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ORIGINAL ARTICLE

Targeted Genome Sequencing Identifies Multiple Rare Variants
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Abstract

Rationale: Obstructive sleep apnea (OSA) is a common disorder
associated with increased risk for cardiovascular disease, diabetes,
and premature mortality. There is strong clinical and
epidemiologic evidence supporting the importance of genetic
factors influencing OSA but limited data implicating specific
genes.

Objectives: To search for rare variants contributing to OSA severity.

Methods: Leveraging high-depth genomic sequencing data from
the NHLBI Trans-Omics for Precision Medicine (TOPMed)
program and imputed genotype data from multiple population-
based studies, we performed linkage analysis in the CFS
(Cleveland Family Study), followed by multistage gene-based
association analyses in independent cohorts for apnea–hypopnea
index (AHI) in a total of 7,708 individuals of European
ancestry.

Measurements and Main Results: Linkage analysis in the CFS
identified a suggestive linkage peak on chromosome 7q31
(LOD= 2.31). Gene-based analysis identified 21 noncoding rare
variants in CAV1 (Caveolin-1) associated with lower AHI after
accounting for multiple comparisons (P= 7.43 1028). These
noncoding variants together significantly contributed to the
linkage evidence (P, 1023). Follow-up analysis revealed
significant associations between these variants and increased
CAV1 expression, and increased CAV1 expression in peripheral
monocytes was associated with lower AHI (P= 0.024) and higher
minimum overnight oxygen saturation (P= 0.007).

Conclusions: Rare variants in CAV1, a membrane-scaffolding
protein essential in multiple cellular and metabolic functions, are
associated with higher CAV1 gene expression and lower OSA
severity, suggesting a novel target for modulating OSA severity.

Keywords: obstructive sleep apnea; caveolin-1; apnea–hypopnea
index; genetic association analysis; rare variants
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Obstructive sleep apnea (OSA) is a common
disorder that affects 6% to more than 20% of
adults (1–3). Characterized by repetitive
episodes of upper airway obstruction during
sleep, intermittent hypoxemia, sleep
fragmentation, and excessive daytime
sleepiness, OSA negatively affects a wide
range of cardiovascular, neurological, and
metabolic functions (1, 4), increasing risk for
cardiovascular disease, diabetes, cancer,
cognitive impairment, and premature
mortality (1). OSA also is associated with
important patient-reported outcomes,
including quality of life, mood, and daytime
functioning (4). Although positive airway
pressure is an efficacious treatment for OSA,
adherence to therapy often is poor, and the
efficacy of common alternative treatments,
including oral appliances and upper airway
surgery, is quite variable. It is now generally
recognized that OSA is a heterogeneous
disease, which reflects variable contributions
of anatomic and physiological factors that
cause narrowing and collapse of the upper
airway as well as instability of ventilation
during sleep (5, 6). An understanding of the
molecular mechanisms underlying OSA
should provide insight into disease
mechanisms and heterogeneity, facilitating
personalized assessment of both
OSA-associated risks and informing
therapeutic decisions.

Family-based studies of OSA traits
adjusted for obesity have yielded heritability
estimates that range from 27% to 31%, with
SNP-based heritability estimates from large-
scale biobank studies for clinical traits ranging
from 6% to 10% (7–9). Early genetic linkage
studies reportedmultiple candidate regions
contributing to OSA (10, 11), but recent large
genome-wide association studies (GWASs)
have identified fewer significant associations
for polysomnographically defined OSA traits,
likely reflecting modest sample sizes (12).

Advances in next-generation
sequencing technology allow gene-based
analysis to identify combined effects of
multiple rare variants contributing to
complex diseases (13). We and others have
demonstrated that phenotype-associated rare
variants can be enriched in families and are
manifest by statistical evidence of linkage
(14, 15). Recently, a strategy that integrates
linkage and rare variant association analysis
was shown to be powerful for identifying
variants and genes contributing to complex
traits such as blood pressure and sleep-
related hypoxemia traits (16–20). In this
study, we apply this strategy to search for
rare variants underlying OSA using whole-
genome sequencing data from the Trans-
Omics in PrecisionMedicine (TOPMed)
program.We focus on the apnea–hypopnea
index (AHI), the primary measure of OSA
severity that summarizes the number of
apneas plus hypopneas per hour of sleep,
because of its widespread clinical use and
evidence of heritability. Some of the results of
this study have been previously reported in
the form of an abstract (21). Methods are
detailed in the online supplement.

Results

Noncoding Rare Variants on
Caveolin-1 Associated with AHI
The analysis flowchart is shown in Figure 1.
Our analysis includes three stages. In stage I,
we performed linkage analysis for AHI in
487 European American individuals from
118 families in the CFS (Cleveland Family
Study) (see Table E1 in the online
supplement) and identified the highest
linkage peak on chromosome 7q31
(LOD=2.31; Figure 2A). Applying the same
procedure as in our previous study (20), we
calculated a family-specific LOD score for
each CFS family, identifying the top 12
families with family-specific LOD
scores> 0.1 as those that potentially carry

low-frequency or rare AHI variants. In the
20-cM genomic region centered at the
linkage peak, there were 159,435 variants
with minor allele frequency (MAF)< 0.05
that passed quality control filters. As rare
variants in intergenic regions are less likely to
be in linkage disequilibrium with variants in
genes, we limited our search to the variants
located within the 223 genes in the region
and their corresponding 5 kb up- and
downstream regions. We filtered out the
variants that presented at most once in any
of the 12 selected families because these
variants did not contribute to the observed
linkage evidence. This procedure identified
35,352 and 21,275 variants using thresholds
of MAF< 0.05 andMAF< 0.01,
respectively. When examining functional
coding variants defined as missense, in-frame
deletion or insertion, stop gained or lost, start
gained or lost, splice acceptor or donor, or
initiator or start codon, we observed 49 and
22 genes with at least two such functional
variants for MAF< 0.05 andMAF< 0.01
thresholds, respectively. For the noncoding
variants, we observed 210 and 198 genes with
at least two variants for MAF< 0.05 and
MAF< 0.01 thresholds, respectively. Gene-
based burden tests and sequence kernel
association tests (SKATs) (22, 23) were
performed for these genes after stratifying by
coding and noncoding variants withMAF
thresholds of 0.05 and 0.01, respectively.
Table E2 lists the number of genes with
nominal empirical P values,0.05 for
different categories of variants and analyses.
We observed a 1.3- to 2.4-fold enrichment of
genes showing association evidence with
AHI in the categories we examined. In total,
we observed 70 nonoverlapping genes with
P, 0.05 in either the burden test or SKAT
withMAF threshold 0.05 or 0.01, and these
genes were carried forward to stage II
analysis. The most significant gene identified
was CAV1 (Caveolin-1), for analysis of 21
noncoding variants with MAF< 0.01
(Tables 1 and 2; burden test effect =20.51;
P=1.13 1025).

In stage II analysis, we used four
independent cohorts from the TOPMed
whole-genome sequencing project (ARIC
[Atherosclerosis Risk in Communities]
study, CHS [Cardiovascular Health Study],
FHS [FraminghamHeart Study], andMESA
[Multi-Ethnic Study of Atherosclerosis]),
consisting of 2,772 individuals of European
ancestry whose genomes were sequenced
and had AHImeasured (see Table E1).
To reduce the multiple-comparison penalty,

At a Glance Commentary

Scientific Knowledge on the
Subject: Obstructive sleep apnea
(OSA) is a common heritable disorder.
However, previous genome-wide
association analysis using common
genetic variants identified few genes.
The “missing heritability” may be
explained by rare variants.

What This Study Adds to the
Field: We perform multistage gene-
based analysis for apnea–hypopnea
index using whole-genome
sequencing data from the Trans-
Omics for Precision Medicine
program. We identify multiple rare
variants at the regulatory region of
Caveolin-1 for OSA. Cav-1 has
been implicated in multiple
pathophysiological processes and
diseases relevant to OSA.
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we performed the same burden and SKAT
analyses and restricted to the same variants
in the 70 genes identified in stage I. For
functional coding variants, we did not
observe any genes reaching nominal
significance in stage II. For the noncoding
variants, we observed six and three genes
with P, 0.05 in either the burden test or
SKAT for variants with MAF thresholds of
0.01 and 0.05, respectively (Table 1). CAV1
was again significantly associated with lower
AHI, with burden P values of 0.003 and
0.009 for MAF thresholds of 0.01 and 0.05,
respectively, although it did not reach
significance after correcting for multiple tests
(70 genes, two statistical methods, and two
MAF thresholds).

In stage III, we performed association
analysis of the seven genes identified in stage
II using imputed data from additional
samples in ARIC and FHS that had been
genotyped but not whole-genome sequenced,
as well as MrOS (Osteoporotic Fractures in
Men Study) andWASHS (Western
Australian Sleep Health Study) (N=4,449;
see Table E1). We consistently observed
association evidence of CAV1with lower
AHI (burden test P=0.003 for MAF< 0.01
and P=0.001 for MAF< 0.05, respectively;
Table 1), which is significant after adjusting
for multiple tests (seven genes, two statistical
methods, and twoMAF thresholds),
although significance was reached by
MAF< 0.05. When combining the

association evidence from stage II and III
samples, the P value of association evidence
of CAV1 for bothMAF< 0.05 and
MAF< 0.01 is 1.143 1024, which is
significant after adjusting for multiple tests
conducted in stage II analysis (70 genes, two
statistical methods, and twoMAF
thresholds). When combining the association
evidence from stages I, II, and III, the
association evidence of CAV1 reached
genome-wide significance for the
MAF< 0.01 threshold (P=7.43 1028;
Tables 1 and 2), which is significant after
adjusting for the total number of tests: 223
genes, two statistical methods, and twoMAF
thresholds. We further examined the effect
sizes of the 21 variants in stage II samples.

Linkage analysis in CFS OMNI array (N = 487; 118 families)

S
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g
e 

I
S

ta
g

e 
II

S
ta

g
e 

III

Single variant association analysis in CFS WGS from TOPMed Freeze5 (N = 487)
Identifying variants associated with AHI using MAF < 0.01 or 0.05

and present in at least 2 family members in a family with fsLOD > 0.1

Gene-based association analysis in CFS
Empirical P<0.05 based on simulation

Follow-up gene-based analysis in TOPMed FHS, MESA, ARIC, and CHS (N = 2,772)
P < 0.05

Follow-up gene-based association analysis in independent imputed data from
ARIC, FHS, MrOS, and WASHS (N = 4,449)

Stage II P<0.05, Stage III P<0.002, Stage II+III P<1.8×10–4,
Stage I+II+III P< 2.8×10–5 (223 genes, 2 tests, 2 MAFs, 2 annotations)

Linkage region on 7q31 for AHI with LOD>2
12 families with family-specific LOD (fsLOD) score > 0.1

22 and 49 genes with at least 2 such coding variants for MAF<0.01 and 0.05
198 and 210 genes with at least 2 such non-coding variants for MAF<0.01 and 0.05

70 genes (P<0.05) in Burden or SKAT tests with MAF<�0.01 or 0.05

6 and 3 genes (P<0.05) identified by analyzing non-coding variants for MAF< 0.01 and 0.05

21 non-coding variants at CAV1 with MAF < 0.01 passed both Stage III and Stage I+II+III
significant level

Figure 1. Flowchart of discovery analysis. AHI=apnea–hypopnea index; ARIC=Atherosclerosis Risk in Communities; CAV1=Caveolin-1;
CFS=Cleveland Family Study; CHS=Cardiovascular Health Study; FHS=Framingham Heart Study; LOD= logarithm of the odds; MAF=minor
allele frequency; MESA=Multi-Ethnic Study of Atherosclerosis; MrOS=Osteoporotic Fractures in Men Study; SKAT=sequence kernel association
test; TOPMed=Trans-Omics in Precision Medicine; WASHS=Western Australian Sleep Health Study; WGS=whole-genome sequencing.
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We observed that 10 of 12 variants had
protective effects (see Table E3), which is
consistent with these variants’ demonstrating
protective effects in the burden test using
stage I, II, and III samples (Table 2). We also
observed an association ofAKR1B1with
AHI using the SKAT P value of 7.93 1025,
but this association did not reach significance
after adjusting for multiple tests (Table 1).

Sensitivity and Generalization Analyses
We performed conditional linkage analysis
by including the burden test risk score of 21
CAV1 noncoding variants as a covariate in
further analysis of the CFS (seeMETHODS in
the online supplement). Individuals carrying

any of the 21 noncoding variants have a
mean AHI of 6.0 (SD, 11.3) events/h,
approximately one-third the mean value
of 19.6 (SD, 26.7) events/h observed in
noncarriers, and have more favorable values
for all nocturnal oxygen saturation
parameters. Carriers also are slightly younger
and have somewhat lower body mass index,
neck circumference, and systolic and diastolic
blood pressure, and they have a lower
prevalence of cardiovascular disease than
noncarriers but do not differ regarding waist-
to-hip ratio, excessive daytime sleepiness,
lung function, or diabetes (see Table E4).

The linkage LOD score dropped from
2.307 to 1.698 (by 26.4%) after conditioning

on the burden test risk score of 21 CAV1
noncoding variants as a covariate. The
decrease of LOD score is significant on the
basis of 1,000 simulations with conditional
analyses on the basis of 21 randomly selected
rare variants (seeMETHODS in the online
supplement), allele frequency matched to the
CAV1 variants (P, 0.001; Figure 2B),
suggesting that those noncoding variants
contribute to the linkage evidence on
chromosome 7q31.

AsCAV1 has been associated with type 2
diabetes (T2D) and pulmonary impairment,
we next performed gene-based analyses also
adjusting for lung function traits and T2D
in a subset of CFS samples with available
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Figure 2. The 21 variants in CAV1 (Caveolin-1). (A) LOD score in 7q31 linked to apnea–hypopnea index in linkage analysis. The pink region is
the 20-Mb target region in the sequencing analysis, and the protein coding genes are presented at the bottom. (B) LOD score in 7q31 when
conditioning on the burden test risk score of the effect size weighted sum of the 21 identified rare variants in CAV1. The effect sizes were
estimated in the CFS (Cleveland Family Study) cohort. The linkage curves are plotted with (red curve) and without (blue curve) adjusting for the
burden test risk score. The location of CAV1 is marked by a solid bar. The shaded regions represent the 1,000 simulations when conditional on a
randomly selected 21 frequency matched rare variants. (C) Cell type–specific regulatory annotation enrichment tests for the 21 noncoding variants
in CAV1 in 14 cell lines defined in the Ensembl Regulatory Build. The vertical dotted line represents the degree of significance after adjusting for
multiple tests. (D) Association of the 21 variants in CAV1 with CAV1 expression degree in 44 tissues from the Genotype-Tissue Expression
Consortium. The horizontal dotted line represents the degree of significance after adjusting for multiple tests. LOD= logarithm of the odds.
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measures, and we did not observe attenuation
in the degree of significance for the
association with AHI (Table 3). We also
performed gene-based analyses adjusting for
OSAmechanistic endotypes in a subset of
CFS samples with available data (n=218).
Burden test P values increased after adjusting
for collapsibility and arousal threshold (from
0.01 to 0.07 and 0.099 for collapsibility and
arousal threshold, respectively) but did not

substantively change after adjusting for
compensation or loop gain (Table 3). This
result suggests that the association ofCAV1
and AHI is mainly independent of lung
function and T2D, although pharyngeal
collapsibility and arousal threshold may
contribute to the observed association.

We performed gene-based analyses of
the 21 noncoding variants in CAV1 using
clinically defined OSA cases (n=4,103) and

control subjects (n=16,052) (on the basis of
International Classification of Diseases codes
and self-reported daytime sleepiness; see
METHODS in the online supplement) in
European individuals from the UK Biobank.
The SKAT and burden test P values were
0.283 and 0.186, respectively. Although this
analysis did not reach significance, these
21 variants consistently showed a protective
effect on OSA (Table 2).

Table 1. Stage I, II, and III Gene-based Association P Values of Noncoding Variants for Apnea–Hypopnea Index

MAF
Threshold

Stage I
(n=487)

Stage II
(n=2,772)

Stage III
(n=4,449)

Stages I, II, and III
(n=7,708)

Gene Number of Variants Burden SKAT Burden SKAT Burden SKAT Burden SKAT

0.01 TES 14 0.155 0.035 0.511 0.003 0.572 0.113 0.532 0.001
CAV1 21 1.131025 0.033 0.003 0.466 0.003 0.336 7.431028 0.201
ASZ1 16 0.036 0.139 0.008 0.028 0.560 0.400 0.010 0.047
PTPRZ1 58 0.388 0.002 0.006 0.104 0.186 0.441 0.013 0.014
SND1 111 0.246 0.008 0.147 0.020 0.502 0.347 0.252 0.005
AKR1B1 5 0.414 0.005 0.206 0.008 0.012 0.146 0.131 7.931025

0.05 CAV1 38 0.012 0.030 0.009 0.106 0.001 0.263 2.131025 0.043
POT1 93 0.351 0.036 0.007 0.513 0.300 0.461 0.021 0.287
SND1 319 0.010 0.038 0.061 0.041 0.311 0.637 0.016 0.045

Definition of abbreviations: AKR1B1=aldo-keto reductase family 1 member B; ASZ1=ankyrin repeat, SAM and basic leucine zipper domain
containing 1; CAV1=Caveolin-1; MAF=minor allele frequency; POT1=protection of telomeres 1; PTPRZ1=protein tyrosine phosphatase
receptor type Z1; SKAT=sequence kernel association test; SND1=staphylococcal nuclease and Tudor domain containing 1; TES= testin LIM
domain protein.
Only genes with either burden or SKAT P values ,0.05 in both stages I and II are reported. The results for CAV1 are in boldface type.

Table 2. Gene-based Association Analyses of 21 Noncoding Variants in Caveolin-1

Analysis Study Trait
Sample
Size

Number of
Variants

Burden
Effect

Burden
P Value

SKAT
P Value

Stage I CFS AHI 487 21 20.51 1.131025 0.03
Stage II FHS AHI 468 16 20.15 0.06 0.75

ARIC AHI 1,006 17 20.08 0.17 0.73
CHS AHI 668 15 20.12 0.05 0.21
MESA AHI 630 19 20.33 0.02 0.19

Stages I and II Meta-analysis AHI 3,259 — — 1.231026 0.15
Stage III ARIC AHI 583 14 20.07 0.24 0.48

FHS AHI 181 18 20.18 0.03 0.58
MrOS AHI 2,178 17 20.29 0.01 0.10
WASHS AHI 1,507 14 20.04 0.18 0.39
Meta-analysis AHI 4,449 — — 3.131023 0.34

Stages I, II, and III Meta-analysis AHI 7,708 — — 7.431028 0.20
Generalization UKB OSA case-control 16,052 19 257.8 0.19 0.283
Gene expression MESA CAV1 expression in

peripheral blood
mononuclear cell

922 16 13.6 0.39 0.08

MESA CAV1 expression in
T cell

404 15 27.4 0.04 0.09

MESA CAV1 expression in
monocyte

401 15 6.0 0.66 0.86

Definition of abbreviations: AHI=apnea–hypopnea index; ARIC=Atherosclerosis Risk in Communities; CAV1=Caveolin-1; CFS=Cleveland
Family Study; CHS=Cardiovascular Health Study; FHS=Framingham Heart Study; MESA=Multi-Ethnic Study of Atherosclerosis;
MrOS=Osteoporotic Fractures in Men Study; OSA=obstructive sleep apnea; SKAT=sequence kernel association test; UKB=UK Biobank;
WASHS=Western Australian Sleep Health Study.
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Bioinformatics Analysis
We investigated whether the 21 low-
frequency noncoding variants in the CAV1
gene show gene-regulatory roles by
performing gene-based association with the
RNA sequencing data across the 44 tissues
from the Genotype-Tissue Expression
Consortium (24). We observed that these
noncoding variants significantly contribute
to the CAV1 expression degree in skeletal
muscle (P=3.83 1024) in Genotype-Tissue
Expression data after adjusting for 44 tests
(Figure 2D). We also observed a positive
association between the CAV1 variants with
increased CAV1 expression degree in T cells
(P=0.042) in MESA (Table 2). In addition,
we observed significant associations between
higher CAV1 gene expression from
peripheral white blood cells and lower AHI
(P=0.024 in the meta-analysis of MESA and
FHS; Table 4). Higher CAV1 gene expression
was also associated with more favorable
values of oxygen saturation nadir during
sleep (meta-analysis P=0.007; Table 4), a
marker of lower OSA severity.

We next examined whether the 21
noncoding variants in CAV1 are enriched in
the regulatory activity–predicted elements
for the 14 cell lines defined in the Ensembl

Regulatory Build (25) (which includes CTCF
[CCCTC-binding factor] binding sites,
enhancer, heterochromatin, promoter flank,
and transcription start sites). We observed
significant enrichment in cis-regulatory
elements in humanmammary epithelial cells
and cervix after correcting for multiple tests
(Figure 2C). Similar enrichment was
observed in the genomic locations of the
21 variants with their corresponding cis-
regulatory elements in the humanmammary
epithelial cells (see Figure E1).

Discussion

Genetic association studies for OSA have
been limited by modest sample sizes with
both quantitative phenotype and genomic
data. To overcome this limitation, using data
from 7,708 individuals, we performed an
integrative search of rare variants associated
with AHI, the main clinical quantitative
metric for OSA, through linkage analysis
followed by multiple-stage association
analyses using whole-genome sequencing
data from the TOPMed project and imputed
genotype data fromGWASs. This strategy,
which reduced the multiple-comparison

burden, has been successful for identifying
rare variants associated with complex traits
(16–20). We identified 21 noncoding rare
variants in CAV1 that were associated with
lower AHI with genome-wide significance
when combining stage I, II, and III samples
(P=7.43 1028). The biological plausibility
that these variants play a protective role in
OSA is supported by several lines of
evidence: 1) the variants significantly
contributed to the initially observed linkage
peak for AHI; 2) the variants were associated
with CAV1 expression degree in skeletal
muscle and peripheral T cells, two sites that
may contribute to the pathogenesis of OSA
via effects on airway collapsibility and
inflammation, respectively; 3) CAV1
expression in peripheral monocytes
associated with both AHI and measures of
oxygen saturation during sleep; and
4) associations were partially attenuated with
adjustment for physiological mechanistic
traits, namely, pharyngeal collapsibility and
arousal threshold. All findings were
consistent with effects of higher gene
expression associated with less severe indices
of disease, suggesting that future targeting of
CAV1-associated pathways may have utility
for the development of novel therapeutic

Table 3. Gene-based Association Analyses of 21 Noncoding Variants in Caveolin-1 with Apnea–Hypopnea Index Adjusting for
Lung Function and Obstructive Sleep Apnea Physiological Endotypes

Covariates Number of Variants Burden Effect Burden P Value SKAT P Value Sample Size

No covariate 21 20.49 3.313 1025 0.038 454
FEV1, predicted % 21 20.49 2.923 1025 0.032 454
FVC, predicted % 21 20.47 6.343 1025 0.041 454
No covariate 21 20.40 0.012 0.054 350
T2D 21 20.40 0.016 0.065 350
No covariate 19 20.39 0.014 0.077 218
Collapsibility, % eupnea 19 20.25 0.070 0.119 218
Compensation 19 20.38 0.016 0.060 218
Loop gain 19 20.33 0.020 0.083 218
Arousal threshold, % eupnea 19 20.23 0.099 0.117 218

Definition of abbreviations: SKAT=sequence kernel association test; T2D= type 2 diabetes.

Table 4. Caveolin-1 Gene Expression Associated with Obstructive Sleep Apnea Traits

Study

Average SpO2
Minimum SpO2

AHI

Effect (SE) P Value Effect (SE) P Value Effect (SE) P Value

MESA 0.015 (0.007) 0.032 0.004 (0.002) 0.019 20.0015 (0.0006) 0.017
FHS 0.0004 (0.0051) 0.940 0.002 (0.001) 0.141 20.0005 (0.0007) 0.434
Meta-analysis 0.005 (0.004) 0.182 0.003 (0.001) 0.007 20.001 (0.0005) 0.024

Definition of abbreviations: AHI=apnea–hypopnea index; FHS=Framingham Heart Study; MESA=Multi-Ethnic Study of Atherosclerosis;
SpO2

=nocturnal oxygen saturation as measured by pulse oximetry.
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strategies for OSA. Notably, a prior study
showed that the burden of noncoding
variants at regulatory regions may increase
or decrease gene expression and are
associated with disease outcomes either
through loss or gain of function (26). The
directional associations we observed between
noncoding variants and both higher gene
expression and protective effects on OSA
severity are consistent with this literature,
implicating Caveolin-1 deficiency with
multiple physiological abnormalities relevant
to OSA.

Although this is the first report
implicating CAV1with OSA, Cav-1
(Caveolin-1) protein has been implicated in
multiple pathophysiological processes and
diseases relevant to OSA (27). Cav-1 is a
membrane-scaffolding protein that is critical
for the formation of caveola, plasma
membrane lipid rafts that harbor signaling
complexes that respond to and transmit a
variety of extracellular stimuli across the
membrane. Cav-1 interacts and binds with
GPCRs (G protein–coupled receptors),
endothelial nitric oxide synthase, insulin
receptors, TGF-b (transforming growth
factor-b), the MAP (mitogen-activated
protein) kinase family, the protein kinase C
family, growth factor receptor tyrosine
kinases, and others. As such, Cav-1 mediates
a wide range of functions, which include
transcytosis, lipid homeostasis, and
mitochondrial function and modulation of
reactive oxygen species. CAV1 gene
expression is highest in lung and fat tissue
but also is abundant in endothelial cells,
fibroblasts, adipocytes, and the central
nervous system (27). Cav-1 loss can drive
inflammation, fibrosis, endothelial
dysfunction, angiogenesis, cognitive
impairment, and oncogenesis. Cav-1
deficiency is associated with OSA
comorbidities, including obesity, diabetes,
dyslipidemia, hypertension, pulmonary
fibrosis, cardiac failure, Alzheimer’s disease,
and cancer (see Figure E1). Depletion of
Cav-1 is also implicated in impairment of the
ability to maintain blood vessel homeostasis
and promote vascular repair after endothelial
injury, increasing risk for pulmonary arterial
hypertension and lung injury (28, 29). CAV1
genetic variants may therefore be relevant for
understanding both the mechanisms for
OSA (e.g., pharyngeal collapsibility) as well
as mechanisms contributing to OSA-related
morbidities (e.g., pulmonary hypertension,
diabetes).

Deficiency in Cav-1 may increase OSA
severity through several pathways. CAV1
variants that increase gene expression may
protect against OSA by effects on upper
airway muscle function, as suggested by the
findings that 1) the variants associated with
OSA are expressed in skeletal muscle, and
2) associations were partially mediated by
adjusting for a measure of pharyngeal
collapsibility. Deficiencies in Cav-1 also
might predispose to more severe OSA
through effects on cardiopulmonary function
that result in reduced oxygen reserves, thus
predisposing to ventilatory instability or
more severe desaturation with respiratory
events (30). Cav-1 depletion reduces insulin
sensitivity and enhances inflammation
(31, 32), factors that recently were identified
as antecedent risk factors for OSA (33, 34), in
addition to reflecting outcomes of OSA.
Although our analyses adjusted for body
mass index and sensitivity analyses did not
suggest pleiotropy or confounding by lung
function or diabetes, analyses of larger
samples and more precise phenotyping may
identify mediating or pleiotropic associations
of Cav-1 with OSA and cardiometabolic
disease. Given the widespread expression and
actions of Cav-1, it is also possible that there
are more direct pathophysiological effects of
Cav-1 on central or peripheral
neuromuscular mechanisms regulating
upper airway patency and breathing control.

Cav-1 is also a target for a number of
stimuli, including pulmonary stretch,
reactive oxygen species (35, 36), and leptin
and insulin concentrations. Therefore, there
is potential for CAV1 variants to interact
with exposures and features common in
OSA, modifying the clinical expression of
OSA and its comorbidities. For example,
Cav-1 can be induced by insulin to negatively
regulate endothelial nitric oxide synthase,
resulting in endothelial dysfunction (37), a
feature of OSA-related cardiovascular
disease (32, 38, 39).

Our prior genetic studies of sleep-
related hypoxemia (a measure of OSA
severity) support a role for genes that
modulate lung responses to oxidative and
other stressors, genes in inflammatory
pathways, and genes influencing iron
metabolism. These are pathways and disease
processes that are also influenced by CAV1.
A GWAS of 10 ethnically diverse cohorts
identified significant associations between
measures of overnight oxygenation with
SNPs in the IL18R1 andHK1 regions (40),
which are genes implicated in pulmonary

inflammatory conditions (41). A combined
linkage–association analysis identified
associations between overnight hypoxemia
and common variants in ANGPT2 (16), a
gene also involved in lung injury syndromes,
as well as with rare variants inDLC1 (20), a
gene implicated in lung-related disease. Both
of these genes have effects on pulmonary
endothelial cell function, which is also a
target of variants in CAV1. In an admixed
population, a combined admixture and
association analysis identified variants in
FECH to associate with both AHI and
hypoxemia (42), suggesting the importance
of heme pathways in the etiology of OSA.
Heme degradation and its products (e.g.,
carbonmonoxide) play a role in carotid body
oxygen sensing and influence redox balance,
inflammatory response, and energy
metabolism. Caveolae harbor and regulate
heme degradation enzymes and negatively
regulate heme oxygenase-1, with potential
cascading effects on heme oxygenase and
carbonmonoxide signaling on
antiinflammatory processes. Therefore, these
distinct analyses, focusing on different OSA
traits and using different analytical
approaches, support a role for genetic
variants in pathways implicated in lung
inflammation and pulmonary vascular
integrity and suggest the potential for these
variants to be amplified with OSA-related
exposures such as pulmonary stretch and
oxidative stress.

Cav-1 deficiency also leads to sex
hormone–dependent metabolic
abnormalities in adipose tissue, insulin
resistance, lipid metabolism, and
hypertriglyceridemia (43). Although we did
not have sufficient power to test for sex-
specific associations, OSA has clear sexual
dimorphism, with less severe disease in
women.

A limitation of genetic studies of OSA is
the lack of well-phenotyped samples with
genotype data. The increasing availability of
large samples from biobanks presents
opportunities to further explore or validate
findings using clinically available data. We
analyzed a case-control sample from the UK
Biobank in which OSA status was based on
International Classification of Diseases codes
and likely was markedly underestimated
(i.e., only 1% prevalence), reducing statistical
power for replication analysis. These analyses
provided weak evidence of generalization
(i.e., consistent directionality) despite
differences in the phenotype and likely
significant misclassification. Our analyses of
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rare variants and quantitative phenotypes
suggest value in improving the phenotype
data within large biobanks to address
disorders such as OSA which are markedly
underdiagnosed.

In addition to the associations with
CAV1, we observed suggestive evidence of
AKR1B1 (P=7.93 1025) with AHI,
although this was not significant after
correcting multiple tests. However, given the
potential for type II error, this gene may be
of interest in further studies.

There are several methodological issues
that merit discussion. The P values at stage I
may be inflated because of variant selection
and because linkage and association were
performed in the same pedigrees. Our
previous simulation study suggested that
such inflation is minimal (20). We used
empirical P values when we selected genes
for stage II analysis. Because of statistical
power, we declared a significant gene either
at stage II or III a priori analyses at reduced
numbers of tests or using all three stage
samples but adjusting for all test hypotheses.
As noted, burden and SKAT can be
correlated. Thus, the association evidence of
CAV1with AHI reported in this study
represents a conservative result. In addition,
our analysis is limited to individuals of
European ancestry, which limits the
generalizability to other populations,

especially considering that OSA prevalence
and severity as well as allele frequencies of
rare variants vary by ancestry groups. Future
genetic analysis in large non-European
samples is needed to evaluate the
generalizability of our results.

Study strengths include a three-stage
analysis plan that allowed the assessment of
rare variant associations across independent
samples and pooled samples, analysis of a
standardized quantitative phenotype, and the
availability of high-quality genome-wide
sequencing data. In stage I, we used efficient
statistical approaches that weighted linkage
evidence in association analysis to reduce
multiple test burden, which differs from
popular association methods that do not
integrate family information in association
testing. In evaluating association evidence,
we used stage II and III samples that did not
involve variant selection; therefore, our
statistical analysis is robust against type I
error. However, this approach will miss
identifying genes located outside of linkage
regions and is best suited for identifying rare
variants that segregate within families.
Therefore, our approach is complementary
to current rare variant searching approaches.

Conclusions
We identified 21 noncoding rare variants in
the gene CAV1 that associated with a

clinically important and understudied
phenotype, the AHI. Our study suggests a
functional role of CAV1 in the pathogenesis
of OSA. Although there is active research
aimed at understanding the role of
therapeutic interventions that target
Cav-1–related pathways for a wide range of
diseases (27), our study suggests that studies
of these pathways may identify new
approaches for treatment of individuals with
OSA, a disease for which there are few
existing molecular targets. Future omics
analysis andmodel organism experiments
in relevant tissues are needed to further
understand the specific mechanisms for the
effects of Cav-1 on OSA.More generally, the
strategy we applied is a powerful approach in
searching for rare variants of complex traits
through a large genome sequencing study
such as the TOPMed project.�
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