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ABSTRACT OF THE THESIS 
 

Mode Coupling and Degeneracy Condition in Multilayer Waveguide Structure with Grating 
 

By 
 

Puxi Zhou 
 

Master of Science in Electrical Engineering 
 

 University of California, Irvine, 2018 
 

Professor Filippo Capolino, Chair 
 

 

 

Intra mode coupling effects and degeneracy conditions are thoroughly investigated in 

the scenario of multilayer waveguide structures with grating. Propagating modes in uniform 

slab waveguides are exactly solved by a transfer matrix method, with modes’ profiles and 

dispersion characteristics illustrated. Modes coupling phenomena in parallel slab 

waveguides is studied through inspecting the spatial evolution of single mode’s profile as 

well as superimposed field distribution. Floquet-Bloch analysis is implemented to accurately 

solve the modes in single slab waveguides with periodic grating. Dispersion relations are 

obtained for both propagating modes and evanescent modes in the structure, where second 

order mode degeneracy is demonstrated at the regular photonic band edge. Through 

examining the fields’ distribution and spatial evolution, the fundamental harmonic and the -

1st Floquet harmonic are illustrated. Finally, coupled mode theory is implemented to support 

better understandings of the various coupling phenomena. Moreover, a coupled mode model 

is developed for the parallel slab waveguides with a grating structure in between, and the 

existence of the degenerate band edge in such stricture is qualitatively demonstrated.
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Chapter 1  

Introduction 
 

1.1  Mode Degeneracy in Optical Frequency 

Mode degeneracies at the photonic band edges have been demonstrated in various 

photonic devices, such as distributed feedback (DFB) lasers, distributed Bragg reflectors 

(DBR), coupled resonators optical waveguides, degenerate band edge resonators, etc. [1]–

[5]. According to the number of modes that are degenerated at the photonic band edges, the 

photonic band edges can be classified as regular band edges (RBE) or degenerate band edges 

(DBE). Specifically, at the regular band edges, there are two modes coalescing to form a 

degenerate mode, while four modes are involved into the mode degeneracy at the 

degenerate band edges. Operating at photonic band edges can lead to several promising 

characteristics of the photonic devices, such as frequency stability and selectivity, giant gain 

enhancement, and high quality factors [4], [6]–[8]. Furthermore, the photonic devices 

operating at the DBE have been illustrated to possess much better performance than those 

operating at the RBE [4], [7], [8] 

The modes coupling effects play a critical role in forming photonic band edges.  Regular 

band edges have been found in multiple periodic photonic structures such as the DFB laser 

cavities and the distributed Bragg reflectors. In those cases, photonic band gaps and regular 

band edges are formed thanks to the contra-directional coupling effects between the two 

oppositely propagating modes. Degenerate band edges have been demonstrated in optical 
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fibers [9], [10], coupled photonic crystal waveguide [5], [11], and coupled resonator optical 

waveguides [4]. To achieve those degenerate band edges, the supported modes in those 

structures have been carefully determined, and the related modes coupling effects have been 

rigorously analyzed as well as elaborately controlled.  

 

1.2  Motivation  

Integrated photonic devices and systems have attracted extensive attention over the 

years for its great application potentials in data communication infrastructures, novel 

computing systems, biomedical research platforms, etc.[12]–[14]. Engineering the modes 

behavior inside the photonic structures is an important way to design and achieve high-

performance photonic devices, of which the photonic devices operating at the photonic band 

edges is a good example. Among the diverse photonic structures, the multilayer waveguide 

structures with grating appeals our particular interest because on one hand, this type of 

structures constitute key elements of various photonic devices [15]–[17]. On the other hand, 

the degenerate band edge has not been demonstrated in this kind of geometry. 

In this report, we systematically study the modes behavior in the multilayer waveguide 

structures with grating, which includes the dispersion characteristics, mode profiles, field 

evolutions, and mode couplings. Specifically, understanding the modes behavior in the 

uniform (non-grating) multilayer structures is the prerequisite to analyze the structures 

with grating. Therefore, we first study the single and coupled slab waveguides that can be 

formed in uniform multilayer systems. Then, the single slab waveguide with periodic grating 

is analyzed, which has been demonstrated to possess regular band edges. The modes 
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behavior is mainly discussed in terms of the degeneracy conditions as well as the coupling 

effects. Based on these analysis, we finally propose a coupled slab waveguides structure with 

a periodic structure in between and study the degeneracy conditions of the degenerate band 

edges in the scope of coupled mode theory. 

 

1.3  Analyzing Methods 

Multilayer waveguide structures with/out grating have been subjects of numerous 

theoretical investigations [18], [19], where different analyzing methods were implemented. 

In this report, we adopted three methods, which are transfer matrix method, Floquet-Bloch 

analysis, and coupled mode theory. 

The transfer matrix method is first implemented to provide exact solutions of the modes 

supported in the uniform multilayer waveguide structures. The transfer matrices are 

obtained through applying boundary conditions at each interface between the layers. Using 

the transfer matrix method, not only the dispersion characteristic, but also the mode profile 

can be obtained and analyzed for each supported mode. 

Floquet-Bloch analysis is a powerful tool to obtain the exact solutions of the fields in the 

photonic periodic structures. In this report, it is implemented to analyze both single and 

coupled slab waveguides with a periodic grating structure. Floquet-Bloch method maintains 

higher accuracy compared with other techniques for analyzing the periodic structures, 

because the fields in the periodic structures can be thoroughly described according to the 

Floquet-Bloch theory. Moreover, not only propagating modes, but also evanescent modes 

can be exactly solved through the Floquet-Bloch method.  
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Coupled mode theory is implemented to support better understandings of the diverse 

coupling phenomenon. Through determining the coupled mode equation for each scenario 

of interest, the dispersion relations of the supported modes can be obtained by solving 

eigenvalue problems. In this way, we can have a qualitative analysis of the mode behaviors 

in the structure. 

 

Overall, this report is organized in the following manner. In chapter 2, multilayer 

waveguide structure is analyzed using the transfer matrix method as well as the coupled 

mode theory. The dispersion characteristics, mode profiles, as well as modes coupling effects 

are studied in this scenario. In chapter 3 and 4, single slab waveguide with a periodic grating 

is investigated through the two methods respectively: the Floquet-Bloch analysis based on 

Maxwell equations and the coupled mode theory that is a physically-incisive method to 

understand wave phenomena though not strictly related to a precise structure. Modes 

behavior is fully analyzed in terms of mode degeneracy and modes coupling. In Chapter 4, 

we illustrate the dispersion characteristic of a coupled periodic multilayer structure based 

on a coupled mode model. Degenerate band edge conditions are qualitatively discussed. 

Finally, in chapter 5, a summary of this report is provided, followed by the future work 

proposed. 
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Chapter 2  

Multilayer Waveguide Structure 
 

2.1  Introduction 

Multilayer waveguide structures have been widely adopted in contemporary integrated 

photonic devices and systems [14], [20], [21], of which the key elements are known as slab 

or planar optical waveguides. In his chapter, single and coupled optical slab waveguides are 

analyzed using a transfer matrix method [18], [22]. The dispersion characteristics of 

propagating modes with TE polarization are obtained by implementing the transfer matrix 

method, followed by illustrating the mode profiles. This method also can be used to solve TM 

modes with modifications to relevant formulas, which is not included here for the sake of 

brevity. Several phenomenon related to the results are also discussed. Finally, coupled mode 

analysis is implemented to facilitate a better understanding of the coupled optical 

waveguides.  

 

2.2  Transfer Matrix Method 

This section introduces the transfer matrix method [18], [22], which is used to obtain 

the dispersion characteristic and field distributions in multilayer waveguide structures. A 

basic configuration of a multilayer system is shown in Fig. 2. 1, where the layers are ordered 

along the x-direction and 𝑥𝑥𝑆𝑆  is the interface between the 𝑥𝑥th and (𝑥𝑥 + 1)th layers. Each layer 

consists of one type of isotropic and homogeneous dielectric media and the relative dielectric 
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constant of the 𝑥𝑥th layer is denoted as 𝜀𝜀𝑆𝑆. Both superstrate (layer 1) and substrate (layer s) 

are assumed to be semi-infinite regions.  

 

Fig. 2. 1. Basic schematic of a multilayer structure. Layers are ordered along the x-axis, layer 1 and s are 
superstrate and substrate respectively, which are assumed to be semi-infinite regions. 𝑥𝑥 = 𝑥𝑥𝑆𝑆  is the interface 
between the ith and the (i+1)th layer. Each layer consists of one type of isotropic and homogeneous material, 
and 𝜀𝜀𝑆𝑆 is the relative dielectric constant of ith layer. The structure is assumed to be infinite along the y-direction. 

Consider a monochromatic plane wave that travels along the z-direction with the time 

dependence of 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗. For TE polarization, the electric and magnetic fields can be expressed as 

𝐸𝐸�⃗ =  𝑦𝑦�𝐸𝐸𝑦𝑦  and 𝐻𝐻��⃗ =  𝑥𝑥�𝐻𝐻𝑥𝑥 + �̂�𝑧𝐻𝐻𝑧𝑧 , where all the field components are constant along the y-

direction (see Appendix A) as the structure is assumed to be infinite along the y-direction. 

Since the electric field has only one component, we can apply the scalar wave equation to 

describe the wave in each layer as [22] 

𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝐸𝐸𝑦𝑦

(𝑆𝑆)(𝑥𝑥) + (𝜀𝜀𝑆𝑆𝑘𝑘02 − 𝑘𝑘𝑧𝑧2)𝐸𝐸𝑦𝑦
(𝑆𝑆)(𝑥𝑥) = 0                    (2.1) 

where 𝑘𝑘0  and 𝑘𝑘𝑧𝑧  are the free-space wavenumber and the propagation constant along z, 

respectively, while 𝐸𝐸𝑦𝑦
(𝑆𝑆)(𝑥𝑥) denotes the electric field in the 𝑥𝑥th layer. We further define the 
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transverse wavenumber (orthogonal to the layers) for the 𝑥𝑥th layer as 

𝑘𝑘𝑥𝑥
(𝑆𝑆) = ±�𝜀𝜀𝑆𝑆𝑘𝑘02 − 𝑘𝑘𝑧𝑧2.                        (2.2) 

The solutions of the wave equation (2.1) are in the form 

𝐸𝐸𝑦𝑦
(𝑆𝑆)(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 𝑏𝑏(1) exp�−𝑗𝑗𝑘𝑘𝑥𝑥

(1)|𝑥𝑥|�                              𝑥𝑥 = 1   

𝑎𝑎(𝑆𝑆) exp�𝑗𝑗𝑘𝑘𝑥𝑥
(𝑆𝑆)𝑥𝑥� + 𝑏𝑏(𝑆𝑆) exp�−𝑗𝑗𝑘𝑘𝑥𝑥

(𝑆𝑆)𝑥𝑥�      𝑥𝑥 = 2~𝑠𝑠 − 1

𝑎𝑎(𝑠𝑠) exp�𝑗𝑗𝑘𝑘𝑥𝑥
(𝑠𝑠)|𝑥𝑥|�                              𝑥𝑥 = 𝑠𝑠

       (2.3) 

where 𝑎𝑎(𝑆𝑆) and 𝑏𝑏(𝑆𝑆) are defined as amplitude coefficients for the 𝑥𝑥th layer. Since there is no 

field component propagating toward the structure from the superstrate or substrate, we 

have 𝑎𝑎(1) = 𝑏𝑏(𝑠𝑠) = 0 . To make the solution have a physical meaning, it is critical to 

appropriately determine the proper branch choice of the transverse wavenumber in the 

open half spaces (i.e. signs of 𝑘𝑘𝑥𝑥
(1)and 𝑘𝑘𝑥𝑥

(𝑠𝑠)). In order to make the proper choice, let’s consider 

the limit when 𝑥𝑥 → ±∞ , 𝐸𝐸𝑦𝑦
(1)(𝑥𝑥)  and 𝐸𝐸𝑦𝑦

(𝑠𝑠)(𝑥𝑥)  are supposed to be zero respectively. 

Accordingly, the transverse field should be exponentially decaying away from the structure 

as 

𝐼𝐼𝐼𝐼�𝑘𝑘𝑥𝑥
(1)� < 0 and 𝐼𝐼𝐼𝐼�𝑘𝑘𝑥𝑥

(𝑠𝑠)� < 0.                   (2.4) 

At a certain frequency, to find a physical mode is to find its propagation constant as well 

as its transverse wavenumber. The dispersion characteristics are obtained by solving for the 

existing propagation constants for frequencies of interest. The physical modes in a 

multilayer structure can be found by solving the wave equations and applying the proper 

boundary conditions at each interface. The boundary conditions for TE modes are applied 

by enforcing continuity of both 𝐸𝐸𝑦𝑦−(𝑥𝑥𝑆𝑆) = 𝐸𝐸𝑦𝑦+(𝑥𝑥𝑆𝑆) and 𝜕𝜕𝐸𝐸𝑦𝑦−
(𝑥𝑥𝑖𝑖)

𝜕𝜕𝑥𝑥
= 𝜕𝜕𝐸𝐸𝑦𝑦+(𝑥𝑥𝑖𝑖)

𝜕𝜕𝑥𝑥
 at each interface 
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𝑥𝑥 = 𝑥𝑥𝑆𝑆 (see Appendix A). Then, if we define the amplitude coefficients vector for the 𝑥𝑥th layer 

as 𝐶𝐶(𝑆𝑆) = �𝑎𝑎
(𝑆𝑆)

𝑏𝑏(𝑆𝑆)�, and take advantage of (2.3), we can express the boundary conditions as  

𝑇𝑇�(𝑆𝑆)𝐶𝐶(𝑆𝑆) =  𝑀𝑀� (𝑆𝑆+1)𝐶𝐶(𝑆𝑆+1)                       (2.5) 

where 𝑇𝑇�(𝑆𝑆) and 𝑀𝑀� (𝑆𝑆+1) are the transfer matrices associated to the interface 𝑥𝑥 = 𝑥𝑥𝑆𝑆 , which are 

given for TE modes as [22] 

𝑇𝑇�(𝑆𝑆) =  �
exp�𝑗𝑗𝑘𝑘𝑥𝑥

(𝑆𝑆)𝑥𝑥𝑆𝑆� exp�−𝑗𝑗𝑘𝑘𝑥𝑥
(𝑆𝑆)𝑥𝑥𝑆𝑆�

𝑗𝑗𝑘𝑘𝑥𝑥
(𝑆𝑆)exp�𝑗𝑗𝑘𝑘𝑥𝑥

(𝑆𝑆)𝑥𝑥𝑆𝑆� −𝑗𝑗𝑘𝑘𝑥𝑥
(𝑆𝑆)exp�−𝑗𝑗𝑘𝑘𝑥𝑥

(𝑆𝑆)𝑥𝑥𝑆𝑆�
�         (2.6.a) 

𝑀𝑀� (𝑆𝑆+1) =  �
exp�𝑗𝑗𝑘𝑘𝑥𝑥

(𝑆𝑆+1)𝑥𝑥𝑆𝑆� exp�−𝑗𝑗𝑘𝑘𝑥𝑥
(𝑆𝑆+1)𝑥𝑥𝑆𝑆�

𝑗𝑗𝑘𝑘𝑥𝑥
(𝑆𝑆+1)exp�𝑗𝑗𝑘𝑘𝑥𝑥

(𝑆𝑆+1)𝑥𝑥𝑆𝑆� −𝑗𝑗𝑘𝑘𝑥𝑥
(𝑆𝑆+1)exp�−𝑗𝑗𝑘𝑘𝑥𝑥

(𝑆𝑆+1)𝑥𝑥𝑆𝑆�
�.   (2.6.b) 

The only difference between 𝑇𝑇�(𝑆𝑆) and 𝑀𝑀� (𝑆𝑆+1) is the transverse wavenumbers they applied. 

Therefore, the amplitude coefficients vector for the 𝑥𝑥th layer can be recursively related to 

that for the superstrate 𝐶𝐶(1) through 

𝐶𝐶(𝑆𝑆) = �𝑀𝑀� (𝑆𝑆)�
−1
𝑇𝑇�(𝑆𝑆−1)𝐶𝐶(𝑆𝑆−1) 

 = 𝑆𝑆� (𝑆𝑆−1)𝐶𝐶(𝑆𝑆−1) = 𝑆𝑆� (𝑆𝑆−1) ∙∙∙ 𝑆𝑆� (1)𝐶𝐶(1) = 𝑆𝑆�𝐶𝐶(1)  (2.7) 

where 𝑆𝑆�  is the transfer matrix that relate 𝐶𝐶(𝑆𝑆)  to 𝐶𝐶(1) . Similarly, 𝐶𝐶(𝑆𝑆)  can be recursively 

related to the amplitude coefficients vector for the substrate 𝐶𝐶(𝑠𝑠) as 

𝐶𝐶(𝑆𝑆) = �𝑇𝑇�(𝑆𝑆)�
−1
𝑀𝑀� (𝑆𝑆+1)𝐶𝐶(𝑆𝑆+1) 

= 𝑅𝑅�(𝑆𝑆+1)𝐶𝐶(𝑆𝑆+1) = 𝑅𝑅�(𝑆𝑆+1) ∙∙∙ 𝑅𝑅�(𝑠𝑠)𝐶𝐶(𝑠𝑠) = 𝑅𝑅�𝐶𝐶(𝑠𝑠)  (2.8) 

where 𝑅𝑅� is the transfer matrix that relate 𝐶𝐶(𝑆𝑆) to 𝐶𝐶(𝑠𝑠). Therefore, the characteristic equation 

for our system can be easily obtained by equating (2.7) and (2.8), i.e. 𝑅𝑅�𝐶𝐶(𝑠𝑠) − 𝑆𝑆�𝐶𝐶(1) = 0. This 

characteristic equation can be recanted as following, given that 𝑎𝑎(1) = 𝑏𝑏(𝑠𝑠) = 0 
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�
𝑟𝑟11 −𝑠𝑠12
𝑟𝑟21 −𝑠𝑠22� �

𝑎𝑎(𝑠𝑠)

𝑏𝑏(1)� = 𝐷𝐷� �𝑎𝑎
(𝑠𝑠)

𝑏𝑏(1)� = 0  (2.9) 

where 𝑟𝑟  and 𝑠𝑠  represents the matrix elements of 𝑅𝑅�  and 𝑆𝑆�  respectively, which are also 

functions of the propagation constant 𝑘𝑘𝑧𝑧, and 𝐷𝐷�  is the coefficient matrix of the characteristic 

equation. The characteristic equation will have nontrivial solutions if 

det(𝐷𝐷�) = 0  (2.10) 

in other words, when the determinant of 𝐷𝐷�  is zero. Solving (2.10) will provide the 

propagation constants of physical modes that exist in the system, and the corresponding 

transverse wavenumber in each layer can be calculated via (2.2). Meanwhile, based on the 

determined 𝐷𝐷� , if we set a value of either 𝑎𝑎(𝑠𝑠) or 𝑏𝑏(1), the other one can be easily calculated 

using the characteristic equation (2.9). Furthermore, the amplitude coefficients 𝑎𝑎(𝑆𝑆) and 𝑏𝑏(𝑆𝑆) 

for all intermediate layers can be obtained by applying the boundary conditions. Finally, the 

mode profile along the transverse direction can be obtained and inspected through applying 

all 𝑎𝑎(𝑆𝑆), 𝑏𝑏(𝑆𝑆) and 𝑘𝑘𝑥𝑥
(𝑆𝑆) to (2.3).  

 

2.3  Single Slab Waveguide 

In this section, the transfer matrix method is implemented to analyze the single slab 

optical waveguides. A basic geometry of such waveguide is shown in Fig. 2.2, where silicon 

is selected as the core layer material whereas silicon dioxide is selected as the cladding layer 

material. The core layer has a thickness of t, while both the cladding layers are assumed to 

be infinite half spaces. For the sake of simplicity, all the materials in our system are assumed 

to be non-dispersive, which means that their refractive indices are invariant with respect to 
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Fig. 2. 2. Geometry of a single slab optical waveguide. The materials for core layer and cladding layers are silicon 
and silicon dioxide respectively, whose refractive indices are 𝑛𝑛Si = 3.48  and 𝑛𝑛SiO2 = 1.444  respectively. The 
core layer has a thickness of t, whereas the cladding layers are assumed to be semi-infinite layers. 

frequency, which is an excellent approximation for monochromatic signals.  

The refractive indices adopted here for the silicon and silicon dioxide are 𝑛𝑛Si = 3.48 and 

𝑛𝑛SiO2 = 1.444 respectively. These values are picked for a wavelength 𝜆𝜆0 = 1550nm, where 

𝜆𝜆0 is the wavelength in free space. Two waveguides are studies: waveguide 1 and waveguide 

2. In the following we  assume 𝑡𝑡 = 80nm for waveguide 1 and 𝑡𝑡 = 350nm for waveguide 2. 

Through solving (2.10) for the two geometries with different core thickness’s, the dispersion 

characteristics are obtained for propagating modes with TE polarization. The  𝑘𝑘 − 𝜔𝜔 

dispersion diagrams are shown in Fig. 2.3. 

In the dispersion diagrams, the center angular frequency 𝜔𝜔0 corresponds to the free-

space wavelength 1550nm . For a propagating mode in lossless systems, its propagation 

constant 𝑘𝑘𝑧𝑧  is a pure real number and is in the range between 𝑛𝑛SiO2𝑘𝑘0  and 𝑛𝑛Si𝑘𝑘0  in this 

scenario. Therefore, in the dispersion diagrams, all points that represent the propagating 

modes are in the region defined by the two so-called light lines. The Si and SiO2 light lines 
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Fig. 2. 3. The k-ω, dispersion diagrams, for TE modes of a) waveguide 1, and b) waveguide 2. The black lines are 
light lines that define the region for propagating modes in the substrate and superstrate. The colored lines are 
dispersion curves for different order. 

are given by ω = 𝑐𝑐
𝑛𝑛Si
𝑘𝑘0 and ω = 𝑐𝑐

𝑛𝑛SiO2
𝑘𝑘0 respectively, where 𝑐𝑐 denotes the speed of light in 

free space. It is worth noting that, waveguide 1 only supports the fundamental TE mode for 

the frequencies of interest. as shown in Fig. 2.3(a). On the other hand, Fig. 2.3(b) shows that, 

with a thicker core layer, multiple TE modes can be supported by waveguide 2 in the same 

range of interested frequencies. In addition, through comparing the two figures, it can be 

found that the dielectric slab waveguides support fundamental TE mode for all frequencies, 

while there are cutoff frequencies for higher order TE modes.  

To provide deeper insight into the mode behavior, the mode profiles along the x-

direction are plotted for modes A and B, which are labelled in Fig. 2.3(b) by red dots. The 

amplitude coefficients are calculated by solving (2.7) and (2.8) with the calculated 

propagation constant and the assumption that 𝑏𝑏(1) = 1. The field distribution along the x-

direction is calculated by inserting calculated propagation constant  As shown in Fig. 2.4, 

modes A and B correspond to TE0 and TE1 mode i The refractive indices’ profile is also 

plotted to illustrate the waveguide’s geometry. From these figures, one can see that fields of 
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Fig. 2. 4. Field distribution and refractive index profile along the x-direction of a) mode A, and b) mode B that 
are marked in Fig. 2.3. 

the propagating modes are confined in the core layer while decaying in the cladding layers. 

Moreover, the field distribution of TE0 mode is an even function over the transverse 

direction, by which it is known as a TE even mode. Similarly, TE1 mode is one of the TE odd 

modes as its field distribution is an odd function over the x-direction. 

 

2.4  Coupled Slab Waveguide 

In this section, we analyze coupled slab waveguide structures using the transfer matrix 

method. A typical geometry of the structure is shown in Fig. 2.5, where the materials of the 

two core layers are selected to be indium phosphide and silicon respectively. Silicon dioxide 

is the material of all the cladding layers. The InP and Si core layers have a thickness of 𝑡𝑡1 and 

𝑡𝑡2 respectively, and the gap between them has a thickness of 𝑔𝑔. The refractive index of InP is 

set as 𝑛𝑛InP = 3.167, which corresponds to the free-space wavelength 1550nm. 

Following the same procedure in section 2.3, the dispersion diagrams are plotted for 
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Fig. 2. 5. Geometry of a coupled slab optical waveguide structure. The cores layers consist of Si and InP 
respectively, and the cladding layers are made from SiO2. The thicknesses of core layers are denoted as t1 and t2 
respectively. The gap between the core layers has a thickness of 𝑔𝑔. 

propagating TE modes in a coupled slab waveguide structure, which are shown in Fig. 2.6. 

The structure has 𝑡𝑡1 = 60nm , 𝑡𝑡2 = 302nm , and 𝑔𝑔 = 1000nm . In Fig. 2.6, the blue curves 

represent propagating modes that have TE polarization, other labels and parameters have 

the same definitions as those in Fig. 2.3.  

In Fig. 2.6(a), the new and most interesting feature is that two of the dispersion curves 

seems to “intersect” with each other near the center angular frequency, which is marked by 

a red ring. To study this feature, we zoom in on the marked part and display it in Fig. 

2.6(b),where we can clearly see that instead of intersecting, the two curves “veer out” near 

the center angular frequency [23]. According to [18], [23] this phenomenon indicates that, 

in the veering region, the two modes with the same frequencies couple with each other. To 

gain a better understanding of this coupling phenomenon, we choose mode C and D at the 

center angular frequency 𝜔𝜔0 and plot their mode profiles along the x-direction, which are 

shown in Fig. 2.7.  
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Fig. 2. 6. a) TE modes’ dispersion diagram of a coupled slab waveguide structure with t1=60nm, t2=302nm, 
g=1000nm, b) zoom-in figure of the red-circled part in a). The black lines are light lines that define the region 
of propagating modes, whereas the blue lines are dispersion curves for distinct TE modes. 

Before inspecting Fig. 2.7, based on Fig. 2.6 and the findings we obtained in section 2.3, 

we can infer that mode C corresponds to a TE1 mode of the silicon waveguide, and mode D 

corresponds to a TE0 mode of the InP waveguide. However, from Fig. 2.7, one can see that 

mode C and mode D do not possess the isolated TE1- and TE0-mode profile in Si and InP 

waveguides respectively. Instead, for mode C and mode D, their fields in the two core layers 

are both strong and correlated with each other. Moreover, their mode profiles are similar in  

 

Fig. 2. 7. Mode and refractive index profiles along the x-direction of individual modes: a) mode C and b) mode 
D at ω0 that are marked in Fig. 2.6. 
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the way that they both consist of a TE0-like field shape in InP layer and a TE1-like field shape 

in Si layer. All these phenomena indicate and illustrate the coupling effect between mode C 

and mode D at the center angular frequency. 

 

Fig. 2. 8. Superimposed field distribution of adding mode C and D, along with the refractive index profile along 
the x-direction at a) z = 0 and b) z = L. 

Adding the profiles of the two modes provides their superimposed field distribution. 

Their superimposed field along the x-direction is shown in Fig. 2.8(a), from which we can see 

a TE0-like field distribution across all layers with a concentration at InP layer. It is worth 

noting that, the superimposed field distribution is not static, but it is evolving along the z-

direction, and the result in Fig. 2.8(a) can be regarded as the superimposed field distribution 

at z = 0. The coupling effect between two propagating modes in two waveguides will lead to 

a transfer of power from one waveguide to the other along the propagating direction. The 

coupling length L is defined as the distance that maximum power exchanging is achieved 

between the two waveguides [22], [24]. The L can be calculated through 

𝐿𝐿 = 𝜋𝜋
|𝛽𝛽1−𝛽𝛽2|  (2.11) 

where 𝛽𝛽1 and 𝛽𝛽2 are the propagation constant of the two coupled modes. Having calculated 

the L for mode C and D, we plot the superimposed field distribution at z = L and display it in 
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Fig. 2.8(b). Comparing Fig. 2.8(a) and (b), we can easily find that the concentration of field 

totally shifts from the InP waveguide to the Si waveguide, which is consistent with the 

theoretical prediction.  

 

2.5  Coupled Mode Analysis 

In this section, we implement the well-known coupled mode theory [25]–[28] to 

support a better understanding of the coupling effect between two propagating modes. 

Specifically, we focus on the veering region in Fig. 2.6, in which the two modes with the same 

frequency will couple to each other. In the following, the technique we used is based on [29]. 

Consider a parallel slab waveguide structure which consists of waveguide a and waveguide 

b. We first treat each waveguide as an isolated waveguide, so that a TE wave that propagates 

along the z-direction in waveguide a can be generally described as 

𝐸𝐸𝑦𝑦
(𝑎𝑎)(𝑥𝑥, 𝑧𝑧) = 𝐸𝐸𝑦𝑦

(𝑎𝑎)(𝑥𝑥)𝑎𝑎(𝑧𝑧)  (2.12) 

where 𝑎𝑎(𝑧𝑧)  is the field distribution along the z-direction. The field evolution along the 

propagating direction can be described as: 𝜕𝜕𝑎𝑎(𝑧𝑧)
𝜕𝜕𝑧𝑧

= −𝑗𝑗𝛽𝛽𝑎𝑎𝑎𝑎(𝑧𝑧) , where 𝛽𝛽𝑎𝑎  is defined as the 

phase constant of that wave. Similar descriptions can be given for of a propagating mode 

with TE polarization in waveguide b if we define 𝑏𝑏(𝑧𝑧) and 𝛽𝛽𝑏𝑏  as its field distribution and 

phase constant along the z-direction respectively. Then, we analyze the compound structure 

that has two parallel waveguides. In general, the total field in the structure can be expressed 

as a linear superposition of the single waveguide modes 

𝐸𝐸𝑦𝑦
(𝑗𝑗𝑡𝑡𝑗𝑗)(𝑥𝑥, 𝑧𝑧) = 𝐸𝐸𝑦𝑦

(𝑎𝑎)(𝑥𝑥)𝑎𝑎(𝑧𝑧) + 𝐸𝐸𝑦𝑦
(𝑏𝑏)(𝑥𝑥)𝑏𝑏(𝑧𝑧)  (2.13) 
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where 𝐸𝐸𝑦𝑦
(𝑗𝑗𝑡𝑡𝑗𝑗)  denotes the total field in the structure. However, when the coupling effect 

between two propagating modes are considered, according to the coupled mode theory, 

their field evolution along the z-direction need to be described as [29] 

𝜕𝜕𝑎𝑎(𝑧𝑧)
𝜕𝜕𝑧𝑧

= −𝑗𝑗𝛽𝛽𝑎𝑎𝑎𝑎(𝑧𝑧) + 𝑗𝑗𝜅𝜅𝑎𝑎𝑏𝑏𝑏𝑏(𝑧𝑧)  (2.14.a) 

𝜕𝜕𝑏𝑏(𝑧𝑧)
𝜕𝜕𝑧𝑧

= 𝑗𝑗𝜅𝜅𝑏𝑏𝑎𝑎𝑎𝑎(𝑧𝑧) − 𝑗𝑗𝛽𝛽𝑏𝑏𝑏𝑏(𝑧𝑧)  (2.14.b) 

where 𝜅𝜅𝑎𝑎𝑏𝑏 and 𝜅𝜅𝑏𝑏𝑎𝑎 are defined as the coupling coefficients, which characterize the coupling 

effect between the two modes. Notice that due to the existence of the coupling effect, the 

equivalent propagation constant 𝛽𝛽 for the two single waveguide modes are no longer 𝛽𝛽𝑎𝑎 and 

𝛽𝛽𝑏𝑏, but what need to be solved from (2.14).  

The coupled mode equations can be written in the form of a matrix equation as: 

𝜕𝜕
𝜕𝜕𝑧𝑧
�
𝑎𝑎(𝑧𝑧)
𝑏𝑏(𝑧𝑧)� = −𝑗𝑗 � 𝛽𝛽𝑎𝑎 −𝜅𝜅𝑎𝑎𝑏𝑏

−𝜅𝜅𝑏𝑏𝑎𝑎 𝛽𝛽𝑏𝑏
� �𝑎𝑎(𝑧𝑧)
𝑏𝑏(𝑧𝑧)� = −𝑀𝑀� �

𝑎𝑎(𝑧𝑧)
𝑏𝑏(𝑧𝑧)�  (2.15) 

and the eigen solution �
𝑎𝑎(𝑧𝑧)
𝑏𝑏(𝑧𝑧)� can have a form of 

�
𝑎𝑎(𝑧𝑧)
𝑏𝑏(𝑧𝑧)� = �𝐴𝐴𝐵𝐵� 𝑒𝑒

−𝑗𝑗𝛽𝛽𝑧𝑧  (2.16) 

where 𝛽𝛽 is the variable in (2.14) and represents the equivalent propagation constant of the 

a mode, and 𝐴𝐴, 𝐵𝐵 are amplitude coefficients of mode a and mode b respectively. Inserting 

(2.16) into (2.15) can provide the eigenvalue equation as: 

(𝑀𝑀� − 𝛽𝛽�̳�𝐼) �𝐴𝐴𝐵𝐵� = 0  (2.17) 

where �̳�𝐼 is the identity matrix. Solving (2.17) gives us the expression of the eigenvalue 𝛽𝛽 as 

[29] 

𝛽𝛽 = 𝛽𝛽𝑎𝑎+𝛽𝛽𝑏𝑏
2

± ��𝛽𝛽𝑎𝑎−𝛽𝛽𝑏𝑏
2

�
2

+ 𝜅𝜅𝑎𝑎𝑏𝑏𝜅𝜅𝑏𝑏𝑎𝑎.  (2.18) 
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Consider in a narrow range of frequencies, 𝛽𝛽𝑎𝑎 and 𝛽𝛽𝑏𝑏 are approximately linear functions 

of the frequency, which can be observed in Fig. 2.3. Then for the two propagating modes, if 

their dispersion curves for the isolated single waveguides intersect at 𝜔𝜔 = 𝜔𝜔𝑐𝑐 , so that 

𝛽𝛽𝑎𝑎(𝜔𝜔𝑐𝑐) = 𝛽𝛽𝑏𝑏(𝜔𝜔𝑐𝑐) = 𝛽𝛽𝑐𝑐 , these two modes will couple with each other in the geometry of 

parallel slab waveguides. However, the actual propagation constants of the two coupled 

modes will be: 𝛽𝛽 = 𝛽𝛽𝑐𝑐 ± �𝜅𝜅𝑎𝑎𝑏𝑏𝜅𝜅𝑏𝑏𝑎𝑎 . In general, the coupling coefficients 𝜅𝜅𝑎𝑎𝑏𝑏  and 𝜅𝜅𝑏𝑏𝑎𝑎  are 

complex number. However, in lossless system, it can be derived that 𝜅𝜅𝑎𝑎𝑏𝑏 = 𝜅𝜅𝑏𝑏𝑎𝑎∗  for the two 

coupled modes with same propagating direction. In this scenario, we can get that 𝛽𝛽 = 𝛽𝛽𝑐𝑐 ±

�𝜅𝜅𝑎𝑎𝑏𝑏𝜅𝜅𝑏𝑏𝑎𝑎 = 𝛽𝛽𝑐𝑐 ± �|𝜅𝜅𝑎𝑎𝑏𝑏|2, where the difference of the two eigenvalues 𝛽𝛽 is resulted from and 

influenced by the coupling coefficients 𝜅𝜅𝑎𝑎𝑏𝑏 (or 𝜅𝜅𝑏𝑏𝑎𝑎). Meanwhile, it should be noted that the 

coupling effect happens not only at 𝜔𝜔 = 𝜔𝜔𝑐𝑐, but in a narrow range of frequencies centered at 

𝜔𝜔𝑐𝑐. This result explains the veering phenomenon in Fig. 2.6, which clearly indicates that the 

two modes in the veering region are coupled to each other.  
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Chapter 3   

Multilayer Waveguide Structure with Periodic Grating — 
Floquet-Bloch Analysis 
 

3.1  Introduction 

An optical waveguiding structure with a periodic grating is a basic configuration for 

several integrated photonic devices, such as distributed feedback laser cavities, distributed 

Bragg reflectors, grating-assisted directional couplers, etc. As plane waves are natural modes 

for uniform multilayer systems, Floquet-Bloch waves are natural modes for periodic 

multilayer waveguiding structures [30]. In this chapter, we carry out the Floquet-Bloch 

analysis to solve the dispersion relation, which provides critical insight into the mode 

behavior inside the structure. The fundamental TE mode is analyzed here. The simple 

geometry of interest is a single slab waveguide with a periodic grating on its top, all 

surrounded by cladding media. The method can be easily implemented to solve for both TE 

and TM modes, as well as for arbitrary multilayer systems with a periodic grating structure. 

The dispersion phenomenon is analyzed in detail, along with the mode profile illustrated.  

 

3.2  Floquet-Bloch Analysis 

This section deals with the method of Floquet-Bloch analysis, which is based on the 

analysis presented in [22]. The geometry of the system is similar to that which we analyzed 

in chapter 2, while the difference is the addition of a periodic grating layer (See Fig. 3.1). The 



20 
 

new parameters that characterize the structure are the grating period 𝛬𝛬  and the grating 

height 𝑡𝑡. Notice that layer k is the grating layer and 𝑥𝑥 = 𝑥𝑥𝑘𝑘−1, 𝑥𝑥 = 𝑥𝑥𝑘𝑘  are its boundaries.  

 

Fig. 3. 1. Basic schematic of a multilayer system with a grating structure. Layers are ordered along the x-axis, 
layer 1 and s are superstrate and substrate respectively, which are assumed to be semi-infinite regions. Layer k 
is the grating layer. x=xi is the interface between the ith and the (i+1)th layer. Each layer consists of one type of 
isotropic and homogeneous material, and 𝜀𝜀𝑆𝑆 is the relative dielectric constant of the ith layer. The structure is 
assumed to be infinite along the y-direction. 

According to the Floquet-Bloch theorem, when a wave propagates in an infinite 

unbounded periodic media, its field along the propagating direction is periodic and can be 

expressed in the form of a Fourier series, of which each component is known as a spatial 

harmonic, or a Floquet-Bloch wave. Consider TE modes in our system, the electric field in 

each layer can be expressed as 

𝐸𝐸𝑦𝑦
(𝑆𝑆)(𝑥𝑥, 𝑧𝑧) = ∑ 𝐸𝐸𝑦𝑦𝑛𝑛

(𝑆𝑆)(𝑥𝑥)∞
𝑛𝑛=−∞ exp (−𝑗𝑗𝑘𝑘𝑧𝑧𝑛𝑛𝑧𝑧)  (3.1) 

where 𝑛𝑛  denotes the order of the spatial harmonic, and 𝑘𝑘𝑧𝑧𝑛𝑛  is defined as complex 

propagation constant for the 𝑛𝑛th harmonic, which is given by 

𝑘𝑘𝑧𝑧𝑛𝑛 = (𝛽𝛽 + 𝑛𝑛𝑛𝑛) + 𝑗𝑗𝑗𝑗  (3.2) 
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where 𝛽𝛽  and 𝑗𝑗  are phase and attenuation constants for the fundamental harmonic 𝑘𝑘𝑧𝑧0 =

𝛽𝛽 + 𝑗𝑗𝑗𝑗. Meanwhile, 𝑛𝑛 = 2𝜋𝜋
𝛬𝛬

 is defined as the grating vector, so that 𝑘𝑘𝑧𝑧𝑛𝑛 can also be expressed 

as: 𝑘𝑘𝑧𝑧𝑛𝑛 = 𝑘𝑘𝑧𝑧0 + 𝑛𝑛𝑛𝑛. 

To find the physical TE modes in our system, we start with analyzing the uniform (non-

periodic) regions, which excludes the grating layer (layer k) and its top and bottom 

boundaries ( 𝑥𝑥 = 𝑥𝑥𝑘𝑘−1 , 𝑥𝑥 = 𝑥𝑥𝑘𝑘 ). For field solution of each spatial harmonic 

𝐸𝐸𝑦𝑦𝑛𝑛(𝑥𝑥)exp (−𝑗𝑗𝑘𝑘𝑧𝑧𝑛𝑛𝑧𝑧), we use the transfer matrix method introduced in chapter 2. Specifically, 

for the 𝑛𝑛th spatial harmonic in the 𝑥𝑥th layer (𝑥𝑥 ≠ 𝑘𝑘), we can similarly define the amplitude 

coefficients vectors 𝐶𝐶𝑛𝑛(𝑆𝑆) = �
𝑎𝑎𝑛𝑛

(𝑆𝑆)

𝑏𝑏𝑛𝑛
(𝑆𝑆)�, as well as the transfer matrices along the x-direction: 𝑇𝑇𝑛𝑛���(𝑆𝑆) 

and 𝑀𝑀𝑛𝑛����(𝑆𝑆+1) (see chapter 2 and [22]). Following the same procedure in chapter 2 for the 𝑛𝑛th 

spatial harmonic, we can relate the amplitude coefficients vectors in layer (k-1) and layer 

(k+1) with the amplitude coefficients vectors in the super- and substrate, respectively. The 

relations are 

𝐶𝐶𝑛𝑛(𝑘𝑘−1) = 𝑆𝑆𝑛𝑛���𝐶𝐶𝑛𝑛
(1) = �

𝑠𝑠𝑛𝑛12𝑏𝑏𝑛𝑛
(1)

𝑠𝑠𝑛𝑛22𝑏𝑏𝑛𝑛
(1)�  (3.3a) 

𝐶𝐶𝑛𝑛(𝑘𝑘+1) = 𝑅𝑅𝑛𝑛����𝐶𝐶𝑛𝑛
(𝑠𝑠) = �

𝑟𝑟𝑛𝑛11𝑎𝑎𝑛𝑛
(𝑠𝑠)

𝑟𝑟𝑛𝑛21𝑎𝑎𝑛𝑛
(𝑠𝑠)�.  (3.3b) 

Notice that there is a tiny difference between the calculation of 𝑆𝑆𝑛𝑛��� , 𝑅𝑅𝑛𝑛����  here and that in 

chapter 2. Here, 𝑆𝑆𝑛𝑛��� = 𝑆𝑆𝑛𝑛���
(𝑘𝑘−2) ∙∙∙ 𝑆𝑆𝑛𝑛���

(1)  with 𝑆𝑆𝑛𝑛���
(𝑆𝑆) = �𝑀𝑀𝑛𝑛����(𝑆𝑆+1)�

−1
𝑇𝑇𝑛𝑛���(𝑆𝑆) , and 𝑅𝑅𝑛𝑛���� = 𝑅𝑅𝑛𝑛����(𝑘𝑘+2) ∙∙∙

𝑅𝑅𝑛𝑛����(𝑠𝑠) with 𝑅𝑅𝑛𝑛����(𝑆𝑆) = �𝑇𝑇𝑛𝑛���(𝑆𝑆−1)�
−1
𝑀𝑀𝑛𝑛����(𝑆𝑆) (see Ref. 1). 𝑠𝑠𝑛𝑛,𝑆𝑆𝑗𝑗 and 𝑟𝑟𝑛𝑛,𝑆𝑆𝑗𝑗 are the matrix elements of 𝑆𝑆𝑛𝑛��� 

and 𝑅𝑅𝑛𝑛����, respectively. 
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Next, we analyze the two boundaries of the grating region, which are 𝑥𝑥 = 𝑥𝑥𝑘𝑘−1 and 𝑥𝑥 =

𝑥𝑥𝑘𝑘. We apply the boundary conditions for each harmonic of the TE modes. Specifically, the 

continuity of 𝐸𝐸𝑦𝑦𝑛𝑛(𝑥𝑥) and 𝜕𝜕𝐸𝐸𝑦𝑦𝑦𝑦
(𝑥𝑥)

𝜕𝜕𝑥𝑥
 are still valid at these two interfaces. After some calculation 

(see Appendix B), the boundary conditions at the boundaries 𝑥𝑥 = 𝑥𝑥𝑘𝑘−1 and 𝑥𝑥 = 𝑥𝑥𝑘𝑘  can be 

determined as 

𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘)(𝑥𝑥𝑘𝑘−1)� = 𝑣𝑣𝑛𝑛𝐸𝐸𝑦𝑦𝑛𝑛
(𝑘𝑘)(𝑥𝑥𝑘𝑘−1)  (3.4a) 

𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘)(𝑥𝑥𝑘𝑘)� = 𝑤𝑤𝑛𝑛𝐸𝐸𝑦𝑦𝑛𝑛
(𝑘𝑘)(𝑥𝑥𝑘𝑘)  (3.4b) 

respectively, where 𝑣𝑣𝑛𝑛 and 𝑤𝑤𝑛𝑛 are given by 

𝑣𝑣𝑛𝑛 = (𝑠𝑠𝑦𝑦12𝑗𝑗𝑦𝑦21
(𝑘𝑘−1)+𝑠𝑠𝑦𝑦22𝑗𝑗𝑦𝑦11

(𝑘𝑘−1))

(𝑠𝑠𝑦𝑦12𝑗𝑗𝑦𝑦11
(𝑘𝑘−1)+𝑠𝑠𝑦𝑦22𝑗𝑗𝑦𝑦12

(𝑘𝑘−1))
  (3.5a) 

𝑤𝑤𝑛𝑛 = (𝑟𝑟𝑦𝑦11𝑚𝑚𝑦𝑦21
(𝑘𝑘+1)+𝑟𝑟𝑦𝑦21𝑚𝑚𝑦𝑦11

(𝑘𝑘+1))

(𝑟𝑟𝑦𝑦11𝑚𝑚𝑦𝑦11
(𝑘𝑘+1)+𝑟𝑟𝑦𝑦21𝑚𝑚𝑦𝑦12

(𝑘𝑘+1))
  (3.5b) 

where 𝑡𝑡𝑛𝑛,𝑆𝑆𝑗𝑗
𝑘𝑘−1, 𝐼𝐼𝑛𝑛,𝑆𝑆𝑗𝑗

𝑘𝑘+1 are the matrix elements of 𝑇𝑇𝑛𝑛���(𝑘𝑘−1) and 𝑀𝑀𝑛𝑛����(𝑘𝑘+1) respectively. 

In the following, we will obtain the field solution inside the grating layer. Due to the 

periodicity of material, the relative dielectric constant in the grating layer should be 

represented by a Fourier series 

𝜀𝜀(𝑥𝑥, 𝑧𝑧) = ∑ 𝜀𝜀𝑛𝑛(𝑥𝑥)∞
𝑛𝑛=−∞ exp (𝑗𝑗𝑛𝑛𝑛𝑛𝑧𝑧).  (3.6) 

Here, for simplicity, we just use 𝜀𝜀(𝑥𝑥, 𝑧𝑧) to represent the relative permittivity in layer k (see 

[22]). Then, instead of using the scalar wave equations, we need to use the equivalent 

Maxwell equations (see Appendix A) to describe the TE fields in the grating region 

−𝑗𝑗𝜔𝜔𝑗𝑗𝐻𝐻𝑧𝑧
(𝑘𝑘) =

𝜕𝜕𝐸𝐸𝑦𝑦
(𝑘𝑘)

𝜕𝜕𝑥𝑥
  (3.7a) 

−𝑗𝑗𝜔𝜔𝜀𝜀𝐸𝐸𝑦𝑦
(𝑘𝑘) − 𝑗𝑗 1

𝑗𝑗𝜔𝜔

𝜕𝜕2𝐸𝐸𝑦𝑦
(𝑘𝑘)

𝜕𝜕𝑧𝑧2
= 𝜕𝜕𝐻𝐻𝑧𝑧

(𝑘𝑘)

𝜕𝜕𝑥𝑥
  (3.7b) 
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where 𝐸𝐸𝑦𝑦
(𝑘𝑘) is given by (3.1) with 𝑥𝑥 = 𝑘𝑘. 𝐻𝐻𝑧𝑧

(𝑘𝑘) is also periodic along the z-direction according 

to the Floquet-Bloch theorem, and can be written as 

𝐻𝐻𝑧𝑧
(𝑘𝑘)(𝑥𝑥, 𝑧𝑧) = ∑ 𝐻𝐻𝑧𝑧𝑛𝑛

(𝑘𝑘)(𝑥𝑥)∞
𝑛𝑛=−∞ exp (−𝑗𝑗𝑘𝑘𝑧𝑧𝑛𝑛𝑧𝑧).  (3.8) 

By substituting the expressions of 𝜀𝜀(𝑥𝑥, 𝑧𝑧), 𝐸𝐸𝑦𝑦
(𝑘𝑘) and 𝐻𝐻𝑧𝑧

(𝑘𝑘) into (3.7), we will have two sets of 

equations with infinite numbers, which are impossible to be completely solved. To address 

this problem, we select finite number of spatial harmonics to represent the fields. In other 

words, we truncate the infinite Fourier series to finite ones. Meanwhile, it should be noted 

that the range and the number of the selected spatial harmonics will critically influence the 

correctness and accuracy of the results, which needs to be adjusted for different scenarios. 

In Appendix B, the related derivations are shown in detail. Here, we provide results for when 

we define the field vectors in the grating layer as 

𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥) = �𝐸𝐸𝑦𝑦,−𝑗𝑗1
(𝑘𝑘) (𝑥𝑥),⋯ ,𝐸𝐸𝑦𝑦,0

(𝑘𝑘)(𝑥𝑥),⋯ ,𝐸𝐸𝑦𝑦,𝑗𝑗2
(𝑘𝑘) (𝑥𝑥)�

𝑇𝑇
  (3.9a) 

𝐻𝐻𝑧𝑧(𝑘𝑘)(𝑥𝑥) = �𝐻𝐻𝑧𝑧,−𝑗𝑗1
(𝑘𝑘) (𝑥𝑥),⋯ ,𝐻𝐻𝑧𝑧,0

(𝑘𝑘)(𝑥𝑥),⋯ ,𝐻𝐻𝑧𝑧,𝑗𝑗2
(𝑘𝑘) (𝑥𝑥)�

𝑇𝑇
  (3.9b) 

and let 𝑙𝑙 = 𝑗𝑗1 + 𝑗𝑗2 + 1 be the number of spatial harmonics we select, then we can transform 

the equivalent Maxwell equations (3.7) to 

𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥)� = 𝑄𝑄�𝐻𝐻𝑧𝑧(𝑘𝑘)(𝑥𝑥)  (3.10a) 

𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐻𝐻𝑧𝑧(𝑘𝑘)(𝑥𝑥)� = 𝑃𝑃�𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥)  (3.10b) 

where 𝑄𝑄�  and 𝑃𝑃� are 𝑙𝑙 × 𝑙𝑙 square matrices, whose elements are given as 

𝑞𝑞𝑚𝑚𝑛𝑛 = −𝑗𝑗𝜔𝜔𝑗𝑗𝛿𝛿𝑚𝑚𝑛𝑛  (3.11a) 

𝑝𝑝𝑚𝑚𝑛𝑛 = 𝑗𝑗𝜔𝜔𝜀𝜀0 ��
𝑘𝑘𝑧𝑧𝑛𝑛

𝑘𝑘0� �
2
𝛿𝛿𝑛𝑛𝑚𝑚 − 𝜀𝜀𝑛𝑛−𝑚𝑚�.  (3.11b) 
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Besides the equivalent Maxwell equations, the boundary conditions at interfaces: 𝑥𝑥 =

𝑥𝑥𝑘𝑘−1 and 𝑥𝑥 = 𝑥𝑥𝑘𝑘 can also be expressed in the form of matrix equations, since finite number 

of spatial harmonics are used to represent the total fields. Specifically, the two boundary 

conditions are 

𝑈𝑈� 𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥𝑘𝑘−1)� = 𝑉𝑉�𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥𝑘𝑘−1)  (3.12a) 

𝑈𝑈� 𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥𝑘𝑘)� = 𝑊𝑊���𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥𝑘𝑘)  (3.12b) 

where 𝑈𝑈�  is 𝑙𝑙 × 𝑙𝑙 unit matrix, 𝑉𝑉� and 𝑊𝑊��� are diagonal matrices with same size, which are given 

by 

𝑉𝑉� = diag(𝑣𝑣−𝑗𝑗1 ⋯𝑣𝑣0 ⋯𝑣𝑣𝑗𝑗2)  (3.13a) 

𝑊𝑊��� = diag(𝑤𝑤−𝑗𝑗1 ⋯𝑤𝑤0⋯𝑤𝑤𝑗𝑗2).  (3.13b) 

At this stage, we completely describe the TE fields in our system through the equivalent 

Maxwell equation (3.10) for the grating layer, and the boundary conditions associated with 

that layer (3.12). To solve the fields and find the supported modes in the structure, we first 

solve (3.10) numerically via the classical Runge-Kutta method, which has been illustrated in 

detail in [22]. The resulting equations relate the field values at 𝑥𝑥 = 𝑥𝑥𝑘𝑘 with that at 𝑥𝑥 = 𝑥𝑥𝑘𝑘−1 

as 

𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥𝑘𝑘) = 𝑌𝑌𝐸𝐸���𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥𝑘𝑘−1)  (3.14a) 

𝐻𝐻𝑧𝑧(𝑘𝑘)(𝑥𝑥𝑘𝑘) = 𝑌𝑌𝐻𝐻���𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥𝑘𝑘−1)  (3.14b) 

where 𝑌𝑌𝐸𝐸���  and 𝑌𝑌𝐻𝐻���  are the matrices 𝑌𝑌𝑓𝑓�  and 𝑌𝑌𝑔𝑔�  defined in [22], respectively. Finally, by 

combining (3.14) with the boundary conditions (3.12), we obtain the characteristic equation 

of our system 
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�𝑈𝑈�𝑄𝑄�𝑌𝑌𝐻𝐻��� −𝑊𝑊���𝑌𝑌𝐸𝐸����𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥𝑘𝑘−1) = 𝐹𝐹�𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥𝑘𝑘−1) = 0  (3.15) 

where 𝐹𝐹� is the coefficients matrix of the characteristic equation, which will have nontrivial 

solutions if 

det(𝐹𝐹�) = 0.  (3.16) 

Solving this last equation will give the propagation constants of the TE modes that are 

supported by the structure. Sweeping the existing propagation constants for frequencies of 

interest will provide the dispersion relations. Meanwhile, the mode profile for each selected 

spatial harmonic can be calculated, so that the total field distribution along the x-direction 

can be finally calculated and illustrated. This is done by calculating the field coefficients  

𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥𝑘𝑘−1) by solving (3.15) once the 𝐹𝐹� matrix is determined from (3.16). 

 

3.3  Single Slab Waveguide with Periodic Grating  

In this section, we carry out the Floquet-Bloch theory to analyze a single slab waveguide 

with a periodic grating structure on its top. The geometry of the structure is shown in Fig. 

3.2, where silicon is the material of the waveguiding layer, while the cladding layers are made 

from silicon dioxide. The grating structure is formed by periodically alternating Si and SiO2. 

The waveguiding layer has a thickness of t, while the grating layer is characterized by the 

grating height h and the grating period 𝛬𝛬.  

Using the expounded mathematical model in section 3.2, we solve for the propagating 

modes with TE polarization in a specific geometry, which has 𝑡𝑡 = 80nm, ℎ = 20nm, and 𝛬𝛬 =

381nm. To ensure a sufficient accuracy of the calculation, we select 7 spatial harmonics to 
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Fig. 3. 2. Geometry of a single slab optical waveguide with a periodic grating on top. The materials for waveguide 
layer and cladding layers are silicon and silicon dioxide respectively, whose refractive indices are nSi=3.48 and 
nSiO2=1.444 respectively. The waveguide layer has a thickness of t, the grating layer has a height of h and period 
of 𝛬𝛬. both the cladding layers are assumed to be semi-infinite layers. 

represent the total field (i.e. from the -3rd to the 3rd harmonic) [22], [31]. The dispersion 

diagrams are shown in Fig. 3.3. In general, the single slab waveguide with periodic grating is 

a type of one-dimensional photonic crystals, whose dispersion characteristics have been well 

studied [32]–[35]. In the following, we represent its dispersion diagrams and analyze the 

mode behaviors in terms of the mode degeneracy.  

In Fig. 3.3, the frequencies of interest are normalized by the center angular frequency 

𝜔𝜔0 , which corresponds to the optical free-space wavelength 1550nm . The propagation 

constants are calculated for fundamental spatial harmonic and normalized by 𝜋𝜋
𝛬𝛬

, which 

equals a half of the grating vector 𝑛𝑛 . Recall that the propagation constants for the 

propagating modes are pure real numbers in a lossless system, i.e. the 𝑗𝑗 in (3.2) is zero. In 

Fig. 3.3(a), the SiO2  light line separates the leaky modes from the propagating bounded 

modes. The dispersion characteristics of propagating modes are displayed for a wide range 
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Fig. 3. 3. Dispersion diagrams of propagating modes. a) dispersion diagram for a wide range of frequency, the 
SiO_2 light line defines the region of propagating modes, b) dispersion diagram near the band gap, where the 
band gap is labelled by a gray strip with the regular band edges marked by red dots. 

of frequencies, where the most important feature is marked by a red ring, zoomed in, and 

displayed in Fig. 3.3(b). From Fig. 3.3(b), one can find that in a range of frequencies (the 

bandgap), there are no propagating modes supported in the system. This gap between the 

upper and lower dispersion curves is known as a photonic band gap in terms of the band 

structure of the photonic crystals [32]. The two vertices of the two dispersion curves are 

known as the photonic band edges, where the propagating modes coalesce, and become 

degenerate modes [4]. Specifically, taking the lower dispersion curve as an example, one can 

find that with increasing the frequency, the propagation constants of the two modes (one at 

the left branch, the other at the right branch) get closer until they are both equal to 𝜋𝜋
𝛬𝛬

 at the 

band edge and merge to form a degenerate mode. (The structure is designed to have a band 

edge in very close proximity to ω0.) In this case, the photonic band edge is known as the 

regular band edge because two modes are involved in the mode degeneracy.  

Using the expounded mathematical model in section 3.2, we solve for the propagating 
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Fig. 3. 4. Dispersion diagrams for both propagating and evanescent modes near the band gap. a) dispersion 
diagram for the real parts of the propagation constants, b) dispersion diagram for the imaginary parts of the 
propagation constant. 

modes with TE polarization in a specific geometry, which has 𝑡𝑡 = 80nm, ℎ = 20nm, and 𝛬𝛬 =

381nm. To ensure a sufficient accuracy of the calculation, we select 7 spatial harmonics to 

can be found that both propagating modes and evanescent modes in our system exist at those 

frequencies. The corresponding dispersion diagrams are shown in Fig. 3.4, where Fig. 3.4(a) 

and (b) display the dispersion relations with respect to the real and the imaginary parts of 

the propagation constants, respectively. It is clear that the modes inside the bandgap are 

evanescent modes, whose propagation constants have equal real parts and imaginary parts 

of opposite signs. The difference between the two imaginary values is maximum at the center 

of the band gap.  

To gain a better inspection of the modes at the band edge, the total field distribution is 

calculated and plotted, along with the mode profiles of the fundamental and the -1st 

harmonics, at the frequency corresponding to the lower band edge. We consider the modal 

solution associated to the modal propagation from (3.1), namely 𝐸𝐸𝑦𝑦
(𝑆𝑆)(𝑥𝑥, 𝑧𝑧) =

∑ 𝐸𝐸𝑦𝑦𝑛𝑛
(𝑆𝑆)(𝑥𝑥)∞

𝑛𝑛=−∞ exp (−𝑗𝑗𝑘𝑘𝑧𝑧𝑛𝑛𝑧𝑧), with 𝑘𝑘𝑧𝑧0 =  π/𝛬𝛬. The total field is the summation of the fields of 
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the selected harmonic (7 in this case). The calculating method is that: first, through plugging 

the calculated fundamental propagation constant 𝑘𝑘𝑧𝑧0  into (3.15), we can obtain the field 

value of each harmonic at the upper boundary of the grating layer. Specifically, to solve 

equation (3.15), the field value of the fundamental harmonic at 𝑥𝑥𝑘𝑘−1 is assumed as unitary, 

(i.e., we assume 𝐸𝐸𝑦𝑦0
(𝑘𝑘)(𝑥𝑥𝑘𝑘−1) = 1). Then, the field distribution inside the grating layer can be 

calculated through the Runge-Kutta method [22], while the field distribution outside the 

grating layer can be finally obtained through the transfer matrix method (3.3).  

 

Fig. 3. 5. Field distributions and refractive indices’ profiles at z=0 (figure (a)-(c)), z=Λ⁄4 (figure (d)-(f)), and 
z=Λ⁄2 (figure (g)-(i)). The field distributions are plotted for the total field (figure (a)(d)(g)), the fundamental 
harmonic (figure (b)( (e)(h)), and the -1st harmonic (figure (c)(f)(i)). The refractive index of the grating layer is 
calculated through averaging the refractive indices of Si and SiO2. 

In general, the calculated electric fields at the lower band edge have complex values, 

whose real parts represent the field magnitude and the imaginary parts represent the phases. 
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In Fig. 3.5, the real parts of the electric fields are extracted and plotted. Meanwhile, the 

refractive indices’ profiles are also plotted to illustrate the geometry. The refractive index of 

the grating layer is here (in the plot, solid black line) calculated by 𝑛𝑛Si+𝑛𝑛SiO2
2

, which represents 

an average refractive index of the grating region. 

Figs. 3.5(a)-(c) show the results calculated through solving the characteristic equation  

as well as conducting the Runge-Kutta method and the transfer matrix method as  explained 

before. Fig. 3.5(a) shows the total field distribution along the x-direction, where one can find 

that light is confined in the waveguide and grating regions, with a TE0-like field profile. Fig. 

3.5(b), (c) plot the x-distribution of the fundamental and the -1st harmonic respectively. Then, 

it is worth noting that the field distributions along the x-direction are not static, but they are 

evolving along the z-direction. The results shown in Figs. 3.5(a)-(c) can be considered as the 

fields at 𝑧𝑧 = 0, (i.e. 𝐸𝐸𝑦𝑦𝑛𝑛
(𝑆𝑆)(𝑥𝑥, 0)) because 𝑒𝑒−𝑗𝑗𝑘𝑘𝑧𝑧𝑦𝑦∙0 = 1 is true for each harmonic in (3.1). For 

each harmonic, how the x-dependent field evolution varies along z is calculated as 

𝐸𝐸𝑦𝑦𝑛𝑛
(𝑆𝑆)(𝑥𝑥, 𝑧𝑧) = 𝐸𝐸𝑦𝑦𝑛𝑛

(𝑆𝑆)(𝑥𝑥, 0)exp (−𝑗𝑗𝑘𝑘𝑧𝑧𝑛𝑛𝑧𝑧), where 𝑘𝑘𝑧𝑧𝑛𝑛 is determined by (3.2) with the calculated 𝑘𝑘𝑧𝑧0. 

The total field distribution along the x-direction at a certain z-location can be calculated by 

summing field values of all the 7 harmonics. Fig. 3.5(a), (d) and (g) shows the total field 

distribution along the x-direction at three different z location. The z-evolutions of the 

fundamental and the -1st harmonic are plotted in Fig. 3.5(b)(e)(h) and (c)(f)(i) respectively. 

Comparing the results in Fig. 3.5, one can find that the fundamental and the -1st spatial 

harmonics are dominant Floquet modes in the structure. They dominate the total field 

alternatively as the wave evolve along the z-direction, while field values (distributions) of 

other harmonics are negligible. 
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Chapter 4 

Multilayer Waveguide Structure with Periodic Grating — 
Coupled Mode Theory 
 

4.1  Introduction 

In this chapter, the coupled mode theory is implemented to provide a better 

understanding for the wave coupling of the modes in multilayer waveguide structure with 

grating. Coupled mode theory has been widely adopted to analyze the waveguiding 

structures with periodic gratings [2], [29], [36], [37]. Single slab waveguide with periodic 

grating is first analyzed to illustrate a basic coupled-mode model to characterize the coupling 

effects in periodic waveguide structure. Then a parallel slab waveguide structure with 

grating is proposed, and a modified coupled-mode model is developed correspondingly [38]. 

The degeneracy conditions of four modes is discussed in the parallel slab waveguide 

structure with grating. The existence of degenerate band edge in that scenario is finally 

stated and qualitatively illustrated. 

 

4.2  Single Slab Waveguide with Periodic Grating 

In this section, we implement the well-known coupled mode theory to analyze the 

modes coupling effects provided by a periodic grating structure, and the method we applied 

here is based on [29]. The geometry of interest is same as what is treated in Ch. 3, namely, a 

single slab waveguide with a periodic grating structure on top. According to the coupled 
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mode theory, the periodic grating is treated as a spatial perturbation added on the 

waveguiding layer of the uniform multilayer system [29]. The dielectric constants’ 

distribution 𝜀𝜀(𝑥𝑥, 𝑧𝑧) of the whole system can be divided into two parts, of which the first part 

𝜀𝜀(0)(𝑥𝑥) is defined as the dielectric constants’ distribution of the uniform layered system, 

while the second part ∆𝜀𝜀(𝑥𝑥, 𝑧𝑧) describe the periodic perturbation on the dielectric constants. 

Then, we can have 𝜀𝜀(𝑥𝑥, 𝑧𝑧) = 𝜀𝜀(0)(𝑥𝑥) + ∆𝜀𝜀(𝑥𝑥, 𝑧𝑧). Due to the periodicity of ∆𝜀𝜀(𝑥𝑥, 𝑧𝑧), it can be 

described as  

∆𝜀𝜀(𝑥𝑥, 𝑧𝑧) = 𝜀𝜀0 ∑ ∆𝜀𝜀𝑝𝑝(𝑥𝑥)𝑒𝑒𝑗𝑗𝑝𝑝
2𝜋𝜋
𝛬𝛬 𝑧𝑧𝑝𝑝≠0   (4.1) 

where 𝜀𝜀0  is the dielectric constant in free space and ∆𝜀𝜀𝑝𝑝(𝑥𝑥)  is the pth order Fourier 

harmonics. In lossless systems, the relative dielectric constants are real numbers so that 

∆𝜀𝜀𝑝𝑝∗ = ∆𝜀𝜀−𝑝𝑝.  

First, consider a uniform single slab waveguide system without the periodic 

perturbation. Assume that the waveguide layer only supports the fundamental TE mode, 

whose electric field can be expressed as a scalar function: 𝐸𝐸𝑦𝑦 = 𝐸𝐸𝑦𝑦(𝑥𝑥)𝑒𝑒−𝑗𝑗𝛽𝛽0𝑧𝑧, where 𝛽𝛽0 is the 

phase constant for the field propagation. In the uniform systems, the electric field of the TE 

modes satisfy the wave equation [29] 

� 𝜕𝜕
2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2

𝜕𝜕𝑧𝑧2
+ 𝜔𝜔2𝑗𝑗𝜀𝜀(0)(𝑥𝑥)� ∙ 𝐸𝐸𝑦𝑦(𝑥𝑥)𝑒𝑒±𝑗𝑗𝛽𝛽0𝑧𝑧 = 0  (4.2) 

where 𝐸𝐸𝑦𝑦(𝑥𝑥)𝑒𝑒±𝑗𝑗𝛽𝛽0𝑧𝑧  describes the modes that propagates in opposite directions. Then, if 

taking the spatial perturbation into account, the composed dielectric constants 𝜀𝜀(𝑥𝑥, 𝑧𝑧) need 

to be implemented and the TE modes’ wave equation is modified as [29] 

� 𝜕𝜕
2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2

𝜕𝜕𝑧𝑧2
+ 𝜔𝜔2𝑗𝑗𝜀𝜀(0)(𝑥𝑥)� 𝐸𝐸𝑦𝑦 = −𝜔𝜔2𝑗𝑗∆𝜀𝜀(𝑥𝑥, 𝑧𝑧)𝐸𝐸𝑦𝑦.  (4.3) 
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To implement the coupled mode theory, we assume there are two TE-polarized waves 

propagates in opposite direction in the system and define the amplitude coefficients function 

𝐴𝐴+(𝑧𝑧) and 𝐴𝐴−(𝑧𝑧) for each wave, which describe the evolution of the field amplitudes along 

the propagating direction. Then, the total field in the structure equals the superposition of 

the two oppositely propagating fields 

�𝐴𝐴+(𝑧𝑧)𝑒𝑒−𝑗𝑗𝛽𝛽0𝑧𝑧 + 𝐴𝐴−(𝑧𝑧)𝑒𝑒𝑗𝑗𝛽𝛽0𝑧𝑧�𝐸𝐸𝑦𝑦(𝑥𝑥).  (4.4) 

Inserting (3.20) into (3.19) and conduct some derivations [29], one can find that when 𝛽𝛽0 ≈

𝑝𝑝𝑛𝑛 − 𝛽𝛽0  with 𝑛𝑛 = 2𝜋𝜋
𝛬𝛬

 being the grating vector, the two oppositely propagating modes are 

strongly coupled. In our scenario, 𝑝𝑝 = 1. Then, we can further define 𝛽𝛽𝐵𝐵 = 𝑝𝑝∙𝐾𝐾
2

= 𝜋𝜋
𝛬𝛬

 and ∆𝛽𝛽 =

𝛽𝛽0 − 𝛽𝛽𝐵𝐵  as well as make the transform 𝑎𝑎+(𝑧𝑧) = 𝐴𝐴+(𝑧𝑧)𝑒𝑒−𝑗𝑗∆𝛽𝛽𝑧𝑧 , 𝑎𝑎−(𝑧𝑧) = 𝐴𝐴−(𝑧𝑧)𝑒𝑒𝑗𝑗∆𝛽𝛽𝑧𝑧 . After 

some derivation, the coupled mode equation that describe the coupling effects between the 

two oppositely propagating modes in our system can be obtained as [29] 

𝜕𝜕
𝜕𝜕𝑧𝑧
�𝑎𝑎+

(𝑧𝑧)
𝑎𝑎−(𝑧𝑧)� = −𝑗𝑗 �

∆𝛽𝛽 𝜒𝜒𝑎𝑎±

𝜒𝜒𝑎𝑎∓ −∆𝛽𝛽��
𝑎𝑎+(𝑧𝑧)
𝑎𝑎−(𝑧𝑧)�  (4.5) 

which has similar form of the coupled mode equation discussed in chapter 2. Here, 𝜒𝜒𝑎𝑎±  and 

𝜒𝜒𝑎𝑎∓  are defined as the coupling coefficients of the two oppositely propagating modes, whose 

expressions are given in [29]. Like the procedure we followed in chapter 2, the equivalent 

propagation constant of the two oppositely propagating modes 𝛽𝛽  can be solved in the 

scenario of eigenvalue problem [29], and its expression is given as 

𝛽𝛽 = 𝛽𝛽𝐵𝐵 ± �∆𝛽𝛽2 + 𝜒𝜒𝑎𝑎±𝜒𝜒𝑎𝑎∓   (4.6) 

where 𝜒𝜒𝑎𝑎±  and 𝜒𝜒𝑎𝑎∓  are complex numbers in general. However, in lossless systems, 𝜒𝜒𝑎𝑎∓ =

−𝜒𝜒𝑎𝑎±
∗ , and 𝜒𝜒𝑎𝑎∓ ∙ 𝜒𝜒𝑎𝑎± = −�𝜒𝜒𝑎𝑎±�

2
, therefore we have: 
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𝛽𝛽 = 𝛽𝛽𝐵𝐵 ± �∆𝛽𝛽2−�𝜒𝜒𝑎𝑎±�
2

 .  (4.7) 

From this equation, one can find that when |∆𝛽𝛽| < �𝜒𝜒𝑎𝑎±� , the equivalent propagation 

constant 𝛽𝛽 is a complex number, in other words propagating modes are not supported but 

there will exist evanescent modes. Since the propagation constants are functions of 

frequency, the photonic band gap can be interpreted as the range of frequencies where the 

corresponding propagation constants satisfy the |∆𝛽𝛽| < �𝜒𝜒𝑎𝑎±�. 

 

4.3  Degenerate Band Edge 

In this section we discuss the degeneracy conditions of four modes in multilayer 

waveguide structures with grating. In the previous chapter, we have illustrated that a single 

slab waveguide with a grating on top exhibits second order degeneracy, namely, it is a 

regular band edge due to coalescing of two identical modes propagating opposite to each 

other. Therefore, to obtain a fourth order degeneracy or a degenerate photonic band edge, 

i.e., coalescing of four modes, we need to at least two coupled slab waveguides with grating, 

as shown in Fig. 4.1., to be able to support four modes, which are for instance even and odd 

mode propagating in positive and negative z-direction for symmetrical structure. This type 

of structure has been proposed and analyzed in terms of the grating-assisted directional 

couplers (GADC) [38]–[41]. However, these GADC systems operate either near or far away 

the photonic band edge [39], so that only two modes are coupled which is assisted by the 

grating structure. In the following section, we implement a coupled-mode model that is 

reported in detail in [38], and analyze the situation that four supported modes mutually 
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couple to each other. Finally, the four-mode degeneracy condition is qualitatively discussed 

and illustrated based on this coupled-mode model. 

In the following, the system of coupled slab waveguides with periodic grating is 

analyzed, whose geometry is shown in Fig. 4.1. The geometry can be regarded as a 

combination of the coupled slab waveguides shown in Fig. 2.5 and the single periodic 

waveguide structure shown in Fig. 3.2, however, for the top layer we use silicon instead of 

indium phosphide. For the convenience of the following derivation, the upper and lower 

waveguides are denoted as waveguide A and B respectively, and each waveguide is assumed 

to support only a fundamental TE mode. 

 

Fig. 4. 1. Proposed structure that exhibits a degenerate photonic band edge: there is coupling between a regular 
dielectric slab waveguide and another one with grating. The materials for waveguide layer and cladding layers 
are silicon and silicon dioxide respectively, whose refractive indices are 𝑛𝑛Si = 3.48  and 𝑛𝑛SiO2 = 1.444 
respectively. 

The model we adopt here is based a coupled-mode model for four mutually-coupled 

modes introduced in [38]. It is worth noting that a refined model has been developed and 
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introduced in [40]–[43], however, for qualitative discussion, the model in [38] is sufficient 

and straightforward to describe the complete coupling mechanism in the structure shown in 

Fig. 4.1. Meanwhile, it is also worth noting that the technique to develop the coupled mode 

model in [38] is same as that introduced in Ch. 2 and the previous section. The total electric 

field in the structure can be written in the form 

𝐸𝐸𝑦𝑦(𝑥𝑥, 𝑧𝑧) = �𝐴𝐴+(𝑧𝑧)𝑒𝑒−𝑗𝑗𝛽𝛽𝑎𝑎𝑧𝑧 + 𝐴𝐴−(𝑧𝑧)𝑒𝑒𝑗𝑗𝛽𝛽𝑎𝑎𝑧𝑧�𝐸𝐸𝑦𝑦
(𝑎𝑎)(𝑥𝑥) 

                             +�𝐵𝐵+(𝑧𝑧)𝑒𝑒−𝑗𝑗𝛽𝛽𝑏𝑏𝑧𝑧 + 𝐵𝐵−(𝑧𝑧)𝑒𝑒𝑗𝑗𝛽𝛽𝑏𝑏𝑧𝑧�𝐸𝐸𝑦𝑦
(𝑏𝑏)(𝑥𝑥)  (4.8) 

where 𝐸𝐸𝑦𝑦
(𝑎𝑎)(𝑥𝑥)  and 𝐸𝐸𝑦𝑦

(𝑏𝑏)(𝑥𝑥)  are field distributions of the single waveguide modes in 

waveguide A and B, respectively, 𝛽𝛽𝑎𝑎  and 𝛽𝛽𝑏𝑏  are phase constants of the single waveguide 

modes in waveguide A and B respectively, and 𝐴𝐴±(𝑧𝑧), 𝐵𝐵±(𝑧𝑧) are defined as the amplitude 

coefficients functions along the z-direction for the opposite propagating modes in waveguide 

A and B, respectively. In equation (4.7), four individual modes are given, and the total field 

is represented as their superposition. Then, similar to the procedure we conducted in the 

previous section, we can further define 𝛽𝛽𝐵𝐵 = 𝜋𝜋
𝛬𝛬

, ∆𝛽𝛽𝑎𝑎 = 𝛽𝛽𝑎𝑎 − 𝛽𝛽𝐵𝐵, as well as ∆𝛽𝛽𝑏𝑏 = 𝛽𝛽𝑏𝑏 − 𝛽𝛽𝐵𝐵, and 

make the transform: 

𝑎𝑎±(𝑧𝑧) = 𝐴𝐴±(𝑧𝑧)𝑒𝑒∓𝑗𝑗∆𝛽𝛽𝑎𝑎𝑧𝑧  (4.9a) 

𝑏𝑏±(𝑧𝑧) = 𝐵𝐵±(𝑧𝑧)𝑒𝑒∓𝑗𝑗∆𝛽𝛽𝑏𝑏𝑧𝑧 . (4.9b) 

Based on (4.8), the coupled mode equation that describes the complete coupling mechanism 

in the system can be expressed as [38] 

𝑑𝑑
𝑑𝑑𝑧𝑧

⎝

⎛

𝑎𝑎+(𝑧𝑧)
𝑎𝑎−(𝑧𝑧)
𝑏𝑏+(𝑧𝑧)
𝑏𝑏−(𝑧𝑧)⎠

⎞ = −𝑗𝑗

⎝

⎜
⎛
∆𝛽𝛽𝑎𝑎 𝜒𝜒𝑎𝑎±

𝜒𝜒𝑎𝑎∓ −∆𝛽𝛽𝑎𝑎
−𝜅𝜅𝑎𝑎𝑏𝑏 𝜒𝜒𝑎𝑎𝑏𝑏
𝜒𝜒𝑏𝑏𝑎𝑎 𝜅𝜅𝑎𝑎𝑏𝑏

−𝜅𝜅𝑏𝑏𝑎𝑎 𝜒𝜒𝑎𝑎𝑏𝑏
𝜒𝜒𝑏𝑏𝑎𝑎 𝜅𝜅𝑏𝑏𝑎𝑎

∆𝛽𝛽𝑏𝑏 𝜒𝜒𝑏𝑏±

𝜒𝜒𝑏𝑏∓ −∆𝛽𝛽𝑏𝑏⎠

⎟
⎞

⎝

⎛

𝑎𝑎+(𝑧𝑧)
𝑎𝑎−(𝑧𝑧)
𝑏𝑏+(𝑧𝑧)
𝑏𝑏−(𝑧𝑧)⎠

⎞  (4.10) 
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where 𝜅𝜅𝑎𝑎𝑏𝑏 , 𝜅𝜅𝑏𝑏𝑎𝑎 , 𝜒𝜒𝑎𝑎±  and 𝜒𝜒𝑏𝑏±  have same definitions with those in chapter 2 and in the 

previous section. 𝜅𝜅𝑎𝑎𝑏𝑏  and 𝜅𝜅𝑏𝑏𝑎𝑎  describe the co-directional coupling effect between the 

individual modes in waveguide A and B. 𝜒𝜒𝑎𝑎±  and 𝜒𝜒𝑏𝑏±  are named as the self-Bragg coupling 

coefficients that describe the contra-directional coupling effect between the opposite 

propagating individual modes in waveguide A and B respectively. The new parameters here 

are 𝜒𝜒𝑎𝑎𝑏𝑏 and 𝜒𝜒𝑏𝑏𝑎𝑎, whose expressions can be found in [38]. These two parameters are called 

exchange-Bragg coupling coefficients, which describe the coupling effects between one 

individual mode in waveguide A (or B) and the other individual mode that propagates in 

opposite direction in waveguide B (or A).  

Having determined the coupled mode equation, the equivalent propagation constants 

of the four individual modes in the system can be obtained through solving the eigenvalue 

problem (see Ch. 2, and [38]). The four equivalent propagation constants of the four 

individual modes are given by a simplified expression 

𝛽𝛽1 = 𝛽𝛽𝐵𝐵 + �𝐴𝐴 + √𝐷𝐷  (4.11a) 

𝛽𝛽2 = 𝛽𝛽𝐵𝐵 − �𝐴𝐴 + √𝐷𝐷  (4.11b) 

𝛽𝛽3 = 𝛽𝛽𝐵𝐵 + �𝐴𝐴 − √𝐷𝐷  (4.11c) 

𝛽𝛽4 = 𝛽𝛽𝐵𝐵 − �𝐴𝐴 − √𝐷𝐷  (4.11d) 

where 𝐴𝐴 and 𝐷𝐷 are functions of all the coefficients matrix elements in (4.10). The expressions 

of 𝐴𝐴 and 𝐷𝐷 are given in [38].  

In analog to the regular band edges, when the four modes are coalescing at the 

degenerate band edge, they are supposed to have same propagation constants, which should 
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be equal to 𝛽𝛽𝐵𝐵 according to (4.11), i.e. 𝛽𝛽1 = 𝛽𝛽2 = 𝛽𝛽3 = 𝛽𝛽4 = 𝛽𝛽𝐵𝐵. From (4.11), it is easily to find 

that the necessary condition to achieve a four-mode degeneracy is 𝐴𝐴 = 𝐷𝐷 = 0.  

For simplicity we assume that the propagation constants of the single waveguide modes 

𝛽𝛽𝑎𝑎 and 𝛽𝛽𝑏𝑏 are linear functions of the free-space wavenumber 𝑘𝑘0, which corresponds to the 

center angular frequency 𝜔𝜔0 , with the relations 𝛽𝛽𝑎𝑎 =  𝑘𝑘0𝑛𝑛𝑒𝑒𝑓𝑓𝑓𝑓,𝑎𝑎  and 𝛽𝛽𝑏𝑏 =  𝑘𝑘0𝑛𝑛𝑒𝑒𝑓𝑓𝑓𝑓,𝑏𝑏 

respectively, where 𝑛𝑛𝑒𝑒𝑓𝑓𝑓𝑓,𝑎𝑎 and 𝑛𝑛𝑒𝑒𝑓𝑓𝑓𝑓,𝑏𝑏 are defined as the effective refractive index of the two 

single waveguide modes respectively, 𝑘𝑘0 = 𝑗𝑗0
𝑐𝑐

, with c is the speed of light in free space. 

Finally, to achieve the four-mode degeneracy at a center angular frequency 𝜔𝜔0 , we first 

assume certain values of 𝑛𝑛𝑒𝑒𝑓𝑓𝑓𝑓,𝑎𝑎 , 𝑛𝑛𝑒𝑒𝑓𝑓𝑓𝑓,𝑏𝑏  and 𝛽𝛽𝐵𝐵 , then the values of ∆𝛽𝛽𝑎𝑎  and ∆𝛽𝛽𝑏𝑏  can be 

calculated for the desired center angular frequency. Next, through sweeping the values of the 

multiple coupling coefficients in some range [38], one may find a combination of coupling 

coefficients that satisfy the equation: 𝐴𝐴 = 𝐷𝐷 = 0 , i.e. the necessary condition for the 

degenerate band edge. To try to find the degenerate band edge, we first assume the  

 

Fig. 4. 2. Dispersion diagrams of a coupled slab waveguide structure with a periodic grating. a) Dispersion 
diagram for the real parts of the propagation constants, and b) Dispersion diagram for the imaginary part of 
the propagation constants. 
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effective refractive indices 𝑛𝑛𝑒𝑒𝑓𝑓𝑓𝑓,𝑎𝑎 = 3.19 , 𝑛𝑛𝑒𝑒𝑓𝑓𝑓𝑓,𝑏𝑏 = 3.2 , [38] and the 𝛽𝛽𝐵𝐵 = 1.2973 ×

107  𝑟𝑟𝑎𝑎𝑟𝑟 𝐼𝐼� , and find the desired combinations of coupling coefficients. As a result, several 

combinations of coupling coefficients can be found, which indicates that the degenerate band 

edges can be achieved in the scenario of coupled slab waveguides with a periodic grating. 

The dispersion diagrams calculated from one combination of coupling coefficients are shown 

in Fig. 4.2 to illustrate a possible situation of the DBE, where Fig. 4.2 (a), (b) show the 

dispersion diagrams for the real and imaginary parts of the equivalent propagation constant 

respectively. The solid blue curves correspond to 𝛽𝛽1 and 𝛽𝛽2, the red curves correspond to 𝛽𝛽3 

and 𝛽𝛽4. From Fig. 4.2, one can find that four modes merge to a degenerate mode when ω =

𝜔𝜔0 , which indicates the fourth order mode degeneracy or the degenerate band edge. 

Meanwhile, the dispersion curves near the degenerate band edge are flat, which exhibits the 

same features of the analogous situations reported in [4], [8] 

Finally, it should be noted that here we only qualitatively illustrate the existence of DBE 

in our system. To verify its authenticity, exact solution of degenerate mode related to a 

precise structure need to be further provided following the scheme in Chapter 3. 
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Chapter 5  

Conclusion and Future Work 
 

5.1  Conclusion 

Modes behavior has been rigorously analyzed in various multilayer waveguide 

structures with grating. Dispersion characteristics for both propagating modes and 

evanescent modes have been obtained. The propagating modes in the multilayer waveguide 

structures with grating have been thoroughly studied in terms of field distribution along the 

transverse direction, and field evolution along the propagating direction. Modes coupling 

effects have been qualitatively analyzed via coupled mode theory, and quantitatively 

demonstrated through transfer matrix method as well as Floquet-Bloch analysis. The 

dispersion characteristic resulted from co-directional coupling and contra-directional have 

been illustrated. Modes degeneracy conditions as well as regular and degenerate photonic 

band edges were emphatically elaborated. 

 

5.2  Future Work 

Based on the work of this report, investigation on modes can be conducted for more 

complicated geometries as well as for more attracting topics. Rigorous demonstration of the 

fourth-order mode degeneracy is the immediate target. Through changing the geometries, 

coupling effects among modes can be delicately adjusted, and it can be expected that the 

degenerate band edge will be achieved in the following explorations.  
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Appendix A: TE Fields in Multilayer Structure  
 

 

This appendix discusses the field components for TE modes in multilayer structures, 

along with the boundary conditions that they should satisfy. The schematic of a multilayer 

structure is shown in Figure A.1. 

 

Fig. A. 1 Schematic of a multilayer structure 

 Each layer of the structure consists of one type of homogeneous dielectric media, and 

the whole structure is invariant in both the y- and z-directions. With time dependence in 

the form of 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗, the fields inside the structure satisfy the following Maxwell equations:  

∇ × 𝐸𝐸�⃗ = −𝑗𝑗𝜔𝜔𝑗𝑗𝐻𝐻��⃗   (A.A.1a) 

∇ × 𝐻𝐻��⃗ = 𝑗𝑗𝜔𝜔𝜀𝜀𝐸𝐸�⃗  . (A.A.1b) 

Then we further spatially decompose the field vector and Nabla operator as 𝐸𝐸�⃗ = 𝑥𝑥�𝐸𝐸𝑥𝑥 +

𝑦𝑦�𝐸𝐸𝑦𝑦 + �̂�𝑧𝐸𝐸𝑧𝑧, 𝐻𝐻��⃗ = 𝑥𝑥�𝐻𝐻𝑥𝑥 + 𝑦𝑦�𝐻𝐻𝑦𝑦 + �̂�𝑧𝐻𝐻𝑧𝑧 and ∇= 𝑥𝑥� 𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝑦𝑦� 𝜕𝜕
𝜕𝜕𝑦𝑦

+ �̂�𝑧 𝜕𝜕
𝜕𝜕𝑧𝑧

, and focus on the scalar 

components. Then, if we assume fields are propagating along z-direction, then 𝐸𝐸𝑧𝑧 = 0 for 

TE polarization; second, from the y-invariance of the structure, we can conclude that each 
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field component is invariant in the y-direction, in other words: 𝜕𝜕
𝜕𝜕𝑦𝑦
𝐸𝐸𝑆𝑆 = 𝜕𝜕

𝜕𝜕𝑦𝑦
𝐻𝐻𝑆𝑆 = 0, where 𝑥𝑥 =

𝑥𝑥,𝑦𝑦, 𝑧𝑧. Based on these two findings, we can transform the two vector Maxwell equations 

into a set of six scalar equations: 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑧𝑧 = −𝑗𝑗𝜔𝜔𝑗𝑗𝐻𝐻𝑥𝑥
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑧𝑧 = −𝑗𝑗𝜔𝜔𝑗𝑗𝐻𝐻𝑦𝑦
𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑥𝑥 = −𝑗𝑗𝜔𝜔𝑗𝑗𝐻𝐻𝑧𝑧
𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝑧𝑧 = 𝑗𝑗𝜔𝜔𝜀𝜀𝐸𝐸𝑥𝑥

𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝑧𝑧 −

𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝑥𝑥 = 𝑗𝑗𝜔𝜔𝜀𝜀𝐸𝐸𝑦𝑦
𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝑥𝑥 = 0

  (A.A.2) 

Assuming the spatial dependence is 𝑒𝑒−𝑗𝑗𝑘𝑘𝑧𝑧𝑧𝑧, then we can find that (𝑘𝑘02 − 𝑘𝑘𝑧𝑧2)𝐸𝐸𝑥𝑥 = 0 

should always be satisfied for arbitrary 𝑘𝑘0 and 𝑘𝑘𝑧𝑧, where 𝑘𝑘0 = 𝜔𝜔2𝑗𝑗𝜀𝜀 is the wavenumber in 

free space. Therefore, we can deduce that 𝐸𝐸𝑥𝑥 = 0 and 𝐻𝐻𝑦𝑦 = 0 for TE waves in the structure, 

such that the existing field components are 𝐸𝐸𝑦𝑦, 𝐻𝐻𝑥𝑥 and 𝐻𝐻𝑧𝑧. After some calculation, we can 

further reduce the six equations into two equations, which are: 

−𝑗𝑗𝜔𝜔𝑗𝑗𝐻𝐻𝑧𝑧 = 𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑥𝑥

  (A.A.3a) 

−𝑗𝑗𝜔𝜔𝜀𝜀𝐸𝐸𝑦𝑦 − 𝑗𝑗 1
𝑗𝑗𝜔𝜔

𝜕𝜕2𝐸𝐸𝑦𝑦
𝜕𝜕𝑧𝑧2

= 𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝑥𝑥

 . (A.A.3b) 

Notice that these two equations can be treated as equivalent Maxwell equations for TE 

waves in the multilayer structure. Moreover, at each interface between adjacent layers, the 

tangential components of 𝐸𝐸 and 𝐻𝐻 (𝐸𝐸𝑦𝑦, 𝐻𝐻𝑧𝑧) should be continuous, which is known as the 

boundary condition. Since the difference of 𝑗𝑗 among layers is ignored, we conclude that the 

boundary condition in our scenario is that both 𝐸𝐸𝑦𝑦 and 𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑥𝑥

 are continuous at each interface. 
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Appendix B: TE Fields in the Grating Region 
 

This appendix discusses the TE fields in the grating layer, along with the boundary 

conditions that they should satisfy. We started with deriving the boundary conditions for 

each spatial harmonic. Take the upper boundary 𝑥𝑥 = 𝑥𝑥𝑘𝑘−1 as an example. The continuity of 

𝐸𝐸𝑦𝑦𝑛𝑛(𝑥𝑥) and 𝜕𝜕𝐸𝐸𝑦𝑦𝑦𝑦
(𝑥𝑥)

𝜕𝜕𝑥𝑥
 are still valid at this boundary, which can be written as:  

𝐸𝐸𝑦𝑦𝑛𝑛
(𝑘𝑘)(𝑥𝑥𝑘𝑘−1) = 𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘−1)(𝑥𝑥𝑘𝑘−1) and 𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘)(𝑥𝑥𝑘𝑘−1)� = 𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘−1)(𝑥𝑥𝑘𝑘−1)� . (A.B.1) 

In (3.3), we already calculated the amplitude coefficients vector 𝐶𝐶(𝑘𝑘−1). Therefore, in terms 

of the field distribution in layer (k-1), the field values at 𝑥𝑥 = 𝑥𝑥𝑘𝑘−1 are written as: 

𝐸𝐸𝑦𝑦𝑛𝑛
(𝑘𝑘−1)(𝑥𝑥𝑘𝑘−1) = �𝑠𝑠𝑛𝑛12 exp�𝑗𝑗𝑘𝑘𝑥𝑥𝑛𝑛

(𝑘𝑘−1)𝑥𝑥𝑘𝑘−1� + 𝑠𝑠𝑛𝑛22 exp�−𝑗𝑗𝑘𝑘𝑥𝑥𝑛𝑛
(𝑘𝑘−1)𝑥𝑥𝑘𝑘−1�� ∙ 𝑏𝑏𝑛𝑛

(1)  (A.B.2.a) 

𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘−1)(𝑥𝑥𝑘𝑘−1)� = 𝑗𝑗𝑘𝑘𝑥𝑥𝑛𝑛
(𝑘𝑘−1) �𝑠𝑠𝑛𝑛12 exp�𝑗𝑗𝑘𝑘𝑥𝑥𝑛𝑛

(𝑘𝑘−1)𝑥𝑥𝑘𝑘−1� − 𝑠𝑠𝑛𝑛22 exp�−𝑗𝑗𝑘𝑘𝑥𝑥𝑛𝑛
(𝑘𝑘−1)𝑥𝑥𝑘𝑘−1�� ∙ 𝑏𝑏𝑛𝑛

(1) . 

 (A.B.2.b) 

Taking advantage of matrix elements 𝑡𝑡𝑛𝑛
(𝑘𝑘−1) of the 𝑇𝑇� matrix for 𝑛𝑛th harmonic in layer (k-1), 

equations (A.B.2) can be written as: 

𝐸𝐸𝑦𝑦𝑛𝑛
(𝑘𝑘−1)(𝑥𝑥𝑘𝑘−1) = (𝑠𝑠𝑛𝑛12𝑡𝑡𝑛𝑛11

(𝑘𝑘−1) + 𝑠𝑠𝑛𝑛22𝑡𝑡𝑛𝑛12
(𝑘𝑘−1)) ∙ 𝑏𝑏𝑛𝑛

(1)  (A.B.3.a) 

𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘−1)(𝑥𝑥𝑘𝑘−1)� = (𝑠𝑠𝑛𝑛12𝑡𝑡𝑛𝑛21
(𝑘𝑘−1) + 𝑠𝑠𝑛𝑛22𝑡𝑡𝑛𝑛11

(𝑘𝑘−1)) ∙ 𝑏𝑏𝑛𝑛
(1) . (A.B.3.b) 

Inserting (A.B.3) in (A.B.1.) and combining the two equations will lead to: 

𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘)(𝑥𝑥𝑘𝑘−1)� = (𝑠𝑠𝑦𝑦12𝑗𝑗𝑦𝑦21
(𝑘𝑘−1)+𝑠𝑠𝑦𝑦22𝑗𝑗𝑦𝑦11

(𝑘𝑘−1))

(𝑠𝑠𝑦𝑦12𝑗𝑗𝑦𝑦11
(𝑘𝑘−1)+𝑠𝑠𝑦𝑦22𝑗𝑗𝑦𝑦12

(𝑘𝑘−1))
∙ 𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘)(𝑥𝑥𝑘𝑘−1)  (A.B.4) 

which is the equivalent boundary condition at 𝑥𝑥 = 𝑥𝑥𝑘𝑘−1. Similarly, we can derive the 

equivalent boundary condition for each spatial harmonic at 𝑥𝑥 = 𝑥𝑥𝑘𝑘  as: 

𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘)(𝑥𝑥𝑘𝑘)� = (𝑟𝑟𝑦𝑦11𝑚𝑚𝑦𝑦21
(𝑘𝑘+1)+𝑟𝑟𝑦𝑦21𝑚𝑚𝑦𝑦11

(𝑘𝑘+1))

(𝑟𝑟𝑦𝑦11𝑚𝑚𝑦𝑦11
(𝑘𝑘+1)+𝑟𝑟𝑦𝑦21𝑚𝑚𝑦𝑦12

(𝑘𝑘+1))
∙ 𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘)(𝑥𝑥𝑘𝑘)  (A.B.5) 
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where 𝐼𝐼𝑛𝑛
(𝑘𝑘+1) are elements of transfer matrix 𝑀𝑀�  for 𝑛𝑛th harmonic in layer (k+1). 

    Next, we will solve the TE fields inside the grating region through the equivalent Maxwell 

equations given in (3.7), which are:  

−𝑗𝑗𝜔𝜔𝑗𝑗𝐻𝐻𝑧𝑧
(𝑘𝑘) =

𝜕𝜕𝐸𝐸𝑦𝑦
(𝑘𝑘)

𝜕𝜕𝑥𝑥
  (A.B.6.a) 

−𝑗𝑗𝜔𝜔𝜀𝜀𝐸𝐸𝑦𝑦
(𝑘𝑘) − 𝑗𝑗 1

𝑗𝑗𝜔𝜔

𝜕𝜕2𝐸𝐸𝑦𝑦
(𝑘𝑘)

𝜕𝜕𝑧𝑧2
= 𝜕𝜕𝐻𝐻𝑧𝑧

(𝑘𝑘)

𝜕𝜕𝑥𝑥
 . (A.B.6.b) 

Since in the grating region, the relative dielectric constant 𝜀𝜀(𝑥𝑥, 𝑧𝑧) is periodic along the z-

direction, as are both 𝐸𝐸𝑦𝑦
(𝑘𝑘) and 𝐻𝐻𝑧𝑧

(𝑘𝑘) according to the Floquet-Bloch theorem. We can expand 

them using Fourier series as: 

𝐸𝐸𝑦𝑦
(𝑘𝑘)(𝑥𝑥, 𝑧𝑧) = ∑ 𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘)(𝑥𝑥)𝑒𝑒−𝑗𝑗(𝑘𝑘𝑧𝑧0+𝑛𝑛𝐾𝐾)𝑧𝑧∞
𝑛𝑛=−∞   (A.B.7.a) 

𝐻𝐻𝑧𝑧
(𝑘𝑘)(𝑥𝑥, 𝑧𝑧) = ∑ 𝐻𝐻𝑧𝑧𝑚𝑚

(𝑘𝑘)(𝑥𝑥)𝑒𝑒−𝑗𝑗(𝑘𝑘𝑧𝑧0+𝑚𝑚𝐾𝐾)𝑧𝑧∞
𝑚𝑚=−∞   (A.B.7.b) 

𝜀𝜀(𝑥𝑥, 𝑧𝑧) = ∑ 𝜀𝜀𝑛𝑛(𝑥𝑥)𝑒𝑒𝑗𝑗𝑝𝑝𝐾𝐾𝑧𝑧∞
𝑝𝑝=−∞  . (A.B.7.c) 

For the future convenience of this derivation, we use 𝑛𝑛, 𝐼𝐼, and 𝑝𝑝 to denote the order of 

each Fourier harmonic respectively. Inserting (A.B.7) into (A.B.6.) will generate two sets of 

infinite number of equations, which are impossible to be completely solved. In this case, we 

select a finite number of spatial harmonics, from order −𝑗𝑗1 to 𝑗𝑗2, to represent the fields. The 

expanded form of (A.B.6) will be: 

�
𝜕𝜕𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘)(𝑥𝑥)
𝜕𝜕𝑥𝑥

𝑗𝑗2

𝑛𝑛=−𝑗𝑗1

𝑒𝑒−𝑗𝑗(𝑘𝑘𝑧𝑧0+𝑛𝑛𝐾𝐾)𝑧𝑧 = −𝑗𝑗𝜔𝜔𝑗𝑗 � 𝐻𝐻𝑧𝑧𝑚𝑚
(𝑘𝑘)(𝑥𝑥)

𝑗𝑗2

𝑚𝑚=−𝑗𝑗1

𝑒𝑒−𝑗𝑗(𝑘𝑘𝑧𝑧0+𝑚𝑚𝐾𝐾)𝑧𝑧 

 (A.B.8.a) 
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�
𝜕𝜕𝐻𝐻𝑧𝑧𝑚𝑚

(𝑘𝑘)(𝑥𝑥)
𝜕𝜕𝑥𝑥

𝑗𝑗2

𝑚𝑚=−𝑗𝑗1

𝑒𝑒−𝑗𝑗(𝑘𝑘𝑧𝑧0+𝑚𝑚𝐾𝐾)𝑧𝑧

= −𝑗𝑗𝜔𝜔𝜀𝜀0 � � � 𝜀𝜀𝑝𝑝𝐸𝐸𝑦𝑦𝑛𝑛
(𝑘𝑘)(𝑥𝑥)𝑒𝑒−𝑗𝑗(𝑘𝑘𝑧𝑧0+𝑛𝑛𝐾𝐾−𝑝𝑝𝐾𝐾)𝑧𝑧

𝑗𝑗2

𝑛𝑛=−𝑗𝑗1

∞

𝑝𝑝=−∞

− �
𝑘𝑘𝑧𝑧𝑛𝑛2

𝑘𝑘02
𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘)(𝑥𝑥)𝑒𝑒−𝑗𝑗(𝑘𝑘𝑧𝑧0+𝑛𝑛𝐾𝐾)𝑧𝑧

𝑗𝑗2

𝑛𝑛=−𝑗𝑗1

� 

 (A.B.8.b) 

where 𝑘𝑘02 = 𝜔𝜔2𝑗𝑗𝜀𝜀0 is the free-space wavenumber, and 𝑘𝑘𝑧𝑧𝑛𝑛 is the complex propagation 

constant for 𝑛𝑛th harmonic. We first focus on (A.B.8.a). Thanks to the orthogonality of the 

Fourier harmonics, A.B.8.a) is equivalent to a set of linear equations, which are: 

𝜕𝜕𝐸𝐸𝑦𝑦𝑦𝑦
(𝑘𝑘)(𝑥𝑥)

𝜕𝜕𝑥𝑥
= −𝑗𝑗𝜔𝜔𝑗𝑗𝐻𝐻𝑧𝑧𝑚𝑚

(𝑘𝑘)(𝑥𝑥)𝛿𝛿𝑚𝑚𝑛𝑛  (A.B.9) 

where 𝑛𝑛 and 𝐼𝐼 are from −𝑗𝑗1 to 𝑗𝑗2. Similarly, the second equation is equivalent to: 

𝜕𝜕𝐻𝐻𝑧𝑧𝑧𝑧
(𝑘𝑘)(𝑥𝑥)
𝜕𝜕𝑥𝑥

= 𝑗𝑗𝜔𝜔𝜀𝜀0 �
𝑘𝑘𝑧𝑧𝑦𝑦2

𝑘𝑘02
𝛿𝛿𝑛𝑛𝑚𝑚 − 𝜀𝜀𝑛𝑛−𝑚𝑚�𝐸𝐸𝑦𝑦𝑛𝑛

(𝑘𝑘)(𝑥𝑥) . (A.B.10) 

If we further define the field vectors for the grating layer as: 

𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥) = �𝐸𝐸𝑦𝑦,−𝑗𝑗1
(𝑘𝑘) (𝑥𝑥),⋯ ,𝐸𝐸𝑦𝑦,0

(𝑘𝑘)(𝑥𝑥),⋯ ,𝐸𝐸𝑦𝑦,𝑗𝑗2
(𝑘𝑘) (𝑥𝑥)�

𝑇𝑇
  (A.B.11.a) 

𝐻𝐻𝑧𝑧(𝑘𝑘)(𝑥𝑥) = �𝐻𝐻𝑧𝑧,−𝑗𝑗1
(𝑘𝑘) (𝑥𝑥),⋯ ,𝐻𝐻𝑧𝑧,0

(𝑘𝑘)(𝑥𝑥),⋯ ,𝐻𝐻𝑧𝑧,𝑗𝑗2
(𝑘𝑘) (𝑥𝑥)�

𝑇𝑇
.  (A.B.11.b) 

(A.B.6) can be written in the form of matrix equations like: 

𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥)� = 𝑄𝑄� ∙ 𝐻𝐻𝑧𝑧(𝑘𝑘)(𝑥𝑥)  (A.B.12.a) 

𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐻𝐻𝑧𝑧(𝑘𝑘)(𝑥𝑥)� = 𝑃𝑃� ∙ 𝐸𝐸𝑦𝑦(𝑘𝑘)(𝑥𝑥)  (A.B.12.b) 

where the matrix elements for 𝑄𝑄�  and 𝑃𝑃� are given as: 

𝑞𝑞𝑚𝑚𝑛𝑛 = −𝑗𝑗𝜔𝜔𝑗𝑗𝛿𝛿𝑚𝑚𝑛𝑛  (A.B.13.a) 

𝑝𝑝𝑚𝑚𝑛𝑛 = 𝑗𝑗𝜔𝜔𝜀𝜀0 �
𝑘𝑘𝑧𝑧𝑦𝑦2

𝑘𝑘02
𝛿𝛿𝑛𝑛𝑚𝑚 − 𝜀𝜀𝑛𝑛−𝑚𝑚�  (A.B.13.b) 
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