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Canopy-intercepted light, or photosynthetically active radiation, is fundamentally

crucial for quantifying crop biomass development and yield potential. Fractional

photosynthetically active radiation (PAR) (fPAR) is conventionally obtained by measuring

the PAR both below and above the canopy using a mobile lightbar platform to predict

the potential yield of nut crops. This study proposed a feasible and low-cost method

for accurately estimating the canopy fPAR using aerial photogrammetry-based canopy

three-dimensional models. We tested up to eight different varieties in three experimental

almond orchards, including California’s leading variety of ‘Nonpareil’. To extract various

canopy profile features, such as canopy cover and canopy volume index, we developed

a complete data collection and processing pipeline called Virtual Orchard (VO) in Python

environment. Canopy fPAR estimated by VO throughout the season was compared

against midday canopy fPAR measured by a mobile lightbar platform in midseason,

achieving a strong correlation (R2) of 0.96. A low root mean square error (RMSE) of

2% for ‘Nonpareil’. Furthermore, we developed regression models for predicting actual

almond yield using both measures, where VO estimation of canopy fPAR, as a stronger

indicator, achieved a much better prediction (R2
= 0.84 and RMSE = 195 lb acre−1)

than the lightbar (R2
= 0.70 and RMSE = 266 lb acre−1) for ‘Nonpareil’. Eight different

new models for estimating potential yield were also developed using temporal analysis

from May to August in 2019 by adjusting the ratio between fPAR and dry kernel yield

previously found using a lightbar. Finally, we compared the two measures at two different

spatial precision levels: per-row and per-block. fPAR estimated by VO at the per-tree

level was also assessed. Results showed that VO estimated canopy fPAR performed

better at each precision level than lightbar with up to 0.13 higher R2. The findings in this

study serve as a fundamental link between aerial-based canopy fPAR and the actual yield

of almonds.

Keywords: aerial photogrammetry, canopy light interception, canopy profile feature, digital elevationmodel, digital

surface model, virtual orchard
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INTRODUCTION

Photosynthesis is transforming sunlight into chemical energy to
support the daily activities of most plants and photosynthetic
organisms. In this process, solar radiation, as the light source, is
used to synthesize carbohydrates from water and carbon dioxide
(Barnes, 1893). The spectral range of 400–700 nm is known as
photosynthetically active radiation (PAR). PAR can be defined
most of the time as the number of photons received per unit area
per unit time and recorded as photosynthetic photon flux density
(PPFD,µmol·m−2

·s−1) using light quantum sensors. Photon flux
density (PFD, µmol·m−2

·s−1) has also been determined using
a slightly wider range of spectrum between 300 and 800 nm
(McCree, 1972). Furthermore, midday canopy light interception
is often defined as the incoming Fractional PAR (fPAR, as a
percent) intercepted by a canopy by measuring the PAR both
below and above the canopy (McCree, 1966; Lampinen et al.,
2012). It indicates actual intercepted PAR (or actual PPFD) that
helps growers better understand their orchard productivity and
spatial variability (Milne et al., 1992; Rojo et al., 2017).

Canopy-intercepted fPAR is fundamentally useful to reflect
the status of canopy biomass development. Particularly in
perennial specialty crops, the optimal row and tree spacing
need to be designed to maximize light absorption while
avoiding overcrowding. In recent years, precision farming has
gained more attention to address the issues raised by global
population growth, scarcity of farming land, labor shortage, and
extreme weather conditions. Advanced orchard management
could offer a better solution to minimize cost and maximize
profitability.Withmore accurate fPAR interception data, orchard
management could be precisely narrowed down from the orchard
level to the block level or even the tree level (Zhang et al.,
2016). Each block is an individual unit of the entire orchard,
which could be considered when site-specific treatments are
available for various block conditions. Some studies have already
documented that fPAR correlates with the yield for walnut,
macadamia, apple, wheat, and cotton (Robinson and Lakso, 1988;
McFadyen et al., 2004; Zhang et al., 2008; Lampinen et al.,
2011). Therefore, fPAR could provide critical information in
crop yield prediction for growers to manage on-site pre-/post-
harvest activities such as fertilization and irrigation control and
labor and equipment management. As a leading nut crop in

California with more than 2.1 million tons of production in
2019 (USDA, 2020b), almond (Prunus dulcis) has an urgent
need for early and accurate yield forecasting so that the amount
of water and nutrient elements, such as nitrogen, could be
appropriately applied under the new regulation of the state
to avoid environmental contamination (Zhang et al., 2019).
Accurate prediction of almond yield is challenging because of the
complex influencing factors, such as environmental temperature,
bloom time weather conditions, irrigation volume, soil status,
and the crop’s genotype and age (Boriss and Brunke, 2005).
Among all factors, fPAR is the primary determinant of potential
yield in almond orchards (Jackson, 1980; Lampinen et al., 2012).
It is worth noting that the estimated potential yield could only
be achieved if a particular genotype can produce under optimal
orchard management in the absence of biotic and abiotic stress

and without experiencing extreme weather during bloom. A
recent study has shown that an optimal orchard can potentially
produce 58 lb acre−1 of dried kernel yield for every 1% of canopy
fPAR interception, as measured by a mobile lightbar unit (Jin
et al., 2020). Rojo et al. (2017) also indicated that midday canopy
fPAR could be used as a fundamental indicator for estimating
the maximum potential yield for almond crop when there are
no other stressors present. Although midday fPAR describes the
potential yield, only a small portion (e.g.,∼10%) of the trees may
reach maximum productivity (Jin et al., 2020).

Typically, the canopy fPAR interception is measured at the
midseason (from June to July for almond and walnut) when
the canopy has been fully developed. A previous study has
suggested that the midday canopy fPAR measurements could
be completed between July and October for mature walnut
orchards (Lampinen et al., 2012). However, for immature walnut
orchards, fPAR increases throughout the season. Rojo et al.
(2017) found a second-degree polynomial curve for midday
fPAR interception as a function of time to describe the canopy
growth over the growing season in 2012 for almonds, suggesting
the need for multiple measurements of canopy fPAR. For this
purpose, the fPAR measurement tool should be readily available
to use. Besides, it is preferable to estimate the canopy-intercepted
fPAR at the early stage of plant growth for yield prediction and
nitrogen management. For example, around 80% of nitrogen
fertilization is applied to the almond crop by June (Youssefi
et al., 2000; Brown, 2020). Therefore, growers could benefit
from having sufficient time to respond to excessive or deficient
nitrogen supply if the estimation of potential yield can be
accurately done before the midseason through measuring the
canopy fPAR interception.

Because measuring canopy fPAR interception is important
for decision support, developing inexpensive tools would be
helpful. Traditionally, fPAR data were collected manually using a
handheld device (for example, a commercially available lightbar
Ceptometer fromMETERGroup Inc., Pullman,WA) (Grossman
and DeJong, 1998; McFadyen et al., 2004). However, it is error-
prone and time-consuming because only a limited number of
measurements can be taken during a short period at solar
noon. Such an approach is impossible to be applied on a
large scale. Lampinen et al. (2011) developed a mobile lightbar
platform for measuring midday canopy fPAR in almond and
walnut. It improved the measurement speed to scan a larger
portion of the orchard within ±1 h of solar noon. The mobile
unit mainly consists of an array of light sensors mounted
on a small field vehicle. While the mobile unit runs through
the entire orchard measuring canopy fPAR, a data logger
records the measurements at a pre-set sampling rate of 10Hz
with a spatial resolution of 0.28m at the traveling speed of
10 km h−1. Such a mobile platform serves as a useful tool for
measuring midday canopy fPAR interception in traditional tree
architecture orchards on a relatively large scale that could never
be achieved using handheld tools. Although the midday canopy
fPAR measurements are not possible for planar tree architecture
orchards (i.e., trees are trained to two-dimensional fruiting-wall)
using similar platforms, a pipeline of conversion methodologies
of tree shadows can be found from Zhang et al. (2015, 2016).
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Although the mobile platform lightbar has notably advanced and
expedited the entire process in orchards, it is still challenging
to accurately measure midday canopy-intercepted fPAR as the
spatial resolution might vary when the driving speed was not
constant (Zhang, 2014). Therefore, some more accurate and
affordable means should be investigated, such as using terrestrial
or airborne images and three-dimensional (3D) modeling for
estimating canopy fPAR interception.

3D model reconstruction is a widely adopted approach to
investigate the crown attributes of tree crops for phenotypical
mapping [e.g., tree height estimation (Torres-Sánchez et al.,
2018)] or agricultural automation researches [e.g., robotic tree
pruning (Elfiky et al., 2015; Karkee and Adhikari, 2015)]. Both
aerial (Kato et al., 2009; Díaz-Varela et al., 2015; Torres-Sánchez
et al., 2018) and terrestrial (Rosell et al., 2009; Underwood et al.,
2016; Colaço et al., 2017) methods are used for data collection.
Light detection and ranging (LiDAR) and photogrammetric
mapping are the two most frequently used and comparable
techniques for generating high-resolution 3D models (Filippelli
et al., 2019).

LiDAR scanning is one of the most accurate sensing
techniques that optically measures the target object’s distance
by emitting light and receiving reflections. The modeling object
is formed by generating millions of point cloud data from
the sensor. Kato et al. (2009) developed a visual approach
called wrapped surface reconstruction (also known as convex
hull approximation) to extract forest tree parameters from
airborne LiDAR discrete points. Results showed that the tree
parameters, such as tree height and crown volume, can be
accurately estimated as long as the individual trees were well-
segmented, with up to 0.95 of R2 when the accuracy was assessed
using ground truth data. Furthermore, Underwood et al. (2016)
mapped an almond orchard using a LiDAR terrestrial sensing
system. They processed point cloud data using the voxel volume
approximation method (Henning and Radtke, 2006; Lefsky and
McHale, 2008) with each voxel size of 0.001 m3 estimates the
canopy volume. Eventually, their approach achieved an R2 of
0.77 between LiDAR estimated canopy foliage volume and actual
almond yield using a two-year dataset. Although the LiDAR
sensing method always provides highest-resolution 3D modeling
for tree crops, it is also expensive and computationally heavy for
3D model reconstruction. The aerial photogrammetry method
provides an inexpensive alternative and desired solution.

Torres-Sánchez et al. (2018) employed an airborne
photogrammetric point cloud generated by a low-cost red,
green, and blue (RGB) sensor to reconstruct the 3D models
for almond trees. With the development of the object-based
image analysis (OBIA) algorithm, they achieved R2 of 0.94
and root mean square error (RMSE) of 0.39 between estimated
and ground-truthing tree height. When examining the tree
area, they achieved R2 of 0.90–0.94 and RMSE of 1.40–2.14
m2 compared with ground-truthing values depending on the
flight altitude (50m or 100m) (Torres-Sánchez et al., 2015).
López-Granados et al. (2019) adopted a similar approach to
establish the 3D architecture of almond trees for flowering trait
identification and evaluation by assuming the trees are trained
in a funnel shape, and the canopies did not overlap with each

other. Sometimes, when dealing with super-high-density tree
orchards, an entire row volume was estimated as a combined
object (Díaz-Varela et al., 2015; Anifantis et al., 2019), where
Díaz-Varela et al. (2015) achieved an R2 of 0.53 when they
compared estimated and manually measured olive tree height
using airborne photogrammetry method. With such promising
accuracies achieved using the aerial photogrammetry method,
we, therefore, adopted a low-cost aerial photogrammetry
technique for creating the 3D models in this study.

The primary goal of this study was to develop a methodology
for estimating the canopy fPAR using aerial imagery and
photogrammetry. The goal was to show evidence of a
fundamental link between the canopy fPAR estimated by Virtual
Orchard (VO) and actual yield. The following are the specific
objectives pursued:

1) To develop a complete processing pipeline called VO to
accurately measure per-tree canopy profile features;

2) To determine if aerial canopy profile measurements can
replace the mobile platform lightbar for estimating the
canopy fPAR;

3) To develop predictive models between the estimated fPAR
and actual almond yield.

MATERIALS AND METHODS

Experimental Sites
Three experimental almond orchards (Orchards 1, 2, and 3)
were selected at the University of California Kearney Agricultural
Research and Extension Center (KARE, Parlier, California) for
this study. The geographic locations and coordinates of the
orchards were shown in Supplementary Figure 1. In total, the
three orchards consist of 1,440 trees in 192 blocks and 72 rows.
Generally, a block contains 3–17 trees, and a row contains 13–28
trees based on the orchard configurations. For example, Orchard
3 in this study has 21 rows, and each row can be equally divided
into four blocks (each block contains three trees), resulting in 84
blocks in total. We summarize the orchard and almond variety
information in Table 1. The aerial view of the experimental
orchards (including the almond variety information for each
row) is shown in Supplementary Figure 2.

Aerial Data Collection and Preprocessing
For this study, we collected temporal aerial imagery from
experimental orchards using an unmanned aerial vehicle (UAV,
also known as a drone; Phantom 4 Pro, DJI, Shenzhen, China)
that includes an embedded RGB camera. The field of view of
the camera’s lens was 84◦, and the resolution of each image was
5,472 × 3,648 pixels. We collected the aerial images in a grid
mission pattern at an altitude of 40m above ground level (AGL),
with an oblique angle of 70◦ and with a front and side overlap
of 87 and 83%, respectively. We could collect imagery in 2min
per acre with such flight mission parameters, and we obtained a
ground sampling distance of 1.6 cm per pixel. We preprocessed
the images with Pix4Dmapper (Pix4D S.A., Prilly, Switzerland)
photogrammetry software to reconstruct a 3D point cloud and
generate the digital surface model (DSM) of the orchard. The
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TABLE 1 | Details of the experimental orchards used in this study.

Data Orchard 1 Orchard 2 Orchard 3 Total

Location (latitude

and longitude)

N36.599229

W119.515579

N36.598224

W119.513250

N36.59980

W119.503137

Planting pattern Square Offset Square

Planting spacing 6 × 3m 6.5 × 4m 6 × 5.5m

Number of trees

(sample

proportion)

722 (50.14%) 449 (31.18%) 269 (18.68%) 1,440

Number of blocks 83 25 84 192

Number of rows 26 25 21 72

Tree age 6 6 11

Variety and

number of trees

(sample

proportion)

‘P16.013’a

542 (37.64%)

‘Nonpareil’

234 (16.25%)

‘Nonpareil’

90 (6.25%)

‘P13.019’

104 (7.22%)

‘Wood Colony’

108 (7.50%)

‘Butte’

89 (6.18%)

‘Lonestar’

67 (4.65%)

‘Monterey’

107 (7.43%)

‘Carmel’

90 (6.25%)

aThere are nine (0.63%) inter-planted pollination trees in ‘P16.013’ rows that were not

used in this study.

aerial data collections were conducted four times during the 2019
season onMay 28/29, June 26, July 26, and August 7 to investigate
the canopy development.

Canopy Profile Features
We developed a complete processing pipeline, VO library, in
Python 3.7 (Van Rossum and Drake, 2009) to calculate canopy
profile features. This VO library has been previously used to
extract canopy profile features from date palms (Montazar et al.,
2020). The tree center points were laid out in a grid by our
VO library using user-supplied parameters: the number of trees
per row (Figures 1A,B), orchard orientation points (Figure 1B),
number of rows (Figure 1B), planting pattern (Figure 1C), and
row and tree spacing (Figure 1C). The orchard orientation was
defined by three points placed at the tree centers in the corners of
the orchard. These three points formed two vectors, where the
first vector extends along the direction of the row (formed by
points 1 and 2), and the second vector is perpendicular to the
first (formed by points 1 and 3). A previous study by Wellington
et al. (2012) used a hidden Markov model to determine the tree
centers within an orchard, but we could not apply that technique
due to the dense planting patterns in the orchards of our study.
We calculated the canopy allocated area for each tree using the
tree centers, orchard orientation, row spacing, and tree spacing.

To extract the canopy profile features, we segmented the trees
from the ground in the DSM raster using a two-step process.
First, we created a digital elevation model from the DSM to
normalize tree heights from above sea level to AGL. DSM pixels
belonging to trees were first identified by calculating the slope
using the “richdem” Python library (Barnes, 2016). DSM pixels
with a slope >20◦ (an empirically determined threshold) were
classified as trees in a binary mask. A closing morphological

operation using a circular, 50-pixel diameter structural element
was then applied to the binary mask to fill in the holes where
the canopy slope was <20◦. This step created a closed binary
mask. We selected the structural element’s size based on the
size of the holes and the resolution of the DSM. We then
inverted the closed binary mask and applied the inverted mask
to the DSM to segment ground pixels. The missing ground
pixels (under the tree canopy in DSM) were predicted using a
nearest-neighbor interpolation technique. Second, we extracted
the canopy area by segmenting pixels with a minimum elevation
of 0.5m above the ground in the normalized DSM. We used
the contour approximation method from the OpenCV library
(Bradski, 2000) on the segmented DSM to create a vectorized
polygon that overlaid each tree’s canopy footprint (Figure 1D).
For tree canopies that extended beyond its canopy allocated area,
the canopy footprint polygon was clipped to the allocated area’s
extent. We collated the polygons into a shapefile and used it for
further canopy feature extraction.

We extracted four canopy profile features from the normalized
DSM, including canopy cover, canopy volume index, average
canopy height, and maximum canopy height. Canopy cover
was calculated as the percentage of the canopy allocated
area filled by the canopy footprint area (Equation 1 and
Figure 1D) and used as an estimation of fPAR by VO
method (Montazar et al., 2020). More specifically, the canopy
allocated area for each tree in an orchard was identical (as
the denominator); the larger canopy footprint area (as the
numerator) hypothetically represented the more intercepted
light by the canopy (fPAR). No physical holes were found
in any of the almond tree crowns during data processing
in this study. The canopy volume index (Figure 1E) was
calculated by taking the ground adjusted height values within
each tree’s canopy and multiplying it by the pixel area
(i.e., defined by spatial resolution of the DSM). The canopy
volume index included the volume between the tree crown
surface and the ground by summing up the volume of
each pixel (px) as calculated with Equation (2), where N
is the total number of tree pixels; Areapx is defined by
the DSM’s spatial resolution. The average and maximum
canopy heights were also calculated for each tree but not
directly used in this study. All four extracted canopy profile
features derived from DSMs (including fPAR, volume index,
average height, and maximum height) were visualized at
the per-tree level for each orchard from May to August in
Supplementary Figures 3–5.

Canopy cover =
Canopy footprint area

Canopy allocated area
× 100% (1)

Canopy volume index =

∑N

1
Areapx × Heightpx (2)

Ground Truthing
Two types of ground truth data were collected in this
experiment, including yield information and mid-day canopy
light interception. We harvested each tree separately and
measured the weight of wet yield that included nuts and debris,
such as leaves and sticks. A tarp was placed at each side of
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FIGURE 1 | The Virtual Orchard (VO) processing steps: RGB orthomosaic of Orchard 2 (A); a digital surface model (DSM) of Orchard 2 and some input parameters

such as number of rows, number of trees per row, and coordinates of tree trunk in three corners: for orchard orientation, three points are placed at the orchard map

corners (numeric labels), which form two vectors describing the orientation (B); additional input parameters including row/tree spacing and planting pattern: the offset

planting pattern assumes that tree centers in adjacent rows are offset by half of the tree spacing; the square planting pattern assumes that tree centers in adjacent

rows are aligned. Tree spacing and row spacing are defined by the distance between the centers of the tree (C); canopy cover is the percentage of canopy footprint

area in green divided by the canopy allocated area in blue (Equation 1) (D); 3D point cloud of trees; canopy volume index is visualized in the front and side

cross-sectional views of a point cloud generated from photogrammetry for one example tree. The yellow areas represent the front and side cross-sectional views of

the volume calculated in the canopy volume index (Equation 2) (E).
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the tree to catch the crops as a mechanical shaker shook it.
The nuts and debris caught by the tarp were placed in plastic
bins and weighed. We collected and dried subsamples for every
block in each orchard. For example, there were 8–17 trees per
block in Orchard 1, depending on the orchard configuration.
We then separated and cracked the nuts and measured the dry
kernel weights per subsample. We established a wet yield to dry
kernel yield correlation to estimate dry yield for each tree. Finally,
the dry kernel yield per acre was measured for each tree by
normalizing dry kernel weight by canopy allocated area.

Canopy light interception, or fPAR, was collected using a
mobile lightbar platform (Lampinen et al., 2011). The lightbar
platform mainly consists of an array of light sensors (generally
with 18 ceptometer segments; Lightbar Ceptometer, METER
Group Inc., Pullman, WA) mounted on a small field vehicle.
During solar noon (±1 h), the field vehicle scanned the entire
orchard to obtain the canopy midday fPAR by computing from
PAR recorded below the canopy (PARbelow) at the height of 0.4m
and above the canopy (PARabove) simultaneously (Equation 3).
A data logger recorded the measurements at a pre-set sampling
rate of 10Hz with a spatial resolution of 0.28m at the traveling
speed of 10–11 km h−1 (Zarate-Valdez et al., 2015). A differential
Global Positioning System and a radar system recorded the
mobile platform’s geospatial data during the data collection
(Zarate-Valdez et al., 2012). This type of mobile unit is widely
used for mapping nut crops in California (Lampinen et al., 2012).
We scanned all three almond orchards using such a mobile
lightbar platform on June 20, 26, and 27 in 2019. The lightbar
estimated midday canopy fPAR data were only available on the
per-row/block basis due to its data processing constraints.

fPARmeasured = 1−
PARbelow

PARabove
(3)

Statistical Analysis
We conducted statistical analysis to determine the correlation
between aerial and ground truth data. In a temporal analysis,
we compared the fPAR estimated by VO from different dates
in 2019 with fPAR measured by the mobile lightbar platform in
June. The VO data collected on May 28 and 29 is abbreviated
as May 28, and lightbar data collected on June 20, 26, and 27
is abbreviated as June 26 in the rest of the paper. Figure 2
visualizes the overall growing season timeline (from full bloom
to California’s commercial harvest dates in 2019) for all almond
varieties used in this study. Harvest date referred to the date when
trees were shaken or the date of the first round of shake if multiple
shakes were applied to the orchard. The nuts were left on the
orchard floor for 3–11 days before being picked up.

Although we collected data for eight different almond
varieties (i.e., ‘Nonpareil’, ‘P16.013’, ‘Butte’, ‘Carmel’, ‘Lonestar’,
‘Monterey’, ‘P13.019’, and ‘Wood Colony’), we separately
analyzed the data for ‘Nonpareil’, which is the leading variety
in California (∼43% of almond acreage is ‘Nonpareil’) (USDA,
2020a). Overall, ∼23% of almond trees are ‘Nonpareil’ in our
study. For statistical analysis, we used Python for generating
regression models, calculating the standard measures of R
squared value (R2), root mean square error (RMSE), and

Pearson’s correlation coefficient (r). Besides, we also calculated
predictive R2 (to determine how well the model predicts a
removed data point) using SAS software (University Edition, SAS
Institute, Cary, NC) in Equation (4):

predictive R2 = 1− (
PRESS

SST
) (4)

where PRESS represents the predicted residual sums of squares,
and SST represents sums of squares total1 Statistical significance
tests were performed using analysis of variance (ANOVA) multi-
comparison (p < 0.05) and/or Tukey’s honestly significant
difference (p < 0.05). We compared the actual yield to the
potential yield (Ypotential) calculated by Equation (5) based on a
previous study (Jin et al., 2020). They concluded that there are
about 57.9 lb acre−1 (ratio = 57.9) of dried kernel increment
with every 1% of midday incoming fPAR intercepted by the
canopy (fPARmeasured) in midseason for all varieties; while this
ratio changes to 57.7 lb acre−1 for ‘Nonpareil’ only. Finally, we
employed the Python to visualize the results.

Ypotential = ratio× fPARmeasured (5)

Canopy light interception, or fPAR, is the determinant for
potential (maximum) almond yield (Lampinen et al., 2012). The
trees may reach the potential yield with ideal environmental and
internal factors during the production process, and midday fPAR
should provide sufficient information about the potential yield
when no other stressors are present. In reality, the actual yield is
most likely far behind the potential yield due to stresses caused
by unavoidable events or non-optimal orchard management. To
further quantify the gap between the potential and actual yield
from different dates, we developed date-specific models based
upon two ratios provided in Equation 5. Consequently, eight
ratioadjusted (or models; from May to August for all varieties
and ‘Nonpareil’) are presented using Equation 6, where the
slopes between the two measures are calculated by forcing a zero
intercept against the 1:1 line.

ratioadjusted = ratio× slope (6)

RESULTS AND DISCUSSION

fPAR Estimation
Canopy Feature Selection
Some previous studies investigated the correlation between
estimated midday canopy fPAR and almond yield with mobile
lightbar scanned data. For example, Jin et al. (2020) employed
a 10-year canopy light interception (fPAR) data in California,
showing a 0.60 of Pearson’s r coefficient with the actual almond
yield at the orchard level. Obtaining instant and more precise
orchard information can help growers to manage orchards at
a smaller scale, such as at the per-row, per-block, or even per-
tree level, and to promptly respond to deficiency of nutrition
elements (e.g., nitrogen) or irrigation volume at a site-specific
manner during the critical stages (Brown, 2020). Zarate-Valdez

1https://rpubs.com/RatherBit/102428
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FIGURE 2 | Timeline of the growing season for different almond varieties from full bloom to commercial harvest dates in 2019. All harvest dates were recorded from

the experimental orchards, while other dates (i.e., full bloom and hull split) were estimated based on the studies of Connell et al. (2010, 2017) and Lampinen et al.

(2017), except full bloom date for ‘Nonpareil’ was also recorded from the experimental orchards.

et al. (2015) have developed a methodology with imaging the
canopy shadows from a ground vehicle and achieved a good
correlation with lightbar data (R2 was up to 0.95) in almond
and walnut orchards. We did not find relevant publications using
aerial imagery-based technology that is more convenient and
provides much higher spatial resolution (0.01–0.02m) than a
typical mobile lightbar system does (∼0.4 m).

We created canopy cover (Equation 1) and canopy volume
index (Equation 2) as the two main UAV-based VO canopy
profile features. To determine which one is more correlated
to the mobile platform lightbar data for estimating fPAR, we
compared the per-row canopy cover and canopy volume index.
Overall, we found that VO canopy cover is much better correlated
to lightbar data than the canopy volume index. Table 2 shows
the correlations comparing between both features to lightbar
estimated fPAR in June. The Pearson’s correlation coefficient
(r) is 40 points better for the VO canopy cover. This result
is interesting because, theoretically, lightbar estimated fPAR
contains spatial information by considering the solar Zenith
angle. Rojo et al. (2020) showed a digitized image of fPAR
intercepted by almond trees scanned by a lightbar platform,
where the darker pixels represent greater light interception than
gray-white pixels. The color gets lighter from the tree center to
the edge (from the top view) due to the canopy density decrease.
This observation indicates that the canopy volume index, which
automatically takes the canopy height into account (calculated
using Equation 2), should better correlate to the lightbar data.
However, we achieved a satisfactory RMSE of 2.94% (to the 1:1
line) comparing the canopy cover and the lightbar estimated
midday fPAR, while the canopy cover feature entirely ignored
the solar Zenith angle. It indicates that the VO canopy cover

TABLE 2 | Correlation comparison between Virtual Orchard (VO) features of

canopy cover, and canopy volume index to mobile lightbar platform (both on June

26) estimated fractional PAR (fPAR) at the per-row level.

VO profile feature R2 RMSEa (%) Pearson’s r

Canopy cover 0.91 2.94 0.95

Canopy volume index 0.30 12.98 0.55

aRMSE refers to the root mean square error to the 1:1 line.

feature should contain sufficient information that we need to
understand the amount of light intercepted by the canopy, but
we need to further confirm this by predicting actual almond yield.
Therefore, we selected the profile feature of canopy cover as the
VO estimated fPAR hereafter to compare with themobile lightbar
estimated midday fPAR in the rest of the paper.

VO Temporal Analysis
To determine how tree canopy changes over the season, we
conducted a temporal comparison of VO estimated fPAR for
different varieties. Figure 3 shows the overall trend of VO
estimated fPAR with individual almond variety and age over
the growing season in 2019. In general, these different changing
patterns might directly relate to the status of individual orchard
management and practices. For example, canopy changes were
similar for the trees in Orchards 2 and 3 that VO estimated
fPAR first dropped a little from May to June or July and then
bounced back in August, showing a “flat-U” shape for most
of the trees excluding 6-year-old ‘Nonpareil’ trees continuously
decreased during the season. All 11-year-old ‘Nonpareil’, ‘Butte’,
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FIGURE 3 | Changes of canopy fractional PAR (fPAR) estimated by Virtual

Orchard (VO) over the growing season in 2019. Different letters refer to a

statistically significant difference over the season for each variety and age

using Tukey honestly significant difference (HSD) test (p < 0.05). The size of

the confidence intervals of 95% was drawn. Means ± standard deviations (SD)

of the yield (lb acre−1) for each group were 2000.76 ± 385.38, nan (no data

available), 2121.86 ± 572.39, 1013.60 ± 395.84, 1558.49 ± 520.28, 1055.28

± 386.69, 988.85 ± 463.91, 1436.00 ± 250.07, nan, respectively, from the

top to the bottom of the legend.

and ‘Carmel’ varieties are from Orchard 3, where the trees
might be under-irrigated during the midseason (June and July),
causing a certain level of defoliation. Lampinen et al. (2012)
reported continuous increases in lightbar estimatedmidday fPAR
over time for both young (3-year-old) and mature (10-year-old)
walnut orchards between April and November 2010. However,
Rubke (2015) found that midday canopy fPAR increased only
during the 2012 growing season, with data collected over
3 years (2012–2014). Overall, our results agreed with their
findings because the majority (∼50%) of our sampled trees
are from Orchard 1 (‘P16.013’, ‘P13.019’, and ‘Lonestar’) with
continuous increments of canopy fPAR over the season. The
different changing patterns of the different varieties could also
be attributed to their seasonal calendars. For example, as shown
in Figure 2, the full bloom date and commercial harvest date for
‘Nonpareil’ (in Orchard 2) were on February 23 and August 20
in 2019, respectively. Most other varieties had the full bloom 1–6
days later and were harvested 2–4.5 weeks later than ‘Nonpareil’.

VO fPAR vs. Lightbar fPAR
We compared the correlations between VO and lightbar
estimated fPAR over the entire growing season in 2019 at the
per-row level. Table 3 shows the overall comparison of R2, RMSE
(to the 1:1 line), and the regression line slopes when we force
a zero intercept. R2 and RMSE are improved from May to
June/July, while they remained the same level from the June/July
to August (harvest). For example, they were 0.81 and 4.06%,
respectively, when we tested all varieties on May 28. In June,
R2 and RMSE improved to 0.91 and 2.94%, respectively, when
the date of VO data collection was within a couple of days of
lightbar data collection. When we tested ‘Nonpareil’ only, we
observed similar patterns but with greater R2 (0.95–0.96) and

smaller RMSE (2.06–2.27%). It can be inferred that both VO and
lightbar methods measured canopy light interception similarly.
So, we considered a hypothetical 1:1 correlation between the VO
and lightbar measurements. All slopes of the regression lines
were significantly different from the 1:1 line (95% confidence
level) except for July 26, ‘Nonpareil’. We then used different
regression slopes for developing adjusted models for potential
yield prediction using Equation 6 and summarized the results
in Table 4. Comparing the regression line slopes to the 1:1
line in different days also indicated that the VO and lightbar
measurements were better correlated when both data were
collected within a few days. Therefore, we further calibrated and
visualized the VO and lightbar estimated fPAR data in June.

Figure 4A visualizes the calibration of the VO estimated fPAR
against the lightbar estimated midday fPAR over all varieties on
June 26. Again, reasonably high R2 (0.91) and low RMSE (2.94%)
from data points to the 1:1 line suggested that both methods
estimate the actual canopy fPAR.However, onemethod estimated
fPAR with lower accuracy or more error since some data points
were slightly off the 1:1 line (in the dashed red). For instance,
we observed that the regression line (in the dashed blue) was
not completely overlapped with the 1:1 line with the slope of
0.91 in the clockwise direction of rotation (the difference was
significant as shown in Table 3), indicating that most of the
data points were below the 1:1 line. The result suggested that
the lightbar tended to underestimate the canopy fPAR or the
VO method tended to overestimate it (mean of absolute errors
to the regression line: 1.97 ± 1.85%; to the 1:1 line: 5.09 ±

2.55%). Over different almond varieties, 6-year-old ‘Nonpareil’
trees intercepted more fPAR than others, which is reasonable
because of their larger canopy size (up to 73% fPAR). Figure 4B
visualized a similar calibration for ‘Nonpareil’ only with a better
R2 of 0.96 and a lower RMSE of 2.06% to the 1:1 line (the
difference was significant as shown in Table 3). This improved
correlation might be due to the uniformity of the tree canopy
from a single variety (mean of absolute errors to the regression
line: 1.58± 1.00%; to the 1:1 line: 6.59± 2.47%). We scanned all
three orchards using the aerial photogrammetry method within
a day for each data collection from May to August. However, the
lightbarmethod neededmultiple days to complete the same tasks.
Therefore, the VO method we offered in this study is practically
easier and faster to conduct than a mobile lightbar platform to
estimate canopy fPAR in the orchard environment.

Figure 5 shows the overall correlations of VO estimated fPAR
over the growing season in 2019. We observed a good correlation
among the data collected at different dates, with Pearson’s r
ranged between 0.92 and 0.99. Based on the scatter plots in the
lower-left half, we could find better correlations when the two
dates were closer. The highest Pearson’s r of 0.99 was from the
dates between July 26 and August 7. One possible reason could
be the proximity of data collection dates (only 10-d difference).
Besides, the histograms on the diagonal illustrate that all sampled
trees were normally distributed, and the majority of the sampled
trees were ‘Nonpareil’ and ‘P16.013’. Lastly, the kernel-density-
estimate plots in the upper right half show that the variations of
VO estimated fPAR decreased from May to August with more
data points aligned on the 1:1 line. Figure 5 illustrates the results
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TABLE 3 | Comparison of R2, root mean square error (RMSE) (to the 1:1 line), and the regression line slopes (when forcing a zero intercept) between the Virtual Orchard

(VO) estimated canopy fractional PAR (fPAR) and mobile lightbar estimated midday canopy fPAR (June 26) over the season in 2019 at the per-row level.

Variety May 28 June 26 July 26 August 7

R2 RMSE (%) Slope R2 RMSE (%) Slope R2 RMSE (%) Slope R2 RMSE (%) Slope

All 0.81 4.06 0.89a 0.91 2.94 0.91a 0.91 3.27 0.92a 0.92 2.84 0.90a

‘Nonpareil’ 0.95 2.27 0.87a 0.96 2.06 0.90a 0.93 3.06 0.91 0.95 2.28 0.91a

aSlopes are significantly different from 1:1 line using linear regression analysis (95% confidence level).

TABLE 4 | Adjusted models for almond potential yield prediction using Virtual

Orchard (VO) over the season in 2019 using two base ratios: 57.90 for all varieties

and 57.70 for ‘Nonpareil’ only using a lightbar Jin et al. (2020) in June.

Variety Model VO

May 28 June 26 July 26 August 7

All Slopea 0.89 0.91 0.92 0.90

Adjusted ratio

for new modelsb
51.53 52.69 53.27 52.11

‘Nonpareil’ Slope 0.87 0.90 0.91 0.91

Adjusted ratio

for new models

50.20 51.93 52.51 52.51

aSlopes are retrieved from Table 3 for each date.
bCalculated using Equation (6).

of 12 different flights, image processing, and feature extractions
conducted by the VO pipeline. High correlations in Figure 5

show the robustness and replicability of the VO methodology
that consistently and accurately estimated fPAR in all 12 datasets.
While we observed some canopy development over the season
that leads to minor changes in the canopy profile, no major
observational error (variation in measurement) was noticed for
the same tree profile features measured during the season. To
explore which method is more reliable, we further compared the
VO and lightbar methods in estimating the actual almond yield
from different spatial precision levels: per-row, per-block, and
per-tree (VO only) level.

Actual Almond Yield Estimation
Per-Row Analysis
To test which method could better estimate actual almond yield,
we compared the scatter plots of actual yield vs. canopy fPAR
estimated by the mobile lightbar and VO methods on a per-
row basis. Figure 6 summarizes the overall results, and Figure 7

shows more details in Supplementary Material. The results
indicated that canopy fPAR estimated by VO is a more accurate
indicator of almond actual yield than lightbar. Both R2 and
predictive R2 are higher with the VO method (0.37 and 0.34 for
VO; 0.34 and 0.31 for lightbar) on June 26. Both regression lines
in Figures 7B,E had similar slopes (32 for VO; 36 for lightbar)
and intercept on the y-axis. We may accept either method since
both RMSEs were lower than the standard deviation of the actual
yield (484.14 lb acre−1) with all varieties. We did not find any
statistical difference between the means of absolute errors in

predicting actual almond yield by the VO and mobile lightbar
models. So, the VO method is statistically as good as the lightbar
measurement but with potentially better performance as the VO
models presented insignificantly smaller errors. One possible
reason might be the higher spatial resolution of the VO method
(0.01–0.02m) compared with the mobile lightbar (∼0.4m). In
general, the R2 of 0.34 estimated by the lightbar in our study
agreed with the findings from Zarate-Valdez et al. (2015), who
reported that mobile lightbar estimated midday fPAR was an
indicator of almond kernel yield with R2 in the range of 0.16–
0.36. A better correlation between VO estimated fPAR suggested
that light interception, or fPAR, is not only a good indicator of
potential (maximum) yield but also a possible good estimator of
actual yield for almond (particularly the ‘Nonpareil’ variety).

We conducted separate analytics for ‘Nonpareil’ since it is
the leading and most profitable almond variety in California.
Results indicated better fits for both models if we only analyze
the ‘Nonpareil’ variety. For example, we achieved a better R2 of
0.83 and predictive R2 of 0.79 for the ‘Nonpareil’ yield prediction
than the model for all varieties (0.37 and 0.34, respectively). One
reason might be that the sampled trees are more uniform when
we tested with only one variety. This better performance on
the ‘Nonpareil’ variety is also valid for using lightbar estimated
midday fPAR. However, the achieved R2 (0.70) and predictive R2

(0.65) are notably lower than those fromVO. Pearson’s r followed
a similar pattern. RMSEs for both methods with ‘Nonpareil’ only
were lower than the standard deviation (497.64 lb acre−1) of
actual almond yield at the per-row level. However, the RMSE
of VO estimated fPAR (199.26 lb acre−1) was notably smaller
than the mobile lightbar (265.73 lb acre−1) in June. These results
reiterated the possibility that fPAR alone could be an accurate
indicator of actual almond yield if it is estimated accurately.
We may accept both VO and lightbar results in explaining
‘Nonpareil’ yield, but apparently, the result from VO seemed
more accurate and reliable. Overall, we suggest that the VO
method offers a more accessible and accurate (with smaller
errors) alternative for estimating canopy fPAR than the mobile
lightbar platform since the VOmodel showed a better correlation
to actual yield. Therefore, we can use this VO technology as a
reliable indicator for predicting actual almond yield, particularly
with the ‘Nonpareil’ almond variety. In addition to comparing

VO estimated fPAR with lightbar data, we compared the yield
prediction models based on data at a different time of the season.
Interestingly, a descending trend of yield prediction accuracy
is present from May to August when we tested all varieties
(Figure 6). In other words, we found that we achieved a better
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FIGURE 4 | Calibration of Virtual Orchard (VO) against mobile lightbar platform (both on June 26) estimated canopy fractional PAR (fPAR) with all varieties (A) and

‘Nonpareil’ only (B) at the per-row level (when forcing a zero intercept).

actual yield prediction in May comparing to June, July, or August
using VO estimated fPAR model for all varieties. The overall
trend was in a reverse direction when we only tested ‘Nonpareil’;
the prediction accuracy on ‘Nonpareil’ improved as we got closer
to the harvest time in August. This discrepancy of accuracy
changes between all varieties and ‘Nonpareil’ suggests that a
single comprehensive model cannot accurately predict yield for
different almond varieties, and the yield prediction model should
be calibrated for each variety. It might be more reasonable to
develop models separately for each variety, such as ‘Nonpareil’,
to explain the variations of actual almond yield.

The yield prediction accuracy with VO for ‘Nonpareil’
improved from May to June but did not change much after
June 26. The source–sink interaction theory during plant growth
may better explain it (Allen et al., 2005). Starting from the
bloom in almonds (around February in a year), the reproductive
growth (with reproductive organs: flower and fruit) is becoming
more competitive with vegetative growth (with vegetative organs:
branches and leaves) for absorbing the nutrients. Therefore,
midseason (June/July) measurement might be more accurate for
predicting actual almond yield when both growths are dominant.
This deduction was verified because the midday fPAR was mostly
measured with a lightbar system in midseason (June and July) for
almond orchards (Lampinen et al., 2012; Rubke, 2015). Lastly, the
similarity of actual yield prediction results on June 26 between
the lightbar (R2 = 0.34 for all varieties; R2 = 0.70 for ‘Nonpareil’
only) and VO method (R2 = 0.37 for all varieties; R2 = 0.83)
also verified the strong correlation between these two methods
of fPAR measurement as discussed earlier.

It was also interesting to notice that the regression lines
(dashed blue line in Figure 8) had a smaller angle to the 1:1 line
for ‘Nonpareil’ than all varieties combined in Figure 7. First of all,
all data points (at the per-row level in Figure 7) were below the

1:1 line, indicating that none of the samples reached the potential
yield in this study. Specifically, with the increase of estimated
fPAR on the x-axis (0–100%), the slope of the regression lines
moved farther (35.6 in Figure 7A to 29.0 in Figure 7D) from the
potential yield line over the season for all varieties, suggesting that
the actual yield prediction became less accurate. Comparatively,
the regression lines directions were closer to the 1:1 line for
‘Nonpareil’ only (Figures 8A–D). Although the actual yield
of ‘Nonpareil’ was also far less than the potential yield, the
changing patterns were more comparable. We believe that the
proposed model could be used as a good yield forecasting tool
for ‘Nonpareil’ trees with an acceptable accuracy of R2 = 0.84
and RMSE = 195 lb acre−1 at the per-row precision level, where
the standard deviation of the yield (498 lb acre−1) was about 2.5
times greater than RMSE. Besides, we analyzed the VO estimated
fPAR with higher spatial precision (at the per-tree level) in the
next section, but no corresponding lightbar data at this level of
precision was available for comparison.

Per-Tree Analysis
Figure 9 visualizes the regressions between per-tree fPAR
(estimated by VO) and almond kernel yield over the season in
2019. Figure 10 provides in-depth details. As discussed for the
per-row level results, the accuracy (R2) decreased for all-varieties-
model from May (May 28; with R2 of 0.31 and RMSE of 504.88
lb acre−1) to August (August 7; with R2 of 0.24 and RMSE of
532.37 lb acre−1). The result at the per-tree level had a relatively
poorer R2 (0.29), and RMSE (514.31 lb acre−1) with a greater
standard deviation of the yield (609.38 lb acre−1) compared with
the per-row analysis (R2 = 0.37 and RMSE = 38.18 lb acre−1 for
VO; R2 = 0.34 and RMSE = 389.49 lb acre−1 for lightbar; the
standard deviation was 484.14 lb acre−1) in June. This result is
reasonable because we expected a greater variation in the dataset
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FIGURE 5 | Correlations of Virtual Orchard (VO) estimated canopy fractional PAR (fPAR) over the growing season in 2019. Scatter plots are shown in the lower-left

half, kernel–density–estimate plots are shown in the upper right half, and histograms are shown on the diagonal. The black dotted line indicates the 1:1 line. r refers to

Pearson’s correlation coefficient.

for the high-spatial-precision level of per-tree data. For instance,
we observed a huge range of yield from 10.81 to 5094.49 lb acre−1

at a per-tree precision level. Given this large variation in per-tree
yield data, VO estimated fPAR still offered a reasonable accuracy
with higher spatial precision than lightbar data, which is mainly
available at the per-row level.

When we only considered the ‘Nonpareil’ variety, we observed
an increasing trend in accuracy (R2) similar to the per-row
models (Figure 6). On July 26, the R2 was up to 0.62, and RMSE
was 351.25 lb acre−1 for the ‘Nonpareil’ per-tree yield prediction.
As expected, these results were not as good as the per-row model
(R2 = 0.84 and RMSE = 195.01 lb acre−1). The RMSE from per-
tree data were also much greater than that from per-row data
due to the more diversity in the yield data. The differences were

only significant between the two scenarios (i.e., all varieties and
‘Nonpareil’) when we tested the means of absolute errors using
ANOVA (p < 0.05). In general, we conclude that the VOmethod
provides an acceptable yield prediction accuracy (R2) at the per-
tree level; a level of spatial precision in yield forecasting that has
not been offered by the mobile lightbar platform or any other
yield prediction methodologies.

It was important to note that more scattered points were
getting closer to the potential yield line (Jin et al., 2020) due to
the more variation in per-tree yield data. Two ‘Monterey’ trees
(in yellow “x” symbol) yielded (5094.49 and 3801.04 lb acre−1)
more than their potential yields (i.e., the two symbols were above
the potential line in Figures 10A–D). Jin et al. (2020) found that
the variation of the almond yield gap from actual yield to the
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FIGURE 6 | Comparison of R2 and root mean square error (RMSE) (to regression line) between Virtual Orchard (VO) and the mobile lightbar platform estimated

canopy Fractional PAR (fPAR) and actual almond kernel yield for all varieties and ‘Nonpareil’ only over the season in 2019 at the per-row level. Different letters refer to a

statistically significant difference testing the means of absolute errors in predicting actual almond yield with different regression models using analysis of variance

(ANOVA) multi-comparison (p < 0.05).

potential yield (pass or not reach) was mainly driven by tree
age and other factors if the orchards were located in different
geographical areas. Since our three orchards were located close
to each other, and all trees were mature, this gap was probably
triggered by different orchard management and practices.

Comparison of Spatial Precision Levels
Orchards 1 and 3 contain several blocks in each row, consisting
of three to eight trees based on the orchard configuration.
Therefore, we also analyzed the data based on the per-block level,
where the lightbar data were available to compare. Figure 11
compares the accuracies (R2) of the different measuring levels
[per-tree (VO only), per-block, and per-row] in explaining
almond actual kernel yield on June 26. In general, as the precision
level decreased from per-block to per-row, the accuracy (R2)
increased for both methods. For example, R2 increased from
0.29 to 0.37 using VO estimated fPAR in June. We expected
this trend since the dataset contained more errors or extreme
values when the precision level was higher. Subtle changes, such
as a tree being shaded from neighboring trees, can cause biased
data collection. We observed that even with the highest level of
precision (at the per-tree level), the VO method achieved better

accuracies (R2) than that of lightbar at a lower level of precision
(at per-block level) for all varieties (R2 = 0.29 for VO at tree
level; R2 = 0.23 for lightbar at block level). In other words,
VO estimated fPAR could better explain the actual kernel yield
with both higher accuracy and spatial precision than lightbar.
Regarding ‘Nonpareil’, the per-tree VO method (R2 = 0.59)
performed only slightly worse than the lightbar at the per-block
level (R2 = 0.64). Overall, we can conclude that the correlation
(R2) between the two measures (i.e., VO and lightbar estimated
fPAR) can be up to 0.96, in which the VO method even better
explained the almond actual kernel yield with up to 0.83 of R2

on the leading variety of ‘Nonpareil’ in June. The estimation
accuracy was further improved for ‘Nonpareil’ toward the end of
the season using the VO data.

In future work, we will consider adopting the DSM model
generated by the LiDAR sensor instead of RGB photogrammetry,
where LiDAR has much higher pixel resolutions. It is expected
that fractional absorbed PAR (fAPAR) is highly correlated to
fPAR due to fAPAR is strongly correlated to transmittance. In the
PAR domain, the fAPAR is very close to the fPAR, corresponding
to the canopy transmittance in the sun direction (Todd et al.,
2003). Although only fPAR was considered in this work, we
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FIGURE 7 | Comparison of accuracies of actual almond yield explained by Virtual Orchard (VO) estimated canopy Fractional PAR (fPAR) over the season: May 28 (A),

June 26 (B), July 26 (C), August 7 (D), and the mobile lightbar platform (June 26) (E) at the per-row level in 2019. The potential almond yield (57.9 lb acre−1) was

based on the results reported by Jin et al. (2020) using a lightbar.
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FIGURE 8 | Comparison of accuracies of actual ‘Nonpareil’ almond yield explained by Virtual Orchard (VO) estimated canopy Fractional PAR (fPAR) over the season:

May 28 (A), June 26 (B), July 26 (C), August 7 (D), and the mobile lightbar platform (June 26) (E) at the per-row level in 2019. The potential almond yield (57.7 lb

acre−1) was based on the results reported by Jin et al. (2020) using a lightbar.
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FIGURE 9 | Comparison of R2 and root mean square error (RMSE) (to regression line) between fPAR Virtual Orchard (fractional PAR estimated by VO) and actual

almond kernel yield for all varieties and ‘Nonpareil’ only over the season in 2019 at the per-tree level. Different letters refer to a statistically significant difference testing

the means of absolute errors in predicting actual almond yield with different regression models using analysis of variance (ANOVA) multi-comparison (p < 0.05).

already tested the relationship between accumulated PAR (in the
unit of mole) and fPAR using some preliminary datasets, where
sun angle and sunlight directions were precisely modeled from
sunrise to sunset at the specific locations of almond orchards.
Per accumulating the total PAR over the entire growing season
(four months from April 1 to July 31), we achieved a very high
correlation (R2 = 0.97–0.99) between accumulated PAR and
fPAR. Such information and results are out of the scope of this
work and, therefore, will be presented in our future publications.
We will also take the nitrogen and irrigation scheduling effects
on the plants into account when we evaluate the correlation
between estimated fPAR and almond yield. Besides, we will
consider employing spectral reflectance (Moghimi et al., 2020)
to determine tree nitrogen status and to better explain the yield
variations in trees of similar size.

CONCLUSIONS

In this study, a complete processing pipeline called VO was
developed in a Python environment to accurately extract canopy
profile features (e.g., canopy cover and canopy volume index)
from user-input orchards and user-defined parameters. Midday

canopy fPAR estimated by a mobile lightbar platform from each
row was compared against the canopy fPAR estimated by VO in
midseason (June) for eight different almond varieties, including
California’s leading variety of ‘Nonpareil’. The temporal analysis
was also conducted for VO estimated fPAR throughout the
entire growing season in 2019. Finally, regression models
were established for predicting actual almond yield based on
VO estimated canopy fPAR from different spatial precision
levels. Specific conclusions from this study are presented
as follows:

• We achieved a strong correlation (R2) of 0.91 and a low
RMSE of ∼3% between the VO and lightbar estimated fPAR
in midseason (June) for all varieties; the results were further
improved when we tested ‘Nonpareil’ only with an R2 of 0.96
and RMSE of 2%. In addition to June, R2 was ranged 0.81–
0.92 for all varieties and 0.93–0.95 for ‘Nonpareil’ in May and
August (harvest season) between the VO and lightbar;

• With the VO method, we achieved a better correlation (R2

of 0.43 and RMSE of 363 lb acre−1) in May between actual
almond yield and fPAR for the all-varieties model at the row
level; those numbers were 0.34 and 389 lb acre−1 when mobile
lightbar was used in the midseason (June). When we tested
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FIGURE 10 | Comparison of accuracies of actual almond yield explained by Virtual Orchard (VO) estimated canopy fractional PAR (fPAR) over the season with all

varieties: May 28 (A), June 26 (B), July 26 (C), and August 7 (D); and ‘Nonpareil’ only: May 28 (E), June 26 (F), July 26 (G), and August 7 (H) at the per-tree level in

2019. The potential almond yield (57.9 lb acre−1 for all varieties; 57.7 lb acre−1 for ‘Nonpareil’ only) was based on the results reported by Jin et al. (2020) using a

lightbar.
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FIGURE 11 | Comparison of R2 and root mean square error (RMSE) (to regression line) between fPAR Virtual Orchard (fractional PAR estimated by VO) and actual

almond kernel yield for all varieties and ‘Nonpareil’ only at the per-tree, per-block, and per-row spatial precision levels. Both VO and lightbar data were collected on

June 26. Different letters refer to a statistically significant difference testing the means of absolute errors in predicting actual almond yield with different regression

models using analysis of variance (ANOVA) multi-comparison (p < 0.05).

‘Nonpareil’, R2 and RMSE reached 0.84 and 195 lb acre−1

for VO method, and 0.70 and 266 for lightbar both in the
midseason (June–July);

• We compared the two measures at different spatial precision
levels: per-tree (VO only), per-block, and per-row; results
indicated that the lower the precision level, the better the
accuracy for both methods, and vice versa; however, with the
same precision level, the VOmethod performed notably better
than mobile lightbar (up to 0.13 higher R2).

With the results obtained from this study, we can conclude
that the VO method offers a practically more accessible
and more accurate, and precise alternative in estimating
canopy fPAR to replace the mobile lightbar platform. Tree-
to-tree variations are ready to be visualized, featured, and
evaluated using our proposed approach to facilitate better
decision-making for almond growers. This study showed
further evidence of a fundamental link between canopy
light interception (or fPAR; that can be estimated by aerial
imagery and VO method) and almond yield. The findings
from this work provide a solid foundation for further
investigation of canopy 3D models for yield forecasting in
nut crops.
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