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Optimization and sensitivity study of a
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and in situ phosphate data
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[1] A new implicit method for obtaining equilibrium solutions and their sensitivity to
changes in parameters is described and applied to an OCMIP-2 type ocean-
biogeochemistry model. The method is used to optimize model parameters by
minimizing the difference between the observed and simulated PO4 distribution. The
optimized parameters include (1) the exponent a in the power law vertical profile for
particulate organic matter (POM) fluxes, (2) the fraction s of biological production
allocated to dissolved organic matter (DOM) and (3) the rate constant k for the
remineralization of DOM. Global PO4 observations constrain s and k but not
independently because their sensitivity patterns are highly correlated. In contrast, the
sensitivity pattern for a is uncorrelated to those of the other parameters, allowing it to
be independently constrained. We show that export production from POC is well
constrained by the distribution of PO4 in an OCMIP-2 type model, but that new
production and export production from DOC are not well constrained. With the optimal
parameter set (a = �1.0, s = 0.74, and k = 1.0 yrs�1) the fraction of the spatial PO4

variance captured by our model increases from 60% with the reference OCMIP-2
parameters to 70%. Combined changes in s and k account for most of the
improvements by reducing but not completely eliminating the nutrient trapping effect in the
Eastern Equatorial Pacific and northern Indian Ocean that causes the model to over-
predict PO4 concentrations. Important remaining model-data misfits in the deep North
Atlantic where PO4 is over predicted and in the North Pacific where the model does not
produce the observed sharp nutricline are likely attributable to deficiencies in ocean
transport. The fact that the fraction of unexplained variance is large at the optimal parameter
values highlights the importance of properly simulating physical transport for ocean
biogeochemical modeling.

Citation: Kwon, E. Y., and F. Primeau (2006), Optimization and sensitivity study of a biogeochemistry ocean model using an

implicit solver and in situ phosphate data, Global Biogeochem. Cycles, 20, GB4009, doi:10.1029/2005GB002631.

1. Introduction

[2] The ocean is the largest dynamic reservoir of carbon on
timescales of months to millennia. The wide range of time-
scales with which the ocean can interact with the atmosphere
is a consequence of ocean transport that allows some water
parcels to be ventilated relatively quickly while others are
transported far from the surface and can remain shielded from
the atmosphere for several thousand years. The oceanic
carbon reservoir’s broad range of response times makes it a
particularly challenging system to model. For example,
simulating the global carbon cycle over the relatively short
anthropocene requires that the model be first spun up for
several thousand years in order to distinguish trends associ-

ated with anthropogenic perturbations from the model’s drift
toward its preindustrial equilibrium. Furthermore, the
lengthy spin-up integrations must be repeated each time a
model parameter is changed even if the parameter is associ-
ated with the biogeochemical model and does not lead to any
change in the ocean circulation. As a result there has been few
systematic parameter sensitivity studies of global biogeo-
chemistry models. Parameter uncertainty thus remains large
and poorly known.
[3] To overcome the computational costs associated with

model spin-up, we have implemented a new solver for
obtaining equilibrium solutions to a global ocean-biogeo-
chemistry model. The new offline model makes use of time-
averaged ocean flow and eddy-diffusion tensor fields
obtained from a dynamical ocean general circulation model
(OGCM) and computes the biogeochemistry model’s equi-
librium chemical tracer distributions using an iterative
approach based on Newton’s method that avoids explicitly
time stepping the governing equations. With the new solver,
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global three-dimensional equilibrium tracer distributions are
obtained inminutes ona singleprocessorworkstationwhereas
the same solution obtained using the traditional time
stepping approach would take weeks. In the present study,
we take advantage of the new efficiency to perform an
extensive parameter optimization and sensitivity study of
an ocean-biogeochemistry model based on the formulation
used for phase 2 of the Ocean CarbonModel Intercomparison
Project (OCMIP-2, R. Najjar and J. Orr, Design of OCMIP-2
simulations of chlorofluorocarbons, the solubility pump and
common biogeochemistry, 1998, http://www.ipsl.jussieu.fr/
OCMIP/phase2/simulations/design.ps) hereinafter referred
to as Najjar and Orr online document). Our goal is to
determine optimal parameter values along with their associ-
ated uncertainty.
[4] Our study is complementary to the goals of OCMIP-2

in that we study the sensitivity of changes in the biogeo-
chemistry model with a fixed ocean circulation, whereas
OCMIP-2 [e.g., Sarmiento et al., 2000; Matsumoto et al.,
2004; Doney et al., 2004] used a fixed and common biogeo-
chemistry model to focus on the impacts of changes in the
ocean circulation as manifested in the suite of participating
ocean models. Our study thus builds on the previous works of
Anderson and Sarmiento [1995] and Yamanaka and Tajika
[1996, 1997] that studied the impact of changing export
production and remineralization profiles on various chemical
tracers inmodels thatwerestructurally similar to theOCMIP-2
formulation. Our contribution is to present a much more
extensive and systematic parameter sensitivity study.
[5] In our model, as in all OCMIP-2 type models, the sink

and source of dissolved inorganic carbon (DIC) due to the
production and remineralization of organic matter is keyed to
the phosphorus cycle. Model parameters associated with the
cycling of phosphorus between phosphate (PO4), dissolved
organic phosphorus (DOP) and particulate organic phosphorus
(POP) are: (1) s, the fraction of net primary production going
into DOP, (2) k, the first-order decomposition rate constant of
semilabile DOP and (3) a, the exponent of the power law for
the remineralization of POP with depth. In the present study,
we report results dealing with phosphate and DOP. Results
concerning the distribution of DIC and the air-sea exchange of
carbon-dioxide will be presented in a follow up paper.
[6] Previous research aimed at optimizing large-scale ocean

biogeochemistry model parameters have focused on the
adjoint method [Matear and Holloway, 1995; Schlitzer,
2000, 2002; Usbeck et al., 2003]. Although there is some
overlap between the goals of these studies and ours there are
some important differences and these are reflected in the
different methodologies. The common element between the
previous studies and ours is that we try to estimate uncertain
parameters by minimizing a cost function. The inputs and
importantly the number of inputs to the cost functions are very
different however. In the adjoint studies the inputs to the cost
function include among other parameters the three-dimensional
phosphate distribution, the circulation of the ocean and either a
few biogeochemical model parameters in the case of Matear
and Holloway [1995] or a very large number of parameters
including surface export production in the case of Schlitzer
[2000, 2002] and Usbeck et al. [2003]. The end result of the

adjoint studies is a weighted average of the observations and
the simulated fields. Because the number of adjustable
parameters in these studies far exceeds the number of degrees
of freedom in the observational data set, the uncertainty of the
results cannot easily be quantified [Schlitzer, 2000]. In
contrast, the inputs to our cost function include only three
parameters related to the OCMIP-2 biogeochemical model.
Because our cost function has only three dimensions we are
able to plot its shape to determine howwell the data constrains
the parameters and thus quantify parameter uncertainties.
[7] The difference in the number of model parameters also

underlies the differences in computational approach. Studies
that involve cost functions with a large number of adjustable
parameters are often based on adjoint methods because it
allows for the efficient computation of the gradient of the cost
function. The number of inputs in our cost function is kept to
a minimum by holding the circulation fixed and considering
only phosphate distributions that are equilibrium solutions of
the model. This is made computationally feasible by the use
of Newton’s method to efficiently compute equilibrium
solutions.
[8] The paper is organized as follows: In section 2 we

describe how we use Newton’s method to find equilibrium
solutions. In section 2.1 we describe the OGCM simulation
used to obtain the velocity and diffusivity fields needed to
construct the transport operator. In sections 2.2 and 2.3 we
review the OCMIP-2 formulation of the phosphorus-cycle
model. In section 3 we describe our model’s solution using
the OCMIP-2 reference parameter values. In section 4 we
describe the optimization strategy and optimization results.
In section 5 we introduce the equilibrium solution sensitivity
patterns (S patterns), show how they are computed, and
discuss the sensitivity of the model solution to changes in
parameter values. In section 6 we examine the sensitivity of
the globally integrated new and export production in the form
of particulate organic carbon (POC) and dissolved organic
carbon (DOC). Finally in section 7 we summarize our results
and present conclusions along with suggestions for future
developments and applications of our method.

2. Method of Solution and Model Formulation

[9] After discretization, the governing equations for the
biogeochemical fields (section 2.2) can be expressed as a
system of differential equations

dX

dt
¼ F X ;mð Þ; ð1Þ

where mT � [s, k, a] is the vector of parameters and X is the
model state vector consisting of, for example, the concentra-
tions of phosphate and dissolved organic phosphorus at each
model grid point. By definition, the tracer distribution is in
equilibrium when its time rate-of-change is zero. Finding the
equilibrium tracer distribution, Xeq, thus reduces to setting
dX/dt = 0 in equation (1) and solving

F Xeq;m
� �

¼ 0: ð2Þ

Because the source-sink terms are nonlinear functions of
Xeq, equation (2) is a coupled system of nonlinear equations
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for which an iterative solution method is needed. We use
Newton’s method [e.g., Kelly, 2003] and iterate

X  X � @F

@X

� ��1
F Xð Þ ð3Þ

until maxjF(X)j < tol where tol is chosen to be as small as
possible given the finite machine precision.
[10] Each Newton iteration requires the inversion of the

model’s Jacobian matrix, (@F/@X). The Jacobian matrix has a
rank on the order of 105 but fortunately the matrix is sparse
and can be factored efficiently into upper and lower triangular
form using a modern sparse solver [Amestoy et al., 2001].
The resulting code is very fast. For example if we initialize
the iteration with uniform [PO4] and [DOP] fields, the solver
reaches an equilibrium solution with zero time-tendency drift
within machine precision in about six to seven iterations,
each taking about 5 min on a single processor workstation.

2.1. Ocean Transport Model

[11] We use the off-line ocean transport model developed
by Primeau [2005]. The model is based on the time-averaged
velocity and eddy-diffusivity tensor fields from a dynamical
simulation with a full OGCM. The OGCM used is a version
of the ocean component of the climate model of the Canadian
Centre for Climate Modeling and Analysis, itself based on
version 1.3 of the NCAR CSMOcean Model [Pacanowski et
al., 1993]. It uses the KPP vertical mixing scheme [Large et
al., 1994] and the GM isopycnal eddy-mixing scheme [Gent
and McWilliams, 1990]. The model is forced by monthly
momentum, heat and freshwater fluxes obtained from the
atmospheric component of the climate model together with
restoring of surface temperature and salinity toward their
observed climatological values. The off-line transport model
(like its parent OGCM) uses second-order centered differ-
ences on a grid with 29 levels in the vertical ranging in
thickness from 50 m near the surface to 300 m in the deepest
level and a �3.75� 	 3.75� horizontal resolution. We tested
the numerics of the offline transport model against those of
the full OGCM’s tracer advection scheme to confirm that they
produce the same transport given the same circulation and
eddy diffusion tensor. All the biogeochemical simulations
presented in the paper use a steady time-averaged transport
field with no seasonal cycle.
[12] An important feature of the off-line transport model is

that its advection-diffusion operator is available in matrix
form. This allows us to compute equilibrium tracer distribu-
tions for prescribed source and sink patterns by direct matrix
inversion, thus avoiding the need to perform lengthy multi-
thousand year integrations needed for the tracer fields to
come into equilibrium with their source and sink patterns.
This unique feature of the model has been exploited in
previous studies [Primeau, 2005; Primeau and Holzer,
2006] to perform extensive studies of the ventilation and
transport properties of the model.

2.2. Ocean Biogeochemistry Model

[13] The biogeochemistry model is based on the OCMIP-2
formulation (Najjar and Orr online document) [see also

Sarmiento et al., 1988]. The full model has five prognostic
variables, phosphate, [PO4], dissolved organic phosphorus,
semilabile [DOP], total alkalinity, AT, dissolved inorganic
carbon, [DIC], and oxygen, [O2], but in this study we will
focus on the phosphorus cycle only.
[14] The governing equations for the phosphorus cycle are

@ PO4½ �
@t

þ u  r PO4½ � � r Kr PO4½ �ð Þ ¼ SPO4
; ð4Þ

@

@t
DOP½ � þ u  r DOP½ � � r Kr DOP½ �ð Þ ¼ SDOP; ð5Þ

where the source-sink terms, SPO4
and SDOP, are functions of

both [PO4] and [DOP] and thus couple the two equations.
[15] The source-sink terms for PO4 and DOP take the

following forms

SPO4
¼ k DOP½ � þ �JPO4

if z < zc
ð � @

@z
z=zcð ÞaÞ 1� sð Þ zc

0 JPO4
dz if z > zc

�

ð6Þ

SDOP ¼ �k DOP½ � þ sJPO4
if z < zc

0 if z > zc
;

�
ð7Þ

where JPO4
is organic phosphorus production, zc is the

compensation depth, fixed at 75 m, k is the inverse
e-folding timescale for the remineralization of dissolved
organic matter (DOM), s is the fraction of the production
that is recycled as DOM, (1 � s) is the fraction that is
exported as particulate organic matter (POM), and a is a
constant scaling factor that controls the depth-profile for the
remineralization of POM, assumed to be instantaneous.
[16] In order to be able to apply Newton’s method to obtain

solutions of the model, special care is needed to ensure that
the governing equations are differentiable with respect to the
dependent variables so that the model’s Jacobian matrix is
well defined. We thus modified the formulation for the
biological uptake of phosphate in new production as follows:

JPO4
¼ 1

t
PO4½ � � PO4½ �obs

� � 1
2

1þ tanh
PO4½ � � PO4½ �obs

l

� �� �
;

ð8Þ

where [PO4]obs is the observed phosphate concentration and
where l is a small number with the same unit as [PO4]. Note
that in the limit of l ! 0, equation (8) reduces to

JPO4
¼ PO4½ � � PO4½ �obs

� �
=t if PO4½ � > PO4½ �obs;

0 otherwise;

�
ð9Þ

the same formulation proposed by Sarmiento et al. [1988]
and implemented in the OCMIP-2 protocol. In practice, we
choose l = 10�5 mol/m3, which is large enough for the
partial derivatives of the model equations with respect to
[PO4] to be numerically well defined, but small enough
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that there is little difference in the solution obtained with
formulations (8) and (9).

2.3. Constraining the Total Phosphorus

[17] The ocean transport model is written in flux-divergence
form so that it is guaranteed to conserve tracer mass in a time-
dependent simulation. This conservation property imparts on
the transport operator and the model Jacobian a null-space
that makes it singular. As a result, the total tracer mass is free
to drift from iteration to iteration making it impossible for
the Newton solver to converge to a solution with a realistic
total mass of phosphorus. An additional constraint equation
is thus needed to make the Jacobian matrix nonsingular and
invertible. (In practice, round off error makes it possible
for our direct solver to invert the ‘‘singular’’ matrix, but
the resulting total mass of phosphorus is then determined
arbitrarily by the round off error.) In a time-dependent model
the indeterminacy is removed by prescribing the initial
condition which sets the total mass of phosphorus in the
ocean. The partitioning of the phosphorus into PO4 and DOP
is then determined as part of the solution. With our iterative
solver we can prescribe either the total phosphorus, the total
PO4, or the total DOP, and allow the solution to determine the
total mass of the remaining two tracers. Which constraint is
preferable depends on which of the three total masses is best
known from observations. We chose to prescribe the total
phosphorus as it is easier to interpret the sensitivity of the
solution to changes in parameters when total phosphorus is
held constant as it would be in a time dependent simulation,
but we also implemented the total PO4 constraint for the
parameter optimization study since the total mass of DOP
is not well constrained from observations [Karl and
Björkman, 2002] and our goal is to constrain the model
parameters using the observed [PO4] field. Another option
would have been to add the total mass of phosphorus to our
list of model parameters to be optimized, but we did not
implement this option because of the increase in computa-
tional cost associated with performing the optimization in a
higher dimensional space.

3. Equilibrium [PO4] for Control Case With
OCMIP-2 Reference Parameters

[18] The equilibrium phosphate distribution for the simu-
lation based on the OCMIP-2 parameter values (Table 1) is
shown in the uppermost panels of Figures 1 and 2. For
comparison, the middle panels of the same figures show
the observed [PO4] distribution and the bottom panels show
the model solution after optimizing the biogeochemistry-
model parameters to minimize the model-observation differ-
ence. In this section we discuss the control simulation. The
optimization results are presented in section 4.

[19] The depth averaged [PO4] distribution is contoured in
Figure 1. It shows broad agreement between the simulation
and the observations: Both have elevated [PO4] levels in the
North Pacific and northern Indian Ocean and depleted [PO4]
levels in the North Atlantic. However, the total column [PO4]
maximum in the equatorial eastern Pacific and in the Bay
of Bengal in the Indian Ocean are much higher in the
simulation than in the observed field. Furthermore, the
observed field shows elevated levels of total column [PO4]
in the Gulf of Alaska, the Bering Sea and the Arabian Sea that
are absent in the simulation.
[20] Contour plots of the zonally averaged [PO4] for the

Atlantic, Pacific and Indian oceans are presented in Figure 2.
There is broad agreement between the simulated and
observed [PO4] fields. The low-[PO4] waters in the upper
thermocline of the subtropical gyres and the bowing upward
of the nutricline in the tropics are well captured by the
simulation. The tongue of North Atlantic Deep Water
(NADW) with low preformed-[PO4] is visible in both the

Table 1. Reference and Optimized Parameter Sets

Parameter OCMIP-2 OPT-TPa OPT-IPb

a �0.9 �1.0 �1.0
s 0.67 0.61 0.74
1/k 0.5 years 2.8 years 1.0 years

aOptimized parameters with total phosphorus constraint.
bOptimized parameters with inorganic phosphorus (phosphate) constraint.

Figure 1. Depth-averaged [PO4] in mmol m�3. (top)
Equilibrium solution using the OCMIP-2 reference para-
meters. (middle) Conkright et al. [2002] observed field.
(bottom) Equilibrium solution obtained using the optimized
parameters under the prescribed total phosphate constraint.
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model and observed fields (Figure 2). However the NADW
tongue in the model is much thinner than its counterpart in
the observations. The observed NADW core is centered at
3000 m whereas the model NADW core is confined above
3000 m by [PO4]-rich Antarctic Bottom Water (AABW) that
penetrates too far north in the Atlantic [Primeau, 2005]. This
feature is characteristic of coarse resolution models that do
not produce upper and lower NADW [Dutay et al., 2002].
Other prominent model deficiencies can be seen in the
bottom waters of all the basins where the model over-
predicts the [PO4] concentration and in the upper thermocline
waters northward of 40�N in the Pacific where the observed
[PO4]-nutricline is much sharper and closer to the surface
than in the model. The cause of the later is likely due to a
misrepresentation of the circulation resulting in upwelling
that is too weak in this part of the basin. The results of our
optimization study (section 4) will rule out the possibility that
these errors are due to the misspecification of the biogeo-
chemical model parameters. The model does however cap-
ture the large-scale inter-basin phosphate gradient with high
[PO4] in the Pacific and Indian oceans and low [PO4] in the
Atlantic.
[21] Overall the simulation captures the broad features of

the global phosphate distribution but with some clear
discrepancies. By optimizing the biogeochemistry model
parameters in the next section we will be able to quantify
how much of the unexplained variance can be attributed to

misspecification of the biogeochemical model parameters
and how much is likely attributable to discrepancies in the
circulation.

4. Parameter Optimization Study

[22] In this section we use global World Atlas 2001
gridded [PO4] [Conkright et al., 2002] to optimize the
biogeochemistry model parameters. We do so by adjusting
a, s and k so as to minimize the volume integrated squared
difference between the simulated and observed [PO4] field,

C a;s; kð Þ ¼
R

PO4½ �mod rð Þ � PO4½ �obs rð Þ
� �2

drR
PO4½ �obs rð Þ � PO4½ �obs

	 
� �2
dr

; ð10Þ

where h[PO4]obsi is the average phosphate concentration of
the ocean. The denominator is chosen so that the cost
function can be interpreted as the fraction of the spatial PO4

variance not captured by the model.
[23] Because the effects on the PO4 distribution of the

processes parameterized by the different parameters are not
independent, it is difficult to optimize individual parameters
separately. In particular, the sensitivity patterns of s and k are
highly correlated as we will show in Section 5. We thus
optimize all three parameters simultaneously by minimizing
the discretized version of (10) using the Nelder-Mead sim-

Figure 2. Zonally averaged [PO4] distribution in the (left) Atlantic, (middle) Indian and (right) Pacific
ocean in mmol m�3 for the simulation using the (top) OCMIP-2 reference parameters, (middle) the
Conkright et al. [2002] observed field and (bottom) for the simulation using the optimized parameter set
with total phosphate constraint.
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plex method [e.g., Press et al., 1992] as implemented in
Matlab’s FMINSEARCH.
[24] We performed two optimizations using different con-

straints: one in which we prescribed the total mass of PO4

such that the mean PO4 concentration of the solution is equal
to the observed value (2.17 mmol/kg) and another in which
we prescribed the total mass of phosphorus such that the
mean concentration of phosphorus is equal to its estimated
value (2.19 mmol/kg) (see section 2.3). The different con-
straints result in a small difference in the total amount of
phosphorus. As we will show in section 4.2, s and k are not
well constrained independently and are thus sensitive to
small changes in the total amount of phosphorus. This trans-
lates into uncertain estimates for the global inventory of DOP
and for the globally integrated new production (section 6).
However, the overall model data misfit after optimization, the
estimate of globally integrated export production from POC
and the optimal value of a are not very sensitive to which
constraint is used.
[25] The optimized parameters for each case along with

the original OCMIP-2 reference parameters are given in
Table 1. The optimized equilibrium [PO4] fields are dis-
cussed in the next section followed by a discussion of
parameter uncertainty.

4.1. Optimal Parameter Set

[26] Our optimized model captures more than 70% of the
spatial variance in the observed [PO4] field, a significant
improvement over the control run with the OCMIP-2 param-
eters that captured only 60% of the variance (i.e., an 13%
decrease in the RMS error in the PO4 field).

[27] Most of the improvements (9% of the spatial vari-
ance) can be attributed to the combined change in s and 1/k.
The small changes in a (Table 1) contribute only an addi-
tional 1% in the fraction of variance captured by the model
suggesting that the OCMIP-2 reference value was already
close to optimum.
[28] The optimal power law exponent, a, for the POP-flux

remineralization profile is insensitive to whether the total
mass of phosphorus or the total mass of phosphate is con-
strained during the optimization. Both approaches produce
an optimal value of a =�1.0, which is equal to the value first
proposed for POC by Suess [1980] and higher than, but still
in accord with, the value of�0.9 suggested by Yamanaka and
Tajika [1996] and adopted as part of the OCMIP-2 protocol.
Yamanaka and Tajika [1996] only tested three values, a =
�0.4, �0.9 and �2.0, against the mean-GEOSECS vertical
PO4 profile. Our optimized value is also in accord with the
open-ocean-composite value obtained byMartin et al. [1987]
from sediment trap data for particulate nitrate, a = �0.988,
but smaller than the value for organic carbon, a = �0.858,
and also significantly smaller than the mean value of a =
�0.68 ± 0.04 obtained for POC by Primeau [2005] in a
reanalysis of JGOFS sediment trap data. Apart from the real
possibility that the sediment trap data itself is biased, the
discrepancy might be due to depth-dependence in the Red-
field C:P ratio [Schneider et al., 2003], circulation errors or to
the spatial variance of a. Usbeck [1999] used hydrographic
data and an inverse approach to estimate a as a function of
position for the global ocean and found values that ranged
from �0.5 to �2.0 for the remineralization of POC.
[29] Unlike the case ofa, the optimized values of s and 1/k

are quite sensitive to small changes in the total amount of
phosphorus in the model. This, as we shall see in section 5,
can be explained by the fact that the sensitivity patterns
associated with s and 1/k are highly correlated. For the case
where the total phosphorus is prescribed, the result of the
optimization is to considerably increase the remineralization
timescale for DOP from 1/k = 0.5 years as prescribed by
OCMIP-2 to 1/k = 2.8 years. For the case where the total PO4

is prescribed, the result of the optimization is again to
increase the remineralization timescale for DOP, but by a
lesser amount to 1/k = 1.0 years. The result of the optimiza-
tions on the fraction of production allocated to DOP is to
decrease s from 0.67 to 0.61 for the case where the total
phosphorus is prescribed but to increase it to 0.74 for the case
where the total PO4 is prescribed.
[30] Remainingmodel-data misfits are likely attributable to

misrepresentation of the ocean circulation as they can not be
reduced by further adjusting the biogeochemistry model
parameters. However, deficiencies in the formulation of the
biogeochemistry model as opposed to a misspecification of
the model parameters can not be ruled out. For example, the
semidiagnostic form of the new-production parameterization
in the model seems to exacerbate circulation deficiencies in
the North Pacific subpolar gyre where underestimated sur-
face PO4 result in a complete shut down of new production
which in turn allows nutrients to be exported out of the North
Pacific by the more vigorous surface circulation instead of
being exported to depth in the form of POPwhere they would

Figure 3. Plot showing the shape of the cost function in the
neighborhood of its minimum expressed as a fraction of
the total spatial variance that is not captured by the model
for the case of total P prescribed with fixed parameters s =
0.61 and 1/k = 2.8 (dashed curve) and for the case of total
PO4 prescribed with fixed parameters s = 0.74 and 1/k =
1.0 years (solid curve).
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be corralled back into the North Pacific by subsurface
currents.

4.2. Parameter Uncertainty

[31] Obtaining formal uncertainty estimates on our model
parameters requires that the spatial covariance structure of the
residuals be known or estimated. This is difficult to do
correctly, so we have not attempted to do so, but a sense of
the uncertainties can be obtained from the shape of the cost
function. For example, Figure 3 shows the shape of the cost
function in the neighborhood of its minimum as a function of
a. Large values of the cost function indicate unlikely param-
eter values. Conditional on the model being correct, the
curvature of the cost function in the neighborhood of a =
�1.0 indicates that the uncertainty associated with this
parameter is small, especially considering the large number
of degrees of freedom in the PO4 data.
[32] Figure 4 shows a contour plot of the cost function in

the neighborhood its minimum as a function of s and 1/k.
The plot shows the contours of C expressed as a fraction of
the total variance that is unexplained by the model for the
case where the total P is prescribed with a =�1.0 fixed. The
shape of the cost function for the case where the total PO4 is
prescribed (not shown) is very similar. Figure 4 shows a
broad curving valley defining a family of equally plausible
(s, 1/k) pairs. We are therefore able to determine that if the
fraction of production allocated to DOP is s = 0.61, as in the
OCMIP-2 protocol, then the mean lifetime of this DOP is
likely larger than one year and that the simulated PO4 field
is not very sensitive to the exact lifetime of DOP provided it is
longer than one year. Alternatively, if the lifetime of DOP is
half a year, as in the OCMIP-2 protocol, then the fraction of
production allocated to DOP is likely closer to s = 0.85 than
to the s = 0.67 value chosen for the OCMIP-2 protocol.

4.3. Equilibrium [PO4] for Optimized Parameter Set

[33] The bottom panels of Figures 1 and 2 show the
equilibrium phosphate distribution for the optimized param-
eters obtained using the total PO4 constraint. The [PO4] field
for the total P constraint is rather similar and is not shown.
[34] The most dramatic improvements are in the eastern

tropical Pacific (Figure 1) where the optimized parameters
reduce the excessive nutrient trapping according to the
mechanism first suggested by Najjar et al. [1992] and
Anderson and Sarmiento [1995], i.e., by allowing more
nutrients to be transported away from the upwelling zone in
dissolved organic form. Excessive nutrient trapping in the
Bay of Bengal in the northern Indian Ocean is also reduced
with the optimized parameters. The optimal parameters do
not however completely eliminate the problem confirming
the findings of Matear and Holloway [1995] that a proper
representation of the circulation is critical to avoiding excess
nutrient levels in the eastern tropical Pacific. Aumont et al.
[1999] found that increased model resolution improved the
nutrient trapping problem but did not completely eliminate it.
Together our results suggest that it is the combined misrep-
resentation of the circulation and misspecification of the
biogeochemical parameters controlling the cycling of DOM
that are responsible for the excessive nutrient trapping
problem.
[35] In the Atlantic (Figure 2), the optimized parameters

do little to improve the model-data misfit suggesting that the
major discrepancy in the Atlantic can be attributed to errors
in the model circulation; the model produces too much
Antarctic Bottom Water [Primeau, 2006] and poorly repre-
sents the mixing of CFCs and bomb radiocarbon in the far
south [Krakauer et al., 2006], a problem that is common in
OGCMs of similar resolution [Guilderson et al., 2000;
Dutay et al., 2002; Matsumoto et al., 2004]. In the Indian
Ocean sector of Figure 2 we see that the optimization
produces some improvements, by increasing [PO4] in the
southernmost part of the basin and as already mentioned by
decreasing the excessive nutrient trapping effect as can be
seen in the subsurface [PO4] maximum in the northern part
of the basin. However, the location of the maximum is still
too shallow in comparison with the observations.
[36] We can partition the fraction of variance captured by

the model into high and low latitudes to obtain a quantitative
summary of the model improvements. In the latitude band
spanning 30�S to 30�N the fraction of variance captured by
the model increased from 59% with the reference OCMIP-2
parameters to 72% with the optimized parameters. In the
region between 90�S and 30�S it increased from 67% to 75%
and in the region between 30�N and 90�N it increased from
58% to 62%.We thus find quantitative improvements in both
high and low latitudes, indicating that at least on the largest
scales, the optimization does not degrade the fit in one region
in order to compensate for circulation errors in another
region.

5. Sensitivity of [PO4] to Changes in Parameters:
S Patterns

[37] The difference in tracer concentration at equilibrium
for two different values of a parameter, normalized by the

Figure 4. Contour plot showing the shape of the cost
function as a function of s and 1/k in the neighborhood of its
minimum at a = �1.0. The plot shows a fraction of the total
spatial variance that is unexplained by the model for the case
where the total P is prescribed. The circle indicates the
optimal parameter values for the optimization inwhich total P
is prescribed, the square indicates the optimal parameter
values for the optimization in which total PO4 is prescribed.
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difference in parameter value is ameasure of the sensitivity of
the equilibrium solution to changes in the parameter. In the
limit of an infinitesimal parameter change the resulting
pattern is given simply by the derivative of the tracer field
with respect to the parameter. We call the resulting sensitivity
patterns S patterns and denote them by Sa, Ss and S1/k. For
example the Sa pattern for [PO4] is given by

Sa �
@ PO4½ �eq

@a
� lim

da!0

PO4½ �eq aþ dað Þ � PO4½ �eq að Þ
da

; ð11Þ

where the subscript eq denotes the fully spun-up equilibrium
tracer distribution. S patterns describe the spatial rearrange-
ment of tracers that result from changes in model parameters.
They are particularly useful for elucidating our optimization
results.
[38] Our direct solver approach for computing equilibrium

tracer fields makes it possible to compute S patterns with little
additional computational costs. Through the steady state
equation, (2), Xeq is defined implicitly as a function of the
model parameters. Differentiating (2) with respect to the
parameters and solving we obtain

rmXeq ¼ �
@F

@X

� ��1
rmF; ð12Þ

where rm � (@/@a, @/@s, @/@k). The right hand side, rmF
is easily computed analytically from the governing equations.
Recall that the model Jacobian matrix, (@F/@X), is available
in factored form as part of the Newton solver so that each S
pattern can be computed with one additional back-solve – an
insignificant increase in computational cost in comparison to
the factorization step. (A back-solve is several orders of
magnitude faster than factorizing the matrix.) Thus an
important advantage to our solution method apart from
avoiding lengthy spin-up times is that the sensitivity of the
model to its parameters is easily available.
[39] The S patterns for the OCMIP-2 reference parameter

case are presented in Figures 5 to 7. The S patterns were
computed from equation (12) for the case where the total
phosphorus is prescribed and held constant.
[40] In the first row of Figure 5, the zonal-average of Sa for

[PO4] is shown for each basin. The pattern shows that
increasing a results in a slower decrease of the POC flux
with depth so that a larger fraction of the flux reaches the deep
ocean. The zero sensitivity line, above which [PO4] decreases
with increasing a and below which [PO4] increases, varies
with latitude and basin but is generally deeper in the Atlantic
at �2600 m compared to �1100 m in the other basins. The
difference in the Atlantic can be attributed to the formation of
North Atlantic Deep Water (NADW) which carries with it
water with a reduced amount of preformed [PO4] when a is

Figure 5. S patterns showing the sensitivity of the equilibrium solution to changes in the parameter
values. (top) Sa. (middle) Ss. (bottom) S1/k. The plots show the zonally averaged [PO4] sensitivities in the
(left) Atlantic, (middle) Indian and (right) Pacific oceans. The contour values have units of mmol m�3 for
the top and middle rows and units of mmol m�3 year�1 for the bottom row. Warm colors correspond to
positive sensitivities and cold colors correspond to negative sensitivities.
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increased. In the upper ocean, the largest rate of decrease of
[PO4] is in the high-productivity low-latitude upwelling
regions. The largest rate of increase of [PO4] is in the deep
North Pacific consistent with the conveyor-belt picture of the
global circulation. The deep water masses of the North
Pacific being the oldest show an increased sensitivity to a
because they integrate the deep POP fluxes for a longer
period of time. However, the highest sensitivities are near the
bottom of the North Pacific and Indian oceans whereas the
oldest waters for our model are at intermediate depths
�1000–1600 m in the Pacific and �500–1200 m in the
Indian ocean [Primeau, 2005], indicating that not all the
sensitivity can be attributed to the accumulation of PO4 as
the water ages. A significant fraction of the sensitivity must
be due to the local effect of the deeper remineralization of
POP raining down from directly above.

[41] The coupling of biologically mediated transport of
PO4 with the transport by the global circulation results in a
net transport of PO4 from the Atlantic to the Pacific basin.
This effect can be seen in the top panel of Figure 6 which
shows the column averaged Sa for [PO4]. In the Atlantic the
net northward flow of PO4-depleted water at the surface
together with the PO4-enriched return flow at depth results in
a net export of PO4. In the North Pacific and Indian oceans,
the overturning circulation is weak, but increasing a pumps
more PO4 into the deep water where currents and eddies
(parameterized in the transport model) are weaker than their
surface counterparts thus decreasing the efficiency with
which the circulation can erode the large-scale PO4 gradient.
The net effect is an accumulation of PO4 in those basins
(Figure 6, top).
[42] Themiddle and bottom panels of Figures 5 and 6 show

Ss and S1/k for [PO4]. Both patterns have very similar zonally
averaged and vertically averaged structure. As already men-
tioned in section 4.1, the similarity explains why the optimi-
zation fails to constrain both parameters independently. We
show also Sa and S1/k for DOP in Figure 7. The
corresponding S pattern for s is very similar to S1/k and is
not shown.
[43] The magnitude of the S patterns for two different

parameters cannot be compared directly (they have different
ranges and in the case of S1/k different units also), but a
meaningful comparison can be made by multiplying the S
patterns by finite parameter differentials. For example,
using ds = 0.74–0.67 and d(1/k) = 1.0–0.5 years, the
differences between OCMIP-2 reference parameters and
our optimized parameters, we obtain the finite differences

Figure 6. Column averaged S patterns for [PO4] showing
the sensitivity of the equilibrium to a change in parameters.
(top) Sa. (middle) Ss. (bottom) S1/k. The units for the top

and middle plot are in mmol m�3 and for the bottom plot
are in mmol m�3 year�1. Warm colors correspond to
positive sensitivities and cold colors correspond to
negative sensitivities.

Figure 7. Column-integrated (top) Sa and (bottom) S1/k
showing the sensitivity of the equilibrium [DOP] distribution
to a changes in a and 1/k. Units are in 1010mols and
1010mols/yr in the top and bottom plots, respectively.
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Ssds and S1/kd(1/k). Each quantity represents a linearized
estimate of the contribution of each parameter in producing
the difference in the [PO4] field in going from the OCMIP-2
to the optimized parameters. For example, referring to
Figure 5 we see that in the equatorial Pacific Ssds yields a
maximum reduction in the zonal-averaged [PO4] equatorial
region of 0.11 mmol/m3 and S1/kd(1/k) yields a zonal-
averaged decrease of 0.30 mmol/m3 in the same region.
The combined decreases correspond closely to the actual
0.4 mmol/m3 difference between the OCMIP-2 reference
solution and the optimized solution (Figure 2).
[44] Increasing either parameter tends to decrease [PO4]

over broad regions centered on the equatorial upwelling
regions in the eastern part of the equatorial ocean. Increasing
s allows a larger fraction of the biological production to be
carried away in dissolved form by divergent surface currents
as opposed to being exported to depth in particulate form
where convergent currents trap the remineralized PO4 and
upwell it back to the surface. Increasing 1/k has a similar
effect by allowing DOP to be transported farther from the
upwelling region before being remineralized into PO4 thus
decreasing the so-called nutrient trapping effect [Anderson
and Sarmiento, 1995; Matear and Holloway, 1995; Aumont
et al., 1999]. This effect is also reflected in the Sa and S1/k
patterns forDOP shown inFigure 7. Both S patterns are closely
related with the pattern of surface biological production, but
the Sa pattern captures regions of high biological production in
terms of regions of negative sensitivity quite faithfully.
Increasing a causes POP to be exported deeper in the water
column resulting in a local decrease in primary production and
local DOP inventory. In contrast the S1/k pattern which is
strongly affected by the wind-driven current systems of the
upper ocean shows how increasing the mean lifetime of DOP
causes nutrients to be carried farther away from the production
regions by lateral currents in dissolved form.
[45] It is interesting to note that Ss and S1/k, the sensitivity

patterns associated with parameters that control DOP
cycling, are coupled much more closely to the wind-driven
circulation than Sa, which is associated with POP cycling.
The later appears to couple more closely with the global
overturning inter-basin circulation. For example, Ss and S1/k
have pronounced meridional structure associated with wind-
driven upwelling and subduction regions (Figure 5). In
contrast Sa has a more pronounced vertical contrast associ-
ated with the global meridional overturning conveyor-like
circulation. This suggests that the S patterns should be

particulary useful for interpreting changes in biogeochemical
parameters that result form changes in the circulation.

6. Globally Integrated New Production and
Export Production

[46] The globally integrated new production and the glob-
ally integrated export production from POC and DOC are
important properties of ocean biogeochemical cycles because
they allow carbon to be pumped out of the atmosphere and
sequestered into the ocean interior. In this section we examine
howwell each quantity is constrained by the PO4 observation
and our model. Table 2 summarizes the globally integrated
new production (NP), export production in the form of POC
(EPP) and export production in the form of DOC (EPD), for
the OCMIP-2 reference parameters and for the two optimized
parameter sets.
[47] As in the work of Gnanadesikan et al. [2002], we

define new production as the net uptake of phosphate
within euphotic zone. The new production in carbon units
is obtained by multiplying the net uptake of phosphate
(equation (7)) with the constant Redfield ratio of 117:1
[Anderson and Sarmiento, 1994]. Gnanadesikan et al.
[2002] showed that new production is very sensitive to
vertical diffusivity in the ocean transport model. Here we
find that new production is also very sensitive to the
processes associated with the cycling of DOM and POM.
As expected, decreasing a causes a shallower remineraliza-
tion of POM which causes nutrient concentration to increase
in the upper thermocline. This results in increased entrain-
ment of nutrients into the euphotic zone thus fueling higher
new production. New production is also strongly sensitive
to changes in s and 1/k (Figure 8a). Particularly so as s
approaches unity and 1/k approaches zero. In this near
singular limit a large fraction of new production is exported
out of the euphotic zone by eddy-diffusive fluxes (Figure 8d)
and it remineralizes quickly immediately below the euphotic
zone where it becomes re-entrained into the euphotic zone
to fuel a new cycle of new-production (Figure 8a).
[48] We find also that our model based estimate of new

production constrained by PO4 observations is very uncer-
tain. The reason being that new production is sensitive to
combined changes in s and 1/k for which PO4 is relatively
insensitive. This can be seen most clearly by overlaying a
contour of the cost function on top of the plot of globally
integrated new production (Figure 8a). Recall that equally
plausible parameter values lie along contours of the cost
function. Because the contours of the cost function intersect a
wide range of new production contours, a wide range of new
production values are equally plausible. We can thus con-
clude that the observed PO4 distribution poorly constrains
new production in our model.
[49] In contrast, the model based estimate of export pro-

duction (Figure 8b) is well constrained by the optimization
procedure because in this case the contours of the cost
function are nearly parallel to isolines of export production.
Thus the observed PO4 does provide a strong constraint on
the globally integrated export production. Put another way,
the global PO4 is not sensitive to changes in the globally
integrated production if these changes do not translate into

Table 2. Mean Dissolved Organic Carbon, h[DOC]i, Globally

Integrated New Production, NP, and the Export Production as

POC, EPP, and as DOC, EPD, for Reference and Optimized

Parameter Sets

h[DOC]i,
mmolC/kg

NP,
PgC/yr

EPP,
PgC/yr

EPD,
PgC/yr Parameter Set

0.98 30.3 15.5 14.7 OCMIP-2
4.06 30.0 14.8 15.2 OPT-TPa

2.73 38.5 15.0 23.5 OPT-IPb

aOptimized parameters with total phosphorus constraint.
bOptimized parameters with inorganic phosphorus (phosphate) constraint.
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changes in the export production. For either of our optimized
parameter sets, the globally integrated export production is
approximately 15 Pg/yr (Table 2).
[50] Figure 8c shows the mean concentration of DOC as a

function of the model parameters. The relatively large differ-
ences in the predicted mean concentration of DOC for
equally plausible model parameters suggest that an accurate
estimate of the mean DOP concentration in the ocean would
help constrain s and 1/k independently. This would help
better constrain the model’s estimate of new production.
Unfortunately, estimates of the mean amount of semilabile
DOP are very uncertain [Karl and Björkman, 2002].
The OCMIP-2 suggested initial DOP concentration is
0.02 mmol/kg. This value would constrain s and 1/k in the
bottom of the wedge of plausible parameter values. This is
also where the estimates of new production would be most
uncertain.

7. Summary and Conclusions

[51] Our study was motivated by the need to better
understand the sensitivity of ocean biogeochemical models

to their parameters. To this end we implemented an efficient
implicit solver with which to obtain equilibrium biogeo-
chemical tracer distributions without having to perform
lengthy time-dependent spin-up integrations. Our implicit
solver based on Newton’s method is several orders of
magnitude faster than the traditional time stepping approach
and yields the sensitivity of the equilibrium solution to
changes in the model parameters with little additional com-
putational costs. We applied our new methodology to an
OCMIP-2 type biogeochemistry model and presented a
parameter optimization and sensitivity analysis for the
model’s phosphorus cycle.
[52] Our optimization study made use of gridded global

PO4 observations to constrain the model parameters. We
found that the global PO4 data provides a useful constraint on
a, the exponent in the depth profile of POP flux. The PO4

data did not however provide a strong independent constraint
on s and 1/k, the parameters controlling DOP cycling.
Instead, the optimization constrained s and 1/k to a curved
one-dimensional space that, interestingly, was roughly par-
allel to the isolines of export production and perpendicular to
the isolines of new production. As a result the model’s

Figure 8. (a) Globally integrated new production in PgC/yr. (b) Globally integrated export production of
POC in PgC/yr. (c) Mean concentration of DOC in mmol/kg. (d) Globally integrated export production of
DOC in PgC/yr. The circle and the square indicate respectively the optimal parameter values for the cases
where total P and total PO4 were prescribed. The wedge-shaped region is the 0.32 contour of the cost
function (see Figure 4). Parameters values along isolines of the cost function fit the data equally well.

GB4009 KWON AND PRIMEAU: OPTIMIZATION AND SENSITIVITY STUDY

11 of 13

GB4009



predicted export production is rather well constrained while
at the same time its predicted new production is only poorly
constrained. Our best estimate of export production as POC
was 15 Pg of carbon per year based on an assumed C:P
Redfield ratio of 117:1.
[53] The lack of independent constraint for s and 1/k can

be understood in terms of the parameter sensitivity patterns
(S patterns) we computed for our model. These revealed that
large-scale PO4 sensitivity patterns are very similar for both s
and 1/k. The S patterns are also useful for understanding the
coupling between biogeochemical fluxes and circulation.
[54] Our optimal values for a, s and 1/k indicate that

slightly shallower remineralization depth scale for POP and
longer residence time of semilabile DOP at the surface ocean
compared to OCMIP-2 parameters improve the explained
variance of the observed PO4 by 10% (9% attributed to the
combined change in s and 1/k, and 1% to the change in a).
The most dramatic improvements are shown in the eastern
tropical Pacific and Indian oceans where the control simula-
tion based on OCMIP-2 parameters greatly overestimated
column averaged [PO4].
[55] The remaining deficiencies in the simulated PO4 fields

are likely related to deficiencies in the model circulation. The
fact that there is a large remaining fraction of unexplained
variance for the model’s optimal parameter values highlights
the importance of properly simulating physical transport for
ocean biogeochemical modeling. In this study we have held
the circulation fixed so as to keep the number of parameters
we estimate to a minimum. This has the advantage of
allowing us to explore how well parameters are constrained
by the data. With a different circulation our particular
parameter values will no longer be optimal and a new
optimization would be needed to adjust them to their new
optimal values. Future work should focus on improving the
model circulation, including seasonal effects and performing
an optimization and sensitivity analysis of parameters asso-
ciated with the cycling of carbon and alkalinity.
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