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Abstract

In recent years, “introspective reasoning” systems have
been developed to model the ability to reason about
one’s own reasoning performance. This research exam-
ines “reflective” introspective reasoning: introspecting
about the introspective reasoning process, itself. We in-
troduce a reflective introspective reasoning system that
uses case-based reasoning (CBR) as its central reasoning
method. We examine the advantages of such a system,
and attempt to classify the reasoning failures within in-
trospective system that indicate a need to reflect higher.

Introduction

In artificial intelligence, meta-reasoning systems have
been used for a variety of purposes: to predict the behav-
ior of other agents, to guide the acquisition and applica-
tion of domain knowledge, and to “learn” by adjusting
the system’s own reasoning processes in response to ex-
perience. Meta-reasoning systems model the ability hu-
mans have to reason about our own and others’ reasoning
performance. Systems that apply meta-knowledge and
meta-reasoning to improvement of their own reasoning
processes are called “introspective learning” systems.

The ability to reason introspectively requires knowl-
edge of one’s own reasoning methods, and observa-
tion, evaluation, and alteration of those methods when
needed. A similar ability has been documented in stud-
ies of human reasoning behavior, and modeled with a
variety of artificial intelligence techniques. Introspective
reasoning systems often lack a critical component of hu-
man meta-reasoning: the ability to introspect about our
introspections themselves. Introspective reasoning is of-
ten applied only to reasoning in service of some underly-
ing task, such as navigation planning. An introspective
reasoner that can apply its reasoning to its own intro-
spective processes and repeat this reflection upon itself
indefinitely is called “reflective” (Ibrahim, 1992).

We have developed a reflective introspective reasoner
that learns by altering its reasoning methods at all levels.
RILS! analyzes both its task-level planning process and
its introspective reasoning process, using a unified rea-
soning method, case-based reasoning (CBR), for all its
tasks. Re-using CBR simplifies the introspective model
of the system’s reasoning processes and facilitates reflec-
tion.

'Reflective Introspective Learning System

A key issue for a reflective reasoner is deciding when
to reflect. RILS uses failure-driven learning; reflective
introspection occurs when an impasse is reached.

In the next section, we provide some background on
“reflection,” introspective learning in humans, and other
introspective reasoning systems. We then describe the
RILS approach to reflective introspection, and we clas-
sify the kinds of reasoning failures RILS uses to trigger
reflective introspective reasoning.

Background

Reflection

The term reflection, as it is used in this paper, refers to
systems which can shift the focus of their processing from
the current task to the problem-solving task itself, and
can repeat this shift of processing indefinitely (Ibrahim,
1992). As a system shifts to a higher-level task, it con-
structs a “reflective tower” of reasoning processes. Each
process analyzes and alters the one beneath it, which
is suspended until the higher-level process completes its
task.

While not a requirement, Reflection is easiest to
achieve if the same reasoning method is used at all rea-
soning levels. In order to introspect, the system must
have a model of its own reasoning processes. The model
becomes more complex as the number of different rea-
soning methods grows. Simplicity in the model enables
the system to meaningfully alter more features of its pro-
cessing, leading to greater flexibility.

The strength of a reflective system is its flexibility:
every aspect of the system is open to adaptation and
improvement, as the system responds and learns from
its experiences.. The drawback to a reflective system
is the potential of the system to reflect infinitely with-
out making forward progress at any level. The system,
when in doubt, must choose not to reflect and continue
processing. Many reflective systems only shift attention
to a higher level when an explicit failure, particularly a
catastrophic failure occurs.

Human Introspective Reasoning Behavior

Several studies have found evidence that humans engage
in introspective learning behavior: altering their reason-
ing strategies as their experience grows.

Chi & Glaser (1980) found differences between the
reasoning strategies of experts and novices: experts ap-
proach problems in a more planful way, spend more time



analyzing of a problem before attempting to solve it, and
understand better the important features of a problem.
They suggest these strategies are learned as part of the
process of becoming an expert.

Flavell, Friedrichs, & Hoyt (1970) found that older
children were better than younger children at monitoring
how well they had performed a given task and judging
when they had completed it. The development demon-
strated here indicates an awareness of one’s own reason-
ing processes, as well as learning from that awareness
to perform better. Kreutzer, Leonard, & Flavell (1975)
found that children improved their understanding of
their own memory processes as they became older: asked
to describe strategies for remembering things, older chil-
dren tended to describe many strategies and their out-
comes, younger children very few.

Kruger & Dunning (1999) found that competence at a
task was related to the ability to accurately judge one’s
own competence. This suggests that introspective skills
are integrally intertwined with particular domain skills.

In all these cases humans show an improved perfor-
mance on a domain task when they also show evidence
of planful, introspective learning behaviors.

Introspective Reasoning Systems

A variety of approaches to introspective reasoning sys-
tems exist. A few have examined reflective introspection.

SOAR is a rule-based system which does deliberately
address reflection (Rosenbloom, Laird, & Newell, 1993).
SOAR’s rule base may contain rules which control the
rule selection process, among others. SOAR can learn
new behaviors by creating new meta-rules. Its meta-
rules cannot affect all portions of its reasoning process.

The Massive Memory Architecture performs both in-
trospective reasoning and case-based reasoning in a task-
driven manner (Arcos & Plaza, 1993). Autognostic uses
a “Structure-Behavior-Function” model to represent rea-
soning processes (Stroulia & Goel, 1995). RAPTER uses
model-based reasoning: an explicit model of “assertions”
describing the ideal reasoning behavior is used to diag-
nose failures (Freed & Collins, 1994). These systems do
not include reflective capabilities.

Meta-AQUA maintains reasoning trace templates
(Meta-XPs) which describe the patterns of reasoning
that indicate reasoning failures (Cox, 1996). Meta-
AQUA’s Meta-XPs could be applied to the introspec-
tive process itself, but reflection is not the focus of the
project.

IULTAN integrates introspective learning with the
overall domain task in a way that permits reflection
(Oehlmann, Edwards, & Sleeman, 1994). TULTAN uses
case-based planning to generate both domain introspec-
tive plans, but, as in SOAR, its introspective plans have
incomplete access to the mechanisms which use them.

The ROBBIE system (Fox & Leake, 1995), the pre-
cursor to RILS, is related to the model-based reasoning
systems described above. It contains an explicit collec-
tion of assertions which describe the ideal reasoning pro-
cess of its case-based planner. ROBBIE’s uses its model
to perform detection, diagnosis, and repair of reason-
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Figure 1: The domain task architecture of RILS: reuse
of CBR

ing failures. It is not reflective; its introspective model
describes only its underlying planning system. ROBBIE
does reuse its CBR processes for multiple planning tasks.
RILS was developed from ROBBIE as a case-based in-
trospective learner that retains an explicit model of its
reasoning embodied in a set of introspective cases.

The Reflective Introspective Learning
System

RILS performs route planning for a simulated robot, sup-
ported by case-based and introspective learning. Case-
based reasoning is the central reasoning method for all
RILS tasks. The case memory stores cases for creat-
ing and executing route plans, and also stores “assertion
cases” that, taken together, comprise its introspective
model. The model captures the reasoning processes of
both planning and introspective tasks.

RILS’ Domain Task

RILS operates in the same domain as the ROBBIE sys-
tem (Fox & Leake, 1995); it navigates a simulated robot
through a domain of streets, using case-based planning
to create high-level plans and case-based reactive plan-
ning to interactively execute the plans in its simulated
domain. Figure 2 shows a sample of RILS’ domain.
RILS reuses its case-based index creation, retrieval,
and case memory for multiple domain tasks: creation
of an index, selection of a high-level plan, adaptation
of the plan, and selection of reactive planlets to execute
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Figure 2: A sample of RILS’ domain

its goals. Learning occurs at the domain level through
the storage of new high-level plans once they have been
successfully executed, and through the addition of index
creation rules which are learned through introspective
reasoning. The introspective reasoner recognizes and re-
pairs those times when the plan case retrieval retrieves
a suboptimal match to a given situation.

The following example demonstrates how RILS’ oper-
ates at the domain level, and how introspective learning
occurs to the domain reasoning. Suppose that RILS has
as a new goal to move from the corner of Maple and Elm
Streets to the corner of Cherry and Maple Streets. It has
in its case memory two potential matches to this prob-
lem: a plan from the corner of Maple and Elm to the
corner of Birch and Oak, and a plan from the corner of
Apple and Elm to the corner of Apple and Oak. Without
any learned indexing rules, RILS prefers the first plan to
the second one, because it shares the same starting lo-
cation as its current problem. RILS adapts the selected
plan and successfully executes it to arrive at its goal.

The process of executing the plan also streamlines it,
so that the plan RILS stores back into its case memory
involves merely turning east and moving along Maple to
Cherry Street. The storage of new plan cases is the most
basic level of learning in RILS.

The introspective reasoning system monitors the
domain-level reasoning process, and detects a reasoning
failure: the plan being stored into memory is more simi-
lar to an unretrieved case (from Apple and Elm to Apple
and Oak) than to the retrieved one. This triggers intro-
spective reasoning to diagnose and repair the domain
level reasoning. The ultimate repair is to add an in-
dexing rule to detect and prefer case matches where the
general direction of movement is the same (i.e., “move
straight east”). We discuss the introspective task in
more detail in the next section.
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Figure 3: The introspective task architecture of RILS:
monitoring applies only to domain-level reasoning; diag-
nosis and repair apply to both domain and introspective
modules.

RILS’ Introspective Task

The goal of the introspective reasoning system is to de-
tect reasoning failures in all portions of the system itself
and, where possible, to correct the system’s processing
to avoid repeating the reasoning failure in the future.
A “reasoning failure” is any situation which is not pre-
dicted by the system itself, whether it is a failure or a
success in terms of the domain task. For example, an
unanticipated opportunity to achieve a goal is as much
of a reasoning failure as a failure to achieve a goal.

In order to reason about its own reasoning, RILS
has a model of its ideal reasoning behavior. Figure 1,
which shows RILS’ domain reasoning, also represents ab-
stractly one portion of the introspective model. Figure 3
shows RILS’ introspective reasoning, represents the rest
of its introspective model, as well. For each component
of the reasoning process, RILS has a collection of “asser-
tions” at multiple levels of abstraction which describe in
detail RILS’ expectations about its own performance.

RILS actively monitors each step in the domain rea-
soning to verify that the actual behavior corresponds to
its model. When an assertion fails to be true of the
system’s actual behavior, RILS suspends the lower-level
reasoning task and takes over, attempting to diagnose
and repair the detected failure. The diagnosis module
searches through its model, examining those assertions
which are causally related to the detected failure, until it
finds a related assertion which has a repair recommended
for it. Once a repair is performed, control returns to the
planning process.

While RILS may actively monitor its underlying rea-
soning task, it cannot actively monitor its introspective
reasoning process. To do so would lead immediately
to an infinite reflective tower: RILS would monitor; its



monitoring, then have to monitors the monitoring;, and
so forth. Instead, RILS waits for “impasses” in its in-
trospective process: places where the reasoning process
cannot continue, including unexpected catastrophic fail-
ures at the domain task level. If RILS discovers explicit
evidence that the introspective reasoning process itself is
flawed, it suspends the introspective process and reflec-
tively applies its diagnosis and repair processes to the
introspective task. These impasses are detailed in the
next section.

It seems intuitive that RILS should actively monitor
its domain-level reasoning and passively monitor its in-
trospective reasoning. Route planning and execution in-
teract with a highly complex, poorly understood world,
where reasoning failures are common. RILS’ under-
standing of the state of the world at any time is lim-
ited. On the other hand, the introspective reasoner has
a much more restricted domain: the reasoning of the
system itself, and must be assumed to be more reliable.

Each component of RILS’ introspective reasoning is
implemented using the same case memory and case re-
trieval mechanisms as are used in the planning task. The
introspective model, rather than being a monolithic col-
lection of assertions, is represented by “assertion” cases
stored separately in the case memory. When monitor-
ing the planner’s reasoning, RILS constructs an index
representing the current point in the reasoning process,
and uses it to retrieve those assertion cases which are
applicable to that point. When diagnosing a reasoning
failure, RILS retrieves cases based on causal links which
are stored in each assertion case. RILS’ repair module
retrieves and applies repair plans from the case memory.

Assertion cases must contain sufficient information to
retrieve them when needed. Consider the sample as-
sertion case show in figure 4: the assertion case says
that the diagnosis module will only consider assertions
causally relevant to the current problem. Each assertion
case contains an assertion (and information to help apply
it), links to other causally-related assertions, applicable
repair strategies, and statistics on the assertion’s use and
success. Assertion cases are retrieved to support mon-
itoring and diagnosis of reasoning failures. As part of
the ROBBIE process, a general vocabulary was devel-
oped which describes a wide range of assertions about
reasoning processes: the generality of this vocabulary is
demonstrated by the ease with which the introspective
model was transformed to include a reflective compo-
nent.

We illustrate the reflective aspect of RILS with the fol-
lowing example, extending the example in the previous
section. Suppose that RILS experiences the reasoning
failure described above: it selects an inappropriate case,
diagnoses the failure, and learns a new indexing rule to
avoid the faulty selection in the future. All this requires
introspection only about the planner. RILS performs re-
flective introspection when the introspective reasoner it-
self is faulty. In this case, suppose that the repair module
incorrectly instantiated the new indexing rule, so that it
will not be retrieved when it is applicable. Some time
in the future, RILS plans a route from the corner of

(diagnose-spec2
(assertion diagnosis specific 2 during)
(and (contains-part assert-case links)
(member-of-structure
(part-value assert-case links)
checked-assertions))
(variables assert-case checked-assertions)
(1inks (abstr (diagnosis general 2))
(prev (diagnosis specific 1))
(next (diagnosis specific 3)))
(repair)
(statistics (uses 12)
(failures 0)))

Figure 4: An assertion case for the diagnosis component:
“Fvery assertion retrieved during diagnosis will have a
link to one already under consideration”

Birch and Elm Streets to the corner of Birch and Oak.
It should apply the new indexing rule, but fails to find
it. It therefore retrieves an inappropriate case in exactly
the same manner as described above. When the domain-
level reasoning failure is discovered and diagnosed, RILS
notices that this is exactly the same error as it suppos-
edly corrected earlier. This is the evidence RILS needs in
order to invoke reflective introspection. It will suspend
the introspective task, and apply the diagnosis and re-
pair modules to the introspective task itself.

Diagnosing and repairing this type of introspective
reasoning failure is difficult, because of the long time
lag between the actual failure and its detection. RILS
keeps a history of its past reasoning decisions in order to
be able to diagnose an unbounded distance into its past
reasoning. At present this history is used to attempt
a diagnosis on introspective reasoning failures: repair-
ing such failures is still work in progress. In the next
section we classify the kinds of impasse situations and
reasoning failures RILS uses to determine opportunities
for reflective introspection.

Reflective reasoning failures in RILS

RILS responds reflectively only to explicit failures which
indicate a flaw in the introspective reasoner. Because
each module reuses CBR for its reasoning, the sorts of
failures RILS must look for are similar for each mod-
ule. The underlying cause of each failure type differs
depending on the module in question: we will examine
each module in turn below. The basic categories of fail-
ures are:

1. Case memory lacks a required case;

2. RILS fails to retrieve a relevant case;

3. RILS retrieves an irrelevant case; and

4. RILS improperly applies a retrieved case.

Currently, RILS detects these reasoning failures and
attempts to reflectively introspect about them. It does
not yet repair its introspective process, though work on
that aspect is underway.



The Monitoring Module

The monitoring process examines only the route planner.
It retrieves those assertions which are currently relevant
and checks that no assertion is violated.

If an assertion case is missing from the case memory,
that implies that the introspective model is incomplete,
and hence inaccurate. This is a troubling failure, because
RILS alters its reasoning processes based on the assump-
tion that its introspective model captures the ideal be-
havior of the system. If a case is missing, then it is
possible that RILS would alter itself incorrectly. This is
not a failure type that we anticipate RILS handling in
any deep manner: It might be able to conjecture that a
case is missing and then let a human user/programmer
assist in correcting the situation.

Failing to retrieve a relevant case is an easier problem
to detect, though detection may be delayed some period
from the occurrence of the failure. A failure to retrieve
reflects some flaw in the index of the assertion case, or
a flawing the index creation and retrieval mechanism.
RILS can examine its case memory for cases that are
referred to by other assertion cases in memory but that
have not been retrieved along with them. RILS keeps
statistics on the application of assertion cases to help
with this analysis. Correcting this failure requires the
alteration of the indexing and retrieval methods for as-
sertion cases; we expect RILS to incorporate this repair
in the future.

Because the monitoring module knows the context of
the planner at a given moment, recognizing an irrelevant
assertion case is easy to detect on the spot: one case in
which reflection can occur at the moment of the reason-
ing failure. As before, this indicates either a flaw in the
index of the particular case retrieved, which is easy to
check and correct, or a flaw in how the system creates
indices and retrieves assertion cases. RILS can alter the
indexing rules for plan cases; we should be able to extend
this to altering the indexing of assertion cases as well.

A misapplication of a retrieved case could be detected
if the lack of it leads to an unexpected catastrophic fail-
ure of some sort. RILS examines catastrophic failures at
the route planning level to determine if the monitoring
process failed to detect a problem before the catastrophic
failure occurred, and considers the possibility that an as-
sertion was misapplied.

The Diagnosis Module

The diagnosis module retrieves assertion cases and eval-
uates them in much the same way as the monitoring
module. Therefore, many of the comments made about
monitoring also apply to diagnosis. The main difference
is in how the diagnosis module chooses which cases to
retrieve: it starts with an assertion case which is known
to be a failure, and then performs a heuristic-guided
breadth-first search through those assertions which are
causally related to the detected failure. It uses the causal
links each assertion contains.

For reflective diagnosis, it may be initially unclear
which assertion has failed, RILS creates a set of potential
failed assertions and searches in parallel starting from

each possibility.

A missing assertion case is just as much of a problem
for diagnosis as for monitoring. RILS could distinguish
between diagnosis and monitoring by which module was
most recently in use, but would have just as much diffi-
culty recognizing the lack and determining a repair.

Failing to retrieve a relevant case for the diagnosis
module could be due to two different failures. Like the
monitoring module, diagnosis could miss a case due to in-
dexing problems. Because diagnosis is performing highly
targeted retrievals, however, this is a problem likely to
be discovered as it happens. Alternatively, if assertion A
should contain a link to a causally related assertion B,
but lacks that link, then B could be overlooked. This
problem must be detected by examining the cases in
memory and their usage statistics. Retrieving an irrele-
vant case is, again, easy to detect.

Circumstances that indicate a problem with the diag-
nosis module include times when the diagnosis process
fails to find any applicable repair. Alternatively, the di-
agnosis module may attempt to evaluate an assertion
whose value depends on one that was overlooked or mis-
applied, and may be unable to complete its evaluation.

The Repair Module

The repair component retrieves and uses repair cases
which describe how to change the system to correct a
diagnosed reasoning failure.

A missing repair case is, as for assertion cases, difficult
to detect, unless a repair is referred to in an assertion
case and does not exist in the case memory.

Failing to retrieve a relevant repair or retrieving an
irrelevant one may be detected immediately, as the repair
module performs very targeted case retrieval. It would
be repaired, as above, by either altering the indexing
of the repair case, or altering the index and retrieval
methods of the system.

Misapplying a repair strategy is a difficult failure to
detect. A repair could be executed, and might not cor-
rect the experienced failure. As in the example in the
previous section, RILS may detect this type of failure if it
faces a similar situation again and generates an identical
repair.

Conclusions

RILS demonstrates the power of case-based reasoning to
serve as the central reasoning method of a system per-
forming a wide range of reasoning tasks. By having one
approach to reasoning, RILS has a fairly simple, power-
ful model of its reasoning processes. It uses that model
to introspect about its reasoning process: learning from
failures of its domain-level reasoning, detecting opportu-
nities to reflectively introspect and, eventually, learn by
improving its introspective reasoning processes.

A system that combines task reasoning with a reflec-
tive introspection capability should be able to respond
with flexibility to a complex environment, by re-tooling
its knowledge and processes at all levels of abstraction.
This seems to be a talent which humans possess, as we



improve our reasoning strategies with experience. RILS
provides one possible abstract model of this process.

Reflection permits a system to adapt itself to its sur-
roundings, but poses a hazard if left unchecked. We have
demonstrated here a “failure-driven” approach to con-
trolling reflection: only when clear evidence exists that
the introspective reasoning is flawed will RILS choose to
reflect. Our future work on RILS will complete the re-
flective skills it has by giving it the tools to repair, not
just diagnose, its introspective reasoning processes,
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