
UC San Diego
Technical Reports

Title
Resource Reclamation in Distributed Hash Tables

Permalink
https://escholarship.org/uc/item/13g341vx

Authors
Tati, Kiran
Voelker, Geoffrey M

Publication Date
2006-07-27
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/13g341vx
https://escholarship.org
http://www.cdlib.org/


Resource Reclamation in Distributed Hash Tables

Kiran Tati and Geoffrey M. Voelker

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093-0114

{ktati, voelker}@cs.ucsd.edu

1 Introduction

Distributed hash tables (DHTs) are increasingly be-

ing proposed as the core communication and stor-

age layer for distributed services in the Internet.

This trend spans many traditional distributed ap-

plications, including file, storage, and archival sys-

tems [2,11,13,15], content delivery systems [3,6,8],

databases [9], mail servers [7], messaging sys-

tems [10], and distributed naming services [12, 16].

DHTs map keys in a large, virtual ID space to as-

sociated values stored and managed by individual

nodes in an overlay network. Since DHTs span

many unreliable nodes in a wide-area environment,

network and node failures are a common occur-

rence. To cope with such failures, previous work

has explored mechanisms and policies for using re-

dundancy to mask failures as users and applications

allocate and update data in the DHT.

In this paper, we discuss the problem of storage

reclamation in DHTs that use redundancy to provide

high data availability. Two general approaches to

managing data redundancy in DHTs have emerged,

eager repair and lazy repair. For data stored in

the DHT under a particular key, the eager approach

maintains redundant data on n successors of the

node that “owns” the key [4, 5, 15]. Each node in

the system runs a background stabilization process

that synchronizes its data with its n successors. This

stabilization process conveniently handles both re-

dundancy maintenance and reclamation simultane-

ously. Nodes propagate redundant data to a suc-

cessor if the successor does not have it. Similarly,

nodes implicitly propagate deletions to their succes-

sors so that successors can determine when they can

remove the redundant data they store. As a result,

the time it takes for deletions to propagate from the

owner to all successors is typically n rounds of the

stabilization process. Since rounds are short, eager

repair will quickly delete all redundant versions of

data stored at the owner node and its successors.

Note, though, that eager repair implicitly assumes

that successors will have the capacity to store re-

dundant data.

Compared with eager repair, lazy repair uses ad-

ditional redundancy to mask temporary node depar-

tures [2]. Eager repair immediately reacts to node

arrivals and departures by propagating redundant

data to new successors. Since node churn makes

departures and arrivals very common, lazy repair

uses additional redundancy to delay the propagation

of redundant data to new nodes until many nodes

storing the redundant data have simultaneously de-

parted. As a result, lazy repair reduces the com-

munication overhead of maintaining redundant data

for availability in the face of high node churn by

decoupling redundancy maintenance from node de-

partures.

Lazy repair uses a level of indirection to store re-

dundant data. When storing data at a key’s owning

node, lazy repair creates and stores redundant ver-

sions of the data on random nodes in the system. It

records and tracks the nodes storing redundant data

in a metadata structure stored at the key’s owner.

To ensure that the metadata is also highly available,

lazy repair uses eager repair just for the metadata.

To delete data in a system using lazy repair, an

application will send a request to delete data associ-

ated with a key to the key’s owning node. The owner

will then mark the data as deleted and subsequently

delete all redundant versions of this data on stor-

age nodes. Once storage nodes delete the redundant

1



data, the owner can complete the deletion operation

by deleting the metadata as well. However, since

lazy repair tolerates the temporary departure of stor-

age nodes, storage reclamation is more difficult and

requires additional overhead to completely delete all

redundant versions of data than eager repair. It re-

quires communication overhead to track when stor-

age nodes return, and it requires storage overhead to

maintain metadata until the deletion completes.

Two approaches for performing storage reclama-

tion for lazy repair are active polling and implicit

garbage collection. With active polling, a key’s

owner polls storage nodes until they return to the

system, or until a timeout declares the node de-

parted forever. Active polling uses communication

overhead to reduce storage overhead by deleting it

quickly. With garbage collection, storage nodes lo-

cally timeout and delete redundant data, reclaiming

storage resources. Garbage collection requires less

communication overhead, but deleted data persists

longer in the system. In the rest of this paper, we

compare the tradeoffs of these two methods.

2 Active Polling

In active polling, the key’s owning node handles

the application-level delete request. The owner is

then responsible for deleting the underlying redun-

dant data used to store the application data and pro-

vide high availability. Once the storage nodes have

deleted their data, the owner then deletes the meta-

data. The owner attempts to contact all storage

nodes to perform the delete. Storage nodes in the

system perform the delete immediately. For storage

nodes not in the system, the owner polls them until

they appear in the system again or until a timeout

declares those nodes permanently departed.

The cost to remove data using this approach has

four components: informing the storage nodes to

delete the data, polling departed storage nodes until

they appear again, using eager repair to maintain the

metadata during polling, and removing the metadata

to complete the delete.

The polling and metadata maintenance costs are

zero if all storage nodes are in the system when an

application removes a file. Since all storage recla-

mation approaches need to remove the metadata to

Figure 1: Time to delete data on storage nodes, and

number of metadata copies made during the deletion

process.

complete the delete, we do not consider it further in

the comparison. Hence, the owner needs to send

at least one message to all storage nodes for the

redundant data and successor nodes storing copies

of the metadata. For temporarily departed nodes,

the owner also needs to send messages to poll those

nodes until they arrive back in the system.

To quantify the overhead of using active polling,

we simulated file allocation and deletion in the To-

talRecall file system [2]. We used availability mea-

surements from the Overnet peer-to-peer system to

model node churn [1], and we used the data creation

and deletion statistics of an NFS workload to an in-

structional server [14] to model file system activity.

We created file system traffic from the above statis-

tics for first two days. We started with 32GB data

and each day we created 32GB of data, and dur-

ing each day the workload deletes 39% of the data

and overwrites 49% of the data uniformly through-

out the day.

We then tracked the time required to fully delete

files from the system. Figure 1 presents these re-

sults. The x-axis is the time required to remove data

on storage nodes and then the metadata on the owner

for a file. The y-axis on the left is the percentage of

deleted files. A point (a, b) on the curve “Deletion-

time” indicates that b percentage of files required a

hours to complete the deletion. Overall, only one

percent of files are removed immediately, and 18%

took less than one day to remove the file. For 60%

2



of the files the owner times out and declares the re-

maining storage nodes to have departed the system

forever. Note that we present the time to remove

files rather than the number of messages to decou-

ple the results from any specific polling mechanism.

Until the owner removes all underlying redun-

dant data used to store a file, it must maintain the

metadata representing the file. Assuming the use of

eager repair to maintain metadata, maintenance in-

curs a communication cost to make replicas across

successors during host churn. To quantify this cost,

we measured the number of replica copies made to

maintain metadata during the simulation experiment

above. The curve labeled “Metadata Cost” in Fig-

ure 1 shows the results of these measurements, also

as a function of time. The y-axis on the right in-

dicates the number of metadata copies made as the

owner waits for all storage nodes to delete their file

data. A point (a, b) on the curve indicates that a

file that required a hours to delete its data required

b copies to maintain the availability of its metadata

during the deletion process. Since for a given dele-

tion time the number of metadata copies varies de-

pending on the underlying host churn, we show an

error line for each point. The bottom of each error

line shows the minimum number of copies required,

the top shows the maximum, and the middle shows

the average.

Longer deletion times require more metadata

copies. On average, deletions that take a day require

11 copies. Likewise, deletions that span a week re-

quire 28 copies. Overall, 74% of files required more

than two days to delete data from all storage nodes

and at least 16 metadata copies.

3 Garbage Collection

With garbage collection, when the owner receives

the application-level delete request it removes the

metadata associated with the file immediately but

does not contact the storage nodes. Instead, the stor-

age nodes decide to garbage collect deleted data on

their own based upon existing communication be-

tween owners and storage nodes. When using lazy

repair, owners poll their storage nodes to track the

overall availability of a file. When the number of

available storage nodes drops below a threshold, the

0

10

20

30

40

50

60

70

80

90

100

0 6 12 18 24 30 36 42 48 54 60

Time (in Hours)

P
e

rc
e

n
ta

g
e

 o
f 

F
il
e

s

Figure 2: Time to repair.

owner then repairs data lost to unavailable nodes by

propagating redundant data to new storage nodes.

Garbage collection can take advantage of these

availability checks to further reduce communica-

tion costs. As a result, a storage node can assume

that, if it does not receive an availability probe from

the owner within an expected time frame (e.g., a

small multiple of the probe interval), then the file

has been deleted and the storage node can reclaim

the storage used for the file. If the storage node mis-

takenly deletes the data because availability probes

are severely delayed or repeatedly lost, then the

owner will already consider the storage node un-

available with respect to file availability since the

probe failed. Note that the owner can still recon-

struct the file from other storage nodes.

To estimate timeout values that storage nodes can

use to locally decide that a file has been deleted, we

simulated the behavior of using lazy repair in Total-

Recall to maintain file availability using the Overnet

workload to model host churn. We uniformly dis-

tributed 3,600 files during the first day of the simu-

lation, and for each file measured the time for host

churn to cause file availability to drop below the

lazy repair threshold.

Figure 2 shows the cumulative distribution of

time to invoke lazy repair across all files. The x-

axis shows the time to repair, and the y-axis shows

the percentage of files repaired. The Overnet trace

exhibits considerable host churn, and as a result we

see that roughly 95% of files require repair within

one day and all files require repair within three days.

These results suggest that storage nodes can use a

long timeout to decide to garbage collect data when

they have not received an availability probe from the

3



owner.

With garbage collection, owners delete file meta-

data and stop probing storage nodes, and storage

nodes eventually timeout and garbage collect the

data they store for the file. During this timeout

period, the disk storage used for data stored for a

deleted file cannot be reused for other files, and rep-

resents a temporary storage overhead until garbage

collection reclaims it. The amount of storage over-

head is the rate at which applications are delet-

ing files times the garbage collection timeout —

the garbage collection timeout effectively buffers

deleted data. This storage overhead is only an issue

if the storage node is at capacity. If it is, then it can

refuse requests to store new data and those requests

will go to other storage nodes. If the entire system

is at capacity, then this storage overhead will cause

the system to reach capacity sooner than otherwise.

However, it does not reduce the total amount of data

that the system can store since the storage will be re-

claimed.

4 Discussion

With active polling, owner nodes spend their re-

sources only for deleted files. However, one issue

with active polling is that owners have to distin-

guish between nodes that have left temporarily de-

parted the system (gone offline) and “dead” nodes

that have permanently departed. In peer-to-peer en-

vironments, it is difficult to make this distinction for

all nodes. When using timeouts to declare that a

node is dead, two issues arise. The owner might

mistakenly declare that a storage node is dead when

it has not, in which case the data on the storage node

will not be reclaimed (although the owner will still

remove the metadata) unless the storage node uses

garbage collection or synchronizes with the owner.

Or, the storage node has permanently departed and

the owner unnecessarily consumed bandwidth by

polling the dead node until it timed out.

With garbage collection, the system does not have

to determine whether storage nodes have perma-

nently departed since storage nodes are responsi-

ble for reclaiming space. Since peer-to-peer envi-

ronments typically exhibit considerable host churn,

dead nodes are not rare when deleting data. From

the simulation of file system activity above, dead

nodes have 15% of all file data. With garbage col-

lection, the system does not expend resources on

this data to remove it. Garbage collection also re-

duces communication costs since owners remove

metadata immediately rather than maintaining it un-

til all storage nodes have deleted the data. Since

lazy repair depends upon owner nodes and storage

nodes remaining in contact for the purposes of eval-

uating file availability, lack of contact can indicate

that the file has been deleted and the storage node

can garbage collect it. As a result, garbage collec-

tion is preferable for reclaiming storage in DHT-

based systems that use lazy repair to provide high

availability.

References

[1] R. Bhagwan, S. Savage, and G. M. Voelker.

Understanding availability. In 2nd Interna-

tional Workshop on Peer-to-Peer Systems, Feb.

2003.

[2] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Sav-

age, and G. M. Voelker. Totalrecall: Sys-

tem support for automated availability man-

agement. In ACM/USENIX Symposium on

Networked Systems Design and Implementa-

tion, Mar. 2004.

[3] M. Castro, P. Druschel, A.-M. Kermarrec,

A. Nandi, A. Rowstron, and A. Singh. Split-

stream: High-bandwidth multicast in cooper-

ative environments. In 19th ACM Symposium

on Operating Systems Principles, Oct. 2003.

[4] J. Cates. Robust and efficient data manage-

ment for a distributed hash table. Master’s

thesis, Massachusetts Institute of Technology,

May 2003.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Mor-

ris, and I. Stoica. Wide-area cooperative

storage with cf cfs. In Proceedings of the

18th SOSP (SOSP ’01), Chateau Lake Louise,

Banff, Canada, October 2001.

[6] M. J. Freedman, E. Freudenthal, and

D. Mazires. Democratizing content pub-

lication with coral. In Proceedings of the 1st

4



USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’04), San

Francisco, California, March 2004.

[7] J. Kangasharju, K. Ross, and D. Turner. Se-

cure and resilient p2p e-mail: Design and im-

plementation. In Third International Confer-

ence on P2P Computing, Linkoping, Sweden,

September 2003.

[8] D. Kostic, A. Rodriguez, J. Albrecht, and

A. Vahdat. Bullet: High bandwidth data dis-

semination using an overlay mesh. In 19th

ACM Symposium on Operating Systems Prin-

ciples, Oct. 2003.

[9] B. T. Loo, J. M. Hellerstein, R. Huebsch,

S. Shenker, and I. Stoica. Enhancing P2P file-

sharing with an Internet-scale query proces-

sor. In 30th International Conference on Very

Large Data Bases (VLDB), Aug. 2004.

[10] A. Mislove, A. Post, C. Reis, P. Willmann,

P. Druschel, D. S. Wallach, X. Bonnaire,

P. Sens, J.-M. Busca, and L. Arantes-Bezerra.

Post: A secure, resilient, cooperative mes-

saging system. In Proceedings of the 9th

Workshop on Hot Topics in Operating Systems

(HotOS-IX), Lihue, Hawaii, May 2003.

[11] A. Muthitacharoen, R. Morris, T. Gil, and

B. Chen. Ivy: A read/write peer-to-peer file

system. In 5th USENIX Symposium on Op-

erating Systems Design and Implementation,

Dec. 2002.

[12] V. Ramasubramanian and E. G. Sirer. The de-

sign and implementation of a next generation

name service for the internet. In proceedings

of ACM SIGCOMM, Oct. 2004.

[13] S. Rhea, P. Eaton, D. Geels, H. Weather-

spoon, B. Zhao, and J. Kubiatowicz. Pond:

The oceanstore prototype. In 2nd USENIX

Conference on File and Storage Technologies.

USENIX, Mar. 2003.

[14] D. S. Roselli. Long-term File System Charac-

terization. PhD thesis, University of Califor-

nia, Berkeley, 2001.

[15] A. Rowstron and P. Druschel. Storage man-

agement and caching in past, a large-scale,

persistent peer-to-peer storage utility. In

Proceedings of the 18th SOSP (SOSP ’01),

Chateau Lake Louise, Banff, Canada, October

2001.

[16] M. Walfish, H. Balakrishnan, and S. Shenker.

Untangling the web from dns. In Proceed-

ings of the 1st USENIX Symposium on Net-

worked Systems Design and Implementation

(NSDI ’04), San Francisco, California, March

2004.

5




