
UC Office of the President
iPRES 2009: the Sixth International Conference on Preservation
of Digital Objects

Title
Implementing Metadata that Guides Digital Preservation Services

Permalink
https://escholarship.org/uc/item/12p437bd

Authors
Dappert, Angela
Farquhar, Adam

Publication Date
2009-10-05

Supplemental Material
https://escholarship.org/uc/item/12p437bd#supplemental

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/12p437bd
https://escholarship.org/uc/item/12p437bd#supplemental
https://escholarship.org
http://www.cdlib.org/

Proceedings

October 5-6, 2009
Mission Bay Conference Center

San Francisco, California

50

Implementing Metadata that Guides Digital Preservation Services

Angela Dappert & Adam Farquhar
British Library, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ, UK

Angela.Dappert@bl.uk, Adam.Farquhar@bl.uk

Abstract
Effective digital preservation depends on a set of
preservation services that work together to ensure that
digital objects can be preserved for the long-term. These
services need digital preservation metadata, in particular,
descriptions of the properties that digital objects may have
and descriptions of the requirements that guide digital
preservation services. This paper analyzes how these
services interact and use this metadata and develops a data
dictionary to support them.

1 Introduction

Effective digital preservation requires a set of
preservation services that work together to ensure that
digital objects can be kept alive for the long-term. In order
to work together, these services need digital preservation
metadata such as descriptions of the properties that digital
objects may have and descriptions of the requirements that
guide digital preservation services. This paper analyzes
how these services interact and use this metadata. From
this it develops a data dictionary to support them.

1.1 Related Work
Digital preservation metadata is the information that is

essential to ensure long-term accessibility of digital
resources. Analyses of the goals of long-term digital
preservation have led to a solid understanding of the types
of metadata that are needed. Good overviews are provided
in Caplan [3] and Lavoie [13]. In 2002, OAIS [4] provided
a framework to unify the concepts and terminology in the
community. Its information model [19] defines categories
for preservation metadata. In 2005 the PREMIS data
dictionary consolidated several earlier efforts [e.g. 5, 14,
17, 18] to produce conceptual models and concrete
metadata dictionaries for implementers of digital
preservation services. Now in its second version [20], it
has been widely accepted and plays a key role in creating
coherence in the digital preservation metadata community.
PREMIS provides a foundation to support interoperability
across systems and organizations. Many of the entries in
today’s data dictionaries are, however, still vague. They
await increased practical experience to establish the proper
level of granularity. They also tend to be focused on
statically recording characteristics and events rather than
on dynamically supporting preservation processes.

1.2 Contributions
This paper draws on the practical experience gained in

Planets [10], a four-year project co-funded by the
European Union to address core digital preservation
challenges. It analyzes how preservation services interact
and use preservation metadata. From this, it derives
information needed to capture key preservation metadata
elements, such as property, characteristic, and requirement.
Finally, it develops a data dictionary to support the
analysis. The approach handles conflicting values from
multiple sources. It also supports dynamic preservation
processes, in addition to static recording of characteristics
and events. It is based on a conceptual model of digital
preservation that is theoretically and empirically founded
[7, 8]. The model has consequences for implementations of
preservation metadata dictionaries, property registries, and
preservation services.

2 Properties, Values, Characteristics and
Requirements

In order to write with a reasonable level of precision,
we need to introduce a basic vocabulary [6]:
 Entity – Anything whatsoever.
 Class – A class is a set of entities. Each of the entities

in a class is said to be an instance of the class.
 Individual – Entities that are not classes are referred to

as individuals.
 Property – A property is an individual that names a

relationship.
 Characteristic – A property / value pair associated

with an entity. The value is an entity.
 Facet – A facet is a property / value pair associated

with a characteristic. The value is an entity.
 Constraint – A Boolean condition involving

expressions on entities.
 Requirement – A constraint in a specific context.

Unless otherwise specified, a characteristic is directly
associated with entities. Furthermore, we say that a
property applies to classes if it can be meaningfully
associated with some instances of these classes. We can
use this language in the domain of digital objects and
preservation. For example, file is a class; f1.txt is an
instance of the class file; fileSize is a property; the property

51

Figure 1 shows how properties, characteristics and requirements interact

fileSize applies to file; the file f1.txt has the characteristic
fileSize = 131342.

The constraint language can be used to express richer
relationships. For example, suppose a is a
bitPreservationAction, fIn is the initial file, and fOut is the
result of applying action a to fIn, then the constraint
fileSize(fIn) = fileSize(fOut) should hold.
Important additional information about a characteristic,
such as how a value is encoded, the unit of measure, or the
algorithm or tool used to compute it can be specified using
facets.

The core classes in the digital preservation domain are
preservationObject, preservationAction and environment.
The preservationObject concept corresponds to those objects
in need of preservation. In our conceptual model [7, 8, 9] it
has the subclasses bitstreams (including bytestreams and
files), representations of logical objects consisting of
representation bitstreams that are needed to create a single
rendition of a logical object, and logical objects such as
intellectualEntities and components. An intellectualEntity is a
distinct intellectual or artistic creation, a set of content that
is considered a single intellectual unit for purposes of
management and description. Finer grained components of
an IntellectualEntity are needed to characterise its parts.
The preservationAction concept corresponds to actions taken
by custodians of digital content to mitigate the risks that
they identify.

The environment concept corresponds to hardware and
software environments, the community, budgetary factors,

the legal system, and other internal and external factors.
An environment or sub-environment can be associated
with a preservationObject or preservationAction.

3 USES

Figure 1 illustrates the roles that properties, values,
characteristics and requirements (represented by ovals)
play in preservation services (represented by boxes). By
analyzing the specific roles that they play in these services,
we can derive additional requirements for our data
dictionary. This will be discussed in the following sections.

3.1 Uses of Properties and Controlled Vocabulary
Properties and controlled vocabulary can be captured

in registries so that they can be referred to in other
services. Alternatively they can be defined locally for local
use in a system. File format registries, such as PRONOM
[15] or UDFR [22], can associate file formats with their
applicable properties. Characteristics extraction languages,
such as XCEL [21], additionally describe how values for
these properties can be extracted from files in a given
format. Preservation metadata dictionaries, such as
PREMIS [20], define common preservation metadata
elements to describe properties of preservation objects or
environments. Controlled vocabulary registries, such as the
planned Authorities and Vocabularies service of the
Library of Congress, capture these properties' permissible
values (Figure 2). We can use this information to

52

 link a format to characterization services that can
determine values for its applicable properties - for
example, a service to determine the fonts used in a
.doc1 file (Figures 1A, 3).

 create a testbed service that measures the degree to
which applicable properties are preserved by
preservation services - for example, measure the
degree to which a service preserves imageWidth by
evaluating it on many objects. In addition to the
service characteristics (e.g. preservesImageWidth = “no”)
it could capture the degree to which or under what
condition this characteristic holds (Figures 1A, 3).

 enable metadata storage services to refer to properties
unambiguously and ensure interoperability and
exchange across institutions and systems (Figure 1B).

 identify properties that are shared across file formats
and can therefore be preserved by a migration between
them (Figure 2).

Use to
express

characteristics
and

requirements

Property
Registry

E.g. PRONOM,
XCEL

Properties
Describe

Property Description

Describe

Controlled
Vocabulary

Registry

E.g. LoC
Authorities and
Vocabularies
service

Controlled
Vocabulary

Describe

Controlled Vocabulary Description

Describe

Metadata
Dictionary
E.g. PREMIS,

MIX

Property

Figure 2: Properties

3.2 Characterization
Characterization services determine the characteristics

of preservation objects. Characteristics are property/value
pairs. They are used to describe preservation objects,
environments, and preservation actions. In particular,
 characteristics can be extracted automatically by

characterization tools [11, 16, 21] or assigned
manually (Figure 3).

 characteristics of preservation services can be
determined experimentally in preservation testbeds
[e.g. 1] (Figure 3).

1 We refer to file formats via common file extensions as a
shorthand for improved readability. A precise statement
requires a unique identifier corresponding to an exact
version of the format.

 characteristics may be stored in metadata storage
services or produced on demand (Figure 1C).

We refer to file formats via common file extensions as a
shorthand for improved readability. A precise statement
requires a unique identifier corresponding to an exact
version of the format.

Figure 3: Characterisation

3.3 Business Modelling
Business modelling results in the formulation of

requirements from properties and controlled vocabulary
(Figure 1D). Requirements reflect the stakeholders’ values,
goals and constraints with regard to objects and guide
preservation services.

Figure 4: Requirements

They may be captured in preservation guiding
documents, such as policy, strategy or business documents.
They may also be part of the preservation metadata
captured in metadata storage services that documents the
constraints that have been or should be applied to specific
preservation objects (See Figure 1C). The PREMIS data
dictionary for preservation metadata [20] accommodates
recording "significant properties” which are a form of
preservation guiding requirement. Requirements may also
be captured in reusable, customizable user profiles which
describe the requirements of a default designated
community. (Figure 4)

53

3.4 Uses of Characteristics and Requirements
Optional pre-selection services (Figure 1E) may

provide an optimization step which rules out implausible
preservation actions. They analyze requirements to
eliminate actions which can from the outset be determined
to be violated by characteristics in a given context.
Knowledge about the characteristics of preservation
services, which has been obtained in testbed services, is
particularly helpful in this step.

Preservation
Planning
E.g. Plato

Preservation
Execution

Match with
requirements Preservation

Planning on
Sample Data

Degree of
Compliance for

each
requirement

Requirements Evaluation
E.g.Comparator, such as XC*L comparator

Preservation
Service

executing
Preservation

Action
Choose

and
execute

Match with
characteristics

Characteristics

Characterisation

Business Modelling

Requirements

Score for
Preservation
Alternatives

Evaluate

Preservation
Monitoring

Monitoring

Identified
Preservation

Risks

Actions

Recommend

Risk
Specifying

Requirements

Preservation Guiding
Requirements

Evaluation of Output

Figure 5: Uses of Characteristics and Requirements

Primarily, requirements guide actions, such as
preservation monitoring, preservation planning and
preservation execution services (See Figure 5).
Preservation monitoring services determine whether risk
specifying requirements are violated and, therefore,
preservation risks exist. A preservation monitoring process
should trigger the preservation planning process once this
happens. Using a sample data set, preservation planning
services (e.g. Plato, [2]) determine the best choice of
preservation service to mitigate this preservation risk, with
respect to preservation guiding requirements. The
preservation execution service itself uses them to evaluate
and validate each preservation action’s output.

Once an action, such as preservation monitoring,
preservation planning or preservation execution, has been
chosen and executed it is validated in a requirements
evaluation step. Requirement evaluators [e.g. the XCDL
comparator, 21] determine the degree to which
characteristics of the preservation objects, preservation
actions and environments before, during and after actions
comply with requirements. The output is either an
assessment of the presence and severity of a preservation
risk, or a measure of the degree of compliance of an action
with the set of requirements (Figure 1F and 5).
Requirements can also serve as explicit provenance
information. A metadata storage service may document the

provenance of a repository’s objects. For each object, it
may record the preservation actions that created it and the
set of requirements that applied at the time. It can also
store the object’s degree of compliance with respect to
each requirement in the requirements set, especially its
significant characteristics. Sometimes characteristics that
are not referenced by any requirement are, however, lost
during a preservation action; it is not, in general, possible
to record their loss as they can not be listed exhaustively
(Figure 1G).

Actions can create new preservation objects and
environments. Their characteristics may differ from those
of the input preservation objects and environments (Figure
1H). Some requirements may articulate constraints on the
relationship between preservation action input and output.

4 SOME OBSERVATIONS

4.1 Observations for Properties

Figure 6: Applicable properties are mapped to formats via
the preservation object type

Observation 1:
Many properties are applicable to only a subset of

objects. For example, the property fontSize is applicable to
formats which may contain text; it would not be applicable
to an audio format.2 In order to achieve a normalized
representation, we link properties to the type of class to
which it applies (see appliesTo in the data dictionary), rather
than directly to file formats. Examples include bytestream,
representation, intellectualEntity (e.g. eBook, soundRecording),
component (e.g. textComponent, tableOfContents),
preservationAction or environment (e.g. legalEnvironment,
operatingSystem). This approach makes it easy to express
that the fontSize property applies to textComponent objects.
Figure 6 illustrates how it is straightforward to map
properties to subclasses of component and file formats in
turn.

2 The association of properties with digital object types of
files is discussed in the Planets testbed [12]. We are
refining this to the type of a component of the digital
object, since a logical object might well contain, for
example, text, sound, and image components together.

54

Observation 2:
Properties sometimes refer to a combination of

preservation objects, environments, or actions. Consider
the relative size of two images, the absolute distance of a
line from the text, and the metrics describing column
layout. These all refer to several objects. The language that
we use to define properties must be expressive enough to
capture this.

Observation 3:
Properties are related to each other and their

relationships have to be modelled explicitly. For example
duration can be calculated from dateTimeRange.
Furthermore, many file formats have similar, but not
identical properties. Therefore, the language that we use to
define properties must be able to capture the relationships
between them and specify how to compare or convert
them. Figure 7 illustrates this.

The association of properties with digital object types
of files is discussed in the Planets testbed [12]. We are
refining this to the type of a component of the digital
object, since a logical object might well contain, for
example, text, sound, and image components together.

Figure 7: Properties: value origins and relationships
between properties

Observation 4:
In many cases, it is useful to define one property in

terms of others. For example, the aspectRatio of an image
might be defined as imageWidth / imageHeight. As a result, it
is essential to record how such properties are defined and
derived in order to ensure consistency.

Observation 5:
For each property, it is essential to specify the tool or

algorithm that can be used to determine a value and the
types of sources from which they can be obtained. We
refer to this as the value origin. Values originate when they
are
 Assigned manually (stored or on demand). When

values are assigned manually they often need to
comply with conventions, such as cataloguing rules,

standards, controlled vocabularies, etc. This should be
specified as part of the value origin.

 Assigned automatically as a side-effect of a service
(stored). Regular internal operations, such as ingest of
digital objects, purchase of hardware and software,
decommissioning of equipment, hiring, training and
laying-off of staff, getting and spending money, or
executing preservation actions, all change
characteristics of preservation objects or their
environments. Equally, external operations, such as
introducing a new file format or a new preservation
service, change characteristics. These value changes
need to be captured if they serve as a basis for making
preservation decisions. E.g. the contentType of objects
in an eJournal ingest system is always set to
“eJournal” upon ingest. E.g. the budget of an
institution may be set during the execution of a
preservation action: preservationBudgetSize:=
preservationBudgetSize – preservationActionCost.

 Extracted (stored or on demand). The original source
of derived values may be a bitstream or the set of
representation bitstreams of a representation of a
logical object. Values are extracted using a tool which
implements an algorithm. The value origin should
specify the algorithms and tools used. Examples:
bytestreamSize may be extracted from the bytestream
object. colorFidelity can be measured by averageColor or
by histogramShape. wordCount can count hyphenated
words as one or as multiple words. MIME type can be
extracted using the JHOVE format characterization
tool.

 Inferred (stored or on demand). Values may be
inherited in the preservation object hierarchy, derived
through a function from values of other properties, or
logically inferred.

The value origin should specify the algorithm that can be
used to infer it. E.g. the aspectRatio of an image may be
imageWidth / imageHeight.

4.2 Observations for Characteristics
Observation 6:

Values for characteristics may be stored or derived on
demand. On demand derivation can take place through
characterization services or through retrieval from
registries or inventories.3 Whether they are stored or
derived needs to be recorded since different preservation
services will be chosen based on this property.

3 Such as software licenses, hardware inventories,
standards and XML schemata in use, staff skills, etc.

55

Observation 7:
There may be multiple values for a property of an

object, since there may be several representations (sources)
which form the basis of measurement for the value and
several different measurement techniques (technique) and
tools (creation agent). Characteristics and requirements
need to specify which value origin is meant.

4.3 Observations for Requirements
Observation 8:

In many cases, a stakeholder may express
requirements dependent on additional conditions, e.g. If
environmentType = “preservation” then image resolution must
be preserved. As a result, the language that we use to
define requirements must be expressive enough to include
conditionals. Requirements can be expressed as
constraints, such as through OCL [23] or other informal or
formal languages.

Observation 9:
Not all requirements are equally important and not all

have to be precisely satisfied. To accommodate this, it is
useful for a stakeholder to add an importance factor, as a
measure of relative importance, and potentially a tolerance
factor, as a measure of the tolerable degree of deviation
from the specified value, with each requirement. For
example, preserving the number of lines on a page might
be less important than preserving the number of pages.
During requirements evaluation of a preservation action
the importance and tolerance factors can be combined into
a weighted measure.

5 CONCEPTUAL DETAILS

In this section, we build on the preceding analysis to
specify the data model more completely. For each concept,
we describe its key attributes and basic information such as
its data type and whether it is mandatory or repeatable. We
also introduce supplementary concepts such as ValueOrigin
and Unit that are needed to represent properties. This data
dictionary is informed by analysis undertaken in the
Planets project. It will only be partially implemented
during the project, but it serves as a basis for further
development and implementation.

5.1 Property
Definition: An abstract attribute, trait or peculiarity

suitable for describing a preservation object, action or
environment.
 propertyIdentifier (1...1): a unique identifier of the

Property (data constraint: Property ID).
 propertyName (0...n): a meaningful human readable

name (data constraint: string). It is repeatable in order

to allow for synonyms. Different Properties may have
the same names, but must have unique identifiers.

 propertyDescription (0...n): a meaningful human
readable description of the Property (data constraint:
Description)

 appliesTo (1...1): a list of Classes. This property can be
meaningfully associated with Instances of these Classes
(data constraint: vector of PreservationObject,
Environment or PreservationAction subclasses). The
vocabulary of subclasses is extensible and includes
many subclasses not shown in this paper. See Dappert
et al [7] for a sample vocabulary.

 hasRange (0...n): the range of the property.
Mathematically, the range is the set of possible values
that the property can take on.
o hasUnit (0...1): (data constraint UnitID).
o hasDataConstraint (1...1): The range is specified via

a constraint, which may be a class, a URI for a
defined vocabulary, or a constraint expression.
Data constraints are combined with the unit
definition, as different units may have different

data constraints. (E.g. K: ≥0, °C: ≥ -273.15, °F: ≥
-459.67).

o isDefault (0...1): indicates whether this is the
default range for this Property (data constraint:
Boolean)

o hasDefaultValue (0...1): a default Value for this
Property.

 hasValueOrigin (0...n): How the Values for the Property
may be obtained or updated (if it is stored).
o hasValueOriginID (1...1): (data constraint

ValueOriginID).
o isDefault (0...1): indicates whether this ValueOrigin

is the default for this Property (data constraint:
Boolean)

 hasRelationship (0...n): specify a relationship to another
Property.
o hasRelatedProperty (1...1): (data constraint:

Property ID)
o hasRelationshipType (1...1): a type specification of

the relationship to another Property (data
constraint: taken from an extensible set; common
types include generalizationOf, specializationOf,
siblingOf, inverseOf, disjointOf, smallerThan).

 hasEvent (0...n): unique identifiers to each of the
Property’s Event objects, such as versioning, virus
checking, ingest. (data constraint: Event ID).

Value Origin
The ValueOrigin concept provides a way to specify where a
specific Value comes from or how it can be obtained. There
can be multiple ways of obtaining the Value of a Property
that do not produce conflicting results. For example, they
might be measured from different sources, measured by

56

different techniques, using different tools, or obtained
through different agents.

 valueOriginIdentifier (1...1): a unique identifier of the
ValueOrigin (data constraint: none).

 valueOriginName (0...n): a meaningful human readable
name (data constraint: string).

 valueOriginDescription (0...n): a meaningful human
readable description (data constraint: Description).

 hasSource (0...n): a type specification of the sources
from which the Value can be measured or derived (data
constraint: none). Sources might be registries or
inventories, Values of other Properties from which the
Value can be derived, or Representations of the
IntellectualEntities from which the Value can be derived.
There may be a chain of ValueOrigins where one
ValueOrigin is the source for another.

 hasTargetUnit (0...n): a specification of the Unit of the
Value to be created by this ValueOrigin. (data constraint:
Unit ID)

 hasTechnique (0...n): Rule, algorithm or logic used for
obtaining the Value (e.g. assigned according to Anglo-
American Cataloguing Rules, extracted from .tiff file
metadata) (data constraint: none). Techniques can be
manual or automated.

 hasAgent (0...n): For automatically derived Values:
software tool and version; for manually assigned
Values: person role (data constraint: Agent ID).

 hasTrigger (0...n): a trigger for Value assignment: e.g.
ingest, PreservationService, etc. (data constraint: none)

Unit
Every Property can have several Units. This is particularly
important for preservation characterization. bitDepth, for
example, is described as one non-negative number in .png
and as three non-negative numbers (one for every colour
channel) in .tiff. It is important to be able to specify which
Unit is chosen and how values in this Unit can be compared
to others.
 unitIdentifier (1...1): a unique identifier of the Unit (data

constraint: none).
 unitName (0...n): (data constraint: string) allows for

synonyms; e.g. inches, Zoll.
 unitDescription (0...n): a meaningful human readable

description of the Unit (data constraint: Description).
 hasDataConstraint (1...1): permissible Values; a type

definition for the Value; possibly a URI for defined
vocabulary (data constraint: taken from an extensible
set of data constraints).

 hasConversion (0...n): How Values may be converted
from another Unit to this Unit. This is important for
preservation characterization and comparison.
o hasSource (1...1): Identifier of the source Unit (data

constraint: UnitID)
o hasTechnique (1...n): Rule, algorithm or logic used

for mapping or converting the Value (e.g. FFT)

(data constraint: none) There may be multiple
ways of deriving the Value.

o hasAgent (0...n): conversion software tool and
version; (data constraint: Agent ID) There may be
multiple possible agents.

5.2 Characteristic
Definition: A Characteristic of an Entity is the concrete Value
which this Entity has for an abstract Property in a defined
context.
 characteristicIdentifier (1...1): a unique identifier of the

Characteristic. Having a unique identifier for a
 Characteristic supports different Values for the same

Property at different times. (data constraint:
 CharacteristicID)
 associatedWith (1...1): vector of unique identifiers of

PreservationObject, Environment or PreservationAction
Instances with which the Characteristic is associated. It
can be meaningfully associated with Instances of the

 Classes defined in the appliesTo element of the
corresponding Property concept (data constraint: vector
of

 PreservationObject, Environment or PreservationAction
IDs).

 hasProperty (1...1): a specification of the Property to
which this Characteristic refers.
o propertyIdentifier (1...1): It specifies for which

Property the Characteristic’s Value holds (data
constraint: Property ID)

o annotation (0...1): chosen from the allowable
values specified in the corresponding Property
definition.
 hasUnit (0...1)
 hasValueOrigin (0...1)
 hasSource (0...1)
 hasTechnique (0...1)
 hasAgent (0...1)

 isOnDemand (0...1): a specification of whether the Value
is stored locally or should be derived on demand (data
constraint: one of local, onDemand). Registry look-up is
an on-demand access.

 hasValue (0...1): Value of the Characteristic, if it is stored
locally (data constraint: none).

 hasCreationEvent (0...1): a unique identifier of the Event
which created the Value if it is stored locally (data
constraint: EventID) including the date the Value was
set. In addition, information to capture versioning
information such as a date range of applicability of the
Value, previous Values for the same Property and
objects, etc. are desirable.

57

5.3 Requirements
Definition: A constraint which limits the space of
allowable preservation activities.

 requirementIdentifier (1...1): a unique identifier of the
Requirement (data constraint: RequirementID)

 requirementName (0...n): a meaningful human readable
name (data constraint: string)

 requirementDescription (0...n): a meaningful human
readable description (data constraint: Description).

 hasRequirementsSet (0...n): a unique identifier of the
RequirementsSet to which the Requirement belongs
(data constraint: PreservationGuidingRequirementsSetID)

 hasStakeholder (0...n): (data constraint: AgentID)
 requirementSource (0...n)
 requirementApplicability (0...1): Time range during

which the Requirement is applicable. If it is not
specified explicitly, then it defaults to the Value of the
applicability element of the
PreservationGuidingRequirementsSet in which the
Requirement is captured.
o startDate (0...1): The date the Requirement is

projected to become valid (data constraint: date)
o endDate (0...1): The date the Requirement is

projected to cease, if it is not subsequently
extended (data constraint: date)

 requirementSpecification (1...1):
o context (0...n): Specifies the objects for which the

constraint holds
o pre (0...1): Specifies a pre-condition for applying

the Requirement
o post (0...1): Specifies a post-condition for

applying the Requirement
 requirementImportanceFactor: Measure of the relative

significance of the Requirement for the stakeholder
(data constraint: none)

 hasEvent (0...n): unique identifiers to each of the
Requirement’s Event objects (data constraint: Event ID)

The requirementSpecification can be expressed
informally or implemented using a constraint language
such as OCL [OCL 2003]. In the latter case, each pre- and
postcondition is an expression that can be evaluated against
the Characteristic Values specified in the Requirement’s
context. In some implementations, these will evaluate to
simple Boolean values (true or false). Other
implementations will allow for a tolerance. In this case, the
requirementImportanceFactor and tolerance can be used to
compute a weighted measure of compliance with the
Requirement.

CONCLUSION

This article has presented a data dictionary for key
digital preservation metadata concepts. The underlying

conceptual model supports dynamic preservation
processes, rather than the static recording of characteristics
and events. The data dictionary has been motivated by
observations about its intended uses and the interactions
between preservation services. The model has
consequences for implementations of preservation
metadata dictionaries, property registries, and preservation
services. This work has been conducted within the larger
context of defining a conceptual model and specific
vocabulary for supporting preservation services within the
PLANETS project and is theoretically and empirically
founded [7, 8].

ACKNOWLEDGEMENTS

Work presented in this paper was carried out as part of
the Planets project (IST-033789,
http://www.planetsproject.eu/) under the Information
Society Technologies (IST) Programme of the European
Sixth Framework Programme. The authors are solely
responsible for the content of this paper.

REFERENCES

[1] Aitken, B (2008). The Planets Testbed: Science for Digital
Preservation. The Code4Lib Journal, ISSN 1940-5758, Issue 3,
June 2008

[2] Becker, C. et alii (2008). Plato: A Service Oriented Decision
Support System for Preservation Planning. JCDL’08, Pittsburgh,
Pennsylvania, USA, June 2008

[3] Caplan, P. (2006). DCC Digital Curation Manual, Instalment
on “Preservation Metadata”, Version 1.0. July
2006.http://www.dcc.ac.uk/resource/curationmanual/chapters/pre
servation-metadata/preservationmetadata.pdf

[4] CCSDS (2002). Reference Model for an Open Archival
Information System (OAIS). CCSDS 650.0-B-1, Blue Book (the
full ISO standard). January 2002
http://public.ccsds.org/publications/archive/650x0b1.pdf

[5] CEDARS Project (2002). http://www.leeds.ac.uk/cedars/

[6] Chaudhri, V.,. Farquhar, A., Fikes, R., Karp, P., Rice, J.
(1998). OKBC: A programmatic foundation for knowledge
base interoperability. In Proceedings of the 1998 National
Conference on Artificial Intelligence.

[7] Dappert, A., Ballaux, B., Mayr, M., van Bussel, S. (2008).
Report on policy and strategy models for libraries, archives and
data centres. PLANETS report PP2-D2.
http://www.planets-
project.eu/docs/reports/Planets_PP2_D2_ReportOnPolicyAndStra
tegyModelsM24_Ext.pdf

58

[8] Dappert, A., Farquhar, A. (2008). Modelling Organisational
Goals to Guide Preservation. iPRES 2008: The Fifth International
Conference on Preservation of Digital Objects
http://www.bl.uk/ipres2008/ipres2008-proceedings.pdf

[9] Dappert, A., Farquhar, A. (2009). Significance is in the Eye of
the Stakeholder. ECDL 2009
http://www.planets-
project.eu/docs/papers/Dappert_Significant_Characteristics_ECD
L2009.pdf

[10] Farquhar, A., and Hockx-Yu, H. Planets: Integrated services
for digital preservation. Int. Journal of Digital Curation 2, 2
(November 2007), 88–99

[11] JSTOR and the Harvard University Library. JHOVE-
JSTOR/Harvard Object Validation Environment
http://hul.harvard.edu/jhove/

[12] Helwig, P. (2007). Test Methods for Testbed. PLANETS
report TB/3-D2
http://www.planetsproject.eu/publications/?search[0]=9

[13] Lavoie, B., Gartner, R. (2005). "Preservation Metadata".
DPC Technology Watch Report No. 05-01: September 2005
http://www.dpconline.org/docs/reports/dpctw05-01.pdf

[14] Lupovici, C., Masanès, J. (2000). Metadata for Long Term
Preservation. Bibliothèque Nationale de France. Den Haag:
Koninklijke Bibliotheek, 2000. - (NEDLIB Report series; 2).-
With summary ISBN 90-62-59-1469
http://nedlib.kb.nl/results/NEDLIBmetadata.pdf

[15] The National Archives: PRONOM
http://www.nationalarchives.gov.uk/pronom/

[16] The National Archives: DROID
http://droid.sourceforge.net/wiki/index.php/Introduction

[17] The National Library of Australia (1999). Preservation
Metadata for Digital Collections. October 1999.
http://www.nla.gov.au/preserve/pmeta.html

[18] National Library of New Zealand. Metadata Standards
Framework - Preservation Metadata (Revised). Technical
Papers Jun 2003.
http://www.natlib.govt.nz/downloads/metaschemarevised.pdf

[19] The OCLC/RLG Working Group on Preservation Metadata
(2002). Preservation Metadata and the OAIS Information Mode.
A Metadata Framework to Support the Preservation of Digital
Objects. June 2002.
http://www.oclc.org/research/projects/pmwg/pm_framework.pdf

[20] PREMIS Editorial Committee (2008). PREMIS Data
Dictionary for Preservation Metadata, Version 2. March 2008
http://www.loc.gov/standards/premis/v2/premis-2-0.pdf

[21] Thaller, M. et alii (2008). Significant Characteristics to
Abstract Content: Long Term Preservation of Content. Springer
Lecture Notes in Computer Science (LNCS, vol 5173)

[22] UDFR http://www.udfr.org/

[23] Warmer, A. and Kleppe, A. (2003). The Object Constraint
Language. Getting Your Models Ready for MDA. Addison-
Wesley Longman Publishing Co., Boston, MA, USA

