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Abstract 
The digitalization and algorithmification of individual behavior and social conduct have become the 
dominant socio-technological paradigm of our times. Its all-pervasive applicability modernizes all 
facets of human life. Computational social science methods have shown to be useful in studying the 
resulting dynamics by making effective use of the very same computational technologies that 
constitute the digital paradigm. The proposal of this line of research is to go one step further and not 
only take advantage of the tools, but also of the theoretical framework of the digital age. 
Information theory and theoretical computer science gave rise to the digital paradigm and, at the 
same time, turn out to be useful in its conceptualization and quantification. Variables like 
'information', 'predictability', and 'knowledge' become measurable constructs in their own right. This 

Chapter reviews the underlying theoretical justifications and presents an overview of empirical 
applications, which include studies of recommender systems, collective dynamics on Wikipedia and 
the stock market, and the evolution of economic growth. 
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Introduction 
 
Digital technology has infused almost all aspects of our individual and social life. The 
advancement of our understanding of the digital paradigm has become urgent, as any 
technological revolution comes with unavoidable side effects, and the collateral damage of 
digital technology is already widely felt. It includes harm to mental health from social media 
(Allcott et al., 2020; Eyal, 2014), harm to democratic opinion formation through 
misinformation (Epstein & Robertson, 2015; Lazer et al., 2018), and commercial exploitation 
through tailor-made manipulation (Hannak et al., 2014; Nahai, 2013). The discussion about 
adequate policy responses has just begun and still lacks sufficient research support to be 
conclusive (Coravos et al., 2019; Hilbert, 2020b; Tutt, 2016). 
 
This Chapter approaches the resulting challenges by proposing that the same 
conceptualization that created the digital age can also help make sense of it. The 
methodological tools from computational social science, combined with the theoretical 
concepts from information theory and theoretical computer science, allow researchers to 
make a science of the building blocks of the digital age. Concepts like 'data', 'information', 
'communication', 'complexity', and 'knowledge' are clearly defined concepts in the 
theoretical literature that conceptualizes the machines that give rise to the digital age. They 
can also be used to conceptualize 'social computations' and 'human communication', 
especially as they merge with digital machines. The "social power of algorithms" (Beer, 
2017) leads to many new research questions (Wagner et al., 2021), many of which relate to 
the particularities of "machine behavior" of artificially intelligent technology (Rahwan et al., 
2019) and the emergent "social algorithm, which examines the interplay of social and 
computational code" (Lazer, 2015, p. 1091).  
 
In the first part of the Chapter, we review a way of theorizing the digital age in terms of 
traditional innovation theory. In the second part, we review how concepts from information 
theory and theoretical computer science can be used to measure and quantify the digital 
age. In both parts, we discuss the logic of the chosen approach, define the dominating 
terminology, and review what we have learned so far in terms of stylized facts and existing 
studies.   
 

Theorizing Digitalization and Algorithmification 
 
The current paradigm of societal algorithmification can be framed within the traditional 
framework of innovation theory, which holds that socio-technological progress is 
characterized by cumulative creative destruction (Schumpeter, 1939; Freeman, 1990). The 
current focus on algorithms and knowledge can be seen as the subsequent stage of societal 
evolution, building on digital information and communication, much like steam-powered 
industrialization built on water-powered industrialization two centuries earlier (Hilbert, 
2020a). Algorithmification does to knowledge processes what digitalization does to 
information and communication. Just like computation is a process of information and 
communication (which is illustrated in the traditional setup of a Turing machine (Turing, 
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1936)),1 algorithmification builds on the innovations introduced by the digitalization of 
information and communication, which is a necessary but not sufficient condition. Similar to 
how 'digitalization' introduces far-reaching changes to fundamental concepts of social 
reality, including reconfigurations of notions of space and time (Cairncross, 1997), the 
importance of network structures (Castells, 1999), scale economics (Shapiro & Varian, 
1998), and changes in individual and collective identity (Turkle, 1984, 1995), 
algorithmification leads to fundamental changes in the modus operandi of processes 
(Hilbert, 2015). It leads to a reorganization of individual and societal dynamics, resulting in 
the emergence of a jointly biological and computerized social order (Gillings et al., 2016). 
We now review an innovation theoretic approach to algorithmification and then discuss the 
newly introduced terminology in more detail.  
 
 

Approach: innovation theory 
On the highest level of aggregation, innovation theory describes social evolution in terms of 
so-called Schumpeterian long-waves of socio-technological change (Freeman & Louçã, 2002; 
Kondratieff, 1935; Perez, 2004; Schumpeter, 1939). The different period are historically 
named after the dominating technological paradigm. The first sequence of innovations 
focused on transforming material, and included the stone-, bronze-, and iron-ages. The 
second sequence of long-waves focused on the transformation of energy, and included the 
water-, steam-, and electricity paradigms of societal modernization. The current sequence 
focuses on the transformation of information (Hilbert, 2020a), which can also be subdivided 
into sequential sub-paradigms. During the first decades of the digital paradigm (the 1980s – 
2010s), the focus was set on the digitalization of data and communication, which was driven 
by telecommunication, databases, and digital networks. The current longwave shifts the 
focus from information to knowledge and algorithms, which focuses on processes (Hilbert, 
2020a). It is driven by artificial intelligence, and the internet of smart things, 3D 
representations, and blockchain technology.  
 
In order to classify as a "long-wave / great surge" of human development (Perez, 2015), 
algorithmification needs to fulfill characteristic criteria of what economists call a "general-
purpose technology" (Helpman, 1998). It needs to exhibit descending costs, extensive 
supply, boost productivity, and have "all-pervasiveness" (Perez, 1983, p. 361). Algorithms 
easily clear the bar of the first three criteria, as exemplified by the proliferation of machine 
learning in the economy (Brynjolfsson & McAfee, 2014; Agrawal et al., 2018).  
It is instructive to emphasize how all-pervasive algorithms and the potential areas of 
applications of algorithmification are. All behavior of living beings lends itself to algorithmic 
infusion. This is because life tends to follow repetitive routines that often result in stable 
collective structures. Any repetitive structure unfolding in time is a potential application for 
algorithmification. "An algorithm is an ordered set of unambiguous, executable steps that 
define a terminating process" (Brookshear, 2009, p. 205). It is not necessary to understand 
what an algorithm does in order to have one. Many modern machine learning algorithms 
are notorious black boxes (Pasquale, 2015). Many social processes are little understood as 

 
1 A Turing machine is the prototypical abstract model of computation. It consists of a finite-state machine (‘the 
algorithm’) that is associated with a storage tape (‘information/data’) and a ‘head’ that can read from and 
write to (‘communicate with’) the tape following the instructions from the provided algorithm.  
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well, but they still compute. Algorithmification focuses on systematic approaches to find, 
expand, fine-tune, and experiment with processes that unfold in time. In this sense, we can 
essentially think of an algorithm as a structure in time. The focus on building structures in 
time is the essence of algorithmification. Let us review some of the ongoing efforts in the 
field of business routines, social habits, cultural conduct, and laws, which are all potential 
candidates for algorithmification.  
 
Industrial automation promotes the algorithmification of behavioral processes head-on, 
which often goes under catchphrases like smart industry or industry 4.0 (Hermann et al., 
2016). An organization can be conceptualized as an information-processing entity 
(Galbraith, 1974) made of individual and collective routines (Nelson & Winter, 1985). 
Organizational routines are "a pattern of behavior that is followed repeatedly, but is subject 
to change if conditions change" (Winter, 1964, p. 264). As such, organizational routines lend 
themselves to an algorithmic [if-then] logic. Algorithmification is a potent tool to optimize 
the end goal of organizational routines, customs, and rules, which have emerged to reduce 
uncertainty, both in terms of the cognitive load of an organization (fewer surprises), and to 
coordinate a common understanding that augments collective control (Becker, 2004). The 
substitution of uncertainty with predictability is one of the main goals of algorithmification 
(Agrawal et al., 2018). The goal of the seamless integration of enterprise software like ERP 
(enterprise resource planning) (Jacobs & Weston, 2007), SCM (supply chain management) 
(Mentzer et al., 2001), and CRM (customer relationship management) (Dyché et al., 2002), 
with control systems on the machine level (ANSI/ISA-95, 1995), consists in algorithmifying 
management and production processes throughout the company (Plattform Industrie 4.0, 
2018). All of these information systems aim at substituting remaining degrees of uncertainty 
with predictable information that allows company assets to intelligently coordinate and 
negotiate needs based on their algorithms guided by business KPI (key-performance-
indicators), aka the 'industrial internet of things' (Boyes et al., 2018; Sisinni et al., 2018). 
 
Not only the economy, also society as a whole is made of repetitive processes that lend 
themselves to algorithmification. Sociological concepts like Bourdieu's 'habitus' (Bourdieu, 
1990), Gidden's 'structuration' (Giddens, 1986), Habermas' transition from 'lifeworld' to 
'system' (Habermas, 1995), and the social construction of 'habitualization' and 
institutionalization' by Berger and Luckmann (1967) provide the basis for a deep and wide 
theoretical literature on the social emergence between individual behavior and social 
structure that unfolds in time. This literature holds that the reduction of uncertainty is the 
main driver for the repetitive behavior of individuals and emergent social patterns. 
Repetition reduces uncertainty about the way of doing things individually and collectively 
and, therefore, reduces cognitive loads. "The most important gain is that each [member of 
society] will be able to predict the other's actions. Concomitantly, the interaction of both 
becomes predictable" (Berger & Luckmann, 1967, p. 57). Predictability is the domain of 
algorithms. Today's "prediction machines" created the most valued companies in history by 
predicting the habitus of social media users better than they could predict their own 
behavior (Frias-Martinez & Virseda, 2013; Hilbert, Barnett, et al., 2019; Wang & Kosinski, 
2018; Wu et al., 2015). Persuasive technology created entire industries that add tangible 
aspects of modern structuration and institutionalization by creating new psychological and 
social habits (Eyal, 2014; Nahai, 2013). Social media algorithms bind people an average of 
three hours a day, executing predictably repetitive procedures (GlobalWebIndex, 2020), 



5 
 

mainly following the incentive mechanism of algorithmically induced behavior in the form of 
views and clicks, shares and posts, etc. (Lanier, 2018). 
 
Scholars have also long emphasized the role of culture as an evolving system of rules and 
habits (Boyd & Richerson, 1985; Richerson & Boyd, 2004). Cultural systems are often 
modeled with the help of the algorithmic rules of game theory (McElreath & Boyd, 2007), 
which provide a straightforward recipe for anyone aiming at algorithmifying them (Epstein, 
2006). The algorithmification of such cultural norms and conduct leads to the concept of 
"algorithmic culture" (Dourish, 2016; Hallinan & Striphas, 2016; Striphas, 2015). If societal 
norms reach an even more mandatory status, they become encoded in law. In the digital 
age, "code is law" (Lessig, 2000). Similar to laws and regulations in societies running on 
analog mode, algorithmic code has started to regulate social conduct, often even deciding 
between the seen and unseen, the possible and impossible, right and wrong, and good and 
bad (Lessig, 2006). The algorithmification of both cultural norms and official laws can be 
seen in the example of a self-driving car. The car itself algorithmifies the rules and particular 
regulations of the processes involved in driving a car: driving on the left or right side, giving 
priority to the right or first arrival at intersections, etc. It also needs to encode cultural 
norms such as the socially acceptable distance to other cars (which would be much larger in 
the U.S. than in many Asian or Latin American countries, for example). Going even further, 
moral dilemmas like the trolley problem (sacrificing one person to save a larger number, 
etc.) reveal deeply rooted cultural differences in crucial driving decisions (Awad et al., 2018), 
which is something that will also need to be algorithmified in self-driving cars.   
 
Last but not least, the "all-pervasiveness" of the potential applicability of algorithmification 
goes beyond the human realm. Behavioral patterns born from the social emergence of 
collective multi-agent systems are not unique to humans: flying birds fall in line forming V-
shapes; fireflies limit flash in synchrony; ants will predictably converge on the shortest path, 
etc. (Mitchell, 2011). Complex systems science has modeled these and other collective 
processes quite successfully as natural algorithms (Chazelle, 2015), because that is what 
they are, essentially. Going one step further, even the abstraction of all kinds of dynamics in 
the form of scientific laws can be seen as algorithms. Both algorithms and scientific laws 
share the ambition to act as "a prescription uniquely determining the course of certain 
constructive processes" (Markov & Nagorny, 1988, p. 102). Both scientific laws and 
algorithms can also be used proactively, in an engineering sense, to create and execute 
processes. "After any step, if we don't have the answer yet, the instructions together with 
the existing situation will tell us what to do next" (Kleene, 1967, p. 223). This quote talks 
about mathematical logic in scientific laws, but it is also the definition of an algorithm. 
 
 

Terminology: digitalization and algorithmification 
 
The suffix '–fication' comes from the Latin facere 'to make, do'. It is used here to emphasize 
a semantic difference between 'algorithmization' and algorithmification'. The difference is 
similar to 'digitization' and 'digitalization' (Gartner Glossary, 2022a, 2022b). As shown in 
Table 1, 'digitization' refers to the process of converting information from analog to digital 
format, such as scanning a book, transferring a song from vinyl to CD, replacing a paper 
airline ticket with a pdf, etc.. The essence of the item stays the same. In the same sense, 
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'algorithmization' refers to a translation from an analog process to digital format without 
any different-in-kind changes to the process itself, such as paying a bill, transferring 
established tax filing procedures into a tax software, encoding Newton's 17th century root-
finding algorithm into a calculator, etc. Digitization refers to information and 
communication, and algorithmization to temporal processes. Both consist of a digital 
replication of what can, in essence, exist in analog form as well. 
 
In contrast, digitalization and algorithmification go beyond mere replication and imply a 
digital transformation, indicating a qualitative change in form. For example, while the 
Library of Congress has focused on the 'digitization' of books and the 'algorithmization' of 
how they can be lent (a digital replication of the existing analogous modus operandi), Jeff 
Bezos digitalized the business models around books with Amazon.com, which was initially 
an online marketplace for books. The digital transformation introduced in the book market 
was as striking that Time Magazine named Bezos the "Person of the year" in 1999, only five 
years after he founded the company in 1994. Among others, the qualitative changes 
introduced by the early digitalization of Amazon's book marketplace included mass 
customization of product portfolios (Da Silveira et al., 2001), the reconfigurations of space 
and time constraints (Cairncross, 1997) through network structures (Castells, 1999), the 
exploitations of network effects and scale effects (Shapiro & Varian, 1998), and the creation 
of a digital identity related to reading habits (Turkle, 1984, 1995).  
 
Table 1: Digitalization and Algorithmification matrix  
 

 
Information & 

Communication 
Knowledge & other 

Algorithms 

Replication digitization algorithmization 

Transformation  digitalization algorithmification 

 
 
While the scanning of books is a typical example of 'digitization', a typical example of 
'algorithmization' is a tax software. The 'code of law' (in this case the tax law) has existed for 
centuries, and tax software replicates it in digital format. There is no (and there should not 
be any) qualitative change, much like there should not be any qualitative change in a 
scanned book. While the book represents a 'structure in space' (on paper or in silicon), a tax 
law represents a 'structure in time' (a recipe), which is essentially an algorithm, "an ordered 
set of unambiguous, executable steps that defines a terminating process" (Brookshear, 
2009, p. 205). When the algorithm halts, the tax declaration has been computed. The 
algorithmification of the process of paying taxes would imply a qualitative change in the 
system. In this case, this must include changing the law that defines the process of paying 
taxes. While this has not (yet) happened, blockchain technology is one possible candidate to 
introduce qualitative changes to the way tax systems work, including transformation 
resulting from transparency, efficiency, data integrity, and security (Collosa, 2022).  
 
Areas of application where the algorithmification of processes has already led to noticeable 
transformations include early adopters of artificial intelligence (i.e. machine learning), 
computer simulations (i.e. digital twins), and decentralization (i.e. sharing economy models 
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or decentralized blockchain applications). The very goal of machine learning is to search for 
the optimal algorithm based on the provided data and goal (Domingos, 2015). The 
systematic use of bots on Wikipedia is an example the algorithmification of encyclopedia 
editing with the help of machine learning trained natural language algorithms (Geiger, 2011; 
Tsvetkova, et al. 2017). The use of machine learning and simulations for stock trading 
exemplified the digital transformation of processes on the stock market (Chaboud et al., 
2014; Hendershott & Moulton, 2011). 3D simulations and digital twins are the frontrunner 
application of the metaverse (Ball, 2022) and provide a myriad of virtual flexibility to explore 
new ways to go about things. The sharing economy, as exemplified by the victory marches 
of Uber in the transportation industry and Airbnb in the hospitality industry, is another 
example of algorithmification (Cheng, 2016). The sharing economy satisfies an existing 
demand in a new way with the help of digital processes. Another leading example of 
algorithmification are applications that involve so-called 'big data', such as in retail 
application based on the tailor-made matching between the supply and demand of 
individuals based on an automated analysis of digital trace data in real-time (Mayer-
Schönberger & Cukier, 2013; McAfee & Brynjolfsson, 2012). As social media has become the 
leading news source for people (Gottfried & Shearer, 2016), its persuasive algorithms (Fogg, 
2002) have algorithmified how people get to know and consume news. 
 
Of course, there are no clear criteria to determine when the essence of a process stays the 
same (replication) or if significant innovation occurs (transformation). It is a question of 
degree and emphasis. We might as well argue that the matching between supply and 
demand on the stock market or by retailers has already been done before the reign of 
algorithms, executed in the minds and hearts of salespeople. The suffix '–fication' 
emphasizes the qualitative changes produced by algorithms, much in line with Schumpeter's 
(1939) classical "creative destruction" of innovation. Such paradigm-changing 
transformations also lead to the characteristic side-effects of technological revolutions 
(Perez, 1983, 2004), which simple conversions would unlikely produce. In our example of 
social media algorithms, these reach from mental health challenges (Nodder, 2013; 
Orlowski, 2020) to the challenge of filter bubbles and misinformation (Lazer et al., 2018; 
Pariser, 2011). 
 
 

What we have so far: stylized theoretical facts 
 
While the applicability of algorithmification is far-reaching, it also counts on some common 
characteristics that allow for the formulation of stylized facts (propositions) and even some 
tentative predictions (corollaries). First and foremost comes the recognition that 'individual 
behavior and social processes are inherently algorithmic' (proposition 1). These might be 
probabilistic algorithms, but, nevertheless, reliable patterns emerge on the individual and 
collective levels. The effect of algorithmification is that 'algorithmification creates 
predictable structure in time', which reduces temporal uncertainty when going from the 
past into the future (proposition 2). This is useful, as it is in line with life's tendency to 
increase evolutionary fitness through the reduction of uncertainty because 'uncertainty and 
predictable structure can be substituted against each other' (proposition 3), as defined by 
information theory (Chaitin, 1966; Kolmogorov, 1968; Shannon, 1948) (more on this in the 
next section). Based on these three propositions, we can conclude that there are incentives 
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that 'implicit social procedures will increasingly become explicit algorithmic code' (corollary 
A). 
 
Based on the powerful theorems and tools derived over the past decades from information 
theory, we can also make some rather surprising predictions about the nature of this 
transformation. One refers to the different effects of algorithmification on uncertainty in 
society. While proposition 2 holds that 'algorithmification creates predictable structure in 
time', at the same time, 'algorithmification increases uncertainty at any given moment' 
(proposition 4), as it fine-grains available options, offering many more choices than before. 
Combining propositions 2 and 4 leads to the prediction that 'algorithmification 
simultaneously increases predictability and uncertainty' (corollary B). We have more choices 
at any given point in time, but our dynamic behavior is more prescribed, even if in a 
probabilistic stochastic fashion. As we will discuss below, the reason is that 
algorithmification increases what statistical mechanics calls 'statistical complexity', which 
leads us to the question of how to measure the different aspects of algorithmification.  
 
 

Measuring Digitalization and Algorithmification 
 
The core argument of this second part of this Chapter is that the theoretical 
conceptualizations underlying digitalization and algorithmification (information theory and 
theoretical computer science) not only enabled the engineering of the digital age but also 
afforded us the analytical methods and theoretical frameworks to analyze and study it. The 
same theoretical frameworks that allowed engineers to create the digital age turn out to be 
also helpful for social scientists to make sense of it.  
 
 

Approach: from technological theory to social theory  
 
The ideas and theoretical concepts underlying the technological and engineering aspects of 
digitalization and algorithmification had been worked out decades before they reshaped 
society. One of the leading figures in laying the theoretical groundwork was Claude Shannon 
(1916-2001), the so-called "father of the information age" (Roberts, 2016). Among other 
contributions, he single-handedly conceptualized the fundamental unit of the digital age: 
the bit. The proposed limits of Shannon's (1948) ground-breaking source coding theorem 
were not achieved until the discovery of turbo-codes in the mid-1990s (Berrou et al., 1993), 
almost half a century later, which then enabled 3G/4G mobile communications in the early 
2000s. Similarly, his proposal to apply Boolean algebra to logic gates (Shannon, 1938) came 
to fruition only decades later with the design of digital circuits in microprocessors in the 
1970s. His proposal to "make more use of brutal calculation than humans" in "programming 
a computer for playing chess" (Shannon, 1950, pp. 273–274), was finally demonstrated by 
the dominance of chess machines in the late 1990s (Newborn, 2012) (for more of Shannon's 
illustrious life and achievements, see (Gleick, 2011; Levinson et al., 2020)).  
 
In the decades after the engineering "puzzle-solving" had concluded (Kuhn, 1962, p. 35), the 
resultant digital networks created an unprecedented informational flood sloshing back and 
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forth between humans (Hilbert, 2011, 2018b). This communication flood filled databases 
with inconceivable amounts of digital trace data about society (Hilbert, 2017b), which 
companies and governments have started to exploit (Mayer-Schönberger & Cukier, 2013; 
McAfee & Brynjolfsson, 2012; Zuboff, 2019). Extraordinary computational power became 
available to help human brains make sense of this overload of empirical evidence 
(Anderson, 2008; Halevy et al., 2009). The resulting research opportunities for a better 
understanding of the involved dynamics are exploited by so-called computational social 
science (Cioffi-Revilla, 2014; Conte et al., 2012; Contractor, 2018; Hilbert et al., 2019; Lazer 
et al., 2009; Pentland et al., 2005; Watts, 2007). This places us currently in a situation where 
we are already surrounded by the machines we created, but still lack a thorough 
understanding of them and the social emergence provoked by their application, but we use 
them and their output to advance our understanding. In other words, we are studying 
technology with the help of the same technology to understand the socio-technological 
paradigm they created. 
 
While this might sound peculiar, it is rather the norm than the exception in light of the usual 
process of scientific discovery (Kuhn, 1962). "Many of the most general and powerful 
discoveries of science have arisen, not through the study of phenomena as they occur in 
nature, but rather, through the study of phenomena of man-made devices, in products of 
technology, if you will. This is because the phenomena in man's machines are simplified and 
ordered in comparison with those occurring naturally, and it is these simplified phenomena 
that man understand most easily" (Pierce, 1980, p. 19). Our understanding of 
hydrodynamics does not come from studying fish, but from building ships; our 
understanding of thermodynamics does not stem from studying fire, but because Carnot 
wondered why gun barrels turned hot when moving a cannonball through them. Steam 
locomotives were up and running two decades before Carnot published his thermodynamic 
'Reflections' (Carnot, 1824). Likewise, the details of aerodynamics were not derived from 
studying birds, but from constructing airplanes. Our understanding of electromagnetism 
does not originate from the study of lightning, but from electrical engineering. Michael 
Faraday built his first electric motor ten years before writing down his first equation, and 
Maxwell's more general equations of electromagnetism clarified things only 40 years later.  
 
Likewise, algorithmification holds the potential to understand the age-old tendency of 
individual and collective pattern formation and execution. By studying human conduct and 
social dynamics as they occur in "man-made devices, in products of technology", we can 
reveal hidden patterns that were previously tacit "as they occur in nature" (Pierce, 1980, p. 
19).  
 
The proposal of this line of research consists of carrying out the conclusion all the way. Just 
like it is helpful to use computational methods to understand computational systems, the 
invitation is also to make use of computational theory to make sense of it. Without an 
adequate theoretical framework, it is unlikely that we identify adequate measures and 
indicators to quantify what is happening since measurements inevitably depend on the 
underlying theory (Greenwald, 2012). The stuff of our algorithmically infused age is made 
off are components like 'data', 'information', 'communication', and 'knowledge'. Information 
theory and theoretical computer science provide mathematically clearly defined 
conceptualizations of these and related notions (Hilbert, 2016).  
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In short, we went from the theoretical deductions in the 1940s-70s that led to the creation 
of the technology to their social applications during the 1980s-2010s, and now face the 
challenge of understanding the resulting socio-technological paradigm. This line of research 
proposes to take advantage of the same theoretical concepts that created the paradigm in 
the first place, bringing the interplay between science and engineering full circle.  
 
 

Terminology: information, communication, knowledge  
 
Before reviewing some of the applied measures of digitalization and algorithmification, we 
quickly review some of the basic theoretical notions behind formal definitions of 'data', 
'information', 'communication', and 'knowledge', as defined in information theory and 
theoretical computer science (Cover & Thomas, 2006; Kolmogorov, 1968; Li & Vitanyi, 1997; 
MacKay, 2003; Pierce, 1980).  
 
In information theory, data is usually defined as symbols without any meaning or value. It 
refers to any registered distinction of an identified set. This perceivable difference can be 
visual, auditory, tactile, olfactory, gustatory, imagery, or dynamic in time, etc. The binary 
digit is the most fundamental differentiation between signals and refers to the existence [1] 
or non-existence [0] of some signal (typical hardware implementations include electrical 
current in a microchip, a beam of light in a fiber optic cable, or a wave in a radio-frequency 
band). Data refers to differentiable symbols. 
 
Information is defined as a "difference which makes a difference" (Bateson, 1972, p. 272). 
The difference it makes is that it reduces uncertainty. If some kind of symbol shows a 
difference (for example, either 1 or 0), but there is absolutely no surprise or uncertainty in 
it, it does not reduce uncertainty and therefore is no information. The ingenuity of 
Shannon's definition of information as the opposite of uncertainty is ingenious and 
subjective, as it depends on the uncertainty of the decoder. In an information-theoretic 
sense, there might not be any information when it would be communicated to you that 'all 
good things will come to an end' (you likely already knew that: so much is certain), but there 
would be information in communicating when that occurs. Communicating this proverbial 
adage still contains data (almost three dozen characters of data), and there might be some 
uncertainty reduction in when and by whom it is communicated to whom, etc.  
 
Since uncertainty can be quantified with the mathematical tools of probability theory, its 
opposite, information, can also readily be quantified with the same framework, making 
information theory a branch of probability theory (or, as some scholars convincingly argue, 
it provides the base for probabilities to emerge (Caves, 1990; Rissanen, 2010)). Shannon 
defined one bit of information as 'that which reduces uncertainty by half'. Shannon's 
informational bits can be extracted from data's binary digits by 'compression'. Compressing 
data into information takes out all redundant data and leaves only those differences that 
effectively reduce uncertainty. During the period of digitalization between 1980 and the 
early 2000s, the compression from redundant data into compressed information was the      
main driver for the global growth of the world's information and communication capacity 
(Hilbert, 2014). The remaining quantity after optimal compression is called the "entropy of 
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an information source" (Shannon, 1948), where entropy is a measure of the uncertainty of 
the source. This is enshrined in Shannon's famous "source coding theorem" (Cover & 
Thomas, 2006).  
 
Communication is defined by Shannon's "noisy channel coding theorem" (Cover & Thomas, 
2006), which is "one of the most remarkable pieces of mathematics of the last century" 
(MacKay, 2012, sec. 2). The theorem derives a measure known as 'mutual information', and 
quantifies what information the sender and receiver have in common. Communication is 
the shared information between sender and receiver. In that sense, it quantifies the result 
of error-free communication. Communication aims at creating a common understanding, 
which requires the same interpretation of the communicated content. Anything else would 
be noise and miscommunication.  
 
Summing up, Shannon's (1948) framework (which is surprisingly readable for its 
profoundness) proposes to quantify information as the opposite of uncertainty and 
communication as reduced uncertainty between subjects (variables). This makes intuitive 
sense: if you have uncertainty, you do not have information, while the communication of 
information from one to the other is the process of uncertainty reduction between them 
and the increase in a common understanding.  
 
Digitalization of societal processes is based on the concepts of information and 
communication. It involves internet connections, mobile phones, social networking sites, e-
commerce platforms, and large databases. Algorithmification goes one step further and 
shifts the focus from information to knowledge. In the related theoretical literature, it is 
defined as a procedural kind of information. Much in line with the definition of an 
algorithm, knowledge implies a step-by-step recipe for doing something. It is a program. 
Similar to probabilistic information, if there is knowledge, there is no doubt, there is a 
process or procedure that defines how things go from one to the next. Knowledge describes 
something (deterministic), while information reveals it (probabilistic). Theoretically, the 
right measure to quantify the amount of knowledge contained in a deterministically 
unfolding process has been established by Kolmogorov (1941, 1968) and independently 
developed by Solomonoff (1964) and Chaitin (1966). It is known as "Kolmogorov 
complexity" (Li & Vitanyi, 1997), or any combination of the names of the three 
aforementioned luminaries (Crutchfield, 2012). In line with the later developed 'minimum 
description length principle' (Grunwald, 2007; Rissanen, 1978), it defines the amount of 
'knowledge' in an algorithm to be equal to the minimum number of symbols needed to 
efficiently describe an object or process to a specific level of detail. 
  
Interestingly, an "amazing" (Cover & Thomas, 2006, p. 463) and "beautiful" (Li & Vitanyi, 
1997, p. 187) fact leads to a theorem that equates both Shannon's information and 
Kolmogorov's knowledge (Caves, 1990; Grunwald & Vitanyi, 2004; Hilbert, 2016; Leung-Yan-
Cheong & Cover, 1978; Zurek, 1989). More precisely, their quantities approach each other, 
asymptotically, but despite its intricate mathematics, this result also makes intuitive      
sense: if I communicate x bits of information to you, the revealed surprise reduces your 
uncertainty by x bits. Alternatively, I could give you an optimized algorithm to run a program 
that leads you to the same result: you then reduce the uncertainty not through 
communication, but through computation (Hilbert, 2016). While the second alternative 
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might require additional energy to run the algorithm (and the discovery of the algorithm to 
begin with), the plain amount of information, in terms of the number of bits involved, 
should be the same in both cases. Bits measure how much uncertainty is reduced, and it 
should not matter if this is achieved by revelation (the selection of one message among 
many possible messages) or by computation (the construction of a message in contrast to all 
other possible messages). An optimized algorithm should reduce the same amount of 
uncertainty (have the same number of bits) as is measured by Shannon's source entropy. 
Otherwise, the theory would not be consistent (or at least one side of the equation would 
not be optimized or asymptotic).   
 
 

What we have so far: stylized empirical facts  
 
The application of these concepts to study our socio-technological systems comes with 
several benefits (Hilbert, Liu, et al., 2019): it provides a series of fundamentally derived 
measures that stood the test of time; it naturally captures nonlinearities in the arising 
patterns; it allows to continue the longstanding social science practice to calculate statistical 
significance and effect size separately; and, maybe most important, it provides for the 
possibility to deduce additional conclusions that piggyback on hundreds of theorems, 
lemmas, corollaries, and proofs. This turns out to be useful in conceptualizing and 
measuring digitalization and algorithmification.  
 
A straightforward application is to use Shannon's entropic definition of information to 
measure how much information there is in the world and to contrast that with the amount 
of mere data stored or communicated. The number of symbols stored and communicated 
can be estimated by simply multiplying the number of devices (infatructure) with their 
performance (hardware). Content compression then converts binary digits into uncertainty 
reducing bits (Hilbert & López, 2011; Hilbert 2017b, 2018b). This is a contribution of 
software. For the period of 1986-2007, which hallmarks the period of digitization and 
digitalization, it turns out that software compression was the main driver of the global 
information explosion (Hilbert, 2014). It contributed more than the increasing number of 
devices or the better hardware performance to the world's technological capacity to store 
and to telecommunicate information. This was achieved by compressing data to its entropic 
rate and to only communicate 'that which reduces uncertainty' (at the entropy rate of the 
source, as defined by Shannon's source coding theorem). 
 
Going one step further, we can use Shannon's (1948) notion of a noisy communication 
channel to model an algorithm as an input-output system. In both cases, information goes 
in, and information comes out. Shannon's engineering goal was to create noiseless input-
output telecommunication channels with as little distortion as possible (Pierce, 1980). 
On the contrary, today's algorithmic channels are often highly proactive and shape the 
conversion according to commerce or national security interests. The goal is different, but 
the same theoretical framework and its fundamental measures can be applied to quantify 
throughput and the degree of transformation (Hilbert, Liu, et al., 2019). In the case of a 
recommender algorithm, entropies can be used to measure the distortion between ingoing 
personal trace data and the outgoing content recommendations. In the case of a natural 
language processing neural net, mutual information can be used to quantify the relation 
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between ingoing words and outgoing numbers. Furthermore, drawing on a fundamental 
information-theoretic theorem known as the data-processing inequality (Cover & Thomas, 
2006, p. 36), it can be deduced that no manipulation of information (whatsoever clever) can 
increase the amount of information that is being processed in this transformation. This can 
be used to infer even unobserved quantities in the input-output transformation of 
algorithms, such as YouTube and Twitter's recommender engines and IBM Watson's natural 
language processing suite (Hilbert, Liu, et al., 2019). 
 
More sophisticated measures can quantify directed information flow. If entropy is akin to a 
variance in more traditional linear statistics (both measuring the uniformity/skewness of a 
distribution), and mutual information to a covariance or correlation (both measuring the 
dependence of two variables), so-called transfer entropy (Schreiber, 2000) is akin to 
Granger causality (Amblard & Michel, 2011). Transfer entropy has been used to measure 
directed information flows in social media (Baek et al., 2005; Borge-Holthoefer et al., 2016; 
Ver Steeg & Galstyan, 2012) and also, in a concatenated form, to quantify how much 
information flows from humans to algorithms and then back to influence the human 
(Hilbert, Ahmed, et al., 2018). Effortlessly capturing all involved nonlinearities in the 
communication between humans and recommender algorithms, we showed, for example, 
that joy in videos promoted by YouTube's recommendations is prevalent in emotional 
polarization, while sadness and fear play significant roles in emotional convergence (Hilbert, 
Ahmed, et al., 2018). As such, information theoretic measures can also be used to guide 
societal design aspects of social algorithms (they are already used to design engineering 
aspects of them, as evidenced by the fact that information theory is the only mathematical 
prerequisite for the leading textbook on "Deep Learning" besides linear algebra (Goodfellow 
et al., 2016)).   
 
While the previous three examples focused on rather static setups, one of the hallmarks of 
the application of information theory in recent decades has been its applications to 
dynamical systems theory and complex adaptive systems (Bialek et al., 2001; Crutchfield, 
1994; Crutchfield & Feldman, 2003; James et al., 2011; Kolmogorov, 1959; Sinai, 1959). 
Digital footprints, left behind by every digital step people take, allow us to observe and 
analyze large-scale social dynamics to a degree not possible before. Information theory can 
quantify aspects of emergent structures. For example, focusing on the algorithmification of 
computer-supported collaborations on crowdsourcing platforms, we examined how much 
of the social emergence of turn-taking between contributors on Wikipedia, GitHub, and 
OpenStreetMap stems from participation frequency statistics and how much from temporal 
sequence dynamics (Hilbert, James, et al., 2018). Some contributors are more active than 
others (static frequency counts), which creates a predictable structure, while the 
contribution of others is triggered by temporal events, which also adds to overall 
predictability through patterns in time. We found trade-offs in the importance of static and 
dynamic contributions to predictable structures and calculated that about three-fourths of 
the total predictability of turn-taking stemmed from participation frequencies, while one-
fourth originated from temporal dynamics. The longstanding information theoretic theorem 
known as Fano's inequality (Fano, 1961) was essential to derive these results, as was the 
availability of 'big data', since information-theoretic measures converge rather slowly (we 
used over 1.5 million contributions from over 200 thousand contributors in 38 projects).  
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Information theory's application to dynamical systems also led to a series of interesting 
reformulations of the fundamental equations of evolutionary population dynamics (Frank, 
2009, 2012; Kelly, 1956; Rivoire, 2015), especially for bet-hedging dynamics of populations 
in varying environments (Donaldson‐Matasci et al., 2010; Hilbert, 2017a; Rivoire & Leibler, 
2011) and portfolio theory (Barron & Cover, 1988; Haccou & Iwasa, 1995). With the help of 
these reformulations, it can be shown that information (in bits) is a quantifiable ingredient 
of evolutionary growth: "the more you know, the more you can grow" (Hilbert, 2017c). In 
biological evolution, population growth during risk-spreading is exactly equal to the 
reduction in uncertainty about the environment (Donaldson‐Matasci et al., 2010). The more 
information the evolving population has about its uncertain environment, the more it can 
adjust to it and increase evolutionary fitness. Mutual information emerges as the natural 
measure to assess this communication channel between evolving populations and the 
environment. The application of this framework to the digital paradigm provides a 
mathematical model that exemplifies (and quantifies) how data-based predictions about an 
uncertain environment (such as done by e-commerce platforms or social media sites) can be 
turned into economic growth (Hilbert, 2017c). It provides a formal model for the 
information-based business model behind the commercial use of data-driven "prediction 
machines" (Agrawal et al., 2018). Thanks to information theory, information derived from 
predictions becomes a measurable ingredient for economic growth. For example, we 
quantified how much chocolate and diet products vendors could increase sales by predicting 
informational patterns in demand for these complementary products throughout the year 
(think about the winter holidays and new year's resolutions) (Hilbert, 2017c). This provides a 
theoretical framework, hands-on measures, and a formal mathematical model for the 
promise and practice of this aspect of the digital paradigm.  
 
Going beyond digitalization toward algorithmification, it becomes useful to follow the 
extensions of information theory into theoretical computer science. This has mainly been 
established by Kolmogorov's seminal work (Kolmogorov, 1941, 1963, 1968). The further 
development of Kolmogorov's theoretical conceptualizations (Li & Vitanyi, 1997) has 
become a cornerstone of modern statistics and data science, especially in the form of the 
minimum description length principle (Grunwald, 2007; Rissanen, 1978), which holds that 
shorter descriptions are more likely to be true descriptions of the observed phenomena. 
One practical application is the white-box machine learning approach known as 
"computational mechanics" (Crutchfield, 2012, 2017; Shalizi & Crutchfield, 2001). It provides 
several ways to derive the unique, minimally complex and maximally predictive model of a 
temporal sequence. The derived measure is a sufficient statistic and is known as statistical 
complexity, and the actual model an ε-machine ("epsilon-machine") (Crutchfield & Young, 
1989). Its mathematical solidity arises from "three optimality theorems that say it captures 
all of the process's properties: prediction: a process's ε-machine is its optimal predictor; 
minimality: compared with all other optimal predictors, a process's ε-machine is its minimal 
representation; uniqueness: any minimal optimal predictor is equivalent to the ε-machine." 
(Crutchfield, 2012, p. 20). In short, predictive state machines are special because they are 
optimally predictive, minimally complex, and unique in both previous traits (a sufficient 
statistic). As such, predictive state machines "capture the essential computational aspects of 
the data stream by virtue of the following instantiation of Occam's razor" (Crutchfield & 
Young, 1989, p. 106). 
 



15 
 

We applied these theoretical constructs to quantify the effects of algorithmification on 
Wikipedia and the stock market. Both are quite advanced in the algorithmification of their 
processes. For the stock market, algorithmic trading executes between 50% and 90% of the 
trades. For Wikipedia, it was estimated that editing bots make between 3% and 16% of the 
edits. We studied them by analyzing one billion trades of eight foreign exchange currency 
pairs (2007–2017) (Hilbert & Darmon, 2020b) and over 4.5 million edits from over 500 
Wikipedia articles (Hilbert & Darmon, 2020a). 'Big data' is important to calculate these 
slowly converging measures. As predicted by the theory of algorithmification (see section, 
"What we have so far: stylized theoretical facts"), on the one hand, the automated behavior 
of algorithms makes dynamics more predictable. Traders and editors employ algorithms to 
reduce the local uncertainty of their work with the help of algorithmic pattern creation (e.g. 
the automated sale of a currency at a certain price pattern, or the automated reversion of 
vandalism on Wikipedia). On the other hand, however, we find that the overall process 
becomes less predictable. We show that algorithmification is the main explanatory variable 
that leads to the simultaneous increase of both predictability and uncertainty. In short, 
users introduce algorithms to make dynamics more simple and predictable but end up with      
large-scale dynamics that are more complex and uncertain.  
 
This might sound counterintuitive, but can be explained by the complementarity between 
entropy and statistical complexity (Hilbert & Darmon, 2020b, p. 20). The main source of 
confusion for our intuition is the fact that we instinctively assume that there is a finite 
amount of uncertainty, and that we will eventually saturate it all with our predictive power. 
The currently dominating machine learning paradigm feeds on aspects of the correct insight 
that uncertainty can be replaced by predictable structures. However, at the same time, we 
the digital paradigm usually fine-grains reality, which increases uncertainty. This is not a 
mathematical necessity, but often seem to occur in practice.  The existence of more 
intricate structural patterns often leads to more possible states and transitions between 
these states. Figuratively speaking, instead of saturating some kind of metaphorical finite 
space of uncertainty with predictable structure, algorithmic complexity seems to grow in a 
space of uncertainty. Reality is not a finite space to be saturated with knowledge, but an 
expanding space, in which we ever advance to new levels. The new structure digs deeper 
into a more fine-grained level of reality, where more uncertainty emerges. There are plenty 
of new patterns to be explored in the milliseconds of trading fractions of a penny, and in the 
various ways of automating editing dynamics. One might imagine an increasing surface that 
gets in touch with ever more possibilities, as the complexity of the dynamic grows. The 
more complex structure we build into socio-economic dynamics, the more options open up 
for uncertainty (based on the newly built structure). While we resolve previous levels of 
uncertainty (nobdy can make money on betting on the dollar in the stock market), we open 
up new levels of more fine-grained uncertainty (many possibilities and uncertainties open 
up when doing high-frequency trading on the micro-dollar level). Similar to editing 
dynamics. While the previous uncertainty related to vandalism of Wikipedia articles has 
been eliminated by policing bots, bots also added an array of new patterns to editing 
dynamics of Wikipedia. In short, algorithmification creates more complexity, which leads to 
predictable patterns and more uncertain options among them. 
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Conclusion 
 
This Chapter argued that the theoretical concepts and measures that laid the foundation of 
the digital age, can also help us in making sense of it. Concepts like information, 
predictability, and complexity have formal definitions in the literature of information theory 
and theoretical computer science, and they can help us make sense of the ongoing 
transformations of digitalization and algorithmification.  
 
The theorems, corollaries, lemmas, and proofs of information theory and its elaborations 
have not only created the digital age, but can also inform social science reasoning about our 
current societal dynamics. At the same time, human societies are not machines, and 
therefore, there is still more work to be done, also on the theoretical front. For example, 
multivariate information theory will require much more elaboration to be better applicable 
to the social sciences (Hilbert, 2021). Social systems are inherently interconnected systems 
consisting of many interrelated parts. Empirical methods in the social sciences often work 
with dozens of variables, including multiple regression, ANCOVAs and MANCOVAs, and 
structural equation models. In information theory, the main workhorse is still Shannon's 
bivariate setup of the sender and receiver, while a third variable continues to create 
confusion among scholars (James et al., 2019; Lizier et al., 2018; Williams & Beer, 2010). No 
widely accepted consensus has yet been established on how best to deal with information 
decompositions and with multivariate information theory measures. 
 
Given the tight relationship between theory and methods (Greenwald, 2012), and the more 
flexible way of approaching both due to computational social science (Hilbert, 2018a), it is 
important to note that "theories may also benefit from integrating data and measurements 
into the theory construction process" (Wagner et al., 2021, p. 202). Much work still remains 
to be done in the measurement and theorizing of societal algorithmification. The methods 
from computational social science, and the theoretical constructs of information theory and 
computer science can provide some of the basic building blocks to continue to dig deeper.  
 
 

Further readings 
We refer the reader to Cover & Thomas (2006) as the leading textbook on information 
theory. For a pop-science recount of the history and influence of Claude Shannon’s 
information theory, please see the book by Gleick (2011), or the documentary film by 
Levinson et al. (2020). Crutchfield developed the measure of statistical complexity, and 
provides an overview article in Crutchfield (2012). Finally, for a less formal overview of 
information theoretic definitions and bet-hedging applications, see Hilbert (2016), and for a 
social science application of statistical complexity, see Hilbert & Darmon (2020).  
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