variables and edges rep-
resent causal relationships between variables) and modeling
of the variables in the graph. In this paper, we first pro-
pose an SCM for rationalization as follows with its causal
diagram shown in Figure 4:
X = f(NX), Z = g(X, NZ), Y = h(Z ⊙X, NY ), (1)

where NX , NY , NZ are exogenous variables and f, g, h are
unknown functions that represent the causal mechanisms
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Figure 5: We evaluate the average lower bound of CPNS and the accuracy of simulated data under the in-distribution (ID)
and the out-of-distribution (OOD) setting. (a) ID: True rationale set {X1, X2} achieves the most accurate forecasting as the
set {X1, X2, X3} with all variables but its highest CPNS score can help distinguish it from others. (b) OOD: {X1, X2}
doesn’t only provide the most accurate predictions but also has the highest lower bound CPNS value among all the possible
rationale sets, meaning that using CPNS can select the true rationale to achieve OOD generalization.

of X,Z, Y respectively, with ⊙ denoting the element-wise
product. In this context, g and h can be regarded as the true
selector and predictor respectively. Suppose we observe a
data point with the text X and binary selections Z, ratio-
nales can be represented by the event {XiI(Zi = 1)}1≤i≤d,
where I(Zi = 1) indicates if the i-th token is selected, Xi

is the corresponding text, and d is the length of the text.

Remark 2.1. The data generation process in (1) matches
many graphical models in previous work (see e.g., Chen
et al., 2018; Paranjape et al., 2020). As a motivating ex-
ample, consider the sentiment labeling process for the Beer
review data. The labeler first locates all the important sub-
sentences or words which encode sentiment information and
marks them. After reading all the reviews, the labeler goes
back to the previously marked text and makes the final judg-
ment on sentiment. In this process, we can regard the first
step of marking important locations of words as generating
the selection of Z via reading texts X . The second step is
to combine the selected locations with raw text to generate
rationales (equivalent to Z⊙X) and then the label Y is gen-
erated through a complex decision function h. Discussions
of potential dependences in (1) are provided in Appendix B.

3. Probability of Causation for Rationales
In this section, we formally establish a series of the prob-
abilities of causation (POC) for rationales accounting for
non-spuriousness and efficiency at different levels of lan-
guage, by extending Pearl (2000); Wang & Jordan (2021).

Definition 3.1. Probability of sufficiency (PS) for ratio-
nales:

PS ≜ P (Y (Z = z) = y | Z ̸= z, Y ̸= y,X = x) ,

which indicates the sufficiency of rationales by evaluating
the capacity of the rationales {XiI(Zi = 1)}1≤i≤d to “pro-
duce” the label if changing the selected rationales to the
opposite. Spurious rationales shall have a low PS.

Definition 3.2. Probability of necessity (PN) for rationales:

PN ≜ P (Y (Z ̸= z) ̸= y | Z = z, Y = y,X = x) ,

which is the probability of rationales {XiI(Zi = 1)}1≤i≤d

being a necessary cause of the label I{Y = y}. Non-
spurious rationales shall have a high PN.

Desired true rationales should achieve non-spuriousness and
efficiency simultaneously. This motivates us to define the
probability of sufficiency and necessity as follows, with
more explanations of these definitions in Appendix A.1.
Definition 3.3. Probability of necessity and sufficiency
(PNS) for rationales:

PNS ≜ P (Y (Z ̸= z) ̸= y, Y (Z = z) = y | X = x) .

Here, PNS can be regarded as a good proxy of causality and
we illustrate this in Appendix A.2. When both the selection
Z and the label Y are univariate binary and X is removed,
our defined PN, PS, and PNS boil-down into the classical
definitions of POC in Definitions 9.2.1 to 9.2.3 of Pearl
(2000), respectively. In addition, our definitions imply that
the input texts are fixed and POC is mainly detected through
interventions on selected rationales. This not only reflects
the data generation process we proposed in Model (1) but
also distinguishes our settings with existing works (Pearl,
2000; Wang & Jordan, 2021; Cai et al., 2023). To serve
the role of guiding rationale selection, we extend the above
definition to a conditional version for a single rationale.
Definition 3.4. Conditional probability of necessity and
sufficiency (CPNS) for the jth selection:

CPNSj ≜ P (Y (Zj = zj ,Z−j = z−j) = y,

Y (Zj ̸= zj ,Z−j = z−j) ̸= y | X = x).

Definition 3.4 mainly focuses on a single rationale. The
importance of Definitions 3.1-3.4 can be found in Appendix
A.2. We further define CPNS over all the selected rationales
as follows.
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Definition 3.5. The CPNS over selected rationales:

CPNS ≜
∏
j∈r

(CPNSj)
1
|r| ,

where r is the index set for the selected rationales and |r| is
the number of selected rationales.

The proposed CPNS can be regarded as a geometric mean
and we discuss why utilizing this formulation in Appendix
A.3, with more connections among Definitions 3.4-3.5 in
Appendix A.4. To generalize CPNS to data, we can utilize
the average CPNS over the dataset to represent an over-
all measurement. We denote the lower bound of CPNS
and CPNSj by CPNS and CPNSj , respectively, with their
theoretical derivation and identification in Section 4.

3.1. Example of Using POC to Find Causal Rationales

We utilize a toy example to demonstrate why CPNS is
useful for in-distribution (ID) feature selection and out-
of-distribution (OOD) generalization. Suppose there is a
dataset of sequences, where each sequence can be repre-
sented as X = (X1, . . . , Xl) with an equal length as l = 3
and a binary label Y . Here, we set {X1, X2} are true ratio-
nales and {X3} is an irrelevant/spurious feature.

The process of generating such a dataset is described below.
Firstly, we generate rationale features {X1, X2} following
a bivariate normal distribution with positive correlations. To
create spurious correlation, we generate irrelevant features
{X3} by using mapping functions which map {X1, X2, ϵ}
to {X3} where ϵ ∼ N(0, 0.5). Here we use a linear map-
ping function X3 = X1 + ϵ. Thus irrelevant features are
highly correlated with X1.

There are 3 simulated datasets: the training dataset, the in-
distribution test data, and the out-of-distribution test data.
The training data

{
xtrain
i

}ntrain

i=1
and the in-distribution test

data
{
xtest-in
i

}ntest-in

i=1
follows the same generation process, but

for out-of-distribution test data {xtest-out
i }ntest-out

i=1 , we modify
the covariance matrix of X1, X2 to create a different dis-
tribution of the features. Then we make the label Y only
depends on (X1, X2). This is equivalent to assuming that
all the rationales are in the same position and the purpose is
to simplify the explanations. For a single xi, we simulate
P(yi = 1|xi) = π(xi) below:

π(xi) =
1

1 + e−(β0+β1xi1+β2xi2)
.

Then we use threshold value 0.5 to categorize the data into
one of two classes: yi = 1 if π ≥ 0.5 and yi = 0 if
π ≤ 0.5. Since the dataset includes 3 features, there are
6 combinations of the rationale (we ignore the rationale
containing no features). For ith rationale, we would fit a
logistic regression model by using only selected features and

refit a new logistic regression model with subset features
to calculate CPNSi. In our simulation, we set ntrain =
ntest-in = ntest-out = 2000, β0 = 1, β1 = 0.5 and β2 = 1.

The results of the average of CPNS1 and CPNS2, and the
accuracy measured in OOD and ID test datasets are shown
in Figure 5 over 10 replications. It can be seen that true
rationales ({X1, X2}) yield the highest scores of the average
CPNS and accuracy in both OOD and ID settings. This
motivates us to identify true rationales by maximizing the
score of CPNS or the lower bound.

4. Identifiability and Lower Bound of CPNS
As has been shown, the proposed CPNS helps to discover
the true rationales that achieve high OOD generalization.
Yet, due to the unobserved counterfactual events in the obser-
vational study, we need to identify CPNS as statistically es-
timated quantities. To this end, we generalize three common
assumptions in causal inference (Pearl, 2000; VanderWeele
& Vansteelandt, 2009; Imai et al., 2010) to rationalization,
including consistency, ignorability, and monotonicity.

Assumption 4.1.

• Consistency: Z = z→Y (Z = z) = Y.
(2)

• Ignorability:

{Y (Zj = zj ,Z−j = z−j),

Y (Zj ̸= zj ,Z−j = z−j)} ⊥ Z | X.
(3)

• Monotonicity (for X = x, Y is monotonic relative to Zi):

{Y (Zj ̸= zj ,Z−j = z−j) = y}
∧ {Y (Zj = zj ,Z−j = z−j) ̸= y} = False ,

(4)

where ∧ is the logical operation AND. For two events A
and B, A ∧ B = True if A = B = True, A ∧ B = False
otherwise.

Here in the first assumption, the left-hand side means the
observed selection of tokens to be Z = z, and the right-
hand side means the actual label observed with the observed
selection Z = z is identical to the potential label we would
have observed by setting the selection of tokens to be Z = z.
The second assumption in causal inference usually means no
unmeasured confounders, which is automatically satisfied
under randomized trials. For observational studies, we rely
on domain experts to include as many features as possible
to guarantee this assumption. In rationalization, it means
our text already contains all information. For monotonicity
assumption, it indicates that a change on the wrong selection
can not, under any circumstance, make Y change to the
true label. In other words, true selection can increase the
likelihood of the true label. The theorem below shows the
identification and the partial identification results for CPNS.
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Theorem 4.2. Assume the causal diagram in Figure 4 holds.
• If assumptions (2), (3), and (4) hold, then CPNSj can be
identified by

CPNSj =P (Y = y | Zj = zj ,Z−j = z−j ,X = x)

− P (Y = y | Zj ̸= zj ,Z−j = z−j ,X = x).

• If only assumptions (2) and (3) hold, CPNSj is not iden-
tifiable but its lower bound can be calculated by

CPNSj =max
[
0, P (Y = y | Zj = zj ,Z−j = z−j ,X = x)

− P (Y = y | Zj ̸= zj ,Z−j = z−j ,X = x)
]
.

The detailed proof is provided in Appendix H. Theorem 4.2
generalizes Theorem 9.2.14 and 9.2.10 of Pearl (2000) to
multivariate binary variables. This is similar to the single
binary variable case since for each single Zj , the condi-
tional event {Z−j = z−j ,X = x} doesn’t change. The
first part of the theorem provides identification results for
the counterfactual quantity CPNSj and we can estimate
it using observational data and the flipping operation as
shown in Figure 3. For example, given a piece of text x,
P (Y = y | Zj = zj ,Z−j = z−j ,X = x) can be esti-
mated by feeding the original rationales z produced by the
selector to the predictor, and P (Y = y | Zj ̸= zj ,Z−j =
z−j ,X = x) can be estimated by predicting the label of
the counterfactual rationals which is obtained by flipping
the zj . We can notice that Theorem 4.2 can be generalized
when zi represents whether to mask a clause/sentence for
finding clause/sentence-level rationales. Since the mono-
tonicity assumption (4) is not always satisfied, especially
during the model training stage. Based on Theorem 4.2, we
can relax the monotonicity assumption and derive the lower
bound of CPNSj . Since a larger lower bound can imply
higher CPNSj but a larger upper bound doesn’t, we focus
on the lower bound here and utilize it as a substitution for
CPNSj . Combining each rationale, we can get the lower
bound of CPNS as CPNS =

∏
j∈r(CPNSj)

1
|r| .

5. Learning Necessary and Sufficient Rationale
In this section, we propose to learn necessary and sufficient
rationales by incorporating CPNS as the causality constraint
into the objective function.

5.1. Learning Architecture
Our model framework consists of a selector gθ(·) and a
predictor hϕ(·) as standard in the traditional rationaliza-
tion approach, where θ and ϕ denote their parameters. We
can get the selection Z = gθ(X) and fed it into predic-
tor to get Y = hϕ(Z ⊙ X) as shown in Figures 3 and 4.
One main difference between causal rationale and origi-
nal rationale is that we generate a series of counterfactual
selections by flipping each dimension of the selection Z

Algorithm 1 Causal Rationalization

Require: Training dataset D = {(xi, yi)}Ni=1, parameters
k, α, µ and λ.
Begin: Initialize the parameters of selector gθ(·) and
predictor hϕ(·), where θ and ϕ denote their parameters
while not converge do

Sample a batch {(xi, yi)}ni=1 from D
Generate selections S = {zi}ni=1 through Gumbel-
Softmax sampling
for i = 1, . . . , n do

Get a random sample r
(k)
i from index set ri where

ri represents the set of rationales that are selected as
1 in zi and its size equals k%× length(xi)

for j = 1, . . . , |r(k)i | do
Generate counterfactual selections zi(j) by flip-
ping the jth index of the index set r(k)i

end for
end for
Get a new batch of selections S̃ = {zi(j)}i=1,···,n

j=1,···,|r(k)
i |

and set Sall = S
⋃
S̃

Compute L via Eq(5) by using Sall and D
Update parameters θ = θ − α∇θL;ϕ = ϕ− α∇ϕL

end while
Output: selector gθ(·) and predictor hϕ(·)

we obtained from the selector. Then we feed raw ratio-
nales with new counterfactual rationales into our predictor
to make predictions. Considering the considerable cost of
obtaining reliable rationale annotations from humans, we
only focus on unsupervised settings. Our goal is to make the
selector select rationales with the property of necessity and
sufficiency and our predictor can simultaneously provide
accurate predictions given such rationales.

5.2. Role of POC and Its Estimation
For the j-th token to be selected as a rationale, accord-
ing to the results of Theorem 4.2, we expect P (Y =
y | Zj = zj ,Z−j = z−j ,X = x) to be large while
P(Y = y|Zj ̸= zj ,Z−j = z−j ,X = x) to be small.
Here, these two probabilities can be estimated from the
predictor using selected rationales and flipped rationales,
respectively, through the deep model. The empirical estima-
tion of CPNSj is denoted as ĈPNSj . The estimated lower
bound is used as the causal constraint to reflect the necessity
and sufficiency of a token of determining the outcome. If
ĈPNSj is large, we expect the corresponding token to be
selected into the final set of rationales.

5.3. Learning Necessary and Sufficient Rationales
Given a training dataset D, we consider the following ob-
jective function utilizing lower bound of CPNS to train the
causal rational model:
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min
θ,ϕ

L = min
θ,ϕ

E(x,y)∼D

[
L (y, ŷ) + λδ (z)− µ

∑
j∈r(k)

log ĈPNS
+

j

|r(k)|︸ ︷︷ ︸
Causality Constraint

]
,

(5)
where ŷ = hϕ (z ⊙ x), z = gθ(x), L(·, ·) defined as the
cross-entropy loss, δ(·) is the sparsity penalty to control
sparseness of rationales, r(k)i denotes the a random subset
with size equal k% of the sequence length, λ and µ are
the tuning parameters. The reason we sample a random
subset r(k)i is due to the computational cost of flipping each
selected rationale. To avoid the negative infinity value of

log ĈPNS
+

j when the estimated ĈPNSj is 0, we add a small

constant c to get ĈPNS
+

j = ĈPNSj + c. Since the value
of c has no influence on the optimization of the objective
function, we set c = 1. Our proposed algorithm to solve (5)
is presented in Algorithm 1.

Remark 5.1. One of our motivations is from medical data.
In those data, important rationales are not necessarily con-
secutive medical records, and can very likely scatter all over
patient longitudinal medical journeys. However, continuity
is a natural property in text data. Therefore, we first conduct
the experiments without the continuity constraint in the next
section and then conduct experiments with the continuity
constraint in Appendix G.2.

6. Experiments and Results
6.1. Datasets

Beer Review Data. The Beer review dataset is a multi-
aspect sentiment analysis dataset with sentence-level anno-
tations (McAuley et al., 2012). Considering our approach
focuses on the token-level selection and we don’t use con-
tinuity constraint, we utilize the Beer dataset, with three
aspects: appearance, aroma, and palate, collected from Bao
et al. (2018) where token-level true rationales are given.

Hotel Review Data. The Hotel Review dataset is a form
of multi-aspect sentiment analysis from Wang et al. (2010)
and we mainly focus on the location aspect.

Geographic Atrophy (GA) Dataset. The proprietary GA
dataset used in this study includes the medical claim records
who are diagnosed with Geographic Atrophy or have risk
factors. Each claim records the date, the ICD-10 codes of
the medical service, where the codes represent different
medical conditions and diseases, and the description of the
service. We are tasked to utilize the medical claim data to
find high-risk GA patients and reveal important clinical in-
dications using the rationalization framework. This dataset
doesn’t provide human annotations because it requires a
huge amount of time and money to hire domain experts to
annotate such a large dataset.

6.2. Baselines, Implementations, and Metrics

Baselines. We consider five baselines: rationalizing neu-
ral prediction (RNP), variational information bottleneck
(VIB), folded rationalization (FR), attention to rationaliza-
tion (A2R), and invariant rationalization (INVART). RNP
is the first select-predict rationalization approach proposed
by Lei et al. (2016). VIB utilizes a discrete bottleneck
objective to select the mask (Paranjape et al., 2020). FR
doesn’t follow a two-stage training for the generator and
the predictor, instead, it utilizes a unified encoder to share
information among the two components (Liu et al., 2022).
A2R (Yu et al., 2021) combines both hard and soft selections
to build a more robust generator. INVART (Chang et al.,
2020) enables the predictor to be optimal across different
environments to reduce spurious selections.

Implementations. We utilize the same sparse constraint in
VIB, and thus the comparison between our method and VIB
is also an ablation study to verify the usefulness of our causal
module. For a fair comparison, all the methods don’t include
the continuous constraint. Following Paranjape et al. (2020),
we utilize BERT-base as the backbone of the selector and
predictor for all the methods for a fair comparison. We set
the hyperparameter µ = 0.1 and k = 5% for the causality
constraint. See more details in Appendix D.

Metrics. For real data experiments of the Beer review
dataset, we utilize prediction accuracy (Acc), Precision (P),
Recall (R), and F1 score (F1), where P, R, and F1 are uti-
lized to measure how selected rationales align with human
annotations, and of the GA dataset, the area under curve
(AUC) is used. For synthetic experiments of the Beer re-
view dataset, we adopt Acc, P, R, F1, and False Discovery
Rate (FDR) where FRD evaluates the percentage of injected
noisy tokens captured by the model which have a spurious
correlation with labels.

6.3. Real Data Experiments

We evaluate our method on three real datasets, Beer review,
Hotel review, and GA data. For Beer and Hotel review
data, based on summary in Appendix C Table 6, we select
Top-10% tokens in the test stage and the way of choosing k
during evaluation is in Appendix E. It is shown in Table 1
that our method achieves a consistently better performance
than baselines in most metrics for Beer review data. Results
for hotel review data are in Appendix G.3. Specifically,
our method demonstrates a significant improvement over
VIB which is an ablation study and indicates our causal
component contribution to the superior performance.

We calculate empirical CPNS on the test dataset as shown
in Figure 6. We find that our approach always obtains the
highest values in three aspects that matches our expectation
because one goal of our objective function is to maximize
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Table 1: Results on the Beer review dataset. Top-10% tokens are selected for the test datasets.

Methods Appearance Aroma Palate

Acc (↑) P (↑) R (↑) F1 (↑) Acc (↑) P (↑) R (↑) F1 (↑) Acc (↑) P (↑) R (↑) F1 (↑)
VIB 92.2(1.1) 42.7(2.1) 21.6(1.9) 26.8(2.0) 83.5(1.5) 43.4(1.1) 25.6(2.2) 30.1(1.0) 74.3(2.4) 27.6(1.4) 24.1(3.5) 23.6(2.4)
RNP 91.0(1.1) 48.7(4.5) 11.7(0, 9) 20.0(1.5) 82.4(0.8) 44.2(2.6) 20.7(3.2) 27.6(4.3) 74.0(0.9) 25.1(1.8) 21.9(2.0) 22.8(4.9)
FR 94.5(0.6) 37.7(1.9) 19.1(0.8) 23.7(1.1) 86.0(1.6) 40.3(2.5) 22.3(3.5) 28.0(1.9) 77.0(1.9) 25.8(1.0) 23.6(1.3) 22.4(1.6)
A2R 92.2(1.3) 49.1(1.0) 18.9(1.6) 25.9(0.9) 82.5(1.8) 51.2(2.7) 21.2(1.9) 29.8(2.4) 74.3(3.6) 31.8(2.5) 24.3(2.1) 25.4(2.0)
INVRAT 94.0(0.9) 45.8(1.4) 20.6(1.3) 26.7(1.6) 84.3(2.0) 43.0(4.5) 23.1(3.2) 28.3(4.0) 76.8(3.8) 28.7(2.2) 23.5(1.0) 23.8(2.0)
CR(ours) 93.1(1.1) 45.3(1.7) 22.0(1.1) 28.0(1.2) 86.6(1.7) 60.3(3.0) 35.4(2.1) 39.0(4.1) 75.7(3.2) 32.5(2.8) 25.9(0.5) 26.5(1.2)

Table 2: Results on the Spurious Beer review dataset. Top-10% tokens are highlighted for evaluation.

Methods Aroma Palate

Acc (↑) P (↑) R (↑) F1 (↑) FDR (↓) Acc (↑) P (↑) R (↑) F1 (↑) FDR (↓)
VIB 80.2(1.8) 30.0(4.3) 17.2(3.1) 20.1(3.5) 97.6(5.3) 75.2(3.8) 26.8(4.5) 20.7(4.0) 21.6(3.8) 23.2(1.6)
RNP 79.0(1.0) 44.1(5.3) 12.3(1.0) 18.4(1.5) 97.4(3.0) 72.0(2.2) 22.8(2.6) 18.1(1.2) 18.6(1.6) 55.7(1.9)
FR 84.5(1.0) 38.7(3.7) 22.7(2.2) 27.0(2.7) 41.2(2.2) 76.2(3.5) 25.4(3.7) 22.0(4.0) 21.7(4.3) 11.6(3.1)
A2R 82.0(1.5) 44.6(3.4) 20.8(1.7) 26.8(3.2) 60.7(5.9) 73.5(3.8) 28.9(1.2) 21.8(3.2) 22.0(3.4) 39.7(3.3)
INVRAT 84.0(1.5) 42.0(2.6) 22.9(1.8) 27.9(2.4) 40.3(3.1) 76.5(3.6) 28.2(2.4) 22.5(2.7) 22.5(3.0) 7.2(1.7)
CR(ours) 85.0(2.1) 55.3(3.1) 31.5(1.8) 37.8(2.1) 37.9(0.7) 73.0(2.3) 29.4(3.5) 22.6(3.8) 23.8(3.3) 3.0(1.1)

the CPNS. This explains why our method has superior per-
formance and indicates that CPNS is effective to find true
rationales under the in-distribution setting. Examples of gen-
erated rationales are shown in Table 4 and more examples
are provided in Appendix G.5.1. We also conduct sensitiv-
ity analyses for hyperparameters of causality constraints in
Appendix G.5.2 and the results show the performance is
insensitive to k and µ when µ is not too large.

For the GA dataset, as shown in Table 3, our method is
slightly better than baselines in terms of prediction perfor-
mance. We further examine the generated rationales on GA
patients and observe that our causal rationalization could
provide better clinically meaningful explanations, with vi-
sualized examples in Appendix G.5.2. This shows that CR
can provide more trustworthy explanations for EHR data.

6.4. Synthetic Experiments

Beer-Spurious. We include spurious correlation into the
Beer dataset by randomly appending spurious punctuation.
We follow a similar setup in Chang et al. (2020) and Yu
et al. (2021) to append punctuation “,” and “.” at the begin-
ning of the first sentence with the following distributions:
P( append "," | Y = 1) = P( append "." | Y = 0) = α1,

P( append "." | Y = 1) = P( append "," | Y = 0) = 1− α1.

Here we set α1 = 0.8. Intuitively, since the first sentence
contains the appended punctuation with a strong spurious
correlation, we expect the association-based rationalization
approach to capture such a clue and our causality-based
method can avoid selecting spurious tokens. Since for many
review comments, the first sentence is usually about the
appearance aspect, here we only utilize aroma and palate
aspects as Yu et al. (2021). We inject tokens into the training
and validation set, then we can evaluate OOD performance
on the unchanged test set. See more details in Appendix F.

Table 3: Results on the GA data. Top-5% tokens are high-
lighted for evaluation.

CR (ours) RNP VIB FR

AUC (↑) 84.3(±0.2) 83.3(±0.8) 84.00(±0.5) 84.2(±1.0)

VIB FR RNP CR
Method

0.00

0.02

0.04

0.06

0.08

CP
N

S

Aspect
Palate
Appearance
Aroma

Figure 6: Estimated lower bound of CPNS of ours and
baseline methods on the test set of the Beer review data.

From Table 2, our causal rationalization outperforms base-
line methods in most aspects and metrics. Especially, our
method selects only 37.9% and 3.0% injected tokens on the
validation set for two aspects. RNP and VIB don’t align
well with human annotations and have low prediction accu-
racy because they always select spurious tokens. We notice
it’s harder to avoid selecting spurious tokens for the aroma
aspect than the palate. Our method is more robust when han-
dling spurious correlation and shows better generalization
performance, which indicates CPNS can help identify true
rationales under an out-of-distribution setting.
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Table 4: Examples of generated rationales. Human annotations are underlined and rationales obtained from ours and baseline
methods are highlighted by different colors. We find that the rationales of our method better align with human annotations.

CR VIB RNP FR

Aspect: Appearance
Label: Positive Pred: Positive
poured from bottle into shaker pint
glass . a : pale tan-yellow with
very thin white head that quickly
disappears . s : malt , caramel ...
and skunk t : very bad . hint of
malt . mostly just tastes bad though
. m : acidic , thin , and watery d :
not drinkable . unbelievably bad .
stay away ... you have several thou-
sand other beers that taste better to
spend you money on . do n’t be a
fool like me .

Aspect: Appearance
Label: Positive Pred: Positive
poured from bottle into shaker pint
glass . a : pale tan-yellow with
very thin white head that quickly
disappears . s : malt , caramel ...
and skunk t : very bad . hint of
malt . mostly just tastes bad though
. m : acidic , thin , and watery d :
not drinkable . unbelievably bad .
stay away ... you have several thou-
sand other beers that taste better to
spend you money on . do n’t be a
fool like me .

Aspect: Appearance
Label: Positive Pred: Positive
poured from bottle into shaker pint
glass . a : pale tan-yellow with
very thin white head that quickly
disappears . s : malt , caramel ...
and skunk t : very bad . hint of
malt . mostly just tastes bad though
. m : acidic , thin , and watery d :
not drinkable . unbelievably bad .
stay away ... you have several thou-
sand other beers that taste better to
spend you money on . do n’t be a
fool like me .

Aspect: Appearance
Label: Positive Pred: Positive
poured from bottle into shaker pint
glass . a : pale tan-yellow with
very thin white head that quickly
disappears . s : malt , caramel ...
and skunk t : very bad . hint of
malt . mostly just tastes bad though
. m : acidic , thin , and watery d :
not drinkable . unbelievably bad .
stay away ... you have several thou-
sand other beers that taste better to
spend you money on . do n’t be a
fool like me .
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Figure 7: The lower bound of CPNS with different high-
lighted lengths during test.

We evaluate out-of-distribution performance on the un-
changed testing set, so the results in Table 2 do suggest
that FR is better at avoiding the selection of spurious tokens
than VIB and RNP under noise-injected scenarios and has
better generalization. The results that VIB is better than FR
in Table 1 don’t conflict with the previous finding because
Table 1 evaluates in-distribution learning ability and VIB
can be regarded as more accurately extracting rationales
without distribution shift. Figure 6 presents an estimated
lower bound of the CPNS for our method and the baseline
methods on the test set of the Beer review data. While it is
true that FR has the lowest CPNS in Figure 6 this does not
negate the importance of CPNS. It is crucial to note that the
CPNS value estimates how well a model extracts necessary
and sufficient rationales, but it is not the sole indicator of a
model’s overall performance. The primary goal of FR is to
avoid selecting spurious tokens, which is evidenced by its
lower FDR in Table 2, demonstrating its better generaliza-
tion under noise-injected scenarios. We can argue that the
discrepancy between CPNS and FDR for FR may arise due
to the fact that FR is more conservative in selecting tokens

as rationales. This may lead to a lower CPNS, as FR may
miss some necessary tokens, but at the same time, it avoids
selecting spurious tokens, thus resulting in a lower FDR.

6.5. How Highlighted Length Influence CPNS

We want to know how highlighted length during eval-
uation can influence CPNS. We evaluate CPNS for
three aspects with different percentages of tokens from
{1%, 5%, 10%, 15%, 20%} as shown in Figure 7. It can
be seen that as the highlighted length increase, the estimated
value would decrease, which matches our expectations. For
CPNS, it consists of two types of conditional probabili-
ties P (Y = y | Zj = zj ,Z−j = z−j ,X = x) and
−P (Y = y | Zj ̸= zj ,Z−j = z−j ,X = x). If more
events are given, namely the dimension of Z−j increases,
a flip of a single selection Zj would bring less information,
and hence the difference between two probabilities would
decrease. The results indicate that we should always de-
scribe and compare CPNS of rationalization approaches
using the same highlighted length.

7. Conclusion
This work proposes a novel rationalization approach to find
causal interpretations for sentiment analysis tasks and clin-
ical information extraction. We formally define the non-
spuriousness and efficiency of rationales from a causal in-
ference perspective and propose a practically useful algo-
rithm. Moreover, we show the superior performance of our
causality-based rationalization compared to state-of-the-art
methods. The main limitation of our method is that CPNS
is defined on the token-level and the computational cost is
high when there are many tokens hence our method is not
scalable well to long-text data. In future work, an interesting
direction would be to define CPNS on the clause/sentence-
level rationales. This would not only make the computation
more feasible but also extracts higher-level units of meaning
which improve the interpretability of the model’s decisions.
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A. More Details of Probability of Causation for Rationales
A.1. More Details of Definitions 3.1-3.3

The probability of sufficiency (PS) for a binary label Y and a binary feature Z is defined as P{Y (Z = True) = True|Y =
False, Z = False), which means given the fact that we observed the false label Y with a false feature Z, what is the
probability of the label turning to be true if we have had the chance to set the feature to be true. This probability thus
describes the sufficiency of the feature Z to be true to obtain a true label. Now, moving to our Definition 3.1 proposed
for the rationales, it means the probability of Y = y when changing the selection to be Z = z given text X = x
with the already observed selection Z ̸= z and the label Y ̸= y. In other words, PS gives the probability of setting
z would produce y in a situation where z and y are in fact absent given x. It describes the capacity of the rationales
to “produce” the label. On the other hand, the probability of necessity (PN) for a binary label and a binary feature is
P{Y (Z = False) = False|Y = True, Z = True), which means given the fact that we observed the true label Y with
a true feature Z, what is the probability of the label turning to be false if we have had the chance to set the feature to be
false. This probability thus describes the necessity of the feature Z to be true to obtain a true label. Following a similar
logic, Definition 3.2 generalizes the PN score in the bivariate setting for rationales to describe the selection Z being a
necessary cause of the label. Combining PN and PS yields the probability of necessity and sufficiency (PNS) for rationales
in Definition 3.3 to comprehensively characterize the importance of rationales in causally determining the label. Those
defined counterfactual quantities provide a formal way of measuring whether one event A is the necessary or sufficient cause
of another event B.

A.2. Significance of Definitions 3.1-3.4 and Why PNS Means Causality

The significance of all the proposed definitions of the probability of causation (POC) is three-fold. First, we generalized the
classical definitions in Pearl (2000) (where they only consider one binary outcome and one binary feature) for rationales to
allow a selection of words as the feature input. Secondly, we align POC with the newly proposed structural causal model for
rationalization, with additional conditioning on the texts. Our definitions imply that the input texts are fixed and thus POC is
mainly detected through interventions on selected rationales. Lastly, to accommodate the task of rationalization, we further
define CPNSj for the j-th selected token in Definition 3.4, which allows us to simultaneously quantify the sufficiency and
necessity of an individual rationale.

We also illustrate why PNS Means Causality. First of all, we regard the underlying labeling process as a structure causal
model shown in Figure 4, and thus the true selection Z can be seen as the cause of the label. Changing the underlying true
Z selection to the opposite should also change the value of the label accordingly. This is aligned with the definition of PNS
and thus it represents the causality of how the selected rationales determine the label. If a selection of tokens is necessary
and sufficient causes the label, it should have a high PNS to reflect its high necessity and sufficiency in determining the label.
We expect our rationalization approach can capture the underlying causal selection, so that’s why we focus on optimizing
PNS and CPNS.

A.3. Discussion of Geometric Average in Definition 3.5

We use the geometric mean because we want CPNS over selected rationales in Definition 3.5 to be a likelihood, which is
a product of all individual rationales’ CPNS scores in the selection. Yet, such a simple product is not ideal owing to the
heterogeneous length of the texts. As the length increases, the number of selected rationales increases (because it’s k% of
raw text length), and the product would be lower by noting the probability ranging from 0 to 1. This is undesirable because
we don’t want to text length to be an influencing factor. Hence, we normalize the likelihood, leading to the geometric mean
as presented in the current paper.

A.4. Clarification on Token-level CPNS and Reasoning

We propose Definition 3.4 to assess the causality of each token, which can be estimated by comparing the conditional
probability of the label with and without this token (two counterfactual realities), as stated in Theorem 4.2. Therefore, to
assess the causality of the rationale (i.e., a selection of tokens), the most natural way is to define the CPNS directly for this
rationale by comparing the conditional probability of the label with the current selection versus that with counterfactual
selections. However, for a selection consisting of r tokens, the counterfactual realities yield 2r − 1, which leads to a
computational challenge when r is large. To overcome this issue, we alternatively propose Definition 3.5 to combine all
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individual-level CPNS scores in the selection to reflect the causality of the rationale, which instead yields a polynomial
computational complexity of O(r). Suppose the spillover effects (i.e., the words have dependence and the effect of the joint
of words cannot simply be written as the sum of effects of single words) are uniform across words and sentences, with the
Geometric Average in Definition 3.5, then we have the combined CPNS to approximate the CPNS of this rationale. Thus,
this score helps to determine the causality of the rationale. When there is no spillover effect, Definition 3.4 can be viewed as
the CPNS of a rationale directly. Notably, we do not calculate CPNSj for all tokens. Rather, we focus on a selection of
tokens indexed by r, where the index set r can be determined by the selector gθ. The demonstration of the toy example
mainly explains why CPNS is useful in identifying true causes in the presence of spurious features.

B. Structural Causal Model for Rationalization under Potential Dependences
We firstly clarify that according to Figure 4 and the proposed structural causal model for rationalization, the entire rationale
as a selection of true important tokens Z is determined by texts X, however, we do allow exogenous variables NZ to model
possible dependence among the elements of Z (i.e., zi). We understand that in practice, the rationale selection process may
involve sequential labeling, where the selection of one token can influence the subsequent selections.

Impact of Potential Dependence on Our Method. To address the concern of whether the potential dependence or
sequential labeling would affect our method, we argue that our method is still valid, but with conditions. Specifically, recall
that we propose Definition 3.4 to assess the causality of each token, which can be estimated by comparing the conditional
probability of the label with and without this token (two counterfactual realities), as stated in Theorem 4.2. Therefore, to
assess the causality of the rationale (i.e., a selection of tokens), the most natural way is to define the CPNS directly for this
rationale by comparing the conditional probability of the label with the current selection versus that with counterfactual
selections. Such a definition would allow possible dependence among the elements of Z (i.e., zi).

However, for a selection consisting of r tokens, the counterfactual realities yield 2r − 1, which leads to a computational
challenge when r is large. To overcome this issue, we alternatively propose Definition 3.5 to combine all individual-level
CPNS scores in the selection to reflect the causality of the rationale, which instead yields a polynomial computational
complexity of O(r). The proposed alternative approach is valid under potential dependence including the following cases: 1.
Suppose the spillover effects (i.e., the words have dependence and the effect of the joint of words cannot simply be written
as the sum of effects of single words) are uniform across words and sentences, with the Geometric Average in Definition
3.5, then we have the combined CPNS to approximate the CPNS of this rationale. Thus, this score helps to determine the
causality of the rationale. 2. When there is no spillover effect, Definition 3.5 can be viewed as the CPNS of a rationale
directly. 3. In addition, suppose there exists conditional independence among words (considered in Joshi et al. (2022)), our
proposed combined CPNS is equivalent to the CPNS of a rationale as well.

In conclusion, our method can still be applicable under the presence of potential dependence or sequential labeling, with
certain conditions on the spillover effects of the dependency. Our approach to assessing the causality of rationales using the
combined CPNS allows us to account for possible dependencies among the elements of Z while maintaining computational
efficiency.

C. Data Prepossessing and Summary
Beer Review Data. We use the publicly available version of the Beer review dataset also adopted by Bao et al. (2018) and
Chen et al. (2022). This dataset is cleaned by the previous authors and is a subset of the raw BeerAdvocate review dataset
(McAuley et al., 2012). Following the same evaluation protocol of some previous works (see e.g., Bao et al., 2018; Yu et al.,
2019; Chang et al., 2020; Chen et al., 2022), we convert their original scores which are in the scale of [0, 1] into binary
labels. Specifically, reviews with ratings ≤ 0.4 are labeled as negative and those with ≥ 0.6 are labeled as positive. We
follow the same train/validation/test split as Chen et al. (2022) and it is summarized in Table 5. To make computation more
feasible, except for the raw dataset, we create a short-text version of the dataset by filtering the texts over a length of 120.
Table 6 summarizes the statistics of the Beer review dataset.

Hotel Review Data. The Hotel review data we used were first proposed by Wang et al. (2010) and we adopted processed
one from Bao et al. (2018). Table 7 summarizes the statistics of the location aspect of Hotel review dataset.

GA Data. The proprietary GA dataset used in this study includes the medical claim records (diagnosis, prescriptions, and
procedures) of 329,023 patients who are diagnosed as GA from 2018 to 2021 in the US, as well as those of additional
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Table 5: The split of the dataset.

Short Train Val Test

Beer (Appearance) 15932 3757 200
Beer (Aroma) 14085 2928 200
Beer (Palate) 9592 2294 200

Table 6: Dataset details, with rationale length ratios included for datasets where they are available.

Short Len Rationale(%) N

Beer (Appearance) 88.94 19.2 19889
Beer (Aroma) 89.92 15.9 17033
Beer (Palate) 90.72 12.7 12086

Table 7: Dataset details for Hotel review data, with rationale length ratios included for datasets where they are available.

Aspect Train Val Test Len Rationale(%)

Location 14472 1883 200 708.7 10.3

991,946 patients who have at least one of GA risk factors. Since patients have long medical sequences over years, here we
only extract their most recent two years’ visit. Then we further select patients with sequence lengths between 100 and 150.
Finally, we sample 10000 positive patients and 30000 negative patients from the cohort to construct our dataset and Table 8
illustrates the division of the data into training, validation, and test sets.

Table 8: The split of the dataset.

Short Train Val Test Total Len

GA 20000 10000 10000 40000 122.31

D. Implementation Details
For the Beer review data, we use two BERT-base-uncased as the selector and the predictor components for rationalization
approaches. Those modules are initialized with pre-trained Bert.

A few challenges rise prior to directly including INVRAT for a fair comparison. Firstly, as discussed in the related work,
INVRAT relies on multiple environments while our method and other baselines focus on a single environment. Second,
their method highly depends on the construction of such multiple environments, yet, there is no principled guidance on
how to select environments for INVRAT. Third, Chang et al. (2020) trained a simple linear regression model to predict the
rating of the target aspect given the ratings of all the other aspects to generate the environments. This dataset is not publicly
available. In contrast, for the public Beer dataset we used, a comment for one aspect doesn’t have scores for other aspects,
which means we can’t simply utilize the experimental design of Chang et al. (2020) to select suitable environments. To
address those issues, firstly we impute the missing scores based on aspect-specific prediction models which are trained on
text data with their single provided aspect and then we follow the same way as Chang et al. (2020) to select environments.

For the GA data, we use the same architecture and the only difference is we replace the word embedding matrix with a
randomly initialized health diagnosis code embedding and the embedding is trained jointly with other modules. For all
experiments, we utilize a batch size of 256 and choose the learning rate α ∈ {1e−5, 5e−4, 1e−4}. We train for 10 epochs
all the datasets. For training the causal component, we tune the values of the Lagrangian multiplier µ ∈ {0.01, 0.1, 1} and
set k = 5. We set the temperature of Gumbel-softmax to be 0.5. For our final evaluation, we highlight Top-10% tokens as
the rationales for the Beer review data and Top-5% for the GA data. We conduct our experiments over 5 random seeds and
calculate the mean and standard deviation of metrics. All of our experiments are conducted with PyTorch on 4 V100 GPU.
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Our code is publicly available online.1

E. How to Select k% during Evaluation
Rationale for choosing k = 10% for the Beer review dataset: As shown in Appendix C Table 6, the true rationales in the
Beer review dataset are between 10% and 20% of the total tokens. Therefore, we choose k = 10% as a reasonable threshold
to represent the ground truth for this dataset, ensuring that we capture a significant portion of the true important tokens in
our evaluation.

Rationale for choosing k = 5% for the GA dataset: The GA dataset consists of medical claim data, and a substantial
portion of records (around 10%) are related to administrative and billing purposes, for example, codes for office visits
or inpatient/outpatient admin records. These records offer limited insights into patients’ disease progression and are less
relevant as rationales. Given the smaller pool of meaningful rationales in the GA dataset compared to the Beer review
dataset, we set a lower threshold ratio (k = 5%) for this dataset.

In conclusion, the choice of different top token ratios for the Beer review dataset and GA dataset in Experiment 6.3 is based
on the characteristics and ground truth of each dataset. Our aim is to ensure a fair evaluation of the models’ performance in
extracting meaningful rationales from the texts while taking into account the specific context and content of each dataset.

F. More Elaboration on Spurious Experiments
Punctuations as An OOD Scenario. While it is true that adding punctuation tokens does not change the meaning of the
sentence, the distribution of spurious tokens is changed. The objective of the experiment in Section 6.4 is to evaluate the
model’s generalization under different conditions. By injecting punctuation tokens based on the label (as described in
Section 6.4), we introduce spurious correlations that the model may exploit during training. These spurious tokens can be
regarded as short-cuts that can potentially mislead rationalization methods. With and without punctuation are two scenarios
representing whether short-cuts exit or not, we consider this as an OOD setting.

Clarification on Training/Validation/Test Data. In this experiment, we add punctuation tokens only to the training and
validation data, keeping the test data unchanged. This setup allows us to examine the models’ ability to generalize in an
OOD setting, where the distribution of spurious tokens in the training and validation data is different from that in the test
data. By keeping the test data free of injected punctuations, we can evaluate how well the models perform when faced with a
scenario where the short-cuts present in the training and validation data are absent in the test data.

G. Experimental Results
G.1. Results Analyses

In conclusion, the experimental results demonstrate that FR is indeed better at avoiding the selection of spurious tokens and
has better generalization under noise-injected scenarios. The differences between the findings in Tables 1, Table 2, and
Figure 6 highlight the distinct evaluation scenarios (in-distribution vs. out-of-distribution) and emphasize the importance of
considering multiple performance metrics (F1, FDR, and CPNS) to obtain a comprehensive understanding of the models’
behavior.

G.2. Beer Review Results after Adding Continuous Constarint

From Table 9, we observe that our method, when applied with the continuity constraint, continues to perform well, suggesting
that the continuity constraint does not negatively impact our method’s effectiveness.

G.3. Hotel Review Results

Since Hotel review data have fewer continuous rationales, we compare all the baseline methods with CR without the
continuity constraint. We don’t include INVART because for Hotel review data, it doesn’t has continuous scores and we
can’t follow the same way of selecting environments as Beer review data. From Table 10, upon conducting our analysis, we
have observed that our approach outperforms other baseline methods in terms of capturing human annotations. Based on

1https://github.com/onepounchman/Causal-Retionalization.
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Table 9: Results on the Beer review dataset after adding continuous constraint. Top-10% tokens are selected for the test
datasets. Causal rationalization performs the best in all aspects in terms of capturing human annotations.

Methods Appearance Aroma Palate

Acc (↑) P (↑) R (↑) F1 (↑) Acc (↑) P (↑) R (↑) F1 (↑) Acc (↑) P (↑) R (↑) F1 (↑)
VIB 93.8(2.4) 52.6(2.0) 26.0(2.3) 32.9(2.1) 85.0(1.1) 54.2(2.9) 31.6(1.9) 37.7(2.8) 81.5(3.2) 41.2(2.1) 35.1(3.0) 35.2(2.8)
RNP 91.5(1.7) 40.0(1.4) 20.3(1.9) 25.2(1.7) 84.0(2.1) 49.1(3.2) 28.7(2.2) 32.0(2.5) 80.3(3.4) 38.6(1.8) 31.1(2.3) 29.7(2.0)
FR 93.5(1.0) 51.9(1.1) 25.1(2.0) 31.8(1.6) 88.0(1.8) 54.8(3.5) 33.7(2.6) 39.5(3.7) 82.0(2.1) 44.3(3.4) 32.5(2.7) 33.7(3.1)
A2R 91.5(2.2) 55.0(0.8) 25.8(1.6) 34.3(1.4) 85.5(1.9) 61.3(2.8) 34.8(3.1) 41.2(3.3) 80.5(2.4) 40.1(2.9) 34.2(3.2) 34.6(3.2)
INVRAT 91.0(3.1) 56.4(2.5) 27.3(1.2) 36.7(2.1) 90.0(3.0) 49.6(3.1) 27.5(1.9) 33.2(2.6) 80.0(1.8) 42.2(3.2) 32.2(1.6) 31.9(2.4)
CR(ours) 92.4(1.7) 59.7(1.9) 31.6(1.6) 39.0(1.5) 86.5(2.1) 68.0(2.9) 42.0(3.0) 49.1(2.8) 82.5(2.3) 44.7(2.5) 37.3(2.0) 38.1(2.1)

Table 10: Results on the Hotel review dataset. Top-10% tokens are highlighted for evaluation. Causal rationalization
performs the best in all aspects in terms of capturing human annotations.

Methods Location
Acc (↑) P (↑) R (↑) F1 (↑)

VIB 93.3(1.8) 38.3(4.1) 41.6(6.4) 35.3(4.7)
RNP 94.9(1.7) 37.2(2.1) 39.8(3.3) 34.0(3.9)
FR 97.3(1.8) 35.5(1.7) 40.6(1.3) 33.5(1.2)
A2R 92.0(2.2) 37.8(2.9) 40.1(2.1) 34.4(3.2)
CR(ours) 94.0(2.1) 39.4(1.0) 44.2(1.5) 36.9(1.0)

these results, our method can be considered for long-text data.

G.4. Sensitivity Analyses

In the previous experiments, we set µ = 0.1 and k = 5%. To understand the sensitivity of the two parameters, we re-run the
experiments on real Beer review data, with µ = {0.01, 0.1, 1, 10} and k = {1%, 5%, 10%, 15%} while keeping the sparsity
constraint to be 0.1. We select Top-10% tokens and use accuracy and F1 for the evaluation. Figure 8,9, and 10 summarize
our results. It can be seen that our causal rationalization approach’s performance is not sensitive to k and µ when µ is not
too large e.g. (0.01, 0.1, 1).

G.5. Visualization Examples

G.5.1. BEER REVIEW

We provide three examples for each aspect in terms of all the methods in Table 11.

G.5.2. GA

Since we are more concerned about positive patients who are diagnosed with GA, we present one example of them here. We
have converted the medical codes to their corresponding descriptions. As the descriptions can be quite lengthy, we have only
included selected codes. In instances where there are multiple consecutive codes, we have only displayed one.

Compared to the rationales found by baseline methods, the ones predicted by our proposed method hit more risk factors of
GA. As shown in the first column of Table 9, the patient suffered eyesight defect (BILATERAL FIELD DETECT), irregular
heart beat (ATRIAL FIBRILLATION), and diabetes (TYPE I DIABETES WITH DIABETIC POLYNEUROPATHY), all of
which are clinically associated with GA as strong risk factors. In comparison, many of the rationales returned by baseline
methods are clinically irrelevant to GA, hence less robust.

It is essential to consider the importance of model interpretability in high-stakes applications like healthcare. Although
predictive accuracy is a vital aspect, the capacity of a model to provide self-explanatory and interpretable predictions is
paramount in fostering trust among healthcare professionals. Furthermore, regulatory compliance necessitates interpretable
models, as authorities may mandate explainability to ensure safety, efficacy, and fairness in healthcare algorithms. Given
the domain-specific demands for algorithms in healthcare, model interpretability often takes precedence over predictive
accuracy, as long as the accuracy is on par with other less interpretable algorithms. Consequently, we argue that the
negligible discrepancy in clinical outcome predictions between our proposed method and baselines should be considered
within the context of the critical role of interpretability in healthcare applications.
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Figure 8: Accuracy and F1 score for Appearance.
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Figure 9: Accuracy and F1 score for Aroma.
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Figure 10: Accuracy and F1 score for Palate.
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Table 11: Visualization examples of Beer review data.

CR VIB RNP FR

Aspect: Appearance
Label: Positive
Pred: Positive
poured from bottle into shaker pint
glass . a : pale tan-yellow with
very thin white head that quickly
disappears . s : malt , caramel ...
and skunk t : very bad . hint of
malt . mostly just tastes bad though
. m : acidic , thin , and watery d :
not drinkable . unbelievably bad .
stay away ... you have several thou-
sand other beers that taste better to
spend you money on . do n’t be a
fool like me .

Aspect: Appearance
Label: Positive
Pred: Positive
poured from bottle into shaker pint
glass . a : pale tan-yellow with
very thin white head that quickly
disappears . s : malt , caramel ...
and skunk t : very bad . hint of
malt . mostly just tastes bad though
. m : acidic , thin , and watery d :
not drinkable . unbelievably bad .
stay away ... you have several thou-
sand other beers that taste better to
spend you money on . do n’t be a
fool like me .

Aspect: Appearance
Label: Positive
Pred: Positive
poured from bottle into shaker pint
glass . a : pale tan-yellow with
very thin white head that quickly
disappears . s : malt , caramel ...
and skunk t : very bad . hint of
malt . mostly just tastes bad though
. m : acidic , thin , and watery d :
not drinkable . unbelievably bad .
stay away ... you have several thou-
sand other beers that taste better to
spend you money on . do n’t be a
fool like me .

Aspect: Appearance
Label: Positive Pred: Positive
poured from bottle into shaker pint
glass . a : pale tan-yellow with
very thin white head that quickly
disappears . s : malt , caramel ...
and skunk t : very bad . hint of
malt . mostly just tastes bad though
. m : acidic , thin , and watery d :
not drinkable . unbelievably bad .
stay away ... you have several thou-
sand other beers that taste better to
spend you money on . do n’t be a
fool like me .

Aspect: Aroma
Label: Negative
Pred: Negative
medium head that quickly disap-
pears . lacing is spotty . the smell
is rancid . it smells like swamp
gas . i am going to assume it is
from the can but with miller , who
knows ? the best way to describe
this brew is “ sugar water with a
slight watermelon taste ” . this is a
very sweet tasting beer hence it ’s
gloss on the can “ the champagne
of beers ! ” . overall not bad for
a macro but nothing exciting go-
ing on here . notes : shared with
my old man at the kitchen table .
he buys whatever is cheapest and i
take the opportunity to review bad
beer . i look at it this way . i wish
the old man would buy better beer
, but i get to review beer i normally
would n’t buy anyways .
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gloss on the can “ the champagne
of beers ! ” . overall not bad for
a macro but nothing exciting go-
ing on here . notes : shared with
my old man at the kitchen table .
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take the opportunity to review bad
beer . i look at it this way . i wish
the old man would buy better beer
, but i get to review beer i normally
would n’t buy anyways .
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is rancid . it smells like swamp
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from the can but with miller , who
knows ? the best way to describe
this brew is “ sugar water with a
slight watermelon taste” . this is a
very sweet tasting beer hence it ’s
gloss on the can “ the champagne
of beers ! ” . overall not bad for
a macro but nothing exciting go-
ing on here . notes : shared with
my old man at the kitchen table .
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beer . i look at it this way . i wish
the old man would buy better beer
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Aspect: Aroma
Label: Negative
Pred: Negative
medium head that quickly disap-
pears . lacing is spotty . the smell
is rancid . it smells like swamp
gas . i am going to assume it is
from the can but with miller , who
knows ? the best way to describe
this brew is “ sugar water with a
slight watermelon taste ” . this is a
very sweet tasting beer hence it ’s
gloss on the can “ the champagne
of beers ! ” . overall not bad for
a macro but nothing exciting go-
ing on here . notes : shared with
my old man at the kitchen table .
he buys whatever is cheapest and i
take the opportunity to review bad
beer . i look at it this way . i wish
the old man would buy better beer
, but i get to review beer i normally
would n’t buy anyways .

Aspect: Palate
Label: Positive
Pred: Positive
sparkling yellow hue with large
marshmallow head . light hops ,
corn , alcohol , grass in the nose .
grass notes , bready , soapy hops
in the finish . smooth but slick in
mouthfeel . highly drinkable and
enjoyable . sierra nevada is still the
kings of hops even though this beer
is a more average brew for them .

Aspect: Palate
Label: Positive
Pred: Positive
sparkling yellow hue with large
marshmallow head . light hops ,
corn , alcohol , grass in the nose .
grass notes , bready , soapy hops
in the finish . smooth but slick in
mouthfeel . highly drinkable and
enjoyable . sierra nevada is still the
kings of hops even though this beer
is a more average brew for them .

Aspect: Palate
Label: Positive
Pred: Positive
sparkling yellow hue with large
marshmallow head . light hops ,
corn , alcohol , grass in the nose .
grass notes , bready , soapy hops
in the finish . smooth but slick in
mouthfeel . highly drinkable and
enjoyable . sierra nevada is still the
kings of hops even though this beer
is a more average brew for them .

Aspect: Palate
Label: Positive
Pred: Positive
sparkling yellow hue with large
marshmallow head . light hops ,
corn , alcohol , grass in the nose .
grass notes , bready , soapy hops
in the finish . smooth but slick in
mouthfeel . highly drinkable and
enjoyable . sierra nevada is still the
kings of hops even though this beer
is a more average brew for them .

19



Towards Trustworthy Explanation: On Causal Rationalization

Table 12: Visualization examples of two GA patients.

CR VIB RNP FR

Label: Positive
Pred: Positive

$ HEMORRHAGE, NOT ELSE-
WHERE CLASSIFIED

$ PAIN IN RIGHT HIP

" HOMONYMOUS BILAT-
ERAL FIELD DEFECTS, LEFT
SIDE

" CHRONIC ATRIAL FIBRIL-
LATION

" HOMONYMOUS BILAT-
ERAL FIELD DEFECTS, UNSPECI-
FIED SIDE

" OTHER OPTIC ATROPHY,
RIGHT EYE

" TYPE 1 DIABETES MELLI-
TUS WITH DIABETIC POLYNEU-
ROPATHYSIDE

$ ERECTILE DYSFUNCTION
DUE TO ARTERIAL INSUFFI-
CIENCYSIDE

" TYPE 1 DIABETES MELLI-
TUS WITH DIABETIC POLYNEU-
ROPATHY

$ ACQUIRED KERATOSIS
[KERATODERMA] PALMARIS ET
PLANTARIS

Label: Positive
Pred: Positive

$ ADVERSE EFFECT OF
ANTICOAGULANTS, INITIAL
ENCOUNTER

$ HEMORRHAGE, NOT ELSE-
WHERE CLASSIFIED

$ DEHYDRATION

$ SUBLUXATION COMPLEX
(VERTEBRAL) OF LUMBAR
REGION

" HOMONYMOUS BILAT-
ERAL FIELD DEFECTS, LEFT
SIDE

" CHRONIC ATRIAL FIBRIL-
LATION

" HOMONYMOUS BILAT-
ERAL FIELD DEFECTS, UNSPECI-
FIED SIDE

$ SUBLUXATION COMPLEX
(VERTEBRAL) OF LUMBAR
REGION

" TYPE 1 DIABETES MELLI-
TUS WITHOUT COMPLICATIONS

$ STRAIN OF MUSCLE(S)
AND TENDON(S) OF THE ROTA-
TOR CUFF OF RIGHT SHOULDER,
INITIAL ENCOUNTER

$ XEROSIS CUTIS

$ PERIPHERAL VASCULAR
DISEASE, UNSPECIFIED||

Label: Positive
Pred: Positive

$ ALCOHOL ABUSE WITH
INTOXICATION, UNSPECIFIED

$ PAIN IN RIGHT HIP

$ SUBLUXATION COMPLEX
(VERTEBRAL) OF LUMBAR
REGION

$ PAIN IN RIGHT SHOULDER

$ LOW BACK PAIN

" UNSPECIFIED ATRIAL
FIBRILLATION

$ STRAIN OF MUSCLE(S)
AND TENDON(S) OF THE ROTA-
TOR CUFF OF RIGHT SHOULDER,
INITIAL ENCOUNTER

$ LOW BACK PAIN

" TYPE 1 DIABETES MELLI-
TUS WITH DIABETIC POLYNEU-
ROPATHY

$ STRAIN OF MUSCLE(S)
AND TENDON(S) OF THE ROTA-
TOR CUFF OF RIGHT SHOULDER,
INITIAL ENCOUNTER

$ PERIPHERAL VASCULAR
DISEASE, UNSPECIFIED

" UNSPECIFIED ATRIAL
FIBRILLATION

Label: Positive
Pred: Positive

$ HEMATURIA, UNSPECIFIED

$ ADVERSE EFFECT OF
ANTICOAGULANTS, INITIAL
ENCOUNTER

" CHRONIC FATIGUE, UN-
SPECIFIED

$ SUBLUXATION COMPLEX
(VERTEBRAL) OF LUMBAR
REGION

$ STRAIN OF MUSCLE, FAS-
CIA AND TENDON OF LOWER
BACK, INITIAL ENCOUNTER

" HOMONYMOUS BILAT-
ERAL FIELD DEFECTS, LEFT
SIDE

$ SUBLUXATION COMPLEX
(VERTEBRAL) OF LUMBAR
REGION

$ BARRETT’S ESOPHAGUS
WITH DYSPLASIA, UNSPECIFIED

$ STRAIN OF MUSCLE(S)
AND TENDON(S) OF THE ROTA-
TOR CUFF OF RIGHT SHOULDER,
INITIAL ENCOUNTER

" TYPE 1 DIABETES MELLI-
TUS WITH DIABETIC POLYNEU-
ROPATHY

$ PAIN IN LEFT SHOULDER

$ ACQUIRED KERATOSIS
[KERATODERMA] PALMARIS ET
PLANTARIS

$ UNILATERAL PRIMARY OS-
TEOARTHRITIS OF FIRST CAR-
POMETACARPAL JOINT, LEFT
HAND
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H. Proof of Theorem 4.2
H.1. Identification of CPNS

Proof: Let’s denote the logical operators and, or as ∧,∨, respectively. Given X = x, firstly we know

{Y (Zi = zi,Z−i = z−i) = y} ∨ {Y (Zi = zi,Z−i = z−i, ) ̸= y} = True. (6)

Then we have

{Y (Zj ̸= zj ,Z−j = z−j) = y}
(6)
= {Y (Zj ̸= zj ,Z−j = z−j) = y}

∧ [{Y (Zj = zj ,Z−j = z−j ,X = x) = y} ∨ {Y (Zj = zj ,Z−j = z−j) ̸= y}]
= [{Y (Zj ̸= zj ,Z−j = z−j) = y} ∧ {Y (Zj = zj ,Z−j = z−j) = y}]

∨ [{Y (Zj ̸= zj ,Z−j = z−i) = y} ∧ {Y (Zj = zj ,Z−j = z−j) ̸= y}]
(4)
= [{Y (Zj ̸= zj ,Z−j = z−j) = y} ∧ {Y (Zj = zj ,Z−j = z−j) = y}] , (7)

where we use the monotonicity assumption in (4).

Also, we know
{Y (Zi ̸= zi,Z−i = z−i, ) = y} ∨ {Y (Zi ̸= zi,Z−i = z−i) ̸= y} = True. (8)

Then we can get

{Y (Zj = zj ,Z−j = z−j) = y}
(8)
= {Y (Zj = zj ,Z−j = z−j) = y}

∧ [{Y (Zj ̸= zj ,Z−j = z−j) = y} ∨ {Y (Zj ̸= zj ,Z−j = z−j) ̸= y}]
= [{Y (Zj = zj ,Z−j = z−j) = y} ∧ {Y (Zj ̸= zj ,Z−j = z−j) = y}]

∨ [{Y (Zj = zj ,Z−j = z−i) = y} ∧ {Y (Zj ̸= zj ,Z−j = z−j) ̸= y}]
(7)
= {Y (Zj ̸= zj ,Z−j = z−j) = y}

∨ [{Y (Zj = zj ,Z−j = z−i) = y} ∧ {Y (Zj ̸= zj ,Z−j = z−j) ̸= y}] .
(9)

Based on the consistency assumption in (2), we either have {Y (Zj ̸= zj ,Z−j = z−j) = y} or
{Y (Zj ̸= zj ,Z−j = z−j) ̸= y} holds. Therefore, we know the two events in the last line of (9) are disjoint and
further take the probability on both sides to get:

P (Y (Zj = zj ,Z−j = z−j) = y | X = x)

= P (Y (Zj ̸= zj ,Z−j = z−j) = y | X = x)

+P (Y (Zj = zj ,Z−j = z−i) = y, Y (Zj ̸= zj ,Z−j = z−j) ̸= y | X = x) ,

(10)

where the last term is exactly CPNSj which we want to identify.

Finally with our ignorability assumption (3) we get:

CPNSj

= P (Y (Zj = zj ,Z−j = z−j) = y | X = x)− P (Y (Zj ̸= zj ,Z−j = z−j) = y | X = x)

(3)
= P (Y = y | Zj = zj ,Z−j = z−j ,X = x)− P (Y = y | Zj ̸= zj ,Z−j = z−j ,X = x). (11)
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H.2. Lower Bound of CPNS

Proof: To find the lower bound of CPNS, for any three events A, B, and C, we know that

P (A,B | C) ≥ max[0, P (A | C) + P (B | C)− 1]. (12)

We substitute A for {Y (Zj = zj ,Z−j = z−j) = y}, B for {Y (Zj ̸= zj ,Z−j = z−j) ̸= y} and C for {X = x}.

Also similar to (11) with ignorability assumption (3), we can get

P (A | C) = P (Y (Zj = zj ,Z−j = z−j) = y | X = x) = P (Y = y | Zj = zj ,Z−j = z−j ,X = x). (13)
P (B | C) = P (Y (Zj ̸= zj ,Z−j = z−j) ̸= y | X = x) = P (Y ̸= y | Zj ̸= zj ,Z−j = z−j ,X = x). (14)

Then combining (13) and (14):

P (A | C) + P (B | C)− 1

=P (Y = y | Zj = zj ,Z−j = z−j ,X = x) + P (Y ̸= y | Zj ̸= zj ,Z−j = z−j ,X = x)− 1

=P (Y = y | Zj = zj ,Z−j = z−j ,X = x)− P (Y = y | Zj ̸= zj ,Z−j = z−j ,X = x). (15)

Finally, the lower bound can be obtained by replacing P (A | C) + P (B | C)− 1 in (12) by (15).
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