
UCLA
UCLA Electronic Theses and Dissertations

Title
Content-Type Coding

Permalink
https://escholarship.org/uc/item/11j6m6mc

Author
Song, Linqi

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/11j6m6mc
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Content-Type Coding

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Linqi Song

2017

© Copyright by

Linqi Song

2017

ABSTRACT OF THE DISSERTATION

Content-Type Coding

by

Linqi Song

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2017

Professor Christina Panagio Fragouli, Chair

Traditionally, we use networks to securely and efficiently convey specific information messages

to one or more receivers. However, communication networks today are increasingly used to

serve a fundamentally different traffic, that delivers types of content rather than specific

messages. For instance, when we want to find photos of an event, we may not care which

specific photos we receive - we only care about the type of content, namely, that they are

photos of the correct event. Content-type traffic pervades a host of applications today,

e.g., search engines, recommender systems, and advertising networks. Research on content-

type networks is very popular. Most of the existing work looks at how to classify content

into types; what to replicate, where and how to store, and from where to retrieve specific

data. In contrast, we investigate a totally different question: are there benefits in designing

information transmission schemes specifically tailored to content-type traffic?

Our research indicates that in some cases, these benefits can be significant. We de-

sign a polynomial-time algorithm for pliable index coding that requires at most O(log2(n))

broadcast transmissions to serve n clients, as compared to O(n) broadcast transmissions

for conventional index coding. This indicates that the exponential benefits of pliable index

coding can be effectively realized. Moreover, we explore two applications: recommender

systems and distributed computing. In recommender systems, we ask: how much we can

gain in terms of bandwidth and user satisfaction, if recommender systems took into account

not only the user preferences, but also the fact that they may need to serve these users

ii

under bandwidth constraints, as is the case over wireless networks. In other words, what

if the recommender systems became bandwidth aware? In this setup, the user is satisfied

to receive any message she does not already have, with a satisfaction proportional to her

preference for that message. We show, through a number of scenaria, that although the

optimization problems are in general NP-hard, polynomial time algorithms with constant

approximation ratio can be designed to achieve more than 80% of the satisfaction and to

save 90% of bandwidth. In distributed computing, to improve the communication efficiency

in the data shuffling phase, we examine the pliable index coding problem under data shuf-

fling constraints, where each of the m messages can satisfy at most c out of n clients. We

show that the constrained pliable index coding can achieve up to O(n) (best case) benefits

over index coding. We prove that the problem is NP-hard and the optimal broadcast trans-

missions for random instances is almost surely upper bounded by O(min{ n
c log(n)

, n
log(m)

}) for
c = o(n1/7

log2(n)
) and O(min{n

c
+ log(c), n

log(m)
}) for c = Ω(n1/7

log2(n)
). Building upon constrained

pliable index coding, we design a hierarchical data shuffling scheme for distributed comput-

ing. By leveraging the many possible shuffling choices, our proposed shuffling scheme is able

to reduce the communication cost and achieve benefits up to O(ns/m) over the index coding

method, where ns/m is the average number of workers caching a message, and m, n, and s

are the numbers of messages, workers, and cache size, respectively. In addition, we study the

beneficial cases of content-type coding over large scale networks and over erasure channels.

Compared with message-specific coding, we show that the benefits can be up to the number

of messages in the content type for the former case and up to 19.5% for the latter case with

symmetric setting.

iii

The dissertation of Linqi Song is approved.

Richard D Wesel

Suhas N. Diggavi

Gregory J Pottie

Christina Panagio Fragouli, Committee Chair

University of California, Los Angeles

2017

iv

To TianTian

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Motivation . 1

1.2 Related Work . 3

1.2.1 Index Coding and Pliable Index Coding 3

1.2.2 Recommender Systems . 4

1.2.3 Distributed Computing . 5

1.3 Notation . 5

1.4 Main Contributions and Organization . 6

2 Algorithms and Performance Bounds for Pliable Index Coding 9

2.1 Introduction . 9

2.2 Problem Formulation . 10

2.2.1 Encoding and Decoding . 11

2.2.2 Bipartite Graph Representation . 12

2.3 An Algebraic Decoding Criterion for Linear Pliable Index Coding 13

2.4 Binary Field Greedy Algorithm for Pliable Index Coding 15

2.4.1 Algorithm Description . 15

2.4.2 An Illustrative Example . 18

2.4.3 Algorithm Performance . 21

2.5 Binary Field Greedy Algorithm for t-requests Case 24

2.5.1 Algorithm Description . 24

2.5.2 Algorithm Performance . 28

2.6 Lower Bounds . 31

vi

2.6.1 A Lower Bound for Pliable Index Coding 31

2.6.2 A Lower Bound for t-requests Case 32

2.7 Pliable Index Coding Over Random Graphs 33

2.7.1 A Lower Bound . 34

2.7.2 An Upper Bound . 39

2.8 Discussion . 40

2.8.1 Field Size . 41

2.8.2 Minrank . 42

2.9 Numerical Results . 43

2.9.1 Performance Comparison . 43

2.9.2 Optimality Gap . 44

2.9.3 t-requests Case . 45

2.10 Open Questions and Future Work . 46

2.11 Summary . 47

3 Application to Bandwidth Aware Recommender Systems 48

3.1 Introduction . 48

3.2 Setup and Problem Formulation . 50

3.2.1 Setup . 50

3.2.2 Problem Formulation . 52

3.3 No Side Information (P1) . 53

3.3.1 Problem P1 is NP-hard . 54

3.3.2 Greedy Selection Approximation Algorithm 57

3.3.3 Bounds on the Optimal Benefit B∗ 60

3.4 Equal Size Side Information (P2) . 70

vii

3.4.1 Bounds on the Optimal Benefit B∗ 70

3.4.2 Algorithms for Problem P2 . 74

3.4.3 Benefits of Coding . 76

3.5 Arbitrary Size Side Information (P3) . 78

3.5.1 Mapping to the MWIS Problem . 78

3.5.2 Algorithms for Problem P3 . 79

3.6 Numerical Evaluation . 82

3.6.1 Over Random Instances . 82

3.6.2 Over Real Dataset . 85

3.7 Open Question and Future Work . 85

3.8 Summary . 87

4 Application to Data Shuffling in Distributed Computing 88

4.1 Introduction . 88

4.2 Constrained Pliable Index Coding . 90

4.2.1 Problem Formulation . 90

4.2.2 Main Results . 91

4.3 Application to Distributed Computing . 112

4.3.1 Model and Performance Metric . 112

4.3.2 Data Shuffling Scheme . 113

4.3.3 Algorithm Performance . 114

4.3.4 Experimental Results . 119

4.4 Open Question and Future Work . 121

4.5 Summary . 121

5 Content-Type Coding over Large Networks and Lossy Networks 122

viii

5.1 Introduction . 122

5.2 Content-Type Coding over Large Networks 123

5.2.1 Motivating Example . 123

5.2.2 Problem Formulation . 124

5.2.3 Combination-Like Network . 125

5.3 Content-Type Coding over Erasure Networks 128

5.3.1 Problem Formulation . 128

5.3.2 Strategy for Message-Specific Coding 129

5.3.3 Strategy for Content-Type Coding 130

5.4 Summary . 135

References . 138

ix

LIST OF FIGURES

2.1 Pliable index coding instance with m = 3, n = 7. 13

2.2 Example of running BinGreedy algorithm in 1 round. 20

2.3 Lower and upper bounds of pliable index coding over random graphs. 40

2.4 Comparison of BinGreedy and randomized algorithms. 45

2.5 Optimality gap of BinGreedy algorithm. 46

2.6 Performance of BinGreedyT algorithm. 47

3.1 Bandwidth-benefit trade-off curve for P1. 83

3.2 Bandwidth-benefit trade-off curve for P2. 83

3.3 Normalized benefits in different scenaria for K = 1 transmission. 83

3.4 Normalized benefits in different scenaria for K = 4 transmissions. 83

3.5 Coding gain for r=0.1m. 84

3.6 Coding gain for r=0.2m. 84

3.7 AlgP1 vs. random selection in bimodal score model with m changing. 84

3.8 AlgP1 vs. random selection in bimodal score model with Gbim changing. 84

3.9 Instant benefit for K = 2. 86

3.10 Accumulated benefit for K = 2. 86

3.11 Instant benefit for K = 4. 86

3.12 Accumulated benefit for K = 4. 86

4.1 Mapping a subset into a structure. 95

4.2 Connecting the same elements in different subsets. 95

4.3 An illustration of l-pattern. 100

4.4 Comparison of computation performance for different data shuffling schemes. . . 120

x

4.5 Comparison of broadcast transmissions for different data shuffling schemes. . . . 120

5.1 An illustrative example for butterfly network. 123

5.2 Combination-like network structure. 125

5.3 Broadcast erasure channel model for content-type transmission. 131

5.4 Comparison of rate regions. 136

xi

LIST OF TABLES

3.1 Description of scenaria . 83

xii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Prof. Christina Fragouli, who had

kindly accepted me in the ARNI lab and since then has invariably been the best advisor a

student could wish for. I have benefited and learned tremendously from her active involve-

ment, passion, and enthusiasm for high-quality research. She has always provided a clear

route for the research direction, which helped me to avoid detours and to only focus on

important and valuable things. She has deep knowledge in our research area and has always

given me excellent suggestions and insightful ideas that inspire me to generate novelty, when

I face obstacles or feel frustrated. I especially thank her for reading my proofs and fortu-

nately she loved them. During my Ph.D. process, she was always there to help me with the

writing, ranging from conference papers to important emails. She has an open mind and has

encouraged and supported me to attend conferences, such as NetCod, ITA, and ISIT, and

to meet with people in the information theory community. I would also like to express my

gratitude to her for her care in every aspects of life. She is an extremely kind, respectful and

honest person. Her face has been always with warm smile whenever I got any exciting result

or nothing at all. Her encourage and help makes our ARNI lab a helpful and cooperative

community, and also a family-friendly community that has helped me a lot in balancing the

academic study and family life.

I would also like to thank my other committee members, Prof. Gregory Pottie, Prof.

Suhas N. Diggavi, and Prof. Richard Wesel for their instructions, insight and help in various

aspects. It was my great honor to collaborate with Prof. Pottie for a paper about activity

classification and to be his TA for an online course. I was also lucky to be Prof. Diggavi’s

TA and to take his two courses, especially the network information theory course, which was

tough but helped me a lot during research. I am also grateful to Prof. Wesel for helping me

several times, from passing over a TAship to me to giving insightful comments, and I was

fascinated to listen to his outlook on future coding techniques in 5G networks.

I would also like to thank Prof. Mihaela van der Schaar for offering me a chance to

UCLA and collaborating several papers. I would also like to thank Prof. Raghu Meka

xiii

for serving on my doctoral committee during my Qualification exam, thank Prof. Lieven

Vandenberghe for his accommodation in several group seminars, and thank Prof. William

Hsu for collaboration.

I also thank my colleagues and good friends at ARNI lab: Dr. Martina Cardone, Dr.

Ayan Sengupta, Dr. Iris Safaka, Mohammed Karmoose, Yahya Ezzeldin, Gaurav Kumar

Agarwal, and Sundara Rajan Srinivasavaradhan; and my other good friends at UCLA: Dr.

Yu Zhang, Dr. Yuanzhang Xiao, Dr. Jie Xu, Dr. Cem Tekin, Siming Song, Haobo Wang,

Wenlong Jiang, Jinxi Guo, Dr. Bokai Yan, Dr. Erkao Bao, Dr. Yajing Liu. They helped me

in many aspects in my research and my life, and made my PhD life much more colorful.

Finally, I would like to thank my lovely daughter, TianTian, my intelligent wife, Xinyi,

my parents, my parents-in-law, and my brother. They helped taking care of TianTian during

the past few years. Their love, support, and encouragement get me through my PhD career.

No word in the world can express my gratitude for them.

xiv

VITA

2002–2006 B.E. (Electronic Engineering), Tsinghua University, Beijing, China

2006–2009 M.E. (Electronic Engineering), Tsinghua University, Beijing, China

2009–2012 Project Manager, China Mobile Communications Corporation, Beijing,

China

2012–present Research Assistant, Electrical Engineering Department, UCLA, Los Ange-

les, California, USA

PUBLICATIONS

L. Song, and C. Fragouli, “A pliable index coding approach to data shuffling,” submitted to

IEEE Transactions on Information Theory. (Available: arXiv preprint, arXiv:1701.05540,

conference version: accepted and to appear in ISIT17.)

L. Song, and C. Fragouli, “Making recommendations bandwidth aware,” submitted to IEEE

Transactions on Information Theory. (Available: arXiv preprint, arXiv:1607.03948, confer-

ence version: accepted and to appear in ISIT17.)

M. Karmoose, L. Song, M. Cardone, and C. Fragouli, “Private broadcasting: an index coding

approach,” accepted and to appear in ISIT17.

L. Song, and C. Fragouli, “A polynomial-time algorithm for pliable index coding,” submitted

to IEEE Transactions on Information Theory. (Available: arXiv preprint, arXiv:1610.06845,

conference version: in ISIT16.)

xv

L. Song, and C. Fragouli, “Content-type coding”, in IEEE International Symposium onNet-

work Coding (NetCod), Sydney, Australia, 2015.

J. Xu, L. Song, J. Y. Xu, G. J. Pottie, and M. van der Schaar, “Personalized active learning

for activity classification using wireless wearable sensors,” IEEE Journal of Selected Topics

in Signal Processing, vol. 10, no. 5, pp. 865-876, 2016. (Conference version: in GLOBE-

COM14.)

L. Song, C. Tekin, and M. van der Schaar, “Online learning in large-scale contextual recom-

mender systems,” IEEE Transactions on Services Computing, vol. 9, no. 3, pp. 433-445,

2016. (Conference version: in ICASSP14.)

L. Song, W. Hsu, J. Xu, and M. van der Schaar, “Using contextual learning to improve

diagnostic accuracy: application in breast cancer screening,” IEEE Journal of Biomedical

and Health Informatics, vol. 20, no. 3, pp. 902-914, 2016.

L. Song, Y. Xiao, and M. van der Schaar, “Demand side management in smart grids using

a repeated game framework,” IEEE Journal on Selected Areas in Communications, vol. 32,

no. 7, pp. 1412-1424, 2014. (Conference version: in ICASSP14.)

xvi

CHAPTER 1

Introduction

1.1 Motivation

In communication networks, conventional transmission and coding aim to securely and effi-

ciently convey specific information messages to one or more receivers. This broad aim encom-

passes most of the work in the field, from the channel coding theorem of Shannon [Sha48], to

recent breakthroughs in channel coding [Ari09,KRU11], network coding [ACL00], and index

coding [BK98]. However, communication networks today are increasingly used to serve a

fundamentally different traffic, that delivers type of content rather than specific messages.

As a simple example, when we use the Internet to access our bank account, we ask and

want to see very specific information. However, if we search for a photo of a hummingbird,

for instance, to fill a blank region of our blog, and we find millions of results. Sometimes,

we do not care which specific hummingbird photos we receive - we do not even know what

hummingbird photos are available - we only care about the content type, that it is a hum-

mingbird photo and not an owl photo. Another example is the coupon distribution system

in a shopping mall that delivers coupons for users. A user may have some coupons in her

wireless device and may not know exactly the specific coupons that exist, but would be

happy to receive any new coupon that she does not have.

Content-type traffic pervades a host of applications today, especially those relying on Big

Data. For instance, content-delivery networks, such as the Akamai network, in many cases do

not need to satisfy message-specific requests, but instead content-type requests (e.g., latest

news on Greece, popular sites on CNN.com, etc.); search engines and recommender systems

(e.g., Google, Pandora, Amazon) generate in the majority content-type traffic; advertising

1

networks (e.g., placing ads on hotels or cars), and newsfeeds on social networks (e.g., cultural

trends, following celebrities) also fall in the content-type category. The fact that content

forms a significant percentage of the Internet traffic has been well recognized in many research

fields, such as communications, networking, machine learning, and information retrieval.

However, most of the existing work looks at how to classify content into types; what to

replicate, where and how to store and from where to retrieve specific data.

Current communication network structure and transmission schemes are mainly designed

for specific message communications between servers and clients or among clients. When

serving as a content-type communication network, current network structure and coding

schemes are not efficient enough to serve a number of these content-traffic based appli-

cations. Our content-type coding is specifically designed to increase the efficiency of such

applications. Recall the previous message-specific communication example of checking bank

account information. The specific information messages are transmitted as packets that

contain IP address information to indicate the specific transmitters and receivers. While in

content-type applications, such as searching for a hummingbird photo, in order to satisfy

the client’s request, it is not necessary to build up a specific message transmission scheme at

first. Instead, the network can first determine the requested content type and wisely choose

a specific message from the content type, and then transmit this specific message.

When dealing with content-type coding, we may face the following challenges.

• By leveraging the new degree of freedom for content-type applications, how can we quan-

titatively evaluate the benefits we get using content-type coding compared with traditional

message-specific coding schemes? These comparisons include both worst case performance

and average case performance and sometimes it may be hard to find an associating message-

specific counterpart as a benchmark. In addition, we cannot be so optimistic, because in

certain instances this new degree of freedom can introduce benefits but in others it may not.

• Even if for these beneficial cases, the content-type coding problem may be NP-hard.

Can we realize these benefits by designing low complexity polynomial-time approximation

algorithms?

2

• Can we design content-type codes for proof-of-concept applications? Unlike classical

message-specific coding schemes that treat applications as black boxes and focus only on

transmissions, our content-type coding may need domain knowledge of applications. The

design of content-type codes may rely on different application workflow and models. Can

content-type coding help in applications, such as recommender systems and distributed com-

puting systems?

1.2 Related Work

1.2.1 Index Coding and Pliable Index Coding

Index coding was first introduced by Birk [BK98]. The conventional index coding problem

considers a server with m messages and n clients [BK98, LS09,BKL10,CS08]. Each client

has as side-information a subset of the messages and requires a specific message she does

not have. The aim is to find an efficient way of broadcasting the messages over a noiseless

channel such that all clients can be satisfied with the minimum number of transmissions.

The reason we emphasize index coding is that this is a general coding framework that is

shown to be equivalent to the network coding problem [ESG08,EEL15].

The content-type coding problem in the index coding framework is termed pliable index

coding that was first introduced in [BF12]. Pliable index coding still considers a server and

n clients with side information. However, we now assume that the clients are pliable, and

are happy to receive any new message they do not already have.

For conventional index coding, it has been shown that the problem is NP-hard and in the

worst case may require Ω(n) transmissions [Pee96,BBJ11]. The optimal linear code length

is shown as the minimum rank of a family of matrices and has a sandwich property. Namely,

the optimal code length is lower bounded and upper bounded by the clique number and the

chromatic number of some specifically defined graphs [BBJ11]. Various other techniques, e.g.,

linear programming [BKL10], interference alignment [MCJ14], information theory [ABK13],

network coding and matroid theory [ESG10], have also been used to analyze the index coding

3

problem. In [LS09], the insufficiency of linear codes to achieve the optimum is shown by some

special examples. The equivalence of index coding and network coding is studied in [ESG10,

EEL15]. In [ABK13,DSC14], the capacity of index coding is studied through information

theoretical analysis. In addition, several aspects of index coding problem are also investigated

in the literature, such as the complementary index coding problem [CAS11], security of

index coding [DSC12], efficient algorithms [CS08], and index coding with outerplanar side

information [BL11]. The analysis of index coding over random graphs characterizes “typical”

or “average” performance of index coding problem. One can refer to [Bol13] to get more

details about random graphs. The work in [HL12] shows that the minimum length of index

code for a random graph is almost surely Ω(
√
n). A recent work improves this bound by

showing that the minrank achieves Θ(n/ log(n)) almost surely [GRW16].

In contrast, pliable index coding is also NP-hard, but requires an exponentially smaller

number of transmissions (over index coding), in the worst case O(log2(n)) [BF12]. For

pliable index coding with t-requests, the work in [BF13] has shown that an upper bound

is O(t log(n) + log3(n)) for the code length. These results show that pliable index coding

may have exponential benefits over conventional index coding in terms of the number of

transmissions.

1.2.2 Recommender Systems

Recommender systems decide which item (message) to offer to users (clients) so as to max-

imize a benefit (for instance, in advertising networks the benefit could be the profit gained

from the ad placement) [RV97,LCL14], given a number of m items (messages) and n users

(clients) in the system. The benefits are aggregated as sums of individual benefit (score) si,j

if message j is received by client i. For example, this score can be interpreted as the Click

Through Rate (CTR) in advertising or news recommendations [RDR07]; this score can also

be calculated based on user’s preference rankings of messages [Bor81,DG77,Kem59,DKN01].

One feature of current recommender systems is that they are oblivious to the cost of

distributing the content from the server to the points of consumption, which, however, forms

4

many times the point of failure: unsatisfactory delivery is identified as a core threat to the

user experience and has already caused loss of billions of revenue dollars [Con15]. Wireless

consumption in particular, that is increasingly gaining momentum, is inherently subject to

bandwidth constraints. How to realize as many benefits as possible in the recommender

system is a main challenge provided that the bandwidth is limited.

1.2.3 Distributed Computing

A promising research area that has recently emerged, is on how to use coding techniques

to improve the communication efficiency in distributed computing systems [LLP15, AT16,

LMA15]. In particular, index coding has been used to increase the efficiency of data shuffling,

that can form a major communication bottleneck for big data applications [LLP15,LMA15,

CZM11].

A commonly known distributed system model is the “master-workers” model [LLP15,

AT16], where a master node has m messages and is connected through a broadcast channel

to n worker nodes. Each worker i is equipped with a cache that can store si messages. Data

shuffling occurs in iterations, where in each iteration we need to refresh the data the workers

have, with a random selection of si out of m messages from the master node. Application

examples include distributed machine learning, where data shuffling updates the training

data in workers [LLP15], and mobile cloud gaming systems where each iteration equips the

users with new attributes, e.g., new maps [SHN11].

1.3 Notation

Throughout the thesis, we will use [y] (y ∈ Z+ is a positive integer) to denote the set

{1, 2, . . . , y} and use |Y | to denote the cardinality of the set Y . We will denote by Fq the

finite field with order q. Unless otherwise specified, we will denote the number of messages

by m and a specific message by j ∈ [m] or bj ∈ Fq, denote the number of clients by n and

a specific client by i ∈ [n], and denote the number of transmissions by K and a specific

transmission by k ∈ [K]. We will interchangeably use notions “message bj” to highlight a

5

symbol in a finite field Fq and “message j” to highlight the index. Sometimes, we will say a

client ci instead of i for clearness purposes.

1.4 Main Contributions and Organization

In this thesis, we have explored several content-type coding problems, provided theoreti-

cal and algorithmic understanding of these problems, and demonstrated proof-of-concept

applications. The main contributions of this thesis are as follows.

1) Contributions to pliable index coding.

• We propose a decoding criterion for pliable index coding, which can determine whether

a given coding matrix A can satisfy a pliable index coding problem instance.

• Leveraging the decoding criterion, we propose a polynomial-time approximation algo-

rithm for pliable index coding, termed BinGreedy, that requires in the worst case O(log2(n))

broadcast transmissions.

• We extend the proposed BinGreedy algorithm to multiple requests case where each

client requires t unknown messages that she does not have. We show that our algorithm

requires at most O(t log(n) + log2(n)) broadcast transmissions.

• We construct lower bound instances that require at least Ω(log(n)) transmissions for

linear pliable index coding and at least Ω(t + log(n)) transmissions for the t-requests case,

indicating that the ratio of upper and lower bounds is within a factor of O(log(n)).

• We provide a probabilistic analysis and show that the required number of transmissions

is almost surely Θ(log(n)) for random graph instances, as compared to Θ(n/ log(n)) for index

coding.

2) Contributions to bandwidth aware recommender systems.

We model the bandwidth aware recommender system in the pliable index coding frame-

work and examine the trade-off between benefit and bandwidth across three scenaria: no

side information, side information with equal size, side information with arbitrary size.

• For the scenario without side information, we consider the Borda count ranking model

6

[Bor81] and show that the problem is NP-hard. However, we can design a simple greedy

polynomial time algorithm that achieves an approximation ratio of 1.58. We provide upper

and lower bounds of optimal benefits, as well as an average case analysis, both indicating

diminishing returns: the benefits increase with the number of transmissions K only by a

multiplicative factor of 1− 1/K.

• For the scenario with equal size side information, we consider that each client has a

partial ranking over the desired messages. We prove lower bounds on the optimal benefits,

and design a polynomial-time algorithm with an O(1) approximation ratio.

• For the scenario with arbitrary size side information, we consider that each client

has a score associated with the desired messages. We prove that this problem is hard to

approximate within a ratio of n1−ǫ for any ǫ > 0. We also establish a connection with

the maximum weighted independent set problem, based on which we design and evaluate a

heuristic coded algorithm.

3) Contributions to data shuffling in distributed computing systems.

• We propose a constrained pliable index coding framework under the data-shuffling

constraint, where each message can satisfy at most c clients. We show that the constrained

pliable index coding can achieve up to O(n) benefits over index coding. We prove that

the problem is NP-hard and the optimal code length for random instances is almost surely

upper bounded by O(min{ n
c log(n)

, n
log(m)

}) for c = o(n1/7

log2(n)
) and O(min{n

c
+log(c), n

log(m)
}) for

c = Ω(n1/7

log2(n)
).

• We design a hierarchical transmission scheme to achieve a “random-like” data shuffling

that utilizes pliable index coding as a component. We show that our scheme can achieve

benefits O(ns/m), in terms of broadcast transmissions over index coding, where s is the

cache size and ns/m is the average number of workers that cache each message.

4) Content-type coding over large scale networks and lossy networks.

• We consider a combination-like network and show that the benefits in a content-type

setup can be as large as the size of the content-type (i.e., number of messages in a content-

type).

7

• We propose a capacity-achieving transmission scheme for the broadcast erasure channel

with feedbacks, where a source wants to send content-type messages to two receivers. We

show that the capacity of the erasure channel in content-type setup outperforms the corre-

sponding capacity in a message-specific setup by up to 19.5% for the symmetric setting.

The rest of the thesis is organized into four chapters. Chapter 2 presents the algorithms

and performance bounds for pliable index coding. Chapter 3 and 4 present the applications

to bandwidth aware recommender systems and the distributed computing in a pliable index

coding framework. Chapter 5 presents beneficial results of content-type coding on large scale

networks and lossy networks.

8

CHAPTER 2

Algorithms and Performance Bounds for Pliable Index

Coding

2.1 Introduction

In this chapter, we formally present the pliable index coding problem that we talked about

in Chapter 1.2.1. Compared with classical index coding [BK98,LS09,BKL10,CS08], pliable

index coding assumes that clients are pliable and are happy to receive any new message

they do not already have. The aim is to find an efficient way of broadcasting the messages

over a noiseless channel such that all clients can be satisfied with the minimum number of

transmissions.

Classical index coding requires in the worst case Ω(n) transmissions [Pee96,BBJ11] and

requires almost surely Θ(n/ log(n)) transmissions for random graph instances [GRW16]. In

contrast, pliable index coding requires in the worst case O(log2(n)) [BF12,BF13] transmis-

sions. The results imply that, if we realize that we need to solve a pliable index coding

problem as opposed to the conventional index coding problem, we can be exponentially

more efficient in terms of the number of transmissions. However, the pliable index coding

problem is NP-hard [BF12], and thus a natural question is, whether we can efficiently realize

these benefits through a polynomial-time algorithm.

In this chapter, we first derive an algebraic decoding criterion for linear pliable index

coding, which can be used to determine the validity of a specific linear code for a problem

instance. Leveraging this criterion, we design a deterministic polynomial-time algorithm,

BinGreedy, to solve the pliable index coding problem. This algorithm achieves an upper

9

bound of O(log2(n)) in terms of the number of transmissions, which matches the upper

bound in [BF12].

Secondly, we extend the above algorithm to the multiple requests case where each client

would like to recover t unkown messages instead of one. We analytically show that the new

algorithm achieves an upper bound of O(t log(n) + log2(n)) for the code length, which is

tighter than the upper bound O(t log(n) + log3(n)) in [BF13].

Thirdly, we construct specific instances to provide lower bounds on the required number of

transmissions. We construct instances that require Ω(log(n)) transmissions and Ω(t+log(n))

transmissions for pliable index coding and the t-requests case, respectively. These lower

bounds are within a O(logn) factor of the upper bounds.

We proceed to provide a probabilistic analysis over random graphs, where the side in-

formation sets are populated independently and randomly by messages for each client with

a certain probability. We show that the required number of transmissions is almost surely

Θ(log(n)), which again is exponentially better than the Θ(n/ log(n)) transmissions required

for index coding [GRW16].

Finally, we evaluate the deterministic algorithm performance through numerical experi-

ments. We show that in some cases we can achieve up to 50% savings of transmissions over

the previously proposed algorithm in [BF12].

The work presented in this chapter was published in [SF15,SF16b,SF16c].

2.2 Problem Formulation

We consider a system with one server and n clients. The server has m messages, represented

by symbols in a finite field b1, b2, . . . , bm ∈ Fq. Each client i has as side information a subset

of the messages, indexed by Si ⊆ [m], and requires any new message (or t new messages for

t-requests case) from the remaining unknown messages, termed request set and indexed by

Ri = [m]\Si, where |Ri| > 0 (or |Ri| ≥ t for t-requests case).

The server first encodes them original messages intoK encoded messages x1, x2, . . . , xK ∈

10

Fq and then makes broadcast transmissions of the encoded messages over a noiseless broad-

cast channel. Each client receives the broadcasted messages and then decodes them using

her side information. We say that a client is satisfied if she can successfully recover one new

message that she does not already have, or t unknown messages for t-requests case, referred

to as t-satisfied or simply satisfied when it is clear from the context. Our goal of pliable

index coding (or with t-requests) is to minimize the total number of transmissions K by

designing the encoding and decoding scheme, such that all clients can be satisfied. For ease

of exposition, we denote such a problem instance by (m,n, {Ri}i∈[n]), or (m,n, {Ri}i∈[n], t)
for the t-requests case.

2.2.1 Encoding and Decoding

Formally, we can express the encoding and decoding processes as follows.

• Encoding is represented by an encoding function fenc : Fm
q → FK

q , where K is

the total number of transmissions or code length. The output of the encoding function

(x1, x2, . . . , xK) = fenc(b1, b2, . . . , bm) are the K transmitted messages. We assume that the

server has full knowledge of the side information sets for all clients, namely, the server knows

Ri for all i ∈ [n].

• Decoding, for client i ∈ [n], is represented by a decoding function φi,dec : F
K
q × F

|Si|
q →

Fq × [m]. The output φi,dec({xk}k∈[K], {bj}j∈Si
) consists of a message in the request set Ri

and its index. For the t-requests case, the decoding function is φt
i,dec : F

K
q ×F

|Si|
q → Ft

q× [m]t.

The output φt
i,dec({xk}k∈[K], {bj}j∈Si

) consists of t messages in the request set Ri and their

indices.

We restrict the encoding and decoding schemes to be linear in the thesis. In this case,

we can further express the encoding and decoding processes as follows.

• Linear Encoding: The k-th broadcast transmission xk is a linear combination of

b1, . . . , bm, namely, xk = ak1b1 + ak2b2 + . . . + akmbm, where akj ∈ Fq, j ∈ [m], is the

encoding coefficient. Therefore, we can interpret the number of transmissions, K, as the

code length and the K × m coefficient matrix A with entries akj as the coding matrix. In

11

matrix form, we can write

x = Ab, (2.1)

where b and x collect the original messages and encoded transmissions, respectively.

• Linear Decoding: Given A, x, and {bj |j ∈ Si}, the decoding process for client i is

to solve the linear equation (2.1) to get a unique solution of bj for some j ∈ Ri, or unique

solutions bj1 , bj2, . . . , bjt for some j1, j2, . . . , jt ∈ Ri for the t-requests case. Clearly, client i

can remove her side information messages, i.e., can create x
(i)
k = xk −

∑

j∈Si
akjbj from the

k-th encoded transmission. As a result, client i needs to solve the equations

ARi
bRi

= x(i), (2.2)

to retrieve any one message (or t messages) she does not have, where ARi
is the sub-matrix

of A with columns indexed by Ri; bRi
is the message vector with elements indexed by Ri;

and x(i) is a K-dimensional column vector with the element x
(i)
k .

Our goal is to construct the coding matrix A, so that the code length K is minimized.

2.2.2 Bipartite Graph Representation

We can represent a pliable index coding problem or its t-requests case using an undirected

bipartite graph. On one side, a vertex corresponds to a message and on the other side a

vertex corresponds to a client. We connect with edges clients to the messages they do not

have [BF12], i.e., client i connects to the messages indexed by Ri. For instance, in the

example in Fig. 2.1, R1 = {1} and S1 = {2, 3} for client 1; client 4 does not have (and would

be happy to receive any of) b1 and b2. In this example, if the server transmits x1 = b1+b2+b3,

x2 = b2 + b3, and x3 = b1 + b2, then we can write

1 1 1

0 1 1

1 1 0

b1

b2

b3

=

x1

x2

x3

,

12

b1 b2 b3

1 2 3 4 5 6 7

Figure 2.1: Pliable index coding instance with m = 3, n = 7.

and the decoding process for client 4 is to solve

1 1

0 1

1 1

b1

b2

=

x1 − b3

x2 − b3

x3

.

2.3 An Algebraic Decoding Criterion for Linear Pliable Index

Coding

We here derive an algebraic criterion that determines whether a client can successfully decode

some message given a coding matrix A.

Recall that client i needs to solve the linear equations (2.2) in order to recover a new

message. In traditional linear encoding and decoding processes, e.g., network coding, we

often solve linear equations to get a unique solution for all elements of the message vector.

A key difference in pliable index coding is that, we do not need to identify all the elements

of the vector bRi
, but only require that any one variable bj , j ∈ Ri is recovered for client i

to be satisfied. Thus we need to achieve a unique solution for one element of the message

vector.

We use aj to denote the j-th column of the matrix A and ARi\{j} to denote a submatrix

ofA whose columns are indexed by Ri other than j. We also use span{ARi\{j}} to denote the

linear space spanned by columns of A indexed by Ri other than j, i.e., {∑l∈Ri\{j} λlal|λl ∈
Fq}.

Lemma 1 (Decoding Criterion). In a pliable index coding problem (m,n, {Ri}i∈[n]), given a

13

coding matrix A, client i can uniquely decode message j ∈ Ri, if and only if

aj /∈ span{ARi\{j}}. (2.3)

Moreover, in the t-requests case (m,n, {Ri}i∈[n], t), given a coding matrix A, client i can

uniquely decode messages j1, j2, . . . , jt ∈ Ri, if and only if

ajτ /∈ span{ARi\{jτ}}, for all τ ∈ [t]. (2.4)

Proof. From linear algebra, we know that the set of solutions for (2.2) can be expressed as

a specific solution plus a vector in the null space of ARi
, N (ARi

):

b∗Ri
+ b′Ri

, (2.5)

where b∗Ri
is a specific solution for (2.2) and b′Ri

is an arbitrary vector in the null space

N (ARi
), i.e., b∗Ri

is any fixed vector that satisfies ARi
b∗Ri

= x(i) and b′Ri
is an arbitrary

vector that satisfies ARi
b′Ri

= 0. The requirement that client i can decode message bj is

equivalent to that b′j = 0 for all b′Ri
∈ N (ARi

), implying that client i can decode message bj

as the unique solution b∗j .

We next argue that b′j = 0 is equivalent to the proposed decoding criterion (2.3) or (2.4).

We first note that ARi
b′Ri

= b′jaj +
∑

l∈Ri\{j} blal = 0 for any vector b′Ri
∈ N (ARi

).

• Necessity. If aj /∈ span{ARi\{j}} is satisfied, then b′j = 0 always holds; otherwise

b′jaj +
∑

l∈Ri\{j} blal = 0 for some nonzero b′j implies that aj can be expressed as a linear

combination of al, l ∈ Ri\{j}, which contradicts the decoding criterion.

• Sufficiency. If b′j = 0 always holds, then aj /∈ span{ARi\{j}} is satisfied; otherwise

aj can be expressed as a linear combination of al, l ∈ Ri\{j} implying that b′j = 1 is also

possible, which contradicts the fact that b′j = 0 always holds.

Therefore, we can get a unique solution for bj if and only if any vector b′Ri
in N (ARi

)

has a zero value in the element corresponding to j. We can then retrieve bj by any linear

14

equation solving methods for (2.2).

For example, considering the instance and coding matrix in Fig. 2.1, we have R4 = {1, 2},
a1 /∈ span{a2}, and a2 /∈ span{a1}, so client 4 can decode b1 and b2. Client 4 can decode b2

by b2 = x2 − b3 and b1 by b1 = x3 − b2.

2.4 Binary Field Greedy Algorithm for Pliable Index Coding

In this chapter, by leveraging the decoding criterion, we design a polynomial-time determin-

istic algorithm for pliable index coding that achieves a performance guarantee of O(log2(n))

in terms of code length. Our algorithm uses operations over the binary field1 and follows a

greedy approach. We first describe our algorithm, which we term BinGreedy, and then show

the upper bound performance.

2.4.1 Algorithm Description

Our BinGreedy algorithm is described in Alg. 1. Intuitively, we decide which message we will

try to serve to each client: we call effective clients, the clients that a specific message aims to

satisfy (as we will define more formally in the following), and effective degree, the number of

such clients each message has. We then create groups of messages that have approximately

the same effective degree, and show that because of the regularity of the degree, by coding

across only the messages within the group, we can satisfy at least a constant fraction of the

effective clients in the group.

The algorithm operates in rounds. Each round has three phases: the sorting phase, the

grouping phase and the greedy transmission phase. In the sorting phase, the algorithm sorts

the message vertices in a decreasing order in terms of their effective degrees. In the grouping

phase, we divide the messages into at most log n groups based on their effective degrees such

that messages in the same group have similar effective degrees. In the transmission phase, to

satisfy as many effective clients as possible, the algorithm encodes messages inside a group

1Here, we consider a message bj to be an element in the finite field F2ρ .

15

and makes two transmissions per group, thus in total we use at most 2 logn transmissions.

Before giving a detailed description of the algorithm, we first formally introduce the

definition of effective degree of a message and its effective clients using the bipartite graph

representation.

• Effective degree and effective clients : given a particular order of the message vertices

π = (j1, j2, . . . , jm), the effective degree of message bjl is defined as the number of bjl’s

neighbors who do not connect with message bj′ , for any j′ = j1, j2, . . . , jl−1. The neighbors

that contribute to bjl’s effective degree are called effective clients of bjl . Let us denote by N [j]

the set of neighbors of message bj and by N [j1, j2, . . . , jl−1] the set N [j1]∪N [j2]∪ . . . N [jl−1].

Formally, the effective clients of message bjl are defined as N †
π[jl] = N [jl]\N [j1, j2, . . . , jl−1]

with respect to the order π. Correspondingly, the effective degree of message bjl is defined

as d†π[jl] = |N †
π[jl]| with respect to π.

Note that the effective degree and effective clients for a message bj may vary when

we change the order of the message vertices. We will omit the subscript π when it is

clear from the context. In our example in Fig. 2.1, given a message order b1, b2, b3, the

effective degrees and clients are d†[1] = 4, N †[1] = {1, 4, 5, 7}, d†[2] = 2, N †[2] = {2, 6}, and
d†[3] = 1, N †[3] = {3}. Given a different order b2, b3, b1, the effective degrees and clients are

d†[2] = 4, N †[2] = {2, 4, 6, 7}, d†[3] = 2, N †[3] = {3, 5}, and d†[1] = 1, N †[1] = {1}.

In the following, we describe the detailed operations for the three phases in a round.

1) Sorting Phase. We sort the messages into a desired order so that the effective degrees

of messages are non-increasing. To describe the procedure, we use the bipartite graph rep-

resentation of pliable index coding (see Chapter 2.2). We denote by G the original bipartite

graph representation of the pliable index coding instance, by V (G) the vertex set of G, and

by V (G′) the vertex set of any subgraph G′ of G. For a vertex j ∈ V (G), the set of neigh-

bors of j is denoted by N [j]. For a vertex j in an induced subgraph G′ of G, we define the

neighbors of j restricted on subgraph G′ as NG′ [j] , N [j] ∩ V (G′) for all j ∈ V (G′).

• Step 1: We start from the original bipartite graph G1 = G. Find a message vertex j1

with the maximum degree (number of neighbors) in G1, with ties broken arbitrarily. Thus

16

we have |NG1[j1]| ≥ |NG1[j]| for all j ∈ [m]\{j1}, where NG1 [j] = N [j].

• Step 2: Consider the subgraph G2 induced by message vertices [m]\{j1} and client

vertices [n]\N [j1]. Find a message vertex j2 with maximum degree in the subgraph G2, with

ties broken arbitrarily. That is, we have |NG2 [j2]| ≥ |NG2 [j]| for all j ∈ [m]\{j1, j2}, where
NG2 [j] = N [j]\N [j1].

• Step l (l = 3, . . . , m): Consider the subgraphGl induced by messages [m]\{j1, j2, . . . , jl−1}
and clients [n]\N [j1, j2, . . . , jl−1]. Find a message vertex jl with maximum degree in the

subgraph Gl, with ties broken arbitrarily. That is, we have |NGl
[jl]| ≥ |NGl

[j]| for all

j ∈ [m]\{j1, j2, . . . , jl}, where NGl
[j] = N [j]\N [j1, j2, . . . , jl−1].

From the above sorting process, we notice that the effective degrees are |N [j1]| for message

j1, |N [j2]\N [j1]| for message j2, . . ., |N [jl]\N [j1, j2, . . . , jl−1]| for jl, etc. It is easy to see that

the effective degrees of messages are in a non-increasing order.

2) Grouping Phase. We divide the message vertices into log(n) groups, namelyM1,M2, . . . ,Mlog(n),

based on their effective degrees, such that for message vertex j ∈ Mg, the effective degree

satisfies n/2g−1 ≥ d†[j] > n/2g, for g = 1, 2, . . . , log(n).

Given the sorting and grouping processes, we have the following property for any message

j in group Mg:

d†[j] > n/2g , d(g)/2, and |N [j] ∩Ng| ≤ n/2g−1 , d(g), (2.6)

where Ng is the set of all effective clients of the messages in Mg, namely, Ng = ∪j′∈MgN
†[j′].

The second part holds because if |N [j] ∩ Ng| > d(g), message j, during the sorting and

grouping phases, would have effective degree greater than d(g) and would have been assigned

in an earlier group (with smaller g).

One possible sorting order and grouping for the example in Fig. 2.1 are: b1, b2, b3 and

M1 = {1}, M2 = {2}, M3 = {3}.

3) Transmission Phase. We make two transmissions for each message group Mg, using a

coding submatrix with 2 rows (one for each transmission). Initially, this submatrix is empty.

17

We sequentially visit each message vertex in Mg according to the sorting order and create

a corresponding column of the coding submatrix, referred to as the coding vector. Hence, a

total of |Mg| steps are carried out for group Mg. At any step, we record the clients that

can be satisfied when some message vertices are visited and associated coding vectors are

added to the coding submatrix. When a new message vertex is visited, the associated coding

vector is selected from {(1, 0)T , (0, 1)T , (1, 1)T} such that the maximum number of clients in

Ng can still be satisfied up to current step. In our example in Fig. 2.1, we can construct a

coding matrix:

A =

A1

A2

A3

, A1 =

[

1 0 0

0 0 0

]

, A2 =

[

0 1 0

0 0 0

]

, A3 =

[

0 0 1

0 0 0

]

,

where every two rows represent the transmissions for a group.

Note that the coding matrix constructed by our algorithm may not be full rank. As such,

it suffices to only select a row basis as the coding matrix.

2.4.2 An Illustrative Example

We now show how the algorithm works through an example. We consider the following

problem instance represented by the biadjacency matrix2 on the left hand side in Fig. 2.2 (a).

In this biadjacency matrix, we have the number of messages m = 5, each represented by a

column of the matrix, and the number of clients n = 14, each represented by a row of the

matrix. The request sets are shown as adjacency relationship in the biadjacency matrix, i.e.,

the (i, j) entry is 1 if and only if client i does not have message j.

The sorting and grouping phases are shown in Fig. 2.2 (a). In the sorting phase, 5

messages are sorted in a non-increasing order according to their effective degrees, as shown

on top of the matrix on the right hand side of Fig. 2.2 (a). We categorize these messages

and their associated effective clients into 2 groups, such that the maximum effective degree

2For a bipartite graph G(V1 ∪ V2, E), the biadjacency matrix is a (0, 1) matrix of size |V1| × |V2|, whose
(i, j) element equals 1 if and only if i connects j.

18

Algorithm 1 Binary Field Greedy Algorithm (BinGreedy)

1: Initialization: Set N = [n].
2: while N 6= ∅ do

3: Sorting and grouping of message vertices:
4: Set Ntemp = N ,Mtemp = [m].
5: for j = 1 : m do

6: Find the message j′ ∈ Mtemp having the maximum number of neighbors in Ntemp, with
ties broken arbitrarily.

7: Put message j′ in the j-th position.
8: Remove j′ from Mtemp and all its neighbors from Ntemp.
9: end for

10: Group messages into M1,M2, . . . ,Mlog(n) message groups based on their effective degrees.
11: Greedy transmission:
12: for g = 1 : log(n) do
13: Initialization: Set Ng = ∪j∈MgN

†[j] (effective clients neighboring to Mg), SAT = ∅
and UNSAT = ∅.

14: for j = 1 : |Mg| do
15: Assign a coding vector from {(1, 0)T , (0, 1)T , (1, 1)T } to the j-th message inMg, denoted

by j(g), such that the maximum number of clients in {i ∈ SAT |i is connected with j(g)}
can still be satisfied, with ties broken arbitrarily.

16: Move from SAT to UNSAT these unsatisfied clients in {i ∈
SAT |i is connected with j(g)}.

17: Add clients in N †[j(g)] to SAT .
18: end for

19: Set coding vectors to be (0, 0)T corresponding to messages in groups other than g.
20: Remove clients in SAT from N and their associated edges.
21: end for

22: end while

19

0 1 1 0 0

0 0 1 0 0

0 0 1 1 0

0 0 1 0 1

1 0 1 0 0

1 0 0 1 0

0 0 0 1 1

0 1 0 1 0

0 0 0 1 0

1 0 0 0 1

0 1 0 0 1

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

b1 b2 b3 b4 b5

C
lien

ts

Messages

=⇒
Sorting &
Grouping

1 0 0 0 1

1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

0 1 0 1 0

0 1 1 0 0

0 1 0 0 1

0 1 0 0 0

0 0 1 1 0

0 0 1 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

b3 b4 b5 b1 b2

C
lien

ts

Messages

Effective
degree

Sorting →

5 4 3 1 1

G
ro
u
p
1

}

G
ro
u
p
2

Group 1

}

Group 2Grouping →

(a) Sorting and grouping phases. The messages are first sorted in a non-increasing order according to
their effective degrees, and then are grouped into groups. Clients constributing to effective degree of
a message are boxed in the biadjacency matrix.

1 y y y 0 0

1 y y y 0 0

1 y y y 1 n y y 0

1 y y y 0 1 n y y

1 y y y 0 0

0 1 y y y 0

0 1 y y y 1 y n y

0 1 y y y 0

0 1 y y y 0

0 0 1 y y y

0 0 1 y y y

0 0 1 y y y

1

2

3

4

5

6

7

8

9

10

11

12

b3 b4 b5

C
lien

ts

MessagesGroup 1:

Coding
options

1 0 1 1 0 1 1 0 1

0 1 1 0 1 1 0 1 1

[

1 y y y 0

0 1 y y y

]

13

14

b1 b2

C
lien

ts

MessagesGroup 2:

Coding
options

1 0 1 1 0 1

0 1 1 0 1 1

⇓

⇓

Output coding matrix:

0 0 1 0 1

0 0 0 1 1

1 1 0 0 0

b1 b2 b3 b4 b5

(b) Greedy transmission phase. For each group, coding vectors of length 2 are sequentially assigned

to each message, so as to satisfy as many clients as possible at each step. At each step, the coding
options are listed to check if a client can be satisfied (y) or not (n) so far, and selections are boxed.

Figure 2.2: Example of running BinGreedy algorithm in 1 round.

20

in a group is not more than twice the minimum effective degree in the group.

Fig. 2.2 (b) shows the greedy transmission phase for each group. In a group, we sequen-

tially assign coding sub-vectors of length 2 to each message, such that a maximum number

of clients can still be satisfied so far in the group. For example, in group 1, when we assign

coding sub-vectors for message b4, we find that (1, 0)T can satisfy 4 clients and (0, 1)T or

(1, 1)T can satisfy 5 clients, so we select (0, 1)T (or (1, 1)T) as the coding sub-vector. The

final coding matrix achieved by our BinGreedy algorithm is shown at the bottom on the

right hand side in Fig. 2.2 (b).

Note that for this instance, one round of encoding is enough to satisfy all clients.

2.4.3 Algorithm Performance

To evaluate the worst case performance of our proposed algorithm in terms of the number

of transmissions, we first prove the following lemma.

Lemma 2. In Alg. 1, the greedy coding scheme can satisfy at least 1/3 of the effective clients

Ng in one round.

Proof. Consider the bipartite subgraph induced by vertices Mg ∪ Ng, i.e., the messages

in the group Mg and their effective clients in Ng. To construct the coding submatrix, at

each step we sequentially visit a message vertex j in Mg, following the sorted order, de-

noted by 1(g), 2(g), . . . , m
(g)
g = |Mg|, and greedily decide which coding vector will become

the j − th column of the coding matrix. We say a message bj ∈ Mg is untouched if it is

not visited yet up to current step; we say a client i ∈ Ng is untouched if it is not connected

with the visited messages up to current step. Up to a certain step, a client is either un-

touched or satisfied/unsatisfied by the current assignment. To capture the dynamic changes

of satisfied/unsatisfied clients, we define two sets, SAT and UNSAT . Assume that up to

some step, the algorithm has visited some messages and assigned the corresponding coding

vectors. The first set, SAT , collects the clients connecting to messages that have already

been visited, and are satisfied by the current assignment of coding vectors according to the

criterion in Lemma 1, i.e., for each of these clients, i, given the r coding vectors assigned

21

to messages connecting with i and visited by the algorithm so far, α1, α2, . . . , αr, there ex-

ists one coding vector αj′ (1 ≤ j′ ≤ r) not in the span of the remaining coding vectors:

αj′ /∈ span{α1, . . . , αj′−1, αj′+1, . . . , αr}. The second set, UNSAT , collects clients that are

associated with messages already visited by the algorithm and cannot be satisfied by current

coding vector assignments. Note that there may exist untouched clients in neither of these

groups.

Initially, both SAT and UNSAT are empty. We gradually add clients from Ng into these

two sets as we go through the messages and assign coding vectors. Our first step is to add all

N †[1(g)] (effective clients of the first message 1(g) in Mg) to SAT , since any non-zero vector

satisfies the decoding criterion for only one message. At each step, some untouched clients

may become satisfied, but some satisfied clients may also become unsatisfied. For example,

assume a client is connected with 3 messages, 2 of which are visited and assigned coding

vectors (1, 0)T , (0, 1)T , so the client is satisfied at this point. When the algorithm visits the

third message and assigns to it a coding vector (1, 1)T , this client becomes unsatisfied as the

decoding criterion no longer holds.

We will show that at each step, the number of clients who are moved from SAT to

UNSAT is at most d(g)/3. Consider the step to assign a vector to message j in Mg.

Notice that when we assign a coding vector (1, 0)T , (0, 1)T , or (1, 1)T to message j, only

clients connecting with message j can be affected. We list possibilities for all the t0 clients

connected with j and satisfied (in SAT) at the beginning of this step:

• Case 1: Assume there are t1 clients who connect with previously visited messages that are

assigned one coding vector (1, 0)T and some (perhaps none) coding vectors (0, 1)T . In this

case, these clients can decode a new message corresponding to the coding vector (1, 0)T since

(1, 0)T does not belong in the span of (0, 1)T according to the decoding criterion. Similarly,

• Case 2: t2 clients are satisfied by a (1, 0)T , several (1, 1)T .

• Case 3: t3 clients are satisfied by a (0, 1)T , several (1, 0)T .

• Case 4: t4 clients are satisfied by a (0, 1)T , several (1, 1)T .

• Case 5: t5 clients are satisfied by a (1, 1)T , several (0, 1)T .

• Case 6: t6 clients are satisfied by a (1, 1)T , several (1, 0)T .

22

If we assign a coding vector (1, 0)T to message j, the t3 + t6 clients can still be satisfied

according to Lemma 1. Similarly, if we assign a coding vector (0, 1)T or (1, 1)T to message

j, then the t1 + t5 or t2 + t4 clients can still be satisfied.

Note that t1 + t2 + t3 + t4 + t5 + t6 ≥ t0 as there may be overlap among the 6 different

cases (e.g., a client is satisfied by one (1, 0)T and one (0, 1)T , so she is counted twice in both

Case 1 and Case 3). Hence, at least one of t3+ t6, t1+ t5, t2+ t4 should be no less than t0/3;

our greedy algorithm will move at most 2t0/3 clients from SAT to UNSAT . According to

the property of our sorting and grouping in eq. (2.6), the number of j’s neighbors who are

connected with previously visited messages is at most d(g) − d†[j] < d(g)/2, and furthermore

the number of j’s neighbors in set SAT is a subset of these neighbors, resulting in t0 < d(g)/2.

So at most d(g)/3 clients will be moved from SAT to UNSAT in each step.

On the other hand, we observe that for message j’s effective clients (j’s neighbors who are

not connected with previously visited messages), any assignment of vectors (1, 0)T , (0, 1)T ,

or (1, 1)T can satisfy them according to the decoding criterion. So, at least d†[j] > d(g)/2

untouched clients are added to SAT . Completing the assignment steps, we can see that at

most 2/3 clients in Ng cannot be satisfied by this scheme.

We can now prove the following theorem.

Theorem 1. For the BinGreedy algorithm in Alg. 1, the number of required transmissions

is at most 2
log(1.5)

log2(n).

Proof. From Lemma 2, in each round, we have at most log(n) groups and 2 log(n) trans-

missions such that at least 1/3 clients are satisfied. This can be repeated for at most

log(n)/ log(1.5) times, where the theorem follows.

From the construction of our greedy algorithm, we can easily see that the algorithm runs

in polynomial time O(nm2 log(n)): there are at most O(log(n)) rounds; for each round, the

sorting and grouping phases take time O(nm2); and the greedy transmission phase in each

round takes time O(mn).

23

2.5 Binary Field Greedy Algorithm for t-requests Case

A straightforward method to solve the t-requests case is by repeatedly solving pliable index

coding instances t times, resulting in an upper bound O(t log2(n)) of the number of broadcast

transmissions. In [BF13] an upper bound of code length O(t log(n) + log3(n)) is proved

achievable. In this chapter, we modify our algorithm to adapt it to the t-requests case and

prove that this modified algorithm, which we term BinGreedyT, can achieve a tighter upper

bound O(t log(n) + log2(n)).

2.5.1 Algorithm Description

The key difference of the BinGreedyT algorithm from the BinGreedy algorithm is the intro-

duction of weights for clients and messages. The main idea behind this is that we would like

all clients to receive approximately a similar number of new messages as the transmission

proceeds, aiming to avoid that some clients receive too many new messages while others

receive too few during the transmission process. For this purpose, we originally assign the

same weights for all clients and exponentially reduce the weight of a client each time she

can recover a new message. As a result, the algorithm operates in an efficient way which we

show to achieve an upper bound O(t log(n) + log2(n)).

We first introduce some new definitions. As the algorithm runs, we say that at some

point a client is τ -satisfied if she can decode τ unknown messages in Ri. The ultimate

goal of our algorithm is to let all clients to be t-satisfied. We again use the bipartite graph

representation and denote by N [j] the set of neighbors of message vertex j.

• Weights of clients, wi: we associate a weight 0 ≤ wi ≤ 1 with each of the n clients.

Initially, we set wi = 1 for all client i ∈ [n]. This weight will be updated over time as the

algorithm is being carried out.

• Weights of messages, w[j]: the weight corresponding to a message vertex bj is the

summation of the weights of bj ’s neighbors N [j], i.e., w[j] =
∑

i∈N [j]wi.

• Weights of messages restricted on a subgraph or a client subset, wG′[j] or wN ′[j]: given

24

a subgraph G′ of G (or a subset of clients N ′ ⊆ [n]), the weight of a message j restricted on

the subgraph G′ (or on the client subset N ′) is the summation of the weights of bj ’s neighbors

in the subgraph G′ (or in the client subset N ′), denoted by wG′[j] =
∑

i∈N [j]∩V (G′)wi (or

wN ′[j] =
∑

i∈N [j]∩N ′ wi).

• Effective weights and effective neighbors of messages, w†[j] and N †[j]: given a particular

order of the message vertices π = (j1, j2, . . . , jm), the effective weight of message bjl is defined

as the sum of weights of bjl ’s neighbors who do not connect with message bj′, for any j′ =

j1, j2, . . . , jl−1. These neighbors that contribute to bjl ’s effective weights are called effective

clients of bjl. Let us denote by N [j1, j2, . . . , jl−1] the set of neighbors N [j1]∪N [j2]∪. . . N [jl−1].

Formally, the effective clients of message bjl are defined as N †
π[jl] = N [jl]\N [j1, j2, . . . , jl−1]

with respect to the order π. Correspondingly, the effective weights of message bjl is defined

as w†
π[jl] =

∑

i∈N†
π[jl]

wi with respect to π. Again, whenever the order π is clear from the

context, we will omit the subscripts of the effective weights and effective neighbors.

We next describe the algorithm in Alg. 2. The algorithm operates again in rounds and

each round has the same three phases. There are two differences here: one is that the

sorting, grouping, and transmissions are based on the effective weights of messages, instead

of effective degrees; the other is that we have messages categorized into log(n) + 1 groups,

with an additional group to gather messages with “small” weights and we do not encode

messages within this group when making transmissions. In every 2 log(n) transmissions, we

want to make sure that clients worth a certain fraction of weight can decode a new message,

such that the total weight of clients in the system is decreasing at a fixed ratio during 2 log(n)

transmissions. This will result in the claimed performance.

1) Sorting Phase. In the sorting phase, we use a similar technique as in Chapter 2.4 to

sort the messages into a non-increasing order according to their effective weights instead of

their effective degree.

2) Grouping Phase. Let us denote byW = w[1] the maximum weight of the messages. We

divide the message vertices into log(n)+1 groups, namelyM1,M2, . . . ,Mlog(n),M̄, based on

their effective weights with respect to the above order. For the first log(n) groups, a message

25

vertex j is in groupsMg, if and only if the effective weights satisfies W/2g−1 ≥ w†[j] > W/2g.

For the remaining messages with “small” weights, i.e., no more than W/n, we put them into

the last group M̄. We say a client i in group g if it contributes to the effective weight of a

message vertex in group g. The set of clients in group g is denoted by Ng.

According to the above sorting and grouping processes, we have the following property

for the message j in group Mg (g = 1, 2, . . . , log(n)):

w†[j] > W/2g, and
∑

i∈N [j]∩Ng

wi ≤ W/2g−1, (2.7)

where Ng = ∪j′∈MgN
†[j′]. The summation term

∑

i∈N [j]∩Ng
wi in the second part can be

seen as the “weight of message j restricted on client set Ng”. This holds because otherwise

the message j will be assigned in a group less than g in the sorting and grouping phases.

3) Transmission Phase. In the transmission phase, we ignore the last group M̄ and

make two transmissions for each message group Mg (g = 1, 2, . . . , log(n)), using a coding

submatrix with 2 rows (one for each transmission). We sequentially create this submatrix

by visiting each of the messages in group Mg, according to the sorting order, and adding

for each message one column to the coding submatrix (we refer to this column as the coding

vector associated with this message). So in total we have |Mg| steps for group Mg. At each

step, we select each coding vector to be one in the set {(1, 0)T , (0, 1)T , (1, 1)T}, such that it

can satisfy the maximum weight of clients in Ng up to the current step.

After a round of at most 2 log(n) transmissions, if a client i can decode one new message,

we reduce the weight by a half: wi → wi

2
, and add one of her decoded messages in the

side-information set Si. If this weight equals to 1/2t, i.e., client i is t-satisfied, we remove

this vertex and its associated edges from the graph. We repeat the process until all clients

are t-satisfied.

From the described procedure, it follows that the BinGreedyT algorithm reduces to the

BinGreedy algorithm for the t = 1 case.

26

Algorithm 2 Binary Field Greedy Algorithm for t-requests (BinGreedyT)

1: Initialization: Set N = [n], wi = 1 for all i ∈ [n].
2: while N 6= ∅ do

3: Sorting:
4: Set Ntemp = N ,Mtemp = [m].
5: for j = 1 : m do

6: Find the message j′ ∈ Mtemp having the maximum weight of neighbors in Ntemp, i.e.,
j′ = argmaxj′′∈Mtemp

∑

i∈Ntemp∪N [j′′]wi, with ties broken arbitrarily.

7: Put message j′ in the j-th position.
8: Remove j′ from Mtemp and all its neighbors from Ntemp.
9: end for

10: Grouping: Group messages into log(n) + 1 groups based on their effective weights.
11: Set W = w[1].
12: For the first log(n) groups, put messages whose effective weights are between W/2g and

W/2(g−1) into group g. Put the remaining messages into the last group. Then we have the
groups: M1,M2, . . . ,Mlog(n),M̄

13: Greedy transmission:
14: for g = 1 : log(n) do
15: Initialization: Set Ng = ∪j∈MgN

†[j] (effective clients neighboring to Mg), SAT = ∅
and UNSAT = ∅.

16: for j = 1 : |Mg| do
17: Assign a coding vector from {(1, 0)T , (0, 1)T , (1, 1)T } to the j-th message inMg, denoted

by j(g), such that the maximum weight of clients in {i ∈ SAT |i is connected with j(g)}
can still be satisfied, with ties broken arbitrarily.

18: Move from SAT to UNSAT these unsatisfied clients in {i ∈
SAT |i is connected with j(g)}.

19: Add clients in N †[j(g)] to SAT .
20: end for

21: Set coding vectors to be (0, 0)T corresponding to messages in groups other than g.
22: Update clients’ weights in SAT : wi = wi/2 for all i ∈ SAT ; add one message bj′ that i

can decode to her side information set Si and remove this edge between i and bj′ .
23: For all i ∈ SAT , check if i is t-satisfied:
24: if wi = 1/2t then
25: Remove client i from N and the associated edges.
26: end if

27: end for

28: end while

27

2.5.2 Algorithm Performance

We aim to show that the above described algorithm has a performance guarantee upper

bounded by O(t log(n) + log2(n)). We first show that in each round, after the O(log(n))

transmissions, the total weight of clients is at most 11
12

of that before the O(log(n)) trans-

missions, denoted by WT . This implies that the weight is exponentially decreasing, hence,

as shown later, we can argue that at most O(log(n) + t) rounds are needed.

Lemma 3. The sum of clients’ weights in the first log(n) groups is at least 1/2 of the total

weight WT , i.e.,
∑log(n)

g=1

∑

i∈Ng
wi ≥ WT/2.

Proof. To see this, recall that the maximum weight of a message is W . According to our

sorting and grouping phases in Alg. 2, after log(n) groups, the maximum weight of a message

is at mostW/2log(n) = W/n. Then the total weight of clients in group M̄ is at most W
n
n = W .

This means that the sum of clients’ weights in the first log(n) groups is at least WT/2.

Consider the subgraph induced by vertices Mg ∪Ng corresponding to the transmissions

of group Mg (g = 1, 2, log(n)) in a certain round. Similar to Alg. 1, at each step, we

sequentially assign to a message a coding vector. We say a client i ∈ Ng is untouched if

it is not connected with the visited messages up to current step. We introduce two sets

SAT and UNSAT to dynamically evaluate whether each client is satisfied or not up to the

current step (by only considering messages visited up to now and disregarding all unvisited

messages), so as to satisfy the maximum weight of clients up to now. Assume the effective

weight of a message j in Mg is between w(g)/2 and w(g). Using the property described in eq.

(2.7), with the same technique as in Chapter 2.4, we can show that at each step the weight

of clients who are moved from SAT to UNSAT is at most w(g)/3. For completeness, we

show the proof as follows.

Initially, both SAT and UNSAT are empty. We gradually add clients from Ng into these

two sets as we go through the messages and assign coding vectors. Our first step is to add

all N †[1(g)] (the effective neighbors of the first message in Mg) to SAT , since any non-zero

vector satisfies the decoding criterion for only one message. At each step, some additional

28

clients may become satisfied, but some satisfied clients may also become unsatisfied.

Assume the effective weight of a message j in Mg is between w(g)/2 and w(g). We will

show that at each step, the weight of clients who are moved from SAT to UNSAT is at

most w(g)/3. Consider the step for assigning coding vector to message j. Notice that when

we assign a coding vector (1, 0)T , (0, 1)T , or (1, 1)T to message j, only clients connecting with

message j can be affected. We list possibilities for all the clients, with total weight h, that

are connected with j and satisfied (in SAT) at the beginning of this step:

• Case 1: Assume there are weight h1 worth of clients who connect with previously visited

messages that are assigned one coding vector (1, 0)T and some (perhaps none) coding vectors

(0, 1)T . In this case, these clients can decode a new message corresponding to the coding

vector (1, 0)T since (1, 0)T does not belong in the span of (0, 1)T . Similarly,

• Case 2: weight h2 worth of clients are satisfied by a (1, 0)T , several (1, 1)T .

• Case 3: weight h3 worth of clients are satisfied by a (0, 1)T , several (1, 0)T .

• Case 4: weight h4 worth of clients are satisfied by a (0, 1)T , several (1, 1)T .

• Case 5: weight h5 worth of clients are satisfied by a (1, 1)T , several (0, 1)T .

• Case 6: weight h6 worth of clients are satisfied by a (1, 1)T , several (1, 0)T .

When we assign a coding vector (1, 0)T to message j, the h3+h6 worth of clients can still

be satisfied according to the decoding criterion. Similarly, if we assign a coding vector (0, 1)T

or (1, 1)T to message j, then the weight h1 + h5 or h2 + h4 of clients can still be satisfied.

Note that h1 + h2 + h3 + h4 + h5 + h6 ≥ h as there may be overlap among the 6 different

cases (e.g., a client is satisfied by one (1, 0)T and one (0, 1)T , so she is counted twice in both

Case 1 and Case 3). Hence, at least one of h3 + h6, h1 + h5, h2 + h4 should be no less than

h/3; our greedy algorithm will move at most 2h/3 worth of clients from SAT to UNSAT .

According to the property of our sorting and grouping phases in eq. (2.7), the weight of j’s

neighbors who are connected with previously visited messages is at most w(g)−w†[j] < w(g)/2;

otherwise, j will be grouped into another group with index smaller than g, since j’s effective

weight would be larger than w†[j] + w(g)/2 > w(g) when performing the sorting process.

Furthermore, the number of j’s neighbors in set SAT is a subset of these neighbors, resulting

29

in h < w(g)/2. So at most w(g)/3 clients will be moved from SAT to UNSAT in each step.

On the other hand, we observe that for message j’s effective clients (j’s neighbors who are

not connected with previously visited messages), any assignment of vectors (1, 0)T , (0, 1)T ,

or (1, 1)T can satisfy them once according to the decoding criterion. Hence, at least w†[j] >

w(g)/2 worth of untouched new clients are added to SAT .

Completing the assignment steps, we can see that clients worth at most 2/3 weight in

Ng cannot be satisfied by this coding scheme. Therefore, in a round, clients who can decode

one new message count for at least 1
3
1
2
= 1

6
the total weight WT . According to our weight

updating rule that the weights of these clients will be reduced by at least a half: wi → wi

2

(or wi → 0 if t-satisfied), resulting in a 1
12

weight decreasing in total. Or equivalently, the

total weight after one round is at most 11WT

12
.

Therefore, we have the following theorem.

Theorem 2. For the BinGreedyT algorithm in Alg. 2, the number of required transmissions

is at most O(t log(n) + log2(n)).

Proof. From the above argument, after each round, we have at most 2 log(n) transmissions

such that the remaining weight becomes at most 11/12 of that before this round. Initially,

the total weight is n. Hence, after O(t + log(n)) rounds, the total weight is no more than

n(11
12
)O(t+log(n)) ≤ 1/2t. Since the weight for a client who is not t-satisfied is at least 1/2t−1 >

1/2t, all clients are t-satisfied after O(t+ log(n)) rounds of transmissions. The upper bound

is proved.

Note that the time complexity of this algorithm is bounded by O((t + log(n))nm2): we

need at most O(t+ log(n)) rounds in the algorithm, and in each round, the algorithm takes

O(nm2) time to perform sorting and grouping and takes O(nm) time to perform greedy

transmission.

30

2.6 Lower Bounds

In this chapter, we provide instances for pliable index coding and t-requests case that require

at least Ω(log(n)) and Ω(t + log(n)) transmissions, respectively.

2.6.1 A Lower Bound for Pliable Index Coding

To show a lower bound, we consider the following pliable index coding instances that we

term complete instances, and define as follows. In a complete instance, we have n = 2m − 1.

The request set Ri is the i-th element of the set 2[m]\∅, where 2[m] is the power set of [m].

An example of the complete instance with m = 3 is shown in Fig. 2.1.

Theorem 3. In a complete instance (m,n, {Ri}i∈[n]), the optimal number of transmissions

is Ω(log(n)).

Proof. Obviously, we can trivially satisfy all clients with m = log(n) transmissions, where

each bj is sequentially transmitted once. We argue that we cannot do better by using

induction. We will prove that the rank of the coding matrix A needs to be at least m for

the clients to be satisfied according to Lemma 1. Let J denote a subset of message indices;

for the complete instance, Lemma 1 needs to hold for any subset J ⊆ [m].

• For |J | = 1, to satisfy the clients who miss only one message, no column of the coding

matrix A can be zero. Otherwise, if for example, column j1 is zero, then the client who only

requests message bj1 cannot be satisfied. So rank(AJ) = 1 for |J | = 1.

• Similarly, for |J | = 2, any two columns of the coding matrix must be linearly in-

dependent. Otherwise, if for example, columns j1 and j2 are linearly dependent, then

aj1 ∈ span{aj2} and aj2 ∈ span{aj1}, and the clients who only miss messages bj1 and

bj2 cannot be satisfied. So rank(AJ) = 2.

• Suppose we have rank(AJ) = l for |J | = l. For |J | = l+1, we can see that if all clients

who only miss l+1 messages can be satisfied, then for some j ∈ J , we have aj /∈ span{AJ\{j}}
according to Lemma 1. Therefore, rank(AJ) = rank(aj) + rank(AJ\{j}) = 1 + l.

31

Therefore, to satisfy all the clients, the rank of the coding matrix A is m, resulting in

K ≥ m, from which the result follows.

From Theorem 3, we have two observations: 1) We note that the upper bound is

O(log2(n)) and the lower bound is Ω(log(n)), which shows that the upper bound is almost

tight (i.e., in the order of polynomial(log(n))); 2) If we apply our BinGreedy algorithm for

the complete instance, we achieve a code length of log(n) as well, since we can divide the

messages into log(n) groups, each consisting of one message.

2.6.2 A Lower Bound for t-requests Case

We again use complete instances to derive a lower bound for the t-requests case. Note that

the complete instance for t-requests case needs to satisfy |Ri| ≥ t for all i ∈ [n], so we add

t − 1 dummy messages to the complete instance for t = 1 case. Using the bipartite graph

representation, the complete instance for t-requests is as follows. There are m messages and

n = 2m−t+1 − 1 clients. We divide the messages into 2 types. The first log(n + 1) , m1

messages are the Type-1 messages and the remaining t − 1 , m2 messages are the Type-2

messages. All n clients are connected with all the Type-2 messages. We denote by Ji ⊆ [m1]

the set of Type-1 messages a client i is connected to, i.e., Ji is the set of indices of Type-1

messages that i requires. Each Ji of the n clients is a unique subset of [m1] except the empty

set. Note that there are in total 2m1 − 1 = n such unique subsets.

Theorem 4. In a complete instance (m,n, {Ri}i∈[n], t), the optimal number of transmissions

is Ω(t+ log(n)).

Proof. Clearly, m = log(n+ 1) + t− 1 transmissions are enough to satisfy all clients. So we

only show at least Ω(t + log(n)) transmissions are needed.

By abuse of notation, let us denote by 1(1), 2(1), . . . , m
(1)
1 and 1(2), 2(2), . . . , m

(2)
2 the indices

of Type-1 and Type-2 messages and by [1(1) : m
(1)
1] and [1(2) : m

(2)
2] the sets of these two

types of messages.

Suppose the coding matrix for a t-requests case problem is A. We denote by A
J∪[1(2):m(2)

2]

32

the submatrix of A consisting of columns indexed by J ∪ [1(2) : m
(2)
2], where J ⊆ [1(1) : m

(1)
1]

is a subset of indices of Type-1 messages. We will use induction to prove that the rank of

the coding matrix A needs to be at least m for all the clients to be t-satisfied according to

the decoding criterion. In the complete instance, the decoding criterion needs to hold for all

clients, or for all |J | = 1, 2, . . . , m1.

For J ⊆ [1(1) : m
(1)
1] and |J | = 1, i.e., to satisfy the clients who miss only one Type-1

message, we need rank(A
J∪[1(2):m(2)

2]
) = t. Since otherwise, for example if the only column

j1 ∈ [1(1) : m
(1)
1] and all t − 1 columns in [1(2) : m

(2)
2] are not linearly independent, then

the clients who requests messages {j1} ∪ [1(2) : m
(2)
2] cannot be t-satisfied according to the

decoding criterion. So rank(A
J∪[1(2):m(2)

2]
) = t for all |J | = 1.

Assume we have rank(A
J∪[1(2):m(2)

2]
) = l + t − 1 for all J ⊆ [1(1) : m

(1)
1] with |J | = l. For

J ⊆ [1(1) : m
(1)
1] and |J | = l + 1, we can see that according to the induction hypothesis,

rank(A
J∪[1(2):m(2)

2]
) ≥ l + t− 1. If rank(A

J∪[1(2):m(2)
2]

) = l + t− 1, then for any column j ∈ J ,

aj ∈ span{A
J∪[1(2):m(2)

2]\{j}}, since columns in J ∪ [1(2) : m
(2)
2]\{j} consist of a basis for this

submatrix from the induction hypothesis. Hence, bj (for any j ∈ J) cannot be decoded by

the client who is only connected with J ∪ [1(2) : m
(2)
2]. This client can decode at most t− 1

messages and cannot be t-satisfied. As a result, rank(A
J∪[1(2):m(2)

2]
) = l + t, from which the

result follows.

2.7 Pliable Index Coding Over Random Graphs

We use a bipartite graph described in Chapter 2.2 to represent a problem instance. Here, we

consider the random problem instance represented by a random bipartite graph B(m,n, p)

[Bol13], where there are m messages and n clients, and there is an edge between client i and

message j with probability p, i.e., Pr{j ∈ Ri} = p. We aim to calculate the “average” code

length, or with high probability what is the required number K of transmissions. We say that

a random problem instance B(m,n, p) almost surely needs a code length of K(m,n, p) if the

probability that the code length is K(m,n, p) tends to 1 as m and n tend to infinity. Next,

we show that a random graph B(m,n, p) almost surely requires a code length of Θ(log(n)).

33

2.7.1 A Lower Bound

To prove a lower bound on K, we introduce the concept of a coding structure, which is a col-

lection of K×m matrices A with elements in a finite field Fq that satisfy a set of properties.

Formally, a coding structure S(J (1), J (2), J (3)), or shortly S, is defined as S(J (1), J (2), J (3)) ,

{A ∈ FK×m
q |A satisfies Properties (1) (2) (3)}, where J (1), J (2), J (3) ⊆ [m] are disjoint sub-

sets of message indices, |J (1)| + |J (2)| = K, |J (2)| = |J (3)|, and the properties are listed as

follows.

Property.

(1) Column vectors indexed by J (1) and J (2) contain a column basis of matrix A.

(2) For any column j′ ∈ J (1), the corresponding column vector is not in the linear space

spanned by other column vectors of matrix A, i.e., aj′ /∈ span{aj|j ∈ [m]\{j′}}.

(3) For any column j′′ ∈ J (2) ∪ J (3), the corresponding column vector is in the linear

space spanned by other column vectors indexed by J (2) ∪ J (3), i.e., aj′′ ∈ span{aj |j ∈ J (2) ∪
J (3)\{j′′}}.

Consider a specific K × m coding matrix A. We next describe a procedure that maps

the matrix A (in a non-unique way) to some coding structure S(J (1), J (2), J (3)). Conversely,

in a coding structure, it is easy to construct some matrix as the coding matrix. Thus, if we

denote the set of all K ×m coding matrices by A and the union of all coding structures by

S = ∪S(J (1), J (2), J (3)), it is easy to see that S = A.

Mapping Procedure In the following, we will call the columns in J (1), J (2) and J (3)

Type-1, Type-2 and Type-3 columns, respectively. We will use the notation K1 = |J (1)|,
K2 = |J (2)|, K3 = |J (3)|. We will show that we can select J (1), J (2) and J (3) so that

K1 + K2 = K, K2 = K3 and properties (1)-(3) are satisfied. Note that a matrix A could

be mapped to multiple structures, since there may exist different choices for selecting the

columns in J (1), J (2) and J (3).

• In the coding matrix A, find an arbitrary column basis, i.e., a maximum number of

34

linearly independent column vectors. There are at most K such columns and without loss

of generality, we assume these columns are indexed by 1, 2, . . . , K ′, where K ′ ≤ K.

• We categorize all m column vectors into 3 groups: 2 groups for these K ′ basis column

vectors and a third group for the remaining m−K ′ column vectors.

− Group 1: A(1) = {aj1|j1 ∈ [K ′],aj1 /∈ span{aj|j ∈ [m]\{j1}}}. Group 1 consists

of column vectors that are not in the linear space spanned by all other column vectors of

matrix A. We assume K1 ≤ K ′ such vectors, and without loss of generality, we assume these

vectors in Group 1 are indexed by 1, 2, . . . , K1. These are the Type-1 columns.

− Group 2: A(2) = {aj2 |j2 ∈ [K ′],aj2 ∈ span{aj |j ∈ [m]\{j2}}}. Group 2 consists of

column vectors that are in the linear space spanned by all other column vectors of matrix

A. We assume K2 = K ′ −K1 such vectors, and without loss of generality, we assume these

vectors in Group 2 are indexed by K1 + 1, K1 + 2, . . . , K1 +K2 = K ′. These are the Type-2

columns.

− Group 3: A(3) = {aj3|j3 /∈ [K ′]}. Group 3 consists of the remaining m −K ′ column

vectors.

• We select and label K3 columns in Group 3 as Type-3 columns as follows. We consider

the submatrix of A from removing all K1 columns in Group 1. Initially, we mark all K2

columns in Group 2 as active and we will repeatedly deactivate them in the following steps.

1) We pick an arbitrary non-zero vector aj from Group 3.

2) Label vectors or discard them according to the following rule. We observe that

after removing the first K1 columns, the K2 column vectors in Group 2 are a basis for

the remaining K × (m − K1) submatrix. Then the vector aj that is picked up in Step

1) can be uniquely represented by a linear combination of these basis vectors in Group

2, i.e., aj = λK1+1aK1+1 + λK1+2aK1+2 + . . . + λK1+K2aK1+K2. Here we can consider

(λK1+1, λK1+2, . . . , λK1+K2) as coordinates under this basis.

Using this linear expansion for aj , we consider the basis vectors in Group 2 that corre-

spond to the non-zero coordinates, i.e., A∗(2) = {aj2 ∈ A(2)|λj2 6= 0}. If no vectors in A∗(2)

are marked active, then remove column j without labeling it. If any of these basis vectors is

35

marked active, then label the column j as Type-3 column, remove it, and mark all column

vectors in A∗(2) as inactive if they are still active.

3) Repeat Steps 1) and 2) until all vectors in Group 2 are marked inactive. This can

always be achieved. Indeed, according to the definition of Group 2, any column vector

aj2 ∈ A(2) can be represented as a linear combination of the other column vectors of matrix

A. So, aj2 always appears as a non-zero term in the linear expansion for some vector in

Group 3; otherwise it belongs to Group 1.

We observe that after the above process, there are K1 Type-1 columns, K2 Type-2

columns, and at most K2 Type-3 columns. This is because when we label each Type-3

column, we always set inactive at least 1 vector in Group 2.

To deal with the case that A’s rank K ′ is less than K, we arbitrarily label K − K ′

unlabeled column vectors in Group 3 as Type-2 columns to make K1+K2 = K; we can also

arbitrarily mark another K2 −K3 unlabeled column vectors in Group 3 as Type-3 columns

to make K2 = K3. It is easy to see that after this padding, the selected Type-1, Type-2, and

Type-3 columns satisfy the desired properties.

Given the fact that S = A, we focus on S and prove the following two lemmas.

Lemma 4. There are in total no more than
∑

K1+K2=K

(

m
K1

)(

m−K1

K2

)(

m−K1−K2

K2

)

≤ 2m2K

coding structures corresponding to all K ×m coding matrices.

Proof. We can see that we have at most
(

m
K1

)

ways to choose the K1 Type-1 columns,
(

m−K1

K2

)

ways to choose theK2 Type-2 columns among the remainingm−K1 columns, and
(

m−K1−K2

K2

)

ways to choose the K3 = K2 Type-3 columns among the remaining m −K1 −K2 columns.

Hence, the total number of coding structures is no more than

∑K
K2=0m

K(m−K)K2 ≤ ∑K−1
K2=0m

K(m−K)K2 +m2K

≤ mK((m−K)K+1−1)
m−K−1

+m2K ≤ 2m2K .
(2.8)

Lemma 5. The probability that all n clients are satisfied by a coding structure S(J (1), J (2), J (3))

36

can be upper bounded by

Pr{S(J (1), J (2), J (3)) can satisfy all n clients} ≤

[1− p2K]n, p ≤
√
5−1
2

,

[1− (1− p)K]n, p >
√
5−1
2

.
(2.9)

Proof. We denote the coding structure S(J (1), J (2), J (3)) by S for short. We first notice that

if a client i has the following connection pattern: j′ /∈ Ri for any column j′ ∈ J (1) and

j′′ ∈ Ri for any column j′′ ∈ J (2) ∪ J (3), then client i cannot be satisfied by coding matrices

in coding structure S. Indeed, if a client i has the above connection pattern, then clearly:

• Client i has all messages indexed by J (1) as side information and cannot be satisfied by

messages in J (1).

• Client i cannot decode any message in J (2) ∪ J (3) according to the decoding criterion,

since any column vector indexed by J (2) ∪ J (3) is in the linear space spanned by all other

vectors in J (2) ∪ J (3) from the definitions of J (2) and J (3).

• Client i cannot decode a message not indexed by J (1), J (2), and J (3), because column

vectors indexed by J (2) contains a basis for the submatrix that is obtained from removing

columns of J (1), and this implies that the messages not indexed by J (1), J (2), and J (3) are in

the space spanned by vectors indexed by J (2).

Next, we can lower bound the probability that client i is not satisfied by S by calculating

the probability that event {j′ /∈ Ri, ∀j′ ∈ J (1), and j′′ ∈ Ri, ∀j′′ ∈ J (2) ∪ J (3)} happens.

Pr{client i is not satisfied by S}

≥ Pr{j′ /∈ Ri, ∀j′ ∈ J (1), and j′′ ∈ Ri, ∀j′′ ∈ J (2) ∪ J (3)}

≥ (1− p)K1p2K2 .

(2.10)

Therefore, we can upper bound the probability that all n clients are satisfied by structure

S as follows.

Pr{all n clients are satisfied by S} ≤ [1− (1− p)K1p2K2]n. (2.11)

37

Note that for p ≤ (
√
5 − 1)/2 we have 1 − p ≥ p2, and for p > (

√
5 − 1)/2 we have

1− p < p2. So that the result follows from eq. (2.11) and the fact that K1 +K2 = K.

A lower bound is shown in the following theorem.

Theorem 5. For pliable index coding over random graph B(m,n, p) (m = O(nδ) for some

constant δ), with probability at least 1−O(1/n2), the linear pliable index code length can be

lower bounded as follows:

K ≥

log(n)
4 log(1/p)

, p ≤
√
5−1
2

,

log(n)
2 log[1/(1−p)]

, p >
√
5−1
2

.
(2.12)

Proof. According to Lemmas 4 and 5, we can see that the probability a random graph

B(m,n, p) can be satisfied by a pliable index code of length K = c(p) log(n) (the parameter

c(p) = 1
4 log(1/p)

for p ≤
√
5−1
2

and c(p) = 1
2 log[1/(1−p)]

for p >
√
5−1
2

) is at most

2m2K [1− 1

2
K

2c(p)

]n = 2m2c(p) log(n)[1− 1

2
log(n)

2

]n

≤ [22c(p) log(n) log(m)+1]/e
√
n ≤ O(1/n2).

(2.13)

From Theorem 5, we distinguish the following special cases for the lower bound depending

on p.

• p ≤ O(1/nα) or 1 − p ≤ O(1/nα) for some constant α: this is the sparse or dense case

and we get Ω(1) lower bound from Theorem 5. To explain this, consider two extreme cases.

The first one is a sparse case where each client requires exactly one different message and

has all others as side information. Thus, we only need to transmit a linear combination of

all the messages, such that each client can decode her required message. The other one is

a dense case where each client has only one side-information message and requires any new

one from the remaining messages. In this case, we can use 2 arbitrary uncoded transmissions

to satisfy all clients.

38

• Constant p: in this case we achieveK ≥ Ω(log(n)) from Theorem 5, namely, the random

instance B(m,n, p) almost surely needs linear code length of Ω(log(n)). In particular, when

p = (
√
5 − 1)/2 ≈ 0.618, the Golden Ratio, this lower bound achieves maximum 0.36 log(n)

among all p.

2.7.2 An Upper Bound

To prove an upper bound, we propose a simple coding scheme that achieves code length of

O(log(n)) with high probability.

Given a constant p and m = O(nδ) for some constant δ, we construct the coding matrix

A as follows:

A =

1 1 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

...

0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1 0 0 · · · 0

. (2.14)

The matrix has 3
log(e/(e−1))

log(n) rows. In each row, we have a constant weight: 1/p 1s

and 0s for other elements3. In any two rows, the 1s are non-overlapping. The probability

that a client i is satisfied by the first row can be upper bounded by the following equation.

Pr{client i is satisfied by the first row} =

(

1/p

1

)

p(1− p)1/p−1 ≥ 1/e. (2.15)

Note that since 1s in any two rows of the coding matrix do not overlap, we can calculate

the probability that a client i is satisfied by the coding matrix A as:

Pr{client i is satisfied by the coding matrix A} ≥ 1− (1− 1/e)
3

log(e/(e−1))
log(n)

≥ 1− 1/n3.
(2.16)

3We simply treat 1/p as integers, which does not change the problem essentially.

39

Hence, the probability that all clients are satisfied can be bounded as:

Pr{all clients are satisfied by the coding matrix A} ≥ (1− 1
n3)

n

≥ 1− 1
n2 .

(2.17)

Therefore, we have the following result.

Theorem 6. For pliable index coding over random graph B(m,n, p) (m = O(nδ) for some

constant δ) with constant p, we can achieve the optimal linear pliable index code length

K = Θ(log(n)) almost surely.

0 0.2 0.4 0.6 0.8 1
0

Probability (p)

C
o

d
e

 l
e

n
g

th

Lower bound

Upper bound 4.534log(n)

0.3601log(n)

Figure 2.3: Lower and upper bounds of pliable index coding over random graphs.

To illustrate how the lower and upper bounds change with the probability p, we plot the

relationship between them in Fig. 2.3.

2.8 Discussion

In this chapter, we make two observations: one on the field size for the optimal solution and

the other on a connection with the minrank problem.

40

2.8.1 Field Size

We show through an example that a binary code is not sufficient to achieve the optimal code

length. Consider the following instance with m = 4 and n = 10:

• R1 = {1}, R2 = {2}, R3 = {3}, R4 = {4}, R5 = {1, 2}, R6 = {1, 3}, R7 = {1, 4}, R8 =

{2, 3}, R9 = {2, 4}, R10 = {3, 4}.
This instance contains clients with request sets of all 1-message and 2-message subsets. We

can easily see that the optimal code length is 2, e.g., b1 + b2 + b4 and b2 + b3 + 2b4, in

F3. However, we cannot find a binary code of length 2, because we have all 1-message and

2-message request sets, requiring aj 6= (0, 0)T , for j = 1, 2, 3, 4 and aj 6= aj′, for j 6= j′. But,

we have only 3 non-zero vectors (1, 0)T , (0, 1)T , (1, 1)T . It is not possible to assign these 3

non-zero vectors to 4 columns so as to satisfy all clients.

This example extends to that at least a field size m−1 of coding coefficients is needed to

achieve the optimal code length for all instances with m messages. We consider an instance

with m messages and n = m +
(

m
2

)

clients, where the clients have all 1-message and 2-

message request sets. Namely, the clients’ request sets are {j} and {j1, j2}, for any j ∈ [m]

and j1, j2 ∈ [m].

Assume we use finite field Fq to realize coding. According to our decoding criterion, we

need every coding vector to be nonzero and any pair of the coding vectors to be linearly

independent.

• If the coding vector contains 0, then there will be 2 of them: (1, 0)T and (0, 1)T since any

other vector in the form of (x, 0)T (x ∈ Fq) is linearly dependent with (1, 0)T and similarly,

(0, x)T (x ∈ Fq) is linearly dependent with (0, 1)T .

• If the coding vector is in the form (x, y)T , x, y ∈ Fq, x, y 6= 0, then there are in total

(q−1)2 such vectors. However, (x, y)T is linearly dependent with z(x, y)T , for z ∈ Fq. There

are in total (q − 1) distinct z(x, y)T vectors, so the total number of pair-wise independent

vectors is (q − 1)2/(q − 1) = (q − 1).

Therefore, we need 2+(q−1) ≥ m in order to satisfy these clients, resulting in q ≥ m−1.

41

2.8.2 Minrank

In index coding, the optimal linear code length is shown to equal to the minrank, which

is the minimum rank of a mixed matrix (some of whose elements are to be determined)

associated with the side-information graph [BBJ11]. In a similar way, we can characterize

the pliable index coding problem using the minimum rank of a mixed matrix associated with

the bipartite graph.

We say that a matrixG ∈ Fn×m
q fits the pliable index coding problem instance (m,n, {Ri}i∈[n]),

if in the i-th row (∀i ∈ [n]):

• among all j ∈ Ri, there exists one and only one j∗ ∈ Ri, such that gij∗ = 1, and other

gij = 0 for any j ∈ Ri\{j∗};

• for j ∈ Si, gij can be any element in Fq.

Let us denote by G the set of all matrices fitting the pliable index coding problem

(m,n, {Ri}i∈[n]), and by minrank(G) the minimum rank among all the matrices G ∈ G.
In other words, minrank(G) = minG∈G rank(G), where rank(G) denotes the rank of matrix

G. The following theorem characterizes the optimal coding length:

Theorem 7. The optimal linear code length of the pliable index coding instance (m,n, {Ri}i∈[n])
equals to minrank(G).

Proof. First, let us prove that a linear code with length K = minrank(G) exists. Assume

that a matrix G ∈ G achieves rank K. Without loss of generality, let us also assume that the

first K rows of G are linearly independent. For the encoding process, we define the coding

matrix A to be the first K rows of G. For matrix G, there is one and only one j∗ ∈ Ri, such

that gij∗ = 1, and other gij = 0 for j ∈ Ri\{j∗}; so that column gj∗ cannot be expressed

as a linear combination of {gj}j∈Ri\{j∗}. Since all the rows of G are linear combinations of

the first K rows, column aj∗ cannot be expressed as a linear combination of {aj}j∈Ri\{j∗}

either. As a result, the decoding criterion holds for client i and message j∗ can be decoded

by client i.

42

Next, let us prove that for any linear code with a K × m coding matrix A in filed Fq

has a code length K ≥ minrank(G). We show that using the coding matrix A, we can build

a matrix G ∈ Fn×m
q with rank at most K that fits the index coding problem. To show this,

we use the following claim.

Claim 1. If for client i, the message j∗ can be decoded, then the row vector eTj∗ is in the

span of {αT
l : l ∈ [K]}∪ {eTj : j ∈ Si}, where eTj is a row vector with all 0s, except a 1 in the

j-th position and αT
l represents the l-th row of matrix A.

This claim shows that eTj∗ is in the span of the union of row space of A and the side-

information space. The proof of this claim can be found in [BBJ11].

For each client i, the claim states that eTj∗ =
∑K

l=1 λlα
T
l +

∑

j∈Si
µje

T
j for some λl, µj in

field Fq. To construct G, we define the i-th row of G, γT
i , to be the linear combination

∑K
l=1 λlα

T
l . Or equivalently, we have γT

i =
∑K

l=1 λlα
T
l = eTj∗ −

∑

j∈Si
µje

T
j . This shows that

γT
i has value 1 at position j∗, −µj at position j ∈ Si, and 0 at positions indexed by Ri\{j∗}.

Therefore, we have shown that K ≥ rank(G) ≥ minrank(G).

2.9 Numerical Results

In this chapter, we conduct numerical experiments on our proposed algorithms. We first

evaluate the performance of our BinGreedy algorithm by comparing with the algorithm

in [BF12], and then evaluate the optimality gap with respect to the minrank solution in

Chapter 2.8. We finally evaluate the BinGreedyT algorithm performance for t-requests case.

2.9.1 Performance Comparison

We compare the performance of our proposed algorithm BinGreedy with RANDCOV, which

is a randomized algorithm proposed in [BF12]. RANDCOV is the current state-of-the art

alternative and was theoretically shown to achieve an average performance upper bounded

by O(log2(n)) with respect to the random code realization.

43

In our simulations, we set the number of messages m to be n0.75 and numerically inves-

tigate how the code length changes with the number of clients n. We randomly generate

100 pliable index coding bipartite graph instances for each n, by connecting each client and

each message with probability 0.3 in the homogeneous case; and connecting equal number

of clients with each message with probabilities 0.05, 0.15, . . . , 0.95 in the heterogeneous case.

Fig. 2.4 shows the code length varying with n (note that the horizontal axis is in log-

arithmic scale). We can see that on average (averaged over 100 instances for the same n)

and in the worst case, the proposed BinGreedy algorithm outperforms RANDCOV by 20%-

35% in terms of the code length for homogeneous instances. In heterogeneous instances, the

proposed BinGreedy algorithm outperforms the existing randomized algorithm by 20%-50%.

We also observe that for heterogeneous instances, we need more transmissions than the ho-

mogeneous instances of the same size. As seen in the figure, for homogeneous instances,

the code length increases almost linearly with log(n); while for heterogeneous instances, the

code length increases super linearly with log(n).

In contrast to the randomness of RANDCOV, our proposed BinGreedy algorithm runs

deterministically and we expect more robustness. Indeed, we can see from Fig. 2.4 that the

difference between best case and worst case instances is much larger for RANDCOV than

that for the proposed BinGreedy algorithm.

2.9.2 Optimality Gap

We compare our BinGreedy performance with the optimal binary code length calculated

through the minrank method in Chapter 2.8. By setting n = 12 and 18, we evaluate the per-

formance of the two algorithms asm varies4. For each pair ofm and n, we randomly generate

10 bipartite graph instances by connecting each client and each message with probability

0.3.

The gap for an instance I is defined as the difference of code length achieved by our

4Because of the exponential complexity of finding the optimal performance we can compare only for small
instances.

44

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

clients (n)

C
o
d
e
 l
e
n
g
th

BinGreedy (proposed)

RANDCOV (in [BF12])

(a) Homogeneous case

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

clients (n)

C
o
d
e
 l
e
n
g
th

BinGreedy (proposed)

RANDCOV (in [BF12])

(b) Heterogeneous case

Figure 2.4: Comparison of BinGreedy and randomized algorithms (code length vs. the number of clients). The curves in the
figures show the average performance over random instances and the bars at each point show the region between the best and
worst case performances.

BinGreedy algorithm and by the optimal binary algorithm, i.e., gap = BinGreedy(I) −
OPT2(I). We plot the average gap and the maximum gap among instances generated with

the same parameters m and n. Fig. 2.5 shows that the average gap (the black bar) is around

2 for both n=12 and n=18; the maximum gap (the white bar) is 3 for both n=12 and n=18;

the same as the average code lengths achieved by the BinGreedy and optimal algorithms.

We also note that the approximation ratio for n=18 (2.01) is slightly greater than that

for n=12 (1.87). In fact, the approximate ratio is known to be no less than Ω(log log(n))

from [SF16b], so it grows as n increases.

2.9.3 t-requests Case

In this chapter, we conduct experiments on the t-requests case using our BinGreedyT algo-

rithm.

In our simulations, we set the number of messages m to be n0.75. We randomly generate

100 pliable index coding bipartite graph instances for each n, by connecting each client and

each message with probability 0.3.

In Fig. 2.6 (a), we investigate how the code length changes with the number of clients

45

4 6 8

2

4

6

8

messages (m)

C
o
d
e
 l
e
n
g
th

Average gap

Maximum gap

Optimum

BinGreedy

(a) Number of clients n = 12

6 10 14

2

4

6

8

messages (m)

C
o
d
e
 l
e
n
g
th

Average gap

Maximum gap

Optimum

BinGreedy

(b) Number of clients n = 18

Figure 2.5: Optimality gap of BinGreedy algorithm.

n for 5-requests and 10-requests cases. We can see that for both curves, the required code

length increases slightly greater than logarithmically with n (notice that the horizontal axis

is in logarithmic scale), from 28 to 42 for t = 5 and from 50 to 69 for t = 10. Indeed, we

show that our algorithm performs in the worst case as O(t log(n) + log2(n)). Given a fixed

t, we also observe that as n increases, the difference between code lengths in the best case

and in the worst case decreases, i.e., the bar in the figure becomes shorter. This implies

robustness for larger n.

In Fig. 2.6 (b), we evaluate how the number of requests t affect the the code length for

n = 3000 and n = 10000. We can see that given a fixed number of clients n, the code length

increases almost linearly with the number of requests t, from around 20 to 60.

2.10 Open Questions and Future Work

We note that for pliable index coding problem, we have a log(n) ratio between the lower

and upper bounds of optimal code length, namely, Ω(log(n)) vs. O(log2(n)). This gap closes

only for equal size side information case [BF15] or random graph instances (in Chapter 2.7)

However, in general, we still do not know whether there exists an algorithm that can achieve

a worst case performance of O(log(n)) or is it the case that any algorithm cannot do better

46

10
2

10
3

10
4

10
5

20

30

40

50

60

70

clients (n)

C
o
d
e
 l
e
n
g
th

t=10

t=5

(a) Code length vs. the number of clients (n).

2 4 6 8 10

20

30

40

50

60

70

requests (t)

C
o
d
e
 l
e
n
g
th

n=3000

n=10000

(b) Code length vs. the number of requests (t).

Figure 2.6: Performance of BinGreedyT algorithm. The curves in the figures show the average performance over random
instances and the bars at each point show the region between the best and worst case performances.

than Ω(log2(n)).

For an extensive number of Big Data applications, the content-type messages are stored

at different locations or servers. Hence, a future direction is to study the pliable index coding

algorithm in such a distributed setting. In this setting, the servers only have limited choices

of encoding messages. We are interested in the fundamental bounds, as well as effective

algorithms, when this constraint is imposed.

2.11 Summary

In this chapter, we study the fundamental bounds for optimal code length for pliable index

coding and design polynomial-time approximation algorithms for pliable index coding. We

show that our proposed algorithm achieves code length at most O(log2(n)). We modify this

algorithm for the t-requests case and provide a worst case performance O(t log(n)+ log2(n))

guarantee. We construct problem instances that achieve a lower bound of Ω(log(n)) for

pliable index coding and Ω(t + log(n)) for the t-requests case. We perform a probabilistic

analysis over random graphs to show that the optimal code length is almost surely Θ(log(n)).

We also present experimental results that show up to 50% performance benefits of our

proposed algorithms and higher robustness over existing algorithms.

47

CHAPTER 3

Application to Bandwidth Aware Recommender

Systems

3.1 Introduction

Aiming at maximizing an aggregate benefit, recommender systems make decisions about

which messages to offer to users [RV97, LCL14]. These existing recommender systems are

currently oblivious to the cost of distributing the content from the server to the users, which,

however, may result in failure: unsatisfactory delivery is identified as a core threat to the

user experience and has already caused loss of billions of revenue dollars [Con15]. Wireless

consumption in particular, which is increasingly gaining popularity, is inherently subject to

bandwidth constraints.

In this chapter, we ask: how much could we gain in terms of bandwidth and user satis-

faction, if recommendation systems took into account not only the user preferences, but also

the fact that they need to serve these users under bandwidth constraints? In other words,

what if the recommender systems became bandwidth aware?

We formulate this as a new problem in the context of pliable index coding, where now

each client has preferences associated with messages: a client can be satisfied by receiving

any message she does not already have; however, the benefit we get is proportional to how

high her preference is, for the message she gets. For instance, consider wireless stations

serving sale coupons inside a shopping mall: a client walking outside a shop would be happy

to receive a coupon she does not already have, but would be happier to receive (and more

likely to use) a coupon closer to her interests. We note that the side-information setup fits

48

well with the recommender systems framework [LCL14]: collecting side information about

the clients and keeping track of previous content served is an integral part of recommender

systems; it is a natural step to leverage this side information, not only to inform recom-

mendations, but to also increase the communication efficiency so as to extract more benefits

under communication constraints. But for the amount of interesting work in index coding

(eg., [BBJ11,BK98,BKL10,ESG10,EEL15]), this is the first work, as far as we know, that

explores trade-offs between user satisfaction and bandwidth.

When setting as our goal to evaluate potential benefits, a challenge we faced is that these

depend on the preference model we use. There exist numerous models for expressing prefer-

ences and for taking decisions based on them; clearly we cannot exhaustively investigate all

possible ranking models. We opted to sample a few models that we thought were represen-

tative, with the hope of finding consistent trends across them. One model we investigated

uses the Borda count, that has each client sort m messages according to her preferences, and

assigns to a message ranked l by a client a score of m+ 1− l [Bor81]. We also considered a

bimodal preferences model, where a fraction of the messages are much more preferable than

the remaining ones. More generally, we considered an arbitrary score model, where each

message j gets an arbitrary score wij by a client i.

To calculate the aggregate benefit, we count only the highest-preference message we have

served to each client. This is motivated by the fact that, if a client at a certain time can see

only one video (or read one article or click one ad), although her device may have downloaded

multiple items, she will only see her most preferred one. We will collect the corresponding

benefit. This benefit model aligns well with the index-coding rationale, where only the one

message the client wants counts.

In this chapter, we examine the trade-off between benefit and bandwidth across three

scenaria, both theoretically and numerically using designed algorithms. We first provide

results for the case where there is no side information for each client and each client has

a full ranking of the messages. We show that the problem is NP-hard, however a simple

greedy polynomial time algorithm can achieve an approximation ratio of 1.58. Moreover, we

provide upper and lower bounds of optimal performance as well as an average case analysis,

49

both indicating diminishing returns: the benefits increase with the number of transmissions

K only by a multiplicative factor 1− 1/K.

The second scenario investigates the case where each client has side-information of the

same cardinality and a partial ranking over the desired messages. We prove lower bounds

on the optimal benefits, and design a polynomial-time algorithm that achieves a O(1) ap-

proximation ratio.

The third scenario considers a general case where each client has arbitrary size side

information. This problem is hard to approximate within a ratio of n1−ǫ for any ǫ > 0. For

this case we establish a connection with the maximum weighted independent set problem;

we design and evaluate a heuristic coded algorithm that leverages this connection.

We evaluate our algorithms numerically over synthetic and real world data sets (Yahoo!

advertiser bidding data sets [yah]). We find that even with one transmission we can in many

cases already achieve half of the maximum possible benefit. In general, we can achieve 80%

of the benefit with less than 10% of the transmissions we would need to achieve 100% of

it. We also find that leveraging side information to make coded transmissions, can in some

cases enable doubling the benefit over uncoded transmissions.

The work presented in this chapter was published in [SF16a].

3.2 Setup and Problem Formulation

3.2.1 Setup

We assume that a server has m messages b1, b2, . . . , bm, taking values in a finite field Fq, and

n clients 1, 2, . . . , n. Each client i ∈ [n] already knows (has as side information) a subset

of the m messages; we denote by Si ⊆ [m] the side information of client i (Si could be the

empty set), and by Ri = [m]\Si the set of messages that the client may request (does not

have).

50

Broadcast transmissions and coding

The server is connected to the clients through error-free broadcast transmissions; that is, all

clients perfectly receive each server transmission. During the k-th transmission, the server

transmits xk =
∑

j∈[m] akjbj , where akj ∈ Fq are constant coefficients and the addition and

multiplication operations are performed in Fq. Thus the server transmits either one of the

uncoded messages bj , or a linear combination of some of the messages. Assume the server

broadcasts K transmissions x = (x1, x2, . . . , xK). We will denote by Di = φi,dec({bj}j∈Si
,x)

the set of new messages that client i can decode, where φi,dec({bj}j∈Si
,x) is the decoding

function for client i.

Scores and benefit B

Each client i has a rank or preference πi(j) for each of the messages j in her request set Ri;

accordingly, we get a message score si(j) when message j is decoded by client i. Sometimes

we omit the ranking and assume that the message scores are given directly. A client i has

client score s(i) = maxj∈Di
si(j); that is, we only count the message of highest score among

the |Di| messages she decodes. If Di is empty we set s(i) = 0. The benefit B we get is the

aggregate client score B =
∑

i∈[n] s(i). We considered the following models for scores:

-The Borda count method assumes that the ranking is a permutation of the set Ri and

calculates message scores as si(j) = |Ri|+ 1− πi(j) (a message ranked first gives score |Ri|,
ranked second gives score |Ri| − 1, etc.)

-The bimodal score assumes that a fraction Fbim of the messages are much more desirable

than the remaining (1− Fbim) fraction. In particular we assume that the ranking πi(j) is a

permutation of the |Ri| messages, and we set si(j) = Gbim(m+1−πi(j)) if πi(j) <= Fbim|Ri|
and si(j) = m+1−πi(j) otherwise. The parameter Gbim determines how separated (bimodal)

the two sets of messages are.

-The general model assigns an arbitrary weight to each score si(j) = wij.

Performance metrics

We are interested in the tradeoff between the number K of broadcast transmissions and the

51

corresponding achievable benefit B.

3.2.2 Problem Formulation

We first express that the bandwidth aware recommendation problem treats index coding and

pliable index coding as two special cases; and then introduce the three example scenaria we

will examine through theoretical analysis in this chapter.

Relations to Index Coding and Pliable Index Coding

For index coding, a client i requests a specific message ji ∈ Ri. If we set si(j) = 1 for

j = ji and 0 otherwise. Thus s(i) takes values either 0 or 1, depending on whether client

i can decode bji or not, and 0 ≤ B ≤ n. Index coding asks for the minimum number of

transmissions to achieve the maximum benefit B = n possible, i.e., so that all clients receive

the message they have requested.

For pliable index coding, each client is happy to receive any message she does not have

(without any preference). We thus set si(j) = 1, for all i and j ∈ Ri. Then, s(i) takes value

1 if client i decodes any one message in Ri, and 0 ≤ B ≤ n. Pliable index coding asks for

the minimum number of transmissions to achieve benefit B = n.

New Formulations

In the following, we sample three scenaria of the bandwidth aware recommendation problem

depending on the side information size and preference model and then we derive theoretical

results for these scenaria. In each scenario, we ask what is the benefit B given a fixed number

of K transmissions.

•P1. No side information and full ranking

No side information implies that Ri = [m]. We consider the Borda count, where πi(j) defines

for each client i a permutation of [m], and si(j) = m+1−πi(j) is also a permutation of [m].

Thus 0 ≤ B ≤ nm.

•P2. Equal size side information and partial ranking

52

We assume that |Si| = m− r for all clients, πi(j) defines for client i a permutation over the

remaining r messages, and si(j) = r + 1− πi(j). In this case 0 ≤ B ≤ nr.

•P3. Arbitrary size side information and score

If the size of the side information set for each receiver is arbitrary, we cannot use a permuta-

tion of Ri as ranking of the messages to calculate the score, as it would give unfair weight to

the different clients. We assume instead that (fair) scores si(j) = wij are provided as input.

3.3 No Side Information (P1)

This is the simplest case we examine. This problem is close to the rank aggregation problems

studied in the literature [Bor81,DG77,Kem59,DKN01], the difference being that only the

highest ranked message a client receives counts towards the total benefit. Interestingly, while

the rank aggregation problem is polynomial time using the Borda count optimal rule, taking

into account only the highest score message makes the problem NP-hard.

We collect the preferences into an n×m ranking matrix Π, where the (i, j) entry is the

rank of message j by client i, i.e., πi(j). That is, each row of this matrix expresses the

ranking of messages by a client.

Illustrative example

Consider an instance with n = 5 clients, m = 4 messages and the 5× 4 ranking matrix

Π =

1 2 4 3

4 1 2 3

4 2 1 3

4 2 3 1

4 1 2 3

. (3.1)

We can see that, to serve to all clients their first preference (benefit B = 20), we need K = 4

transmissions, yet with only K = 1 transmission (second column) we can already serve to all

clients either their first or their second preference (benefit B = 17). Moreover, in a situation

53

where the server recommends to send to each client their first preference but only one of

these messages is delivered (in time) because of bandwidth constraints, we would in the

worst case achieve benefit B = 8 (e.g., only the first message is delivered); thus taking into

account the bandwidth constraints can more than double the benefit. This difference can

be magnified proportionally to a parameter Gbim, if instead of Borda count we used bimodal

score model with gain factor Gbim.

3.3.1 Problem P1 is NP-hard

We next describe our NP-hard result in the following theorem.

Theorem 8. The bandwidth aware recommendation problem with Borda score model and no

side information (P1) is NP-hard.

Proof. The proof uses a reduction from the set cover problem [Kar72]. We reiterate the set

cover problem in the following. Consider a set cover problem instance, with a universe set

U = {1, 2, . . . , n} and a family of subsets of U , S = {S1, S2, . . . , Sr}. The union of elements

of S is U , i.e., S1 ∪ S2 ∪ . . . ∪ Sr = U and Sj ⊆ U for all j ∈ [r]. The goal of the set cover

problem is to find a subset of S, S ′ ⊆ S, with minimum cardinality such that ∪S∈S′S = U .

We show that a set cover problem instance can be reduced to a P1 problem instance

with m messages and n clients in polynomial time. The clients will correspond to elements

in the universe U , and we will have m = (n + 2)(nr − n + 1) messages, that correspond

to the r subsets in the family S plus some additional (dummy) messages for construction

purposes. We will construct a corresponding n×m ranking matrix Π, and sequentially test

whether a selection of K = 1, 2, . . . , r columns can achieve a benefit greater than or equal

to n(m+ 1− r). Recall that in the ranking matrix the rows correspond to clients (elements

of U), and the columns to messages (each one of the first r columns will represent a subset

in the family S and the remaining dummy messages).

Let us denote by S[i] the family of subsets that contains element i ∈ U , i.e., S[i] = {S ∈
S : i ∈ S}. We denote the cardinality of S[i] by di ≤ r and the columns corresponding to

subsets in S[i] by ji1, ji2, . . . , jidi . Let us define g = nr − n + 1 and d = d1 + d2 + . . . + dn.

54

Then m = (n+ 2)g. The ranking matrix we would like to construct has the following form:

Π = [Π0,Π1,Π2, . . . ,Πn, R], (3.2)

where Π0 is of size n×r; Πi (1 ≤ i ≤ n) is of size n×(g−di); and R is of size n×(2g−r+d).

The construction process is as follows.

• Step 1: construct submatrix Π0. We assign rankings row by row to the matrix. For the

i-th row, assign an arbitrary permutation of ranks 1, 2, . . . , di to di positions corresponding

to S[i], and assign an arbitrary permutation of ranks g + 1, g + 2, . . . , g + r − di to (r − di)

positions corresponding to SC [i] = S\S[i].

• Step 2: construct submatrix Πi, 1 ≤ i ≤ n, of size n×(g−di). First, assign an arbitrary

permutation of the ranks di + 1, di + 2, . . . , g as the row vector of row i. For the other rows

l 6= i, assign an arbitrary permutation of the ranks (i+1)g+1, (i+1)g+2, . . . , (i+1)g+(g−di)

as the row vector of row l.

• Step 3: construct submatrix R. For each row i of submatrix R, assign an arbitrary

permutation of the remaining (2g − r + d) ranks g + r − di + 1, g + r − di + 2, . . . , 2g, 2g +

g − d1 + 1, . . . , 3g, 3g+ g − d2 + 1, . . . , 4g, . . . , (n+ 1)g + g − dn + 1, . . . , (n+ 2)g, (i+ 1)g +

1, (i+ 1)g + 2, . . . , (i+ 1)g + (g − di) as a row vector of row i.

Next, we prove that finding a cover of size K can be achieved by finding K columns that

achieve a certain benefit; hence we can sequentially test whether K is the minimum set cover

size, from which the theorem follows. We map a selection of K sets for the cover problem

to the selection of the corresponding messages (columns of Π0) to transmit; and reversely,

when selecting messages to transmit, we consider as part of the cover the sets corresponding

to messages/columns of Π0 (we ignore dummy messages). Thus we say that selection of

K columns to transmit “covers” a client, if the corresponding set in the set cover problem

includes this client. We finish the proof of this theorem by following Lemma 6.

Lemma 6. The selection of K subsets in S can cover the universe U , if and only if we can

find K columns in matrix Π that achieve benefit at least n(m+ 1− r).

55

Proof. • Necessity. If a selection of K subsets in S can cover the universe U , this selection

can achieve at least a minimum rank of r for any client, resulting in a benefit at least

n(m+ 1− r) according to our ranking assignment in construction step 1.

• Sufficiency. Suppose there exists an optimal selection K of size K that does not cover

some client i ∈ [n] and achieves a benefit BK ≥ n(m+ 1− r).

We observe that the selection K does not contain any column in Πi.

Indeed, if the selection K does not cover client i, but contains a column j in Πi, then we

can simply construct another selection by replacing column j with the column that contains

the rank 1 choice of client i. Formally, we can construct K′ = K ∪ {π−1
i (1)}\{j}, where

π−1
i (1) is the column that contains the rank 1 choice of client i. From construction, we can

see that the ranks of message π−1
i (1) (column π−1

i (1)) is better than j for all clients and

at least client i can improve her score. So K′ is a better selection than K, resulting in a

contradiction of K being an optimal selection.

Thus it suffices to consider the case that K does not cover client i and does not contain

any column in Πi. From construction, we note that columns corresponding to S[i] and Πi

contain choices of ranks 1, 2, . . . , g of client i. As a result, the minimum rank that client i

can achieve is g + 1, and the maximum score client i can achieve is m − g. Therefore, the

benefit can be bounded by

BK ≤ (n− 1)m+ (m− g) = n(m+ 1− r)− 1 < n(m+ 1− r), (3.3)

which results in a contradiction with BK ≥ n(m+ 1− r).

We finally argue that a selection K of K columns of the ranking matrix Π that can cover

all i ∈ U , does not contain columns outside Π0. This follows from construction, since a

column j1 in Πi (i = 1, 2, . . . , n) is dominated by any column in Π0 that can cover client i,

such that the removal of j1 will not affect the benefit. This means that K\{j1} can achieve

the same benefit as K. In this case, the testing would stop at most at step K − 1. Similarly,

a column j2 in R is dominated by any column in Π0 such that the removal of j2 will not

affect the benefit.

56

We illustrate the construction of matrix Π and the reduction using a simple example.

Example: Let us consider a set cover problem represented by the following adjacency

matrix:

1 1 0 1

0 1 1 0

1 0 1 0

,

where each element of the universe U = {1, 2, 3} is represented by a row and each subset in

the subset family S = {S1 = {1, 3}, S2 = {1, 2}, S3 = {2, 3}, S4 = {1}} is represented by a

column. In this case, we have n = 3, r = 4, g = nr − n+ 1 = 10, m = (n+ 2)g = 50. Then

we can construct our ranking matrix in the following form:

Π =

1 2 11 3 4 5 . . . 10 31 32 . . . 38 41 42 . . . 48 12 . . .

11 1 2 12 21 22 . . . 27 3 4 . . . 10 41 42 . . . 48 13 . . .

1 11 2 12 21 22 . . . 27 31 32 . . . 38 3 4 . . . 10 13 . . .

.

Π0 Π1 Π2 Π3 R

If we choose K columns, we can see that only when K columns covering at least one

column in {1, 2, 4} (i.e., covering element 1), at least one column in {2, 3} (i.e., covering

element 2), and at least one column in {1, 3} (i.e., covering element 3) we can make the

benefit no less than n(m+ 1− r) = 141).

3.3.2 Greedy Selection Approximation Algorithm

For K = 1, we simply need to find the column of the matrix Π, whose elements have the

highest sum (this would be the benefit B). For K > 1, we need to select K columns in a

set K such that BK is as large as possible (we denote by BK the benefit from a choice of a

set of columns K). Alg. 3 describes a straightforward greedy selection algorithm (that we

denote by AlgP1), that is sufficient to achieve a constant approximation ratio. Let K∗ be the

optimal selection of K columns, and B∗ , BK∗ the optimal benefit achieved by this selection

over this problem instance. We have the following theorem.

Theorem 9. For any P1 problem instance with no side information and full ranking, given

57

Algorithm 3 Greedy selection algorithm for P1.

1: Input: ranking matrix Π and number of columns to select K.
2: Output: a set of columns K.
3: Initialization: set K = ∅, BK = 0.
4: for k = 1 : K do
5: j = argmaxj′∈[m]\K BK∪{j′}

find a column j to maximize the benefit given current k−1 selected columns K.
6: K = K ∪ j.
7: end for

that we can make K broadcast transmissions, AlgP1 can achieve an approximation ratio at

least 1/(1− (1− 1
K
)K), namely,

BK
B∗ ≥ 1− (1− 1

K
)K . (3.4)

Proof. We use B(k) and δ(k), k = 1, 2, . . . , K, to denote the benefit collected after k steps

and the increase of benefit in the k-th step, respectively, using AlgP1. That is:

B(1) = δ(1);

B(2) = B(1) + δ(2);

...

BK = B(K) = B(K − 1) + δ(K).

(3.5)

We set B(0) = 0 and denote by B∗ the optimal benefit and by K∗ an optimal selection of

K messages (columns of the ranking matrix) to transmit that achieve B∗. For all k, we can

bound δ(k) using the following lemma.

Lemma 7. In AlgP1, we can bound the increase in benefit in each step by:

δ(k) ≥ B∗ − B(k − 1)

K
, k = 1, 2, . . . , K. (3.6)

Proof. To prove this lemma, we first observe the following. Consider two selections of mes-

sages (columns of the ranking matrix) K1 and K2, with K1 ⊆ K2. If we add a new column j

58

to these selections, we get that:

BK1∪{j} − BK1 ≥ BK2∪{j} − BK2 . (3.7)

Indeed, when we add message j (column j) to K1, assume C is the set of clients whose score

can be improved. The left hand side of eq. (3.7), denoted by δ1, is the increase in score due

to this set of clients C and to a level determined by their ranking of message j. Because we

have K1 ⊆ K2, when we add message j (column j) to K2, clearly clients not in C cannot

achieve a higher score because of j and clients in C cannot achieve a benefit improvement as

large as δ1 (since some of the clients in C may have already higher scores thanks to messages

in K2\K1).

Going back to the proof of (3.6), observe that at the beginning of the k-th step, the

benefit difference from the optimal benefit is B∗ −B(k− 1). From the pigeonhole principle,

at least one of the K messages in the optimal set K∗, let us say j, can improve the benefit

at least by B∗−B(k−1)
K

, since a future selection of j can only offer improvements less than or

equal to what it can offer in the current stage from (3.7).

Return back to the proof of Theorem 9. Using Lemma 7 we can prove the bound of our

theorem.

59

B(K) = B(K − 1) + δ(K)

≥ B(K − 1) + B∗−B(K−1)
K

= (1− 1
K
)B(K − 1) + 1

K
B∗

≥ (1− 1
K
)[(1− 1

K
)B(K − 1) + 1

K
B∗] + 1

K
B∗

= (1− 1
K
)2B(K − 2) + 1

K
[1 + (1− 1

K
)]B∗

≥ . . .

≥ (1− 1
K
)K−1B∗

K
+ 1

K
[1 + (1− 1

K
) + (1− 1

K
)2 + . . .+ (1− 1

K
)K−2]B∗

= (1− 1
K
)K−1B∗

K
+ [1− (1− 1

K
)K−1]B∗

= [1− (1− 1
K
)K]B∗

≥ [1− 1
e
]B∗,

(3.8)

where the first four inequalities hold by repeatedly using Lemma 7; the second to the last

equality holds according to the finite geometric series calculation; the last inequality holds

according to the inequality (1− 1
K
)K ≤ 1/e.

From Theorem 9, we can see that for any K, the approximation ratio is bounded by a

constant factor 1/(1− 1
e
) = 1.58.

3.3.3 Bounds on the Optimal Benefit B∗

We show upper and lower bounds of optimal benefit B∗.

Theorem 10. For any P1 instance with m messages, n clients and K transmissions, the

optimal benefit B∗ is lower bounded by

B∗ ≥ Kn(m+ 1)

K + 1
. (3.9)

Moreover, if n ≥ 6K log(m), there exist P1 instances such that the optimal benefit B∗ can

60

be upper bounded by

B∗ ≤ (1 + δ)
Kn(m+ 1)

K + 1
, (3.10)

where δ =
√

6K log(m)
n

.

Proof.

Lower bound

We first prove the lower bound by showing that a simple random choice of K columns

achieves expected benefit µ ,
Kn(m+1)

K+1
and thus, there exists a selection of K columns that

achieves at least such benefit, B ≥ µ.

Consider an n×m ranking matrix Π. Assume we select uniformly at random K columns

from all m columns, i.e., with equal probability select 1 from all
(

m
K

)

possible selections. We

will calculate the expected benefit from this random selection.

For a given selection, if we denote byX1, X2, . . . , Xn the score received by clients 1, 2, . . . , n,

then the benefit is B = X1 + X2 + . . . + Xn. Note that since we randomly select the K

columns and the rows can have arbitrary assignments of ranking for each client, the expected

scores are equal, namely, EX1 = EX2 = . . . = EXn. Thus it is sufficient to calculate EX1.

Denote by K a realization of the K-selection of columns. We next just consider all

(m−K+1) possibilities for the score X1 that client 1 has achieved. We will use the notation

π−1
i (j) to refer to the message ranked j by client i.

• Case 1: the message ranked 1 is in K, i.e., π−1
1 (1) ∈ K, and X1 = m. The probability of

{π−1
1 (1) ∈ K} is p1 =

K
m
.

• Case 2: the message ranked 1 is in [m]\K and the message ranked 2 is in K, i.e., {π−1
1 (2) ∈

K∧ π−1
1 (1) /∈ K}. In this case, X1 = m− 1 and occurs with probability p2 =

K(m−K)
m(m−1)

, where

K
m

is the probability of {π−1
1 (2) ∈ K} and m−K

m−1
is the probability of {π−1

1 (1) /∈ K}.
Continuing along these lines we get:

• Case j: the messages ranked 1, 2, . . . , j− 1 are in [m]\K and the message ranked j is in K,

i.e., {π−1
1 (j) ∈ K∧π−1

1 (1) /∈ K∧. . .∧π−1
1 (j−1) /∈ K}. In this case, X1 = m+1−j, and occurs

with probability pj =
K(m−K)(m−K−1)...(m−K−j+2)

m(m−1)(m−2)...(m−j+1)
, where K

m
is the probability of {π−1

1 (j) ∈ K},

61

and (m−K)(m−K−1)...(m−K−j+2)
(m−1)(m−2)...(m−j+1)

is the probability of {π−1
1 (1) /∈ K∧. . .∧π−1

1 (j−1) /∈ K}. Hence,
we have

EX1 = p1m+ p2(m− 1) + . . .+ pj(m+ 1− j) + . . .+ pm−K+1K

= K
m!

m−K+1
∑

j=1

[P (m−K, j − 1)(m− j + 1)!] = K(m+1)
K+1

,
(3.11)

where the third equality holds from Lemma 8 that we provide later after this proof.

Upper bound

We use a probabilistic method to construct a n ×m preference ranking matrix instance Π

as follows. Draw a permutation of [m] from all m! possible permutations iid uniformly at

random, and assign it to the i-th row of the ranking matrix Π, for all i = 1, 2, . . . , n.

Consider a fixed K-selection of columns, e.g., K = [K] = {1, 2, . . . , K}. Assume X1, X2,

. . ., Xn are the scores received by clients 1, 2, . . . , n, then the benefit is B = X1+X2+. . .+Xn.

Due to the iid uniform selection of each row of Π, we have that EX1 = EX2 = . . . = EXn.

We calculate EX1, by listing all the possibilities for client 1’s (first row of the ranking matrix)

rankings and scores. Recall that we use π−1
1 (j) to denote the column (message) that is ranked

j by client 1, and that the score of receiving a ranking j message is m+ 1− j. We have the

following (m−K + 1) possibilities for X1.

• Case 1: the message ranked 1 is in [K], i.e., {π−1
1 (1) ∈ [K]}. In this case X1 = m, and the

probability of this event equals p1 =
K(m−1)!

m!
, where K is the number of ways we can have the

message ranked 1 selected in [K]; (m− 1)! is the number of ways we can rank the remaining

(m − 1) messages; and the total number of possible assignments is m!. We underline that

each assignment occurs with equal probability.

• Case 2: the message ranked 1 is in [m]\[K] and the message ranked 2 is in [K], i.e.,

{π−1
1 (2) ∈ [K] ∧ π−1

1 (1) /∈ [K]}. In this case, X1 = m− 1, and the associated probability is

p2 =
KP (m−K,1)(m−2)!

m!
, where K is the number of ways we can have the message ranked 2 in

[K]; P (m−K, 1), the 1-permutation of m−K, is the number of ways to assign the message

ranked 1 in the remaining m − K positions K + 1, K + 2, . . . , m; (m − 2)! is the number

of ways we can assign the remaining (m − 2) messages; and the total number of possible

62

assignments is m!.

Continuing along these lines we get:

• Case j: the messages ranked 1, 2, . . . , j − 1 are in [m]\[K] and the message ranked j is in

[K], i.e., {π−1
1 (j) ∈ [K]∧π−1

1 (1) /∈ [K]∧ . . .∧π−1
1 (j−1) /∈ [K]}. In this case, X1 = m+1−j,

and this event occurs with probability pj = KP (m−K,j−1)(m−j)!
m!

, where K is the number of

ways we can have the message ranked j in [K]; P (m−K, j−1), the j-permutations of m−K,

is the number of ways we can assign the messages ranked 1, 2, . . . , j − 1 in the remaining

m−K positions K+1, K+2, . . . , m; and (m−j)! is the number of choices for the remaining

(m− j) messages. Therefore:

EX1 = p1m+ p2(m− 1) + . . .+ pj(m+ 1− j) + . . .+ pm−K+1K

= K
m!

m−K+1
∑

j=1

[P (m−K, j − 1)(m− j + 1)!] = K(m+1)
K+1

,
(3.12)

where the third equality holds from Lemma 8.

From the Chernoff bound, we can bound the probability that the benefit is above

BUPPER = (1 + δ)µ (where δ =
√

6K log(m)
n

):

Pr{B ≥ (1 + δ)µ} = Pr{B
m

≥ 1
m
(1 + δ)µ} ≤ e−

µδ2

3m = e−
2K2(m+1) log(m)

m(K+1) , ǫ, (3.13)

where the first equality just normalizes the random variable B, i.e., B
m

= X1

m
+ X2

m
+ . . .+ Xn

m
,

such that Xi

m
is between 0 and 1. Note that EB

m
= µ

m
.

The inequality Pr{B ≥ (1 + δ)µ} ≤ ǫ implies that for the fixed K-selection of columns,

[K], there are at most an ǫ fraction of instances when selecting the matrix Π that can achieve

a benefit no less than (1+ δ)µ. Due to the uniform at random selection of Π, given any fixed

K-selection, it is also the case that at most ǫ fraction of instances can achieve this benefit

(1 + δ)µ. There are in total
(

m
K

)

possible selections of columns. The fraction of instances of

matrices Π that can achieve a benefit no less than (1+ δ)µ given any of the
(

m
K

)

K-selections

63

is at most

(

m
K

)

ǫ < mKe−
2K2(m+1) log(m)

m(K+1) = e(K log(m)− 2K2(m+1) log(m)
m(K+1)

) = e(−
K log(m)[(K−1)m+2K]

m(K+1)
) < 1, (3.14)

which indicates that there must exist instances, such that, for any K-selection, the average

score cannot be more than BUPPER. This concludes the proof of the theorem.

Lemma 8.

1

m!

m−K+1
∑

j=1

[P (m−K, j − 1)(m− j + 1)!] =
m+ 1

K + 1
, for any K ≤ m. (3.15)

Proof. Change the variable of this equation by setting h = m − K. Denote by H(h) the

expression on the left hand side of eq. (3.15), i.e.,

H(h) =
1

m!

h+1
∑

j=1

[P (h, j − 1)(m− j + 1)!]. (3.16)

To show that H(h) = m+1
m−h+1

for any m ≥ h, we use a mathematical induction method for h

and consider m as a parameter.

For h = 0, 1
m!
P (0, 0)m! = 1 and for h = 1, 1

m!
(P (1, 0)m! + P (1, 1)(m − 1)!) = 1 + 1

m
,

eq. (3.15) holds. Assume eq. (3.15) holds for h ≤ m− 1. Now, for h+ 1, we have

H(h+ 1) = 1
m!

h+2
∑

j=1

[P (h+ 1, j − 1)(m− j + 1)!]

= 1
m!
[(h+1)!
(h+1)!

m! +
h+2
∑

j=2

(h+1)!
(h+1−j+1)!

(m− j + 1)!]

= 1 + h+1
m(m−1)!

h+1
∑

l=1

h!
(h+1−l)!

(m− 1− l + 1)!

= 1 + (h+1)
m

· m−1+1
m−1−h+1

= m+1
m−h

,

(3.17)

where the third equality holds due to a change of variable l = j − 1 and the fourth equality

holds due to the induction hypothesis on h with parameter m − 1. Therefore, the equa-

tion (3.15) holds.

64

We underline that the upper bound does not apply for all instances (it is trivial to create

instances where we get B∗ = nm) but only for the worst case instances. Note that if δ is

small the lower and upper bound have the same order of magnitude, which implies that the

bounds become tight. Moreover, if the number of clients increases to n > O(K3 log(m)),

then the (worst case instances) upper bound can be simplified to O(mn(1 − 1
K
)), which

is close to the optimal nm. In particular, if we consider all possible n = m! clients that

have distinct rankings (permutations of [m]), then the benefit achieved by any K-selection

is Kn(m+1)
K+1

.

Average case analysis

We here assume uniform distribution over the client rankings, and calculate the expected

benefits. In particular, the ranking matrix Π is generated as follows: for each row (client

ranking), select uniformly and independently a permutation from all m! permutations of [m]

(with repetition).

Theorem 11. The average benefit (averaged over the ranking matrices Π) in P1 using the

Borda score model satisfies:

EΠB ≥ µ+ n∆(m,n,K),

where µ = Kn(m+1)
K+1

, ∆(2, n, 1) = 1√
2πn

for even n, ∆(2, n, 1) = 1√
2π(n−1)

for odd n ≥ 3,

∆(m,n,K) ≈ 1√
2πn

σ(m,K) for large n, and σ(m,K) =
√

(m+1)(m−K)K
(K+1)2(K+2)

is the standard

deviation of a client’s score distribution when we randomly select K columns.

Note that we have already shown in Theorem 10 that the worst case benefit is µ; the

above Theorem 11 shows that the average benefit is higher by at least n∆(m,n,K).

Proof. We consider a family of instances I, each with m messages and n clients. The

ranking matrix Π is generated as follows: for each row, uniformly and independently draw

a permutation from all m! permutations of [m] and assign it to the row.

We first show that ∆(2, n, 1) = 1√
2πn

for even n and ∆(2, n, 1) = 1√
2π(n−1)

for odd n ≥ 3.

Consider a n× 2 ranking matrix instance Π in the family I. Define n1 and n2 to be the

numbers of 1s and 2s in the first column. Obviously, we have n1 +n2 = n and n1 and n2 are

65

the numbers of 2s and 1s in the second column. Our strategy is to select column 1 if n1 ≥ n2

and to select column 2, otherwise. For even n, the expected benefit with respect to Π is

EB =

n/2
∑

n1=0

1

2n

(

n

n1

)

[2(n− n1) + n1] +
n

∑

n1=n/2+1

1

2n

(

n

n− n1

)

[(n− n1) + 2n1], (3.18)

where the first term corresponds to the selection of column 2 and the second term corresponds

to the selection of column 1. Here, in the first term,
(

n
n1

)

is the number of choices for n1 2s

in the second column, resulting in a probability of 1
2n

(

n
n1

)

that the benefit is 2(n− n1) + n1.

The interpretation is similar for the second term. Similarly, for odd n, the expectation of

benefit with respect to Π is

EB =

n−1
2

∑

n1=0

1

2n

(

n

n1

)

[2(n− n1) + n1] +
n

∑

n1=
n+1
2

1

2n

(

n

n− n1

)

[(n− n1) + 2n1]. (3.19)

By simplifying this expression (see Lemma 9), we get that:

EB =

3n
2
+ n√

2πn
, n even,

3n
2
+ n√

2π(n−1)
, n ≥ 3, odd.

(3.20)

We next consider the general term ∆(m,n,K). The strategy we use here is as follows. We

randomly select K columns. If this selection can achieve a benefit no less than µ = Kn(m+1)
K+1

,

we keep these columns as our selection. If not, we discard these columns, and select columns

with a benefit at least µ. This is always possible according to Theorem 10.

Next, we look at the case where the benefit we actually achieve is greater than µ +

n√
2πn

σ(m,K).

For a fixed selection of K columns, if Xi is the score of client i, then the benefit X

can be represented as X =
n
∑

i=1

Xi. According to the central limit theorem, the distribution

of Y = X−µ√
nσ(m,K)

is approximately the standard normal distribution N (0, 1). Given our

66

selection algorithm, the benefit is lower bounded by:

B ≥

µ, X ≤ µ,

X, X > µ.
(3.21)

Hence, the expected benefit can be lower bounded by

EB ≥ µ+ Pr{X > µ}E[X − µ|X > µ]. (3.22)

The second term Pr{X > µ}E[X − µ|X > µ] can be approximately calculated as:

Pr{X > µ}E[X − µ|X > µ] ≈
∫ ∞

0

√
nσ(m,K)yφ(y)dy =

n√
2πn

σ(m,K), (3.23)

where φ(y) = 1√
2π
e−

y2

2 is the probability density function of the standard normal distribution.

The calculation of σ(m,K) is in Lemma 10. From this the theorem follows.

In addition, we can strictly lower bound the average performance by involving third

moment of X1 and using the Berry-Esseen theorem.

Corollary 1. The expectation of benefit can be strictly lower bounded by µ + n√
2πn

σ(m,K)

(1− e−
m2

2)− m3

2σ2(m,K)
.

Proof. The Berry-Esseen theorem states that the difference of distribution of Y = (X−µ)√
nσ(m,K)

and the normal distribution can be bounded by

|FY (y)− Φ(y)| ≤ ρ

2σ3(m,K)
√
n
, (3.24)

for all n and y, where FY (y) and Φ(y) are the cumulative distribution functions of Y and

the normal distribution, and ρ = E|X/n− EX/n|3 < m3. We also know that |X −µ| ≤ mn.

67

Hence, the term Pr{X > µ}E[X − µ|X > µ] can be bounded by

Pr{X > µ}E[X − µ|X > µ] ≥
∫ m

0

√
nσ(m,K)yφ(y)dy −√

nσ(m,K) ρ
2σ3(m,K)

√
n

= n√
2πn

σ(m,K)(1− e−
m2

2)− m3

2σ2(m,K)
.

(3.25)

This proves the corollary.

Lemma 9. For m = 2 and K = 1, we have

EB =

3n
2
+ n√

2πn
, n even,

3n
2
+ n√

2π(n−1)
, n ≥ 3, odd.

(3.26)

Proof. When n is even, we have

E[B] = 1
2n
[
n/2
∑

n1=0

(

n
n1

)

(2(n− n1) + n1) +
n/2
∑

n2=0

(

n
n2

)

(2(n− n2) + n2)−
(

n
n
2

)

(3n
2
)]

= 2
2n
[
n/2
∑

n1=0

(

n
n1

)

(2n− n1)−
(

n
n/2

)

(3n
4
)]

= 2
2n
[n(2n +

(

n
n/2

)

)− n2(n−2) −
(

n
n/2

)

(3n
4
)]

≈ 3n
2
+ n√

2πn
,

(3.27)

where the last approximation is due to the Stirling’s approximation and the third equality

holds because of the following two equations:

2n =
n/2
∑

n1=0

(

n
n1

)

+
n
∑

n1=n/2+1

(

n
n1

)

= 2
n/2
∑

n1=0

(

n
n1

)

−
(

n
n/2

)

, (3.28)

and
n/2
∑

n1=0

(

n
n1

)

n1 = n
n/2
∑

n1=1

(n−1)!
(n1−1)!(n−n1)!

= n
n/2−1
∑

n′
1=0

(n−1)!
n′
1!(n−1−n′

1)!
= n2(n−2). (3.29)

68

When n ≥ 3 is odd, we have

E[B] = 1
2(n−1) [

(n−1)/2
∑

n1=0

(

n
n1

)

(2n− n1)]

= 1
2(n−1) [n2

n − (n2(n−2) − n
2

(

n−1
(n−1)/2

)

)]

≈ 3n
2
+ n√

2π(n−1)
,

(3.30)

where the last approximation is due to the Stirling’s approximation and the second equality

holds because of the following two equations:

2n =
(n−1)/2
∑

n1=0

(

n
n1

)

+
n
∑

n1=(n+1)/2

(

n
n1

)

= 2
(n−1)/2
∑

n1=0

(

n
n1

)

, (3.31)

and

(n−1)/2
∑

n1=0

(

n
n1

)

n1 = n
(n−1)/2
∑

n1=1

(n−1)!
(n1−1)!(n−n1)!

= n
(n−3)/2
∑

n′
1=0

(

n−1
n′
1

)

= n
2(n−1)−(n−1

(n−1)/2)
2

. (3.32)

Lemma 10.

σ(m,K) =

√

(m+ 1)(m−K)K

(K + 1)2(K + 2)
(3.33)

Proof. We already know that the expected value of the score X1 is K(m+1)
K+1

, and the distri-

bution of X1 is as follows:

Pr{X1 = m+ 1− j} =
KP (m−K, j − 1)(m− j)!

m!
, j = 1, 2, . . . , m+ 1−K. (3.34)

Next, we prove the following result using induction:

E[X2
1] =

m+1−K
∑

j=1

Pr{X = m+ 1− j}(m+ 1− j)2 = K2(m+1)
K+1

+ K(m−K)(m+1)
K+2

, (3.35)

or

1
m!

h+1
∑

j=1

[P (h, j − 1)(m− j + 1)!(m− j + 1)] = K(m+1)
K+1

+ (m−K)(m+1)
K+2

. (3.36)

69

We change the variable of this equation by setting h = m − K. We denote by L(h) the

following expression:

L(h) =
1

m!

h+1
∑

j=1

[P (h, j − 1)(m− j + 1)!(m− j + 1)]. (3.37)

When h = 0, the initial condition holds, i.e., L(0) = m = m(m+1)
m+1

+ 0(m+1)
m−0+2

. Assume that

L(h) = (m−h)(m+1)
m−h+1

+ h(m+1)
K+2

holds for all m > h. Then, for h + 1, we have

L(h+ 1) = 1
m!

h+2
∑

j=1

[P (h+ 1, j − 1)(m− j + 1)!(m− j + 1)]

= 1
m!
m!m+ 1

m!

h+2
∑

j=2

[(h+1)!
(h+1−j+1)!

(m− j + 1)!(m− j + 1)]

= m+ h+1
m

[1
(m−1)!

h+1
∑

l=1

[h!
(h+1−l)!

(m− 1− l + 1)!(m− 1− l + 1)]]

= m+ h+1
m

[(m−1−h)m
m−h

+ hm
m−h+1

]

= (m−h−1)(m+1)
m−h

+ (h+1)(m+1)
m−h+1

,

(3.38)

where the third equality holds due to a change of variable l = j − 1 and the fourth equality

holds due to the induction hypothesis on h with parameter m − 1. Therefore eq. (3.35) is

proved.

Furthermore, we can calculate σ2(m,K) = E[X2
1]− µ2 = (m+1)(m−K)K

(K+1)2(K+2)
.

3.4 Equal Size Side Information (P2)

We now look at the case where all clients have side information of the same size |Si| = m− r

and thus |Ri| = r, ∀ i. We again assume Borda count scores.

3.4.1 Bounds on the Optimal Benefit B∗

We are interested in the optimal benefit B∗ we can achieve with K transmissions (recall that

0 ≤ B ≤ nr). We next prove a lower bound on the performance of the optimal algorithm

through dynamic programming.

70

Theorem 12. The optimal benefit B∗ satisfies

B∗ ≥

nr
4e

for K = 1,

nr
e
(1
2
− 1

8e
+ 1

16e2
) for K = 2,

nr
e
(3
4
− 1

4e
+ 1

16e2
) for K = 3,

nr
e
(1− 5

8e
+ 13

64e2
) for K = 4,

nr(1− 4e
K
+ 12e

K2) for 5 ≤ K < r

nr for K = r.

(3.39)

The proof of this theorem is constructive: we provide a randomized algorithm and show

that it achieves on average the performance prescribed in the theorem, which implies that

the optimal performance can only be better. The approximation ratio of this scheme is

O(1), as the best achievable benefit is nr. We also note that if K = r, we can easily achieve

B = nr: the server can use an MDS erasure correcting code to create r linear combinations

to transmit, so that each client using her side information can solve for the r messages she

misses. We next show the proof of the theorem.

Proof. We first show the strategy for one transmission and a claim to characterize the benefit.

For K = 1, assume that the server makes the transmission x1 = a1b1+a2b2+ . . . ambm where

aj , j ∈ [m], are the constant coding coefficients (we will call the vector a = (a1, a2, . . . , am)

the coding vector). Assume we select iid random values for the coding coefficients, setting

aj = 1 with probability 1/r, and aj = 0 otherwise.

Claim 2. There exists a binary coding vector aξ that enables at least nξ
re

clients to decode a

message in their request set they have ranked less than or equal to ξ, for ξ = 1, 2, . . . , r, and

thus to achieve a benefit of at least (r+1−ξ)nξ
re

.

Proof. Without loss of generality, assume that client i has the request setRi = {bl1 , bl2 , . . . , blr}
with ranking π(l1) = 1, π(l2) = 2, . . . , π(lr) = r. Client i can decode a message with rank

at least ξ, i.e., can decode some blj with j ≤ ξ, if and only if alj = 1 and al1 = al2 =

71

. . . = alj−1
= alj+1

= . . . = alr = 0. Indeed, we can then express the server transmis-

sion as x1 = blj +
∑

l∈Si
albl; client i can remove from x1 the part

∑

l∈Si
albl using her side

information, and decode blj . The probability that such an event happens is:

(

ξ

1

)

1

r
(1− 1

r
)r−1 ≤ ξ

re
, pξ. (3.40)

Hence, randomly selecting a coding vector would enable on average npξ = nξ
re

clients to

decode messages of rank no more than ξ, and thus, from the averaging principle, there exists

at least one coding vector aξ that also enables this.

Return back to the proof of the theorem for K > 1. We consider the following dynamic

programming problem with K stages, each corresponding to one transmission. At stage k,

1 ≤ k ≤ K, the server can select one of r actions, which of the r possible aξ vectors to use.

In particular, we proceed as follows:

− At the beginning of stage 1, no transmission has yet been made and there are n1 = n

clients in the system. The server chooses an action ξ1 ∈ [r], i.e., uses the coding vector aξ1

to make a transmission. From Claim 2, this transmission enables n1ξ1
re

clients to decode a

message that they have ranked less than or equal to ξ1, and thus, we can achieve a benefit

B1 ≥ (r+1−ξ1)nξ1
re

. We remove these n1ξ1
re

clients from the system and denote the remaining

number of clients by n2 = n1(1− ξ1
re
).

− At the beginning of stage 2, we only consider the n2 clients; similarly to before, the

server chooses an action ξ2 ∈ [r] to enable n2ξ2
re

clients decode a message ranked less than or

equal to ξ2. At this point we have achieved benefit B2 ≥ B1 +
(r+1−ξ2)n2ξ2

re
. We remove these

n2ξ2
re

clients from the system and denote the remaining number of clients by n3 = n2(1− ξ2
re
).

− Continuing along the same lines, at the beginning of stage k = 3, 4, . . . , K, we have

nk clients to consider; the server chooses an action ξk that enables to achieve befit Bk ≥
Bk−1 +

(r+1−ξk)nkξk
re

; and we set nk+1 = nk(1− ξk
re
).

Let Jk(nk) be the benefit the nk clients can receive for the remaining K + 1− k stages.

72

We have the following Bellman equation:

Jk(nk) = max
ξk∈[r]

{(r + 1− ξk)
ξknk

re
+ Jk+1(nk(1−

ξk
re

))}, (3.41)

with JK+1(nK+1) = 0 (as we will only make K transmissions).

From the above equation, we can see that the benefit achieved using this scheme is

B = J1(n).

• If K = 1, we set ξ1 =
r
2
(r even) and ξ1 =

r+1
2

(r odd), and get J1(n) ≥ rn
4e
.

• If K = 2, we set ξ1 = ⌈ r
2
(1− 1

4e
)⌉ and ξ2 = ⌈ r

2
⌉, and get J1(n) ≥ rn

e
(1
2
− 1

8e
+ 1

16e2
).

• If K = 3, we set ξ1 = ⌈ r
2
(1 − 1

2e
)⌉, ξ2 = ⌈ r

2
(1 − 1

4e
)⌉ and ξ3 = ⌈ r

2
⌉, and get J1(n) ≥

rn
e
(3
4
− 1

4e
+ 1

16e2
).

• If K = 4, we set ξ1 = ⌈ r
2
(1− 3

4e
)⌉, ξ2 = ⌈ r

2
(1− 1

2e
)⌉, ξ3 = ⌈ r

2
(1− 1

4e
)⌉ and ξ4 = ⌈ r

2
⌉, and

get J1(n) ≥ rn
e
(1− 5

8e
+ 13

64e2
).

• For K > 4, the theorem follows from Claim 3 that by setting k = 1, we get J1(n) ≥
rn(1− 4e

K
+ 12e

K2).

Claim 3. Jτ (n) ≥ nr(1− 4e
K+1−k

+ 12e
(K+1−k)2

) for K > 4.

Proof. We use the backward induction method for the last 5 stages. By setting ξK−4 =

⌈ r
2
(1− 1

e
+ 5

8e2
)⌉, ξK−3 = ⌈ r

2
(1− 3

4e
)⌉, ξK−2 = ⌈ r

2
(1− 1

2e
)⌉, ξK−1 = ⌈ r

2
(1− 1

4e
)⌉ and ξK = ⌈ r

2
⌉,

we can get JK−4(nK−4) ≥ rnK−4

e
(5
4
− 9

8e
+ 39

64e2
)
.
= 0.33rnK−4. Therefore, we have the initial

condition:

JK−4(nK−4)
.
= 0.33rnK−4

≥ rnK−4(1− 4e
K+1−(K−4)

+ 12e
(K+1−(K−4))2

)
.
= 0.13rnK−4.

Assume that Jk+1(nk+1) ≥ rnk+1(1− 4e
K+1−(k+1)

+ 12e
(K+1−(k+1))2

) holds for k+1, then consider

73

Jk(nk) (k < K − 4):

Jk(nk) = maxξk∈[r]{(r + 1− ξk)
ξknk

re
+ Jk+1(nk(1− ξk

re
))}

≥ maxξk∈[r]{(r + 1− ξk)
ξknk

re
+ rnk(1− ξk

re
)(1− 4e

K+1−(k+1)
+ 12e

(K+1−(k−1))2
)}

≥ rnk(1− 4e
K+1−k

+ 12e
(K+1−k)2

),

where the first inequality holds due to the hypothesis and the property of the Bellman

equation; the second inequality holds by setting ξk to be an integer between ξ′ = 2re
K−k

−
6re

(K−k)2
+ 1/2 and ξ′′ = 2re

K−k
− 6re

(K−k)2
− 1/2. If we define f(ξ) = (r + 1 − ξ) ξnk

re
+ rnk(1 −

ξ
re
)(1− 4e

K+1−(k+1)
+ 12e

(K+1−(k+1))2
), then we have f(ξk) ≥ min{f(ξ′), f(ξ′′)} ≥ rnk(1− 4e

K+1−k
+

12e
(K+1−k)2

). Therefore, Claim 3 holds.

3.4.2 Algorithms for Problem P2

We base our proposed algorithm (that we term AlgP2) in this case, as shown in Alg. 4, on the

randomized algorithm described in the proof of Theorem 12 that operates in rounds, and in

each round selects what coding vector to transmit so as to satisfy a certain fraction of clients.

The only random step in this algorithm is the selection of a binary coding vector in Claim 2;

however, we can easily derandomize it using a deterministic algorithm in polynomial time:

we sequentially visit the entries of the coding vector and decide whether to assign value 0 or

1 depending on how the benefit would increase, as described in detail as follows.

Derandomization Function for Claim 2

We here describe a polynomial-time deterministic algorithm to select a coding vector aξ. We

refer to the clients that can decode a message they have ranked less than or equal to ξ as

the qualified clients. For a given coding vector a, we denote the number of qualified clients

by Y [a].

We sequentially assign a coding coefficient 0 or 1 to them coding coefficients in the vector

a = [a1 a2 . . . am] in m steps. At the beginning of the j-th step, the first j − 1 coefficients

have been assigned some values a1 = ā1, a2 = ā2, . . . , aj−1 = āj−1.

We define Yā[j−1],0 = EaY [a|a1 = ā1, a2 = ā2, . . . , aj−1 = āj−1, aj = 0] to be the expected

74

Algorithm 4 Dynamic programming algorithm for solving P2.

1: Input: number of messages m, number of clients n, request sets Ri,∀i ∈ [n], ranking πi(j),∀i ∈
[n], j ∈ Ri, size of request set r, and number of selections K.

2: Output: coding matrix A ∈ {0, 1}K×m.
3: Initialization: set the client set N = [n];
4: for k = 1 : K do

5: if k = K then

6: Set ranking threshold ξk = ⌈ r2⌉.
7: else if k = K − 1 then

8: Set ranking threshold ξk = ⌈ r2(1− 1
4e)⌉.

9: else if k = K − 2 then

10: Set ranking threshold ξk = ⌈ r2(1− 1
2e)⌉.

11: else if k = K − 3 then

12: Set ranking threshold ξk = ⌈ r2(1− 3
4e)⌉.

13: else if k = K − 4 then

14: Set ranking threshold ξk = ⌈ r2(1− 1
e +

5
8e2

)⌉.
15: else

16: Set ranking threshold ξk = ⌈ 2re
K−k − 6re

(K−k)2
− 1

2⌉.
17: end if

18: Find a row coding vector ak as the k-th row of A with respect to the ranking threshold ξk
and clients N using derandomization function Alg. 5.

19: Remove all i from N , if i ∈ N is a qualified client, given coding vector ak.
20: end for

number of qualified clients, averaged over all coding vectors with the assigned values for

the first j − 1 coding coefficients ā[j−1] and a 0 for the j-th coding coefficient; Yā[j−1],1 =

EaY [a|a1 = ā1, a2 = ā2, . . . , aj−1 = āj−1, aj = 1] to be the expected number of qualified

clients, averaged over all coding vectors with the assigned values for the first j − 1 coding

coefficients ā[j−1] and a 1 for the j-th coding coefficient; and Yā[j]
= EaY [a|a1 = ā1, a2 =

ā2, . . . , aj = āj] to be the expected number of qualified clients, averaged over all coding

vectors with the assigned values ā[j] for the first j coefficients. We also use a[0] to refer the

empty set.

The algorithm proceeds as follows: For step j = 1, 2, . . . , m, assign the j-th coding

coefficient āj to be 1 if Yā[j−1],1 ≥ Yā[j−1],0 and 0 otherwise.

In the derandomization function flow diagram, the steps 8-12 essentially implement the

calculation of the expected values we use for the decision making. We track the probability

that a client i will be a qualified client, pj−1
i , for each step j− 1. Then we choose the coding

coefficient aj by comparing the expected numbers of qualified clients if we choose a 0 and a 1

75

for aj . We set a state parameter zji to represent the number of coefficient assignment patterns

for the remaining messages in Ri such that client i can remain qualified. For example, zji = 3

if |{j′ ∈ Ri|j′ > j, πi(j) ≤ ξ, aj′′ = 0, ∀j′′ ∈ Ri and j′′ ≤ j}| = 3.

We here argue that the coding vector ā we identify enables at least nξ
re

clients to be

qualified, i.e., decode a message in their request set they have ranked less than or equal to ξ.

Let Yā be the qualified clients after the derandomized function, and let Y be the qualified

clients after the randomized selection in Claim 2, where we iid at random assigned value 0

to each coding coefficient with probability p. Tracking the qualified clients, originally we

have Y = (1− p)Y∅,0 + pY∅,1; then Y∅,0 ≥ Y or Y∅,1 ≥ Y holds; and hence we have Yā[1]
≥ Y .

For step j, we can see that Yā[j]
= (1 − p)Yā[j−1],0 + pYā[j−1],1. Hence, at least one of the

two following inequalities, Yā[j−1],0 ≥ Yā[j]
and Yā[j−1],0 ≥ Yā[j]

, holds. Therefore, using the

derandomization function, we have Yā[j]
≥ Yā[j−1]

. Hence, Yā ≥ Y ≥ nξ
re

holds.

3.4.3 Benefits of Coding

As is the case in index coding, leveraging side information enables to use coding and convey

through the same transmission different messages to clients. We next compare, over two sets

of instances, the ratio between the benefit we get when we leverage side information and the

benefit we get when we do not.

• Ratio of n
K
. Assume that for each pair of clients i1 and i2, the request sets Ri1 and

Ri2 do not overlap, i.e., Ri1 ∩ Ri2 = ∅ for all i1 6= i2. Assume that each client receives a

maximum score of r if she can decode her most preferred message. In this case, the best

uncoded K selections are to choose the K messages such that K clients receive the maximum

score, achieving benefit Kr. With K encoded transmissions each client can decode her most

preferred message. Therefore, the ratio is nr/Kr = n/K.

• Ratio of 2n
K(r+1)

. Consider an instance with m messages and n = m clients. All clients

have a request set of the same size, i.e., |Ri| = r < K, ∀i. The clients are partitioned in

groups: for any two clients i1 and i2 in different groups, their request sets Ri1 and Ri2 do not

overlap, i.e., Ri1 ∩Ri2 = ∅; for any two clients i1 and i2 in the same group, their request sets

76

Algorithm 5 Derandomization Function.

1: Input: number of messages m, number of clients n, request sets Ri, ∀i ∈ [n], ranking πi(j), ∀i ∈ [n], j ∈
Ri, size of request set r, and ranking threshold ξ.

2: Output: coding vector a ∈ {0, 1}m.
3: Initialization: set the client set N = [n]; set the qualification probability p0i = ξ

r (1 − 1
r)

r−1, for all
client i ∈ [n]; set the state z0i = ξ for each client i ∈ [n].

4: for j = 1 : m do

5: for all i ∈ N do

6: pji,0 = pji,1 = pj−1
i ; zji,0 =zji,1=zj−1

i , for all j /∈ Ri. // Not affect for j /∈ Ri.
7: if j ∈ Ri and πi(j) ≤ ξ then

8: // This is the case that client i ranks j no more than ξ.
// Update the probability that client i can be qualified if aj is 0 or 1:

pji,0 =

0, if zj−1
i = 1 and aj′ = 0 for all j′ < j and j′ ∈ Ri,

pj−1

i

1−1/r , if zj−1
i = 1 and aj′ = 1 for some j′ < j and j′ ∈ Ri,

(1−1/zj−1

i
)pj−1

i

1−1/r , otherwise;

pji,1 =

0, if aj′ = 1 for some j′ < j and j′ ∈ Ri,

rpj−1

i

zj−1

i

, otherwise.

9: // Update the state of client i if aj is 0 or 1:

zji,0 =

0, if zj−1
i = 1 and aj′ = 0 for all j′ < j and j′ ∈ Ri,

1, if zj−1
i = 1 and aj′ = 1 for some j′ < j and j′ ∈ Ri,

zj−1
i − 1, otherwise;

zji,1 =

{

0, if aj′ = 1 for some j′ < j and j′ ∈ Ri,

1, otherwise.

10: end if

11: if j ∈ Ri and πi(j) > ξ then

12: // This is the case that client i ranks j more than ξ.
// Update the probability that client i can be qualified if aj is 0 or 1:

pji,0 =
pj−1
i

1− 1/r
; pji,1 = 0.

13: // Update the state of client i if aj is 0 or 1:

zji,0 = zji ; zji,1 = 0.

14: end if

15: end for

16: if
∑

i∈N :j∈Ri
pji,1 ≥ ∑

i∈N :j∈Ri
pji,0 then

17: Set aj = 1, pji = pji,1, and zji = zji,1.
18: else

19: Set aj = 0, pji = pji,0, and zji = zji,0.
20: end if

21: Remove i from N , if zji = 0 for all i ∈ N .
22: end for

77

Ri1 and Ri2 are the same, i.e., Ri1 = Ri2 . In each group, the number of clients equals to the

cardinality of the request set r, and thus we have r clients requiring r messages. We assign

the associated ranking submatrix of each group to be a Latin square, i.e., each required

message is ranked differently by these r clients, from 1 to r. Hence, the ranking submatrix

has no same elements in the same row or in the same column. Therefore, for the uncoded

K selections, this instance will give a total score of r(r+1)K
2

. For the coded K selections,

this instance will give a total score of nr, when we use MDS coding scheme to send all the

missing messages. Hence, the ratio is 2n
K(r+1)

.

3.5 Arbitrary Size Side Information (P3)

We are here given as input the score si(j) = wij that client i has for message j, and make

no assumptions on the size of the side information set. This is the most general case that

admits P1 and P2 as special cases. We solve this problem using a mapping to the Maximum

Weighted Independent Set (MWIS) problem1.

3.5.1 Mapping to the MWIS Problem

Assume that the server uses a binary coding vector a = (a1, . . . , am) to make a transmission

x = a1b1 + . . .+ ambm = bj1 + bj2 + . . .+ bjl, where the indices j1, j2, . . . , jl correspond to the

nonzero coding coefficients.

A client i can decode the message bj1 from x if and only if this is the only message

appearing in x that she does not have; that is, bj1 belongs in her request set (j1 ∈ Ri) and

she has already as side information the rest of the messages appearing in x (j2, . . . , jl ∈ Si).

Consider now the |Ri| positions in the coding vector a that correspond to the |Ri| messages

client i does not have. There are |Ri| possible choices of coding coefficients for these positions,

so that client i can decode one of these message: making exactly one of these coefficients

1The MWIS problem is the weighted version of the maximum independent set problem. It aims to find
a set of vertices that have the maximum weighted sum in a given graph. For details of the problem, see, for
example, [STY03].

78

one, and the remaining |Ri| − 1 zero. If we were to depict these coefficients sequentially, the

choices are (1, 0, 0, . . . , 0)i, (0, 1, 0, . . . , 0)i, . . . , (0, . . . , 0, 1)i, where we used the subscript i to

express that these correspond to the messages in Ri. Client i can decode the first message

in Ri under the first assignment, the second message under the second assignment, etc. We

call these |Ri| assignments the assignments for client i.

We map each of the |Ri| assignments for client i, for all i ∈ [n], to a vertex in the MWIS

instance; thus in total we create
∑

i∈[n] |Ri| vertices. We assign weight wij to the vertex

corresponding to the assignment that enables client i to decode message j. We connect two

vertices with an edge if the corresponding assignments cause conflict with each other: that

is, there exists at least one common message to which one vertex assigns coefficient 0 and

the other coefficient 1. Vertices corresponding to assignments of the same client i are pair-

wise connected, forming a clique, since these assignments are mutually exclusive. Vertices

corresponding to assignments of different clients may be connected or not. For example,

if R1 = {1, 2} and R2 = {2, 3, 4}, there are 5 assignments corresponding to clients 1 and

2, denoted as (1, 0)1, (0, 1)1, (1, 0, 0)2, (0, 1, 0)2, (0, 0, 1)2. The vertex (1, 0)1 is connected to

(0, 1)1 and (1, 0, 0)2, where the latter is because (1, 0)1 assigns a coding coefficient 0 to

message 2 and (1, 0, 0)2 assigns a coding coefficient 1 to message 2, resulting in a conflict.

Given that each vertex of this graph specifies part of a coding vector, an independent

set specifies (perhaps in part) a feasible coding vector that enables all clients with a vertex

in this independent set to decode a message. Thus, finding a MWIS enables to construct a

coding vector that leads to the maximum benefit.

3.5.2 Algorithms for Problem P3

Algorithm for K = 1

Given the MWIS connection, we can now translate any of the MWIS solvers to an algorithm

for our problem when K = 1. As an example, the following theorem presents the score

achievable by the MWIS polynomial time approximation algorithm in [STY03].

Theorem 13. For problem P3, with K = 1 transmission, we can achieve a benefit of at least

79

W
2(d1−1)d2+1

in polynomial time, where W =
∑

(i,j):j∈Ri
wij is the total weight of the instance,

d1 = maxi∈[n]{Ri} ≤ m, and d2 ≤ n is the maximum number of request sets a message can

belong to.

Proof. The proof follows by observing that maximum degree of each vertex in the graph is

at most 2(d1 − 1)d2, and directly applying Theorem 3.4 in [STY03].

Indeed, consider a vertex v that enables client i to decode message j ∈ Ri. This vertex

is connected to the remaining |Ri| − 1 vertices of the same client, which contributes to v

degree at most d1 − 1. Now consider another client i′ 6= i. If j ∈ Ri′ , then only one of

the assignments for client i′ does not have a conflict with v, the one that enables client i′ to

decode j. Thus counting each i′ 6= i we may have additional degree of at most (d2−1)(d1−1).

Finally, consider j′ ∈ Ri ∩Ri′ for some j′ 6= j. In this case, the vertex v′ that enables client

i′ to decode message j′ will be connected to v, since v′ needs the coefficient of message j′ to

be 1 and v requires the coefficient of message j′ to be 0. This last case contributes additional

degree of at most (d1 − 1)d2.

Algorithm for general K

This algorithm applies for general K and operates in K iterations, in each iteration simply

solving one instance of a MWIS problem. We presented the algorithm (that we term AlgP3)

in Alg. 6. In the first iteration, we solve the MWIS described earlier to select the transmission

the server makes. Next, we update the problem instance: (i) we add decoded messages into

side-information sets, and (ii) if client i has decoded message j, we set wij′ = max{0, wij′ −
wij} for all j′ ∈ R(i), to reflect the additional benefit that receiving message j′ would bring

to client i given that she has already received j. We proceed with the next iteration by

solving the MWIS problem on the new instance. Observe that this scenario admits the

index coding problem as a special case, where each client requires one message with score

1 and others with score 0. The hardness of approximating index coding capacity is shown

through a reduction from the maximum independent set (MIS) problem [LS11]. Here, we

use a similar reduction to show the hardness of approximating B∗ as follows.

80

Proposition 1. The P3 problem is hard (unless NP = ZPP) to approximate within a ratio

of n1−ǫ for any ǫ > 0.

Proof. For this we simply use the result that the MIS is hard (unless NP = ZPP) to

approximate within a ratio of n1−ǫ for any ǫ > 0 [Has96]. We map an MIS instance on a

graph G = (V,E), into a P3 problem as follows.

• We create a P3 instace with m = n = |V |: we map each of the |V | vertices in G to a client

in P3; and we also create |V | messages.

• A client i has message i in her request set with score wii = 1.

• A client i has a message j 6= i in her request set Ri with score wij = 0 if and only if there

is an edge between vertex i and vertex j in G. All the remaining messages are in the side

information set of client i.

We next argue that the size of the MIS in G equals the maximum benefit that we can

achieve over the constructed P3 instance if we are restricted to K = 1 transmission. Indeed,

given an independent set S in G, we can construct a coding vector for P3 that enables each

client i in S to decode message i (we simply use coding coefficients 1 for all such i ∈ S and 0

for the remaining coding coefficients). Recall that with one transmission, a client can decode

a message i in her request set if and only if the coding coefficient for this message is nonzero

and the coding coefficients for all other messages in her request set are zero. This would

achieve benefit |S| in P3.

We argue that this is the maximum benefit we could achieve in P3: indeed, if a larger

benefit was possible in P3, more than |S| clients i would have been able to decode their

corresponding message i. Note also that, a coding vector that achieves a maximum benefit

B∗, enables B∗ clients i to decode their corresponding message i, and thus directly determines

an independent set of size |S| = B∗ in G.

81

Algorithm 6 Greedy Coding Algorithm to Solve P3.

1: Input: number of messages m, number of clients n, request sets Ri, ∀i ∈ [n], weights
wi,j, ∀i ∈ [n], j ∈ Ri, number of encoded messages K.

2: Output: K encoded messages {x1, x2, . . . , xK}.
3: Initialization: problem instance I = (m,n, {Ri}i∈[n], {wij}i∈[n],j∈Ri

), received score
s(i) = 0, ∀i ∈ [n].

4: for k = 1 : K do
5: Map the instance I into an MWIS instance J .
6: Solve the MWIS problem J and get output {j1, j2, . . . , jl}.
7: Set the k-th encoded message to be xk = bj1 + bj2 + . . .+ bjl.
8: Update the instance I:
9: if Client i (∀i ∈ [n]) can decode message j ∈ Ri then
10: Move j from Ri to Si.
11: if wij > 0 then
12: Update score: s(i) = wij.
13: Set wij′ = 0 for all j′ ∈ Ri and wij′ ≤ wij .
14: Set wij′ = wij′ − wij for all j

′ ∈ Ri and wij′ > wij.
15: end if
16: end if
17: end for

3.6 Numerical Evaluation

3.6.1 Over Random Instances

For Figs. 3.1-3.8, we uniformly at random generate instances with the parameters described

in the captions, and present values averaged over all instances. In the following experiments,

we normalize the benefit B to get B0 (divided by the maximum benefit possible to have

maximum value 1).

Trade-off between B and K Figs. 3.1 and 3.2 show for P1 (AlgP1) and P2 (AlgP2)

the trade-off between the number of transmissions K and the normalized benefit B0. We

consistently observe that we can achieve a large percentage of the benefit with a small fraction

of the transmissions we need to achieve the maximum benefit. For example, in Fig. 3.1, a

2% decrease in benefit can achieve a 71% bandwidth savings, and in Fig. 3.2, a 20% decrease

in benefit can achieve a 91% bandwidth savings.

82

0 10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

1
N

o
rm

a
liz

e
d

 b
e

n
e

fi
t

(B
0
)

transmissions (t)

W
o
rs
t
ca

se
t

A
v
er
a
g
e
ca

se
t

B
es
t
ca

se
t

Figure 3.1: Trade-off between bandwidth K and normalized
benefit B0 for AlgP1 and P1 with m = 300, n = 50 and
Borda score model, averaged over 100 random instances.

0 10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 b

e
n

e
fi
t

(B
0
)

transmissions (t)

W
o
rs
t
ca

se
t

A
v
er
a
g
e
ca

se
t

B
es
t
ca

se
t

Figure 3.2: Trade-off between bandwidth K and normalized
benefit B0 for AlgP2 and P2 with m = 300, n = 50, r = 60
and Borda score model, averaged over 100 random instances.

Benefit for small K Figs. 3.3 and 3.4 highlight the normalized benefit B0 we can achieve

if the server is restricted to very few transmissions (K = 1 or K = 4) over some scenaria.

Observe that with K = 4 transmissions we can consistently achieve more than 85% of the

benefit and with K = 1 more than 38% of the benefit.

Table 3.1: Description of scenaria

Scenaria Side information Score model Parameters Algorithms
Scenario 1 No Borda score m = 1000, n = 20 AlgP1
Scenario 2 No Bimodal score with

Gbim = 10 and
Fbim = 0.1

m = 1000, n = 20 AlgP1

Scenario 3 Yes, r = 100 Borda score m = 1000, n = 20 AlgP2
Scenario 4 Yes, r = 100 Bimodal score with

Gbim = 10 and
Fbim = 0.1

m = 1000, n = 20 AlgP3

Scenario 1 Scenario 2 Scenario 3 Scenario 4
0

0.5

1

N
o
rm

a
liz

e
d
 b

e
n
e
fi
t
(B

0
)

Best case B
0

Average case B
0

Worst case B
0

AlgP1

AlgP1

AlgP2 AlgP3

Figure 3.3: Normalized benefit for K = 1. The scenaria are
described in Table 3.1.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
0

0.5

1

N
o
rm

a
liz

e
d
 b

e
n
e
fi
t
(B

0
)

Best case B
0

Average case B
0

Worst case B
0

AlgP1 AlgP1
AlgP2

AlgP3

Figure 3.4: Normalized benefit for K = 4. The scenaria are
described in Table 3.1.

Benefit from coding Figs. 3.5 and 3.6 compare, over two sets of parameters for P2, the

performance of AlgP1 (we run AlgP1 by ignoring the side information and making uncoded

83

transmissions) and AlgP2. We find that leveraging the side information and coding enables

AlgP2 to double in some cases the benefit.

10
1

10
2

0

0.2

0.4

0.6

0.8

1

clients/messages (n or m)

N
o

rm
a

liz
e

d
 B

e
n

e
fi
t

(B
0
)

AlgP2

AlgP1

K=4

K=1

Figure 3.5: Coding gain for instances of P2 with n = m,
r=0.1m, and the Borda score model.

10
1

10
2

0

0.2

0.4

0.6

0.8

1

clients/messages (n or m)

N
o

rm
a

liz
e

d
 B

e
n

e
fi
t

(B
0
)

AlgP2

AlgP1

K=4

K=1

Figure 3.6: Coding gain for instances of P2 with n = m,
r=0.2m, and the Borda score model.

Bebefit over random selection Figs. 3.7 and 3.8 compare the performance of AlgP1

with that of random selection over bimodal instances of P1. Random selection assumes that

the server first identifies all messages that form first preference for at least one client, and

then randomly selects to transmit K of them. We find that AlgP1 achieves 52%−80% more

benefit than random selection for K = 4, and 60% − 88% more for K = 1 as m changes

from 10 to 1000; and achieves 30% − 71% more benefit than random selection for K = 4,

and 31%− 106% more for K = 1 as Gbim changes from 2 to 50.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

messages (m)

N
o

rm
a

liz
e

d
 B

e
n

e
fi
t

(B
0
)

AlgP1

Random selection

K=4

K=1

Figure 3.7: AlgP1 vs. random selection for P1 with n = 50,
and the bimodal score model with Gbim = 10 and Fbim =
0.1, as m varies.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Parameter G
bim

N
o
rm

a
liz

e
d
 B

e
n
e
fi
t
(B

0
)

AlgP1

Random selection

K=4

K=1

Figure 3.8: AlgP1 vs. random selection for P1 with m =
300, n = 50, and the bimodal score model with Fbim = 0.1,
as Gbim varies.

84

3.6.2 Over Real Dataset

We extract instances from the Yahoo! Search Marketing advertiser bidding dataset, which

was collected every 15 minutes over a year’s period; data instances include the time stamp,

the key phrase ID, the advertiser ID, and the bidding price [yah]. We generate a problem

instance as follows: During each hour, n users with n search query key phrases enter the

system (these are the clients). The advertiser bids to place an ad (the ads are the messages)

to some of the key phrases using certain prices (we assume price zero for the rest of the key

phrases). We interpret the price of a bid for a key phrase as the score of this ad (message)

with respect to the key phrase (client). We assume that the messages that the advertiser

does not bid for, form side information.

We compare AlgP1 and AlgP3 with the conventional Borda count method [Bor81], the

Spearfoot rule-based method [DG77,DKN01], and the Kemeny’s method [Kem59,DKN01]

(we interpret the recommendations these algorithms make as the uncoded messages to trans-

mit). The horizontal axis represents time (instances collected at sequential time slots). In

Figs. 3.9 and 3.11 the vertical axis represents the actual benefit achieved at each time (cur-

rent instance); in Figs. 3.10 and 3.12, the vertical axis represents the accumulated benefit

(all previous instances). We find that all uncoded algorithms (including AlgP1) perform

similarly; this is because in the data set a few of the messages concentrated the highest

rankings from all clients, and thus the score model used by the algorithm did not make a

difference in the message choice. However, by leveraging the side information, AlgP3 could

accrue multiple times the benefit over time.

3.7 Open Question and Future Work

In this chapter, we discussed the trade-off between the benefit and the number of available

transmissions. We note that the benefit depends on the preference model. For the Borda

score model, since the scores of messages are linear in their preferences, we can regard the

Borda score model as a linear preference model and it can be solved using polynomial-

time approximation algorithm within a constant approximation ratio. For the general score

85

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

x 10
−4

time

In
s
ta

n
t
n
o
rm

a
liz

e
d
 b

e
n
e
fi
t

Borda method

Approximation of Kemeny

Footrule optimal

AlgP1

AlgP3

Figure 3.9: Instant benefit for K = 2 as a function of time (current instance).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

time

A
c
c
u
m

u
la

te
d
 n

o
rm

a
liz

e
d
 b

e
n
e
fi
t

Borda method

Approximation of Kemeny

Footrule optimal

AlgP1

AlgP3

Figure 3.10: Accumulated benefit for K = 2 as a function of time (all previous instances).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

x 10
−4

time

In
s
ta

n
t
n
o
rm

a
liz

e
d
 b

e
n
e
fi
t

Borda method

Approximation of Kemeny

Footrule optimal

AlgP1

AlgP3

Figure 3.11: Instant benefit for K = 4 as a function of time (current instance).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

time

A
c
c
u
m

u
la

te
d
 n

o
rm

a
liz

e
d
 b

e
n
e
fi
t

Borda method

Approximation of Kemeny

Footrule optimal

AlgP1

AlgP3

Figure 3.12: Accumulated benefit for K = 4 as a function of time (all previous instances).

86

model, as shown in Chapter 3.5, we can see that it is hard to approximate within n1−ǫ.

Hence, one open question is how to evaluate the approximation ratio with respect to the

preference model. In particular, to achieve constant approximation ratio, what characteristic

should the preference model have? And what other preference models will result in a hard-

to-approximate problem, such as hard to approximate within n1−ǫ?

3.8 Summary

In this chapter, we examine recommender systems under bandwidth constraint in a pliable

index coding framework. We present three problem examples to show that although the

problems are in general NP-hard, designing polynomial time approximation algorithms can

still make a significant bandwidth savings by leveraging coding. We also conduct experiments

over real data set to validate our arguments.

87

CHAPTER 4

Application to Data Shuffling in Distributed

Computing

4.1 Introduction

In distributed computing systems, the communication between computing nodes forms a ma-

jor bottleneck for the runtime performance [CZM11], especially those for processing Big Data

applications. The coding techniques can be used to improve the communication efficiency

in distributed computing systems [LLP15,AT16,LMA15].

In this chapter we consider a “master-workers” distributed computing system model,

where a master node has m messages and is connected through a broadcast channel to n

worker nodes. Each worker i is equipped with a cache that can store si messages. Shuffling

occurs in iterations, where in each iteration we need to refresh the data the workers have,

with a random selection of si out of m messages from the master node.

We can model this data shuffling problem in the index coding framework: the messages

that worker nodes have from previous iterations form side information; the master node

randomly interleaves the m messages and allocates some specific si messages to each worker,

corresponding to some specific si requests in index coding.

From the exponential savings of the broadcast transmissions of pliable index coding over

index coding shown in Chapter 2 and [BBJ11,BF15], we posit that the framework of pliable

index coding could be a better fit for such applications. Our observation is that, when

shuffling, we do not need to pre-specify the new messages a worker gets; we only need the

worker to get a certain new messages that are randomly selected from the original messages.

88

For example, to train a classification model in a distributed system, a large volume of data

instances can be randomly distributed into n worker nodes in tens of millions of ways, not

necessarily in a specific way. This degree of freedom enables us to design more efficient

coding and transmission schemes to realize semi-random shuffling.

In this chapter, we first analyze how pliable index coding would perform under the

constraints of data shuffling. In particular, when data shuffling, we want each message to go

to at most a specific number of workers, say c, to achieve an unbiased data distribution that

looks “random-like”. We capture this by imposing the constraint that each message can be

used to satisfy at most c clients. That is, each client is happy to receive any message she does

not have, but at most c clients can receive the same message. We show that even if c = 1,

i.e., each message can satisfy at most one client, we can still achieve O(n) benefits over index

coding in some cases; this is because, we still have the freedom to select any of the O(n!)

interleaved versions of requests that lead to the smallest number of transmissions. We prove

that the constrained pliable index coding problem is NP-hard. We show that for random

instances, the optimal code length is almost surely upper bounded by O(min{ n
c log(n)

, n
log(m)

})
for c = o(n1/7

log2(n)
) and O(min{n

c
+ log(c), n

log(m)
}) for c = Ω(n1/7

log2(n)
).

We then design a hierarchical transmission scheme for data shuffling that utilizes con-

strained pliable index coding as a component. We introduce a Hamming distance measure to

quantify the shuffling performance, and show that our scheme can achieve benefits O(ns/m),

in terms of transmissions over index coding, with linear encoding complexity at the master

node, where s is the cache size and ns/m is the average number of workers that cache each

message.

The work presented in this chapter was published in [SF17].

89

4.2 Constrained Pliable Index Coding

4.2.1 Problem Formulation

We consider a server with m messages b1, b2, . . . , bm in a finite field Fq and n clients. Each

client has as side information some subset of the messages, indexed by Si ⊆ [m]. Client

i ∈ [n] has requested any one of the remaining messages, indexed by Ri = [m]\Si. We term

this set Ri the request set.

c-constraint We require that a message j is stored by at most c clients. We call such a

problem c-constrained pliable index coding and denote it by problem instance (m,n, {Ri}i∈[n], c).

Bipartite Graph Representation In the bipartite graph, on one side the vertices corre-

spond to messages and on the other side to clients; we connect clients to the messages they

do not have, i.e., client i connects to the messages in Ri [BF12].

Linear Encoding The server makesK broadcast transmissions x1, x2, . . . , xK over a noise-

less channel. Each xk is a linear combination of b1, . . . , bm, namely, xk = ak1b1+ak2b2+ . . .+

akmbm, where akj ∈ Fq is the encoding coefficient. We refer to the number of transmissions,

K, as the code length and to the K ×m coefficient matrix A with entries akj as the coding

matrix. In matrix form, we can write

x = Ab, (4.1)

where b and x are vectors that collect the original messages and encoded transmissions,

respectively.

Linear Decoding Given A, x, and {bj |j ∈ Si}, each client i needs to solve the linear

equation (4.1) to get a unique solution of bji, for some ji ∈ Ri. We say that client i is

satisfied if she stores the decoded message bji and bji is decoded and stored by at most c

clients. Clearly, client i can remove from the transmissions her side information messages,

90

i.e., to recover x
(i)
k = xk −

∑

j∈Si
akjbj from the k-th transmission. As a result, client i only

needs to solve

ARi
bRi

= x(i), (4.2)

to retrieve a message bji she does not have, where ARi
is the sub-matrix of A with columns

indexed by Ri; bRi
is the message vector with elements indexed by Ri; and x(i) is a K-

dimensional column vector with elements x
(i)
k .

Building on results in Lemma 1, we have the following decoding criterion. We use aj to de-

note the j-th column of matrixA and use span{aj′|j′ ∈ Ri\{j}} = {∑j′∈Ri\{j} λj′aj′|λj′ ∈ Fq}
to denote the linear space spanned by columns of A indexed by Ri other than j.

Lemma 11. In a constrained pliable index coding problem (m,n, {Ri}i∈[n], c), a coding matrix

A can satisfy all clients if and only if there exist messages j1, j2, . . . , jn ∈ [m], one for each

client, where no single message is repeated more than c times, i.e., ji1 = ji2 = . . . = jic+1

does not hold for any combination of c + 1 clients i1, i2, . . . , ic+1 ∈ [n], such that the matrix

A satisfies

aji /∈ span{aj′|j′ ∈ Ri\{ji}}, ∀i ∈ [n]. (4.3)

Our goal is to construct the coding matrix A with the minimum code length K. Note

that the c-constraint significantly changes the pliable index coding problem. For example,

assume we have m messages and n clients with no side information; then pliable index coding

requires 1 transmission, while constrained pliable index coding needs n/c transmissions to

satisfy all clients.

4.2.2 Main Results

4.2.2.1 Benefits Over Index Coding

Clearly, the larger the value of c, the more benefits we expect constrained pliable index

coding to have over index coding (for c = n we have exponential benefits [BF15, SF16c]).

We here provide an example to show that it is possible to have benefits of O(n) even when

c = 1, i.e., each message can satisfy at most one client, as is the case in index coding. This

91

equivalently shows that, if we are allowed to “interleave the demands” in index coding, we

can gain O(n) in terms of the number of transmissions.

We construct the following 1-constrained pliable coding instance with n messages and

n clients. Client i ∈ [n/2] requests any of the messages 1 to n/2 and n/2 + i, i.e., Ri =

{1, 2, . . . , n/2, n/2 + i}, for i ∈ [n/2]. Client i ∈ [n]\[n/2] requests any of the messages

n/2 + 1 to n and i− n/2, i.e., Ri = {i− n/2, n/2 + 1, n/2 + 2, . . . , n}, for i ∈ [n]\[n/2]. All
messages not in the request set form side information.

For index coding, if client i requests message i and has the same side information as

above, then we need at least n/2 transmissions, since the first n/2 clients do not have the

first n/2 messages as side information. In contrast, 1-constrained pliable index coding only

requires 2 transmissions. Indeed, we can enable client i ∈ [n/2] to decode the message

n/2 + i, by making the transmission bn/2+1 + bn/2+2 + . . . + bn, since each client i ∈ [n/2]

has all messages indexed by [n]\([n/2] ∪ {n/2 + i}) as her side information. Similarly, we

can enable client i ∈ [n]\[n/2] to decode the message i − n/2 by making the transmission

b1 + b2 + . . .+ bn/2.

4.2.2.2 Constrained Pliable Index Coding is NP-hard

It suffices to show that 1-constrained pliable index coding is NP-hard.

Theorem 14. For a 1-constrained pliable index coding problem, deciding if the optimal code

length

• K = 1 is in P.

• K = 2 is NP-complete.

Proof.

Deciding if Optimal K = 1 is in P

We first show that deciding if the optimal code length equals 1 is in P. To see this, we notice

that if one transmission can make each client to receive a distinct message, then the server

needs to encode exact n messages for the transmission, one for each client. For a client i,

92

if it can decode a message bj , j ∈ Ri, then all other n − 1 messages must be in its side

information set following from the decoding criterion. Similarly, any one of the n messages

for encoding is in the side information set of n − 1 clients and requested by the remaining

one client. Hence, in the bipartite graph representation, if and only if we can find n message

vertices, such that each one has degree 1 and is connected to a different client vertex, then

the optimal code length is 1. This can be tested by going over all message vertices, which

runs in polynomial time.

Deciding if Optimal K = 2 is NP-complete

We next show that deciding if optimal code length equals 2 is NP-complete. To prove this,

we first introduce another NP-complete problem.

Definition 1 (Distinct Labeling Problem). We are given a universal set U = {1, 2, . . . , u}
with |U | = u elements, a fixed set of Π labels {1, 2, . . . ,Π}, and a collection of size 3 subsets

of U , i.e., S ⊆ 2U and |S| = 3 for any S ∈ S, where 2U is the power set of U . The distinct

labeling problem (DL) asks if we can label the elements using Π labels such that every subset

in S contains elements of 3 different labels. For short, we call it Π-DL problem for such a

distinct labeling problem with Π labels.

We next show that Π-DL problem is NP-complete for Π ≥ 3.

It is easy to see that the Π-DL problem is in NP. We next show that we can use a

polynomial time reduction from the graph coloring problem (a.k.a., chromatic number) to

the Π-DL problem.

We reiterate the well-known decision version of graph coloring problem as follows [Kar72]:

it is NP-complete to decide whether the vertices of a given graph G(V,E) can be colored

using a fixed Π ≥ 3 colors, such that no two neighboring vertices share the same color.

We perform the following mapping. We map each vertex in V and each edge in E as the

universal set with |U | = |V | + |E| elements. We map an edge e ∈ E together with the two

endpoints x1, x2 as a subset, where e = {x1, x2}. So there are in total |S| = |E| subsets.

We show that if G is Π-colorable, then we can find a solution for the Π-DL problem. We

93

can assign a set {1, 2, . . . ,Π} of colors to the vertices in V , such that no two neighboring

vertices share a same color. When we map to the Π-DL problem, we notice that each

edge appears in exact 1 subset, the one corresponding to this edge. Hence, we can use the

following labeling scheme: label the elements corresponding to the vertices as the color used

in {1, 2, . . . ,Π}; and label the edge using any label that is different from its two endpoints.

This is a solution for the Π-DL problem.

On the other hand, if we have a solution for the Π-DL problem, we can find a solution for

the graph coloring problem. We can label the elements corresponding to vertices using the

Π labels. Note that if two vertices x1 and x2 are adjacent to each other, i.e., {x1, x2} ∈ E,

then according to the definition of Π-DL problem, these two elements x1 and x2 must have

different labels. Hence, keep the labels of each vertex element, then we get a Π-coloring of

the graph G.

We then prove that deciding if the optimal code length K = 2 is NP-complete for

constrained pliable index coding problem over a finite filed Fq.

We observe that we can decide if a given 2×m coding matrix A can satisfy a constrained

pliable index coding instance from our decoding criterion. Indeed, given a coding matrix

A, one can list the messages a client can decode using the decoding criterion. Then we

have a bipartite subgraph representation that has n clients, some messages, and edges that

connect each client with the message she can decode. We only need to check if the maximum

matching in such a subgraph equals the number of clients n using polynomial time. If and

only if so, this coding matrix can satisfy the problem instance.

Next, we use a reduction from the (q + 1)-DL problem defined above to show that the

constrained pliable index coding problem is NP-hard. We are given a (q + 1)-DL problem

instance with the universal set U = {1, 2, . . . , u} and a collection of size 3 subsets S ⊆ 2U .

We perform the following two mappings.

• For each subset, e.g., S = {x, y, z} ∈ S and x, y, z ∈ U , we map into a structure as

show in Fig. 4.1. We map each element in the subset S as a message vertex and add 3 client

vertices c1, c2, c3 in the constraint pliable index coding problem instance. We connect c1 to

94

x y z

c1 c2 c3

Figure 4.1: Mapping a subset into a structure.

b1(x) b2(y1) b3(z1)

c1 c2 c3

b4(x) b5(y2) b6(z2)

c4 c5 c6

b7(x) b8(y3) b9(z3)

c7 c8 c9

bx

cx

Figure 4.2: Connecting the same elements in different subsets.

x and y, connect c2 to y and z, and connect c3 to z and x.

• For different subsets, if they contain the same element, we connect them using the

following structure as shown in Fig. 4.2. For example, if the subsets S1 = {x, y1, z1}, S2 =

{x, y2, z2}, and S3 = {x, y3, z3} all contain the element x, we connect a client vertex cx to all

messages corresponding to x and another additional message vertex bx.

After this mapping, we can see that we construct a constrained pliable index coding

instance with n = 3|S|+ |U | clients and m = n messages. We want to show that if and only

if the (q+1)-DL problem outputs a “Yes” answer, a code length 2 coding matrix can satisfy

such a problem.

If for a “Yes” instance of (q + 1)-DL problem, we can find a labeling scheme using q + 1

labels to the elements. In finite field Fq, we notice that the maximum number of vectors

that are pair-wise independent is q + 1, e.g.,

0

1

 ,

1

0

 ,

1

1

 ,

1

2

 , . . . ,

1

q − 1

 . (4.4)

We consider each label as one of these q + 1 vectors. Then for the coding matrix A, we

can assign the columns the same vector that correspond to the same element in subsets,

e.g., b1, b4, and b7 in Fig. 4.2. For the columns corresponding to an element not in subsets,

95

e.g., bx, we assign a different vector other than the one for the element in subsets. This is

a valid coding matrix. Indeed, for 3 messages corresponding to a subset, e.g., b1, b2, and

b3, they are labeled using different labels from the q + 1-DL problem solution. Then, the 3

clients corresponding to this subset, i.e., c1, c2, and c3, can decode b1, b2, and b3, respectively,

according to the decoding criterion. The client corresponding to an element not in subsets,

e.g., cx, can decode the corresponding message not in subsets, i.e., bx, as coding vectors

corresponding to messages b1, b4, and b7 are the same and different from the coding vector

corresponding to message bx.

If for the constrained pliable index coding instance, a length 2 coding matrix A can make

a successful shuffling. Then we notice that client cx should be satisfied by message bx, since

bx only connects to cx and m = n, which implies that each message needs to satisfy a client.

In this case, the non-zero coding vector corresponding to bx is not in the space spanned by

other coding vectors corresponding to x in subsets, i.e., b1, b4, and b7. As a result, the space

spanned by coding vectors corresponding to the same element in subsets is a one dimensional

space, e.g., the space spanned by coding vectors corresponding to b1, b4, and b7. For clients

and messages inside a subset, e.g., b1, b2, b3, c1, c2, and c3, there are two ways to satisfy

these clients: one is b1 to c1, b2 to c2, b3 to c3; and the other one is b2 to c1, b3 to c2, b1 to

c3. For both of these two ways, we notice that coding vectors corresponding to b1, b2, and b3

should be pair-wise independent; otherwise, one of the clients cannot decode a new message,

e.g., if coding vectors corresponding to b1 and b2 are dependent to each other, then c1 cannot

decode any new message. In addition, we observe that there are in total q+1 1-dimensional

subspaces spanned by 2-dimensional vectors over finite filed Fq, i.e., the spaces spanned by

vectors in (4.4). Therefore, if we assign each space a label, then messages in the same subsets

are using different labels and messages in different subsets corresponding to a same element

are using the same label, resulting in a solution of the q + 1-DL problem.

96

4.2.2.3 Bounds for Constrained Pliable Index Coding

Similar to index coding, we show that there is also a “sandwich property” for the constrained

pliable index coding problem that has the optimal code length bounded from above and

below.

A Lower Bound The conventional index coding problem has a lower bound that is the

maximum independent set of the undirected graph with n vertices and an edge connecting

two vertices i and j if and only if clients i and j do not have messages j and i as their

side-information. Hence, the interpretation of this lower bound is to find the largest set

of clients (and their corresponding required messages), such that no one of them has any

of these corresponding messages as side-information. Then this degenerates to a common

broadcasting scenario where k broadcast transmissions are needed: a server broadcasts k

messages to k clients and none of them has side information.

However, in our constraint pliable index coding scenario, such a lower bound does not

hold, e.g., the instance in Chapter 4.2.2.1. We show a lower bound using different technique

based on our decoding criterion as shown in the following theorem.

Theorem 15. In the c-constrained pliable index coding problem, if we can find k clients

i1, i2, . . . , ik, such that the request sets satisfy Ri1 ⊆ Ri2 ⊆ . . . ⊆ Rik , then the code length

should be at least k/c for such an instance.

Proof. From the decoding criterion, we assume that there exist messages j1 ∈ Ri1 , j2 ∈
Ri2 , . . . , jk ∈ Rik , such that for the coding matrix A, ajl /∈ span{ARil

\{jl}} for l = 1, 2, . . . , k.

From Ri1 ⊆ Ri2 ⊆ . . . ⊆ Rik , we have the following: ajk /∈ span{aj1,aj2, . . . ,ajk−1
}, ajk−1

/∈
span{aj1,aj2, . . . ,ajk−2

}, . . ., aj2 /∈ span{aj1}. This implies that after removing redundancy,

the set of vectors {aj1, aj2 , . . ., ajk} are linearly independent. Hence, the coding matrix A

needs to be have a rank at least k/c and the result follows.

An Upper Bound To show an upper bound, we use the partition number of the bipartite

graph that represents a problem instance. For ease of exposition, we use k colors to color the

97

vertices of the graph. We can upper bound the number of transmissions k, if the coloring

scheme satisfies the following two properties:

• For each client vertex i ∈ [n], it has exactly 1 neighbor that has the same color;

• For each message vertex j ∈ [m], it has at most c neighbors that have the same color.

To see this, we use k transmissions, where each transmission consists of a linear combi-

nation (with coefficient 1) of messages that have the same color, i.e.,
∑

bj′ for all bj′ with

the same color.

It is not hard to see that this transmission scheme can result in a successful coding.

Indeed, for client i, if the color is ‘red’, then the transmission corresponding to the color

‘red’ can help client i recover the only neighbor of i that has the same color ‘red’; and also

any message vertex with a color ‘red’ will be recovered and stored by at most c neighbors

with the same color ‘red’.

We can see that this minimum number of colors is just the partition number Pstar(G) of

the graph G, where Pstar(G) is the minimum number of induced star forests1 into which the

graph can be partitioned such that any induced star is centered on a message vertex in [m]

with degree no more than c. An example is shown in Fig. 4.3. Note that as a special case

when c = 1, this partition number is the minimum number of induced matchings into which

the graph can be partitioned.

4.2.2.4 Performance Over Random Instances

We consider a random bipartite graph instance, denoted by B(m,n, c, p), or B for short,

where there are m messages, n clients, each message can be recovered and stored by at most

c clients, and each client is connected with a message with probability p (clients have as

side information all the messages they are not connected to). We assume that p is a fixed

constant and define p̄ = min{p, 1− p}, while c = c(n) and m = m(n) ≥ n could be changing

with n.

1A star is a complete bipartite graph K1,l with degree l. An induced star forest is an induced subgraph
consists of disjoint stars.

98

Theorem 16 summarizes our main result.

Theorem 16. The number of broadcast transmissions for random graph instance B(m,n, c, p)

is almost surely upper bounded by

• O(min{ n
c log(n)

, n
log(m)

}), for c = o(n1/7

log2(n)
); and

• O(min{n
c
+ log(c), n

log(m)
}), for c = Ω(n1/7

log2(n)
).

Our proof outline is as follows. We design a transmission scheme, and show that it

achieves this performance. To do so, we first define an l-pattern (we will give details later)

that enables with a single broadcast transmission to satisfy lc clients. We then find values

l = L, m′ and n′ for which almost surely an L-pattern exists in every induced subgraph B′

of B with m′ message vertices and n′ client vertices, i.e.,

Pr{∃B′, s.t., B′ contains no L-patterns} = o(1). (4.5)

Then the transmission scheme proceeds as follows. If there are more than n′ clients in the

original graph B, we pick a L-pattern and make one transmission. We remove the satisfied

clients and the used messages. If there are less than n′ clients, we use at most n′ transmissions

to satisfy the remaining clients. Hence, we almost surely need n
Lc

+ n′ transmissions.

To minimize n
Lc

+ n′, we want n′ to be small and L to be large. However, by decreasing

n′ we also decrease the values of L that satisfy (4.5). Hence, we need to balance the sizes of

n′ and L; we use different values depending on how m, n, and c are related.

Next, we provide the proof in detail. First, we define a subgraph called l-pattern.

Definition 2. An l-pattern is an induced subgraph that consists of l message vertices, lc

client vertices, if the following property is satisfied:

Each of the l messages is connected with c clients and each of the lc client is connected

with only one message.

An illustration of the l-pattern is shown in Fig. 4.3.

For a given random bipartite graph B, let us denote by Yl the number of l-patterns in

99

Messages
b1 b2 . . . bl

1 2
. . .

c c+1 c+2
. . .

2c
. . .
(l−1)c+1(l−1)c+2

. . .
lc

Clients

Figure 4.3: In a l-pattern, one transmission satisfies lc clients.

B. For an induced subgraph B′ of B, let us denote by Y B′

l the number of l-patterns on the

subgraph B′.

We have the following calculation for the average number of l-patterns.

E[Yl] =

(

m

l

)(

n

lc

)(

lc

c, c, . . . , c

)

plc(1− p)l(l−1)c. (4.6)

It is easy to see that E[Yl] is decreasing with l, given other parameters fixed. Hence, we

define l0 to be the maximum integer such that E[Yl0] ≥ 1, i.e., l0 = max{l|E[Yl] ≥ 1}. We

next show that l0 is in the order of log(n) + log(m)
c

− log(c). More accurately, we show in the

following lemma.

Lemma 12. l0 satisfies: x1 ≤ l0 ≤ x1+O(1) for x1 = 1+ 1
log(1/(1−p))

[log(n)+ log(m)
c

− log(c)−
log(log(n)+ log(m)

c
−log(c))

c
− log log(1

1−p
)

c
+ log(p)] + o(1).

Proof. Using the binomial inequality

(
x

y
)y ≤

(

x

y

)

≤ (
ex

y
)y, (4.7)

we can bound the value of E[Yk] by

E[Yl] ≤ (em
l
)l(en

c
)c(e(n−c)

c
)c(e(n−2c)

c
)c . . . (e(n−lc)

c
)cplc(1− p)l(l−1)c

< (em
l
)l(en

c
)lcplc(1− p)l(l−1)c,

(4.8)

100

and

E[Yl] ≥ (m
l
)l(n

c
)c(n−c

c
)c(n−2c

c
)c . . . (n−lc

c
)cplc(1− p)l(l−1)c

> (m
l
)l(n−lc

c
)lcplc(1− p)l(l−1)c.

(4.9)

By taking log(·) on both sides, we get the following relationships:

log(E[Yl]) < l[1 + log(m)− log(l)] + lc[1 + log(n)− log(c)] + lc log(p)

+l(l − 1)c log(1− p),

log(E[Yl]) > l[log(m)− log(l)] + lc[log(n− lc)− log(c)] + lc log(p)

+l(l − 1)c log(1− p).

(4.10)

Let us define two continuous functions f1(x) = x[log(m) − log(x)] + xc[log(n − xc) −
log(c)]+xc log(p)+x(x− 1)c log(1− p) and f2(x) = x[1+ log(m)− log(x)]+xc[1+ log(n)−
log(c)] + xc log(p) + x(x − 1)c log(1 − p). Hence, we can rewrite the above inequalities as

f1(l) < log(E[Yl]) < f2(l). Note that the two functions f1(x) and f2(x) are monotonously

decreasing around log(n) + log(m)
c

− log(c).

Solving the equations f1(x) = 0 and f2(x) = 0, we get

f1(x1) = 0, for x1 = 1 + 1
log(1/(1−p))

[log(n) + log(m)
c

− log(c)

− log(log(n)+ log(m)
c

−log(c))

c
− log log(1

1−p
)

t
+ log(p)] + o(1),

f2(x2) = 0, for x2 = 1 + 1
log(1/(1−p))

[log(n) + log(m)
c

− log(c) + 1 + 1
c

− log(log(n)+
log(m)

c
−log(c))

c
− log log(1

1−p
)

c
+ log(p)] + o(1).

(4.11)

We can see that both x1 and x2 are in the order of log(n) + log(m)
c

− log(c) and x2 − x1 =

1
log(1/(1−p))

[1 + 1
c
] + o(1) ≤ 2

log(1/(1−p))
+ o(1), which is bounded by O(1).

We also have log(E[Y⌈x2⌉]) < f2(⌈x2⌉) ≤ f2(x2) = 0 and log(E[Y⌊x1⌋]) > f1(⌊x1⌋) ≥
f1(x1) = 0. This implies that x1 − 1 < ⌊x1⌋ ≤ l0 ≤ ⌈x2⌉ − 1 < x2, from which the result

follows.

What we would like to show next is that the average number of l-patterns E[Yl] has the

101

property that it changes fast around the value l0. We have the following lemma.

Lemma 13. E[Yl1] satisfies: E[Yl1] ≥ (n
ec
)3c(1+o(1))m3(1+o(1)), for l1 = l0 − 3.

Proof. We first have the following equation

E[Yl0−3]

E[Yl0
]

=
(m
l0−3)(

n
(l0−3)c)(

(l0−3)c
c)((l0−4)c

c)...(cc)p(l0−3)c(1−p)(l0−3)(l0−4)c

(ml0)(
n
l0c
)(l0cc)(

(l0−1)c
c)...(cc)pl0c(1−p)l0(l0−1)c

= l0(l0−1)(l0−2)(c!)3

(m−l0+3)(m−l0+2)(m−l0+1)(n−l0c+1)(n−l0c+2)...(n−l0c+3c)p3c(1−p)6l0c−12c

≥ (c!)3

m3n3c(1−p)6c(l0−2)

≥ (n
ec
)3c(1+o(1))m3(1+o(1)),

(4.12)

where the last inequality follows from c! ≥ e(c/e)c and (1−p)6c(l0−2) = (nm
1/c

c
)6c(1+o(1)), since

l0 − 2 = 1
log(1/(1−p))

[log(n) + log(m)
c

− log(c) + o(log(n) + log(m)
c

− log(c))].

Also note that E[Yl0] ≥ 1 and the result follows from (4.12).

Similarly, we can define lB
′

0 as the maximum integer such that E[Y B′

lB
′

0

] ≥ 1 and define

lB
′

1 = lB
′

0 − 3.

Let us denote by B(B,m′, n′) the family of all induced subgraphs of B by m′ message

vertices and n′ client vertices. Next, we will discuss in different scenarios (in the following

scenarios 1, 2, and 3) that we can find another integer L = L(m,n) = lB
′

2 ≤ lB
′

1 , such that

every induced subgraph B′ ∈ B(B,m′, n′) almost surely contains a L-pattern. For the fourth

scenario, we will discuss separately. The 4 scenarios with parameters L, m′, and n′ are

formally defined as follows.

Definition 3. We define the following 4 scenarios and how the corresponding parameters

are related.

• Scenario 1: m < exp(n1/15). In this scenario, we set c = 1, L = ⌊ 1
log(1/p̄)

[

log(m)− 3 log log(m) + 2 log log(1
p̄
)]⌋ = Θ(log(m)), m′ = m

log(m)
, and n′ = n

log(m)
. If c > 1, we

simply set c = 1 and this is a stronger constraint.

• Scenario 2: m ≥ exp(n1/15). In this scenario, we set c = 1, L = ⌊ 1
log(1/p̄)

[

log(m)− 3 log log(m) + 2 log log(1
p̄
)]⌋ = Θ(log(m)), m′ = m− L = m(1− o(1)), and n′ = L.

102

If c > 1, we simply set c = 1 and this is a stronger constraint.

• Scenario 3: c = o(n1/7

log2(n)
). In this scenario, we set L = ⌊ 1

log(1/p̄)
[log(n)− 3 log log(n)−

3 log(c) + 2 log log(1
p̄
)]⌋ = Θ(log(n)), m′ = m

log(n)
, and n′ = n

c log(n)
.

• Scenario 4: c = Ω(n1/7

log2(n)
). In this scenario, we set L = 1, m′ = 1, and n′ = 2c

p
.

Note that the scenarios 1 and 2 are defined based on the relationship between m and n;

the scenarios 3 and 4 are defined based on the relationship between c and n. There maybe

overlaps between scenarios 1, 2 and scenarios 3, 4. We want to show the following lemma for

the first 3 scenarios.

Lemma 14. For scenarios 1, 2, and 3 with parameters defined in Definition 3, every induced

subgraph B′ ∈ B(B,m′, n′) almost surely contains a L-pattern:

Pr{∃B′ ∈ B(B,m′, n′), s.t., B′ contains no L-pattern} = o(1). (4.13)

Proof. To prove this, we first use an “edge exposure” process to form a martingale based on

the random subgraph B′ [Bol01,MR10]. Specifically, we define X as a maximum number

of L-patterns in B′ such that no two of them share a same message-client pair (i.e., any

two L-patterns either have no common message vertices or client vertices or both). We

label the possible edges as 1, 2, . . . , m′n′ and denote by Zt the random variable to indicate

whether the edge t is exposed in the random graph, i.e., Zt = 1 if the t-th possible edge is

present in the graph and Zt = 0 otherwise. Therefore, X = f(Z1, Z2, . . . , Zm′n′) is a function

of the variables Zt. Define Xt = E[X|Z1, Z2, . . . , Zt] as a sequence of random variables

for t = 1, 2, . . . , m′n′, then {Xt} is a Doob martingale and Xm′n′ = X . Obviously, the

functionX = f(Z1, Z2, . . . , Zm′n′) is 1-Lipschitz, namely, flipping only one indicator function,

some Zt, the value of X differs by at most 1: |f(Z1, . . . , Zt, . . . , Zm′n′)− f(Z1, . . . , Zt−1, 1−
Zt, Zt+1, . . . , Zm′n′)| ≤ 1.

Note that the subgraph B′ contains no L-pattern is equivalent to X = 0. We then use

103

the Azuma’s inequality

Pr{E[X]−X ≥ a} ≤ exp(− a2

2m′n′), for a > 0. (4.14)

to get

Pr{X = 0} = Pr{E[X]−X ≥ E[X]} ≤ exp(−E
2[X]

2m′n′). (4.15)

Hence, to bound Pr{X = 0}, we only need to find a lower bound of E[X]. We use the

following probabilistic argument. For subgraph B′, we define L as the family of all L-patterns

and P as the family of all L-pattern pairs that share at least a same message and a same

client. Let us denote by B1, B2 ∈ B(B′,L,Lc) induced subgraphs of B′ by L message vertices

and Lc client vertices. Let us also denote by XB1 and XB2 the variables to indicate whether

the subgraphs B1 and B2 are L-patterns. Let us use the notation B1 ∼ B2 if two different

subgraphs B1 and B2 share at least a same message vertex and a same client vertex. We

then lower bound E[X] using the following scheme for scenarios 1, 2, 3 (we will talk about

how we bound E[X] for scenario 4 later): randomly select a subset of L-patterns from the

set L by picking up each L-pattern with probability p† (the value of which we will determine

later); if two selected L-patterns B†
1 and B†

2 form a pair in the set P, then remove one of

them. Then,

E[X] ≥ p†E[|L|]− p†2E[|P|], (4.16)

where the first term in the expression is the average number of selected L-patterns in L and

the second term is the average number of L-patterns that are removed because a pair in P
is selected with probability p†2.

We observe that E[|L|] = E[Y B′

L
] and next we calculate E[|P|] and determine p†.

E[|P|] = 1
2

∑

B1∈B(B′,L,Lc)

∑

B2∈B(B′,L,Lc):B2∼B1
E[XB1XB2]

= 1
2

∑

B1

∑

B2:B2∼B1
Pr{XB1 = 1}Pr{XB2 = 1|XB1 = 1}

= 1
2

(

m′

L

)(

n′

Lc

)(

Lc
c,c,...,c

)

Pr{XB0 = 1}∑B2:B2∼B0
Pr{XB2 = 1|XB0 = 1}

= 1
2
E[Y B′

L
]
∑

B2:B2∼B0
Pr{XB2 = 1|XB0 = 1},

(4.17)

104

where the second equality is from the conditional probability formula, the third equality is

by symmetry of the selection of B1 and we then take a fixed selection B0 consisting of the

first L messages and first Lc clients.

Hence, we only need to calculate the term
∑

B2:B2∼B0
Pr{XB2 = 1|XB0 = 1} for different

scenarios. We upper bound this term from above by enumerating all subgraph B2 that has

at least one common client vertex one common message vertex with B0.

1) For scenario 1, we have

∑

B2:B2∼B0
Pr{XB2 = 1|XB0 = 1} ≤ ∑

L

j=1

∑

L

i=1

(

L

j

)(

m′−L

L−j

)(

L

i

)(

n′−L

L−i

)

L! p
L(1−p)L(L−1)

p̄ij
, (4.18)

where the inequality is because p̄ij ≤ pa(1− p)ij−a for any non-negative integer a ≤ ij. For

simplicity, let us define the term inside the summation as ∆ij ,
(

L

j

)(

m′−L

L−j

)(

L

i

)(

n′−L

L−i

)

L!p
L(1−p)L(L−1)

p̄ij
.

We can see that for i = 1, 2, . . . ,L and j = 1, 2, . . . ,L− 1, we have

∆i,j+1

∆i,j
= (L−j)2

(j+1)(m′−2L+j+1)
p̄−i

≤ L
2

2(m′−2L+2)
p̄−L

≤ L
2

m′ p̄
−L

≤
1

log2(1/p̄)
log2(m)

m/ log(m)
m log2(1/p̄)

log3(m)

≤ 1.

(4.19)

This implies that for all i = 1, 2, . . . ,L and j = 1, 2, . . . ,L, ∆i,j ≤ ∆i,1. Also note that for

i = 1, 2, . . . ,L− 1,
∆i+1,1

∆i,1
= (L−i)2

(i+1)(n′−2L+i+1)
p̄−1

≤ L
2

n′p̄

≤ log(m)3

np̄ log2(1/p̄)

= o(1),

(4.20)

where the last equality holds for m < exp(n1/10). Hence, ∆i,j ≤ ∆1,1 for all i = 1, 2, . . . ,L

and j = 1, 2, . . . ,L.

105

For ∆1,1, we have the following

∆1,1

E[Y B′

L
]

=
L(m

′−L

L−1)L(
n′−L

L−1)L!
pL(1−p)L(L−1)

p̄

(m
′

L
)(n

′

L
)L!pL(1−p)L(L−1)

= L
4(m′−L)!(m′−L)!(n′−L)!(n′−L)!
p̄m′!(m′−2L+1)!n′!(n′−2L+1)!

≤ L
4 log2(m)
p̄mn

≤ log6(m)

p̄mn log4(1/p̄)
.

(4.21)

Plugging into (4.17), we have

E[|P|] ≤ 1
2
E
2[Y B′

L
]L2 log6(m)

p̄ log4(1/p̄)mn
≤ E

2[Y B′

L
] log8(m)

2p̄ log6(1/p̄)mn
(4.22)

From Lemmas 12 and 13, we have lB
′

0 = 1
log(1/(1−p))

[log(n) + log(m) − 2 log log(m) −
log(log(n)+log(m)−2 log log(m))−log log(1

1−p
)+log(p)]+O(1) and E[Y B′

lB
′

0 −3
] ≥ (mn

e log2(m)
)3(1+o(1)).

Obviously, we have L < lB
′

1 = lB
′

0 − 3 and E[Y B′

L
] ≥ (mn

e log2(m)
)3(1+o(1)). By setting the prob-

ability p† =
p̄ log6(1

p̄
)mn

E[Y B′

L
] log8(m)

< 1, we can bound the average number of X , E[X], in e.q. (4.16),

as

E[X] ≥ p̄2 log6(1
p̄
)mn

2 log8(m)
. (4.23)

Plugging (4.23) into (4.15), we can bound the following probability

Pr{B′ contains no L-pattern} ≤ exp(− p̄2 log12(1/p̄)mn

8 log14(m)
) (4.24)

Therefore, we can bound the probability that any subgraph B′ induced by m′ messages

and n′ clients does not contain a L-pattern:

Pr{∃B′ ∈ B(B,m′, n′), s.t., B′ contains no L-pattern}

≤
(

m
m′

)(

n
n′

)

exp(− p̄2 log12(1/p̄)mn

8 log14(m)
)

≤ 2m+n exp(− p̄2 log12(1/p̄)mn

8 log14(m)
) = o(1).

(4.25)

106

2) For scenario 2, we have

∑

B2:B2∼B0
Pr{XB2 = 1|XB0 = 1} ≤ ∑

L

j=1

(

L

j

)(

m′−L

L−j

)

L! p
L(1−p)L(L−1)

p̄jL
. (4.26)

Let us define the term inside the summation as ∆j ,
(

L

j

)(

m′−L

L−j

)

L!p
L(1−p)L(L−1)

p̄jL
.

Then we can see that for j = 1, 2, . . . ,L− 1, we have

∆j+1

∆j
= (L−j)2

(j+1)(m′−2L+j+1)
p̄−L

≤ L
2

m′ p̄
−L

≤
1

log2(1/p̄)
log2(m)

m(1−o(1))
m log2(1/p̄)

log3(m)

= o(1).

(4.27)

This implies that for all j = 1, 2, . . . ,L, ∆j ≤ ∆1.

For ∆1, we have the following

∆1

E[Y B′

L
]

=
L(m

′−L

L−1)L!
pL(1−p)L(L−1)

p̄

(m
′

L
)(n

′

L
)L!pL(1−p)L(L−1)

= L(m′−L)!(m′−L)!
p̄m′!(m′−2L+1)!

≤ L
2

p̄m(1−o(1))
≤ log2(m)(1+o(1))

p̄m log2(1/p̄)
.

(4.28)

Next, we have

E[|P|] ≤ 1
2
E
2[Y B′

L
]L log2(m)(1+o(1))

p̄ log2(1/p̄)m
≤ E

2[Y B′

L
] log3(m)

2p̄ log3(1/p̄)m
(4.29)

From Lemmas 12 and 13, we have lB
′

0 = 1
log(1/(1−p))

[log(L) + log(m − L) − log(log(L) +

log(m−L))− log log(1
1−p

) + log(p)] +O(1) = 1
log(1/(1−p))

[log(L) + log(m−L)− log(log(L) +

log(m− L)) − log log(1
1−p

) + log(p)] + O(1) = 1
log(1/(1−p))

[log(m) − 2 log log(1
1−p

) + log(p)] +

O(1) and E[Y B′

lB
′

0 −3
] ≥ (mL

e
)3(1+o(1)). Obviously, we have L < lB

′

1 = lB
′

0 − 3 and E[Y B′

L
] ≥

(mL

e
)3(1+o(1)). By setting the probability p† =

p̄ log3(1
p̄
)m(1−o(1))

E[Y B′

L
] log3(m)

< 1, we can bound the average

107

number of X , E[X], by

E[X] ≥ p̄ log3(1
p̄
)m(1−o(1))

2 log3(m)
. (4.30)

We then can bound the following probability using Azuma’s inequality

Pr{B′ contains no L-pattern} ≤ exp(− p̄2 log6(1/p̄)m2(1−o(1))

8 log6(m)m′n′)

≤ exp(− p̄2 log7(1/p̄)m(1−o(1))

8 log7(m)
).

(4.31)

Therefore, we can bound the probability that any subgraph B′ induced by m′ messages

and n′ clients does not contain a L-pattern:

Pr{∃B′ ∈ B(B,m′, n′), s.t., B′ contains no L-pattern}

≤
(

m
m′

)(

n
n′

)

exp(− p̄2 log7(1/p̄)m(1−o(1))

8 log7(m)
)

≤ mn2n exp(− p̄2 log7(1/p̄)m(1−o(1))

8 log7(m)
) = o(1),

(4.32)

where the last equality follows from that n ≤ log15(m).

3) For scenario 3, we have

∑

B2:B2∼B0
Pr{XB2 = 1|XB0 = 1}

≤ ∑

L

j=1

∑

Lc
i=1

(

L

j

)(

m′−L

L−j

)(

Lc
i

)(

n′−Lc
Lc−i

)(

Lc
c,c,...,c

)pLc(1−p)Lc(L−1)

p̄ij
,

(4.33)

For simplicity, let us define the term inside the summation as ∆i,j ,
(

L

j

)(

m′−L

L−j

)(

Lc
i

)

(

n′−Lc
Lc−i

)(

Lc
c,c,...,c

)pLc(1−p)Lc(L−1)

p̄ij
.

Then we can see that for j = 1, 2, . . . ,L and i = 1, 2, . . . ,Lc− 1, we have

∆i+1,j

∆i,j
= (Lc−i)2

(i+1)(n′−2Lc+i+1)
p̄−j

≤ L
2c2

n′ p̄−L

≤
1

log2(1/p̄)
c3 log(n)

n
n log2(1/p̄)

c3 log3(n)

≤ 1.

(4.34)

This implies that for all i = 1, 2, . . . ,Lc, ∆i,j ≤ ∆1,j .

108

We also note that for j = 1, 2, . . . ,L− 1, we have

∆1,j+1

∆1,j
= (L−j)2

(j+1)(m′−2L+j+1)
p̄−1

≤ L
2

2p̄(m′−2L+2)

≤ L
2

p̄m′

≤ log3(n)

p̄ log2(1/p̄)m

= o(1).

(4.35)

This implies that for all i = 1, 2, . . . ,Lc and j = 1, 2, . . . ,L, ∆i,j ≤ ∆1,j ≤ ∆1,1.

For ∆1,1, we have the following

∆1,1

E[Y B′

L
]

=
L(m

′−L

L−1)Lc(
n′−Lc
Lc−1)(

Lc
c,c,...,c)

pLc(1−p)Lc(L−1)

p̄

(m
′

L
)(n

′

Lc)(
Lc

c,c,...,c)pLc(1−p)Lc(L−1)

≤ L
4c2

p̄m′n′

≤ c3 log6(n)

p̄mn log4(1/p̄)
.

(4.36)

Next, we have

E[|P|] ≤ 1
2
E
2[Y B′

L
]L2c c3 log6(n)

p̄mn log4(1/p̄)
≤ E

2[Y B′

L
] c4 log8(n)

2p̄ log6(1/p̄)mn
(4.37)

From Lemmas 12 and 13, we have lB
′

0 = 1
log(1/(1−p))

[log(n) + log(m)
c

− 2 log(c) − (1 +

1/c) log log(n) − log[log(n)+log(m)/c−2 log(c)]
c

− log log(1/(1−p))
c

+ log(p)] + O(1) and E[Y B′

lB
′

0 −3
] ≥

(n
ec2 log(n)

)3c(1+o(1))(m
log(n)

)3(1+o(1)). Obviously, we have L < lB
′

1 = lB
′

0 − 3 and E[Y B′

K
] ≥

(n
ec2 log(n)

)3c(1+o(1))(m
log(n)

)3(1+o(1)). By setting the probability p† =
p̄ log6(1

p̄
)mn

E[Y B′

L
]c4 log8(n)

< 1, we can

bound the average number of X , E[X], by

E[X] ≥ p̄ log6(1
p̄
)mn

2c4 log8(n)
. (4.38)

109

We then can bound the following probability using Azuma’s inequality

Pr{B′ contains no L-pattern} ≤ exp(− p̄2 log12(1/p̄)m2n2

8c8 log16(n)m′n′)

≤ exp(− p̄2 log12(1/p̄)mn

8c7 log14(n)
).

(4.39)

Therefore, we can bound the probability that any subgraph B′ induced by m′ messages

and n′ clients does not contain a L-pattern:

Pr{∃B′ ∈ B(B,m′, n′), s.t., B′ contains no L-pattern}

≤
(

m
m′

)(

n
n′

)

exp(− p̄2 log12(1/p̄)mn

8c7 log14(n)
)

≤ 2m+n exp(− p̄2 log12(1/p̄)mn

8c7 log14(n)
) = o(1),

(4.40)

where the last equality follows from that c = o(n1/7

log2(n)
).

We then can reiterate Theorem 16 in a slightly different way.

Theorem 16′. The number of broadcast transmissions for random graph instance B(m,n, c, p)

is almost surely upper bounded by

• O(n
log(m)

), for any c ≥ 1;

• O(n
c log(n)

), for c = o(n1/7

log2(n)
);

• O(n
c
+ log(c)), for c = Ω(n1/7

log2(n)
).

Proof. For scenarios 1, 2, and 3, we can proceed using the following transmission scheme.

• Start from the original bipartite graph representation B. If there are more thanm′ messages

and n′ clients in the graph, we pick a L-pattern to encode the messages and make one

transmission. We remove the satisfied clients and the used messages. If there are less than

n′ clients, we can almost surely use n′ transmissions to satisfy the remaining clients, which

follows from that a subgraph of B that contains n′ vertices on both sides almost surely have

a perfect matching [ER66].

From Lemma 14, we can see that the above scheme can be done almost surely. Hence,

we can almost surely use the number of transmissions n
Lc

+n′, from which the first two parts

follow.

110

Now, let us prove the third part of the theorem for scenario 4 with c = Ω(n1/7

log2(n)
). We

use a slightly different but simple proof technique. By setting n′ = 2c
p
, we use a 2-step

transmission scheme.

• In the first step, we arbitrarily make n/c uncoded transmissions. After each transmission,

we remove up to c satisfied clients as many as possible.

• In the second step, we divide the remaining unsatisfied clients into groups as few as possible,

each with up to c clients, we use pliable index coding scheme to satisfy each of the groups.

We want to show that we can almost surely satisfy at least n − n′ clients by using

these n/c uncoded transmissions in the first step. Hence, we can almost surely divide the

remaining unsatisfied clients into at most n′/c = 2/p groups and these groups almost surely

take 2
p
O(log(c)) broadcast transmissions from Chapter 2.4.

For a fixed uncoded transmission, e.g., message bj , we would like to show that the prob-

ability that this transmission cannot satisfy c clients is exponentially small if the remaining

unsatisfied clients is more than n′. Let us denote by D the number of connections for mes-

sage vertex bj to any n′ remaining client vertices. Then obviously, E[D] = n′p = 2c and

the probability that the uncoded transmission of bj cannot satisfy c clients (i.e., a 1-pattern

exists) can be bounded by the following Chernoff bound:

Pr{bj cannot satisfy c clients} ≤ Pr{D ≤ c} = Pr{D ≤ (1− 1/2)E[D]}

≤ exp(−2c(1/2)2

2
) = exp(− c

4
).

(4.41)

After n/c uncoded transmissions, the probability that the number of remaining unsatis-

fied clients is more than n′ can be bounded as follows:

Pr{n/c uncoded transmissions cannot satisfy n− n′ clients}

≤ n
c
exp(− c

4
) ≤ n6/7 log2(n)o(1) exp(−n1/7Ω(1)

4 log2(n)
) = o(1).

(4.42)

Combining the two steps, we have the number of broadcast transmissions almost surely

upper bounded by n/c+ 2
p
O(log(c)) = O(n/c+ log(c)) for scenario 4.

111

Note that for Theorem 16′, we can combine the results and have the number of broadcast

transmissions almost surely upper bounded by O(min{ n
log(m)

, n
c log(n)

}) for c = o(n1/7

log2(n)
) and

O(min{ n
log(m)

, n
c
+ log(c)}) for c = Ω(n1/7

log2(n)
).

4.3 Application to Distributed Computing

4.3.1 Model and Performance Metric

Consider a distributed computing system, with one master node withmmessages b1, b2, . . . , bm

and n worker nodes. Each worker i ∈ [n] is equipped with a cache of size s. The system

solves a computational problem x = f(b1, b2, . . . , bm) in iterations, where at iteration t: the

master broadcasts the current estimate xt−1 to all workers; workers perform local computa-

tions and send to the master their new estimate xt
i; the master node combines local estimates

to get an updated estimate; he then performs data shuffling. In data shuffling, the master

node makes broadcast transmissions (that may be encoded) to the workers and each worker

replaces some of the old messages with the new messages that she can decode.

In machine learning and distributed learning community, although to what extent the

data should be shuffled is far from understood, the idea that shuffling needs to be done such

that caches store a certain fraction of different data across workers and iterations is well

recognized through practice in order to achieve sufficient statistical gains.

Motivated by this practical consideration, we use a Hamming distance metric to evaluate

the performance of data shuffling algorithms. Let us define the cache state for worker node i

in time period t be zti ∈ {0, 1}m, where the j-th bit of zti takes value 1 if message bj is in the

cache of worker node i in time period t and 0 otherwise. The Hamming distance between two

cache states z and z′, denoted by H(z, z′), is the number of positions where the entries are

different for z and z′. We define the Hamming distance of a shuffling scheme as the average

Hamming distance across time and workers H , 1

(Tn
2)

∑

1≤t,t′≤T,(i,i′)∈[n]2,(t,i)6=(t′,i′) E[H(zti , z
t′

i′)],

where T denotes the number of iterations.

112

4.3.2 Data Shuffling Scheme

4.3.2.1 Hierarchical Structure

We partition the messages into m/m1 groups so that each group g contains m1 disjoint

messages. In our scheme, each worker i gets allocated messages from groups indexed by a

set D(i); each group g allocates messages to workers indexed by a set N(g). We can represent

this relationship using a bipartite graph: at one side there are m/m1 groups, and at the other

side there are n workers; there is a connection between worker i and group g if and only if

worker i caches messages from group g, i.e., g ∈ D(i); the degree of the worker node i is

|D(i)| and of the group node g is |N(g)|. This structure is maintained for all iterations.

In order to have a large Hamming distance H , we can impose the constraint that |D(i)∩
D(i′)| ≤ 1 for any two worker nodes i and i′, namely, they have common messages in no

more than one group. Moreover, to balance the messages cached in different worker nodes,

we would like that |N(g)| is the same for all groups. We thus select for our scheme to use

|D(i)| = s
m1(1−1/r)

, and |N(g)| = ns
m(1−1/r)

, where the design parameter 2 ≤ r ≤ m1 takes

integer values.

Note that because of the requirement that the same message can be decoded and stored

by at most c workers, we need that no more than rc workers cache messages in group g, i.e.,

|N(g)| ≤ cr. For example, for c = 1, then at most r workers can be in N(g), each one of

them with m1(1− 1/r) cached messages from this group.

4.3.2.2 Transmissions

For a message group g and associated clients N(g), we consider as a constrained pliable

index coding instance and design a simple transmission scheme that proceeds as follows.

• Initialization: the cache of worker i is filled with uniformly at random selected m1(1−1/r)

messages from each group in D(i), thus in total s messages.

• Iteration t: the master makes m/m1 broadcast transmissions, one for every group. For

each group g, the master selects uniformly at random r messages in the group and transmits

113

their linear combination, say bj1 +bj2 + . . .+bjr . From the following Lemma 15, every worker

in N(g) can decode a new message with probability at least 1/e. The workers who can

decode a new message store it in their cache and discard an old message; they select the

old message to discard uniformly at random from the messages in their cache that are also

contained in the broadcast transmission, i.e., one from {bj1 , bj2, . . . , bjr}.

Lemma 15. A worker with m1(1−1/r) cached messages from group g that receives a linear

combination bj1 + bj2 + . . . + bjr of r messages uniformly at random selected from g, can

decode a message she does not have with probability at least 1/e.

Proof. Without loss of generality, assume the worker has cached the messages 1, 2, . . . , m1(1−
1/r) and requires a new message from the remaining m1/r messages. The probability that

there is exactly one message in the r data pieces bj1 , bj2, . . . , bjr selected from the last m1/r

data pieces is lower bounded by

p1 , Pr{The worker can decode a new message}

≥ (m1/r
1)(m1(1−1/r)

r−1)
(m1

r)

=
(m1−m1

r
)(m1−m1

r
−1)...(m1−m1

r
−r+2)

(m1−1)(m1−2)...(m1−r+1)

≥ (
m1−m1

r
−r−2

m1−r+1
)r−1 = (1− m1−r

r(m1−r+1)
)r−1

≥ (1− 1
r
)r−1 ≥ 1

e

4.3.3 Algorithm Performance

We here theoretically evaluate properties of the proposed algorithm.

• Communication cost. Each data shuffling phase requires m/m1 broadcast transmissions.

• Satisfying c-constraint. As at most rc workers have cached messages from group g, from

Lemma 15, we can see that on average at most rcp1 (for some fixed 1 > p1 ≥ 1/e) workers

can update their cache with a new message during one transmission. Because we uniformly

at random select which r messages to encode, each message can be decoded by cp1 workers

114

on average. Hence, on average, the c-constraint is satisfied. Note that this scheme allows us

to maintain the randomness property for workers in N(g) (see Chapter 4.3.3.2).

• Hamming distance. Between the caches of any two workers the Hamming distance is at

least 2(s − m1 + m1/r), since any two workers have common messages from at most one

group.

Next, we evaluate the Hamming distance across iterations for the same worker. We first

consider the Hamming distance H|g only corresponding to the messages of a specific group g.

The average Hamming distance across all iterations is at least the average Hamming Distance

between two consecutive iterations (see Chapter 4.3.3.1). Hence, the average Hamming

distance H|g can be lower bounded by:

H|g ≥ 0 · (1− 1
e
) + 2 · 1

e
= 2/e. (4.43)

We then consider the average Hamming distance across all the groups in D(i). Since

|D(i)| = s
m1(1−1/r)

, this is at least s
m1(1−1/r)

2/e = 2s
em1(1−1/r)

. Therefore, on average H ≥
min{ 2s

em1(1−1/r)
, 2(s−m1 +m1/r)}.

• Comparison to Index Coding. Index coding may require in the worst case Ω(n) broadcast

transmissions and Θ(n/ log(n)) for random graph instances to update one message in each

cache, and thus Ω(ns/em1(1− 1/r)) (in the worst case) and Θ(ns/em1(1− 1/r) log(n)) (for

random graph instances) broadcast transmissions in each data shuffling iteration to guar-

antee a Hamming distance of 2s
em1(1−1/r)

across time. Using our proposed scheme, we need

m/m1 transmissions to achieve an average Hamming distance of 2s/em1(1−1/r) across time.

Note that each client stores s messages as side information, then on average each message is

stored on sn/m workers. The benefits of our proposed scheme over index coding (i.e., the

ratio of the numbers of transmissions for index coding scheme and for our proposed scheme)

is O(sn/m) (in the worst case) and O(sn
m log(n)

) (for random graph instances). Additionally,

finding the optimal index coding solution is NP-hard, while our scheme has linear complexity

of encoding.

115

4.3.3.1 Hamming Distance Analysis

We analyze the Hamming distance of our pliable index coding based shuffling. We first note

that across different worker nodes, the Hamming distance is at least 2(s −m1 + m1/r), as

in the outer layer of the transmission structure, two different worker nodes have common

messages in no more than one group.

Next, we evaluate the Hamming distance across iterations for the same worker i. Let us

define a truncated cache state on group g for worker i at iteration t, zti |g ∈ {0, 1}m1, as a

m1-tuple that consists of coordinates of zti corresponding to messages in group g. We first

consider the Hamming distance H|g between truncated cache state on a specific group g

for worker i across iterations. We claim that the average Hamming distance H|g across all

iterations is at least the average Hamming Distance between two consecutive iterations, i.e.,

for two given iterations t1 < t2, Pr{zt1i |g = zt2i |g} ≤ Pr{zt1i |g = zt1+1
i |g}.

To prove this, we use a random walk model on a graph G(V,E) that is constructed as

follows. Each vertex v ∈ V corresponds to one of
(

m1

m1(1−1/r)

)

possible truncated cache states

zti |g, or state for short, i.e., all binary vectors of length m1 and weight m1(1 − 1/r). There

is an edge between two states v1 and v2 if and only if their Hamming distance is no more

than 2, i.e., each vertex v has a self-loop and there is an edge connecting two vertices of

Hamming distance 2. Thus, a vertex v has m2
1(1/r − 1/r2) connections with other vertices.

Originally, worker i is in any of the
(

m1

m1(1−1/r)

)

possible states with equal probability. Using

our proposed shuffling scheme, after each iteration, worker i remains in the same state with

probability 1 − p1 ≤ 1 − 1/e (p1 is defined as the probability that a worker can decode a

new message during each transmission) and changes to a neighboring state with probability

p1
em2

1(1/r−1/r2)
according to Lemma 15. Assume at iterations t1, worker i is in some state

v1 ∈ V . At iteration t2, worker i’s state is a random variable with some distribution. Let us

denote by ptv the probability that worker i is in state v at iteration t. Then we have the flow

116

conservation equation:

pt2v1 = pt2−1
v1 (1− p1) +

∑

v 6=v1:{v,v1}∈E pt2−1
v

p1
m2

1(1/r−1/r2)

= pt2−1
v1

(1− p1) + pt2−1
v0

p1
m2

1(1/r−1/r2)
m2

1(1/r − 1/r2)

≤ pt2−1
v1

(1− p1) +
1−p

t2−1
v1

m2
1(1/r−1/r2)

p1

≤ 1− p1 = pt1+1
v1

,

(4.44)

where the second equality holds because the probabilities for worker i in v1’s neighbors, p
t2−1
v

for v 6= v1 : {v, v1} ∈ E, are all equal by symmetry, and thus we can pick a fixed neighbor v0

of v1; the first inequality holds because pt2−1
v0 is at most

1−p
t2−1
v1

m2
1(1/r−1/r2)

, i.e., worker i has equal

probability in any of v1’s neighbors by symmetry and the probability that worker i is in one

of v1’s neighbors is at most 1− pt2−1
v1

; and the second inequality holds because the function

g(pt2−1
v1

) = pt2−1
v1

(1− p1) +
1−p

t2−1
v1

m2
1(1/r−1/r2)

p1 is an increasing function and achieves the maximum

for pt2−1
v1

= 1. Our claim is proved.

Hence, the average Hamming distance H|g can be lower bounded by:

H|g ≥ 0 · (1− 1
e
) + 2 · 1

e
= 2/e. (4.45)

We then consider the average Hamming distance across all the groups in D(i). Since

|D(i)| = s
m1(1−1/r)

, this is at least s
m1(1−1/r)

2/e = 2s
em1(1−1/r)

. Therefore, on average H ≥
min{ 2s

em1(1−1/r)
, 2(s−m1 +m1/r)}.

4.3.3.2 Independence and Randomness Preserving Property

Originally, if the worker nodes in N(g) have independently and uniformly at random cached

m1(1−1/r) messages in group g, then we observe that the pliable index coding based shuffling

scheme maintains this “independence and randomness” property. Without loss of generality,

assume the worker nodes in N(g) are 1, 2, . . . , n1, where n1 = |N(g)|. Again, we use the

graph constructed above.

Corollary 2. The pliable index coding based shuffling scheme maintains the “independence

117

and randomness” property. Formally, if the following two properties hold for iteration t:

Pr{zt1|g = v1, z
t
2|g = v2, . . . , z

t
n1
|g = vn1}

= Pr{zt1|g = v1}Pr{zt2|g = v2} . . .Pr{ztn1
|g = vn1},

(4.46)

for any state tuple (v1, v2, . . . , vn1) ∈ V n1, and

Pr{zti |g = vi} =
1

|V | , (4.47)

for any worker i ∈ [n1] and state vi ∈ V ; then these two properties also hold for iteration

t+ 1:

Pr{zt+1
1 |g = v′1, z

t+1
2 |g = v′2, . . . , z

t+1
n1

|g = v′n1
}

= Pr{zt+1
1 |g = v′1}Pr{zt+1

2 |g = v′2} . . .Pr{zt+1
n1

|g = v′n1
},

(4.48)

for any state tuple (v′1, v
′
2, . . . , v

′
n1
) ∈ V n1, and

Pr{zt+1
i |g = v′i} =

1

|V | , (4.49)

for any worker i ∈ [n1] and state vi ∈ V .

Proof. The second property is obvious. Indeed, by symmetry of the constructed graph, if

worker i is in every state with equal probability, then after one iteration (one random walk),

worker i remains in every state with equal probability.

We then show the first property. We have the following

Pr{zt+1
1 |g = v′1, . . . , z

t+1
n1

|g = v′n1
}

=
∑

(v1,...,vn1)
Pr{zt1|g = v1, . . . , z

t
n1
|g = vn1}·

Pr{zt+1
1 |g = v′1, . . . , z

t+1
n1

|g = v′n1

∣

∣

∣
zt1|g = v1, . . . , z

t
n1
|g = vn1}

= n1

|V |
∑

(v1,...,vn1)
Pr{zt+1

1 |g = v1, . . . , z
t+1
n1

|g = vn1

∣

∣

∣
zt1|g = v′1, . . . , z

t
n1
|g = v′n1

}

= n1

|V | ,

(4.50)

where the first equality holds due to the total probability theorem; the second equality holds

118

because of the initial two properties for iteration t, i.e., e.q. (4.46) and (4.47), and the

“reversibility property” of the random walk, i.e.,

Pr{zt+1
1 |g = v′1, . . . , z

t+1
n1

|g = v′n1

∣

∣

∣
zt1|g = v1, . . . , z

t
n1
|g = vn1}

= Pr{zt+1
1 |g = v1, . . . , z

t+1
n1

|g = vn1

∣

∣

∣
zt1|g = v′1, . . . , z

t
n1
|g = v′n1

}.
(4.51)

The “reversibility property” describes that the probability walking from (v1, . . . , vn1) to

(v′1, . . . , v
′
n1
) is equal to that of walking from (v′1, . . . , v

′
n1
) to (v1, . . . , vn1). Indeed, if we use

the same coded transmission and a reverse discarding process, then we achieve the goal. For

example, if a worker has messages {1, 2, 3} in its cache, and the transmission is b1+b2+b3+b4;

then the worker decodes message 4 and replaces message 1 and at last has cached messages

{2, 3, 4}. If we reverse the process, we start from messages {2, 3, 4} in cache; using the same

transmission b1 + b2 + b3 + b4, the worker decodes b1 and replaces message 4, resulting in

cached messages {1, 2, 3}. This can be done with equal probability across all workers. The

corollary is proved.

4.3.4 Experimental Results

We conduct experiments on distributed machine learning over a real data set2 that aims

to detect diseased trees in an image. We train the distributed classification model using a

stochastic gradient descent method based on 1000 data instances (messages). We set the

number of workers to n = 300 and the cache size to s = 10. We divide the messages

into 50 groups, with 20 messages in each. We set the parameter r = 2, i.e., each worker

has cached messages in 1 group. We carry out experiments by comparing our hierarchical

pliable index coding based shuffling against: (i) no shuffling and (ii) shuffling with randomly

selected messages. For case (ii), once we randomly select what message to send to each

worker, we use two approaches for broadcasting: uncoded broadcast transmissions, and

index coding [LLP15,CS08]. We implemented index coding using the graph coloring based

heuristic approach in [CS08].

2https://archive.ics.uci.edu/ml/datasets/Wilt#

119

2 4 6 8 10 12 14 16 18 20

Number of iterations for data shuffling

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.29

0.295

0.3

E
rr

o
r

ra
te

No shuffling

Uncoded shuffling & index coding based shuffling

Pliable index coding based shuffling

Figure 4.4: Comparison of computation performance for different data shuffling schemes.

0 5 10 15 20

Number of iterations for data shuffling

0

2000

4000

6000

8000

10000

12000

14000

N
u
m

b
e
r

o
f
b
ro

a
d
c
a
s
t
tr

a
n
s
m

is
s
io

n
s

Uncoded shuffling

Index coding based shuffling

Pliable index coding based shuffling

Figure 4.5: Comparison of broadcast transmissions for different data shuffling schemes.

In Fig. 4.4, we compare the computation performance of our pliable index coding based

shuffling scheme with no data shuffling scheme and the data shuffling scheme with randomly

selected messages (uncoded shuffling and index coding based shuffling use the same cached

messages in each local computation, and only differ in the data shuffling phase). We find

that data shuffling improves the performance by 11.4% as compared to no shuffling; pliable

coding shuffling performs very similarly (2.6% worse) to randomized shuffling. In Fig. 4.5,

we compare the number of broadcast transmissions for the data shuffling schemes: uncoded

shuffling, index coding based shuffling and pliable index coding based shuffling. We find that

our proposed pliable index coding based shuffling scheme saves 63% and 59% in terms of

the number of transmissions as compared to the uncoded shuffling and to the index coding

based shuffling, respectively.

120

4.4 Open Question and Future Work

In this chapter, we discuss how to use pliable index coding to reduce the communication

cost in distributed computing. We consider a “master-workers” system model and show

the benefits of using pliable index coding over index coding. Our future work will examine

other distributed computing system models and try to investigate benefits that coding can

offer for communication. We observe that the communication cost relies highly on the type

of distributed algorithms. For example, to train a classifier in a distributed manner, we

can average the distributed classifier parameters to get an aggregated classifier; but if we

want to train a decision tree, we may also need to exchange information at each layer when

constructing the tree. Hence, we would like to see which type of computation task can benefit

more from our proposed framework. Moreover, our framework may enable the design of new

distributed algorithms that can rely more heavily on communication, since our approach can

make communication cheaper.

4.5 Summary

In this chapter, we discuss how to use pliable index coding to realize data shuffling in

order to reduce communication bottleneck in distributed computing system. We first pose a

constraint on pliable index coding that requires each message achieve no more than c clients

and show fundamental limits on this problem: upper and lower bounds, average performance

over random instances. We then propose a hierarchical structure and data shuffling scheme

that admits this constrained pliable index coding as a basic building block. We find benefits

up to O(ns/m) over index coding, where ns/m is the average number of workers caching a

message, andm, n, and s are the numbers of messages, workers, and cache size, respectively.

121

CHAPTER 5

Content-Type Coding over Large Networks and Lossy

Networks

5.1 Introduction

In this chapter, we sample more problems within the scope of content-type coding and show

the benefits over conventional message-specific coding. We go beyond the index coding

framework and consider two other content-type coding frameworks: one is over large scale

networks and the other is over lossy networks.

First, we study the content-type coding over large scale networks. We are interested

in two issues: the performance of content-type coding for sufficiently large networks and

how the benefit over message-specific coding changes with the network size. In network

coding literature, the combination network is often studied to show the performance of

network coding over large scale networks, e.g., [NY04]. Here, we consider a “combination-

like” network and show that if we serve types of content instead of specific messages over the

network to users, we can achieve as many benefits as the size of the content type (i.e., the

minimum number of messages inside a content type) allows when network size is sufficiently

large.

Second, we consider a broadcast erasure channel with “ACK-NACK” feedbacks, where

a source wants to send content-type messages to two receivers. We theoretically show the

capacity of such a content-type broadcast erasure channel and propose an achievable trans-

mission scheme using content-type coding. Compared with the capacity of message-specific

broadcast erasure channel [GT09], we show that we can always achieve certain benefits (i.e.,

122

b11, b12 b21, b22

s1 s2

r1 r2

b11, b21 b12, b22

(a) Requesting specific messages.

b11, b12 b21, b22

s1 s2

r1 r2

b11 or b12

b21 or b22

b11 or b12

b21 or b22

(b) Requesting one message from each type.

Figure 5.1: Example where each source has messages of a given type.

the capacity region of the content-type broadcast erasure channel always covers that of the

message-specific broadcast erasure channel), and the capacity benefit can be up to 19.5%

under a symmetric setting.

The work presented in this chapter was published in [SF15].

5.2 Content-Type Coding over Large Networks

5.2.1 Motivating Example

Fig. 5.1 provides a simple example of content-type coding benefits. We start from the

classical butterfly network, with two sources, s1 and s2, two receivers, r1 and r2, and unit

capacity directed links, where each source has 2 messages of a given type. In the example,

source s1 (say advertising hotels) has 2 unit rate messages, {b11, b12}, and source s2 (say

advertising car rentals) also has 2 unit rate messages {b21, b22}. The min-cut to each receiver

is two, thus she used all the network resources by herself, we could send to her two specific

messages, for instance, to r1: b11 and b21 and to r2: b12 and b22. However, if we want to send

to both receivers these specific requests, it is clearly not possible, as there are no coding

opportunities; we can satisfy one receiver but not both. In contrast, if each receiver requires

one message from each type, then we can multicast say b11 and b21 to both receivers.

123

5.2.2 Problem Formulation

We consider a network represented as a directed graph G = (V,E), a set of m sources

{s1, s2, · · · , sm} and a set of n receivers {r1, r2, · · · , rn}. Each source has u messages of

the same type, and different sources have different types of messages. We denote by Bj =

{bj1, bj2, · · · , bju} the set of type-j messages from source sj.

Given a transmission scheme, we use the rate towards a receiver to measure the effi-

ciency of the transmission scheme. In the conventional message-specific coding problem,

each receiver ri requests specific messages, one from each type, denoted by a fixed element

(b1, b2, · · · , bm) ∈ B1 × · · · × Bm. For K transmissions, the messages requested by receiver ri

are denoted by (bK1 , b
K
2 , · · · , bKm), where each element is a vector bKj = (bj(1), · · · , bj(k), · · · , bj(K)).

We denote byRi the set of messages that the receiver ri can decode afterK transmissions,

and we say that the transmission rate towards ri is the number of requested messages that

can be decoded by the receiver ri per transmission, i.e.,

Ri =
1

K

K
∑

k=1

m
∑

j=1

I{bj(k)∈Ri}. (5.1)

In the content-type formulation, each receiver ri requests to receive (any) one message

from each type, and does not care which specific one. We denote the requested content-type

messages by an arbitrary element x1, x2, · · · , xm ∈ B1 × · · · × Bm. For K transmissions, the

messages requested by ri are denoted by (xK
1 , x

K
2 , · · · , xK

m), where each element is a vector

that is represented as xK
j = (xj(1), · · · , xj(k), · · · , xj(K)). Similarly, the rate towards ri

is defined as the number of requested messages that can be decoded by the receiver ri per

transmission, i.e.,

Rc
i =

1

K

K
∑

k=1

m
∑

j=1

I{∃xj(k)∈Ri, such that xj(k)∈Bj}. (5.2)

We would like to study the rate averaged among all receivers for message-specific coding,

denoted by R, and the that for content type coding, denoted by Rc. Clearly, for message

specific coding, the rate depends upon the specific message requests. We denote by Rw the

124

worst-case rate (minimizing among all possible sets of requests), and by Ra the average rate

(averaged over all possible sets of requests). We define the worst case and average case gains,

respectively, as:

Gw = Rc

Rw , Ga = Rc

Ra . (5.3)

5.2.3 Combination-Like Network

We consider the combination-like network structure G(m, h, u), where m ≤ h. shown in

Fig. 5.2. The network has four layers: the first layer is the m sources and each source

connects to every node in the second layer; the second layer has h intermediate A nodes and

each A node connects to a B node in the third layer, which also contains h intermediate B

nodes; the fourth layer contains n =
(

h
m

)

um receivers, where we have um receivers connected

to each subset of size m of the B nodes.
s1 s2 sm

m

A–nodes A1 A2 Ah−1 Ah

B–nodes B1 B2 Bh−1 Bh

· · ·

· · ·

· · ·

· · ·· · · · · ·
c1 cum cncn−um+1

m mm m

Figure 5.2: Combination-like network structure.

Theorem 17. In a G(m, h, u) network,

Gw = u, limh→∞Ga = u. (5.4)

Proof. We first note that in the network G(m, h, u), content type coding achieves Rc = m, as

we can use network coding to multicast one specific message from each type to all receivers.

We next show that in the network G(m, h, u), the worst case message-specific coding rate

is Rw = m/u. We construct the following receiver requirements: for every um receivers that

125

are connected to the same B nodes, each request is an element of the set B1 × · · · × Bm,

and no two requests are the same. Since all mu messages are requested, we need to use the

same set of m A-B edges, at least u times. Using network coding we can ensure that at the

end of u transmissions, each receiver gets all mu messages and thus also the m messages

required by her; thus the transmission rate is m/u. Note that receiving all mu messages by

each receiver is a worst case scenario in terms of rate.

Finally, we show that in a network G(m, h, u), the average rate of the message-specific

coding problem is bounded by

Ra ≤ m
u
+ m

u
m+1

2
+ m2(1+

√
lnu)

u
m+1

2
+ (m+1)2

√
lnu

√

(h
m)u

m+1
2

. (5.5)

The idea is as follows. We consider m out of the h edges that connect A to B nodes, and

the um receivers that can be reached only through these edges. We call these m edges and

um receivers a basic structure. We argue that, through each such structure, we need to send

almost surely all messages to have a good average - with high probability all messages are

required by less than um−1(1 − δ1) receivers. Thus the rate we can get through each basic

structure converges to m/u.

Then, let us discuss in detail. Let us denote by E = {e1, e2, · · · , eh} the set of h edges

connecting A nodes and B nodes. We refer to m different edges in E and the um receivers

that are only connected to them, as a basic structure. From construction, there are
(

h
m

)

such

structures. For each structure, it is straightforward to see that:

• For any basic structure, the maximum transmission rate through these m edges to the

receivers in this structure is m (since the min-cut is m).

• Denote by sjv the number of requirements of message bjv ∈ Bj (v ∈ [u]) for receivers

in a basic structure (i.e., the number of receivers requesting this message). Then the

maximum transmission rate is
∑m

l=1maxl sjv/u
m, where maxl sjv represents the l-th

maximum number among {sjv|1 ≤ j ≤ m, 1 ≤ v ≤ u}. This means that the maximum

transmission rate is achieved by transmitting the m most popular messages through

126

these m edges.

Consider any given basic structure. We first observe that E[sjv] = um−1. We define the

event Eδ1
jv = {sjv > E[sjv](1+δ1)} as an abnormal event with respect to the message bjv. We

also define the event Eδ1 = ∪1≤j≤m,1≤v≤uE
δ1
jv as an abnormal event for this basic structure.

From the Chernoff bound, we have that

Pr{Eδ1
jv} = Pr{sjv > E[sjv](1 + δ1)} ≤ e−

um−1δ21
3 , (5.6)

and

p1 = Pr{Eδ1} = umPr{Eδ1
jv} ≤ ume−

um−1δ21
3 . (5.7)

Here we denote by p1 the probability that an abnormal event happens. When an abnormal

event happens for this basic structure, the rate for this structure is (at most) m. If an

abnormal event does not happen for this basic structure, the rate for this structure is (at

most) mum−1(1 + δ1)/u
m = m(1 + δ1)/u.

Next, we consider the w =
(

h
m

)

structures. Let us denote by TE the number of structures

with an abnormal event happening. The expected value of TE is wp1. The probability that

{TE > wp1(1 + δ2)} happens, denoted by p2, can be bounded using the Chernoff bound:

p2 = Pr{TE > wp1(1 + δ2)} ≤ e−
wp1δ

2
2

3 , (5.8)

Hence, if the event {TE > wp1(1 + δ2)} does not happen, the number of structures with

an abnormal event is at most wp1(1 + δ2). Therefore, the average rate can be bounded by

Ra ≤ p2m+ (1− p2)[
wp1(1+δ2)m+(w−wp1(1+δ2))

m(1+δ1)
u

w
]

≤ p2m+ p1(1 + δ2)m+ m(1+δ1)
u

.
(5.9)

127

Let us set δ1 =

√
3
2
(m+3) lnu

u
m−1

2
and δ2 =

√
3
2
(m+1) lnu
√
wp1

. Then we have

p1 ≤ mu−m+1
2 ,

p2 ≤ u−m+1
2 .

(5.10)

Plugging e.q. (5.10) into e.q. (5.9), we can have an upper-bound for the average rate:

Ra ≤ p2m+ p1(1 + δ2)m+ m(1+δ1)
u

≤ m
u
+ m

u
m+1

2
+ m2(1+

√
lnu)

u
m+1

2
+ (m+1)2

√
lnu

√

(h
m)u

m+1
2

.
(5.11)

Setting h = h1m, and m = h2u, where h1 and h2 are constants, we have,

Ra → m
u
, (5.12)

as h → ∞.

From this theorem, we can see that the benefit is almost surely the size of the content

type, which can be arbitrarily large.

5.3 Content-Type Coding over Erasure Networks

We here make the case that, over erasure networks with feedback, we can realize benefits by

allowing the random erasures to dictate the specific messages within a content type that the

receivers get - essentially we shape what we serve to the random channel realizations.

5.3.1 Problem Formulation

We consider the following content-type coding setup. A server, s, hasm1 messages of content-

type 1, M1, and m2 messages of content-type 2, M2 (eg. an ad serving broadcasting station

in a mall hasm1 sale coupons for clothes andm2 sale coupons for gadgets). Receiver c1 wants

128

to receive all the m1 type-1 messages (sale coupons for clothes) and a fraction α, any αm2

of the type-2 messages (sale coupons for gadgets); receiver c2 wants the reverse, all the m2

type-2 messages (coupons for gadgets) and any αm1 type-1 messages (coupons for clothes).

The server is connected to the two receivers through a broadcast erasure channel with 1-bit

ACK-NACK error-free feedback; in particular, when the server broadcasts a message, each

receiver ci receives it correctly with probability 1− ǫi, independently across time and across

receivers. Each receiver causally acknowledges whether she received the message or not.

The corresponding message-specific scheme is as follows [GT09]. The server wants to

send to c1 all the messages in M1 and in a specific subset of M2, M1
2 ⊆ M2, of size αm2;

and to c2, all the messages in M2 and in a specific subset of M1, M2
1 ⊆ M1, of size αm1.

We again have independent broadcast erasure channels with feedback.

Definition 4. We say that rates (r1, r2), with

r1 =
m1 + αm2

K
, r2 =

m2 + αm1

K
, (5.13)

are achievable, if with K transmissions by s both c1 and c2 receive all they require.

5.3.2 Strategy for Message-Specific Coding

The work in [GT09] proposes the following achievability strategy and proves it is capacity

achieving. Recall that we use the subscript to indicate the content type, and the superscript

for the receiver.

• Phase 1: The source repeatedly transmits each of the messages in M1\M2
1 and M2\M1

2,

until one (any one) of the two receivers acknowledges it has received it.

• Phase 2: The source transmits linear combinations of the messages in M1
2, M2

1, those in

M1\M2
1 that were not received by c1, and those in M2\M1

2 that were not received by c2.

The intuition behind the algorithm is that, in Phase 1, each private message (that only one

receiver requests) is either received by its legitimate receiver, or, it becomes side information

for the other receiver. In Phase 2, each receiver either wants to receive each message in a

129

linear combination or already has it as side information and can thus subtract it. The source

creates linear combinations that are innovative (bring new information) to each receiver

(eg., through uniform at random combining over a high enough field [GT09]). The strategy

achieves the rate region:

0 ≤ r1 ≤ min{1− ǫ1,
1−ǫ2

1−(1−φ2)(1−α)
}

0 ≤ r2 ≤ min{1− ǫ2,
1−ǫ1

1−(1−φ1)(1−α)
}

r1
1−ǫ1

(

1− αφ1

1+α

)

+ r2
1−ǫ12

1
1+α

≤ 1

r1
1−ǫ12

1
1+α

+ r2
1−ǫ2

(

1− αφ2

1+α

)

≤ 1

(5.14)

where ǫ12 = ǫ1ǫ2, and φi = (1− ǫi)/(1− ǫ12) for i = 1, 2.

5.3.3 Strategy for Content-Type Coding

We propose the following strategy.

• Phase 1: For the messages in M1, denote by M1r the messages not yet transmitted.

Initially M1r = M1.

1. The server repeatedly broadcasts a message in M1r, until (at least) one of the receivers

acknowledges it has successfully received it. The message is removed from M1r. If c1

receives the messages, she puts it into a queue Q1
1. If c2 receives the message, she puts

it into a queue Q2
1.

2. The server continues with transmitting a next message inM1r, until eitherM1r become

empty, or

|M1r|+ |Q2
1| = αm1. (5.15)

The server follows the same procedure for message set M2.

• Phase 2: The source transmits linear combinations of the messages in the three sets:

M1r ∪M2r, Q
2
1\Q1

1, and Q1
2\Q2

2 until both receivers are satisfied.

The intuition behind the strategy is that, during Phase 1 we transmit messages from

130

Enc

1

1

m
W

2

2

m
W

KX
(|),

1 2
yp y x

(|) (, |))|(
1 2 1 2

p y x p y x p yy x
,

(|)
,

 wp 1-

 wp

i

i

i

x
p y x

e

Dec 1

Dec 2

ˆ 1

1

m
W ˆ 2

2

m
W

ˆ 1

1

m
W ˆ 2

2

m
W

,1 kS

,2 kS

1

KY

2

KY

Figure 5.3: Broadcast erasure channel model for content-type transmission with feedback.

M1 until we either run out of messages, or both receivers want to receive the remaining

M1r: c1 because she wants all the messages in M1 and c2 because, on top of the Q2
1 she has

already received, she also needs the M1r to complete the fraction αm1. Note that originally,

|M1r| = m1 and |Q2
1| = 0; at every step, the quantity in (5.15) either remains the same (if c2

receives the message), or reduces by one (if she does not). Similarly for M2. In the second

phase, the source again transmits linear combinations of messages that either a receiver

wants, or already has and can subtract to solve for what she wants.

Using the above method, we can show the achievable rate of content-type broadcasting

scheme in the following theorem.

Theorem 18. The rate region of the 1-2 content-type broadcasting communication with

erasures is

0 ≤ r1 ≤ min{1− ǫ1,
1−ǫ2
α

}

0 ≤ r2 ≤ min{1− ǫ2,
1−ǫ1
α

}
r1

1−ǫ1
[1− α(φ1−α)+

1−α2] + r2
1−ǫ1

(φ1−α)+

1−α2 ≤ 1

r2
1−ǫ2

[1− α(φ2−α)+

1−α2] + r1
1−ǫ2

(φ2−α)+

1−α2 ≤ 1

(5.16)

where (x)+ = max{x, 0}. This also achieves the capacity for 2-1 content-type broadcasting

erasure channel.

Proof. We first show the content-type coding model in Fig. 5.3.

Achievability

To prove this theorem, we assume that m1 and m2 are large. Recall that we define ǫ12 = ǫ1ǫ2,

131

and φi = (1− ǫi)/(1− ǫ12) for i = 1, 2. Let us denote by m′
1 and m′

2 the number of messages

transmitted from sets M1 and M2 at the end of phase 1. Therefore, the average number of

transmissions needed to complete phase 1 is:

K1 =
m′

1 +m′
2

1− ǫ12
. (5.17)

On average, the number of messages from setMj (j = 1, 2) received by receiver i (i = 1, 2)

is:

N i
j = m′

jφi. (5.18)

From the algorithm, we know that m1−m′
1 = (αm1−N2

1)
+ and m2−m′

2 = (αm2−N1
2)

+.

Therefore, we have

m′
i = [1− (α− φi)

+

1− φi

]mi. (5.19)

In phase 2, the required number of messages for receiver i (i = 1, 2) is then

mi
r = (m′

i −N i
i) + (m1 −m′

1) + (m2 −m′
2), (5.20)

where the first term is the number of erased messages from the set Mi that are received by

another receiver, the second and third terms are the remaining messages to be transmitted.

For phase 2, the average number of transmissions needed is

K2 = max{ m1
r

1− ǫ1
,

m2
r

1− ǫ2
}. (5.21)

Then, the rate region can be calculated as:

{

(r1, r2) : r1 ≥ 0, r2 ≥ 0, r1 =
m1+αm2

K
,

r2 =
m2+αm1

K
, K1 +K2 ≤ K

}

,
(5.22)

where K is an auxiliary variable and can be cancelled out. Plugging (5.17) and (5.21) into

(5.22), we get the achievability.

132

Note that for max{φ1, φ2} < α < min{φ1/φ2, φ2/φ1}, the conditions are simplified as

r1 ≤ 1− ǫ1 and r2 ≤ 1− ǫ2, implying that the maximum rates can be achieved.

Converse

To prove the converse of the theorem, we use an information theory method to show that

this rate region is tight. We first depict the system model in Fig. 5.3.

We aim to find the capacity region (r1, r2) for this broadcast channel. Without loss of

generality, let us assume |W1| = |W2| = |X| = |Y1| − 1 = |Y2| − 1 = 2.

To prove the converse, we just need to show the first and the third equations in (5.16), and

then according to the symmetry, we get the whole set of equations. For the first equation,

it is equivalent to point-to-point communication, so we can directly get it. For the third

equation, we consider two parts:

m1

1− ǫ1
+

αm2

1− ǫ1
≤ 1,

m1

1− ǫ12
+

m2

1− ǫ2
≤ 1,

First, we consider

K ≥
K
∑

k=1

H(Xk)

≥
K
∑

k=1

H(Xk|Y k−1
1 , Sk−1)

=
K
∑

k=1

[H(Xk|Y k−1
1 , Y k−1

2 , Sk−1)

+ I(Xk; Y
k−1
2 |Y k−1

1 , Sk−1)

=
K
∑

k=1

[H(Xk|Wm1
1 ,Wm2

2 , Y k−1
1 , Y k−1

2 , Sk−1)

+ I(Xk; Y
k−1
2 |Y k−1

1 , Sk−1)

+ I(Xk;W
m1
1 ,Wm2

2 |Y k−1
1 , Y k−1

2 , Sk−1)]

(5.23)

133

and the following two conditions:

(m1 +m2)−KεK ≤ I(Wm1
1 ,Wm2

2 ; Y K
1 , Y K

2 , SK)

=
K
∑

k=1

I(Y1,k, Y2,k, Sk;W
m1
1 ,Wm2

2 |Y k−1
1 , Y k−1

2 , Sk−1)

=
K
∑

k=1

I(Y1,k, Y2,k;W
m1
1 ,Wm2

2 |Y k−1
1 , Y k−1

2 , Sk−1, Sk)

=
K
∑

k=1

I(Xk;W
m1
1 ,Wm2

2 |Y k−1
1 , Y k−1

2 , Sk−1) Pr(Sk 6= 0)

= (1− ǫ12)
K
∑

k=1

I(Xk;W
m1
1 ,Wm2

2 |Y k−1
1 , Y k−1

2 , Sk−1),

(5.24)

where the above conditions hold due to the Fano’s inequality and the incidence property of

Sk, and
m1−KεK

1−ǫ1
≤ I(Wm1

1 ;Xk|Y k−1
1 , Sk−1)

≤
K
∑

k=1

[I(Xk;W
m1
1 |Y k−1

1 , Y k−1
2 , Sk−1)

+ I(Xk; Y
k−1
2 |Y k−1

1 , Sk−1)]

≤ m1

1−ǫ12
+

K
∑

k=1

[I(Xk; Y
k−1
2 |Y k−1

1 , Sk−1)],

(5.25)

where the last inequality follows from (using the same idea as (5.24))

m1 ≥ I(Wm1
1 ; Y K

1 , Y k
2 , S

k)

= (1− ǫ12)
K
∑

k=1

I(Xk;W
m1
1 |Y k−1

1 , Y k−1
2 , Sk−1).

(5.26)

Plugging (5.24) and (5.25) into (5.23), we get the first part of the third equation in (5.16).

Similarly, we can get the second part of the third equation in (5.16) using

(m1 + αm2)−KεK ≤ I(Wm1
1 ,W αm2

2 ; Y K
1 , SK)

= (1− ǫ1)
K
∑

k=1

I(Xk;W
m1
1 ,W αm2

2 |Y k−1
1 , Sk−1).

≤ (1− ǫ1)
K
∑

k=1

H(Xk)

≤ (1− ǫ1)K.

(5.27)

134

By comparison of (5.14) and (5.16), we can see that the capacity region of content-

type broadcast erasure channel always covers that of the message-specific broadcast erasure

channel. For symmetric case with ǫ1 = ǫ2 = ǫ and r1 = r2 = r, we can simplify the content-

type capacity as Ccontent−type = min{1 − ǫ, (1−ǫ)(1+ǫ)(1+α)
2+ǫ

} and the message-specific capacity

as Cmessage−specific = (1−ǫ)(1+ǫ)(1+α)
2+ǫ+ǫα

. This shows that the gain of content-type coding is

Ccontent−type/Cmessage−specific =
2+ǫ+ǫα

(1+ǫ)(1+α)
for α ≥ 1/(1+ǫ) and Ccontent−type/Cmessage−specific =

2+ǫ+ǫα
max{(1+ǫ)(1+α),2+ǫ} . This gain achieves maximum Gain(ǫ) = 1 + ǫ

(1+ǫ)(2+ǫ)
for α = 1/(1 + ǫ);

and Gain(ǫ) achieves maximum 1.195 for ǫ = 1/
√
2 (i.e., up to 19.5% gain).

Fig. 5.4 compares the rate regions (also capacity regions) for the content-type and message

coding. For content-type, we have three distinct cases, depending on the relative values of α

and φi. Note that φi expresses the fraction of messages that ci receives during Phase 1. Thus,

if α < min{φ1, φ2} (Fig. 5.4 (a)), c1 and c2 already receive αm1 and αm2 messages during

Phase 1; essentially broadcasting content-type messages comes for “free”, has not additional

rate cost to providing c1 with M1 and c2 with M2. If min{φ1, φ2} < α < max{φ1, φ2},
say for instance φ1 < α < φ2 (Fig. 5.4 (b)), c2 receives the content-type messages for free,

but for c1 we need additional transmissions in Phase 2. In α > max{φ1, φ2} (Fig. 5.4 (c)),

c1 and c2 require large percentages of messages from another type; interestingly, when we

have max{φ1, φ2} < α < min{φ1/φ2, φ2/φ1}, we can achieve the point (1− ǫ1, 1− ǫ2), which

implies that, all transmissions by s are useful for both receivers. Message-specific coding in

general does not achieve this point.

5.4 Summary

We introduce two other content-type coding formulations: over large networks and over lossy

networks. We can see that using content-type coding we can achieve arbitrary large benefit

for a large “combination-like” network and capacity benefits for a 1-2 broadcast erasure

channel with feedback. We believe that there are many more scenarios where we can realize

135

0.3 0.4 0.5 0.6

0.3

0.4

0.5

0.6

0.7

Rate for receiver 1 (r
1
)

R
a

te
 f

o
r

re
c
e

iv
e

r
2

 (
r 2

)

r
2
=1−ε

2

r
1
=1−ε

1

Rate region (r
1
,r

2
) for

message−specific coding

Gain

Rate region (r
1
,r

2
) for

content−type coding

(a) Case 1: α < min{φ1, φ2};α = 0.5.

0.3 0.4 0.5 0.6

0.3

0.4

0.5

0.6

0.7

Rate for receiver 1 (r
1
)

R
a

te
 f

o
r

re
c
e

iv
e

r
2

 (
r 2

)

Rate region (r
1
,r

2
) for

message−specific coding

Gain

Rate region (r
1
,r

2
) for

content−type coding
r
2
=1−ε

2

r
1
=1−ε

1

(b) Case 2: φ1 < α < φ2;α = 0.7.

0.3 0.4 0.5 0.6

0.3

0.4

0.5

0.6

0.7

Rate for receiver 1 (r
1
)

R
a

te
 f

o
r

re
c
e

iv
e

r
2

 (
r 2

)

r
1
=1−ε

1

Rate region (r
1
,r

2
) for

content−type coding

Rate region (r
1
,r

2
) for

message−specific coding

r
2
=1−ε

2

Gain

(c) Case 3: α > max{φ1, φ2};α = 0.85.

Figure 5.4: Comparison of rate region, as defined in (5.13), by message-specific and content-type coding, across three cases.
The shaded regions show the gains of content-type over message-specific coding. The channel parameters are ǫ1 = 0.4 and
ǫ2 = 0.3, which give φ1 = 0.682 and φ2 = 0.795.

136

benefits, such as, downloading content-type rather than message-specific content, can help all

aspects of content distribution networks, ranging from storage to coding to content delivery.

137

REFERENCES

[ABK13] Fatemeh Arbabjolfaei, Bernd Bandemer, Young-Han Kim, Eren Şaşoğlu, and Lele
Wang. “On the capacity region for index coding.” In 2013 IEEE International
Symposium on Information Theory (ISIT), pp. 962–966, 2013.

[ACL00] Rudolf Ahlswede, Ning Cai, S-YR Li, and Raymond W Yeung. “Network infor-
mation flow.” IEEE Transactions on Information Theory, 46(4):1204–1216, 2000.

[Ari09] Erdal Arikan. “Channel polarization: a method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels.” IEEE Trans-
actions on Information Theory, 55(7):3051–3073, 2009.

[AT16] Mohamed Attia and Ravi Tandon. “Information theoretic limits of data shuffling
for distributed learning.” arXiv preprint arXiv:1609.05181, 2016.

[BBJ11] Ziv Bar-Yossef, Yitzhak Birk, TS Jayram, and Tomer Kol. “Index coding with
side information.” IEEE Transactions on Information Theory, 57(3):1479–1494,
2011.

[BF12] Siddhartha Brahma and Christina Fragouli. “Pliable index coding.” In 2012 IEEE
International Symposium on Information Theory (ISIT), pp. 2251–2255, 2012.

[BF13] Siddhartha Brahma and Christina Fragouli. “Pliable index coding: the multiple
requests case.” In 2013 IEEE International Symposium on Information Theory
Proceedings (ISIT), pp. 1142–1146, 2013.

[BF15] Siddhartha Brahma and Christina Fragouli. “Pliable index coding.” IEEE Trans-
actions on Information Theory, 61(11):6192–6203, 2015.

[BK98] Y. Birk and T. Kol. “Informed-source coding-on-demand (ISCOD) over broad-
cast channels.” In IEEE Conference on Computer and Communications Societies
(INFOCOM), volume 3, pp. 1257–1264, 1998.

[BKL10] Anna Blasiak, Robert Kleinberg, and Eyal Lubetzky. “Index coding via linear
programming.” arXiv preprint arXiv:1004.1379, 2010.

[BL11] Yossi Berliner and Michael Langberg. “Index coding with outerplanar side infor-
mation.” In 2011 IEEE International Symposium on Information Theory Proceed-
ings (ISIT), pp. 806–810, 2011.

[Bol01] Béla Bollobás. Random graphs. Cambridge Studies in Advanced Mathematics 73,
2001.

[Bol13] Béla Bollobás. Modern graph theory. Springer Science & Business Media, 2013.

[Bor81] Jean C de Borda. “Mémoire sur les élections au scrutin.” 1781.

138

[CAS11] Mohammad Asad R Chaudhry, Zakia Asad, Alex Sprintson, and Michael Lang-
berg. “On the complementary index coding problem.” In 2011 IEEE International
Symposium on Information Theory Proceedings (ISIT), pp. 244–248, 2011.

[Con15] “Conviva Viewer Experience Report.” www.conviva.com, 2013-2015.

[CS08] Mohammad Asad R Chaudhry and Alex Sprintson. “Efficient algorithms for in-
dex coding.” In IEEE International Conference on Computer Communications
(INFOCOM) Workshops, pp. 1–4, 2008.

[CZM11] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I Jordan, and Ion Sto-
ica. “Managing data transfers in computer clusters with orchestra.” In ACM SIG-
COMM Computer Communication Review, volume 41, pp. 98–109. ACM, 2011.

[DG77] Persi Diaconis and Ronald L Graham. “Spearman’s footrule as a measure of
disarray.” Journal of the Royal Statistical Society. Series B (Methodological), pp.
262–268, 1977.

[DKN01] Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. “Rank
aggregation methods for the web.” In Proceedings of the 10th International Con-
ference on World Wide Web, pp. 613–622. ACM, 2001.

[DSC12] Son Hoang Dau, Vitaly Skachek, and Yeow Meng Chee. “On the security of
index coding with side information.” IEEE Transactions on Information Theory,
58(6):3975–3988, 2012.

[DSC14] Son Hoang Dau, Vitaly Skachek, and Yeow Meng Chee. “Optimal index codes
with near-extreme rates.” IEEE Transactions on Information Theory, 60(3):1515–
1527, 2014.

[EEL15] Michelle Effros, Salim El Rouayheb, and Michael Langberg. “An equivalence
between network coding and index coding.” IEEE Transactions on Information
Theory, 61(5):2478–2487, 2015.

[ER66] P Erdős and Alfréd Rényi. “On the existence of a factor of degree one of a
connected random graph.” Acta Mathematica Hungarica, 17(3-4):359–368, 1966.

[ESG08] Salim El Rouayheb, Alex Sprintson, and Costas Georghiades. “On the relation
between the index coding and the network coding problems.” In 2008 IEEE
International Symposium on Information Theory (ISIT), pp. 1823–1827, 2008.

[ESG10] Salim El Rouayheb, Alex Sprintson, and Costas Georghiades. “On the index
coding problem and its relation to network coding and matroid theory.” IEEE
Transactions on Information Theory, 56(7):3187–3195, 2010.

[GRW16] Alexander Golovnev, Oded Regev, and Omri Weinstein. “The minrank of random
graphs.” arXiv preprint arXiv:1607.04842, 2016.

139

[GT09] L. Georgiadis and L. Tassiulas. “Broadcast erasure channel with feedback - capac-
ity and algorithms.” In 2009 IEEE Workshop on Network Coding, Theory, and
Applications (NetCod), pp. 54–61, June 2009.

[Has96] Johan H̊astad. “Clique is hard to approximate within n1−ǫ.” In Proceedings 37th
Annual Symposium on Foundations of Computer Science (FOCS ’96), pp. 627–
636. IEEE, 1996.

[HL12] Ishay Haviv and Michael Langberg. “On linear index coding for random graphs.”
In 2012 IEEE International Symposium on Information Theory (ISIT), pp. 2231–
2235, 2012.

[Kar72] Richard M Karp. “Reducibility among combinatorial problems.” In Complexity
of Computer Computations, pp. 85–103. Springer, 1972.

[Kem59] John G Kemeny. “Mathematics without numbers.” Daedalus, 88(4):577–591,
1959.

[KRU11] Shrinivas Kudekar, Thomas J Richardson, and Rüdiger L Urbanke. “Threshold
saturation via spatial coupling: why convolutional LDPC ensembles perform so
well over the BEC.” IEEE Transactions on Information Theory, 57(2):803–834,
2011.

[LCL14] Yung-Ming Li, Chia-Ling Chou, and Lien-Fa Lin. “A social recommender mech-
anism for location-based group commerce.” Information Sciences, 274:125–142,
2014.

[LLP15] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and
Kannan Ramchandran. “Speeding up distributed machine learning using codes.”
arXiv preprint arXiv:1512.02673, 2015.

[LMA15] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. “Coded
MapReduce.” In 2015 53rd Annual Allerton Conference on Communication, Con-
trol, and Computing (Allerton), pp. 964–971. IEEE, 2015.

[LS09] Eyal Lubetzky and Uri Stav. “Nonlinear index coding outperforming the linear
optimum.” IEEE Transactions on Information Theory, 55(8):3544–3551, 2009.

[LS11] Michael Langberg and Alex Sprintson. “On the hardness of approximating the net-
work coding capacity.” IEEE Transactions on Information Theory, 57(2):1008–
1014, 2011.

[MCJ14] Hamed Maleki, Viveck R Cadambe, and Syed A Jafar. “Index coding-an in-
terference alignment perspective.” IEEE Transactions on Information Theory,
60(9):5402–5432, 2014.

[MR10] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman &
Hall/CRC, 2010.

140

[NY04] Chi Kin Ngai and Raymond W Yeung. “Network coding gain of combination
networks.” In IEEE Information Theory Workshop, pp. 283–287. IEEE, 2004.

[Pee96] René Peeters. “Orthogonal representations over finite fields and the chromatic
number of graphs.” Combinatorica, 16(3):417–431, 1996.

[RDR07] Matthew Richardson, Ewa Dominowska, and Robert Ragno. “Predicting clicks:
estimating the click-through rate for new ads.” In Proceedings of the 16th Inter-
national Conference on World Wide Web, pp. 521–530. ACM, 2007.

[RV97] Paul Resnick and Hal R Varian. “Recommender systems.” Communications of
the ACM, 40(3):56–58, 1997.

[SF15] Linqi Song and C Fragouli. “Content-type coding.” In 2015 International Sym-
posium on Network Coding (NetCod), pp. 31–35, 2015.

[SF16a] Linqi Song and Christina Fragouli. “Making recommendations bandwidth aware.”
arXiv preprint arXiv:1607.03948, 2016.

[SF16b] Linqi Song and Christina Fragouli. “A polynomial-time algorithm for pliable index
coding.” In 2016 IEEE International Symposium on Information Theory (ISIT),
pp. 120–124, 2016.

[SF16c] Linqi Song and Christina Fragouli. “A polynomial-time algorithm for pliable index
coding.” arXiv preprint arXiv:1610.06845, 2016.

[SF17] Linqi Song and Christina Fragouli. “A pliable index coding approach to data
shuffling.” arXiv preprint arXiv:1701.05540, 2017.

[Sha48] Claude E Shannon. “A mathematical theory of communication.” Bell System
Technical Journal, 27:379–423, 1948.

[SHN11] Shu Shi, Cheng-Hsin Hsu, Klara Nahrstedt, and Roy Campbell. “Using graphics
rendering contexts to enhance the real-time video coding for mobile cloud gaming.”
In Proceedings of the 19th ACM International Conference on Multimedia, pp. 103–
112. ACM, 2011.

[STY03] Shuichi Sakai, Mitsunori Togasaki, and Koichi Yamazaki. “A note on greedy
algorithms for the maximum weighted independent set problem.” Discrete Applied
Mathematics, 126(2):313–322, 2003.

[yah] “Yahoo! search marketing advertiser bidding data, version 1.0.” website, https:
//webscope.sandbox.yahoo.com/catalog.php?datatype=a. accessed: 2016-05-
30.

141

