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Abstract

High-resolution structures of oligomers formed by the β-amyloid peptide, Aβ, are important for 

understanding the molecular basis of Alzheimer’s disease. Dimers of Aβ are linked to the 

pathogenesis and progression of Alzheimer’s disease, and tetramers of Aβ are neurotoxic. This 

paper reports the X-ray crystallographic structures of dimers and tetramers, as well as an octamer, 

formed by a peptide derived from the central and C-terminal regions of Aβ. In the crystal lattice, 

the peptide assembles to form two different dimers—an antiparallel β-sheet dimer and a parallel β-

sheet dimer—that each further self-assemble to form two different tetramers—a sandwich-like 

tetramer and a twisted β-sheet tetramer. The structures of these dimers and tetramers derived from 

Aβ serve as potential models for dimers and tetramers of full-length Aβ that form in vitro and in 

Alzheimer’s disease brains.
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INTRODUCTION

Interactions among β-sheets are ubiquitous in protein folding and protein-protein 

interactions. The self-assembly of β-sheets is particularly important in the aggregation of 

amyloidogenic peptides and proteins to form oligomers and fibrils. Understanding how β-

sheets fold and assemble to form amyloid oligomers and fibrils is fundamental to peptide 

and protein science and is also important for understanding devastating diseases such as 

Alzheimer’s disease, Parkinson’s disease, and type II diabetes. Recent cryo-EM structural 

studies of amyloid fibrils have revealed a rich tapestry of β-sheet assemblies composed of 

continuous extended networks of parallel β-sheets that fold and intricately pack together.
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 The structures of amyloid oligomers remain more elusive. X-

ray crystallographic studies of fragments of amyloidogenic peptides and proteins, as well as 

NMR studies of full-length proteins, have provided clues about amyloid oligomer structures 

indicating that many amyloid oligomers are composed of antiparallel β-sheets and packed 

hydrophobic cores.17,18,19,20,21,22,23,24,25,26

The β-amyloid peptide, Aβ, assembles to form oligomers that vary in size and shape and are 

thought to be important in the pathogenesis and progression of Alzheimer’s disease.27,28 

Elucidating the structures of these oligomers is central to understanding the molecular basis 

of Alzheimer’s disease. Recently, our laboratory has elucidated a wealth of X-ray 

crystallographic structures of oligomers formed by peptides designed to mimic Aβ β-

hairpins. In studying these peptides, we have discovered new structural motifs for Aβ 
oligomers including triangular trimers, barrel-like and sandwich-like hexamers, ball-shaped 

dodecamers, and large annular pore-like structures.29,30,31,32,33,34 These structures have 

revealed the novel and unpredictable ways that β-hairpin peptides containing Aβ sequences 

can fit together to form oligomers, and may also help shed light on the structures of 

oligomers that full-length Aβ forms in Alzheimer’s disease.
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In the current paper, we report the X-ray crystallographic structures of two different β-sheet 

dimers—one antiparallel β-sheet dimer and one parallel β-sheet dimer—formed by peptide 

1, a β-hairpin derived from Aβ16–36. In the crystal lattice, these two dimers self-assemble to 

form different tetramers. The antiparallel dimer self-assembles with another antiparallel 

dimer to form a sandwich-like tetramer stabilized by a tightly packed hydrophobic core. In 

contrast, the parallel dimer self-assembles with another parallel dimer to form a tetramer 

composed of a highly twisted eight-stranded β-sheet. The parallel tetramer is stabilized by 

hydrophobic packing and edge-to-edge hydrogen bonding between the two parallel dimers. 

These oligomer structures further illustrate the remarkable ways in which β-hairpins derived 

from Aβ can interact to form oligomers, and add to the diversity of oligomers that β-hairpins 

can form.

RESULTS AND DISCUSSION

Design of peptide 1.

Peptide 1 is designed to mimic a β-hairpin formed by Aβ16–36 (Figures 1A and B). Peptide 1 
contains Aβ residues 16–36 linked together at the N- and C-termini with a δ-linked ornithine 

turn unit and also contains a cross-strand disulfide bond in place of Ala21 and Ile31 to 

stabilize the β-hairpin structure.35 The disulfide bond at this position maintains the 

hydrophobic character of this region of the peptide. Peptide 1 also contains an N-methyl 

group on Gly33 to block uncontrolled aggregation of the peptide. These design features 

facilitate crystallization of the peptide. Variants of peptide 1 without the cross-strand 

disulfide bond or without the N-methyl group did not crystallize in any of the 864 different 

crystallization conditions tested. To facilitate determination of the X-ray crystallographic 

phases, peptide 1 also contains a para-iodo group on Phe19.36

X-ray crystallographic structure of peptide 1.

The X-ray crystallographic structure of peptide 1 reveals that the peptide folds to form a 

twisted β-hairpin and that the β-hairpins assemble to form oligomers. The asymmetric unit 

of the X-ray crystallographic structure contains 11 copies of peptide 1. Each copy folds to 

form a β-hairpin that is composed of an Aβ16–23 β-strand and an Aβ27–36 β-strand 

connected by an Aβ24–28 loop (Figure 1C). The peptide backbones of the β-strands share 

comparable geometries for all 11 copies of peptide 1 in the asymmetric unit, while the loop 

regions vary (Figure 1D).

In the crystal lattice, peptide 1 forms assemblies that may be thought of as oligomers. 

Peptide 1 forms two different β-sheet dimers—an antiparallel β-sheet dimer and a parallel β-

sheet dimer. Both dimers comprise four-stranded β-sheets. The antiparallel dimer further 

assembles with another antiparallel dimer to form a sandwich-like tetramer. The parallel 

dimer further assembles with another parallel dimer to form a twisted β-sheet tetramer. Two 

of these twisted β-sheet tetramers further assemble to form an octamer. An additional 

antiparallel dimer, that is not part of a tetramer, rests upon the octamer in the crystal lattice. 

The following describes these oligomers in detail.
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Antiparallel dimer.

The antiparallel dimer formed by peptide 1 consists of two peptide monomers arranged in an 

antiparallel orientation in which the Aβ16–23 β-strand of one monomer is across from the 

Aβ16–23 β-strand of the other monomer (Figure 2A). Five hydrogen-bonding interactions 

between the amide backbones of the two monomers stabilize the antiparallel dimer: Phe19
I 

and Cys21 on one monomer pair with Cys21 and Phe19
I on the other monomer; a water 

molecule bridges Asp23 on one monomer and Leu17 on the other monomer.

Parallel dimer.

The parallel dimer formed by peptide 1 consists of two peptide monomers arranged in a 

parallel orientation in which the Aβ16–23 β-strand of one monomer is across from the 

Aβ16–23 β-strand of the other monomer (Figure 2B). Four hydrogen bonds between the 

amide backbones of the two monomers stabilize the parallel dimer: Phe20 and Cys21 on one 

monomer pair with Phe19
I and Phe20 on the other monomer; a water molecule bridges Phe19

I 

on one monomer and Leu17 on the other monomer.

The antiparallel dimer and the parallel dimer each self-assemble to form different tetramers. 

The antiparallel dimer assembles with another antiparallel dimer to form a sandwich-like 

tetramer, whereas the parallel dimer assembles with another parallel dimer to form a highly 

twisted β-sheet tetramer. The twisted β-sheet tetramer further assembles with another 

twisted β-sheet tetramer to form an octamer.

Sandwich-like tetramer formed by the antiparallel dimer.

Two antiparallel dimers further assemble to form a sandwich-like tetramer (Figure 3A). The 

sandwich-like tetramer is stabilized by packing between the two antiparallel dimers to create 

a hydrophobic core (Figure 3B). In the hydrophobic core, the side chains of Val18, Phe20, 

Ile32, Leu34, and Val36 from four copies of peptide 1 pack together, creating a dense core 

containing 20 hydrophobic amino acid side chains. The hydrophilic Aβ25–27 loops extend 

off of the sandwich-like tetramer and do not make any significant contacts.

Twisted β-sheet tetramer formed by the parallel dimer.

Two parallel dimers further assemble in a parallel orientation to form a highly twisted β-

sheet tetramer comprising an eight-stranded β-sheet (Figures 4A and B). In the twisted β-

sheet tetramer, the Aβ27–36 β-strand of one dimer is across from the Aβ27–36 β-strand of the 

other dimer. Four hydrogen bonds between the amide backbones of the two parallel dimers 

stabilize the twisted β-sheet tetramer: Gly29 and Cys31 on one parallel dimer pair with Lys28 

and Ala30 on the other parallel dimer. The twisted β-sheet tetramer is further stabilized by 

hydrophobic packing between the two parallel dimers to create a hydrophobic core (Figure 

4C). In the hydrophobic core, the side chains of Phe19
I, Phe20, Cys21, Val24, Ala30, Cys31, 

Ile32, Leu34, and Val36 of each parallel dimer pack together, creating a dense core containing 

18 hydrophobic amino acid side chains.
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Octamer.

Two twisted β-sheet tetramers further assemble to form an octamer. The inner four β-hairpin 

monomers of the octamer create a continuous hydrogen-bonding network containing 12 

intermolecular hydrogen bonds between the peptide backbones (Figure 5A). Packing 

between hydrophobic residues on the inner four β-hairpin monomers further stabilizes the 

octamer. The side chains of Leu17, Phe19
I, Phe20, Ile32, Leu34, Met35, and Val36 pack 

together, creating a core containing 22 hydrophobic amino acid side chains.

The dimers, tetramers, and octamer are all part of the same crystal lattice.

The assembly of peptide 1 into a crystal lattice reveals the ways in which the peptide can 

self-assemble with other copies of the peptide to form oligomers. The oligomers described 

above are all part of the same crystal lattice. The asymmetric unit of the X-ray 

crystallographic structure of peptide 1 contains 11 copies of the peptide (Figure 6A). The 

asymmetric unit contains two crystallographically unique twisted β-sheet tetramers that 

comprise the octamer (Figure 6B, cyan strands). The octamer is flanked by three additional 

copies of peptide 1: Two copies — by a symmetry operation — comprise the sandwich-like 

tetramer (Figure 6B, magenta strands). One copy — by a symmetry operation — forms an 

antiparallel dimer that rests upon the octamer in the crystal lattice (Figure 6B, yellow 

strands).

Oligomers of Aβ40 and Aβ42 in SDS-PAGE.

Dimers and tetramers of synthetic or expressed Aβ have been observed to form in vitro. In 

SDS-PAGE, Aβ40 predominantly forms two oligomers that migrate at molecular weights 

consistent with a dimer and tetramer, in addition to the monomer (Figure 7). Aβ42 

predominantly forms two oligomers that migrate at molecular weights consistent with a 

trimer and tetramer, in addition to the monomer (Figure 7). The structures of these oligomers 

are unknown. The parallel and antiparallel dimers formed by peptide 1 provide two potential 

structural models for the dimer formed by Aβ40 in SDS-PAGE. Furthermore, the sandwich-

like tetramer and twisted β-sheet tetramer formed by peptide 1 provide potential structural 

models for the tetramers formed by Aβ40 and Aβ42 in SDS-PAGE.

Crystallographically based models of two Aβ12–40 tetramers.

We envision that the full-length Aβ peptide can assemble in the same fashion as peptide 1 to 

form sandwich-like tetramers and twisted β-sheet tetramers. To better understand what a 

sandwich-like tetramer (dimer of antiparallel dimers) and a twisted β-sheet tetramer (dimer 

of parallel dimers) containing full-length Aβ might look like, we modeled Aβ12–40 into the 

crystallographic coordinates of each tetramer.37 We first appended the N- and C-terminal 

regions 12–15 (VHHQ) and 37–40 (GGVV) onto the crystallographic coordinates of the 

four peptide 1 monomers that comprise each tetramer, and mutated all modified residues 

back to the native residues. We then performed replica-exchange molecular dynamics 

(REMD) to generate realistic conformations the N- and C-terminal regions of the β-hairpins 

(Figures 8A and B).38,39 In these models, the β-hairpins constitute the cores of the tetramers, 

and the N- and C-termini surround the cores. The REMD simulations shows that both 

tetramers can accommodate the N- and C-terminal residues without steric clashes and 
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suggests that full-length Aβ could form a sandwich-like tetramer or a twisted β-sheet 

tetramer.

The structures of the dimers and tetramers formed by peptide 1 provide new models for Aβ 
oligomers. Aβ dimers are thought to have special significance in the pathogenesis and 

progression of Alzheimer’s disease. Aβ plaques from Alzheimer’s disease patients contain 

cross-linked Aβ dimers that are composed of different Aβ alloforms.40 Aβ dimers appear to 

be the building blocks of large, mildly cytotoxic oligomers with molecular weights ranging 

from 150–650 kDa.41 Aβ dimers also promote phosphorylation and aggregation of the 

microtubule-associated protein tau, which is also involved in Alzheimer’s disease 

progression.42 The structures of these dimers are unknown. The parallel and antiparallel β-

sheet dimers formed by peptide 1 provide two potential structural models for the dimers 

observed in Alzheimer’s disease brains.

Aβ tetramers have been observed in protein extracts from Alzheimer’s disease brains, but 

their exact roles in the pathogenesis and progression of the disease is less clear than that of 

dimers.43,44 Aβ tetramers prepared in vitro are toxic toward both neuroblastoma cells and 

cultured hippocampal neurons.45,46 Furthermore, covalently stabilized Aβ tetramers 

prepared using photo-induced cross-linking of unmodified proteins (PICUP) interact with 

the cell membranes of hippocampal neurons.47 The structures of the Aβ tetramers in these 

studies are unknown. The sandwich-like tetramer and twisted β-sheet tetramer formed by 

peptide 1 provide two potential structural models for the tetramers observed in Alzheimer’s 

disease brains, as well as the tetramers prepared in vitro.

CONCLUSIONS

The structures of the dimers, tetramers, and octamer formed by peptide 1 contribute to the 

rich structural landscape of amyloidogenic peptides and proteins. CryoEM structures of 

fibrils formed by amyloidogenic peptides and proteins such as Aβ, islet amyloid 

polypeptide, tau, α-synuclein, and human prion protein have revealed that the peptides and 

proteins adopt highly convoluted shapes and pack together to form twisted filaments.
8,10,12,13,14,15,16 The twisted shapes of the oligomers formed by peptide 1 are distinct from 

the twists of fibrils and filaments. The structure of the sandwich-like tetramer formed by 

peptide 1 (PDB 6WXM) is reminiscent of the Aβ tetramer reported by Streltsov et al. (PDB 

3MOQ), as well as the tetramer formed by transthyretin (e.g., PDB 1TTC).21,48 It is also 

evocative of the Aβ tetramer and octamer structural models from Ciudad et al. (PDB 

6RHY).26 Prominent features of these structures include antiparallel β-hairpins that pack 

together in a sandwich-like fashion to form a hydrophobic core, much like the sandwich-like 

tetramer formed by peptide 1.

The parallel and antiparallel β-sheet dimers, the sandwich-like and twisted β-sheet 

tetramers, and the octamer formed by peptide 1 add to the diversity of Aβ-derived oligomers 

observed by our laboratory. In studying, β-hairpin peptides that contain the central and C-

terminal regions of Aβ, we have discovered a variety of different structures (Figure 9). These 

structures reveal the intricate ways that Aβ β-hairpins can fit together to form compact 

oligomers that are stabilized by edge-to-edge hydrogen bonding interactions and 
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hydrophobic cores. We believe the variety of structures we have observed exemplifies the 

heterogeneity of oligomers formed by Aβ in vitro and in the brain. Investigating the exact 

relationship between the oligomer structures we have observed crystallographically and the 

structures of Aβ oligomers in Alzheimer’s disease is an active area of research in our 

laboratory, and we will report our findings from these studies in due course.

METHODS

Synthesis of peptide 1, X-ray crystallographic procedures, Aβ oligomer preparation, SDS-

PAGE and silver staining, and replica-exchange molecular dynamics were performed as 

described previously.29,30,31,32,33 These procedures are restated in detail in the Materials and 

Methods section in the Supporting Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Peptide 1. (A) Chemical structure of an Aβ16–36 β-hairpin. (B) Chemical structure of peptide 

1. (C) X-ray crystallographic structure of a representative β-hairpin monomer formed by 

peptide 1 (PDB 6WXM). (D) Overlay of the 11 peptide 1 β-hairpins in the asymmetric unit.
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Figure 2. 
Dimers formed by peptide 1. (A) Chemical structure (top) and X-ray crystallographic 

structure (bottom) of the antiparallel dimer formed by peptide 1. (B) Chemical structure 

(top) and X-ray crystallographic structure (bottom) of the parallel dimer formed by peptide 

1.
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Figure 3. 
X-ray crystallographic structure of the sandwich-like tetramer (dimer of antiparallel dimers) 

formed by peptide 1. (A) Cartoon and stick model of the sandwich-like tetramer. (B) 

Cartoon and sphere model of the sandwich-like tetramer. The residues that comprise the 

hydrophobic core are shown as spheres.
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Figure 4. 
The twisted β-sheet tetramer formed by the parallel dimer. (A) Chemical structure. (B) X-

ray crystallographic structure of the twisted β-sheet tetramer (cartoon and stick model; the 

side chains are omitted for clarity). (C) X-ray crystallographic structure of the twisted β-

sheet tetramer (cartoon and sphere model; the residues that comprise the hydrophobic core 

are shown as spheres).
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Figure 5. 
X-ray crystallographic structure of the octamer (dimer of twisted β-sheet tetramers) formed 

by peptide 1. (A) Cartoon and stick model of the octamer (side chains are omitted for 

clarity). (B) Cartoon and sphere model of the octamer illustrating the hydrophobic packing 

between the two twisted β-sheet tetramers. The side chains of the hydrophobic core are 

shown as spheres.
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Figure 6. 
(A) The asymmetric unit of the X-ray crystallographic structure of peptide 1. (B) The crystal 

lattice of peptide 1, illustrating the relationship between the sandwich-like tetramer 

(magenta) and the twisted β-sheet tetramers that comprise the octamer (cyan). An 

antiparallel dimer that rests on the octamer is shown in yellow.
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Figure 7. 
Silver-stained SDS-PAGE of recombinantly expressed Aβ40 and Aβ42 illustrating the 

oligomers that the peptides form in vitro. A 5-μL aliquot of each peptide concentration in a 

serial dilution was run on the gel.
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Figure 8. 
Crystallographically based models of an Aβ12–40 sandwich-like tetramer (A) and an Aβ12–40 

twisted β-sheet tetramer (B). Superpositions of 32 structures generated by replica-exchange 

molecular dynamics.
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Figure 9. 
Representative oligomers of Aβ-derived peptides observed in our laboratory by X-ray 

crystallography.
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