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1. Introduction

While some studies of deep brain stimulation (DBS) for treatment resistant depression 

(TRD) suggest benefit (Mayberg et al., 2005; Bergfeld et al., 2016), a randomized controlled 

trial of subcallosal cingulate cortex (SCC) DBS for TRD was halted due to a low likelihood 

of success (Morishita et al., 2014). Aberrant targeting may contribute to suboptimal 

outcomes. Identifying the essential area to stimulate within SCC remains a significant 

challenge. Given the network-basis of depression, the target likely involves the convergence 

of white matter tracts implicated in multiple disease-related circuits (Lujan et al., 2012; 

Riva-Posse et al., 2014). However, this approach has not been validated beyond a single 

institution (Riva-Posse et al., 2014). Moreover, a data-driven methodology to define the 

optimal target and provide a tomographic map to guide targeting and programming does not 

exist for SCC although it has been reported in essential tremor and chronic pain (Pouratian 

et al., 2011; Kim et al., 2016). We report a novel approach using probabilistic tractography 

to delineate patient-specific tomographic maps for SCC DBS for TRD.

2. Methods

Two subjects with TRD who underwent bilateral SCC DBS implantation as part of a DBS 

for TRD trial were evaluated clinically and radiographically. IRB approval and informed 

consent were obtained. Implantation was done blind of tractography results. Before surgery, 

each subject underwent 3T magnetic resonance imaging, including high resolution T1-
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weighted anatomical images (TR 11ms, TE 2.81ms, flip angle 20°, 0.9375 mm isotropic 

voxels, and 192 slices) and single shot spin echo echo planar imaging for diffusion tensor 

imaging (TR 9200ms, TE 87ms, 2 mm isotropic voxels, b value=1000, and 20 directions). 

Post-operative computed tomography (CT) (0.6mm slice thickness and 0.48mm voxel size) 

of the head was acquired to assess lead position. T1 images were skull stripped (BET) 

(Smith 2002), segmented (Zhang et al., 2001) and registered to MNI152 template (FLIRT- 

FNIRT) (Jekinson et al., 2002). Eddy current correction was applied to diffusion data before 

skull extraction and then a multifiber diffusion model was fitted on the data (Behrens et al., 

2007).

We used FSL probabilistic tractography (5000 samples, 0.2 curvature threshold, loopcheck 

termination, 2000 maximum number of steps, 0.5 mm step length and 0.01 subsidary fibre 

fraction threshold) to initially delineate the connectivity of anatomically-defined SCC 

(Gutman et al., 2009) with the entire brain. Then, for each predefined target area (Figure 1A, 

bilateral medial prefrontal cortices via forceps minor and uncinate fasciculus, ipsilateral 

ventral striatum and anterior cingulate), we identify voxels with the maximum probability of 

connectivity with the anatomically-defined SCC. We then use the coordinates of these voxels 

as subject-specific targets for subsequent delineation of TOT within SCC. We then 

determined the probability of connectivity of each SCC voxel with each of the connectivity-

determined patient-specific targets using them as waypoint, termination and classification 

masks. The SCC probability maps for each target were then smoothed using a Gaussian 

kernel (2mm, to account for stimulation spread), multiplied on a pixel-by-pixel basis and 

high pass filtered in order to include only voxels with at least 10% of the maximum joint 

probability. The resulting conjunction probability map identified the region within SCC with 

the highest probability of connectivity with all four targets, herein referred to as the 

tractography-guided optimized target (TOT).

The volume of activated tissue was estimated using programming parameters (frequency 

130Hz, pulse width 91ms and amplitude 8mA, maximal volume diameter 8 mm) and was 

defined on postoperative CT in a manner similar to that described by Accolla and colleagues 

(Accolla et al., 2016), with a final total seed volume of 288mm3. The whole brain 

connectivity of the estimated volume of activated tissue was explored and the distance 

between the TOT and activated tissue was calculated. Finally, we quantified the probability 

of connectivity of each seed (TOT, estimated volume of activated tissue) with each target 

based on the number of streamlines between each seed and target.

3. Results

One subject was a responder while the other was not (MADRS decreased by 31 (84% 

change) and 3 (8% change), respectively). In both subjects, SCC was structurally connected 

with all four targets (Figure 1A). Despite the probability of connectivity of each SCC voxel 

being distinct for each target (Figure 1B), a SCC subregion with the highest joint probability 

of connectivity with all 4 targets was identified in each hemisphere (TOT, Figure 1C). In the 

responder, the pair of contacts used (2 and 3) for stimulation were on average closer to TOT 

than other pair of contacts (Left_Hemisphere: Contact1=4.6mm, Contact2_active=3.01mm, 

Contact3=1.84mm, Contact4=2.69mm, Right Hemisphere: Contact1=4.34mm, 
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Contact2=3.84mm, Contact3=4.34mm, Contact4=5.56mm) whereas in the non-responder, 

the contact pairs used for stimulation (2 and 3) were further from TOT than other contact 

pairs (e.g., 1 and 2) (Left Hemisphere: Contact1=2.45mm, Contact2=2.45mm, 

Contact3=4.24mm, Contact4=5.84mm, Right Hemisphere: Contact1=2.69mm, 

Contact2=2.69mm, Contact3=3.90mm, Contact4=5.58mm).

The structural connectivity of estimated volume of activated tissue in the responder 

demonstrated connectivity with all four targets, whereas in the non-responder, there was 

<1% probability of connectivity with the ventral striatum (Figure 1D). In the non-responder, 

selection of contacts closer to TOT resulted in connectivity with all targets, but the patient 

opted to be explanted before this hypothesis could be tested. In both subjects, the probability 

of connectivity (i.e., number of streamlines per seed voxel) with each of the four target 

regions bilaterally was 4.82 times higher for TOT compared to the original site of 

stimulation.

4. Discussion

We provide additional confirmation of the value of tractography to identify the optimal site 

of stimulation for SCC DBS for TRD (Riva-Posse et al., 2014). Rather than relying on a 

manual, iterative, and deterministic methodology, the proposed method defines a novel data-

driven probabilistic TOT. The method is supported by results that demonstrate that 

stimulation was delivered at the contacts closest to TOT in the responder whereas in the non-

responder, the stimulation contacts were more distant from TOT. This approach assumes that 

each tract is equally weighted, although other reports suggest particular tracts (such as 

mPFC) may be of greater important (Accolla et al., 2016). Further studies with more than 2 

subjects will be needed to define the value of these tomographic maps for predicting 

response to DBS, to identify potentially superior active therapeutic contacts, and to evaluate 

the optimal weighting of these probability-based maps.

Regarding the tractography methods, previous methods are based on iterative deterministic 

assessments, which is prone to sampling limitations (Avecillas-Chasin et al., 2015; Choi et 

al., 2015). While the probabilistic approach is time intensive, the data-driven nature may be 

more practical and provide advantages over a manual iterative approach. Moreover, 

probabilistic tractography provides more consistent and plausible tractography results that 

deterministic tractography (Petersen et al., 2016). Still, there are studies that controvert the 

reliability of diffusion tractography, whether using deterministic or probabilistic methods, 

for reproducing known anatomy, with results highly dependent on data quality, the algorithm 

selected, and the parameter settings (Thomas et al., 2014; Knösche et al., 2015). However, 

tractography is the only available tool to non-invasively evaluate white-matter microstructure 

and to address the clinical need for white matter pathways characterization (Basser et al., 

2014). Moreover, even if it is not reliable at precisely reproducing known anatomy, these 

methods can still theoretically provide usable biomarkers to guide neuromodulation, as 

suggested here.

This novel method offers an automated and patient-specific approach to provide 

tomographic maps that could be used clinically in an intuitive fashion for DBS targeting and 
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programming. The encouraging preliminary results encourage further exploration of this 

novel method for optimizing SCC targeting. The main limitation of this study is the small 

number of patients and estimates of tissue activation. Because DBS for TRD remains 

investigational and new implants are limited, we must optimize opportunities to learn from 

previously implanted subjects in order to advance the field.
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Figure 1. 
Identifying the Connectivity-Guided Optimal Target within the Subcallosal Cingulate cortex 

(SCC) A. Single-subject structural connectivity (magenta) of SCC to 4 distinct subject 

specific target regions (blue), as labeled, with coordinates on MNI152 template (predefined 

ROI areas with yellow dashed lines). B. Single-subject tomographic target-specific 

probabilistic connectivity maps of SCC. C. Single-subject tractography-guided optimal 

target (TOT) within SCC (black dashed lines), identifying the region with highest joint 

probability of connectivity with all targets. D. Connectivity comparison of TOT (red) versus 

volume of activated tissue (blue) in both responder and non-responder, activated tissue 

connectivity with ventral striatum in the non-responder. A=anterior, P=posterior, R=right, 

L=left, S=superior, I=inferior, RH=Right Hemisphere, LH=Left Hemisphere.
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