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This series of works have been focused on materials response to various harsh envi-

roments, i.e. high stresses, high temperature and irradiation. The work is mainly

achieved by using different computer simulation techniques across multiple time and

space regimes. Multiphysics and multiscale simulations were carried out to try to

reveal the true physics behind some phenomena never seen before, discovering new

sciences and mechanisms that are promising to guide future generation materials

design.
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ergy distribution in Fig. 3.4a, Ē⊥f = 0.93 eV, and also the simulated n0,

obtained by sampling from the distribution in Fig. 3.4a according to eq.

(3.1) (obtained from 10 independent samplings at each temperature). . . 58

xii



3.6 Plastic strain rate as a function of time at several temperatures under an

applied stress of 1500 MPa for a dislocation source with a total length of

150b containing two super-jogs evenly spread at +L/3 and +2L/3. The

inset shows an overlapping sequence of time frames of the dislocation

configuration at 1700 K covering 30 ns of DD/kMC simulation. . . . . . 60

3.7 Plastic strain as a function of: (a) stress for a fixed line length of L = 150b

and fixed number of super-jogs (two), (b) line length for a fixed applied

stress of 1000 MPa and fixed number of super-jogs (two), and (c) number

of super-jogs for fixed stress (1000 MPa) and line length (210b). The error

bars represent the numerical variability obtained from five independent

simulations for each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Variation of τ with temperature together with different terms contributing

to it in eq. (3.11) for a strain rate of ε̇ = 10−4 s−1. Experimental data

from refs. [6, 7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.9 Flow diagram of the numerical procedure employed here. Processes per-

taining to the kMC module are colored in shaded gray, while those per-

taining to the DD module are colored in shaded blue. Each box is num-

bered according to the sequence of steps. . . . . . . . . . . . . . . . . . . 70

4.1 Schematic illustration of the computational workflow of the methods de-

veloped in this paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Bright field micrographs of a grain with (a0/2)〈111〉 Burgers vector dislo-

cation loop being absorbed onto a 〈110〉 GB plane. Nye dislocation tensor

map generated from PED ACOM orientation data highlighted increased

signal at the 25◦ [1 -3 -6] GB [2]. . . . . . . . . . . . . . . . . . . . . . . 81

xiii



4.3 (a) Atomistic and (b) discrete line representation of an 80-Å (a0/2)[111]
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CHAPTER 1

Introduction

The discoveries of novel materials have enabled the fast development of society nowa-

days. These newly synthesized materials have exhibited great properties in mechani-

cal, electrical, thermal, magnetic and irradiation resistant aspects. The thesis will be

orgnized as follows: Chapter 2 and 3 are simulations on a single dislocation’s behav-

ior. In Chapter 2, with inputs from atomistic calculations, our mesoscale simulations

can predict screw dislocation’s kink pair formation enthalpy in Tungsten with accu-

racy while saving computational cost. In Chapter 3, I simulate the dynamics of edge

dislocations, which are strenghened by superjogs, explaining the high temperature

stregthen retention of Refractory High Entropy Alloy NbMoTaW. In Chapter 4, I

show a toolbox that I developed, which can analyse the geometrically necessary dis-

locations signals in Fe through pure computational approach. The results obtained

through this way are then presented in Chapter 5. The irradiation defects’s interac-

tion with grain boundaries in Fe is both examined by experiments and simulations.

And the quantitative agreement that we get enables us to recognize and propose a

paradigm shift in grain boundaries’s role as defect sinks.
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CHAPTER 2

Modeling screw dislocations in Tungsten

2.1 Introduction

In the field of dislocation physics, body-centered cubic (bcc) metals are peculiar

due to the existence of non-planar dislocations with screw character and thermally-

activated mobility that control plastic flow at low-to-intermediate temperatures.

These dislocations have a Burgers vector b equal to 1/2〈111〉 and move on close-

packed planes (primarily {110} and {112}) [9, 10, 11, 12, 13]. Generally, this motion

is understood to occur over a periodic energy landscape known as the Peierls poten-

tial via the thermally activated nucleation of steps on the dislocation line, known as

kink pairs, and their subsequent sideward relaxation [14, 15, 16, 17, 18, 19, 20]. Screw

dislocations in bcc materials often behave in non-crystallographic ways, giving rise to

phenomena such as pencil glide, asymmetry of the critical stress in the twinning and

anti-twinning glide directions, asymmetry of the critical stress under tension/com-

pression loading, or anomalous slip [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Most of

these peculiarities are typically attributed to the highly compact (non-planar) struc-

ture of the 1/2〈111〉 screw dislocation core, which has naturally attracted much atten-

tion over the last several decades mostly in the form of atomistic models [32, 33, 34].

Based on recent work using electronic structure calculations, a picture has emerged
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whereby the preferred dislocation core structure in bcc crystals has been established

to be a compact, non-dissociated core resting on an underlying sinusoidal Peierls

potential, UP [35, 36, 37, 38, 39].

The strong temperature dependence of the yield and flow stresses displayed by

most bcc metals is generally rationalized in terms of the thermally-activated nature of

kink-pair nucleation. As such, a principal objective of the materials community in bcc

alloys has been to develop models to characterize the activation energy of kink pairs.

These are typically based on energy minimization of curved string configurations

lying on a static energy substrate in either one [40, 41] or two dimensions [42].

The energy of the string is obtained by solving an integro-differential equation in a

two-dimensional space defined by the glide x and screw z directions that accounts

for the elastic energy of the line, its position on the substrate potential, and the

mechanical work done by the stress τ [43, 44]. These so-called line-on-substrate

(LOS) approaches have been traditionally approximated by models that reduce the

double line integral (along x and z) to discrete sums along one or both integration

dimensions. In the so-called line-tension (LT) model the integral along the screw

direction is replaced by a dislocation self-energy which depends on the curvature

of the line. The other integral is solved along the glide coordinate, yielding the

equilibrium shape of the kink-pair configuration on the substrate potential. These

activated configurations are usually referred to as ’bulge’ structures as they resemble

a protuberance on the dislocation line projected along the glide direction. The LT

approach works well when this protuberance is small, i.e. at high and intermediate

stresses, but not at low stresses [40, 41]. For low values of τ , the elastic interaction

(EI) between kinks governs the line energy, in which case one can approximate the

bulge configuration by a polygon (typically a trapezoid) with mutually-interacting
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elastic segments, reducing the double integral to a set of discrete convergent sums

[45, 46].

While insights gained from these models have improved our understanding of the

activated states of kink-pair configurations, knowledge obtained from a decade or so

of atomistic calculations supports the need to augment LOS models with inelastic

contributions brought about by non-linear effects of atomistic nature. The most

important of these are (i) the alteration of the Peierls potential energy function in

the presence of resolved shear stress, and (ii) the consideration of core energies into

the energy description of kink-pair configurations. At low stresses, one can safely

assume that UP remains unchanged and the effect of stress on the dislocation can be

linearly decoupled from the underlying substrate in the form of a mechanical work.

However, at stresses approaching the critical stress, referred to as the Peierls stress τP

at 0 K, it is insufficient to consider only the zero stress internal energy to represent

the Peierls trajectory. This trajectory is defined as the rectilinear path, denoted

by the reaction coordinate x, between two equivalent equilibrium states (known as

‘easy core’) on the Peierls potential, which has periodicity h0 = a0

√
6

3
, where a0

is the lattice constant. As recent calculations have shown, UP can couple to the

applied stress in non-negligible ways [47]. For its part, the inelastic contribution to

the total dislocation energy, referred to as the core energy, is known to be potentially

an important driving force in the minimization of dislocation line configurations

(e.g. the so-called self-force in dislocation dynamics models). In particular, as will

be shown below, in bcc metals the dependence of the core energy with dislocation

character is periodic in the entire
[
−π

2
, π

2

]
angular range of θ (taken to be equal to

zero for the screw orientation), contrary to other crystal structures, which display

a
[
0, π

2

]
periodicity. While this is a consequence of a well-known asymmetry of the
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bcc crystal lattice [12, 24, 23], it has not been included into continuum models of

kink-pair configurations to date.

In this work, we explore the effect of these features on numerical LT and EI models

of kink-pair configurations modified to account for variations in UP(x) brought about

by the applied stress and character-dependent dislocation core energies. Ultimately,

we are after checking whether the notion that atomic information based on (quasi)

2D simulations can be effectively integrated into dislocation energy models of 3D

line configurations is correct to interpret bcc plastic behavior. As well, we check

whether fine details obtained in atomistic models, such as, e.g., the energy asymmetry

between left and right-handed kinks that has been observed in several bcc metals

[48, 49, 50], can be accurately captured by this coupled approach. Our paper is

organized as follows. First we introduce the unprocessed physical inputs as obtained

from atomistic simulations. Next, we review the theoretical formulation of the EI and

LT models employed here. This is followed by details about the coupling between

atomistic information and the discretized continuum models. We then show results

for two different atomistic force fields for tungsten. We conclude the paper with a

discussion of the results and some general conclusions.

2.2 Raw atomistic inputs

Based on a prior analysis of several W interatomic potentials for screw dislocation

property calculations [51], we have selected an embedded-atom method (EAM) [52]

and a modified -EAM (MEAM) potential [53] as the most suitable in terms of physical

accuracy and computational efficiency. Using these two potentials, we have studied

the dependence of UP(x) on the resolved shear stress, and of the dislocation core

5



energies on dislocation character. This furnishes what we refer to as ‘raw’ atomistic

inputs, i.e. before they are processed to be in usable form for the LOS models. Below

we report on the numerical values in each case and provide a brief description of how

they are arrived at.

2.2.0.1 Peierls potential

The Peierls potential UP(x) is obtained as the minimum energy path along the re-

action coordinate x joining two adjacent equilibrium dislocation core configurations

(known as easy core configurations). This is done using the nudged elastic band

(NEB) method [54] in small atomistic supercells reflecting the structure of balanced

dipole configurations oriented along the [1 1 1], [1 2 1] and [1 0 1] directions. These

configurations permit the use of periodic boundary conditions along all three super-

cell directions. The dimensions of the simulation cell along the three coordinate axes

were Lx =13.6 Å(5b), Ly = 108 Å, and Lz = 107 Å, containing a total of N = 10000

atoms. The NEB trajectory is partitioned into 30 images constrained to relax in

configurational hyperplanes defined by the normal axis along x (3N − 1 degrees of

freedom).

Prior to the NEB calculations, unconstrained energy minimizations using LAMMPS

[55] were carried out for the initial and final configurations. NEB trajectories are

generated as a function of stress τ (resolved shear stress on the glide plane) and

the results are shown in Fig. 2.1. The paths shown in the figure are generated by

subtracting from the resulting NEB trajectory the mechanical work, −τbx, for each

image and matching the equilibrium position, x0(τ), and the associated energy in

each case to the origin of each curve.
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Figure 2.1: Variation of the Peierls potential with stress for the EAM and MEAM po-

tentials.

2.2.0.2 Dislocation core energies

The dislocation core energy is a mathematical construct designed to remove the

singularity in the stress and strain fields of elasticity theory. As such, the core

region is eminently inelastic in nature and can arbitrarily be defined by a parameter

a referred to as the core radius. This effectively partitions the total energy of a

dislocation dipole into elastic and inelastic parts, with the latter confined to the

core region within a [56, 57, 58] (cf. Section 2.3.1.2). This partition results in the

following definition of the core energy:

ec(θ, a) =
eatm(θ)− eel(θ, a)

2
(2.1)

where the angle θ = cos−1
(
b·t
b

)
formed by the Burgers vector b and the line direction

t defines the dislocation character, while the 1/2 factor reflects the existence of a

dislocation dipole.

The total energy eatm is obtained from conjugate gradient minimizations of pe-

riodic atomistic supercells containing a dislocation dipole much in the manner de-

scribed in the above section. The only difference resides in the orientation of the
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supercell, whose axes z, y and x are now oriented along the n, t and (n× t) direc-

tions, respectively. For its part, the elastic energy eel is calculated by subtracting

the interaction energy due to the periodic dipole network (appearing by virtue of

using periodic boundary conditions) from the elastic energy of a dislocation dipole.

An example of the partition of energy described by eq. (2.1) is shown in Figure 2.2.

The core energies assuming a value of a = 2b for the EAM and MEAM potentials,

as well as for DFT calculations of pure screw (0◦) and edge (90◦) configurations [59]

are also given in Fig. 2.2. As the graph shows, the angular periodicity of the core

energy function is (0, π), as there is an asymmetry in the energies about the pure

edge orientation. This is not surprising, given the natural crystallographic asymme-

try of the bcc lattice, which is most notoriously manifested in the existence of the

so-called M111 dislocation orientation [60]. As will be discussed later, this asym-

metry in the core energies leads to different energies for ‘left’ and ‘right’-handed

kinks, a phenomenon commonly observed in atomistic calculations using a number

of interatomic potentials [48, 49, 50].

2.3 General theory of the line-on-substrate model

Line-on-substrate model regards the dislocation as a line resting on a periodic energy

landscape (substrate) that reflects the coupling between the dislocation line and the

crystal lattice. As mentioned in Sec. 4.1, the two most widely used versions of the

LOS model are the elastic interaction (EI) model and the line tension (LT) model.

Here we provide a description of the theoretical formulations employed here for each

of the two cases.
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Figure 2.2: Core energies obtained from atomistic simulations. (Left) Total atomistic

energy (per unit length) for a computational cell containing a screw dislocation segment

modeled with the EAM potential. The total energy is partitioned between an elastic energy

and a core energy assuming a value of a = 2b. c1 represents the size of the box along a

〈110〉crystallographic direction (separation of the dislocation dipole). (Right) Dislocation

core energies as a function of the character angle θ all for a = 2b. Results for both

interatomic potentials, as well as and DFT data, are shown.

2.3.1 Elastic interaction model

In the EI model, a kink-pair on a screw dislocation line can be approximated by

an open trapezoid connected to two semi-infinite segments in the manner shown

in Fig. 2.3: The segments LA and DR are located on the first Peierls valley, the

segment BC is on the second Peierls valley, and AB and CD are the kink segments

that straddle both minima. One can use the structure shown in Fig. 2.3 to obtain

stable configurations for the activated state by optimizing the activation enthalpy of

the system for a given stress. The activated state can be characterized by the sum

of self-energies ∆Eself and interaction energies ∆Eint for all segments shown in the

figure. In addition, the contribution to the energy of the underlying substrate ∆UP
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Figure 2.3: Schematic representation of a kink-pair configuration on a straight screw

dislocation. The points labeled L and R represent arbitrarily distant locations to the left

and right of A and D, respectively. We use a cartesian coordinate system such that the x

direction is along the glide direction, the y direction is normal to the glide plane, and z is

oriented along the line. h0 is the periodicity of the Peierls potential, w is the length of the

BC segment, and l1 and l2 are the widths of the kinks (projections of the AB and CD

segments on x). The shaded region corresponds to the slipped are defined in eq. (2.4).

must be separately considered for the case of screw dislocations in bcc metals. The

enthalpy is then obtained by subtracting the mechanical work Wm performed by the

stress τ :

∆H({ri}, τ) = ∆Eself({ri}, θi) + ∆Eint({ri}) + ∆UP({ri})−Wm(τ, {ri}) (2.2)

The stable configurations for the kink-pair structure shown in the figure are ob-

tained by optimizing the above expression with respect to the coordinates rA, rB,

rC , rD. Note that, due to the asymmetry in the ec function described in the previous

Section, in Fig. 2.3 the kink widths l1 and l2 do not necessarily have to be equal. This

sets our work apart from other studies where it is commonly assumed that they are

the same. The energies of the kink-pair configurations shown in the figure need to

be computed piecewise, adding the contributions from all the dislocation segments.

In the next sections we provide expressions for each of the energy terms introduced

in eq. (2.2).
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2.3.1.1 The mechanical work

The mechanical work Wm in eq. (2.2) is simply defined as:

Wm(τ, {ri}) = τbA (2.3)

where τ , b, and A are, respectively, the resolved stress on the glide plane, the mag-

nitude of the Burgers vector, and the area swept by the kink pair. This area can be

calculated as:

A =
1

2
(|AB ×AC|+ |DC ×DA|) (2.4)

where

AB ≡ rB − rA

AC ≡ rC − rA

DC ≡ rC − rD

DA ≡ rA − rD

2.3.1.2 Self-energies of dislocation segments

In accordance with [44] and [46], the total elastic self-energy of the configuration in

Fig. 2.3 can be written as:

∆Eel
self({ri}) = Eel

self(AB) + Eel
self(BC) + Eel

self(CD)− Eel
self(AD) (2.5)

Here we use the non-singular expressions for the self-energy of a straight dislocation

segment m defined by endpoints r1 and r2, and Burgers vector b provided by [61],

which give these energies as a function of θ and a. In this work, we add the core

energy contribution to the above elastic energies as:

Eself(m) = Eel
self(m) + ec(θ, a)‖m‖ (2.6)
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2.3.1.3 Interaction energies

For the interaction energies, Hirth and Lothe [44] give the following expression for a

symmetric kink-pair:

∆Eint({ri}) =

2 [Eint(LA/AB) + Eint(LA/BC) + Eint(LA/CD) + Eint(AB/BC)− Eint(LA/AD)] +

+ Eint(AB/CD) (2.7)

This is because, for a symmetric configuration, the following equivalencies hold:

Eint(LA/AB) ≡ Eint(DR/CD)

Eint(LA/BC) ≡ Eint(DR/BC)

Eint(LA/CD) ≡ Eint(DR/AB)

Eint(AB/BC) ≡ Eint(CD/BC)

Eint(LA/AD) ≡ Eint(DR/AD)

However, for an asymmetric configuration, only the last one is true and, thus, the

sum of interaction energies reads:

∆Eint({ri}) = Eint(LA/AB) + Eint(DR/CD)

+ Eint(LA/BC) + Eint(DR/BC) + Eint(LA/CD)+

+ Eint(DR/AB) + Eint(AB/BC) + Eint(CD/BC)

− 2Eint(LA/AD) + Eint(AB/CD) (2.8)

The general expression within non-singular isotropic elasticity theory for the inter-

action energy of two segments m and n with, respectively, endpoints r1 and r2, and
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r3 and r4 is:

Eint(m,n) = E∗(r4 − r2) + E∗(r3 − r1)− E∗(r4 − r1)− E∗(r3 − r2) (2.9)

where the functional E∗ takes different forms depending on the nature of the inter-

action. The non-singular elastic expressions used here to obtain E∗ are all given by

[61], which we omit for simplicity.

2.3.1.4 The Peierls potential

The kink pair structure shown in Fig. 2.3 rests on a periodic energy landscape known

as the Peierls potential, UP. Multiple atomistic studies using DFT and semi-empirical

potentials [62, 63, 64] have shown that UP is well represented by a (co)sinusoidal

function of the type:

UP(x) =
U0

2(1− α)

[
1− cos

2πx

h0

− α

2

(
1− cos

2πx

h0

)2
]

(2.10)

where x represents the reaction coordinate (along the glide direction), U0 is known

as the Peierls energy, and h0 is the period of UP (h0 = a0

√
6/3 in bcc lattices). α

is a parameter that captures the deviation of UP from a pure cosine function. The

contribution to the total energy of a kink segment lying across two Peierls valleys is:

∆UP({ri}) =

ˆ
LABCDR

UP(x)d`−
ˆ
LADR

UP(x)d` (2.11)

Both of the above integrals are evaluated from an equilibrium position x0 to x0 +h0.

x0 is obtained from the following relation:

dUP(x)

dx

∣∣∣
x=x0

= τb (2.12)
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The infinitesimal differential d` follows along the kink segment and in general can be

linearized as:

d` =
√
dx2 + dz2

We now make the approximation that the straight segments LA, BC, DR cancel

with their respective counterparts in the LADR configuration. Then the above

integrals reduce to:

∆UP({ri}) =

ˆ x0+h0

x0

UP(x) (d`1 + d`2)− UP(x0) (l1 + l2) (2.13)

To capture the effect of the resolved shear stress on the shape of UP(x) revealed

in Sec. 2.2.0.1, we consider a stress dependence of both U0(τ) and α(τ), as will be

shown in Appendix 2.8.

Equations (2.3), (2.5), (2.8), and (2.13) are combined to fully define the activation

enthalpy in eq. (2.2), which is subsequently optimized for the set of parameters w, l1,

and l2 as a function of stress. Each saddle point corresponds to the activated state

of the kink-pair at each stress, from which the dependence of ∆H(w, l1, l2) with τ

can be calculated. The dimensions of the trapezoid corresponding to each optimized

configuration are obtained as:

rA ≡ (x0, 0)

rB ≡ (x0 + h0, l1)

rC ≡ (x0 + h0, l1 + w)

rD ≡ (x0, l1 + w + l2)
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2.3.2 The line tension model as a simplified LOS approach

At low stresses the stability of the kink-pair configuration is controlled by the elastic

interaction between the kink segments. However, as the stress increases and the

shape of the line resembles more a ‘bulged’ structure with low curvature. In such

cases, the elastic energy of the system is well approximated by a so-called line tension

representation [65, 66], where the energy of the kink-pair structure is controlled by

the curvature of non-straight segments. Within elasticity, the line tension is defined

as:

T (θ, a) =
∂Eself(θ, a)

∂`
(2.14)

which is the dislocation energy per unit length, depending only on dislocation char-

acter θ and the core radius a. For small dislocation segment lengths, `, the above

expression can be approximated by T (θ, a) ≈ Eself(θ,a)
`

. This form of T (θ, a) replaces

the self and interaction elastic energies in the enthalpy expression for the kink-pair

configuration. ∆H ({ri}) now reads:

∆H(z, τ) =

ˆ
dz [∆T (θ(z), a) + ∆ec(θ(z), a) + ∆UP(x(z), τ)−Wm(τ)] = (2.15)

=

ˆ
dz[(T (θ(z), a)− T (θ = 0, a)) + (ec(θ(z), a)− ec(θ = 0, a)) +

+ ∆UP(x(z), τ)−Wm(τ)] (2.16)

where ec, Wm and ∆UP are defined as in Secs. 2.2.0.2, 2.3.1.1 and 2.3.1.4. Eq. (2.15)

can be represented as a piecewise sum along the z direction of the contributions of

individual segments of length b [67]:

∆H({xi}, τ) = b
∑

i

[T (θi, a)− T (θ = 0, a) + (ec(θi, a)− ec(θ = 0, a))+

+ ∆UP(xi, τ)− τb

2
(xi+1 + xi − 2x0)] (2.17)
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where UP(x, τ) is given by equation (2.10), and θi = tan−1
(xi+1−xi

b

)
. The geometry of

one discretization segment is shown in Fig. 2.4 for the calculation of the mechanical

work.

xi

xi+1

x0

b

x

z

θi

Figure 2.4: Representation of a discrete segment used to calculate the enthalpy of the

kink-pair configuration using the line tension LOS model. x0 is calculated as in eq. (2.12).

The length of the black segment is L.

The expression utilized in eq. (2.14) is derived from those provided by [61], which

expressed in piecewise form for use in eq. (2.17) is:

T (θ, a) =
µb2

4π(1− ν)

{
(
1− ν cos2 θ

)
ln
b+
√
b2 + a2

a
− 3− ν

2

(√
b2 + a2 − a

b

)
cos2 θ

}

(2.18)

The equilibrium configurations are obtained by minimizing the value of ∆H in

eq. (2.17) as a function of the set of coordinates {xi} at each stress point τ .
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2.4 Implementation and parameterization of LOS models

In this section we explain how to process the atomistic results described in Sec. 2.2

for use in the EI and LT models just presented. First, we discuss the expressions for

the stress-dependence of the Peierls potential, followed by those pertaining to the

core energies.

2.4.1 The Peierls potential

For the EI model, the integral in eq. (2.13) can be solved analytically and used

directly in expression (2.2):

∆UP({ri}) =

(√
1 +

l21
h2

0

+

√
1 +

l22
h2

0

)ˆ x0+h0

x0

UP(x)dx− UP(x0) (l1 + l2) =

=
U0

2(1− α)

{(√
1 +

l21
h2

0

+

√
1 +

l22
h2

0

)[
h0

(
1− 3α

4

)
+

− h0(1− α)

2π

(
sin

2π(x0 + h0)

h0

− sin
2πx0

h0

)
+

− h0α

16π

(
sin

4π(x0 + h0)

h0

− sin
4πx0

h0

)]
+

− (l1 + l2)

[
1− cos

2πx

h0

− α

2

(
1− cos

2πx

h0

)2
]}

(2.19)

where we have used dzβ =
lβ
h0
dx, with β = 1, 2. The atomistic information provided in

Sec. 2.2.0.1 has been introduced into this expression in the form of stress-dependent

correlations for U0 and α. We have seen that U0 scales as τn whereas α is a linear

function of τ . The specific expressions and the fitting procedure followed to obtain

these correlations is described in Appendix 2.8.

For the LT model, UP(xi) is evaluated directly using (2.10) for each discretized
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segment xi. Summation over all segments then gives us the total potential energy

of the line, in accordance with eq. (2.17). The expressions for U0(τ) and α(τ) are

identical to those used in the EI model.

2.4.2 Core energies

The core energy results from atomistic calculations shown in Sec. 2.2.0.2 are intro-

duced in the same manner in the EI and LT models. In principle, the main features

of ec that a fitting procedure must capture are its dependence of both dislocation

character (i.e. angle θ) and core width a. However, what is novel in this work is

the slight asymmetry about the edge character orientation displayed in Fig. 2.2. For

this, we additively separate the total core energy into an a-independent term, and

an a-dependent one:

ec(θ, a) = f(θ) + g(θ) log
(a
b

)
(2.20)

where f(θ) and g(θ) are obtained by fitting the data in Fig. 2.2 to Fourier series

expansions of the type:

y(θ) = c0 +
3∑

k=1

ck sin(2iθ) + dk cos(2iθ) (2.21)

These functions can yield the asymmetry about θ = π/2 and naturally satisfy the

condition that their first derivative is equal to zero for θ = 0 and θ = π (zero self-force

for screw orientation). It is important to clarify that this partition of the core energy

is mathematically arbitrary, and other works have opted for different approaches

[68]. The dependence of the dislocation core energy with both the character angle

and the core size is shown in Fig. 2.5. The details about the fitting procedure and

the numerical values of the coefficients ci and di care given in Appendix 2.9.
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Figure 2.5: Dislocation core energies for (a) EAM and (b) MEAM interatomic potentials

as a function of the dislocation character angle θ and the core size a. The curves generated

using eq.(2.20) for nine different values of a are also plotted.

2.4.3 Implementation details

2.4.3.1 Elastic interaction model

In the EI model, the kink-pair configuration itself represents the activated state be-

tween the two minima in the Peierls potential representing the initial and final screw

dislocation configurations. As such, the enthalpy in eq. (2.2) must be maximized

along the reaction path. This is done by obtaining the saddle point of the entire

structure as a function of the position of points A, B, C, and D in Fig. 2.3. How-

ever, standard (unconstrained) optimization algorithms are difficult to stabilize in

an energy landscape that is only conditionally convergent [69]. The geometry of the

configuration, however, can be used to identify conditions that favor convergence.

This can be done, for example, by noting that the trapezoid depicted in Fig.

2.3 represents a dislocation loop (with three ‘real’ segments and one ‘anti’ segment)

whose elastic energy is known to be finite. This imposes limits on the minimum and

maximum size of the trapezoidal structure that are discussed below.
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(i) The condition of finite energy means that the total activation enthalpy in eq.

(2.2) is independent of the size of segments LA and DR. Using isotropic

singular linear elasticity, the terms depending on the lengths of these segments

are seen to cancel in the analytical expressions for the total elastic energy of the

trapezoidal configuration. With the non-singular theory, things are not quite

as simple, as analytical expressions are not straightforward to obtain. However,

the same premise must still hold. Here, we have performed a numerical study

to confirm this, and have established the minimum length of segments LA

and DR to have converged, length-independent energies. Fig. 2.6 shows the

combined value of (∆Eint + ∆Eself) in eq. (2.2) as a function of the value of

‖LA‖ ≡ ‖RD‖. Our results show that values of approximately 200b or larger

must be used to achieve length independence. In most simulations, we have

typically used a value of 1000b.
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Figure 2.6: Elastic interaction and self energies as a function of the length of LA and

DR segments.

(ii) At the same time, the separation of segments AB and CD (i.e. the value of
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w in Fig. 2.3) must be sufficiently small for the elastic interaction energy to be

finite within the numerical tolerance of our minimization procedure. w changes

with stress, but we have found that, as a rule of thumb, at zero stress values

of no less than 40b should be considered.

2.4.3.2 Line tension model

The case of the LT model differs from that of the EI model just explained. In

this case, the saddle point configuration corresponds to a bulged structure that lies

somewhere along the x coordinate. This configuration does not generally correspond

to one where the line lies on either of the minima of UP. Therefore, one must vary the

size of the bulge, defined by a variable h along the x path between x0 and h0 until the

system’s enthalpy goes through a maximum. At each stress, this path is discretized

and the saddle point structure found. This is expected to yield minimum energy

paths that are substantially equivalent to dynamic trajectories [70]. To improve the

rate of convergence, here we invert the potential energy landscape by altering the

sign of the mechanical work along the path as to balance the the rest of the terms in

the enthalpy and have net zero effect on the total energy. This approach has proven

robust for the calculations undertaken in this work.

Once the saddle-point configuration is found for each stress, we approximate the

left and right sides of the bulged structure with an arc tangent function. All the

corresponding outputs (i.e. w, l1, l2, etc) are calculated upon mathematical analysis

of the best approximants obtained for each case.
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2.5 Results

The first-principles method used here for parameterizing and benchmarking the LOS

model calculations are atomistic calculation results using two different interatomic

potentials. Table 2.1 (top half) gives several parameters of importance obtained for

each potential. Below, we discuss the most important results for the EI and LT

models. Most results are shown in normalized form to facilitate inter-comparison:

(i) the stress is expressed as the fraction of the Peierls stress, s = τ/τP, (ii) energies

are plotted relative to the zero-stress activation enthalpy ∆H0, and (iii) lengths are

expressed in Burgers vector units, b, or Peierls potential wavelength h0.

2.5.1 System length scales: line shapes, kink separation, and kink widths
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Figure 2.7: Optimized kink pair configurations as a function of stress for the EAM

potential. (a) Elastic interaction model. (b) Line tension model.

Fig. 2.7 shows the optimized saddle point configurations for kink pairs as a func-

tion of stress under the EI and LT models for the EAM potential. The configurations
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for the MEAM potential are qualitatively similar in both cases. The graphs for the

EI model results do not show segments LA and DR in their entirety but a dimin-

ishing kink separation, w, can generally be observed as the stress increases. This

variation of w with τ is plotted in Fig. 2.8. In accordance with elasticity theory, the

kink-pair length diverges at zero stress, decreasing gradually with stress to a final

value of ≈ 2b. For its part, lacking an interaction energy, the results for w in the LT

model are less significant, but they are weakly dependent on stress. Interestingly,

LT predictions for the EAM and MEAM potentials result in differences of about a

factor of two between both atomic models (higher for MEAM). As well, EAM values

are in very good agreement with the corresponding atomistic results (around 10b,

from ref. [49]).

As shown in Fig. 2.7 for the LT model, the activated state for the dislocation is a

bulged configuration straddling the Peierls potential. The amplitude of this bulge is

plotted in Fig. 2.9 as a function of stress for the EAM and MEAM potentials. As the

figure indicates, this amplitude coincides with the wavelength of UP(x), h0 at zero

stress, and is zero at the Peierls stress, consistent with the definition of the activated

state at both ends of the stress range. Our results show excellent agreement with

the expected analytical form for h in line tension models [70, 1] (shown as lines in

Fig. 2.9.

While these results are interesting, one of the most important aspects in this work

is the asymmetry in the dislocation core energies introduced in Sec. 2.2.0.2. This

asymmetry manifests itself as differing kink ‘widths’, i.e. the spreading length along

the dislocation line (z-coordinate) of the segments connecting two consecutive Peierls

valleys. These are labeled l1 and l2 in Fig. 2.3. The results for these two lengths are

shown in Fig. 2.10. With the EI model, there are slight differences between the left
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Figure 2.8: Kink separation in the kink-pair under stress (normalized to the correspond-

ing Peierls stress). The EI results indicate divergence at zero stress, in accordance with

elasticity theory, while the LT values are finite at all stresses. Atomistic results for the

EAM potential are shown for comparison, showing very good agreement with predictions

by the LT model.

and right kinks, with the left one, l1, being larger than the right one, l2. Contrary

to the situation of the kink-pair separation w, here the EAM kinks spread over

approximately twice the distance of the MEAM ones. These results also show a slow

decrease of l1 and l2 with stress (kinks approaching the edge orientation), although

interestingly these widths are around 1.5b for the MEAM potential and between 3

and 4b for EAM. This stands in contrast to atomistic results, which predict kink

widths of approximately 25b for EAM calculations [49]. For their part, LT results
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Figure 2.9: Amplitude of the saddle-point configuration for the LT model as a function

of stress. The results for EAM (red squares) and MEAM (black circles) agree well with

theoretical predictions [1] in each case (solid and dashed lines)

show no appreciable difference between l1 and l2. Here too calculations for the EAM

potential result in larger kink widths than for the MEAM potential, between 4.5

and 6b vs. 3 and 4b, respectively. However, l1 and l2 display a different dependece

with stress in this case, reaching a minimum at low stresses but growing with stress

subsequently.

2.5.2 System energies: kink energies and activation enthalpies

The most important physical quantity to extract from our models is the kink-pair

activation enthalpy as a function of stress. This is used in a number of approaches
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Figure 2.10: Kink widths, l1 and l2 (refer to Fig. 2.3), as a function of stress.

to describe thermally-activated screw dislocation motion in bcc metals (as it has

been done in our works in the past, e.g. [49, 71]). In Fig. 2.11 we show the results

for the EI and LT models, each in turn for the EAM and MEAM potentials. To

facilitate comparison across different models and different interatomic potentials, we

normalize the enthalpies by the unstressed activation enthalpy obtained in atomistic

calculations in each case, ∆H0, and the stresses by the Peierls stress τP. These

parameters are all given in Table 2.1. Note that (i) the enthalpy at zero stress

for the EI model is undefined and therefore the data point shown in Fig. 2.11 is the

atomistic value, and (ii) that the actual intercept of the activation enthalpy curves for

the LT model with the vertical axis does not necessarily correspond to the atomistic
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value1. This is what is labeled as ∆H∗0 in Table 2.1. Similarly, intercepts with the

stress axis in all cases do not necessarily match the value of τP, with the actual values

labeled as τa in Table 2.1. We interpret these stresses as being the ‘athermal’ limits

for the kink-pair mechanism in each case.
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Figure 2.11: Kink-pair activation enthalpy for the EI and LT models, each for the EAM

and MEAM potentials. The results are normalized to the unstressed activation enthalpy

obtained in atomistic calculations and the Peierls stress in each case (refer to Table 2.1).

Most importantly, the values of a used in eqs. (2.6), (2.8), and (2.18) to obtain

1It is also important to note that ∆H0 is obtained atomistically via procedures that are insen-
sitive to periodic image interactions [48].

27



these energies have been chosen as to provide the best fit of the activation enthalpy

curves to the known atomistic values of ∆H0 and τP. In other words, we arbitrarily

set the core width value to match known ‘first-principles’ calculations of the potential

in question. These values of a are provided also in Table 2.1 and, as can be seen, are

always less than one Burgers vector distance. We will return to this issue in Sec. 2.6.

Finally, it is common practice to fit the curves in Fig. 2.11 to the Kocks-Ashby-

Argon phenomenological expression [72]:

∆H(τ) = ∆H0

(
1−

(
τ

τP

)p)q

where p and q are exponents that describe the asymptotic behavior of ∆H(τ) in the

limits of zero stress (q = 1.25) and the Peierls stress (p = 0.5) for isotropic linear

elasticity [66]. Since tungsten is elastic isotropic, our model provides an excellent

testbed for these values, which have indeed been reproduced for stress-independent

UP and symmetric ec(θ, a). These exponents are also provided in Table 2.1.

To evaluate again the effect of the core energy asymmetries on the energetics of the

activated states, we calculate in Fig. 2.12 the individual kink energies as a function

of τ . As no appreciable difference was found for the LT model predictions, we omit

them from the figure for clarity. The energies shown include the interaction and

self-energies in the EI model of the kink segments only. Only a noticeable difference

can be found for the EAM results, approximately 10%, whereas kinks energies are

practically identical for the MEAM potential. The individual atomistic kink energies

are given in the table above as well (for zero stress), differing about 20% between

themselves. We also discuss this more in depth in the next section.
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Figure 2.12: Energies of individual kinks for EI and LT modesl and EAM and MEM

potentials. The differences are due to the asymmetry of the core energy functions about

the edge orientation.

2.6 Discussion

2.6.1 Comparisons between LOS models

As indicated in Sec. 4.1, different approximations to the line integral along the x

(glide) direction to calculate the energy of the activated kink-pair state result in

different LOS model formulations, each with its own advantages and disadvantages.

The EI model approximates the bulge configuration better at low stresses, when the

activated state extends across the entire Peierls potential period and the kink-pair

energy is dominated by elastic interactions between kink segments. This allows the

use of a simple trapezoidal structure to represent the system, which has the benefit of

consisting of only four degrees of freedom. This considerably speeds up convergence

of the energy minimizations, which allows us to study the parametric space of the

model efficiently. The novel aspect of the EI model used here is the asymmetry of

29



the left and right kinks, by virtue of the character dependence of the core energy

function. Regarding this, the EI model results predict differences of less than 1%

in the kink widths for both EAM and MEAM parameters (Fig. 2.10), while the

difference in enthalpy is slightly larger (Fig. 2.12).

For its part, the LT model is best suited for lines with small curvature, when the

bulge configuration is small, a situation typically encountered at high stresses. The

implementation of the LT approach involves, however, up to hundreds of discrete

segments, which increases the computational severalfold compared to the EI model.

LT results show no discernible difference in the values of both the energies and the

kink widths. Thus, it appears that the LT model is less sensitive to the core energy

asymmetry than the EI model.

In terms of EAM-vs-MEAM differences, as shown in Fig. 2.11, when normalized

to the corresponding values of ∆H0 and τP, EI and LT model results appear to be

independent of the interatomic potential used. This is an encouraging result as it

could potentially indicate that normalized LOS model predictions can be transferred

across different potentials, which would eliminate a common source of variability in

dislocation property calculations.

2.6.2 Defining the core size by matching LOS models to atomistic data

The size of the dislocation core (a in this work) is a mathematical construct in-

troduced to remove the singularity inherent to the theory of elasticity. As such, it

does not possess any intrinsic physical meaning, serving instead as an arbitrary limit

between the elastic and inelastic regions. However, one can remove some of this ar-

bitrariness by matching the LOS model calculations to atomistic results of the total
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energy of kink pair configurations. By adjusting the value of a to partition the elastic

and core energies in eqs. (2.1) and (2.20) in such a way as to match the atomistic

kink-pair energies at zero stress (obtained independently for the EAM and MEAM

potentials), one can relate the value of the core width to the size of a region that

contains the inelastic contribution to the total energy. Following these approach, we

obtain values of 0.7b (EI) and 0.8b (LT) for the EAM case (∆H0 = 1.63 eV) and 0.2b

and 0.5b for MEAM (∆H0 = 1.78 eV). The fact that these are between half and a full

Burgers vector may be indicative of the order of magnitude to be expected for this

parameter. However, we emphasize that this is one attempt to establish the value

of a using a physical criterion, but it is difficult to ascertain how accurate or valid

it is relative to other approaches [73, 74, 75]. In any case, we believe this to be an

interesting aspect of our calculations and worth reporting as an original application

of LOS models.

2.6.3 Building 3D kink-pair models from 2D atomistic data

One of the advantages of studying straight dislocations is the existence of transla-

tional symmetry along the line direction, which generally reduces the study of its

properties to quasi 2D structures that need only capture the minimum repeatable

translational unit along the dislocation line. For screw dislocations, this length is

of course the Burger’s vector, which is typically the shortest lattice vector of the

crystal. For this reason, general dislocation properties can be efficiently and ac-

curately calculated using thin atomistic supercells, which makes them amenable to

electronic structure calculations. The existence of kink pairs breaks the translational

symmetry of screw dislocations in bcc (and other) crystals. Being the fundamental
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structure governing screw dislocation dynamics, this necessitates using 3D configu-

rations which precludes the use of computationally demanding approaches such as

DFT. Consequently, it has been a goal of the bcc plasticity community to assess

whether 2D information such as what has been presented here (Secs. 2.5.1 and 2.5.2)

suffices to capture 3D behavior when incorporated into efficient continuum models

of dislocation line configurations.
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Figure 2.13: Comparison of the Kocks-Ashby-Argon expressions corresponding to the EI,

LT, and atomistic models using EAM parameters for W. The gray dashed line corresponds

to LT results assuming no asymmetry in the core energies and no stress-dependence of the

Peierls potential (p = 0.88, q = 1.37), while the gray solid line is the equivalent EI curve

(p = 0.50, q = 1.29).
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Our calculations provide a testbed for this idea, in line with prior efforts [64], as

they allow a direct comparison to strictly atomistic results of kink-pair configura-

tions using EAM [49, 71]. This is illustrated in Fig. 2.13, where a good agreement

between the LOS results and the atomistic calculations can be appreciated. As the

figure shows, the LT model agrees with the atomistic result at low stresses, while

the EI model produces a better match at high stresses. In the intermediate stress

range, the EAM calculations lie in between both LOS approaches. Albeit restricted

to very specific conditions, this verification result suggests that continuum models

parameterized with atomistic 2D results can indeed be good approximants of full

atomistic behavior in tungsten. While it is not clear how much of this agreement

can be attributed to specific features of W, such as elastic isotropy or the choice

of interatomic potential, we can cautiously conclude that LOS models that employ

2D information can be trusted to provide acceptable estimates of ∆H in other bcc

metals.

2.6.4 Discussion of other works

Researchers have been calculating kink-pair activation enthalpies using continuum

elastic models since the 1950s. As atomistic information rinvolving fundamental

dislocation properties has become available [62, 68], we have been able to enrich

continuum formulations and increase their physical accuracy. There are several ex-

amples of this in the literature [67, 64, 60, 75], each highlighting one specific aspect

of the physics of kink pairs in screw dislocations in bcc metals. However, to the best

of our knowledge, this work constitutes the first LOS formulation to simultaneously

integrate (i) the stress dependence of the Peierls potential, (ii) the asymmetry of the
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dislocation core energies with respect to dislocation character, and (iii) the extraction

of the core width by matchig LOS results with atomistic results.

2.7 Conclusions

Our first conclusion is that one can successfully incorporate atomistic data obtained

in quasi-2D conditions into continuum elastic models of 3D kink-pair configurations.

We have demonstrated that the stress dependence of the Peierls potential and re-

sults for core energies as a function of dislocation character can be integrated into

elastic interaction and line tension models in a straightforward manner. Moreover,

we report a slight asymmetry in the core energies about the edge orientation in W,

in accordance with a periodicity of (0, π) for the dislocation character space in bcc

metals.

The asymmetry in the dislocation core energies accounts for no more than 10%

difference in left and right kink energies (compared to no less than 20% in atomistic

results) and results in very slight variations in their spreading lengths. Thus, we

conclude that, while they are likely one of several contributions to this energy asym-

metry, core energies alone cannot capture it in its entirety. However, a representation

of core energies in terms of the core width parameter is helpful to extract the value

of this parameter by matching to atomistic data. In our particular case, we find that

this core width is always less than one Burgers vector distance.

Including the stress dependence of the Peierls potential in the models appears to

shift the athermal stresses to higher values compared to when just the zero stress

potential is used, more in line with the atomistic values of the Peierls stress. However,

this effects is small as well.
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Finally, our results suggest that atomistic calculations of kink-pair configurations

result in activation enthalpies that are in between elastic interaction and line tension

predictions. In particular, at low stresses atomistic data agree better with line tension

calculations, while at high stresses the agreement is better with full elastic models.

2.8 Fitting procedure of the stress dependence of the Peierls

potential

Here we explain how to introduce the resolved shear-stress dependence in eq. (2.10).

The τ -dependence enters through the parameters U0 and α and our goal here then

is to obtain compact expressions for U0(τ) and α(τ). To this end, we first plot

the values of U0 and α with stress in Fig. 2.14 and 2.15 for the EAM and MEAM

potentials, respectively.
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Figure 2.14: Fitting of U0 and α for the EAM potential

As the figures show, generally there is a nonlinear dependence of U0 with stress
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Figure 2.15: Fitting of U0 and α for the MEAM potential

and a linear one for α. Consequently, we use power laws for U0(τ) and linear rela-

tionships for α(τ).

• Fitting of U0:

– EAM: Due to the change of convexity of the EAM U0 data, we split the

fitting into two regions.

1. In the low stress region, τ ≤ 0.8 GPa,

U0(τ) = 0.005τ 1.49 + 0.06 (2.22)

2. In the high stress region, τ > 0.8 GPa,

U0(τ) = 0.21 (τ − 0.7643)0.005 − 0.14 (2.23)

– MEAM:

U0(τ) = 0.003 (τ − 0.13)1.6742 + 0.11 (2.24)

with U0 expressed in [eV/b] when τ is expressed in GPa.
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• Fitting of α:

1. EAM:

α = 0.077τ + 0.152 (2.25)

2. MEAM:

α = 0.115τ − 0.515 (2.26)

with α non-dimensional when τ is in GPa.

We emphasize that these expressions have no implied physical meaning and are

simply used for convenience in the range of stresses considered here.

2.9 Fitting of core energy data

As it was shown in Section 2.2.0.2, dislocation core energies expressed as:

ec(θ, a) = f(θ) + g(θ) log
(a
b

)

where both f(θ) and g(θ) are Fourier series of the type:

y(θ) = c0 +
3∑

k=1

ck sin(2iθ) + dk cos(2iθ)

Note that this form for f(θ) and g(θ) depends only on θ, with the a-dependence

contained exclusively in the logarithmic term. This mimics the partition represented

by eq. (2.1). The coefficients in these expressions are obtained by least-squares fitting

to the atomistic data points obtained from Fig. 2.2) by varying a and θ, and are listed

in Table 2.2. f(θ) and g(θ) are plotted as a function of θ in Fig. 2.16 along with the

corresponding Fourier series curves for the EAM and MEAM potentials.

37



0.0

0.5

1.0

1.5

2.0

f
(θ
)
[e
V
/Å
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Figure 2.16: Dependence of the dislocation core energy terms f and g on dislocation

character for (a) EAM and (b) MEAM interatomic potentials.
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Table 2.1: Interatomic potential-specific parameters. The top half of the table includes

atomistic parameters used in the LOS models: a0 is the lattice constant, τP is the Peierls

stress, Ulk and Urk are the energies of left and right kinks, respectively, and ∆H0 = Ulk+Urk

is the zero-stress kink-pair activation enthalpy. The bottom half of the table lists outputs

of the LOS model calculations, separated between EI and LT calculations: a is the core

width, p and q are the exponents of the phenomenological kink-pair enthalpy expressions,

∆H∗0 is the intercept of the kink-pair activation enthalpy with the vertical axis, and τa is

the stress at which the activation enthalpy vanishes, equivalent to the athermal stress in

experimental tests.

EAM MEAM

a0 [Å] 3.19 3.14

τP [GPa] 2.0 3.4

Ulk [eV] 0.71 0.81

Urk [eV] 0.92 0.99

∆H0 [eV] 1.63 1.80

EI LT EI LT

a [b] 0.70 0.80 0.15 0.50

p 0.41 0.83 0.45 0.80

q 1.05 1.38 1.09 1.46

∆H∗0 [eV] − 1.68 − 1.84

τa [GPa] 1.84 1.99 3.22 3.61
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Table 2.2: Values of the Fourier coefficients in eq. (2.21) for the EAM and MEAM

potentials.

Potential function c0 c1 d1 c2 d2 c3 d3

EAM
f 1.1017 0.0149 −0.7895 0.0082 −0.0634 −0.0331 −0.0078

g 0.7067 - −0.1141 - - - -

MEAM
f 0.8390 0.0092 −0.5730 −0.0191 −0.0325 −0.0118 −0.0122

g 0.7275 - −0.1179 - - - -
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CHAPTER 3

Edge dislocation model with superjogs in

Nb-Mo-Ta-W HEA

Refractory multi-element alloys (RMEA) with body-centered cubic (bcc) structure

have been the object of much research over the last decade due to their high potential

as candidate materials for high-temperature applications. Most of these alloys dis-

play a remarkable strength at temperatures above 1000◦C, which cannot be explained

by the standard model of bcc plasticity dominated by thermally-activated screw dis-

location motion. Recent research on Nb-Mo-Ta-W alloys points to a heightened role

of edge dislocations during mechanical deformation, which is generally attributed to

atomic-level chemical fluctuations in the material and their interactions with dislo-

cation cores during slip. However, while this effect accounts for levels of strength

that are much larger than what might be found in a pure metal, it is not sufficient

to explain the high yield stress found at high temperature in Nb-Mo-Ta-W. In this

work, we propose a new strengthening mechanism based on the existence of thermal

super-jogs in edge dislocation lines that act as strong obstacles to dislocation motion,

conferring an extra strength to the alloy that turns out to be in very good agreement

with experimental measurements. The basis for the formation of these super-jogs is

found in the unique properties of RMEA, which display vacancy formation energy

distributions with tails that extend into negative values. This leads to spontaneous,
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i.e., athermal, vacancy formation at edge dislocation cores, which subsequently relax

into atomic-sized super-jogs on the dislocation line. At the same time, these super-

jogs can displace diffusively along the glide direction, relieving with their motion

some of the extra stress, thus countering the hardening effect due to jog-pinning We

implement these mechanisms into a specially-designed hybrid kinetic Monte Car-

lo/Discrete Dislocation Dynamics approach (kMC/DD) parameterized with vacancy

formation and migration energy distributions obtained with machine-learning poten-

tials designed specifically for the Nb-Mo-Ta-W system. The kMC module sets the

timescale dictated by thermally-activated events, while the DD module relaxes the

dislocation line configuration in between events in accordance with the applied stress.

We find that the balance between super-jog pinning and super-jog diffusion confers

an extra strength to edge dislocations at intermediate-to-high temperatures that is in

remarkable agreement with experimental measurements in equiatomic Nb-Mo-Ta-W

and several other RMEA. We derive an analytical model based on the computational

results that captures this improved understanding of plastic processes in these alloys

and and explains the experimental data.

3.1 Introduction

Since their inception in the 1990s [137, 138], high entropy alloys (HEA) have attracted

a great deal of attention due to a unique combination of properties seldom found

in other material types [139, 140, 141, 142, 143, 144, 7, 145, 146]. This makes

them potentially very attractive as candidate materials for a number of technological

applications in harsh environments such as elevated temperatures, irradiation, or

corrosion [147, 148, 149, 150]. The basic idea behind creating alloys of this type
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is to combine a number of elements (typically four or more) in similar proportions

to achieve solid solution phase stability through the large configurational entropy

of the system. Due to the large chemical and configurational space available to

create these materials, several hundred different HEA combinations now exist, each

with their own distinct compositions, structure, and properties [151, 152, 153]. The

large volume of research on the topic over the last decade has resulted in a fast-

evolving field full of new findings, unexplained results, and unresolved controversies.

The reader is referred to the numerous reviews and monographs published over the

last several years for more details [139, 140, 141, 142, 143, 144, 7, 145, 154, 155].

Note that, while the term ‘multicomponent’ or ‘multielement’ alloys is sometimes

preferred in the literature over ‘high-entropy’ alloys (particularly when the number

of elemental constituents is less than five), here we use all interchangeably.

Among the different materials proposed, refractory multi-element alloys (RMEA)

are a special class of alloys composed of typically four or more refractory metal el-

ements (Nb, Mo, Ta, V, W, Cr, Hf, Zr). These systems generally crystallize into a

single body-centered cubic (bcc) phase, found to be stable up to very high tempera-

tures [7, 6, 156, 157, 158, 159, 160, 161]. RMEA display sluggish self-diffusion rates

[162, 163, 164, 165] and, similar to their pure bcc metal counterparts, suffer from a

lack of ductility at low temperatures [6, 166]. However, they retain a high strength

and ductility at high temperature, making them attractive candidates for structural

applications in the power, aerospace, or nuclear sector [147, 148, 149, 167, 154].

While the deformation mechanisms of bcc metals and their alloys are relatively

well understood, the mechanical response of chemically complex alloys at high tem-

perature is still under vigorous investigation. Perhaps one of the most crucial aspects

separating standard bcc behavior with that of RMEA is the role played by screw and
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edge dislocations during plastic deformation. Although the experimental evidence

is still inconclusive [168, 169, 170], recent research points to the increased impor-

tance of edge dislocation slip relative their role in pure metal bcc systems and dilute

alloys [171, 172, 173, 3]. Because chemical fluctuations in HEA take place at the

atomistic scale, molecular dynamics (MD) has become the preferred tool to simulate

dislocation processes in these systems. Indeed, MD simulations have been used to

characterize the intrinsic roughness of dislocation lines [174, 171, 175], the effect of

short-range order (SRO) [171, 3, 176] on alloy properties, and dislocation mobilities

[3, 177]. For example, MD simulations have convincingly shown that the lattice re-

sistance aided by SRO (intrinsic strengthening) in bcc RMEA can reach up to 1 GPa

at low temperatures. However, their contribution is much diminished as the tem-

perature increases, and it alone cannot account for the observed high-temperature

dependence of alloy strength.

In contrast, an often overlooked feature of multi-element systems is the statistical

nature of defect properties due to their compositional heterogeneity [178, 179, 180,

181, 182]. Properties such as point defect formation energies, planar defect energies,

or dislocation core energies are defined by distributions whose variance generally cor-

relates with the number of elements in the alloy [180, 181]. In particular, the thermal

concentration of point defects in pure refractory metals is typically negligible on ac-

count of their relatively high formation energies. However, in HEA the low energy

tails of defect energy distributions can lead to non-insignificant defect concentrations,

even in conditions where these would be several orders of magnitude lower if one con-

sidered only the individual alloy elements. Moreover, defect formation energies can

be substantially reduced at material inhomogeneities such as dislocation cores, ma-

terial interfaces, precipitates, etc. [183, 184]. For vacancies, which display formation
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energies 2∼3 times lower than self-interstitial atoms in metals, a side effect of above

two effects combined (broad energy distributions together with heterogeneous de-

fect nucleation), is the possibility for non-thermal formation, i.e., the spontaneous

existence of vacancies at any temperature at pre-existing microstructural defects.

Of particular interest is the formation of vacancies at or near edge dislocation

cores, which is thermodynamically more favorable within the compressive region of

the stress field [184]. Topologically, vacancies on dislocation lines can be regarded

as elementary (super)jogs that can only move by nonconservative means (e.g., jog

dragging) [185, 186, 187]. As such, the existence of super-jogs on a dislocation line

can lead to extra strengthening, as has been seen in a number of systems at high

temperature [188]. Moreover, owing to the low energy tails of the vacancy formation

energy distributions, it is reasonable to expect a nonzero concentration of super-jogs

on edge dislocation lines in even at low temperatures. The main objective of this

work is to quantify this specific effect in a model RMEA and establish its viability as

a high-temperature strengthening mechanism. More generally, we aim to study the

behavior of edge dislocations, and their impact on alloy strength, when single-valued

point defect energies are replaced by energy distributions.

Due to MD’s intrinsic limitations when it comes to simulating thermally-activated

mechanisms and their role in dislocation motion, here, following our line of work

in previous publications [189, 190], we conduct stress-driven simulations of edge

dislocation motion as a function of temperature using a combined approach consisting

of discrete dislocation dynamics (DD) and kinetic Monte Carlo (kMC). Our DD/kMC

model captures the thermal formation and evolution of vacancies/super-jogs on edge

dislocations and quantifies their effect on dislocation motion as a first attempt to

embed some of the complexites of the highly-random alloy into a mesoscale framework
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with the aim of capturing time and length scales more suitable for experiments, as

compared to MD. We focus on equiatomic Nb-Mo-Ta-W alloys, for which robust

interatomic potentials exist [191, 4, 192], as well as a wealth of experimental data

[193, 194, 158, 195, 196, 197], and carry out calculations of vacancy energetics to

parameterize the model without fitting to any experimental measurements.

The paper is organized as follows. First, we provide the theoretical framework for

DD/kMC model. This is followed by a description of the numerical implementation

and the atomistic calculations performed to parameterize the model to the alloy

of choice. Next we present results of the strength of the alloy as a function of

temperature and strain rate. We finalize the paper with a discussion of the results

and the conclusions.

3.2 Theory and models

3.2.1 Monte Carlo model of non-conservative edge dislocation motion

The key element of the modeling approach is a stochastic model based on the

residence-time algorithm to simulate dislocation evolution under stress. The time

scale is governed by a set of thermally-activated events that punctuate periods of

standard dislocation glide. As such, dislocation evolution proceeds by way of a series

of super-jog processes intercalated by stress-assisted glide. Here we consider two

distinct thermal processes, which are schematically illustrated in Fig. 3.1:

1. At any point during a simulation, a super-jog may appear on the dislocation

line by thermal nucleation of a vacancy (process shown in Fig. 3.1a). Such

nucleation is subjected to equilibrium constraints so that the linear concen-
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Figure 3.1: Modes of super-jog evolution. (a) super-jog generation on a straight disloca-

tion line. This mode of motion requires vacancy nucleation. (b) Direct translation along

the slip direction s. This mode of motion requires a vacancy jump.

tration of super-jogs remains within thermal limits. For this, the dislocation

line is subdivided into irreducible segments of length w = a0
√

6/3 (equal to the

periodicity along the line direction 1/6〈112〉), where a0 is the lattice parameter.
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The insertion rate of super-jogs per unit length is:

qjog
n (T ; t) = ν0 b /̀w − n(t)c (1− n(t)/n0(T )) (3.1)

where T is the absolute temperature, ν0 is a temperature-independent vacancy

nucleation attempt frequency, n(t) is the number of super-jogs at time t (the

current number of super-jogs), and n0(T ) is the equilibrium super-jog concen-

tration (to be defined in Section 3.2.3). Here, the ratio `/w represents the

number of potential nucleation sites on a dislocation with total length ` for a

super-jog to form, while b`/w − n(t)c > 0 represents the number of available

nucleation sites1. The ‘height’ of a jog segment is the unit lattice parameter

along the y-direction: h = ‖1/2[110]‖ = a0

√
2/2. Note that, while thermodynam-

ically possible, super-jog reabsorption is highly unlikely because it requires ei-

ther the arrival of self-interstitial atoms or emission of vacancies, both of which

are discarded in this model due to their high penalizing energies.

2. Existing super-jogs can translate along the glide x-direction via diffusive jumps

to a location separated one Burgers vector’s distance from the original position

(Fig. 3.1b). This process is akin to the jump of a vacancy located on the

edge dislocation core along the glide [111] direction, which corresponds to a

nearest-neighbor jump in a bcc lattice. The rate of this process can be written

as:

qjog
m (T ) = ν ′0 exp

(
−∆H⊥m+∆Ejog

el /kT
)

(3.2)

where ν ′0 is the jump attempt frequency and ∆H⊥m is the vacancy migration

enthalpy, which incorporates contributions from the stress state at the super-

jog location, and ∆Ejog
el is the extra elastic energy incurred by the bending of

1The function bxc is the mathematical floor function.
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dislocation segments adjacent to the super-jog (as shown in Fig. 3.1b). Both

of these quantities will be defined and calculated in Sec. 3.2.3. The above rate

must be defined for both forward and backward jumps, with the direction of

the jump assigned by defining the resolved shear stress as positive when it

creates a force aligned with the glide direction.

A summary of the properties of each type of event is given in Table 3.1.

Table 3.1: Summary of super-jog transitions.

Segment Rate Definition Distance

super-jog (nucleation) qjog
n eq. (3.1) (super-jog dimensions: h×w)

super-jog (forward/backward) qjog
m eq. (3.2) b

Using kMC, the set of event rates is sampled at each iteration and the appropriate

process is selected and executed. Time is evolved as a Poisson variate:

δt = − log η

Rt

(3.3)

where η is a uniform random number, Rt =
∑

α=n,m

(∑
j q

jog
α

)
, and the subindices

α and i apply to the type of transition (‘n’ nucleation, ‘m’ migration) and to the

number of existing super-jogs, respectively. In between thermal events, i.e., during a

time δt, the dislocation evolves elastically in response to the existing stresses using

a suitable DD model (explained in Sec. 3.2.2). A flow diagram of the numerical

method is given in 3.6, Fig. 3.9.
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3.2.2 Dislocation dynamics model

The DD model must be sensitive to the scale of discrete steps on the dislocation

line to capture the formation of vacancy induced jogs. As such, the main difference

between the dislocation dynamics approach used here and standard DD codes [?] is

that the positions of the nodes delimiting the jogs are constrained to have specific

lengths. Beyond that, dislocation segments interact in an isotropic elastic manner

with one another using the elastic constants of the alloy obtained with the potentials

described in Sec. 3.2.3.

As is customary in most DD formulations, the segment glide velocity vgl
i is linearly

dependent on stress as:

vgl =
b∆τ

Bt(T, θ)
(3.4)

where b = ‖b‖ is the Burgers vector’s modulus, θ represents the dislocation character

(cos θ = s · t, where s = b−1b is the slip direction and t the local line tangent), Bt is

a temperature-dependent drag coefficient, and ∆τ is the excess glide stress, obtained

as the difference between the resolved shear stress τRSS calculated at the segment or

nodal position and a temperature and dislocation character dependent critical stress,

τc which is a material constant.

∆τ = τRSS − τc(T, θ) (3.5)

with:

τc(T, θ) = τ screw
c (T ) cos2 θ + τ edge

c (T ) sin2 θ (3.6)

Likewise, for the drag coefficient Bt, the same dependences on T and θ are used:

Bt(T, θ) = Bscrew(T ) cos2 θ +Bedge(T ) sin2 θ (3.7)
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The parameters τ screw
c (T ), τ edge

c (T ), Bscrew
c (T ), and Bedge

c (T ) are temperature depen-

dent critical stresses and glide friction coefficients for screw and edge coefficients,

respectively. Here we employ coefficients derived from recent results by Yin [3] for

the Nb-Mo-Ta-W equiatomic system, shown in Fig. 3.2. The numerical expressions

for the data in the figure used in the present DD simulations are provided in Table

3.2. Here we use a shear modulus of µ = 94 GPa and a Poisson ratio of ν = 0.33 [4].
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τ edgec [Li et al. (2020)]

τ screwc [Li et al. (2020)]

Figure 3.2: Dislocation critical stresses and friction coefficients from ref. [3]. The two

data points for screw and edge at 0 K were obtained using a SNAP potential [4].

The geometry used in the DD simulations follows a Cartesian coordinate sys-

tem with axes x ≡ [112̄], y ≡ [111], and z ≡ [11̄0] representing, respectively, the

dislocation line direction, the plane normal, and the glide direction (along the Burg-
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Table 3.2: Numerical expressions use for the temperature dependence of the coefficients

plotted in Fig. 3.2. T is the absolute temperature in K.

Parameter Expression Units

Bscrew(T ) 3.44× 10−4 ln(T )− 8.37× 10−4 Pa·s
Bedge(T ) 2.12× 10−4 Pa·s
τ screw
c (T ) 1418.0− 0.7T MPa

τ edge
c (T ) 423.6− 0.1T MPa

ers vector b). With such an orientation, an external stress tensor with τyz as the

only nonzero component is applied and added to the total segment-segment elastic

stresses at each point. While a shear stress τyz produces a net force on segments

aligned with the z direction, i.e., jog segments, we only allow slip on close-packed

{110} these segments and thus these segments cannot glide conservatively during the

simulations. They can, however, move non-conservatively, which as will be shown is

dealt with by the kMC module.

3.2.3 Model parameterization

3.2.3.1 Atomistic calculations of vacancy formation and migration ener-

gies

The two main processes described earlier are characterized by event rates that in-

volve vacancy transitions at or next to edge dislocation cores. The first one, thermal

nucleation of super-jogs, is governed by the vacancy formation energy at edge disloca-
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tion cores, ∆EV@⊥
f . The second one, super-jog translation along the glide direction,

is represented by the migration energy along the glide direction of vacancies lying

on edge dislocation cores, ∆E0→1
m . For simplicity going forward, we use shorthand

notation to refer to ∆EV@⊥
f and ∆E0→1

m , as E⊥f and E⊥m, respectively.

To calculate the distribution of E⊥f and E⊥m, we first construct an edge disloca-

tion dipole in an atomistic supercell using the same procedure described in detail by

Hossain and Marian [59]. In this work we use a spectral neighbor analysis potential

(SNAP) for the Nb-Mo-Ta-W system, which has been trained against a comprehen-

sive materials database [198, 4]. A value of a0 = 3.24 Å is obtained for the lattice

parameter of the alloy using this potential.

Fig. 3.3a shows the relaxed atomic structure of the dipole visualized according

to common neighbor analysis and the dislocation extraction algorithm using Ovito

[199], while Fig. 3.3b shows a side view with the two edge dislocation locations (‘⊥’

symbols) and two atomic positions, labeled ‘0’ and ‘1’, at and near the dislocation

cores. E⊥f is calculated at different ‘0’ locations along the dislocation line. Note

that while these locations are crystallographically equivalent, they are ‘chemically’

different, which is the source of the variability in E⊥f .

For its part, E⊥m is calculated as the migration energy between points ‘0’ and

‘1’, which are separated by an amount equal to the first nearest neighbor distance

(equivalent to the Burgers vector’s modulus) with both positions located on the

same [112̄] plane. The corresponding normalized distributions, p(E⊥f ) and p(E⊥m),

are provided in Fig. 3.4.

As a point of comparison, the statistical means of p(E⊥f ) and p(E⊥m), denoted

by Ē⊥f and Ē⊥m are tabulated here for the random Nb-Mo-Ta-W system along with
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(a) (b)

Figure 3.3: Relaxed edge dislocation dipole utilized for vacancy formation energy calcula-

tions. (a) Atomistic representation according to common neighbor analysis and equivalent

line representation, both extracted using Ovito [5]. (b) Side view showing the edge pole

dislocation locations (‘⊥’ symbols) and atoms from three consecutive [112̄] planes. Atoms

are colored by chemical species (green for Nb, red for Mo, blue for Ta, and yellow for W).

The atomic positions ‘0’ and ‘1’ (of significance in the text) are indiocated in both images.

The distance between positions 0 and 1 is equal to the first nearest neighbor distance (i.e.,

one Burgers vector) with both positions located on the same [112̄] plane.

the corresponding formation and migration energies in bulk Nb-Mo-Ta-W and in

the gray material. As Table 3.3 shows, formation energies are substantially lower

than in the bulk (averages of 0.93 versus 2.40 eV). Critically, however, some of the

calculated energies are zero or negative, introducing the possibility for spontaneous

vacancy formation. In other words, thermal vacancies are expected to form with

considerable ease at edge dislocation cores compared to bulk positions, but, most

importantly, in certain locations vacancies will form athermally to lower the total

local configurational energy around the dislocation. This essentially implies that
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Figure 3.4: (a) Vacancy formation energy distribution in the Nb-Mo-Ta-W alloy at po-

sition ‘0’ near the edge dislocation core in Fig. 3.3b. (b) Migration energy distribution for

the 1→0 jump at the edge dislocation core positions shown in Fig. 3.4a. Negative energies

(shaded area in the graphs) signal the spontaneous formation of vacancies and transitions,

respectively.

super-jogs, which are the manifestation of monovacancies in terms of dislocation

lines, may naturally exist along the edge dislocation in equilibrium conditions at any

temperature.
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Table 3.3: Mean energies for the vacancy formation and migration energy distributions

at dislocations cores (‘⊥’, highlighted in red) and in the bulk (‘V’), for both the random

Nb-Mo-Ta-W system and the gray alloy. The relevant energies are highlighted in red.

Energies [eV] Nb-Mo-Ta-W ‘gray’ alloy

Ē⊥f 0.93 –

ĒV
f 2.40 2.62

Ē⊥m 0.32 –

ĒV
m 1.71 1.53

3.2.3.2 Activation enthalpies and attempt rates

Next we turn our attention to the parameters in eqs. (3.1) and (3.2). The key

quantity to define in eq. (3.1) is the thermal concentration of super-jogs, n0(T ).

In general, n0(T ) = n∗0 exp
(
−E⊥f /kT

)
, where n∗0 is a pre-factor determined by the

crystal geometry. In our case, n∗0 is set by the inverse of the periodicity along the

the dislocation line direction, which is equal to 1/w.

Similarly, the jump rate in eq. (3.2) can be expressed as:

qjog
m (T ) = 2ν ′0 exp

(
−∆E⊥m + ∆Ejog

el

kT

)
sinh

(
∆τ (wb2)

kT

)
(3.8)

This expression captures forward and backward jumps2 through the sinh term, whose

argument is the work done by the excess stress (refer to eq. (3.5)) to move the super-

2Forward jumps are taken as those for which the stress tensor projected along the Burgers
vector’s direction results in a positive resolved shear stress along the glide direction, i.e., when
(σ : b) · s > 0.
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jog a distance b. The area swept during the process is equal to the width of the

super-jog times b, i.e., wb. The product wb2 comes out to approximately 1.2Ωa

(Ωa = a3
0/2). ∆Ejog

el is the extra elastic energy due to the bending of the dislocation

segments adjacent to the super-jog, which is obtained directly by the DD module of

the code.

With respect to the attempt frequencies ν0 and ν ′0, here we adopt a value of 1012

Hz for both.

3.3 Results

3.3.1 Thermal super-jog concentration

Fig. 3.5 shows an Arrhenius plot of the thermal concentration of super-jogs, n0, as

a function of temperature in edge dislocations. The figure includes the lower-bound

n0, characterized by the mean energy of the formation energy distribution in Fig.

3.4a, given in Table 3.3 as Ē⊥f = 0.93 eV, and also the simulated n0, obtained by

sampling from the distribution in Fig. 3.4a according to eq. (3.1) (obtained from

10 independent samplings at each temperature). As the data show, the effective

formation energies are much lower than 0.93 eV, ranging from 0.02 eV below 400 K

to 0.15 eV above 1000 K. Both distributions converge to the common prefactor of

n∗0 = 1/w at very high temperatures. Overall the simulated thermal concentration

of super-jogs is orders of magnitude larger than that given by the Arrhenius form

of n0. Moreover, it displays an almost athermal dependence with T , particularly

at low temperatures. This is yet another manifestation of the unique properties

of compositionally-complex alloys such as Nb-Mo-Ta-W, which display enhanced
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thermal defect concentrations due to asymmetric samplings of p(E⊥f ).
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Figure 3.5: Arrhenius plot of the thermal concentration of super-jogs, n0, as a function

of temperature on edge dislocations. The figure includes both the lower-bound n0, char-

acterized by the mean energy of the formation energy distribution in Fig. 3.4a, Ē⊥f = 0.93

eV, and also the simulated n0, obtained by sampling from the distribution in Fig. 3.4a

according to eq. (3.1) (obtained from 10 independent samplings at each temperature).

3.3.2 Dislocation dynamics under stress

Next we track dislocation motion under stress. We simulate a Frank-Read source

with a fixed length L pinned at its endpoints. L is generally obtained as L ≈ (ρd)
−1/2,

so that its value is consistent with the dislocation density in the material, ρd. Values

as low as ρd = 5×1012 m−2 have been reported in Nb-Mo-Ta-W [156, 200]. However,
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this is three to four orders of magnitude smaller than dislocation densities measured

in other bcc RMEA, such as 2 × 1015 m−2 in Ti-Nb-Hf-Ta [201], 2.1 × 1016 m−2 in

Hf-Nb-Ti-Zr [202], or 1015 m−2 in V-Nb-Mo-Ta-W [195]. Thus, we take values of

1 ∼ 2× 1015 m−2 as being more representative of the dislocation density in the alloy.

This gives rise to average dislocation source lengths on the order of 100∼300b. Note

that, in accordance with the results in Fig. 3.5, these lengths are sufficient to contain

at least one super-jog at temperatures above 580 K. The effect of ρd on the model

results is further discussed in Sec. 3.4.3.

3.3.3 Time evolution of the plastic strain

The plastic strain, εp, is the response function in the DD simulations, and is cal-

culated from the aggregate area swept by each dislocation segment during a time

iteration [203, 204]. As such, in the DD/kMC simulations we track εp as a function

of time at different temperatures and stresses. A representative example is shown

in Fig. 3.6, where we plot the plastic strain versus time at different temperatures

for a dislocation source with length L = 150b containing two super-jogs under 1500

MPa of applied stress. While the εp-t curve for τ = 500 K is smooth, indicating the

absence of super-jog jumps, the rest of the curves display some roughness associated

with sharp super-jog transitions of magnitude ±b. Note that these transitions are

both stress and temperature-assisted, as determined by eq. (3.8).

The graph shows that, for a fixed dislocation length and super-jog separation,

higher temperatures lead to a faster dislocation evolution. This can all be attributed

to the diffusional part of the dislocation dynamics, as the viscous contribution, gov-

erned by Bedge, displays practically no thermal dependence.
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Figure 3.6: Plastic strain rate as a function of time at several temperatures under an

applied stress of 1500 MPa for a dislocation source with a total length of 150b containing two

super-jogs evenly spread at +L/3 and +2L/3. The inset shows an overlapping sequence

of time frames of the dislocation configuration at 1700 K covering 30 ns of DD/kMC

simulation.
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3.3.4 Strain rate-temperature relations

First it is useful to note that the cases without super-jogs are trivially modeled by

the Orowan equation for the ideal case of infinite dislocation lengths:

ε̇p = ρdbv =
ρdb

2

Bedge

(
τ −∆τ − τ edge

c

)
=

ρdb
2

Bedge

(
τ − αµb

L
− τ edge

c

)
(3.9)

where, from Fig. 3.2, the only temperature dependence comes via the critical stress

τc (Bedge is a constant, cf. Table 3.1). As such, the (plastic) strain rate given by

eq. (3.9) is linear both in τ and T with a proportionality constant independent of

temperature. From the values in Tables 3.1 and 3.4 and 1/L =
√
ρd:

ε̇p = 3.72× 105(τ − 850 + 0.1T )
[
s−1
]

(3.10)

Next we analyze all the εp-t curves of dislocation sources in the 75 < L < 310b range

to extract the relationship between the plastic strain rate, ε̇p, with temperature and

stress. The results are shown in Fig. 3.7. Fig. 5.1a gives the stress dependence

of ε̇p for a fixed line length of 150b containing two super-jogs. Fig. 5.1b shows its

dependence with line length (all containing two super-jogs) for a fixed applied stress

of 1000 MPa. Finally, Fig. 3.7c gives the εp-t relation as a function of the number

of super-jogs on a 210b line at 1000 MPa. All three figures show cases of straight

dislocations containing no-super-jogs for comparison. As expected, the super-jogs

confer an extra strength to the dislocation, clearly seen at lower temperatures. This

extra strength is negated at above 1100∼1300 K, when super-jog diffusion is becomes

prolific at high temperatures. Thus, in general, the DD/kMC simulations validate

the notion that as the temperature increases the super-jogs lose their strengthening

power thanks to stress-assisted diffusion. However, that must be coupled to the fact

that, as the temperature increases, dislocation lines contain more thermal super-jogs
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Figure 3.7: Plastic strain as a function of: (a) stress for a fixed line length of L = 150b

and fixed number of super-jogs (two), (b) line length for a fixed applied stress of 1000 MPa

and fixed number of super-jogs (two), and (c) number of super-jogs for fixed stress (1000

MPa) and line length (210b). The error bars represent the numerical variability obtained

from five independent simulations for each case.

(see Fig. 3.5), which results in higher strength (i.e., lower plastic strain rates).

3.4 Discussion

3.4.1 Physical model

The framework that we use in this paper to study edge dislocation dynamics in

RMEA is that of thermally-activated processes modeled using the residence-time

algorithm. Thermally-activated events dictate the global timescale of the system,

which evolves under elastic forces using the DD method between events. In other
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words, DD relaxation periods are subordinated to take place within time intervals

prescribed by the kMC simulator. This generally fits the timescales on which both

methods evolve the dislocation, as typical DD time steps in our calculations are on

the order of 10−10 s, while sampled time steps from kMC are in the 10−3 to 10−8s

range between 500 and 1700 K. The only exception is 2000 K, where the event times

are on the order of 10−12 s. There, the dislocation evolution is governed by super-jog

jumps, without time for elastic relaxation.

We have used a SNAP potential for the Nb-Mo-Ta-W system [198, 4] as the under-

lying ‘first-principles’ model to calculate defect energetics. This effectively supersedes

models that assume that a multielement alloy can be decomposed into a substrate

or matrix that possesses the average properties of its elementary constituents and

on which every lattice atom constitutes a solute atom [205, 206]. Defect energies

do reveal a ‘high entropy’ effect, i.e., they display statistical averages that deviate

beyond numerical error from weighted averages of single-valued energies of the in-

dividual alloy elements. Specifically, uniform sampling of the energy distributions

results in disproportionate numbers of vacancies with energies below the distribu-

tion’s mean. What is more, in certain conditions, vacancies appear spontaneously

(i.e., athermally) as a consequence of occasional samplings that lead to zero or even

negative formation energy values. This effect confers a very particular nature to the

Nb-Mo-Ta-W alloy that cannot be surmised from ‘average’ material properties.

What is true for bulk systems is also true for atomistic environments surrounding

edge dislocation cores, i.e., vacancies exist thermally (and even spontaneously) on

the dislocation line. These vacancies on dislocation lines are topologically equivalent

to super-jogs, consistent with a number of works in the literature [207, 188, 208,

209]. It is clear that these super-jogs act as pinning points for the dislocation line,
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increasing the activation stress and strengthening the material [210, 211, 212, 213].

The athermal presence of super-jogs can also be put in the context of the relaxed

configurations of the lines. The evidence from numerous MD studies in several

RMEA consistently points to a ground state of dislocations characterized by rough

line shapes [174, 214, 215, 171]. Such states are likely to be micro-states, i.e., reflective

of the length scale over which compositional fluctuations take place, which is on the

order of one atomic distance. Indeed, such roughness is not captured experimentally

with conventional microscopy [216, 217]. From a topological point of view, this

roughness may manifest itself as wiggles along the dislocation line on the glide plane

(i.e., kinks) or as steps on the extra half-plane (jogs). While in our model the effect of

the line roughness on the glide plane is subsumed into the temperature dependence

of the critical stresses and dislocation friction coefficients, roughness in the form of

(super)jogs in the extra half-plane is captured explicitly. This is reminiscent of the

existence of cross-kinks in screw dislocation lines in thermal equilibrium recently seen

in medium-entropy bcc alloys [189].

Super-jog segments display two potential modes of motion. One is along the line,

requiring climb by emission or absorption of vacancies. However, our atomistic cal-

culations show that there is no energy benefit in having a super-jog expand laterally

by vacancy emission compared to having two super-jogs in adjacent positions on the

line. As such, this mode of motion is no different than allowing for natural (thermal)

nucleation of super-jogs along the dislocation line. The second degree of freedom is

the one considered in our model, i.e., forward/backward translation of a super-jog by

a diffusive process. Such process is strongly influenced by the resolved shear stress,

favoring motion in the direction along which it is applied. The migration energies for

this mode of motion are conceptually equivalent to vacancy migration energies from
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a position on the dislocation line to the next lattice site along the glide direction,

i.e., one Burgers vector distance, which is of course the atomic jump distance in the

bcc lattice. As we will show in the next section, this motion leads to a softening of

the increased activation stresses due to super-jog pinning.

3.4.2 An analytical model of edge dislocation strength based on the

present numerical results

Using the various contributions to the dislocation evolution model presented in Sec.

3.2.1, a compact expression for the strength of the material due to edge dislocations

can be derived (full derivation provided in 3.7):

τ = τ edge
c (T ) + ∆τ ∗(T ) +Bedge(T )

[
ε̇0

ρdb2
− 2qjog

m (T )

]
(3.11)

where τ edge
c is the critical stress, Table 3.2, ∆τ ∗ represents the super-jog hardening,

eq. (3.15), the term
(
Bedgeε̇0/ρdb

2
)

represents the driving force, eq. (3.20), and the

term
(
2Bedgeqjog

m

)
, eq. (3.8), represents stress relief due to super-jog motion. The

variation of τ with temperature using the parameters given in Table 3.4 is shown in

Fig. 3.8, along with each separate contributions from the terms in eq. (3.11). The

figure clearly shows that the evolution of the strength is controlled by the interplay

between the intrinsic hardening due to super-jog nucleation and softening due to

super-jog diffusion. This interplay results in a monotonic decrease of τ with T as

shown in the figure. Note that the effect of the applied stress is negligible compared to

super-jog-related mechanisms, amounting to no more than 1 MPa at a strain rate of

103 s−1. Most importantly, the strength decreases slowly with temperature, bolstered

by a higher thermal concentration of super-jogs (leading to more pinning points)

as T increases, and modulated by an easier diffusive glide of the super-jogs with
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Figure 3.8: Variation of τ with temperature together with different terms contributing

to it in eq. (3.11) for a strain rate of ε̇ = 10−4 s−1. Experimental data from refs. [6, 7].

temperature. Such behavior bears a significant resemblance with the temperature

dependence of the yield strength of a number of different RMEA [6, 218, 219, 196,

220]. As such, we believe that these mechanisms explain –to a large degree– the

high temperature strength of these alloys, as quantitatively confirmed by our model

and calculations. The obtained response is reminiscent of the high temperature

behavior of Ni-based superalloys, where the strength results from a balance between

the formation and dissolution of Kear-Wilsdorf locks, both of which are temperature-

enhanced [221].
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It is also interesting to derive an expression for the extra strengthening of a

RMEA relative to a pure bcc metal under the same loading conditions (cf. 3.7):

∆τRMEA(T ) ≈ τRMEA(T )− τbcc(T ) = τ edge
c (T ) + ∆τ ∗(T )− 2Bedge(T )qjog

m (T ) (3.12)

This expression gives the terms that contribute to hardening due to the chemical

nature of RMEA versus pure or dilute bcc systems. As the equation shows, all

terms display a temperature dependence. τ edge
c displays a weak one in the manner

typical of thermal softening, while the other two terms display quasi-exponential

(Arrhenius) dependencies. Eq. (3.12) shows that the commonly cited mechanism of

lattice fluctuation interactions (local solute interactions) is only one of several terms

that contribute to the strength. We believe that non-conservative processes that are

unique to RMEA play a fundamental role in explaining the temperature dependence

of the alloy strength.

3.4.3 Discussion on model predictions

Our model results show that the contribution of edge dislocations to the strength of

Nb-Mo-Ta-W stems from the balance between two opposing mechanisms. The first

is a strengthening contribution associated with a thermal concentration of super-jogs

which increases with temperature. The second is a softening effect brought about

the thermal motion of the super-jogs, which also increases with temperature. The

combination of these two contrary effects dictates the temperature dependence of

the edge dislocation contribution.

In terms of comparison with experimental data, we add the yield strength mea-

surements in equiatomic Nb-Mo-Ta-W alloys in Fig. 3.8 [6, 7]. We see that, while

below 800 K there is a gap of over 500 MPa between our model and the experimen-
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tal measurements, at higher temperatures the match is almost exact. Evidently, the

alloy yield strength measured experimentally includes other sources of strengthening

beyond edge dislocations, particularly at low temperatures where contribution from

screw dislocations, small intermetallic particles and/or short range order could play

a role. While this may explain the observed gap, it is clear that edge dislocations

should be counted as a significant source of strength in this and other similar RMEA.

We end with a note on the role played by the dislocation density in the strength

of edge dislocations. As mentioned in Sec. 3.3.2, values of ρd as low as 5 × 1012

m−2 have been measured for Nb-Mo-Ta-W [200]. However, here we have used more

realistic values in the vicinity of 1015 m−2 to be consistent with most experimental

data in bcc RMEA. In eq. (3.11), the term
(
Bedgeε̇0/ρdb

2
)

represents the driving

force and is the only one with an explicit dislocation density dependence. The stress

due to this term ranges between 2.7 × 10−9 and 5.4 × 10−7 MPa for ρd = 1015 and

5× 1012 m−2, respectively, when ε̇0 = 10−3 s−1. This effectively renders the driving

force term irrelevant in the global picture of strength, which makes the value of the

dislocation density in the range of interest also irrelevant.

3.5 Conclusions

We finish with our main conclusions:

1. We have proposed a new mechanism for edge dislocation dynamics in Nb-

Mo-Ta-W alloys. The mechanism provides a qualitative explanation for the

elevated intermediate-temperature strength of refractory multi-element alloys,

which is governed by non-conservative edge dislocation dynamics.
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2. Our mechanism is postulated on the favorable thermal existence –sometimes

even spontaneous– of vacancies along edge dislocation lines. These vacancies

relax into super-jogs that act as extra pinning points that increase the activa-

tion stress. At the same time, these super-jogs are able to diffuse along the

glide direction, relieving some of this extra stress. The total strength is a bal-

ance between these two processes added on top of the lattice friction due to

chemical fluctuations and short-range order.

3. We have developed a numerical model based on a kinetic Monte Carlo module –

which captures thermally activated events (super-jog nucleation and translation)–

and a discrete dislocation dynamics module –which evolves the line configura-

tion in response to elastic forces– that are coupled to one another via timescale

evolution. The global timescale is set by the kMC module on the basis of a

Poisson sampling of the thermally activated event rates, while the DD subcycle

takes place in between KMC events.

4. All material parameters and alloy energetics have been obtained using a machine-

learning SNAP potential. The vacancy formation and migration energies are

characterized by distributions with means that deviate from the weighted av-

erages of the elemental constituents of the alloy. Thermal sampling of these

distributions results in an equilibrium super-jog concentration that is substan-

tially larger than those predicted by the mean formation energy.

5. An analytical model that captures the essential features of the system yields

a strength temperature dependence in excellent qualitative agreement with

experimental measurements.
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3.6 Computational flow diagram
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Figure 3.9: Flow diagram of the numerical procedure employed here. Processes pertaining

to the kMC module are colored in shaded gray, while those pertaining to the DD module

are colored in shaded blue. Each box is numbered according to the sequence of steps.
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3.7 Analytical model of edge dislocation strength due to

super-jog evolution

For an edge dislocation source with a length `, one can calculate the activation stress

in the standard way as:

∆τ =
αµb

`

which is independent of temperature if we neglect the thermal softening of the elastic

constants of the material. When super-jogs appear, the total dislocation length is

shortened into segments of average length `∗:

∆τ ∗(T ) =
αµb

`∗(T )
(3.13)

where `∗(T ) is the inverse of the super-jog concentration at temperature T :

`∗(T ) = n0(T )−1 = w exp

(
Ē⊥f
kT

)
(3.14)

where we have used n∗0 = `/w as the pre-factor of n0(T ), which is equal to the total

number of independent nucleation sites along the dislocation line. Equation (3.13)

then becomes:

∆τ ∗(T ) =
αµb

w
exp

(
−
Ē⊥f
kT

)
(3.15)

where we are assuming an exponential temperature dependence of n0(T ) defined by

the mean energy value of p(E⊥f ) (Fig. 3.4a). Below, this will be replaced with the

actual dependence of n0 on T obtained in Fig. 3.5. The excess stress available for

dislocation glide is then obtained by subtracting ∆τ ∗(T ) and τ edge
c (T ) (Table 3.2)

from the resolved shear stress τ :

∆τgl = τ −
(
∆τ ∗(T ) + τ edge

c (T )
)

(3.16)
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The glide velocity can then be defined as:

vgl =
b∆τgl

Bedge(T )
(3.17)

Concurrently, super-jogs can advance along the glide direction with a velocity given

by:

vsj = bqjog
m = 2bν ′0 exp

(
−Ē

⊥
m

kT

)
sinh

(
1.2Ωaτ

kT

)
(3.18)

where the ‘sinh’ term captures the balance of forward and backward jumps. Here

again, we take Ē⊥m as representative of the p(E⊥m) energy distribution (Fig. 3.4b).

The total velocity of the dislocation line is:

vtot = vgl + vsj (3.19)

which can be related to a prescribed strain rate ε̇0 using Orowan’s equation:

ε̇0 = bρdvtot (3.20)

where ρd is the dislocation density. Combining eqs. (3.17), (3.18), and (3.20), we

arrive at:

ε̇0 = bρd

[
b∆τgl

Bedge(T )
+ 2bν ′0 exp

(
−Ē

⊥
m

kT

)]
(3.21)

Operating and using the various definitions for the different terms in the above

equations, we can write a compact expression for the strength of the material due to

edge dislocations:

τ = τ edge
c (T ) + ∆τ ∗(T ) +Bedge(T )

[vtot

b
− 2qjog

m (T )
]

(3.22)
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with:

τ edge
c (T ) = 423.6− 0.1T [MPa]

∆τ ∗(T ) =
αµb

w
exp

(
−
Ē⊥f
kT

)

vtot =
ε̇0

ρdb

qjog
m (T ) = ν ′0 exp

(
−Ē

⊥
m

kT

)
sinh

(
1.2Ωaτ

kT

)

For convenience, we list all the material constants in Table 3.4. Eq. (3.22) shows that

Table 3.4: Parameters and material constants used to evaluate eq. (3.22).

Parameter Description Value Units Source

α hardening coefficient 0.5 – this work

µ shear modulus 94 GPa [4]

a0 lattice parameter 3.24 Å this work

b a0

√
3/2 2.81 Å this work

w a0

√
6/3 2.64 Å this work

Ωa a3
0/2 1.7× 10−29 m3 this work

Bedge dislocation friction coefficient 2.12× 10−4 Pa·s [3]

Ē⊥f effective super-jog formation energy 0.02∼0.13 eV this work (Fig. 3.5)

ρd dislocation density 1 ∼ 2× 1015 m−2 Sec. 3.3.2

ν ′0 attempt frequency 1013 Hz this work

Ē⊥m effective super-jog migration energy 0.32 eV this work (Fig. 3.4b)

the sources of strengthening for edge dislocations are the intrinsic lattice stress, τ edge
c

(decreases linearly with temperature), the extra stress due to the existence of super-

jogs, ∆τ ∗(T ) (increases exponentially with temperature), and the applied stress,

ε̇0B
edge/ρdb

2 (independent of temperature). Conversely, the motion of super-jogs,
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represented by qjog
m , reduces the strength of the material (increasing also exponentially

with temperature). However, to obtain the true temperature dependence of the

strength of the system, we must substitute the standard Arrhenius expression for

n0(T ) in ∆τ ∗(T ), eqs. (3.14) and (3.15), with its actual thermal dependence given in

Fig. 3.5. Such substitution gives rise to the temperature response shown in Fig. 3.8.

It is also interesting to derive the extra strengthening due to multielement alloy

effects. The equivalent of eq. (3.22) for a pure system or dilute alloy would read:

τbcc = τ edge
c (T ) + αµb

√
ρd +Bedge(T )

ε̇0

b2ρd
(3.23)

i.e., ∆τ(T )∗ ≡ ∆τ(T ) takes the standard Taylor form (αµb
√
ρd) and becomes inde-

pendent of temperature. Assuming, as it is customary, that τ edge
c ≈ 0 in bcc metals,

and that w � ρ
−1/2
d , i.e., neglecting the Taylor hardening term, we can subtract

eq. (3.23) from (3.22), we arrive at the extra strengthening associated with RMEA

effects:

∆τRMEA(T ) ≈ τRMEA(T )−τbcc(T ) = τ edge
c (T ) +

αµb

w
exp

(
−
Ē⊥f
kT

)
+

− 2Bedgeν ′0 exp

(
−Ē

⊥
m

kT

)
sinh

(
1.2Ωaτ

kT

)
(3.24)

This expression gives the terms that contribute to hardening due to the chemical

nature of RMEA versus pure or dilute bcc systems. As the equation shows, only

the last term has an explicit dependence on stress. In other words, the difference

between RMEA and bcc systems decreases with increasing stress on account of the

super-jog diffusion term.
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CHAPTER 4

Geometrically Necessary Dislocations signal

analysis

4.1 Introduction

We present a numerical methodology to compute the Nye-tensor fingerprints of dis-

location loop absorption at grain boundaries (GBs) for comparison with TEM ob-

servations of irradiated polycrystals. Our approach links atomistic simulations of

self-interstitial atom (SIA) prismatic loops gliding toward and interacting with GBs

in body-centered cubic iron with experimentally-extracted geometrically necessary

dislocation (GND) maps to facilitate the interpretation of damage processes. The

Nye-tensor analysis is strongly mesh-size dependent—corresponding to resolution-

dependent TEM observations. The method computes GND fingerprints from dis-

cretized dislocation line segments extracted from molecular dynamics simulations of

dislocation loops being absorbed at a GB. Specifically, we perform MD simulation

of prismatic loops of two diameters and monitor the three stages of the absorption

process: loop glide, the partial, and full absorption of the loops at a [1 0 0] symmetric

tilt GB. These methods provide a framework for future investigations of the nature

of defect absorption by grain boundaries under irradiation conditions.
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4.2 Introduction

Radiation damage in structural materials leads to microstructural evolution[76, 77,

78, 79, 80, 81] and mechanical property changes[82, 83, 84, 85, 86] as a consequence of

complex interactions between radiation-induced defects (vacancies, self-interstitials,

point defect clusters, transmutation elements, . . . ) and intrinsic material defects

such as dislocations and grain boundaries (GBs). GBs are particularly powerful

defect sinks, absorbing defects from within grain interiors and accommodating these

within the GB structure [87, 88, 89, 90, 91, 92]. Carefully tailored GB microstructures

have the potential to confer high irradiation resistance to structural materials [89,

93, 94, 95].

Experimentally, a telltale signature of defect adsorption is the observation of

denuded (i.e., defect-free) zones adjacent to the GBs [88, 89, 96]. A denuded zone

is a region of finite spatial extent over which defect concentrations decay from their

bulk values to near zero. The denuded zone size may be used as a measure of

GB sink efficiency; albeit an indirect one. Denuded zone size has been shown to

vary based on a variety of factors, including but not limited to specific GB type (5

macroscopic degrees of freedom), material, type of defect, defect transport coefficients

and generation rates within the bulk, point defect interactions with each other, type

and extent of irradiation, necessitating a more robust method for the quantification

of defect absorption by GBs [97, 96, 98, 99, 88, 89]. A more direct marker of defect

absorption by GBs would allow a more robust characterization of sink efficiency, as

well as characterization of absorption response and understanding of the denuded

zone phenomenon. Because modifications of GB macrostates necessarily result in

lattice curvature changes, a popular technique to characterize these changes is to
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infer the density of geometrically-necessary dislocations (GND) from lattice curvature

measurements; this is commonly represented as a spatial map of the Nye tensor

[93, 100, 101, 2, 102]. Strictly speaking, GNDs are associated with slip gradients in

lattice plastic rotations in the lattice; these are seen as net nonzero Burgers vector

densities [102]. Changes in measured Burgers vector distributions and the resultant

Nye tensor distribution provide a direct means of characterizing GB point defect

absorption. In this paper, we explore GND measurements as a direct method of

characterising defect absorption by GBs by linking atomistic descriptions of defect

absorption with experimental observations of changing Nye tensor measurements.

Primary radiation damage is characterized by the introduction of equal numbers

of vacancies and self-interstitial atoms (SIA) [103, 104, 105]. In sufficiently dense dis-

placement cascades, vacancy clusters assemble into small compact voids or stacking

fault tetrahedra, depending on whether irradiation takes place in high (e.g., body

centered cubic (bcc) crystals) or low (face centered cubic, fcc) stacking fault energy

metals, respectively [106, 107, 108]. SIA clusters, on the other hand, tend to assemble

into prismatic dislocation loop structures which are highly mobile, diffusing rapidly

in the direction parallel to their Burgers vector. 1 In bcc metals, these glissile loops

have a Burgers vector of (a0/2)〈111〉, where a0 is the lattice parameter. Therefore,

the only feature in the bulk capable of contributing a GND signal to the Nye tensor

analysis are prismatic loops. Here, we use molecular dynamics (MD) simulations of

these loops bcc iron to illustrate these ideas.

Interactions of dislocations and grain boundaries have been observed both exper-

imentally in TEM [109, 110, 111, 112] and in simulation [113, 114, 115, 116], but

1There have been sporadic observations of vacancy platelet collapse into dislocation loops as
well, both in bcc and fcc metals.
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direct effects of these interactions in large volumes are not yet fully understood and

require a method of direct observation at larger scales. A number of indirect mea-

sures of defect absorption effects and absorption correlations have been presented,

including but not limited to characterizations of the denuded zone [88, 89, 96], effects

of grain boundary structure on sink efficiency [97], and effect of grain boundary char-

acter on sink efficiency [89]. In this paper, we present a direct method for detecting

dislocation loop absorption by GBs, which provides a framework to further quantify

the absorption response.

The procedure to extract GND densities from molecular dynamics simulations,

i.e., linking atomic-level information with experimental measurements of Nye tensor

signals involves the integration of different approaches: (1) MD simulations of SIA

loop structure and kinetics at/near the GB; (2) conversion of spatial coordinate in-

formation (from MD) into a dislocation line representation; (3) spatial discretization

of dislocation lines into volumetric cells; and (4) calculation of GND densities in

each discrete cell. Of particular interest are the differences in the GND footprint of

bulk loops, partially absorbed loops into the GB, and fully absorbed loops; all sce-

narios in irradiated microstructures. Our correlation between simulated prismatic

loop absorption and experimental observables provides a method of detection and

fingerprinting of absorption phenomena at GBs.

4.3 Experimental Observations

Nanocrystalline (NC) Fe specimens for transmission electron microscopy (TEM)

analysis were created from 100-150 nm thick magnetron sputtered iron thin-films

on 〈100〉 NaCl substrates. Final cross sections were prepared by focused ion beam
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Figure 4.1: Schematic illustration of the computational workflow of the methods devel-

oped in this paper.
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(FIB) milling. For irradiation, thin planar iron films were mounted on 200 mesh

TEM grids. The as-deposited films were annealed in-situ using a Gatan 628 TEM

heating stage at 675◦C in preparation for irradiation. The annealing conditions were

chosen to obtain stable grain structures of appropriate grain sizes (comparable to

bulk samples).

The large grain, NC Fe samples were irradiated using a Hitachi H-9000NAR

IVEM-Tandem at Argonne National Laboratory using 1 MeV Kr2+ ions accelerated

using a 650-kV ion implanter at 300◦C to damage levels of 5 dpa. The substrate

temperature during deposition was maintained at about 370◦C.[117, 118, 119] Post-

irradiation orientation data was acquired using NanoMEGAS ASTAR(TM) preces-

sion electron diffraction and ASTAR(TM) ACOM-TEM systems on a JEOL 2100

Lab6 TEM operated at 200 kV with a spot size of 15 nm, step size of 5 nm, and

precession angle of 0.60◦.

Orientation data was analyzed using the EDAX TSL OIM Analysis software

package. The deformation associated with lattice curvature were deduced using lo-

cal orientation spread and kernel averaged misorientation [120]. Each point in the

image was treated as a kernel with a specified number of nearest neighbors and the

misorientation between each point is averaged for each given kernel. Contortion

tensors for each center of a kernel (at its nearest neighbor points) were used to es-

timate the GND density using a least-squares fitting procedure. The least-squares

contortion values were used to calculate a single Nye tensor, describing the state

of dislocation surrounding each point [2]. The lower bound GND density is calcu-

lated using a dislocation density tensor normalized by the Burgers vector [121, 122],

assuming a dislocation Burgers vector of (a0/2)〈111〉 for bcc Fe [2]. Estimated lower-

bound GND densities were then generated in Origin for direct comparison to the
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TEM micrograph region of interest (ROI) [2].

4.3.1 Results

Figure 4.2: Bright field micrographs of a grain with (a0/2)〈111〉 Burgers vector dislo-

cation loop being absorbed onto a 〈110〉 GB plane. Nye dislocation tensor map generated

from PED ACOM orientation data highlighted increased signal at the 25◦ [1 -3 -6] GB [2].

The left-hand side of Fig. 4.2 shows bright field micrographs of a grain containing

an (a0/2)〈111〉 prismatic dislocation loop being absorbed into a 〈110〉, 25◦ [1 -3 -6]

grain boundary. Contortion measurements were conducted as described above to

produce a Nye tensor map and estimated GND density at discrete points [2]; the
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results are shown in the right image of Fig. 4.2 after the absorption of the dislocation

loop. The observed processes suggest a number of questions that are challenging to

address exclusively experimentally. However, they provide an excellent platform from

which to start looking at these complex processes from a computational point of view.

We perform atomistic and mesoscale simulations of the phenomenon captured in the

experiments, i.e., full prismatic loop absorption. Our goal is the development of a

computational methodology needed to interpret Nye tensor signals associated with

dislocation absorption for future experiments.

4.4 Theoretical Background

Geometrically necessary dislocations (GNDs) are dislocations that accommodate lat-

tice curvature due to nonuniform plastic deformation. These dislocation have net

nonzero Burgers vector and do not contribute to plastic strain per se (although they

can contribute to strain hardening [123, 124]). As a consequence, GNDs are a mea-

sure of plastic distortion and can thus provide useful information on lattice rotation

associated with slip, grain boundary motion, or plastic strain gradients. GND may be

characterized by the Nye tensor (also referred to as the ‘dislocation density’ tensor,

or the ‘GND’ tensor), which can be obtained as a line integral over all dislocations

within a volumetric element (of volume V ). If b is the Burgers vector of a dislocation

with local unit tangent line direction t, the Nye tensor, α is defined as [125]

α = V −1

ˆ
L

(b⊗ t) dl, (4.1)

where the differential dl runs along the entire dislocation line length L ∈ V . When

L is discretized into N piecewise segments of length ∆l inside the volume element,
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as is common in dislocation dynamics simulations, Eq. (4.1) can be expressed as a

discrete sum where each segment i is represented by bi and a segment length vector

li = ∆lti

α = V −1

N∑

i

(bi ⊗ li) . (4.2)

As such, a closed loop (all segments with identical bi) fully enclosed in the volume V

necessarily leads to zero GND signal due to the mutual cancellation of contribution

from segments with positive and negative ti projections. When representing the GND

tensor graphically, it is customary to plot the L1 norm of α: |α|1 = maxn
∑

m ‖αnm‖.
The connection between Eq. (4.2) and this norm and the scalar dislocation density

ρ used in plasticity is given in Appendix 4.9.2

The GND tensor can also be obtained from lattice curvature measurements as:

α = κT − Tr(κ)I (4.3)

where κ is the lattice curvature tensor and I is the identity matrix. κ is a measure

of the spatial gradient of the lattice orientation, i.e.,

κij = ∂ωL
i/∂xj ≈ δωe

i/δxj.

Here, ωe is the rotation axis (i.e., part of the axis-angle pair of the crystal with respect

to a fixed reference). δωe
i is the misorientation between each point and its neighbors

[2, 126] separated by distance δxj. Equation (4.3) it known as Nye’s formula and

links the dislocation density tensor and the lattice curvature in the context of small

elastic strains and rotations. Full derivations of these equations are provided in

Appendix 4.9. In essence, the method presented here provides a physical connection

2Note that in both Eqs. (4.2) and (4.3), the GND density has units of inverse length, instead of
the standard inverse length squared of the scalar dislocation density.
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between the representations of the dislocation density tensor encoded in Eqs. (4.2)

and (4.3).

Disconnections are line defects that are contained to lie along interfaces/GBs

that have both Burgers vector and step character [127]. While Burgers vectors of

common lattice dislocations are determined by the slip planes of the crystal structure

and material, disconnection Burgers vectors are determined by displacement-shift-

complete (DSC) vectors of the bicrystal. Since the DSC vectors are determined by

the relative orientations of the crystals involved, the possible disconnection Burgers

vectors of different GBs will differ. Disconnection Burgers vectors and step heights

are pairs in the sense that each Burgers vector has a discrete set of possible step

heights and vice versa. A step accounts for the shift in the coincidence site lattice

(CSL) produced by the DSC vector translation. Lattice dislocations can be expressed

as DSC vector sums, and these lattice Burgers vectors when intact create a special

case of disconnection where the step height is zero [127].

4.5 Computational Methods

4.5.1 Atomistic

Dislocation loops were created in a simulation cell with relaxed GBs which were sub-

sequently absorbed by the GBs during molecular dynamics simulations. A (012)[100]

symmetric tilt grain boundary was constructed in bcc Fe and energy-minimized in

LAMMPS [55] using an interatomic potential for Fe selected for its ability to reproduce

defect formation energies, dislocation kink formation energies, and general disloca-

tion dynamics parameters [128]. Simulation cell dimensions were determined based

84



consistent with coincident-size lattice (CSL) requirements for a periodic boundary

conditions. The simulation cell size was fixed such that the dimensions of the grains

were at least three times the diameter of the dislocation loop, in order to avoid

overlap of displacement fields between the loop and its periodic images. Vacancy

and interstitial dislocation loops of radii 20 Å and 80 Å were constructed by either

removing or inserting circular discs of three {111} planes of atoms, then performing

an energy minimization of the immediate surrounding region to produce dislocation

loops with (a0/2)〈111〉 Burgers vectors. Loops were initially located 20 Å from the

grain boundary in order to facilitate absorption. The dislocation loop/GB simula-

tions were performed using molecular dynamics at 1300 K for 1 ns beyond the time

required for complete dislocation absorption by the GBs using with a timestep of 1

fs.

The dislocation structure was observed using OVITO and its dislocation line rep-

resentation obtained using Dislocation Extraction Algorithm (DXA) [5, 129] (based

upon a Burgers circuit construction). Sequences of atomistic frames with high time

resolution were inspected in OVITO to track absorption and identify disconnections

within the GB and/or metastable states present. Disconnections were located by

detecting shifts in the grain boundary plane, after which their Burgers circuits and

corresponding steps were determined.

4.5.2 Discrete GND analysis

The final stage of the modeling sequence involves the calculation of spatially-resolved

GND signals from DXA-filtered loop configurations. This effectively links atomic-

level information (where fundamental loop properties are defined) with experimental
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measurements of Nye tensor signals based on lattice curvature gradients (see Section

4.3). To mimic the spatial discretization in precession electron diffraction tests, we

use a three-dimensional tessellation of the MD supercells. We study GND footprints

using both regular structured meshes (uniform cell size and shape) as well as general

Voronoi tessellations with fixed average cell size. Subsequently, we perform cell edge

detection procedure by overlaying DXA-filtered three-dimensional supercells on the

discretized meshed volume, following by Nye tensor determination according to the

methods described in Section 4.4. The GND signal is then obtained as the L1-norm

of the Nye tensor, and final intensities are represented as smeared versions of discrete

signals using a normalized Gaussian spread function.

The Voronoi tessellations were performed using the Polytope Bounded Voronoi

Diagram MATLAB library [130]. The main controlling parameter for the cell volume is

the concentration of individual cell generators, i.e., the number of spatially random

points introduced as centroids of each Voronoi cell.

4.6 Results

4.6.1 Molecular dynamics simulations

The process of GB absorption of the dislocation loop consists of three stages: (i)

period preceding dislocation contact with the GB, (ii) partial absorption of the dis-

location loop, and (iii) loop fully absorbed into the GB. Figs. 4.3a and 4.3c show

atomistic images obtained using common neighbor analysis of MD of stages (i) and

(ii).

DXA analysis of the atomic configuration data is used to transform the three-
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dimensional atomic configurations into a sharp dislocation line representation. DXA

results for stages (i) and (ii) are shown in Fig. 4.3, while the fully absorbed state is

given in Fig. 4.4. Figs. 4.3b and 4.3d show the DXA representations.

The colors in Figs. 4.4a and 4.4b represent the following: green segments indicate

a dislocation line with Burgers vector of (a0/2)[111], magenta represents [100] Burgers

vectors, the array of GB dislocations are shown in dark blue, and red lines represent

dislocation segments with Burgers vectors which DXA was unable to identify.

After loop absorption, the MD simulations show the decomposition of the original

Burgers vector into a pair of disconnection loops (similar for both the 20-Å and 80-Å

radius loops). The decomposition of the original dislocation loop into disconnections

consistent with the following Burgers vector reaction:

a0

2
[111]→ a0

10
[531] +

a0

5
[012]. (4.4)

These disconnection Burgers vectors are consistent with an analysis of the displacement-

shift-complete (DSC) vectors of the bicrystal. The disconnections remained intact

after annealing for 1 ns at the simulation temperature, indicating a stable absorp-

tion reaction as suggested by the simple application of Frank’s rule (i.e., no further

disconnection decomposition into other bicrstyallography-allowed disconnections oc-

cur).

Note that in the preceding MD results, the dislocation loop absorption occurred

at a grain boundary that had not previously absorbed point defects, dislocations,

or dislocation loops (this was done to clarify dislocation loop/GB interactions). In

irradiation experiments, a GB will likely be less perfect; having previous absorbed

other defects and/or exhibit a distribution of microstates [95, 131]. Such structural

inhomogeneities/defects within the GB may affect subsequent dislocation loop ab-
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sorption. During irradiation experiments, the grain boundary structure may achieve

a steady-state distribution of such inhomogeneities/defects. On the other hand, pe-

riodic denuded zone collapse may imply that a true steady-state GB structure is

never achieved. While this is beyond the scope of the present paper, we will return

to some of these issues in Section 4.7. In any case, the single loop absorption case is

used to showcase that a change in GND signal results from the presence of a Burgers

vector in the grain boundary. The single loop absorbed by a perfect grain boundary

allows better characterization of the incoming and resulting Burgers vectors, which

are then used to generate the GND signal.

4.6.2 GND density calculations

Nye tensor calculations are highly sensitive to the size of the mesh employed in

the spatial discretization (as discussed above). The natural upper bound of such a

discretization is a mesh with a single element (i.e., no discretization of the supercell

volume), while the number of elements divergent as the mesh size tends to zero. We

now analyze the GND signal of the 20 and 80-Å loops during the three stages of

loop-GB interactions, i.e., pre-absorption, partial absorption, and full absorption.

Equation (4.2) implies that a closed dislocation loop generates no net GND sig-

nal. In a numerical sense, a discretized closed loop may not strictly cancel due to

limitations on numerical precision; this nonzero value constitutes the ‘numerical zero’

of the structure. As such, our first calculation involves a single volumetric element

consisting of the entire MD simulation cell; this serves as the floor value of the GND

signal. Our calculations based on the MD loop data yield an average GND density

of 1.15 × 1010 m−2; this may be considered the zero GND signal for numerical pur-
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poses. Regions with GND signals below this threshold are shaded gray in subsequent

figures.

We obtain the average signal contributed by loops as a function of the mesh size

used in the tessellation of the three-dimensional space. Fig. 4.6a shows an image

of the 80-Å prismatic loop highlighting only the cells that contain dislocation loop

segments for a particular Voronoi representation of the MD supercell with an average

mesh size of 8.0 nm. A heat map of the GND intensity of the loop is given in Fig. 4.6b.

Repeating this process as a function of tessellation cell size leads to the results

shown in Fig. 4.7a and 4.7b for the 80 and 20-Å loops, respectively. The average

cell size is defined as d̄ =
∑

i
v
1/3
i /N, where N is the total number of cells and vi,

i = 1, . . . N , is the volume of each cell. The error bars shown in the figure reflect

the variability in tessellation morphology for a constant average mesh size. The

smallest mesh size considered corresponds to the estimated resolution limit of ≈10

nm from our experimental measurements, as discussed in Section 4.3.1. For internal

verification, we compare the analysis of loops using regular hexahedral regular meshes

(translucent lines in Figs. 4.7a and 4.7b) in addition to the Voronoi tessellation; very

good agreement between both approaches is obtained.

Unlike for the full prismatic loop, the partially absorbed loop does contribute a

nonzero GND signal (the volume contains the entire partial loop). For this case,

the GND density converges to a finite nonzero value above a threshold mesh size,

as shown in Fig. 4.7. Fig. 4.8 shows the highlighted Voronoi cells containing net

dislocation content colored by the value of its GND density for both cases. The case

for the fully absorbed loop is more difficult to analyze; it is not a full bulk crystal

dislocation loop even though it represents a closed linear structure in the GB plane.
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The present results indicate that the mean GND density for the full loop (before

absorption) decreases towards zero as the mesh size increases, while the partially and

fully absorbed cases converge to a nonzero GND value. These results correlate the

GND signal to the loop radius (defect size) and the mesh size (volumetric spatial

resolution) and, as such, can be used to interpret the experimental observations.

In particular, these correlations are quantitative when the experimental resolution

limit is known. TEM analysis can be correlated to simulation by utilizing comparable

mesh sizes (10 - 70 nm) and PED-ACOM step sizes (5 nm) to effectively replicate

the resolution at which experimental data was captured. Our results indicate that

the experimental spatial resolution of 30 nm (at which the crossover in GND signal

between the full loop and the partially absorbed loop takes place) or less is needed

to capture the closed nature of the full 80-Å loop, and of 17 nm or less for the

20-Å loop. The experimental system reports nominally higher GND intensity, which

could be due to a number of factors: larger loop size than simulation, thin film sample

curvature and texture that contribute to an inherently higher GND density (opposed

to a perfect bicrystal in the simulated case), smaller step size that could correspond

to an increase in fraction of dislocation observed [2]. A difference in GND intensity

is also recognizable in Fig. 4.7 and Fig. 4.8, which show calculations of an intensity

based on the entire simulation volume, about 2∗108 Å, and based on the discretization

volume, between 5000 and 3 ∗ 107 Å for the regular mesh cases, respectively. While

the model and experiment may not exhibit the same fingerprint for loop absorption,

this work presents the first reported case of a fingerprint for GB-loop interaction with

a simulated proof that structural changes in a GB after loop absorption produce a

GND signal change. Based on our analysis, the spatial resolution under which lattice

orientation measurements are provided has a noticeable impact on the final result of
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the GND tensor.

As is common in computational methods that depend on spatial resolution, the

CPU cost of the approach presented here displays a strong mesh dependence. The

computational efficiency of these calculations is discussed in Appendix 4.10.

4.7 General Discussion

The main goal of the present paper is to link atomistic representations of irradiation

defects with experimental measurements of GND densities based on lattice curva-

ture. We developed software to determine scalar projections of the Nye tensor for

prismatic loops as a function of the scale of the spatial discretization. The input

to the model is a line representation of dislocation structures filtered from atomic

configurations. The output is the scalar norm of the Nye (GND) tensor, which may

be directly compared with experiments. In this way, the atomistic scale, at which

irradiation defects are unequivocally defined, can be connected to experimental-level

observations, from which radiation damage features may be inferred. While the grain

boundary studied here was perfect and only absorbed a single dislocation loop, these

results affirm the effect of a change in Burgers vector on the GND signal produced.

The idea is then to establish a rigorous link between atomic models and TEM-based

observations, and to enable further analysis of defect-GB interactions than would be

possible through direct TEM characterization; for example, in identifying defect ab-

sorption locations and effects in GBs with existing structural defects, or in analysis

over length scales that do not lend themselves to direct structural analysis of the

GB.

Thus, our approach address several outstanding questions on the interpretation of
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experimental measurements. First, are the ‘line’ and the ‘curvature’ representations

of the GND tensor interchangeable? While addressing this is beyond the scope of

this paper, our methodology is a first step in the direction of clarifying this point.

Second, does the GND fingerprint of absorbed loops provide information about in-

trinsic GB states? Thus far, we can conclude that –perhaps as one might expect–

that is not the case. However, our calculations reveal some interesting features of

these structures: e.g., the apparent ‘dual’ nature of these absorbed loops, which, on

one hand, yield a net nonzero GND fingerprint, while on the other, they are fully

closed in the GB plane. We understand that this is a direct consequence of how the

atomistic→line conversion used in this work (DXA method) interprets loops fully ab-

sorbed by the GB. As such, additional research is required to validate and catalogue

GND fingerprints and to establish whether they have an interpretable experimental

equivalent signal.

The experimental results shown here prompt a number of additional questions

that remain unanswered at this point in the development of our computational tools.

For example, how is a finite concentration of semi-absorbed loops with some degree

of overlap manifested in terms of a GND signal? How do potential changes in the

microstates of the GBs due to sustained loop absorption affect GND density fin-

gerprints? How can the formation and disappearance of dislocation loop denuded

zones near a GB at high dose be observed by Nye tensor characterizations. These

questions are part of a longer term research effort to quantitatively interpret experi-

mental TEM images to shed light on the interactions between radiation damage and

grain boundary sink behavior.
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4.8 Conclusions

The major elements of this research report may be summarized as follows:

1. We developed a numerical approach to aid the interpretation of experimental

measurements of changes in GND density observed under irradiation condi-

tions.

2. Our approach connects atomic-scale information and experimental measure-

ment by linking MD simulations of prismatic loop structures with spatial rep-

resentations of the scalar norm of the GND tensor.

3. Analysis of 20 and 80 Å loops indicates a strong dependence of the GND signal

on the discretization mesh size/experimental resolution.

4. A change in the GND signal does not, on its own, provide a unique description

of GB phenomena associated with dislocation loop absorption, but does confirm

the change of Burgers vector(s) on the GB associated with defect absorption

from the abutting grain lattices.

4.9 Kinematic and physical definitions of the Nye tensor

4.9.1 Derivation of the dislocation density tensor

Nye’s theory relating lattice curvature to dislocation density has been discussed, at

length, in the literature [132, 133, 134, 135]. The total deformation gradient F is

a compatible field which may be written in terms of the displacement vector field
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u = x−X as:

F = ∇x = ∇ (X + u) = I +∇u = I +E, (4.5)

where E = ∇u is the strain tensor 3 The compatibility of F implies that Curl F = 0.

However, under the multiplicative decomposition generally adopted in finite defor-

mation theory, F = F eF p, neither the elastic nor the plastic deformation gradients,

F e and F p need be compatible. Multiplicative decomposition takes the system from

initial to final configurations by way of an arbitrary intermediate configuration (rep-

resented by the coordinate vector ξ) that, in crystal plasticity, has the meaning of

pure plastic slip:

F =

(
dx

dξ

)(
dξ

dX

)
, (4.6)

where dξ = F pdX and dx = F edξ.

The potential incompatibility of the plastic deformation leads to a closure failure

of a suitable Burgers circuit C, defined as the change in length of a path on the

surface enclosed by the circuit S associated with generation of dislocations in a given

volume V (see Fig. 4.9). In terms of the deformed configuration x, this closure failure

is

b =

˛

C

dξ =

˛

C

F e−1dx, (4.7)

where we have used

dξ = F pdX =
(
F e−1F

)
dX = F e−1dx/dXdX = F e−1dx.

3Following standard notation, differential operators may be written in terms of the initial coor-
dinates X or with respect to the current coordinates x of the material points. In the former case,
the notation ∇, Grad, Div, and Curl are used, while in the latter, ∇x, grad, div, and curl are used.

94



Application of Stokes theorem converts Eq. (4.7) into a surface integral:

b =

˛

C

F e−1dx = −
ˆ

S

(
curl F e−1

)
n ds =

ˆ
S

α · n ds,

where n is a unit vector normal to S. This expression contains the definition of the

dislocation density tensor:

α = −curl F e−1 (4.8)

Fig. 4.9 shows a schematic illustration with dislocation lines crossing surface S

bounded by closed circuit C. The Burgers vector can also be computed by means of

a closed circuit C0 in the reference configuration:

b =

˛

C

F e−1dx =

˛

C0

F e−1F dX =

˛

C0

F pdX

= −
ˆ

S0

(Curl F p)dS. (4.9)

Using Nanson’s formula ds = JF−T · dS (where J = det(F ) is the Jacobian), one

can express the dislocation density tensor with respect to the reference configuration

as

α = −J−1 (Curl F p) · F T . (4.10)

For a discrete representation of dislocation segments, the dislocation density ten-

sor in volume V takes the form given in Eq. (4.2). This may be generalized, in the

language of crystal plasticity, as the (ensemble) average of the contributions from all

slip systems β in the volume to the closure failure in circuit C:

α = V −1
∑

β

〈bβ ⊗ lβ〉 =
∑

β

〈bβ ⊗ ρβ〉, (4.11)
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where ρ = V −1l is the line density crossing surface S. Note α has units of inverse

length rather than length squared, as does traditional dislocation density in plasticity,

ρ.

The connection between the dislocation density tensor and ρ (the scalar quantity

that is invariant with respect to the frame of reference) may be understood from the

autocorrelation function of the Nye tensor:

〈α(x) ·α(x′)〉 = 〈b(x)⊗ ρ(x)⊗ b(x′)⊗ ρ(x′)〉 = Λ(x,x′)

which is a fourth order tensor (Λijij(x,x) = χij(x)). χ(x) = 1 when there is a

dislocation at x and is 0 otherwise. The integral of this quantity over the volume V

yields the invariant quantity:

1

V

ˆ
V

Λ(x,x)dv =
1

V

ˆ
V

χ(x)dv =
L

V
= ρ,

where L is the total line length enclosed in volume V .

4.9.2 Dislocation density tensor: small deformation limit

In the small deformation limit, we adopt an additive decomposition of the strain

tensor, E, into elastic and plastic parts:

E = Ee +Ep,

which in turn may be decomposed into symmetric ε and anti-symmetric ω (rotation)

parts:

Ee = εe + ωe

Ep = εp + ωp.
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By definition, F = I +E, such that:

F = I +E = I + εp + ωp + εe + ωe

Assuming that εe, ωe, εp, and ωp are all small, and neglecting second order terms,

we may make the approximation:

I + εp + ωp + εe + ωe ≈ (I + εp + ωp) (I + εe + ωe) .

By equivalence with the multiplicative decomposition of the deformation gradient,

F = F eF p, the above expression implies that

F e ≈ I +Ee

F p ≈ I +Ep

and thus, from Eq. (4.10),

α ≈ −Curl Ep = Curl Ee (4.12)

since Curl E = 0 due to the compatibility of the deformation gradient.

4.9.3 Dislocation density and lattice curvature

Experimental techniques like EBSD provide the lattice orientation field and, conse-

quently, the lattice rotation Re during deformation. Invoking the polar decomposi-

tion of Eq. (4.8) we may write the dislocation density tensor as

α = −curl F−1
e = −curl

(
U−1

e R
T
e

)
.
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In thesmall elastic strain limit

α ≈ −curl RT
e ,

If, in addition, elastic rotations are small, we have

α ≈ −curl (I − ωe) = curl ωe, (4.13)

where

ωe =




0 −
×
ωe

3

×
ωe

2
×
ωe

3 0 −
×
ωe

1

−
×
ωe

2

×
ωe

1 0


 (4.14)

is a skew-symmetric matrix containing the principal rotation axis
×
ωe and which, as

indicated in Sec. 4.4, is obtained from the axis-angle pair of the crystal at every

spatial point.

The gradient of the lattice rotation field delivers the lattice curvature tensor. In

the small deformation limit, the gradient of the rotation tensor is represented by the

gradient of the axial vector

κ := ∇x

×
ωe, (4.15)

i.e.,

κij =
∂
×
ωe
i

∂xj
.
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Expanding the curl of ωe (Eq. (4.13)) using Eq. (4.14) yields

curl ωe =




−∂
×
ωe
3

∂x3
− ∂

×
ωe
2

∂x2

∂
×
ωe
2

∂x1

∂
×
ωe
3

∂x1

∂
×
ωe
1

∂x2
−∂

×
ωe
3

∂x3
− ∂

×
ωe
1

∂x1

∂
×
ωe
3

∂x2

∂
×
ωe
1

∂x3

∂
×
ωe
2

∂x3
−∂

×
ωe
1

∂x1
− ∂

×
ωe
2

∂x2




=




−(κ33 + κ22) κ21 κ31

κ12 −(κ11 + κ33) κ32

κ13 κ23 −(κ22 + κ11)




= α. (4.16)

In tensorial form, this is equivalent to

α = κT − Tr(κ)I, (4.17)

which is Nye’s formula,[102, 136] given as Eq. (4.3) in Section 4.4.

4.10 CPU cost of Nye tensor extraction software

The scaling of the computational cost associated with mesh size in our GND tensor

analysis is shown in Fig. 4.10 (for the 80-Å loop calculations). The two main trends

observed in the figure are:

- There is a clear association between CPU cost and mesh size, characterized by

an inverse nonlinear law (continuous lines in the figure). Above approximately

a mesh size of 30 nm, the CPU cost saturates at values of 0.3 s per nm of

dislocation segment length. This occurs as a consequence of the fact that mesh

elements fully contain the loop beyond that size.
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- The CPU cost tCPU is seen to decay exponentially with mesh size. However,

the decay rate falls into two different regimes punctuated by a critical mesh size

x∗. Accordingly, we fit the tCPU data points to general exponential functions

of the form:

tCPU =





a1e
b1x+c1 x < x∗

a2e
b2x+c2 x ≥ x∗

(4.18)

The fitting coefficients are given in Table 4.1. The transition at x∗ takes place

when the number of segment-cell intersections reaches a critical value, and is

likely to be loop size and shape dependent.

- Involving the grain boundary in the analysis results in a two-to-three fold

increase in CPU cost. This is related to the increased overhead associated with

GB dislocations and extra cell-segment intersections.

The trends shown in the figure are virtually independent of supercell volume, as the

code can parse through empty cells very quickly at practically no cost. They can

be used a priori to estimate the CPU overhead of larger-scale computation involving

high numbers of dislocation segments.

Table 4.1: Fitting parameters for CPU cost vs mesh size

Loop case a1 b1 c1 a2 b2 c2 x∗ [nm]

Before absorption 11.63 −0.23 1.37 11.43 −0.12 −0.93 21.5

Partially absorbed 16.70 −0.21 −0.16 16.57 −0.11 -2.42 22.5

Fully absorbed 8.30 −0.23 1.99 11.41 −0.10 −1.15 22.3
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(a) (b)

(c) (d)

Figure 4.3: (a) Atomistic and (b) discrete line representation of an 80-Å (a0/2)[111]

loop before absorption. (c) Atomistic and (d) discrete line representation of the partial

absorption stage.
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(a) (b)

Figure 4.4: Two oblique views of the fully absorbed loop and the grain boundary using

a DXA representation.
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Figure 4.5: Absorbed dislocation loops in bcc Fe with original Burgers vector (a0/2)[111]

and initial radii of (a) 20 Å and (b) 80 Å. The resulting disconnection loops and their

corresponding Burgers vectors are shown and labeled.
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(a) (b)

Figure 4.6: (a) Cells containing net dislocation loop segment length for an 8.0-nm Voronoi

discretization of the full 80-Å loop. (b) Heat map of the full loop according to the GND

intensity of the loop.
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Figure 4.7: Normalized GND density for the (a) 80-Å and (b) 20-Å loops before, during

and after absorption by the GB as a function of average Voronoi cell size. The error bars

reflect the variability in tessellation morphology for a constant average mesh size. The

shaded region represents the GND signal detection limit, while the translucent lines show

the GND signal calculated based on regular hexahedral meshes for reference.
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(a) (b)

(c) (d)

Figure 4.8: Highlighted Voronoi cells with net dislocation content for the (a) partially-

and (b) fully-absorbed loops. The corresponding regular hexahedral mesh representations

are given in (c) and (d), respectively. Cells are colored according to their GND density

(shown in the color bars in units of m−2).
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Figure 4.9: Dislocation lines crossing surface S bounded by closed circuit C.
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Figure 4.10: CPU cost per (dislocation segment length) of the GND analysis software

for the three cases considered in the main text of this paper.
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CHAPTER 5

Simulation of the evolution of Grain boundary’s

ability to absorb irradiation defects

The development of radiation-tolerant structural materials is an essential element for

the success of advanced nuclear energy concepts. One of the most direct strategies to

improve the response of materials to irradiation is to promote a high density of inter-

nal defect sinks. Sinks absorb and remove damage from the crystal, prolonging the

material’s lifetime by suppressing or delaying mechanical property degradation and

maintaining safe performance. Grain boundaries (GB) have long been considered as

effective damage sinks due to their flexibility to adjust their internal atomic structure

to accommodate absorbed defects. As such, nanograined/nanostructured materials

are considered to be optimal candidates as radiation-tolerant structural materials.

However, as GB absorb defects, they suffer internal transitions to higher-energy mi-

crostates that limit their subsequent ability to continue to operate as effective sinks.

In this paper, we show that, as the sink efficiency of GB becomes exhausted with

increasing irradiation dose, networks of irradiation loops form in the vicinity of sat-

urated or near-saturated GB, maintaining and even increasing their capacity to con-

tinue absorbing irradiation defects. The formation of these networks fundamentally

changes the driving force for defect absorption at GB, from chemical (concentration

gradient) to elastic (loop coalescence and Burgers vector reactions). Once formed, a
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strong Nye tensor signal can be detected using precession electron diffraction, corre-

sponding to measurable changes in lattice orientation due to geometrically-necessary

dislocation (GND) accumulation. We show using dislocation dynamics simulations

with thermally-activated diffusion in nanocrystalline iron that these GND signals are

consistent with sessile structures stabilized by 〈100〉 segments formed by reactions

among small prismatic loops with 1/2〈111〉 Burgers vectors. Our results display a

remarkable quantitative agreement between the simulated and measured GND den-

sities, validating the idea that loop networks are a natural continuation of the GB

once they exhaust their defect absorption capacity.

5.1 Introduction

Materials containing a large internal surface-to-volume ratio are important in many

technologically important areas of science, including catalysis [222, 223, 224], me-

chanical strength [225], magnetism [226] or corrosion [227, 228, 229]. In irradiated

materials, grain boundaries (GBs) can act as effective sinks for defects, potentially

resulting in an enhanced radiation resistance compared to their single crystal coun-

terparts [230, 231, 232, 233, 234, 235, 236]. The best experimentally quantifiable

indicator of GB sink efficiency has been the width of defect free areas adjacent to

interfaces known as defect denuded zones (DZ). Denuded zones are a consequential

side effect of defect interactions with GBs. Broadly speaking, these interactions can

be related to the overall GB character1, although extensive studies in recent times

culminating in new findings and a much-improved understanding of the internal

1Defined by the five-dimensional space consisting of misorientation and inclination degrees of
freedom.
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structure of GBs is fast changing this picture [227, 237, 238, 239, 240]. Indeed, in

a previous work [8], we have shown that the evolution of the width of the DZ with

irradiation dose is associated with changes in GB (internal) microstates. Transitions

between different allowable GB microstates occur as a consequence of alterations in

the atomic structure of GB due to absorption of irradiation defects. Such transitions

are governed by a spectrum of time relaxation constants that reflect the hierarchy

of microstate free energies and its partition function. Together, they set the inter-

play between irradiation dose rate and internal GB changes, leading to evolution

equations that predict the time behavior of the DZ [95]. In other words, under ir-

radiation, certain GBs exhibit denuded zone collapse without altering their overall

macroscopic degrees of freedom (DOFs), i.e., these changes are solely navigated by

internal transformations at the level of GB microstates.

However, while the macroscopic descriptors of the GB are seen to remain un-

changed, Nye tensor analysis performed on these GBs reveals that DZ collapse man-

ifests itself as an accumulation of geometrically necessary dislocations (GND) in the

region previously occupied by the denuded zone itself. GND accumulation is typically

interpreted as resulting from lattice curvature changes associated with the emergence

of dislocation populations with an unbalanced Burgers vector. A problem immedi-

ately arises when trying to reconcile the observation of GND with the known fact that

the only source of dislocation content in irradiated metals is the production of small,

perfect prismatic loops originating within displacement cascades [241, 242, 243]. As

such, these loops contribute no net GND density in a global sense (i.e., when the

Nye tensor is calculated along the entire loop contour in a single sweep), and thus

the puzzle of how they form still remains. Moreover, how these geometrically neces-

sary dislocations are connected to DZ suppression is also lacking a proper physical
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explanation.

In a previous paper we have shown that caution must be used when reconciling

experimental GND footprints with a formal definition of the Nye tensor [244]. For

one, we have shown that GND intensities are strongly dependent on the resolution

of the discretization employed. This is crucially important when comparing sim-

ulated images with experimental signals extracted using a fixed spatial resolution.

Trivially, the loop size sets the threshold discretization limit under which calculated

GND densities deviate from the continuum definition of the Nye tensor. Ideally

then, the experimental resolution should be tailored to the defect sizes expected

under the particular irradiation conditions, which is of course highly impractical.

Another aspect worth mentioning when comparing simulations and experiments is

that pixelated Nye tensor images obtained under the microscope are eminently two-

dimensional, which projects three-dimensional features onto the imaging plane with

the consequent loss of configurational information.

The above issues relate to the handling of microscopic experimental information

and its relationship to the numerical aspects of the Nye tensor determination. They

do not address, however, the physics gap separating the emergence of a GND foot-

print with the collapse of the denuded zone in irradiated materials. The main objec-

tive of the present paper is to provide a physical picture that reconciles experimental

GND density measurements, notional definitions of the Nye tensor, and a connection

between microstructural evolution under irradiation and changes in the microstates

of a GB. Our model is based on the presumption that a dislocation network emerges

in the GB-adjacent region during irradiation as the GB defect absorption efficiency

evolves toward saturation. Indeed, we consider this dislocation network to be a main

component of the sink efficiency, and thus, it must be taken into account in our con-
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sideration of the role played by GBs during irradiation. Our work provides potential

channels to control sink strength by tailoring these GB-adjacent regions, which could

have a marked impact on the effectiveness of optimizing radiation tolerance using

techniques such as GB engineering.

The paper is organized as follows. First, we present the physical hypotheses be-

hind the formation of imbalanced GND networks forming as a consequence of GB

sink efficiency loss and the accumulation of small irradiation loops. Second, we in-

troduce the experimental observations and the techniques employed to extract and

interpret quantitative information from them. We then describe the numerical meth-

ods used to generate Nye tensor signals and discuss the main simulation parameters.

Next, we show that dislocation networks of the type hypothesized earlier, are a nat-

ural manifestation of the irradiation damage microstructure during the loss of defect

absorption efficiency by GBs. Subsequently, a comparison between the Nye tensor

signals emerging from these networks and experimental signals is carried out, pro-

viding the basis for validation of our mechanistic hypotheses and confirmation of the

physical interpretation of the experimental images. We finalize with a discussion of

the results and our most important conclusions.

5.2 Mechanism of network formation near saturated grain

boundaries under irradiation

A closed dislocation loop of any character yields no net GND signal. This is readily

seen from the mathematical definition of the Nye tensor, α:
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α =
1

V

˛
b⊗ dl (5.1)

where V is the system volume, b is the Burgers vector, and dl is an infinitesimal

length vector that runs along the loop’s geometric contour, and which is usually ex-

pressed as a normalized vector so that α can directly represent a dislocation density.

For convenience, it is common to use scalar values of the Nye tensor by working with

the norms ‖α‖1 or ‖α‖∞.

1
2
[1
11

]

1
2 [11̄1̄]

(a)

1
2
[1
11

]

1
2 [11̄1̄]

[100]

(b)

Figure 5.1: Schematic sequence of two square 1/2〈111〉 prismatic dislocation loops (orange

and blue) (a) gliding along their glide prisms (delineated by the thin orange and blue lines)

on a collision trajectory; (b) coming into contact within the reaction volume (shaded cube);

and (c) reacting to form a [100] junction along their common intersection. The process

is driven by elasticity and unidimensional random diffusion (1D Brownian motion). The

junction (black segment) is unbalanced and satisfies the Burgers vector reaction 1
2 [111] +

1
2 [11̄1̄]→ [100].

From eq. (5.1), a nonzero α implies the existence of a Burgers vector imbalance

which is incompatible with a closed loop. However, the notion of a net nonzero GND

signal originating from irradiation defects consisting exclusively of closed prismatic
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can be reconciled considering the following two processes: The first one involves the

incomplete absorption of prismatic loops, either as a consequence of GB saturation

or due to a topological incompatibility between a loop’s Burgers (lattice) vector and

admissible displacement-shift complete (DSC) vectors [244]. The second involves

processes such as that presented in Fig. 5.1, which shows a schematic diagram of the

reaction between two 1/2〈111〉 prismatic dislocation loops gliding in their respective

glide cylindrical (shown as quadrangular prisms for simplicity). This is consistent

with motion by one-dimensional random walk typical of small prismatic loops gener-

ated in displacement cascades [245, 246]. In isolation, each of these loops contributes

zero Nye tensor signal. However, the two loops eventually enter the coincident glide

volume (shown as a shaded orange cube) and react according to the dislocation

reaction:

1

2
[111] +

1

2
[11̄1̄]→ [100] (5.2)

which is an exothermic reaction according to Frank’s rule [247]. As a result,

a [100] segment is created, shown in black in Fig. 5.1. Specifically, in α−Fe -Fe,

〈100〉 segments have very high migration energies and anchor otherwise highly-mobile

1/2〈111〉 loops into sessile, i.e., immobile, structures [248, 249, 250]. Crucially, the

〈100〉 segment is now unbalanced and it then does contribute a net GND signal when

the spatial discretization over which such signal is analyzed has a similar size as the

original loops. This can be seen in Fig. 5.2a, where the simulated GND footprint of

two hexagonal 1/2〈111〉 prismatic loops in 2D is shown both when they are separated

by some distance and also when they react forming a 〈100〉 segment. It is clear that,

in isolation, the loops do not produce a significant footprint , whereas an intense
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signal is detected for the unbalanced 〈100〉 segment. However, for discretizations

larger than the whole reacted structure, the net GND signal still adds up to zero for

a closed loop. See mesh size analysis in ref. [247].
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Figure 5.2: (a) Simulated GND footprints of two hexagonal 1/2〈111〉 prismatic loops when

(top) they are separated beyond their reaction distance, and (bottom) after reaction along

one of their edges (color map in arbitrary units). Color coding: 11 1/2[1̄11]; 11 1/2[1̄1̄1̄];

11 [1̄00]. (b) Schematic representation of an idealized prismatic loop network composed of

〈111〉 and 〈100〉 segments forming from a saturated grain boundary (located on the right

edge of the image).

The above two processes are not mutually exclusive and constitute the elementary

mechanisms by which a ‘network’ composed of 1/2〈111〉 and 〈100〉 segments can form

by the sustained arrival of irradiation loops to a saturated GB. The mechanism would

proceed in a series of sequential steps, described in the following:

1. Once the GB is no longer able to absorb the incoming defects at the speed

dictated by the irradiation dose rate, SIA loops become only partially absorbed.

This leads to a population of ‘half’-loops on top of the GB plane. This is

illustrated by the segments that directly abut to the GB in Fig. 5.2b (righthand
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side of the image).

2. Subsequent migration of prismatic loops results in segment-segment interac-

tions near the GB. Occasionally, some of those interactions result in reactions

of the type shown in Fig. 5.1 and eq.(5.2). With time, a network consisting of

1/2〈111〉 and 〈100〉 segments starts to form adjacent to the GB.

3. Several layers of reactions lead to the buildup of a network against the saturated

GB. An idealized representation of this network is shown in Fig.. 5.2, where all

four 1/2〈111〉 Burgers vectors of the body-centered cubic lattice are indicated.

In reality, actual networks are not ideal, and consist instead of irregular config-

urations of dislocation segments, some looking like coalesced loops, some containing

〈100〉 junctions, generally arranged spatially in a heterogeneous manner. Note that,

once a GB has saturated its capacity to absorb damage, the main driving force for the

arrival of prismatic loops to the GB is the elastic energy reduction associated with

the reaction shown in eq.(5.2) (which results in a 33% reduction in elastic energy).

Also, it is worth noting that, while the present analysis does not require that the

nature of the loops –i.e., whether they are of self-interstitial atom (SIA) or vacancy

type–, be specified, it is known that in cubic crystals the vast majority of prismatic

loops created are of SIA type, transitioning from 3D to 1D migration paths above a

critical loop size [251, 252].

Next, we carry out detailed simulations of the mechanism just presented under

constraints designed to mimic experimental conditions and obtain their correspond-

ing Nye tensor representation. The network structure depends, among others, on the

diffusion behavior of the loops (set by the temperature), their relative trajectories

(set by the crystal structure), mutual elastic interactions (set by the loop sizes and
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shapes), and their production rate (primarily set by the irradiation particle energy

and dose rate). More importantly, these relaxed networks give rise to Nye tensor fin-

gerprints that can then be directly compared with experiments specifically performed

to enable such evaluations.

5.3 Methods

5.3.1 Experimental

5.3.1.1 Film preparation, irradiation, and characterization

Nanocrystalline iron thin films were deposited via balanced DC magnetron sputtering

using a 99.9% pure Fe target onto polished substrates of NaCl (100) single crystal

substrates and prepared as detailed by Vetterick et al [253]. The resulting thin films

had a nominal thickness of 100∼150 nm. In preparation for thin film liftouts, cleaved

thin film samples were prepared by floating off and bonding films onto 200-mesh TEM

grids. Liftouts of columnar, polycrystalline Fe film were generated using a focused

ion beam (FIB) and cross sections were characterized using a 200-kV JEOL 2100

LaB66 TEM at Sandia National Laboratories. The samples were irradiated using

10-keV He+ ions with a 10-kV Colutron source at a dose of 3.7× 10–3 dpa/s and a

temperature of 573 K [88]. As explained in these and other studies, a large proportion

of the implanted He ions is likely to bind itself by to vacancies of their own creation

[254], or created by recoils, thus immobilizing and disconnecting them from further

evolution.

Bright-field TEM images acquired during in situ irradiation were collected at a

constant two-beam diffraction condition, and in situ irradiation videos were captured
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at a frame rate of 30 frames per second. Intermittent precession electron diffrac-

tion (PED) automated crystallographic orientation mapping (ACOM) was conducted

throughout irradiation at doses of 0.0, 6.1, 12.2, and 18.3 dpa to demonstrate struc-

tural evolution with respect to dose [255, 256]. PED-ACOM data was used for GND

density calculation inputs [2].

5.3.1.2 Grain boundary structure and experimental Nye tensor analysis

GND signals are observed via mapping of lattice curvature gradients according to:

α = κT − Tr(κ)I (5.3)

which is known as Nye’s equation, linking the curvature gradient tensor to the

GND tensor cote [257, 2, 258]. The components κij are obtained as the local gradient

of the lattice orientation map, i.e., κij = ∂ωi/∂xj, where ω is the lattice orientation

vector, which is in turn obtained from discrete pixelations of spatially resolved PED-

ACOM data. A scalar metric of the GND density (‖α‖1 in our case) is then used

for graphical representation [244].

5.3.2 Computational models

5.3.2.1 Physics modeling of irradiation loop dynamics

The computational methodology developed in this work is designed to capture ir-

radiation loop diffusion and elastic interactions, including self-interactions (i.e., be-

tween segments belonging to the same loop) and loop-loop interactions (between

segments belonging to different loops). Diffusion is modeled following the physical
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mechanism ascribed to prismatic loops generated in displacement cascades, namely,

one-dimensional diffusion (1D) along the Burgers vector direction. The diffusivity

for one such loop is inversely proportional to the loop size, given by the expression

[252]:

D(T,σ;n) = D0(n)exp(−∆Q(σ)

kT
) (5.4)

where T is the absolute temperature, σ is the stress tensor at the position of

the loop, and n is the number of SIA in the loop. D0(n) = 8.89 × 10−3n−0.61 (in

cm2s−1) is a diffusion pre-factor that captures the defect size dependence of the loop

diffusivity and ∆Q(σ) is an activation energy that depends on the local stress state.

σ is obtained within a non-singular linear elasticity framework implemented in a

dislocation dynamics (DD) code. ∆Q(σ) comprises a crystallographic contribution,

∆Em, associated with migration along the prismatic coordinate, and an elastic con-

tribution, ∆Wel(σ), associated with the work done by the elastic forces during loop

glide:

∆Q(σ) = ∆Em −∆Wel(σ) = ∆Em − f elbL (5.5)

where b is the Burgers vector and f el is total elastic force on a segment of length L.

In DD methods, f el is obtained as the linear superposition of the Peach-Köhler force

originating from all other segments in the simulation cell, i.e., f el =
∑

i σi(b × t),
where the subindex i runs over all dislocation segments (43). With this, the loop

dynamics is controlled by the following set of equations:

v = Mf el (5.6)
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δx = vδt± ξ
√

2Dδt (5.7)

where M is the dislocation mobility tensor (further explanation about M is

given in the Supplementary Materials), v is the velocity vector (v = ‖v‖ is its

modulus), ξ is a uniform random number between 0 and 1, and δt is the timestep.

The segment displacement, δx, is thus a combination of a ‘mechanical’ contribution,

and a ‘thermal’ or diffusive one. Note that the diffusive contribution is treated here

as a stochastic (Wiener) process and thus can be in the direction of or against the

elastic forces (as represented by the ‘±’ symbol in the equation). Moreover, for a

closed prismatic loop, the mechanical contribution has the effect of torquing the

loop, which induces no net displacement. As such, defect migration is controlled by

the thermal component until segment-segment collisions take over as the dominant

process.

5.3.3 Calculation and processing of GND fingerprints

The relaxed network configurations are processed with GND fingerprint parsers de-

veloped by the authors [244]. First, the simulation volume containing the network

is discretized by tessellating it with the desired spatial resolution. The parser then

identifies the intersections between mesh cells and dislocation loops, and places nodes

at the intersection sites on the cell boundaries. The GND density is then calculated

in each cell according to eq. (5.1) and the resulting cell densities are processed using

the Plotly library [259] to generate 3D color maps with a prescribed signal intensity

spread.
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5.4 Results

5.4.1 Experimental GND maps as a function of irradiation dose

Fig. 5.2b shows the change in GND density with dose of four distinct grains in the

irradiated material (illustrated in rows A-D in the figure). The microstructure is seen

to undergo a highly heterogeneous temporal and spatial GND density evolution, with

clear distinctions depending on the grain matrix observed. The most salient features

that can be reasonably extracted from the observations are:

1. As shown in all figures, different grain boundaries behave differently, even in

adjacent GBs belonging to the same grain,

2. Figs. 5.3A and 5.3C reveal a gradual transfer with increasing irradiation dose

of GND density from the grain interior towards the GB.

3. Figs. 5.3B and 5.3C display the existence of twin boundaries, captured as

elongated high-GND intensity planes.

4. Strong redistributions of GND content can be appreciated in Fig. 5.3B. GND

appear to concentrate first near GBs and in selected locations inside the grain

(possibly along native dislocation lines), subsequently accumulating in half of

the grain volume, depleting the other half to practically zero GND concentra-

tion.

5. None of the native grain boundaries is seen to displace or suffer any transfor-

mation that suggests changes in GB macrostates.

Next, we present simulation results designed to put our network formation hy-

pothesis to the test and add insight to the experimental observations.
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5.4.2 Simulation results

To carry out the simulations, we construct a computation cell with dimensions

20 × 20 × 20nm, with the grain boundary being one of the external edges of the

computational cell and periodic boundary conditions in the two directions parallel

to the GB. The GB normal corresponds to the crystallographic direction [012] of the

computational cell’s crystal lattice, representing a Σ5 boundary with 53.1◦ misorien-

tation. Loops are generated at a distance of 20 nm from the GB at a random location

relative to the two-dimensional GB plane. The Burgers vector is assigned at ran-

dom among the four 〈111〉 independent directions in the body-centered cubic (BCC)

crystal lattice. The loops all have hexagonal shape and have a size (hexagon width)

ranging between 2.5 and 5.0 nm, assigned at random. This mimics reasonably well

the defect shapes and size distributions observed in most studies of Fe irradiation

[260, 261]. Using the GB area and the number of loops entering the simulation cell,

we correlate loop densities to irradiation dose.

5.4.2.1 Formation and evolution of the dislocation loop network

We start with a pristine planar GB assumed to be in a saturated state, i.e., unable to

fully absorb incoming defect loops. Instead, loops become partially absorbed, giving

rise to substructures such as that shown in Fig. 5.4a. After a certain irradiation dose,

these substructures ‘blanket’ the GB, leaving no exposed surface for subsequent loops

to directly interact with the boundary, Fig. 5.4b. The next loop interacts instead

with one or several of the partially absorbed loops, as shown in Fig. 5.4c. This

interaction is spatially complex, as it is governed by elasticity in 3D and loops of

various sizes and orientations. Here is where the DD module becomes critical, to
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capture long-range elastic interactions and apply short-range inelastic interaction

rules (segment-segment reactions). After considering several hundred loop arrivals

corresponding to an approximate a total dose of 1.0 dpa, a network is formed in the

near-GB region, as shown in Fig. 5.4d.

This network displays several interesting features. The main outcome of loop-

loop interactions in the near-GB region is (i) coalescence of two loops with the same

Burgers vector, and (ii) the formation of 〈100〉 segments from reactions between loops

with dissimilar ones. Both of these can be appreciated in Fig. 4d (〈100〉 junctions

colored in pink). The conditions for prismatic loop coalescence have been studied in

detail by McElfresh et al. (refs) and are also briefly discussed in Section S.2 in the

Supplementary Material. We have simulated 10 independent configurations with the

same conditions as those in Fig. 5.4, all with similar qualitative outcome (see Section

S.3 in the Supplementary Material for more examples). For statistical significance,

we also have simulated 60×60-nm GB plane configurations, which we use to generate

GND fingerprint images in the next subsection.

5.4.2.2 GND analysis

Fig. 5.5 shows a color map of a loop network configuration relaxed over a GB plane

with 60×60 (nm dimensions). The image is then processed according to the proce-

dure described in Section 3.2.2 using a pixel resolution of 10 nm and a spread of 5

nm. Note that this is consistent with the experimental resolution of 10 12 nm used

in the studies referenced earlier [88, 2], and appropriate to avoid any analysis arti-

facts related to the spatial dicretization, i.e., sufficiently coarse to not produce a net

GND signal for individual loops, but fine enough to detect segments with unbalanced
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Burgers vectors due to loop reactions. Fig. 5.5 shows two views, one directly edge-on

to the GB plane and another tilted by 30° for oblique view. The color map has been

chosen to capture the range of GND densities measured in the experiments (using the

same color palette as well for ease of comparison). Our analysis thus confirms that

irradiation loop networks can indeed furnish GND fingerprints detectable through

lattice curvature measurements with nanometer resolution.

As well, it is of interest to analyze the intense GND bands traversing the grains in

Figs. 5.3B and 5.3C. Our starting hypothesis is that these correspond to pre-existing

low- boundaries (e.g., Σ3 or Σ5) created during processing prior to irradiation. Tak-

ing as an example the configuration contained in the area indicated by the dashed

line in Fig. 5.3C, we carry out an analysis of the GND density assuming that it

corresponds to a thin twin plate bounded by two 109◦〈110〉Σ3 twin boundaries. The

results are shown in Fig. 5.6, where the associated lattice orientation component

along the 〈110〉 direction is shown along with its gradient, the lattice curvature. As

shown, the GND fingerprints corresponding to this configuration display are char-

acterized by dislocation densities that are one order of magnitude larger than those

shown in Fig. 5.5. A similar analysis performed for a ≈ 37◦〈100〉Σ5 boundary led to

identical results, thus confirming the nature of the structure shown in the inset of

the figure.

Next, we discuss the most important aspects of our results and the implications

for the interpretation of microstructural evolution in irradiated nanocrystalline ma-

terials.
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5.5 Discussion

The present paper incorporates two original contributions that are worth discussing

in more detail. First, we introduce a hypothesis explaining the reasons behind the

emergence of strong GND fingerprints with irradiation dose near grain boundaries.

This hypothesis is then tested using our advanced models for defect transport and

evolution. Second, we provide a quantitative comparison of simulated/calculated

GND fingerprints with experimental images, with considerable agreement achieved

between both approaches.

5.5.1 Phenomenology of denuded zone evolution near grain boundaries

in irradiated crystals

Structural materials for advanced nuclear energy concepts (e.g., fusion energy) will

have to contend, among other things, with unprecedented levels of irradiation dose.

Materials will not be capable of withstanding these high doses unless the concomi-

tant irradiation damage defects are removed –to a large degree– as they are being

produced. Grain boundaries have long thought to be effective defect sinks, which

has brought nanocrystalline materials to the forefront of radiation tolerant material

design strategies. However, GBs are not ideal sinks, at least not permanently, and

their efficacy in removing irradiation defects must be carefully studied. Denuded

zone formation and ‘collapse’ is seen as a strong marker of GB defect absorption

efficiency, as its existence –or lack of– can be directly mapped to defect concentra-

tion profiles near GBs that are directly influenced by their sink strength. Previous

work has established a clear connection between this sink efficiency and the macro-

scopic GB character [237, 262], as well as between sink efficiency and DZ formation
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[88, 81, 263, 264, 265, 89]. However, we have recently demonstrated that changes

in absorption efficiency can lead to denuded zone collapse without the need for a

change in macroscopic GB degrees of freedom [8]. Our work has also shown that

changes in irradiation defect concentration can be mapped to changes in the GND

density [8, 244, 2]. However, interpreting these GND signals in the context of ir-

radiation damage production was not clear, as defects are universally produced as

small, closed loops that should in principle contribute no net Nye tensor finger-

prints. The work presented in this paper attempts to provide the link that explains

the equivalence between observed GND fingerprints and what we know about dam-

age production. We prove that networks of damage loops can be shown to produce

nonzero Nye tensor signals. The preconditions for these networks to form are:

1. DZ collapse must have occurred as a prior condition. This means that the GB

may have run through its entire hierarchy of available microstates, exhausting

its ability to accommodate defects via changes in its internal degrees of freedom.

2. Subsequently, the exposed surface of the saturated GB must undergo a partial

coverage with semi-absorbed loops (Fig. 5.4b). This process is likely to be the

rate-limiting step in the entire process.

3. The material in question must allow reactions among damage loops that change

the balance of Burgers vector along the loops’ perimeters. Mathematically, this

amounts to a closure failure of the integral in eq.(5.1). In the present case, such

reactions are represented by eq.(5.2).

4. The formation of these networks immobilizes defects near the GB region, re-

sulting in a gradual transfer of matter from the grain’s interior towards the
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grain boundary. The kinetics of the process switches from being driven by

chemical forces (concentration gradients) to mechanical ones (elastic forces).

This represents a partial paradigm change, as it is the network now–instead of

the GB per se– who acts as the sink for defects going forward in time.

5.5.2 Discussion on simulation methods and comparison with experi-

mental results

While DD models have been extensively used to simulate dislocation loop dynam-

ics [266], our model adds two original elements that are worth discussing. First,

it captures loop reactions of the type described by eq.(5.2), which gives rise to

experimentally-observed 〈100〉 segments typical of irradiated Fe miscrostructures.

Second, it simulates a (semi-)saturated GB as a planar boundary with partially ab-

sorbed, immobile, prismatic loops. This is based on molecular dynamics simulations

of prismatic loop interactions with a Σ5 boundary [244]. Our model also captures

all four independent 1/2〈111〉 Burgers vectors of the bcc crystal lattice, which thus

sets no geometric limitations on the space of dislocation reactions among different

irradiation loops.

In terms of comparison, as Fig. 5.5 shows, the color map of the GND fingerprints

in the simulated structures and the experimental images are in good agreement in

regard to the accumulated GND densities. Although GND fingerprints are a scalar

integrated quantity where much of the fine details of the microstructure are lost, this

confirms (i) that the loop sizes, shapes, densities, and network structure considered

in the models are consistent with the experimentally revealed structures, and (ii) the

correspondence between the physical manifestation of the Nye tensor according to its
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two definitions, eqs.(5.1) and (5.3), i.e., the equivalence between the dislocation based

definition used in the DD model and the one based on lattice curvature gradients

considered in the experiments.

In real specimens, which are thin TEM discs with thicknesses on the order of 150

nm, surface sinks will compete with grain boundaries for mobile loops [267] likely

delaying the onset or formation of the absorbing loop network near GBs relative to

bulk specimens such as those nominally represented by the simulations. A proper

treatment of the effect of the free surfaces on the time scale of network formation

requires a more detailed computational analysis where the geometry of the TEM is

explicitly considered, but this is presently beyond the scope of this work. For this

reason, however, the comparison between the observed doses at which the network

forms in experiments and simulations should be done with caution.

5.5.3 Consistency of the present results with radiation damage theories

Defects are produced in displacement cascades in numbers and sizes that vary across

material type, particle type and energy, temperature, and existing microstructure.

Thanks to several decades of research combining detailed electron microscopy and

atomistic simulations, we now have a deep understanding of the structure and num-

bers of these irradiation defects. Although we cannot ascertain from images such

as those shown in Fig. 5.3 what the nature of the observed defect is, we can confi-

dently infer that they are of SIA type. Indeed, it is known that in cubic metals the

large mobility difference between SIA and vacancy defects tilts the balance towards a

preferential arrival of self-interstitial clusters at defect sinks. Moreover, SIA clusters

move along rectilinear paths, covering much longer distances than vacancy defects in
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the same amount of time. Such features form the basis of one of the pillars on which

irradiation damage theory rests: the so-called production bias model. This informs

our models, and the relatively good agreement between the simulated and exper-

imental GND fingerprints, both qualitative and quantitative (referred to the total

GND densities) is an indirect confirmation of the partial validity of our assumptions

as it relates to prismatic loop sizes and shapes.

Moreover, while the temperature at which the irradiations were carried out (573

K) is well above the stage III temperature in Fe (≈ 200 K [268], at which monova-

cancies become mobile), it is worth remarking that the injection of He ions during

implantation has the immediate effect of immobilizing monovacancies and vacancy

clusters, allowing self-interstitial clusters to escape the cascade region and favor their

accumulation near the GB without the delayed recombination effect. This is likely

to facilitate the formation of loop networks with strong GND signals, as vacancies

remain trapped by He atoms in the interior of the grain, or are released in negligible

concentrations, not sufficient to affect the formation of the network.

The other pillar, referred to as the dislocation bias model, refers to the preferential

absorption of SIA clusters by defect sinks. Once again, our models are consistent

with this picture, taking a saturated GB –i.e., one which has exhausted its ability to

absorb more damage loops– as the starting configuration for our simulations. From

this, an interesting picture emerges wherein as a GB exhausts its capacity to absorb

damage loops, the system ascribes a strip of material immediately adjacent to the

grain boundary to continue storing defects. In other words, the effective thickness of

the GB widens as to maintain a high sink efficiency overall. This could be a natural

mechanism to keep absorbing damage when the actual GB has become saturated.

This is reminiscent of the notion of complexions in deformed nanocrystalline systems
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[269, 270, 271], which act as extensors of the disordered region of a GB beyond the

strict interface separating two grains with dissimilar orientations.

5.6 Conclusions

We finish the paper with our most important conclusions:

1. We have developed a discrete dislocation dynamics that incorporates ther-

mal motion of dislocation lops to simulate loop network formation and evolu-

tion near grain boundaries in irradiated Fe. The model successfully predicts

the formation of a prismatic dislocation loop network near a saturated grain

boundary. The network is stabilized by energy-reducing dislocation-dislocation

interactions such as coalescence and the formation of 〈100〉 junctions.

2. We have processed the complex dislocation loop network structure with soft-

ware that extracts and images its GND content, enabling direct comparison

with Nye tensor analysis of experimental lattice curvature observations using

precession electron diffraction. We find a remarkable agreement between the

GND fingerprints generated by the simulated network and those measured ex-

perimentally.

3. We find that loop networks can maintain a high defect sink efficiency once

the actual GB has become saturated, switching the absorption mode from

being concentration-driven to elastically driven. The network thus acts as a

functional extension of the GB as a defect sink once the latter have exhausted

their ability to absorb damage.
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4. One of the implications of our findings is that the collapse of the denuded zone

does not necessarily imply an inability for self-healing in irradiated materials.

In systems that favor (or enable) the formation of loop networks, a high sink

efficiency can be maintained even after DZ collapse, maintain the material’s

ability to tolerate higher irradiation doses.

Finally, although our work is helping reveal some of the fundamental mechanism of

microstructural evolution in irradiated nanocrystalline systems, several outstanding

questions remain, including:

- Once DZ collapse takes place and the network forms, can the DZ establish

itself again by self-healing processes in the GB? In that case, what happens to

the loop network?

- How do the processes in the interior of the grain inform the dynamics of DZ

collapse/network formation?

- Here we have studied what takes place in a specific GB, but how is the forma-

tion/evolution of the network affected by other grain boundaries in the same

grain or in the other side of the same GB?

- What controls the thickness of the network that can form? What is the extent

of the region near the grain boundary that can sustain the formation of the

network. Put differently, can the network grow indefinitely to maintain a high

sink efficiency?
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Figure 5.3: Nye dislocation tensor maps generated from PED ACOM orientation data,

highlighting the increase of GND density at the GBs, as well as the evolution of Nye tensor

signals, proposed to be dislocation networks, throughout differing nanocrystalline grain

matrices (A-D) with the increase in He ion damage from 0.0 to 18.3 dpa. Fig. 5.3A is

reproduced with permission from El-Atwani et al. [8].
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(a) (b)

(c) (d)

Figure 5.4: (a) Initial formation of partial loop substructures on a saturated GB. The

loops are colored according to their Burgers vectors. (b) The GB is fully ‘blanketed’ by

partial loops. (c) Snapshot showing the arrival of the first loop that does not reach the GB

(interacting instead with the half-loops). (d) Final loop network after 1.0 dpa of irradiation.

Color coding: 11 1/2[111̄]; 11 1/2[1̄11]; 11 1/2[11̄1]; 11 1/2[1̄1̄1̄]; white 〈100〉.
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(a) (b)

Figure 5.5: Rendition of the configuration shown in Fig. 5.3b processed as explained in

Section 5.3.3. The left image is a side view (edge-on to the GB), while the one on the right

is the same configuration tilted at an angle. The inset corresponds to the box highlighted

in Fig. 5.3 (pane A). The color bar for the GND density is quantitatively equivalent in

both cases.
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Figure 5.6: Calculated GND fingerprint of a twin plate bounded by two Σ3 boundaries

(≈ 109◦-misorientation GB), showing the underlying atomistic structure seen along a 〈110〉
crystal direction. Superimposed on the image are the profiles for the lattice orientation

ω and the lattice curvature κ profiles. The inset corresponds to the box highlighted in

Fig. 5.3 (pane C).
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[168] J-Ph Couzinié, L Lilensten, Y Champion, G Dirras, L Perrière, and I Guillot.
On the room temperature deformation mechanisms of a tizrhfnbta refractory
high-entropy alloy. Materials Science and Engineering: A, 645:255–263, 2015.
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[193] Fritz Körmann, Andrei V. Ruban, and Marcel H.F. Sluiter. Long-ranged in-
teractions in bcc nbmotaw high-entropy alloys. Materials Research Letters,
5(1):35–40, 2017.

[194] X.B. Feng, J.Y. Zhang, Y.Q. Wang, Z.Q. Hou, K. Wu, G. Liu, and J. Sun. Size
effects on the mechanical properties of nanocrystalline nbmotaw refractory high
entropy alloy thin films. International Journal of Plasticity, 95:264 – 277, 2017.

[195] SW Xin, M Zhang, TT Yang, YY Zhao, BR Sun, and TD Shen. Ultrahard
bulk nanocrystalline vnbmotaw high-entropy alloy. Journal of Alloys and Com-
pounds, 769:597–604, 2018.

[196] Hang Zhang, Yizhen Zhao, Jianglong Cai, Shaokun Ji, Jiale Geng, Xiaoyu Sun,
and Dichen Li. High-strength nbmotax refractory high-entropy alloy with low
stacking fault energy eutectic phase via laser additive manufacturing. Materials
& Design, 201:109462, 2021.

[197] Marta Pozuelo and Jaime Marian. Microscale deformation controlled by com-
positional fluctuations in equiatomic nb-mo-ta-w alloys. submitted to it Ma-
terials Science and ENgineering A, 2022.

[198] Xiangguo Li. A spectral neighbor analysis potential for nb-mo-ta-w. OpenKIM,
2019.

[199] Alexander Stukowski. Visualization and analysis of atomistic simulation data
with OVITO-the Open Visualization Tool. MODELLING AND SIMULA-
TION IN MATERIALS SCIENCE AND ENGINEERING, 18(1), JAN 2010.

[200] Yu Zou, Huan Ma, and Ralph Spolenak. Ultrastrong ductile and stable high-
entropy alloys at small scales. Nature communications, 6(1):1–8, 2015.

[201] P Thirathipviwat, G Song, J Bednarcik, U Kühn, T Gemming, K Nielsch, and
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Adams, Rémi Dingreville, Brad L. Boyce, Khalid Hattar, and Douglas L.
Medlin. Irradiation-induced grain boundary facet motion: In situ observations
and atomic-scale mechanisms. Science Advances, 8(23):eabn0900, 2022.

[239] Yinguang Piao and Khanh Chau Le. Thermodynamic theory of disloca-
tion/grain boundary interaction. Continuum Mechanics and Thermodynamics,
34(3):763–780, May 2022.

[240] C. Y. Hung, G. Vetterick, E. Hopkins, J. K. Balwin, P. Baldo, M. A. Kirk,
A. Misra, and M. L. Taheri. Insight into defect cluster annihilation at grain
boundaries in an irradiated nanocrystalline iron. Journal of Nuclear Materials,
566:153761, 2022.

158



[241] M. A. Kirk, M. L. Jenkins, and H. Fukushima. The search for interstitial
dislocation loops produced in displacement cascades at 20 K in copper. Journal
of Nuclear Materials, 276(1):50–58, 2000.

[242] A. V. Barashev, S. I. Golubov, and R. E. Stoller. Theoretical investigation of
microstructure evolution and deformation of zirconium under neutron irradia-
tion. Journal of Nuclear Materials, 461:85–94, 2015.

[243] D. R. Mason, X. Yi, M. A. Kirk, and S. L. Dudarev. Elastic trapping of dis-
location loops in cascades in ion-irradiated tungsten foils. Journal of Physics:
Condensed Matter, 26(37):375701, August 2014. Publisher: IOP Publishing.

[244] Larissa M. Woryk, Sicong He, Emily M. Hopkins, Chang-Yu Hung, Jian Han,
David J. Srolovitz, Jaime Marian, and Mitra L. Taheri. Geometrically neces-
sary dislocation fingerprints of dislocation loop absorption at grain boundaries.
Phys. Rev. Mater., 6:083804, Aug 2022.

[245] Yang Li, Max Boleininger, Christian Robertson, Laurent Dupuy, and Sergei L.
Dudarev. Diffusion and interaction of prismatic dislocation loops simulated by
stochastic discrete dislocation dynamics. Phys. Rev. Mater., 3(7):073805, July
2019. Publisher: American Physical Society.

[246] K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, and H. Mori.
Observation of the one-dimensional diffusion of nanometer-sized dislocation
loops. Science, 318(5852):956–959, 2007.

[247] D. Hull and D. J. Bacon. Chapter 4 - Elastic Properties of Dislocations. In
D. Hull and D. J. Bacon, editors, Introduction to Dislocations (Fifth Edition),
pages 63–83. Butterworth-Heinemann, Oxford, fifth edition edition, 2011.

[248] N. Gao, Z. W. Yao, G. H. Lu, H. Q. Deng, and F. Gao. Mechanisms for <100>
interstitial dislocation loops to diffuse in BCC iron. Nature Communications,
12(1):225, January 2021.

[249] Xiaoyang Wang, Ning Gao, Yinan Wang, Xiaoyu Wu, Guogang Shu,
Chengliang Li, Qiulin Li, Ben Xu, and Wei Liu. Formation of 〈100〉 dislocation
loop in bcc-Fe via the ternary loop reaction. Scripta Materialia, 162:204–208,
2019.

[250] Jaime Marian, Brian D. Wirth, and J. Manuel Perlado. Mechanism of for-
mation and growth of <100> interstitial loops in ferritic materials. Phys Rev
Lett, 88(25 Pt 1):255507, June 2002. Place: United States.

159



[251] K. Arakawa, M. Hatanaka, E. Kuramoto, K. Ono, and H. Mori. Changes
in the Burgers Vector of Perfect Dislocation Loops without Contact with the
External Dislocations. Phys. Rev. Lett., 96(12):125506, March 2006. Publisher:
American Physical Society.

[252] J. Marian, B. D. Wirth, A. Caro, B. Sadigh, G. R. Odette, J. M. Perlado,
and T. Diaz de la Rubia. Dynamics of self-interstitial cluster migration in
pure \ensuremath{\alpha}-Fe and Fe-Cu alloys. Phys. Rev. B, 65(14):144102,
March 2002. Publisher: American Physical Society.

[253] G. Vetterick, J. K. Baldwin, A. Misra, and M. L. Taheri. Texture evolution in
nanocrystalline iron films deposited using biased magnetron sputtering. Jour-
nal of Applied Physics, 116(23):233503, 12 2014.

[254] Paul Erhart and Jaime Marian. Calculation of the substitutional fraction of
ion-implanted He in an -Fe target. Journal of Nuclear Materials, 414(3):426–
430, 2011.

[255] Joaquim Portillo, Edgar F. Rauch, Stavros Nicolopoulos, Mauro Gemmi, and
Daniel Bultreys. Precession Electron Diffraction Assisted Orientation Mapping
in the Transmission Electron Microscope. Materials Science Forum, 644:1–7,
2010. Publisher: Trans Tech Publications Ltd.

[256] Edgar F. Rauch, Joaquin Portillo, Stavros Nicolopoulos, Daniel Bultreys,
Sergei Rouvimov, and Peter Moeck. Automated nanocrystal orientation and
phase mapping in the transmission electron microscope on the basis of preces-
sion electron diffraction. 225(2-3):103–109, 2010.

[257] C. Begau, J. Hua, and A. Hartmaier. A novel approach to study dislocation
density tensors and lattice rotation patterns in atomistic simulations. Journal
of the Mechanics and Physics of Solids, 60(4):711–722, 2012.

[258] Ryosuke Matsutani and Susumu Onaka. Representation of nye’s lattice cur-
vature tensor by log angles. MATERIALS TRANSACTIONS, 60(6):935–938,
2019.

[259] Plotly Technologies Inc. Collaborative data science, 2015. Place: Montreal,
QC Publisher: Plotly Technologies Inc.

[260] B. D. Wirth, G. R. Odette, D. Maroudas, and G. E. Lucas. Dislocation loop
structure, energy and mobility of self-interstitial atom clusters in bcc iron.
Journal of Nuclear Materials, 276(1):33–40, 2000.

160
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