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Abstract

A Platform-Based Approach to Verification and Synthesis of Linear Temporal Logic
Specifications

by

Antonio Iannopollo

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

The design of Cyber-Physical Systems (CPS) is challenging as it requires coordination
across several domains (e.g., functional, temporal, mechanical). To cope with complexity,
rarely a CPS is built from scratch. Instead, it is assembled by reusing available components
and subsystems. If a component is not available, then it is made to order according to a
specification which ensures its compatibility with the rest of the system.

To achieve design goals faster while guaranteeing system safety, the correct instantiation of
modules and subsystems is essential. Formal specifications, such as those expressed in Linear
Temporal Logic (LTL), have the potential to drastically reduce design and implementation
efforts by enabling rigorous requirement analysis and ensuring the correct composition of
reusable designs. Composing formal specifications, however, is a tedious and error-prone
activity, and the scalability of existing formal analysis techniques is still an issue.

In this dissertation, we present a set of techniques and algorithms that leverage composi-
tional design principles to enable faster verification and correct-by-construction, platform-
based synthesis of LTL specifications. In our framework, a design is a composition of several
components (which could describe both hardware and software elements) represented through
their specifications, expressed as LTL assume/guarantee interfaces, or contracts. The collec-
tion of all the available contracts, i.e., a library, describes the design platform. The contracts
in the library are the building blocks of different possible designs, and they are simple enough
that their correctness can be easily verified, yet complete enough to guarantee the correct
and safe use of the components they represent.

Our contribution is two-fold. On the one hand, we address the verification task: given an
existing composition of contracts from the library, we want to check whether it satisfies a
set of desired requirements. We improve the scalability of existing verification techniques
by leveraging pre-verified relations between contracts in the library. On the other hand, we
enable specification synthesis: given a (possibly incomplete) set of desired system properties,
we are able to automatically generate a composition of contracts, chosen from a library,
that satisfies them. We do so by devising a set of algorithms based on formal inductive
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synthesis, where a candidate is either accepted as correct or is used to infer new constraints
and guide the synthesis process towards a solution. Additionally, we show how to increase
the scalability of our approach by leveraging principles from the contract framework to
decompose a synthesis problem into several independent tasks, which are simpler than the
original problem. We validate our work by applying it to several industrial-relevant case
studies, including the problem of verification and synthesis of a controller for the electrical
power system of an aircraft.
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Chapter 1

Introduction

System design is a process that starts with a high-level idea of what the system should be
and ends with a blueprint for its construction. During design, the initial idea is refined
iteratively until no ambiguity is left, proceeding in a top-down fashion. Requirements about
the system as a whole are used to define specifications for its subsystems, which, in turn, are
broken-down into specifications for lower-level components, following a fractal-like process
[72, 83]. At each step, more and more details about the final design are added, until there is
enough information to build the system.

To reduce costs, and shorten time-to-market, modern design methodologies emphasize
design reuse by leveraging platforms, which are libraries of parametric components which
include functional and non-functional details and define rules for their composition. A design
iteration, then, becomes a mapping process in which a specification is realized in terms
of platform components. Consider, for instance, the automotive design process. Original
Equipment Manufacturers (OEMs), e.g., BMW or Ford, design several vehicles adapting
the same floorplan, axles, etc., and by incorporating subsystems, such as suspension control,
provided by tier 1 suppliers. In turn, tier 1 suppliers are able to build subsystems to order
by adapting their own platform, and using components provided by tier 2 suppliers. This
approach to design is formalized in a methodology called Platform-Based Design (PBD),
which has been successfully applied in areas including electronic, automotive, and network
design [74, 72, 77].

When system complexity increases, especially for safety-critical systems, maintaining
consistency between design iterations and level of abstractions is an onerous task. When
done manually, in fact, the refinement of a specification in terms of a composition of
platform elements can introduce errors, and the inevitable design reviews sessions are
costly and ineffective [23]. Formal languages, such as temporal logic [68, 52], can help
to formalize specifications and maximize the benefits of methodologies, such as PBD, by
enabling automated reasoning. Specifications can be effectively described, at different levels
of abstractions, by mathematical constraints which define what behaviors are to be expected
by a correct implementation provided some assumptions on the environment in which the
implementation will need to operate. At the same time, components in the platform expose
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formal descriptions of their capabilities, which are formally consistent with the specification,
meaning that the verification of compliance reduces to solving a mathematical problem. The
difference between specification and components is, then, quantitative. The specification
will likely describe a smaller set of desirable, higher level properties of the system. It will
not include, however, all the details of the necessary subsystems, which will be added to the
design only when a suitable platform component is selected and instantiated. For instance,
a specification might define what is the desired voltage from a battery module to power a
device. A component in the library could satisfy the voltage requirement, and it might add
additional constraints such as safety measures to manage overheating, or details about its
interconnections. Once verified, then, the mapping process of PBD produces an instance
of the platform, where each component represents a new specification for the successive
iteration.

Having a formal description of design elements brings at least two substantial benefits
to the design process. First, it allows for the automatic verification that a composition of
platform elements implements, or refines, the specification. Second, it enables synthesis, i.e.,
the automatic generation of a composition of components which refines the specification.
Yet, especially when described by temporal constraints, scalability remains an issue even for
simple designs. In this dissertation, we describe methods to handle complexity when design
elements are described by temporal constraints, and improve scalability.

1.1 Dissertation Overview

In this dissertation, we focus on specifications and platform components characterized by
formal interfaces. Each design element specifies its static interface as a set of inputs and
output ports, and defines its set of behaviors by means of Linear Temporal Logic (LTL)
formulas [68, 80]. LTL is especially useful in expressing specifications for discrete systems,
where the ordering of events matters more than their precise timing. A number of domains
are characterized well, functionally, by LTL. Examples include software, communication
protocols, motion planning, reactive systems, and digital components in general [12, 25, 7,
52, 65, 63, 86].

To successfully apply techniques and methodologies that support automated reasoning,
these design elements need to interact with each other in a well-defined manner. Indeed,
components first need a mechanism to be interconnected together to represent a single,
coherent subsystem which then needs to be compared to the specification, to verify correctness.
Thus, design elements need to support composition (horizontal relation), and refinement
verification (vertical relation). We leverage Assume/Guarantee (A/G) contracts [75, 11,
10, 2, 62, 30] to rigorously characterize components interfaces. Component ports, then,
represent contract variables, and LTL formulas describe explicitly assumptions, i.e., what the
component expects from its environment, and guarantees, i.e., its promise. The resulting
LTL A/G contracts, analyzed in Chapter 3, formalize notions such as compatibility (are there
legal environment for a component?) and consistency (are there legal implementations?), and
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support composition and refinement. Contracts, in this case, can be seen as the language
unifying PBD, where all the considerations made about the libraries of components (platforms)
apply to libraries of contracts, too. Hence, both the system specification and the platform
components are described by LTL A/G contracts, and contract libraries represent domain
knowledge that will be added to the design upon instantiation of their elements. Our goal is
to verify, for such contracts, the mapping process of PBD first, and then to automate it. The
result will be a formally correct instantiation of the platform, which in this case will be a
composition of LTL A/G contracts. Therefore, in this dissertation, we talk about verification
and synthesis of LTL specifications.

At the core of the techniques and algorithms that we develop there is the capability
of manipulating LTL A/G contracts and verifying refinement among them, which can be
reduced to a model checking problem [33, 19]. Our first goal is to improve the performance
of current approaches to the refinement checking problem when verifying the compliance to a
specification of a composition of contracts, i.e., the system, provided by the user. In Chapter 5,
we show how pre-verified refinement relations stored in the contract library allow for faster
verification of specification compliance by the system, by building decremental abstractions.
In this case, the library contains both basic components and several subsystems realized with
those components. Building abstractions, then, reduces to a mapping problem. We show
that this approach can improve dramatically the verification performance by applying it to a
case study of industrial relevance, i.e., the realization of a controller for the Electrical Power
System (EPS) of an aircraft. We describe the EPS problem in Chapter 4, and we will use it
as a common example throughout the dissertation.

We, then, direct our attention to the synthesis of correct composition of contracts,
proceeding stepwise. First, in Chapter 6, we concentrate on the problem of synthesis
assuming that the only output of the refinement verification procedure is a simple yes/no
answer. We call this problem “Constrained Synthesis from Component Libraries” (CSCL),
and we devise a synthesis procedure based on the Oracle-Guided Inductive Synthesis (OGIS)
paradigm [49, 48], where erroneous candidate solutions are used to infer new constraints to
guide the synthesis process. In this case, the only information available to the solver are the
erroneous candidates themselves, which are used to identify equivalent compositions in the
library so that they won’t appear as candidate solutions in the future. The main advantage
of this approach is that the verification tasks are independent one another, allowing for the
parallel execution of the resulting algorithm. Additionally, as we point out in the chapter,
this technique is loosely related to the use of LTL A/G contracts, and we argue that it could
be applicable to other formalisms, too.

Then, in Chapter 7, we change our perspective and focus exclusively on LTL A/G
contracts. Here we tighten the assumptions on the refinement verification process, that now
is required to return, when the refinement does not hold, counterexample traces over the
contract variables in addition to the usual yes/no answer. The result is a procedure based
on a specialization of OGIS called CounterExample-Guided Inductive Synthesis (CEGIS)
[81, 49, 50] where we deal with infinite-length counterexamples by encoding them as state
machines. Each state machine, then, is integrated into the refinement verification process
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of the subsequent CEGIS iteration. For this problem, we show that our approach indeed
terminates in spite of an infinite input space, and discuss several performance improvement
techniques.

Finally, in Chapter 8, we address the problem of increasing the scalability of the synthesis
techniques we developed in the previous chapters. We do so by leveraging contract properties
to decompose, under certain conditions, a specification in several independent synthesis
problems. Each synthesis task is simpler than the original one, as the resulting decomposed
specification will have fewer ports to be mapped into a candidate composition of components.
Thus, this allows us to handle synthesis problems that are unfeasible with the other techniques.
We apply all the synthesis techniques that we introduced to several case studies, including
the EPS synthesis problem.

Part of the software and experiments discussed in this dissertation have been implemented
in a tool called pyco1.

1.2 Main Contributions

The focus of this dissertation is the following:

System design automation can be fully achieved only through the definition and application
of rigorous analysis and synthesis techniques. In this dissertation we study, propose, and
validate such techniques and algorithms enabling platform-based verification and synthesis of
refinements of linear temporal logic specifications.

The main theoretical results in this dissertation are related to the problem of synthesis of
contract compositions. We provide, in Chapter 3, a definition of LTL A/G contracts that
supports disjoint sets of variables and describe the mechanisms necessary to interconnect
them. This adds flexibility when indicating compositions and mappings between specification
and library components. In Chapter 6, we provide a general formulation of the CSCL
problem, and analyze its complexity. We provide two synthesis approaches based the OGIS
paradigm justified by different capabilities of the verification engine(Chapters 6 and 7). We
also introduce a novel concept of contract decomposition, in Chapter 8, based on projections,
and show how it can be used in the context of the CSCL problem, where synthesis can be
broken down into several simpler tasks, guaranteeing the same solution space of the original
problem.

We propose, and describe algorithmically, a number of techniques related to verification
and synthesis of compositions of contracts. We show how to leverage relations in a library
to speed-up refinement verification, and apply it to the EPS case study (Chapter 5). We
develop and implement algorithms for all the synthesis techniques we discuss, and evaluate
them in several case studies.

1https://github.com/ianno/pyco

https://github.com/ianno/pyco
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1.3 Dissertation Outline

The rest of the dissertation is organized as follows.
In Chapter 2, we survey the related literature and discuss its relation with our work.

In Chapter 3, then, we formalize the core concepts that will support the rest of the work.
We introduce A/G contracts and describe a variant of the theoretical framework in which
contracts can be defined over disjoint sets of variables and connections are explicitly referenced.
Additionally, we show how to express assumptions and guarantees of contracts as LTL formulas,
and discuss details on techniques and tools to perform basic operations, such as refinement
check, which becomes a model checking problem.

In Chapter 4, we introduce the main case study, i.e., the design of a controller for an
aircraft electrical power distribution system. We describe the system and then formalize the
controller specification as an LTL A/G contract. We also illustrate the contract library that
will be used as a reference for both the verification and the synthesis tasks.

In Chapter 5, we present the results about the scalable refinement check technique that
leverage library information to build abstractions of compositions. This work is based on a
collaboration with Pierluigi Nuzzo, Stavros Tripakis, and Alberto Sangiovanni-Vincentelli
[41].

In Chapter 6, we introduce the problem of constrained synthesis from component libraries.
After analyzing it, we provide a solution based on the OGIS approach which relies on minimal
information from the verification engine, i.e., only a yes/no answer. This work has been
developed jointly with Stavros Tripakis and Alberto Sangiovanni-Vincentelli [43, 44], while
one of the examples has been developed with Richard Lin and Rohit Ramesh.

In Chapter 7, we specialize the CSCL problem and its solution to handle exclusively LTL
A/G contracts, requiring the verification engine to returns counterexamples over the contract
variables. The solution is a CEGIS algorithm which encodes the counterexamples as state
machines. This work is novel. One of the examples has been developed with Íñigo Íncer
Romeo.

In Chapter 8, we discuss how to improve the scalability of the synthesis algorithms
described in the previous chapters by decomposing specifications, introducing the notion of
projection for LTL A/G contracts. This is a joint work with Stavros Tripakis and Alberto
Sangiovanni-Vincentelli [42].

Finally, in Chapter 9, we draw conclusions on the work presented in the dissertation and
discuss future research directions.

1.4 Related Publications

The material discussed in this dissertation extends the results reported in the following
publications.

• [41] A. Iannopollo et al. “Library-based scalable refinement checking for contract-
based design”. In: Design, Automation and Test in Europe Conference and Exhibition
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(DATE), 2014. Mar. 2014, pp. 1–6. doi: 10.7873/DATE.2014.167.

• [43] Antonio Iannopollo, Stavros Tripakis, and Alberto Sangiovanni-Vincentelli. “Con-
strained Synthesis from Component Libraries”. In: Formal Aspects of Component
Software: 13th International Conference, FACS 2016, Besanccon, France, October
19-21, 2016, Revised Selected Papers. Ed. by Olga Kouchnarenko and Ramtin Khosravi.
Springer International Publishing, 2017, pp. 92–110. isbn: 978-3-319-57666-4. doi:
10.1007/978-3-319-57666-4_7.

• [44] Antonio Iannopollo, Stavros Tripakis, and Alberto Sangiovanni-Vincentelli. “Con-
strained synthesis from component libraries”. In: Science of Computer Programming
171 (2019), pp. 21–41. issn: 0167-6423. doi: https://doi.org/10.1016/j.
scico.2018.10.003.

• [42] A. Iannopollo, S. Tripakis, and A. Sangiovanni-Vincentelli. “Specification de-
composition for synthesis from libraries of LTL Assume/Guarantee contracts”. In:
2018 Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2018,
pp. 1574–1579. doi: 10.23919/DATE.2018.8342266.

The work in this dissertation and related publications has been supported by the National
Science Foundation (NSF), via the project “ExCAPE: Expeditions in Computer Augmented
Program Engineering” (CCF-1139138), by the Camozzi group, IBM, and United Technologies
Corporation (UTC) via the iCyPhy consortium, and by TerraSwarm, one of six centers
of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and
DARPA.
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Chapter 2

Related Works

Platform-Based Design Platform-Based Design (PBD) [72, 73, 77, 74, 64] is an iterative
design methodology which has been successfully applied in a number of domains, including
electronic, automotive, and building automation design. It has been introduced in the late
1980s as a design methodology able to support the design process of complex systems.

This concept of platform encapsulates the notion of
reuse as a family of solutions that share a set of common
features (the elements of the platform). Since we associate
the notion of platform to a set of potential solutions to a
design problem, we need to capture the process of
mapping a functionality (what the system is supposed to
do) with the platform elements that will be used to build a
platform instance or an Barchitecture[ (how the system
does what is supposed to do). This process is the essential
step for refinement and provides a mechanism to proceed
towards implementation in a structured way.

I strongly believe that function and architecture should
be kept separate as functionality and architectures are
often defined independently, by different groups (e.g.,
video encoding and decoding experts versus hardware/
software designers in multimedia applications). Too often
I have seen designs being difficult to understand and to
debug because the two aspects are intermingled at the
design capture stage. If the functional aspects are
indistinguishable from the implementation aspects, then
it is very difficult to evolve the design over multiple
hardware generations.

2) Design Process: The PBD design process is not a fully
top-down nor a fully bottom-up approach in the traditional
sense; rather, it is a meet-in-the-middle process (see
Fig. 2) as it can be seen as the combination of two efforts.

1) Top-down: Map an instance of the functionality
of the design into an instance of the platform and
propagate constraints.

2) Bottom-up: Build a platform by choosing the
components of the library that characterizes it and
an associated performance abstraction (e.g.,
timing of the execution of the instruction set for
a processor, power consumed in performing an
atomic action, number of literals for technology
independent optimization at the logic synthesis
level, area and propagation delay for a cell in a
standard cell library).

The Bmiddle[ is where functionality meets the platform.
Given the original semantic difference between the two,
the meeting place must be described with a common
semantic domain so that the Bmapping[ of functionality to
elements of the platform to yield an implementation can
be formalized and automated.

To represent better the refinement process and to
stress that platforms may pre-exist the functionality of the
system to be designed, we turn the triangles on the side
and represent the Bmiddle[ as the mapped functionality.
Then, the refinement process takes place on the mapped
functionality that becomes the Bfunction[ at the lower
level of the refinement. Another platform is then
considered side-by-side with the mapped instance and
the process is iterated until all the components are
implemented in their final form. This process is applied at
all levels of abstraction, thus exposing what I call the
Bfractal nature of design.[ Note that some of the
components may have reached their final implementation
early in the refinement stage if these elements are fully
detailed in the platform.

The resulting Fig. 3 exemplifies this aspect of the
methodology. It is reminiscent of the Y-chart of Gajski,
albeit it has a different meaning since for us architecture
and functionality are peers and architecture is not
necessarily derived from functionality but may exist
independently.3 It was used as the basis for the
development of Polis [17] and of VCC [123]. The concept
of architecture is well captured by the platform concept
presented above.

The result of the mapping process from functionality to
architecture can be interpreted as functionality at a lower
level of abstraction where a new set of components,
interconnects, and composition rules are identified. To
progress in the design, we have to map the new

Fig. 2. PBD triangles.

Fig. 3. PBD process.

3This diagram together with its associated design methodology was
presented independently by Bart Kienhuis and colleagues (see e.g., [130]).

Sangiovanni-Vincentelli: Quo Vadis, SLD? Reasoning About the Trends and Challenges of System Level Design

Vol. 95, No. 3, March 2007 | Proceedings of the IEEE 477
Figure 2.1: A graphical representation of the mapping process typical of Platform-Based
Design. A specification, i.e., function, is implemented as a composition of elements in a more
concrete abstraction levels through a mapping process. Image from [72].

In PBD, design is carried out as the mapping of a user defined function to a platform
instance, as illustrated in Figure 2.1. This platform instance represents a network of inter-
connected components, chosen from a library. Together with their functionality, in PBD
components expose also other characteristics such as composition rules, performance indices,
and cost. This additional information is used to optimize the mapping process, according to
both functional and non-functional specifications. Two main principles are defined within
PBD, abstraction/refinement and composition/decomposition. The former enables a vertical
process which allows the design to proceed within different levels of abstraction, while the
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latter is an horizontal process with describe how design components can be combined or
decomposed at the same abstraction level.

Contract Refinement Verification The problem of building and verifying compositions
of formally define components has been studied extensively. Pinto et al. [64] propose the
Contract-Based Specification Language for Platforms (CSL4P). CSL4P provides mechanisms
to define component platforms, and to build designs by instantiating, interconnecting, and
composing components. Designs can then be formally verified for compliance with platform
composition rules.

Grumberg and Long [33] describe the inspirational idea of decomposing a verification task
into smaller sub-tasks, where an aggregation of components is replaced by a more abstract
representation, according to an assume-guarantee framework. However, in most cases, finding
the appropriate abstraction is an issue, since no general guidelines are available to the
verification engineer. A few approaches have been proposed, which use learning algorithms
to automatically build such abstractions, e.g., see [21, 35]. In Chapter 5, the abstraction
process is instead guided by the contract library, which systematically encodes the available
information on both the structural decomposition of the system architecture and the relevant
system domain knowledge. Based on the library, we provide a mechanism to automatically
build abstractions on the fly, as we solve the problem by successive refinements. In this
respect, our solution is inspired by the platform-based design paradigm [72], where a design
at each abstraction layer is also regarded as a platform instance, i.e. a legal interconnection
of component out of a pre-characterized library, which also includes composition rules. As
we describe in Section 3.3, the concept of library is further extended to also include relations
between contracts and their ports. In the context of this chapter, such relations include
refinement rules between contracts in the library. Cimatti and Tonetta [17] exploit the
relation between decomposition of component contracts and system architecture and provide
a concrete framework to verify a system architecture relying on temporal logic formulas.

Synthesis Our work on synthesis from component libraries is inspired by two major
contributions in this field:

• Pnueli and Rosner [66] show that the problem of synthesizing a set of distributed
finite-state controllers such that their network, which is given and fixed, satisfies a given
specification is undecidable. In that work, each component in the network is controlled
by a finite-state machine (or program), and the goal is to synthesize programs that
cooperate to satisfy a certain linear temporal logic formula φ;

• Lustig and Vardi [54] show that the problem of synthesis from component libraries
for data-flow compositions is also undecidable. Here components are transducers, i.e.,
finite-state machines able to map a set of input strings to a set of output strings.
The specification, also in this case, is a linear temporal logic formula φ. In data-flow
compositions, the output of a component is fed to another one, while all the components
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work synchronously to satisfy the specification. The paper also analyzes another type
of composition, control-flow, where each component takes full control of the system for
a certain period of time, before releasing the system resources to the other components.

Thus, [66] shows that fixing the topology of the network while letting the synthesis
process find the components is undecidable, while [54] shows that fixing the components while
letting the synthesis process find the topology (possibly by replicating components) is also
undecidable. In our work, in Chapters 6 and 7, we too focus on data-flow compositions, and
the undecidability results in [66] and [54] are relevant. In our synthesis approach, however, we
achieve decidability by imposing a bound on the total number of component instances, which
are chosen from a library, positioning our efforts in between the two approaches presented
above.

The general idea of synthesis from component libraries adopted here is reminiscent of the
work in [48, 34]. There, Jha et al. considered the problem of synthesis of finite loop-free
programs from libraries of atomic program statements, using a SMT solver to carry on
synthesis. Our work is different, however, as our components are defined as LTL A/G
contracts, thus, their have temporal constraints.

A different perspective in synthesis from component libraries has also been described by
Alur et al. [4]. There, a controller is built out of library components in a control-flow fashion
(using the terminology introduced in [54] and discussed above). That approach, while being
relevant in the broader topic of synthesis from component libraries, is orthogonal to ours
since we focus on data-flow compositions.

Relevant is also the extensive work done in the area of Supervisory Control Synthesis
(SCS) [69]. SCS is the problem of synthesizing a controller for a discrete event system, i.e., an
automaton, which exposes some controllable and uncontrollable behaviors. The specification
defines which behaviors are admissible, and the goal of the controller is to restrict the
controllable behaviors of the discrete event system in a way that satisfies the specification.
Existing SCS algorithms, however, do not deal with libraries of components but, instead,
their goal is to synthesize a controller ex novo. Here, we provide a more generic notion of
components and focus our effort in synthesizing a controller through the composition of
existing components.

Ramesh et al. [70] focus on the problem of synthesis of embedded designs from component
libraries. In that work, components are represented exclusively by their interface and
connections are made on the basis of static relations between component ports. Given a
specification, a particularly rich type system takes care of efficiently pruning the search
space by solving a constraint satisfaction problem. Although our type system is not as
expressive, our approach is more general as we consider components described by more
complex specifications (not necessarily static) in addition to their interface.

Manolios et al. [55] present a constraint solving framework based on Integer Linear
Programming (ILP) where some variables need to be interpreted according to some first-order
theories. They develop a constraint solver, Inez, and use it to synthesize architectural models
related to the aerospace industry.
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Oracle-Guided and Counterexample-Guided Inductive Synthesis, and the combi-
nation of Induction, Deduction, and Structure OGIS [49, 48] is a general paradigm
to address formal inductive synthesis. It is characterized by the interaction between an
inductive learning engine, also called “learner”, and a verification engine, i.e., the “teacher”.
The learner submits queries to the teacher, which replies with some information (for instance,
a yes/no answer or an execution trace) that is used by the learner to improve its guesses.

CEGIS [81, 49, 50], a specialization of OGIS, is a well-known synthesis paradigm which
originates from techniques of debugging using counterexamples [78] and CounterExample-
Guided Abstraction Refinement (CEGAR) [20]. CEGIS is an inductive synthesis approach
where synthesis is the result of inferring details of the solution from I/O examples, which
usually are counterexamples for previous incorrect guesses, provided by a constraint solver.
In CEGIS an iterative algorithm, according to a certain concept class, generates candidate
solutions which are processed by an oracle and either declared valid, in which case the
algorithm terminates, or used to derive counterexamples to restrict the search space. CEGIS
has been successfully used in a number of research areas, including program synthesis and
sketching [34, 81], and synthesis and completion of distributed protocols [6, 5, 3]. Recently,
Seshia [76] proposed a methodology that formalizes the combination of Structure, Inductive
and Deductive reasoning (SID), representing a generalization of both CEGAR and OGIS.

Specification Decomposition Filippidis [30] studies the problem of specification decom-
position into A/G contracts, when they are described in a fragment of Temporal Logic of
Actions (TLA+) [51], by proving that unnecessary variables can be efficiently hidden and
eliminated from the resulting specifications.

Henzinger et al. [37] propose a method to decompose the refinement verification process
for reactive systems in a series of sub-tasks that are simpler than the original problem,
leveraging the structure of the design and using the Assume/Guarantee paradigm to manage
circular dependencies.

Dallal and Tabuada [22], given a set of components and a safety specification, propose a
decomposition technique where the goal is to generate a set of minimally restrictive assump-
tions (one per component). Such assumptions, found through a fixed point computation, are
then used to synthesize controllers for the components. Our goal is similar: breaking down
the synthesis process in simpler sub-tasks.

Íncer Romeo et al. [46] introduce means to compute the operation of quotient for A/G
contracts. Given a specification C to be implemented, and the specification C ′ of a component
to be used in the design, the quotient describes the properties that need to be satisfied, in
addition to those required by C ′, in order to meet C.
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Chapter 3

Preliminaries

In this chapter, we provide some basic notions that will be the foundation of the work
developed in the other chapters. Here, our goal is two-fold. On the one hand, we describe the
details of the formalisms we use and how they relate to each other. For instance, we introduce
Linear Temporal Logic (LTL), and discuss how it can be used to specify Assume/Guarantee
(A/G) contracts. On the other hand, we provide insights on the techniques we use to
manipulate such formalisms, which then we assume in the next chapters. This is the case for
LTL manipulation using a model-checker. Here we describe how we can use an off-the-shelf
tool to perform the basic operations of validity and satisfiability checks, which will be useful
later.

The chapter is organized as follows. Section 3.1 introduces LTL. In Section 3.2, we
describe the general A/G contract framework we use in this dissertation, and introduce the
concept of contract library in Section 3.3. Then, in Section 3.4, we discuss how to use LTL
as a concrete formalism for A/G contracts and show how to practically verify refinement as a
model checking problem in 3.5.

3.1 Linear Temporal Logic

Temporal Logic is an extension of propositional logic, introduced by Amir Pnueli [68], that
allows for the specification of properties that can be verified over an infinite sequence of
symbols. Here we focus on Linear Temporal Logic (LTL), which is particularly useful in
expressing properties of systems having a state that evolves in a discrete manner, where time
is seen as a linear sequence in which system variables are evaluated. Programs, electric and
electronic devices, and motion planning are just a few example of areas that can benefit from
having specifications expressed using LTL. LTL is expressive enough to describe complex
specifications, including properties such as safety (something bad will never happen), liveness
(something will keep happening), stability (a certain state will be eventually reached), etc.
[52]
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3.1.1 Reactions, Behaviors, and Synchronous Assertions

Given a set of variables Σ with domain D, we call reaction, or state, r ∈ DΣ an evaluation
of the variables in Σ within their domain. A synchronous run σ, or behavior, is a infinite
sequence of reactions:

σ ∈ (DΣ)ω = r0, r1, r2, · · · (3.1)

A set of behaviors is called a synchronous assertion. A synchronous assertion P is defined
as:

P ⊆ T (3.2)

where T = (DΣ)ω is the set of all the behaviors.
We call atomic proposition any statement over evaluations of variables in Σ which has

a unique truth value. This means that for an atomic proposition p is always possible to
determine if it is true or false. Given a reaction r ∈ DΣ, we say that r ` p if p is true over
the evaluation in r. If p is false, then r 6` p.

3.1.2 Syntax of LTL formulas

Given a set of atomic propositions AP over evaluations of an alphabet Σ, the syntax of an
LTL formula ϕ can be defined inductively as follows:

ϕ := True | p | ¬ϕ | ϕ ∧ ψ | #ϕ | ϕ U ψ (3.3)

where p ∈ AP and ψ is another LTL formula, # is the next operator—also indicated as
X—and U is the until operator.

Additional logic and linear temporal operators, such as disjunction (∨), material implica-
tion (→), eventually (3, or F ), and globally (�, or G) can be derived as follows:

ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

ϕ→ ψ := ¬ϕ ∨ ψ
3ϕ := True U ϕ
�ϕ := ¬3¬ϕ

3.1.3 Semantics of LTL formulas

LTL formulas are evaluated over infinite sequences of states, i.e., behaviors. Let σ = r0, r1, · · ·
be a behavior. Then, the satisfaction of a formula ϕ by σ at time i is recursively defined as
follow:

• σi |= p if and only if ri ` p, where p ∈ AP ;

• σi |= ¬ϕ if and only if σi 6|= ϕ;
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• σi |= ϕ ∧ ψ if and only if σi |= ϕ and σi |= ψ;

• σi |= #ϕ if and only if σi+1 |= ϕ;

• σi |= ϕ U ψ if and only if there exist j ≥ i such that σj |= ψ and σk |= ϕ for all k ∈ [i, j);

where ψ is another LTL formula. If a formula is true at time 0, i.e., σ0 |= ϕ, we will drop the
subscript and just say that the behavior σ satisfies the formula ϕ, written σ |= ϕ.

For an LTL formula ϕ, we indicate with L(ϕ) its language, i.e., its associated synchronous
assertion, which is the set of infinite behaviors satisfying it.

3.1.4 LTL Applications, Satisfiability, and Realizability

LTL is widely used in model checking and synthesis.[33, 67, 71, 16, 65] In the first case, it is
possible to automatically verify if a model exhibits certain properties. Several model checking
algorithms and tools have been developed over the years. These algorithms can be grouped
into two categories: symbolic and explicit-state; symbolic algorithms use Binary Decision
Diagrams (BDD) [15] to encode the whole state space and perform model checking. Explicit
state algorithms [40], instead, declare all the state variables for each time step and then rely
on a SAT solver to find an answer to the model checking problem. These algorithms cannot
represent a system evolution of infinite length, thus are used to compute bounded model
checking (BMC) [13], where a property is verified up to a finite number of temporal steps.
While symbolic methods are complete, they tend to use a significant amount of memory
to represent the whole system. BMC algorithms, instead, represent a faster solution for a
large number of applications, where the verification of properties within a finite horizon is
acceptable.

In the case of synthesis, given a set of desirable LTL properties, the goal is to automatically
generate a state machine implementing them. This is achieved by solving a two players game,
where a system implementation is required to be able to react to any possible move from an
adversarial environment [67, 71, 27]. If a winning strategy does not exist, then synthesis fails.
Otherwise, an implementation of such strategy is returned.

In this work, however, we verify and synthesize compositions of components described
using LTL, and all the algorithms and techniques we study are based on the capability of
asserting the validity of an LTL formula. In the previous sections, we have discussed how
LTL formulas can express sets of infinite-length behaviors. Indeed, Wolper et al. [85] show
that the models satisfying an LTL formula can be described as a ω-regular language over a
certain alphabet. Thus, checking the validity of an LTL formula can be reduced to checking
emptiness of the associated language, which is a PSPACE-complete problem [80].

There are several options to solve the LTL validity problem for a formula ϕ. One of
them is to use a tool which is able to compute an automaton which accepts infinite-length
words, called Büchi automaton, corresponding to the ω-regular language accepted by ϕ. If
the automaton is empty, then the formula is not satisfiable, i.e., its negation is valid. For
instance, a tool able to compute such automaton is ltl2ba [32].



CHAPTER 3. PRELIMINARIES 14

Another method is to use a model-checker to check whether an unconstrained model is
able to satisfy the property ϕ. Model checkers perform similar automata-based reasoning
over the formula and the language generated by the system, but they are often faster due to
the efficient symbolic encoding that many of them use. Some other model checkers use BMC
to verify the validity (up to a certain temporal horizon) of a formula ϕ. In our experience,
if having a finite temporal horizon is acceptable, this is the solution that yields the best
performance for large formulas. Using a model checker to check for LTL validity has also
the advantage of generating counterexamples when a certain formula ϕ is not valid. Those
counterexamples can then be used to infer a satisfiable assignment for the negated ¬ϕ.

Realizability of an LTL formula, instead, is seen as a game played by two players and it
was studied initially by Pnueli and Rosner in the context of LTL synthesis [67]. For an LTL
formula ϕ, each player controls a subset of the formula propositions by controlling a subset of
its variables. Thus, the environment controls a set I of input signals, while the system to be
synthesized controls the set O of output signals. The goal of the system is to satisfy ϕ, while
the environment wants to falsify it, without falsifying its subset of propositions. The game is
played in turns, where to each variable value assignment from the environment there is a
corresponding assignment from the system. The result is an infinite sequence of reactions,
i.e., a behavior. If the behavior satisfies ϕ, then the system wins, otherwise the environment
wins. The formula is realizable if the environment never wins.

LTL realizability is a 2ExpTime-complete problem [71], but there are several tools that
are able to compute it implementing different strategies. For instance, we mention the design
tools Ratsy [14] and Tulip [28], or the LTL synthesis tools Acacia+ [26, 27]. Later, we will
show how realizability can be used to prove some properties on LTL A/G contracts, such as
consistency and compatibility.

3.2 Design Contracts

The concept of design contracts, which has been extensively studied in the past few years [75,
10, 11, 29, 30, 62], has its roots in the field of software engineering, where assume/guarantee
reasoning has traditionally been used to reason about pre- and post-conditions of software
modules [57]. This approach to software engineering has been derived, in turn, by the early
work of Floyd and Hoare [31, 39]. The shift of the use of contracts towards system design,
however, has been influenced by the early work on interface theories [38, 2, 1, 24].

The concept of contract nicely embrace the discipline of system design, as it emphasizes
modularity and reuse of components, which are critical elements of the practices followed in
industry. Indeed, when developing a system, several suppliers collaborate with an Original
Equipment Manufacturer (OEM) on the basis of some partial specifications. Such spec-
ifications require a supplier to develop a component that is able to guarantee a certain
functionality, assuming a certain set of constraints on its operative environment. If designed
according to the specification, each component will be able to properly interact with other
components, even when they have been realized by different suppliers.
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The modern theory of design contracts is broad and encapsulate many concrete theories
developed over the years for concrete applications. In this thesis, we focus on assume/guarantee
contracts, where the set of acceptable system and environment behaviors are explicitly
formalized. For a full analysis and description of the theory of contract for system design, we
refer to [11].

In our work, the description of a design unit, or just component in the remainder of this
chapter, follows Benveniste’s definition in [11], which is, in turn, inspired by the Tagged Signal
Model, developed by Lee and Sangiovanni-Vincentelli [53]. A component implementation
M = (Σ, P ) is a specific realization of a component. It refers to a certain set Σ of ports, or
variables, with domain D and it is characterized by an assertion P , i.e., a set of behaviors
which represent a valid execution, or run, of the component

Given a certain design goal, several components can achieve it by properly working
together. Such collaboration is realized by composing components according to some well-
defined rules. Two implementations M1,M2 over the same set of variables Σ can interact
with each other by composing them. In this case, composition means that there exists a
non-empty set

P‖ = {σ | σ ∈ P1 and σ ∈ P2} = P1 ∩ P2 (3.4)

That is, M1 and M2 agree on some possible executions, and the composed implementation is
indicated as

M‖ = M1 ‖M2 = (ΣP , P1 ∩ P2) = (ΣP , P‖) (3.5)

In the following chapters, we will also use the term component to indicate a generic
element in a set or library. To avoid ambiguity, outside of the context of this chapter, we will
use the term design unit to indicate a component as those defined in this section.

3.2.1 Assume/Guarantee Contracts

An Assume/Guarantee (A/G) Contract is a description of a component which decouples the
responsibilities of the component itself, i.e., its guarantee, from the responsibilities it assumes
on its environment. A/G contracts are also defined using synchronous assertions. In this
thesis, we specialize the description of A/G contracts from [75, 10] to explicitly handle input
and output variables.

Definition 1. An A/G contract is a tuple C = (I, O,A,G) where I ⊆ Σ is a set of input
variables, O ⊆ Σ is a set of output variables, and Σ is the contract alphabet, which is assumed
the same for all contracts. A and G, instead, are synchronous assertions representing
assumptions and guarantees, respectively.

The pair π = (I, O) is called a profile, and represents the partition of variables which
can and cannot be controlled by the contract1. Having such a clear partition is extremely

1In [75, 10], the terms input and output are replaced by the terms uncontrolled and controlled, respectively,
to stress the extent of assumptions and guarantees over a contract’s variables.
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useful, as it allows to clearly identify which variables can be used by a contract to carry out
its promise. An assertion P is called Σ′-receptive, where Σ′ ⊆ Σ is a set of variables, if and
only if for all behaviors σ′ defined over variables in Σ′, there exists a behavior σ ∈ P such
that

∏
Σ′(σ) = σ′, where

∏
indicates the projection operation, i.e., when σ is considered only

over variables in Σ′. Thus, P accepts any possible sequence over variables in Σ′. Sometimes,
when the context is clear, we refer to a contract omitting its profile. For instance, we could
refer to the contract C = (I, O,A,G) simply as C = (A,G).

Consider a contract C = (I, O,A,G). Any assertion E ⊆ A is a valid environment for C,
indicated as E |=E C, while any assertion M such that M ∩ A ⊆ G, indicated as M |=M C,
is a valid implementation, i.e., the component is behaving correctly under the assumptions of
the contract.

Different implementations can, in general, satisfy the same contract. Consider, for instance,
two implementations M1,M2 such that M1 6= M2, and a contract C = (I, O,A,G) We can
still have both M1 ∩A ⊆ G and M2 ∩A ⊆ G. We refer to the maximal implementation for C
as MC = G ∪ A, where A = T \ A indicates the complement of A. For any implementation
M such that M |=M C, we have that M ⊆MC .

3.2.1.1 Saturated Contracts

Consider, two contracts C1 = (A,G1), C2 = (A,G2). Let C1, C2 have different guarantees,
i.e., G1 6= G2, but identical maximal implementations MC1 = MC2 . Thus we have

MC1 ∩ A = (G1 ∪ A) ∩ A = (G2 ∪ A) ∩ A (3.6)

This implies that the difference between the guarantees is not included in the assumption A,

G14G2 ⊆ A (3.7)

where 4 is the symmetric difference between two sets. If it were, then Equation 3.6 would not
hold, contradicting our assumption that C1 and C2 share the same maximal implementation.
Consider now the contract C = (A,G), whose maximal implementation is MC = MC1 = MC2 .
Let also G ⊇ A. Thus, it follows from Equation 3.7 that G is maximal, meaning that, for
any contract C ′ = (A,G′) with maximal implementation MC , we have G′ ⊆ G. In this
case, we say that the contract C is saturated, meaning that it explicitly contains the largest
possible guarantees for a certain maximal implementation. For a saturated contract C, we
also have that G ∪ A = T , meaning that the union of assumption and guarantee includes
all the possible behaviors. Saturated contracts are useful because they remove ambiguities
between contracts that have the same sets of satisfying implementations. Unless differently
indicated, we will always refer to saturated contracts.

3.2.1.2 Compatibility and Consistency

Sometimes, an A/G contract is ill-defined, meaning that it specifies a contradictory assumption
or guarantee. If there are no suitable implementations that can conform to the contract, we
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say that the contract is inconsistent. Formally, we say that a contract C = (I, O,A,G) is
inconsistent if G is not I-receptive. This means that there are some behaviors consistent with
the contract assumption, that will falsify the guarantee G, and that cannot be avoided by any
implementation of C. The only way for the contract to be satisfied, is for an implementation
to impose constraints over input variables, which is a contradiction. Conversely, a contract
that is I-receptive is called consistent.

On the other hand, if there are no suitable environment for a contract, we say that the
contract is incompatible. A contract C = (I, O,A,G) is incompatible if and only if A is not
O-receptive. In opposition to the consistency case, an incompatible contract could generate
a sequence of evaluations over its controlled variables which is rejected by every possible
environment. Thus, it would be impossible for an environment to fully comply with the
contract assumption without controlling some of the contract variables, which is against the
principle of separation of concerns between a system and its environment. An O-receptive
contract is, instead, compatible.

Definition 2. C is well-defined if and only if it is consistent and compatible, I ∩O = ∅, and
A and G are defined over variables in I ∪O.

If not differently mentioned, we will always consider well-defined contracts.

3.2.1.3 Parallel Composition

Often complex components are realized by having simpler components working together. In
the same way, complex contracts can be built by composing simpler ones. Formally, we can
compose contracts with each other through parallel composition. The operation of parallel
composition is a function that takes two contracts as input and returns a third one, i.e., their
composition:

⊗ : C× C→ C (3.8)

where C is the set of all A/G contracts.
Specifically, given contracts C1 = (I1, O1, A1, G1), C2 = (I2, O2, A2, G2), their composition

C = (I, O,A,G) = ⊗(C1, C2)—also expressed using the infix notation C = C1 ⊗ C2—is
defined as follows:

I = (I1 ∪ I2) \ (O1 ∪O2) (3.9a)

O = O1 ∪O2 (3.9b)

A = (A1 ∩ A2) ∪ (G1 ∩G2) (3.9c)

G = G1 ∩G2 (3.9d)

In principle, a contract representing the composition of two simpler ones should guarantee
behaviors which are consistent with both its constituent contracts. Thus, it seems natural that
the guarantee of the composed contract is formulated as the intersection of the guarantees
of those contracts. For the assumption, however, intersecting the assumptions might be
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too restrictive, as sometimes a contract provides some of the inputs of another contract
that it is being composed with. The composition, indeed, should consider that some of the
requirements on the environment assumed by a constituent contract could be already fulfilled
in the composition itself. The definition above reflects this intuition. The environment of the
new composed contract is relieved of the responsibility of exposing those behaviors which are
already guaranteed by the constituent contracts. Thus, if any of the constituent contracts
does not keep its promise, the assumption on the environment is trivially satisfied.

Similarly, we can intuitively justify the definition of the profile of the composition in
Equations 3.9a and 3.9b. The set of output ports of the contract is simply the union of
the output ports of the contracts being composed. The set of input ports, however, needs
to consider that some input ports of a constituent contract might be controlled by another
contract, thus are no longer responsibility of the environment.

Parallel composition preserves saturation, meaning that C1 and C2 are saturated, so is
their composition, but it does not necessarily preserve consistency or compatibility. For
instance, it is always possible to compose two contracts guaranteeing contradicting assertions.
While they might be individually consistent, the intersection of their guarantees will be empty,
meaning that no implementation can satisfy the composition.

Parallel composition is associative and commutative Given two contracts C1, C2, it
is immediate to realize that computing their composition according to Equation 3.9 yields
the same result, thus C1 ⊗ C2 = C2 ⊗ C1.

Let us now consider another contract C3. To show associativity, we need to show that
C⊗ = (C1 ⊗ C2) ⊗ C3 = C1 ⊗ (C2 ⊗ C3) = (I⊗, O⊗, A⊗, G⊗). It is obvious that computing
Equations 3.9b and 3.9d yields the same result independently of the order in which we
consider the contracts, obtaining in both cases O⊗ = O1 ∪O2 ∪O3 and G⊗ = G1 ∩G2 ∩G3,
respectively. Computing the set of input variables I⊗ in both cases, we can prove that:

I(C1⊗C2)⊗C3 = IC1⊗(C2⊗C3)

[(I1 ∪ I2) \ (O1 ∪O2) ∪ I3] \ (O1 ∪O2 ∪O3) =

[I1 ∪ (I2 ∪ I3) \ (O2 ∪O3)] \ (O1 ∪O2 ∪O3)

[(I1 ∪ I2) ∩ (O1 ∪O2) ∪ I3] ∩ (O1 ∪O2 ∪O3) =

[I1 ∪ (I2 ∪ I3) ∩ (O2 ∪O3)] ∩ (O1 ∪O2 ∪O3)

[(I1 ∪ I2) ∩ (O1 ∩O2) ∪ I3] ∩ (O1 ∩O2 ∩O3) =

[I1 ∪ (I2 ∪ I3) ∩ (O2 ∩O3)] ∩ (O1 ∩O2 ∩O3)

[I1 ∩O1 ∩O2 ∪ I2 ∩O1 ∩O2 ∪ I3] ∩ (O1 ∩O2 ∩O3) =
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[I1 ∪ I2 ∩O2 ∩O3 ∪ I3 ∩O2 ∩O3] ∩ (O1 ∩O2 ∩O3)

I1 ∩O1 ∩O2 ∩O3 ∪ I2 ∩O1 ∩O2 ∩O3 ∪ I3 ∩O1 ∩O2 ∩O3 =

I1 ∩O1 ∩O2 ∩O3 ∪ I2 ∩O1 ∩O2 ∩O3 ∪ I3 ∩O1 ∩O2 ∩O3

(I1 ∪ I2 ∪ I3) ∩ (O1 ∩O2 ∩O3) =

(I1 ∪ I2 ∪ I3) ∩ (O1 ∩O2 ∩O3)

which is indeed verified and yields I⊗ = (I1 ∪ I2 ∪ I3) \ (O1 ∪O2 ∪O3).
Finally, we can show that A(C1⊗C2)⊗C3 = AC1⊗(C2⊗C3):

{[(A1 ∩ A2) ∪ (G1 ∩G2)] ∩ A3} ∪ (G1 ∩G2 ∩G3) =

{A1 ∩ [(A2 ∩ A3) ∪ (G2 ∩G3)]} ∪ (G1 ∩G2 ∩G3)

[(A1 ∩ A2 ∩ A3) ∪ A3 ∩ (G1 ∩G2)] ∪ (G1 ∩G2 ∩G3) =

[(A1 ∩ A2 ∩ A3) ∪ A1 ∩ (G2 ∩G3)] ∪ (G1 ∩G2 ∩G3)

At this point we notice that (G1 ∩G2) ⊆ (G1 ∩G2 ∩G3) and (G2 ∩G3) ⊆ (G1 ∩G2 ∩G3).
Thus, by applying the set absorption law, we obtain

(A1 ∩ A2 ∩ A3) ∪ (G1 ∩G2 ∩G3) =

(A1 ∩ A2 ∩ A3) ∪ (G1 ∩G2 ∩G3)

which is indeed, on both sides, A⊗. Thus, we can generalize composition to an arbitrary
number of contracts. For instance, for the composition C of contracts C1 to C3, we will
simply write C = C1 ⊗ C2 ⊗ C3.

3.2.1.4 Refinement

The refinement relation between contracts is the formalization of a notion of substitutability
between them. Informally, a contract can be used in lieu of another one if it accepts a larger
set of environments and it guarantees a subset of the original contract’s behaviors. Thus, we
say that a contract C ′ = (I ′, O,A′, G′) refines a contract C = (I, O,A,G), written as C ′ � C,
if and only if

I ′ ⊆ I (3.10a)

O′ ⊇ O (3.10b)

A′ ⊇ A (3.10c)

G′ ⊆ G (3.10d)
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The refinement relation is a partial order over the set of all contracts, as it is reflexive,
transitive, and anti-symmetric.

This notion of refinement supports independent implementability, i.e., if C1 � C ′1 and
C2 � C ′2, then C1 ⊗ C2 � C ′1 ⊗ C ′2.

3.2.1.5 Contract Obligations

For a contract C = (A,G), we say that its contract obligation BC is the assertion

BC = A ∩G (3.11)

Intuitively, a contract obligation describes what are those behaviors that the contract allows
in an ideal scenario, thus ignoring bad environments, where the contract would be trivially
satisfied. For contracts C1, C2, we say that C1 conforms to C2 if and only if its contract
obligation is included in C2’s, i.e., BC1 ⊆ BC2 . Conformance is compositional with respect to
parallel composition. Consider, for instance, contracts C1, C

′
1, C2 where C ′1 conforms to C1.

Let C⊗ = C1 ⊗ C2 and C ′⊗ = C ′1 ⊗ C2. Then, C ′⊗ conforms to C⊗, as we have:

(A′1 ∩ A2 ∪G′1 ∩G2) ∩ (G′1 ∩G2) ⊆ (A1 ∩ A2 ∪G1 ∩G2) ∩ (G1 ∩G2) (3.12)

(A′1 ∩ A2) ∩ (G′1 ∩G2) ⊆ (A1 ∩ A2) ∩ (G1 ∩G2) (3.13)

(A′1 ∩G′1) ∩ (A2 ∩G2) ⊆ (A1 ∩G1) ∩ (A2 ∩G2) (3.14)

BC′1
∩BC2 ⊆ BC1 ∩BC2 (3.15)

BC′⊗
⊆ BC⊗ (3.16)

Conformance, however, does not imply refinement, and vice versa.

3.2.1.6 Contract Connection

We say that two contracts are connected if at least one input of a contract is provided by
the other. i.e., for contracts C1, C2, we have (O1 ∩ I2) ∪ (O2 ∩ I1) 6= ∅. Derived by the
defintion by de Alfaro and Henzinger in [2], we say that an interconnect, or renaming, θ is a
set of pairs (x, y) of variables, called target and source, respectively, such that for all pairs
(x1, y1), (x2, y2) ∈ θ we have that x1 6= x2. Hence, θ is a partial function. For each θ, we
consider an associated total function θ̄ defined, for a variable x, as follows.

θ̄(x) =

{
y if (x, y) ∈ θ
x otherwise

(3.17)

A connection ϑ : C×Θ→ C, where Θ is the set of all interconnects, is a function which
maps a contract and an interconnect to a new contract. Given a contract C = (I, O,A,G)
and an interconnect θ, we indicated their connection as a new contract ϑ(C, θ), also expressed
as Cθ for simplicity. We have that Cθ = (Iθ, Oθ, Aθ, Gθ) is a contract where
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Iθ = (I ∪
{
y if ∃y : (x, y) ∈ θ

∣∣x ∈ I}) \Oθ (3.18a)

Oθ = O ∪
{
x if ∃y : (x, y) ∈ θ

∣∣x ∈ I} ∪ { y if ∃y : (x, y) ∈ θ
∣∣x ∈ O} (3.18b)

Aθ = A ∪ ρθ (3.18c)

Gθ = G ∩ ρθ (3.18d)

and
ρθ =

⋂
x,y∈Iθ∪Oθ,(x,y)∈θ

{σ | x ≡ y} (3.19)

represents the set of all the behaviors where all the pairs in θ which are also referring to
variables in Iθ ∪Oθ are equivalent.

By mapping an interconnect θ to a contract C, the resulting contract Cθ could have new
input ports, although it will never have more inputs than the original contract. It is possible,
however, for it to have more outputs than the original. This makes sense because the new
outputs will represent input variables that are now controlled by some other variable, or new
outputs that are mapped to current outputs. Assumption Aθ and guarantee Gθ also change
to reflect the new relations between variables. On one side, we have that the assumption now
is weaker, meaning that the contract now assumes that the variables in θ will be equivalent,
and it will consider its assumptions violated if that is not the case. The guarantee, on the
contrary, is stronger, meaning that the contract is also responsible to provide some of those
equivalences. Equivalently, applying a connection θ to a contract C = (I, O,A,G) can be
seen as the composition Cθ = C ⊗ Cθ, where Cθ = (Iθ, Oθ, T , ρθ), with T representing all
the behaviors.

Note that even if contract C is well-defined, a connection operation it might render it
ill-defined, i.e., inconsistent or incompatible. For instance, consider the following example.

Example 1 (Connection yields an inconsistent contract). Let C = ({a}, {b},True, b = ¬a)
be a contract that guarantees that its output is the negation of its input, where a and
b are Boolean variables. Clearly, this contract is well-defined. Let θ = {(a, b)} be an
interconnect that specifies a feedback loop between a and b. Thus, the connected contract is
Cθ = (∅, {a, b},True, (b = ¬a) ∧ (a = b)), which is inconsistent as its guarantee cannot be
satisfied.

The following definitions use the concept of connection to introduce new relations between
contracts, which will be useful in later chapters.

Definition 3 (Contract Equivalence). Two contracts C = (I, O,A,G) and C ′ = (I ′, O′,
A′, G′) are said equivalent, indicated as C ≡ C ′, if and only if there exists an interconnect θ
such that the two contracts refine each other, meaning that C ′θ � C, and Cθ � C ′.

Definition 4 (Contract Copy). Given a contract C = (I, O,A,G), we say that a contract
C ′ = (I ′, O′, A′, G′) = c(C) is a copy of C if and only if they are equivalent, for a certain θ,
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and if (I ∪ O) ∩ (I ′ ∪ O′) = ∅. For each variable x ∈ I ∪ O, we write C ′.x to indicate the
fresh variable x′ that replaced x in I ∪O.

3.3 Contract Libraries

A contract library is a collection of contracts, which embeds some domain-specific knowledge.
Formally, a library

L = (Z,R) (3.20)

is a pair where Z = {C1, C2, · · · , Cn} is a set containing contracts defined over a common
alphabet Σ and R defines constraints over contracts in Z. Each contract in Z has unique
variable names, meaning that for each pair of contracts C1, C2 ∈ Z, we have (I1 ∪O1)∩ (I2 ∪
O2) = ∅. R embeds library-specific rules on what connections and composition are legal. At
this point, we do not impose any specific format for the constraints in R. We will provide a
better description for them once we discuss specific libraries in the following chapters. Ideally,
for any interconnect θ that is applied to contracts in L, we would like θ ⇒ R, meaning that
the interconnect is not in contradiction with R. In general, one can assume R implying a set
of pairs (x, y) ∈ Σ2 of variables such that the connection of contracts in Z according to a
certain interconnect θ is considered illegal for the library if θ 6⊆ R.

3.4 LTL A/G Contracts

In Section 3.1.4, we discussed the connection between LTL formulas and sets of infinite-length
behaviors, i.e., ω-regular languages. LTL formulas can be used to represent synchronous
assertions, according to our definition in Section 3.1.1. Indeed, for a formula ϕ, its language
L(ϕ) indicates the related assertion.

Therefore, we can use LTL formulas to express a whole class of A/G contracts, where
assumptions and guarantees are concretely expressed using a pair of LTL formulas. We call
this class of contracts LTL A/G Contracts.

An LTL A/G contract is, then, a tuple C = (I, O, ϕ, ψ) where ϕ and ψ are LTL formulas
over symbols in I ∪ O. As they are a subclass of A/G contracts, all the considerations
discussed in Section 3.2.1 apply also for LTL A/G contracts, where the set operations we
used—conjunction (∩), disjunction (∪), complement ( )—can be directly translated to
formulas using logic conjunction (∧), disjunction (∨), and negation (¬), respectively.

Thus, a contract C = (I, O, ϕ, ψ) is saturated if and only if ψ ↔ (ψ ∨ ¬ϕ) ⇒ ψ → ϕ,
where → is the symbol for material implication and ↔ is double material implication.



CHAPTER 3. PRELIMINARIES 23

The composition of two contracts C⊗ = C1 ⊗ C2 is computed as:

I = (I1 ∪ I2) \ (O1 ∪O2) (3.21a)

O = O1 ∪O2 (3.21b)

ϕ⊗ = (ψ1 ∧ ψ2)→ (ϕ1 ∧ ϕ2) (3.21c)

ψ⊗ = ψ1 ∧ ψ2 (3.21d)

The verification of refinement between two contracts is also quite similar to the general
case. Indeed, we say that C ′ � C if and only if:

I ′ ⊆ I (3.22a)

O′ ⊇ O (3.22b)

ϕ→ ϕ′ is valid (3.22c)

ψ′ → ψ is valid (3.22d)

Refinement can be efficiently verified, for LTL A/G contracts, using any tool able to check
satisfiability of LTL formulas, such as a model-checker, as discussed in Sections 3.1.4 and 3.5.

Finally, for an interconnect θ and an LTL A/G contract C, we indicate the connected
contract as Cθ = (Iθ, Oθ, ϕθ, ψθ), where Iθ and Oθ are the same as Equations 3.18a and 3.18b,
and:

ϕθ = ρθ → ϕ (3.23a)

ψθ = ψ ∧ ρθ (3.23b)

where we can cast the set of all the traces in which all the pairs in θ are equivalent, introduced
in Equation 3.19, as:

ρθ =
∧

x,y∈Iθ∪Oθ,(x,y)∈θ

�(x = y) (3.24)

3.4.1 Compatibility and Consistency for LTL A/G Contracts

In Section 3.1.4, we described how it is possible to compute satisfiability for an LTL formula
using off-the-shelf tools such as a model checker. To compute consistency and compatibility
of an LTL A/G contract, however, satisfiability is not sufficient. In fact, we need to guarantee
that the contract is I− and O−receptive, respectively.

We can verify receptiveness of an LTL A/G contract by checking whether its formulas
are realizable or not, as described in Section 3.1.4. For instance, to check consistency of
a contract C = (I, O, ϕ, ψ), we need to verify that the guarantee ψ is realizable when I is
controlled by the environment and O is controlled by the system. Indeed, to be I−receptive,
the contract needs to accept any sequence generated over variables in I. This corresponds to
the realizability game, where the environment is free to choose any assignment to variables
in I, to which the system needs to respond accordingly assigning values to variables in O.
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If ψ is realizable, it means that there exists a model which can properly react to any input
from the environment, i.e., there exists a correct implementation of the contract. To check
compatibility, conversely, we need to verify that ϕ is O−receptive. This implies that we need
to reverse our perspective on who’s controlling the variables in I and O. In this case, the
realizability game needs to be set such that the set I is controlled by the player, while O is
controlled by the adversary. If the formula is realizable, it means that there exists a contract
environment which can handle all the outputs of the system implementing the contract. In
the experiments performed in the context of this thesis, all the contracts in the libraries have
been verified for consistency and compatibility using Ratsy [14].

3.5 LTL Satisfiability and Validity as a Model

Checking Problem

The model checking problem is can be formalized as a decision problem. Given a model M
and property φ, the model checking problem answers whether M satisfies φ. If M does not
satisfy φ, then the model checking algorithm generates a counterexample showing a trace
from M that violates φ. Thus, model checking reduces to verify that the language generated
by the model is a subset of the language of the property, L(M) ⊆ L(φ), or, equivalently,
that L(M) ∩ L(¬φ) = ∅ [19]. To verify that φ is a tautology, we then need to verify that
T ∩ L(¬φ) = ∅, where T is the set of all traces generated by an unconstrained model. To
verify that φ is satisfiable, it is sufficient to check for validity of ¬φ. The counterexample
generated in this last case will be a satisfiable assignment for φ.

In the rest of the section, we will describe the basic structure of an SMV program [56],
and discuss how we can use a model checker supporting that language, i.e., NuXMV [16], to
check for satisfiability and validity of a certain LTL formula.

3.5.1 LTL Validity as an SMV Program

An SMV program is a collection of modules and a set of specifications over variables of those
modules. Each program must have a module called main, which represents the starting
point.

The listing in Figure 3.1, which models a 3-bit counter, shows the typical structure
of an SMV program. Each module defines a set of variables which can have pure types
(Boolean, Integers, etc.), or be an instance of another module in the program. Modules can
accept parameters, which are passed by reference, and all of their internal variables can be
explicitly accessed by their parent module or a specification through the dotted notation
<module instance>.<variable>, as it happens, for instance, in lines 3 or 5. Referencing variables
without the dotted notation will result in accessing them according to their scope with respect
to the caller.

2Program adapted from http://nusmv.fbk.eu/NuSMV/userman/v11/html/nusmv_2.html.

http://nusmv.fbk.eu/NuSMV/userman/v11/html/nusmv_2.html
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1 MODULE main
2 VAR bit0 : counter_cell(TRUE);
3 bit1 : counter_cell(bit0.carry_out);
4 bit2 : counter_cell(bit1.carry_out);
5 LTLSPEC G F bit2.carry_out
6

7 MODULE counter_cell(carry_in)
8 VAR value : boolean;
9 ASSIGN

10 init(value) := FALSE;
11 next(value) := value xor carry_in;
12 DEFINE carry_out := value & carry_in;

Figure 3.1: An SMV program implementing a 3-bit counter2.

Each module can define what is the legal evolution of its variables and parameters over
time by defining transition relations, which are Boolean relations involving current and
next-state variables, or explicit variable state assignment. In the example, an explicit state
assignment is shown in the section starting from line 9 of the example. There, the variable
value is first initialized and then updated to implement the module’s behavior. If a variable
is not assigned to any module, or if its behavior not specified by a transition relation, its
behavior is nondeterministic.

To verify a certain LTL property, introduced by the identifier LTLSPEC (e.g., see line 5),
the model-checker runs all the modules synchronously and verifies that the constraint defined
in the property holds. If it doesn’t, it generates a trace which shows one system run in which
all the variables behave according to the implementation but the property is not satisfied.
We refer the reader to [16] for a full description of the SMV language.

3.5.1.1 Checking LTL Validity and Satisfiability

Given an LTL formula φ over variables in a set V , one can check for its validity using NuXMV
by creating an SMV program with only one module, main, instantiating all the variables in
V . The module, however, is not required to specify any behavior over those variables, as any
value will be legal. Additionally, the program will have φ as its only LTLSPEC constraint.

When model-checking the program, NuXMV will either return True, meaning that φ is
indeed valid, or it will return a counterexample showing why the formula is not valid. Instead,
to check whether φ is satisfiable, we simply need to check for the validity of its negation,
¬φ. If the model-checker returns True, it means that the formula is not satisfiable. If the
formula is satisfiable, then the counterexample generated by the model-checker will represent
an assignment for the variables in V that satisfies φ.

Under the hood, NuXMV computes the language associated to the main module,
L(main) = T . Since the module does not specify any behavior, its language corresponds to
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the set of all behaviors T . On the other side, the model checker computes the language of the
negation of the specification, L(¬φ). If L(main) ∩ L(¬φ) = ∅, then φ is valid. Otherwise,
the result is used to derive a counterexample which is shown to the user.

Example 2 (SMV Program for LTL Validity Check). Let φ = �(a ∧ b) → 3a be a LTL
formula over variables in V = {a, b}. To check for its validity with NuXMV, we will need to
model-check the program in Figure 3.2, which is obviously true.

1 MODULE foo
2 VAR a : boolean;
3 b : boolean;
4

5 MODULE main
6 VAR m : foo;
7

8 LTLSPEC G (m.a & m.b) -> F m.a

Figure 3.2: The SMV program for checking the validity of φ = �(a ∧ b)→ 3a.

3.5.2 Structure of a NuXMV Counterexample

The listing in Figure 3.3 shows the structure of a counterexample generated by NuXMV.
In this case, we model checked the program in Figure 3.1 changing the LTL specification to
G bit2.carry out. The trace shows a sequence of states (e.g., see line 6), where each
state corresponds to a step of the whole system. Each state displays the evaluation of all the
variables in the program in that particular step, using the dotted notation seen in Figure 3.1.

Counterexamples can either be finite or infinite. If they are infinite, they will have a
lazo-shape structure, meaning that at a certain point the trace will form a loop. Thus, after
a (possibly empty) initialization sequence, the system behavior will be cyclic. The beginning
of a loop is clearly indicated in the trace in Figure 3.3 (e.g., see line 5).
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1 -- specification G bit2.carry_out is false
2 -- as demonstrated by the following execution sequence
3 Trace Description: LTL Counterexample
4 Trace Type: Counterexample
5 -- Loop starts here
6 -> State: 1.1 <-
7 bit0.value = FALSE
8 bit1.value = FALSE
9 bit2.value = FALSE

10 bit0.carry_out = FALSE
11 bit1.carry_out = FALSE
12 bit2.carry_out = FALSE
13 -> State: 1.2 <-
14 bit0.value = TRUE
15 bit0.carry_out = TRUE

16
...

17 -> State: 1.9 <-
18 bit0.value = FALSE
19 bit1.value = FALSE
20 bit2.value = FALSE
21 bit0.carry_out = FALSE
22 bit1.carry_out = FALSE
23 bit2.carry_out = FALSE

Figure 3.3: Counterexample generated by model-checking the program in Figure 3.1 with
the specification G bit2.carry out. The dots in Line 16 have been added manually to
indicate the shortening of the trace.
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Chapter 4

The Aircraft Electrical Power System
Case Study

The design of aircrafts and aircraft parts has been, arguably, one of the the most challenging
and advanced applications of system engineering of the last century, and today they are
certainly among the most complex cyber-physical systems. In such vehicles, a number of
completely different subsystems, i.e., hydraulic, pneumatic, electric, etc., are designed to
flawlessly cooperate together under very tight design constraints [59].

With the advent of the so called “more electric airacraft” [79], in recent years, the
field of aircraft design has been completely revolutionized. The Boeing 787 Dreamliner,
which has started flying commercially in 2014, is the most descriptive example of such deep
paradigm shift. The reasons behind such transformation are numerous, including reduced
fuel consumption, reduced maintenance costs, and improved reliability. Tasks that were
traditionally being assigned to the pneumatic system, such as the cabin pressurization, are
executed using electricity-driven compressors, eliminating an expensive system of ducts, valves,
and temperature and pressure controls that transported compressed air from the engines to
the rest of the plane. To support these new responsibilities, the EPS in modern aircrafts has
been completely upgraded, moving from a centralized to a distributed architecture, as shown
in Figure 4.1.

A redundant, distributed architecture, however, presents new challenges for the EPS
control software. Dealing with a complex network of components introduces new requirement
and risks that need to be carefully addressed. Formal languages can be used to describe
specifications for an EPS avoiding ambiguities and enabling formal analysis, at the price of
reduced scalability. Throughout this thesis, we will use the problem of designing the EPS
control software as a unifying case study. Specifically, our goal is to develop techniques to
verify and synthesize a controller unit for the EPS architecture, which are more scalable
than traditional methods. We only focus on functional aspects of the design, which can be
described using LTL. We assume that a pre-existing library of LTL A/G contracts describing
components, i.e., controllers for subsets of the EPS plant, described later in this chapter, is
available. The methodology and algorithms we propose are meant to address the problem of
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ELECTRICAL SYSTEM

The 787 uses an electrical system that is a hybrid 
voltage system consisting of the following voltage 
types: 235 volts alternating current (VAC), 115 
VAC, 28 volts direct current (VDC), and ±270 VDC. 
The 115 VAC and 28 VDC voltage types are tradi-
tional, while the 235 VAC and the ±270 VDC 
voltage types are the consequence of the no-bleed 
electrical architecture that results in a greatly 
expanded electrical system generating twice as 
much electricity as previous Boeing airplane models. 
The system includes six generators — two per 
engine and two per APU — operating at 235 VAC 
for reduced generator feeder weight. The system 
also includes ground power receptacles for airplane 
servicing on the ground without the use of the APU.

The generators are directly connected to  
the engine gearboxes and therefore operate at a 
variable frequency (360 to 800 hertz) proportional 
to the engine speed. This type of generator is the 

simplest and the most efficient generation method 
because it does not include the complex constant 
speed drive, which is the key component of an 
integrated drive generator (IDG). As a result, the 
generators are expected to be more reliable, require 
less maintenance, and have lower spare costs  
than the traditional IDGs.

The electrical system features two electrical/
electronics (E/E) bays, one forward and one aft,  
as well as a number of remote power distribution 
units (RPDU) for supporting airplane electrical 
equipment. The system saves weight by reducing 
the size of power feeders. A limited number of 
235 VAC elec trical equipment is supplied from the 
aft E/E bay, while the majority of airplane electrical 
equipment, being either 115 VAC or 28 VDC, are 
supported by the forward E/E bay and RPDUs as 
shown schematically in figure 3. The RPDUs are 
largely based on solid-state power controllers 
(SSPC) instead of the traditional thermal circuit 
breakers and relays. The ±270 VDC system is 

supplied by four auto-transformer-rectifier units 
that convert 235 VAC power to ±270 VDC. The 
±270 VDC system supports a handful of large-
rated adjust able speed motors required for the 
no-bleed architecture. These include cabin 
pressurization compressor motors, ram air fan 
motors, the nitrogen-generation-system compressor 
used for fuel-tank inerting, and large hydraulic 
pump motors.

The system, as shown in figure 3, features two 
forward 115 VAC external power receptacles to 
service the airplane on the ground without the APU 
and two aft 115 VAC external power receptacles 
for maintenance activities that require running the 
large-rated adjustable speed motors.

ENGINE AND APU START

The 787’s engine-start and APU-start functions  
are performed by extensions of the method that 
has been successfully used for the APU in the 

Loads
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Generator
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External Power
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External Power
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Remote Power 
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Figure 3

The 787’s electrical system uses a remote  
distribution system that saves weight and  
is expected to reduce maintenance costs.

Centralized Distribution:  
Circuit Breakers, Relays,  
and Contactors

Remote Distribution:  
Solid-State Power Controllers  
and Contactors

TRADITIONAL 787

Figure 4.1: A comparison between the EPS system in traditional aircrafts and the one
typical of modern aircrafts, such as the Boeing 787. The main difference is the distributed
architecture of the modern design, introduced to increase reliability and reduce cost. The
details about the components in the picture are discussed in Section 4.1. Image from [79].

how such components can be combined to obtain a full controller for the plant.

4.1 EPS Details

Figure 4.2 shows an EPS architecture patented by Honeywell International Inc. [58], which
implement the changes discussed in the previous section. Figure 4.3 presents a simplified view
of the same architecture, in the form of a single-line diagram1 [59, 61, 41]. Generators (as
those on the top left and right sides of the diagram) deliver power to the loads (e.g., avionics,
lighting, heating, and motors) via AC and DC buses. In the event of generator failures,
Auxiliary Power Units (APUs) will provide the required power. Some buses supply loads
which are critical, therefore they cannot be unpowered for more than a predefined amount of
time. Other, non-essential, buses supply loads that may be shed in the case of a fault. The
power flow from sources to loads is determined by contactors, which are electromechanical

1Single line diagrams are usually used to simplify the description of three-phase power systems.
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0. Abstract

Figure 4.2: Single line diagram of a typical EPS, as it appears in [58]. The system includes
redundant high-voltage (AC) and a low-voltage (DC) power distribution sections. Generators
and loads are connected through buses. A set of contactors controls the power flow.

switches that can be opened or closed. Transformer Rectifier Units (TRUs) convert and
route AC power to DC buses.

The function of the controller, called Bus Power Control Unit (BPCU), is to react to
changes in system conditions or failures and reroute power by actuating the contactors,
ensuring that essential buses are adequately powered. Generators, APUs, and TRUs are
components subject to failures.

4.2 EPS Specification

Our goal is to verify in one case, synthesize in the other, the logic of the BCPU from a set of
subsystem controllers, described by a library of LTL A/G contracts. In our model, controller
inputs are expressed as Boolean variables, corresponding to the state of the various physical
elements (i.e., presence or absence of faults). Controller outputs are also described using
Boolean variables and represent the status of the contactors in the system (open or closed).
At this level of abstraction, contactors are assumed to have a negligible reaction time.
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Figure 4.3: Simplified single line diagram of the EPS [58]
.

Table 4.1 illustrates the set of specifications that the BPCU needs to satisfy. The first
two rows on the left describe what are the input and output ports of the EPS plant and
their types, indicated in parenthesis next to the port names (Figure 4.4 shows the type tree
associated with ports in the specification and library components). Types compatibility is
encoded as a set of library constraints, described in Section 4.3. In total, each specification is
defined over 6 input and 10 output ports.

Input ports GL, GR, AL, AR, RL, RR represent the environment event of failure of the left
and right generator, APU, and TRU, respectively. Output ports C1, . . . , C10 represent the

Figure 4.4: Tree representing the typeset used in the EPS case study.

state of the contactors. The second column of Table 4.1 describes a set of 9 specifications, all
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Input Ports
GL, GR

AL, AR
RL, RR

(ActiveGenerator)
(BackupGenerator)

(Rectifier)

Output Ports

C1, C4

C2, C3

C5, C6

C7, C8

C9, C10

(ACGenContactor)
(ACGenContactor)

(ACBackContactor)
(DCBackContactor)
(DCLoadContactor)

Assumptions
(common to all)

¬GL ∧�(GL → #GL)∧
¬GR ∧�(GR → #GR)∧
¬AL ∧�(AL → #AL)∧
¬AR ∧�(AR → #AR)∧
¬RL ∧�(RL → #RL)∧
¬RR ∧�(RR → #RR)

S1 C1 ∧�(GL → #¬C1)

S2 C4 ∧�(GR → #¬C4)

S3 �(AL → #¬C2)

S4 �(AR → #¬C3)

S5 �¬(C2 ∧ C3)

S6 �[(¬GL ∧ ¬GR)→ 3¬(C5 ∧ C6)]

S7

�[(¬GL ∧ ¬AL ∧ ¬AR ∧ ¬GR)→
3(¬C2 ∧ ¬C3 ∧ ¬C5 ∧ ¬C6)]

S8 �[¬(RL ∧RR)→ C9]

S9 �[¬(RL ∧RR)→ C10]

Table 4.1: Set of system specifications S1 . . . S9 to satisfy. Input ports reflect the status of
EPS elements (such as generators), while output ports represent contactors. Assumptions
are common to all the specifications and capture the expectation that when a component
fails, it will not be operational again. Guarantees include the promise that faulty generators
will be isolated, no short-circuit will happen, and loads will always be powered.

sharing the same assumptions. In this example, we assume from the environment that all the
components do not start to operate in a faulty state (see, for instance, ¬GL in the first line
of the assumptions in Table 4.1, referring to the left generator), and if a component breaks,
then it will stay broken (specified, for the left generator, by �(GL → #GL)). Specifications
S1 to S4 require that if a generator or APU breaks, then it will be disconnected from the rest
of the EPS in the next execution step. Note that S1 and S2 require also the two generators
to be initially connected to the rest of the plant. S5 requires the absence of a short circuit
between the two APUs, while S6 requires the absence of a short circuit between generators in
case they are both healthy (after an initial setup period). Furthermore, S7 specifies that bus
B3 needs to be isolated if no faults in generators or APUs occur. Finally, S8 and S9 require
that DC loads need to be connected to the plant if at least one TRU is working correctly.

4.3 EPS Library

Table 4.2 shows the components and the user-defined constraints (in this example only type
compatibility) in the library. Every component is described by its I/O ports (annotated
with their types), and its specification as an A/G pair. All the components make some
assumptions over the state of a certain type of EPS elements and provide a guarantee over
the state of some contactors. Consider, for instance, component B1. It just assumes that a
certain generator is not initially broken (note that the type of the input variable allows it to
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be connected to either a generator or an APU), and guarantees that the contactor will be
always open. Clearly, B1 is not a good candidate to satisfy either S1 or S2, since they require
the contactor to be closed at least initially. Similarly, all the other components in the library
encode a particular behavior that can be used to control parts of the EPS.
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Comp. Input Ports Output Ports Assumptions Guarantees

A1 f (Generator) c (ACGenContactor)
¬f∧
�(f → #f)

�(f → 3¬c)

B1 f (Generator) c (ACGenContactor) ¬f �(¬c)

C1 f (ActiveGenerator) c (ACGenContactor)
¬f∧
�(f → #f)

�(f → ¬c)∧
�(¬f → c)

D1 f (ActiveGenerator) c (ACGenContactor)
¬f∧
�(f → #f)

c∧
�(#f → #¬c)∧
�(¬f → c)

E1
f1

f2

(Generator)
(Generator)

c (ACBackContactor)
¬f1 ∧ ¬f2∧
�(f1 → #f1)∧
�(f2 → #f2)

�((f1 ∨ f2)→ c)∧
�((¬f1 ∧ ¬f2)→ ¬c)

F1
f1

f2

(BackupGenerator)
(BackupGenerator)

c1

c2

(ACGenContactor)
(ACGenContactor)

¬f1 ∧ ¬f2∧
�(f1 → #f1)∧
�(f2 → #f2)

�[(¬f1 ∧ ¬f2)→
(¬c1 ∧ ¬c2)]∧
�[(f1 ∧ ¬f2)→
(¬c1 ∧ ¬c2)]∧
�[(¬f1 ∧ f2)→
(c1 ∧ c2)]∧
�[(f1 ∧ f2)→
(¬c1 ∧ c2)]

G1

f1

f4

f2

f3

(ActiveGenerator)
(ActiveGenerator)

(BackupGenerator)
(BackupGenerator)

c1

c4

c2

c3

(ACBackContactor)
(ACBackContactor)
(ACGenContactor)
(ACGenContactor)

¬f1 ∧ ¬f2 ∧ ¬f3 ∧ ¬f4∧
�(f1 → #f1)∧
�(f2 → #f2)∧
�(f3 → #f3)∧
�(f4 → #f4)

�(f2 → ¬c2)∧
�(f3 → ¬c3)∧
�(¬(c2 ∧ c3))∧
�[(¬f1 ∧ ¬f4)→
(¬c1 ∧ ¬c2 ∧ ¬c3 ∧ ¬c4)]∧
�[(¬f1 ∧ ¬f3 ∧ f4)→
(¬c1 ∧ ¬c2 ∧ c3 ∧ c4)]∧
�[(f1 ∧ ¬f2 ∧ ¬f4)→
(c1 ∧ c2 ∧ ¬c3 ∧ ¬c4)]∧
�[(¬f1 ∧ ¬f2 ∧ f3 ∧ f4)→
(¬c1 ∧ c2 ∧ ¬c3 ∧ c4)]∧
�[(f1 ∧ f2 ∧ ¬f3 ∧ ¬f4)→
(c1 ∧ ¬c2 ∧ c3 ∧ ¬c4)]∧
�[(f2 ∧ f3 ∧ (f1 ∨ f4))→
(c1 ∧ ¬c2 ∧ c3 ∧ c4)]

H1 f (Rectifier) c (ACLoadContactor) ¬f �(¬f → c)∧
�(f → ¬c)

I1
f1

f2

(Rectifier)
(Rectifier)

c1

c2

(DCBackContactor)
(DCBackContactor)

¬f1 ∧ ¬f2

�[(¬f1 ∧ ¬f2)→
(¬c1 ∧ ¬c2)]∧
�[(f1 ∨ f2)→
(c1 ∧ c2)]

L1
f1

f2

(Rectifier)
(Rectifier)

c (DCLoadContactor) ¬f1 ∧ ¬f2 �c

Table 4.2: Structure of the EPS library. In our experiments, the library contained first 2 and
then 4 instances of these components, for a total of 20 and 40 elements.
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Chapter 5

More Scalable Refinement Checking
with Contract Libraries

In this chapter, we discuss techniques for the verification of designs using LTL A/G contracts.
In general, given a specification contract and a system described by a composition of contracts,
system verification reduces to checking that the composite contract refines the specification
contract, i.e., that any implementation of the composite contract implements the specification
contract and is able to operate in any environment admitted by it. For LTL A/G contracts,
refinement checking reduces to an LTL satisfiability checking problem, which can be very
expensive to solve for large composite contracts. We describe a scalable approach to refinement
checking that relies on local refinement assertions stored in a library of contracts. We propose
an algorithm that, given such a library, breaks down the refinement checking problem into
multiple successive refinement checks, each of smaller scale. We illustrate the benefits of the
approach on the EPS case study introduced in Chapter 4, where we are able to obtain up to
two orders of magnitude improvement in terms of execution time.

After introducing and discussing the motivation of this work in Section 5.1, in Section 5.2
we present the formulation of the refinement check problem with library (RCPL). Section 5.3
and Section 5.4 detail, respectively, the proposed algorithm and the application example.
Finally, we derive conclusions in Section 5.5.

5.1 Introduction

An important task for the successful deployment of a contract-based methodology is refinement
checking. In all contract frameworks, given a global specification contract and a system, also
described by a composition of contracts, system verification reduces to checking that the
composite contract refines the specification contract. This verification step goes beyond the
mere, although important, validation of user-provided designs, but is a key element in the
definition of highly automated design frameworks, where maintaining consistency between
successive design refinement steps is of paramount importance. Even if refinement checking
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can be carried out compositionally, it can still be very expensive to solve for large composite
contracts. For LTL A/G contracts, refinement checking reduces to an LTL satisfiability
checking problem, which is PSPACE-complete [80]. Moreover, even if contracts are not
captured in LTL but instead are expressed directly in an automata-based formalism such as
interface automata, for which refinement checking is polynomial [1], the method still suffers
from scalability issues due to state explosion. Indeed, the size of the system automaton is
often prohibitive, as the system is formed by composing several sub-systems.

We propose an algorithm which, given such a library, breaks down the refinement checking
problem into multiple successive refinement checks, each of smaller scale. While our principal
focus here is to illustrate the benefits of our approach when specification and components are
expressed as LTL A/G contracts, we want to stress how, in principle, the same considerations
hold for any contract framework.

The contribution of our work is twofold:

• we propose an algorithm to improve the performance of refinement checking, the core
verification task underlying any proof obligation in contract-based design;

• we illustrate the benefits of a library-based approach for contract-based verification on
a case study of industrial relevance.

5.2 Problem formulation

Definition 5 (Refinement Check Problem (RCP)). Let Z be a set of contracts, and Cs = (C1⊗
C2⊗· · ·⊗Cn)θ be a composition of contracts specifying a system, where C1 = (I1, O1, ϕ1, ψ1),
. . . , Cn = (In, On, ϕn, ψn) ∈ Z and θ is an interconnect as defined in Section 3.2.1.6. Let
also Cp be a property expressed as a contract. Then, to ensure that any implementation of
Cs satisfies Cp and can operate in all environments admitted by Cp, we need to verify that
Cs � Cp.

For LTL A/G contracts, as described in Section 3.5, RCP can be solved using LTL
satisfiability solving techniques, which suffers from the well-known state-explosion problem.
In subsequent sections, we will refer to RCP indicating a routine that solves the refinement
problem using such techniques. To perform such task more efficiently, we recur to a different
problem formulation, which relies on a library of contracts as an additional input.

5.2.1 Library of Contracts and Library Validation Problem

As introduced in Section 3.3, a library of contracts L is a pair (Z,R) where:

• Z = {C1, ..., Cn} is a finite set of contracts such that each contract has unique variables;

• R is a set of relations over the contracts in Z.
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In the context of this chapter, we specialize the set of constraints R to represent refinement
relations between contracts in Z. Ideally, refinement relations are assertions made by library
designers based on their knowledge of the system architecture at hand.

Every refinement relation Ri ∈ R has the form

Ri = (CRi, CAi, θi)

where CRi = (Ci1 ⊗ · · · ⊗ Cik)θi for a certain interconnect θi, Ci1 , ..., Cik , CAi ∈ Z. For each
relation Ri, we have that

Ri = (CRi, CAi, θi)⇒
{
CRi � CAi if k > 1
CRi ≺ CAi if k = 1

(5.1)

meaning that if k = 1, we require that CRi strictly refines CAi, i.e., the two contracts are
not equivalent, thus CRi � CAi and CAi 6� CRi. This constraint is introduced to avoid, in
the library, the presence of circular dependencies, and therefore ensure termination of the
algorithms presented below. For sake of simplicity, later, we will call the contract Ci1 the
root of Ri.

Definition 6 (Library Validation Problem (LVP)). We say that a library L = (Z,R) is
valid if all its refinement relations in R are true. The LVP is, then, the problem of checking
whether a given library is valid.

A𝑎𝐴 𝑏𝐴 C𝑎𝐶 𝑏𝐶

D𝑎𝐷 𝑏𝐷B𝑎𝐵
𝑏𝐵

𝑐𝐵

⊗ 𝜃1 = { 𝑎𝐷, 𝑏𝐴 , 𝑎𝐴, 𝑎𝐶 , 𝑏𝐷, 𝑏𝐶 }
𝜃2 = { 𝑎𝐴, 𝑐𝐵 , 𝑎𝐵, 𝑎𝐷 , 𝑏𝐴, 𝑏𝐷 }

⊗

Figure 5.1: Example contract library with refinement assertions.

Example 3 (Contract Library and Refinement Relations). Figure 5.1 represents a contract
library, L′, where its refinement relations are emphasized. In this case, L′ = (Z ′,R′) where
Z ′ = {A,B,C,D}, and R′ = {R1, R2}. We have that:

• R1 = ((A⊗D)θ1, C, θ1), where θ1 = {(aD, bA), (aA, aC), (bD, bC)};

• R2 = ((A⊗B)θ2, D, θ2), where θ2 = {(aA, cB), (aB, aD), (bA, bD)}.

When a library of contracts defined as in Section 5.2.1 is available as an additional input,
the Refinement Check Problem with Library (RCPL) can be formulated, then, as a special
case of RCP.
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Definition 7 (The Refinement Check Problem with Library). Let Cp be a contract represent-
ing a system specification, L = (Z,R) be a contract library, and Cs = (C1 ⊗ C2 ⊗ · · · ⊗ Cn)θ
be a system contract, for a certain θ and C1, C2, . . . , Cn ∈ Z. Then, check whether Cs � Cp.

5.3 Scalable Contract Refinement Checking

5.3.1 Library Validation

Given a library defined as in Section 5.2.1, the library verification process ensures that all
its refinement assertions are correct. If any of such refinement relations is not verified, the
returned value of the algorithm will be False. A description of the library verification process
is given in Algorithm 1.

1 function LibraryValidation:
Input: library L = (Z,R)
Output: True if all refinement relations in the library are true, False otherwise

2 foreach (CRi, CAi, θi) ∈ R do
3 if k > 1 and CRi 6� CAi then return False;
4 if k = 1 and CRi 6≺ CAi then return False;

5 end
6 return True;

7 end

Algorithm 1: Checks whether the input library is valid.

Each refinement check in the algorithm is performed by solving an RCP instance as
described in Definition 5, which is reasonable in terms of computation time, since aggregations
of library contracts are expected to have a small size. Moreover, the overall efficiency of
the LVP is deemed to be less critical since it is performed only once, outside of the main
verification flow.

5.3.2 Checking Refinement with Contract Libraries

Our refinement checking procedure is described in Algorithms 2, 3, and 4. We start with a valid
library L = (Z,R), a property contract Cp (where possibly Cp /∈ Z), and a system contract
Cs, obtained as the composition of a set of contracts S = {C1, . . . , Cn}, C1, . . . , Cn ∈ Z,
opportunely interconnected according to a certain θ. The system contract Cs represents the
specification of a complex system, while the property contract Cp captures a requirement
that must be satisfied by the system. We further assume that, given a variable v such that
v ∈ Oi, belonging to a contract Ci ∈ S, then v /∈ Oj, for Cj ∈ S and j 6= i, meaning that
each variable is controlled only by one contract in S or by a legal environment of Cs.
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RCPL

BuildAbstraction RCP

PropagateNoAbstraction

library 
match

Figure 5.2: Representation of the RCPL algorithm.

We solve the RCPL using the algorithm represented in Figure 5.2 and consisting of
two nested loops. In the inner loop, the procedure BuildAbstraction tries to create a
maximal abstraction for Cs given the refinement assertions in L and an indication about
which contracts can be abstracted. As a result, some of the contracts in S will be replaced by
an equal or smaller number of more abstract contracts, resulting in a composition that we will
denote as Cabstr. Since, in general, a more abstract contract is expressed by smaller formulas,
Cabstr will be simpler and more compact than Cs. The indication on which contracts can be
abstracted is provided via the outer loop by the routine PropagateNoAbstraction.

In the outer loop, refinement between Cabstr and Cp is checked by the RCP routine. If
Cabstr � Cp holds, then Cs � Cp will also hold since, by construction, we have Cs � Cabstr
and the RCPL routine terminates. If the property is not verified at the current level of
abstraction, subsequent iterations will use a less and less abstracted representation of Cs. In
the worst case, no abstraction is performed and RCPL reduces to an instance of RCP with the
not abstract contract. The outer loop of the RCPL procedure is illustrated in Algorithm 2.
To control the level of abstraction, each contract (including Cp) has an associated Boolean
flag that corresponds to a no-abstraction constraint. If the flag is True, the contract will
not be substituted by a more abstract one, even if this is available in the library. As shown
in line 9 in Algorithm 2, the main loop terminates when Cabstr � Cp or when the function
BuildAbstraction cannot return a more abstract contract.

The procedure BuildAbstraction in Algorithm 3 implements the inner loop of RCPL.
It accepts as inputs a library L = (Z,R), a contract Cs composed of contracts in Z, and a
list of flags A built as described in Algorithm 2. The algorithm tries to abstract Cs by using
the information in L until no progress is made. At each iteration, a copy of the current set
of contracts S is maintained in S ′ and the abstractionCondition is checked on each contract
Ck ∈ S ∩ S ′. If it evaluates to true, a subset of contracts is matched to an aggregation of
contracts CRi in L and then replaced by its abstraction CAi. The abstractionCondition requires
the following sub-conditions to hold:
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1 function RCPL:
Input: specification as contract Cp, library of contracts L = (Z,R), contract

Cs = (C1,⊗ · · · ⊗ Cn)θ where each Ci ∈ Z
Output: True if Cs � Cp, False otherwise

2 S ← {C1, . . . , Cn, Cp};
3 A← hash table such that A[Cp] = True and A[Ci] = False, 1 ≤ i ≤ n;
4 Cabstr ← copy of Cs; // init assignment, copy as in Def. 4

5 repeat
6 Cold ← Cabstr;
7 S ′ ← BuildAbstraction(A,L,Cs); // see Algorithm 3

8 Cabstr ← ⊗{Ci | Ci ∈ S ′}θ;
9 if Cabstr � Cp then return True;

10 A← PropagateNoAbstraction(A,S, θ); // see Algorithm 4

11 until Cabstr 6≡ Cold;
12 return False;

13 end

Algorithm 2: Solves the RCPL problem by iteratively building and verifying abstrac-
tions. In each iteration, the abstraction is closer to the original contract.

• Ck is not flagged by a no-abstraction constraint, that is A[Ck] = False;

• ∃Ri = (CRi, CAi, θi) ∈ R such that Ck and the root of Ri are equivalent;

• ∃Ck1 . . . Ckm ∈ S ∩ S ′, such that A[Ck1 ] = · · · = A[Ckm ] = False, and a renaming θa
such that CRiθa = Ck ⊗ Ck1 ⊗ · · · ⊗ Ckm , i.e., there exists a subset of contract that
can be abstracted and such that, when composed with Ck, generate a contract that is
equivalent to CRi;

• (ORiθa \ OAiθa) ∩ Ir = ∅, Cr ∈ S ′ \ {Ck, Ck1 , . . . ,Zkm}, i.e. no substitution is made if
there is some other contract in Cs, which is not in {Ck, Ck1 , . . . , Ckm}, and such that at
least one of its input variables is missing a connection in the abstract contract.

The replacement of the contracts in the original list as well as the selection of candidate
abstractions from the library are currently performed in a random order. More sophisticated
heuristics are possible, although we do not explore their application at this time.

Termination of BuildAbstraction is guaranteed since contract Cabstr will not change
after a certain number of iterations. In fact, the number of matches of contracts in R
performed in line 6 is finite. Therefore, since the library is finite, we just need to prove the
absence of circular dependencies between contract relations in R. To show this, we observe
that for each matching relation Ri = (CRi, CAi, θi), with CRi = (Ci1 ⊗ · · · ⊗ Cik)θi, there are
two possible cases. If k > 1, after replacing CRi with CAi, the number of contracts in S
decreases. Obviously, this operation can only be performed a finite number of times. On the
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1 function BuildAbstraction:
Input: library of contracts L = (Z,R), composite contract Cs = (C1,⊗ · · · ⊗ Cn)θ

where each Ci ∈ Z, a hash table A as in Algorithm 2
Output: set of contracts S = {Ca1 , . . . , Cam}, such that Cs � (Ca1 ⊗ · · · ⊗ Cam)

2 S ← {C1, . . . , Cn};
3 repeat
4 S ′ ← S;
5 foreach Ck ∈ S ∩ S ′ do
6 if abstractionCondition is satisfied for some Ck1, · · · , Ckm, CAi, and θa then
7 S ′ ← (S ′ \ {Ck, Ck1, · · · , Ckm}) ∪ {CAiθa};
8 Cabstr ← ⊗{Ci | Ci ∈ S ′}θ;

9 end

10 end
11 S ← S ′;
12 Cold ← Cabstr;

13 until Cabstr ≡ Cold;
14 return S;

15 end

Algorithm 3: Uses relations in the library to build an abstraction of the input contract
Cs. Cf. Section 5.3.2 for details on the satisfaction of the condition in line 6.

other hand, if k = 1, since we requires CRi ≺ CAi, we will always have CAi ⊀ CRi. Therefore,
it is impossible to find in the library a relation R′i = (CAi, CRi, θi), which would represent a
circular dependency between Ri and R′i.

The runtime of BuildAbstraction is mostly determined by the time it takes to find
a matching between a set of library contracts and a subset of the contracts composing Cs.
Such a matching problem can be reduced to a graph isomorphism problem, which can be
efficiently solved [82, 8]. In our case, graphs can be built to represent contract compositions,
while incorporating information on the names of the variables of the component contracts
and their isomorphism.

The heuristic used in the propagation of the no-abstraction constraint is, finally, detailed
in Algorithm 4. We propose an incremental propagation of the constraint according to
the syntactical dependence between contracts. The algorithm receives as a parameter the
list of contracts that compose Cs and their interconnection θ, extended with the addition
of the property contract Cp (the first to receive the no-abstraction mark). Each time
PropagateNoAbstraction is called, the no-abstraction mark will be propagated to all
contracts that share at least one of their output variables with a marked contract. This
approach is similar to the concept of “cone of influence” used in Counterexample-Guided
Abstraction Refinement [20].

We provide an example of execution of our algorithm in Figure 5.3. The contract in
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1 function PropagateNoAbstraction:
Input: set of contracts S = {C1, . . . , Cn}, hash table A as in Algorithm 2,

interconnect θ
Output: hash table A′

2 A′ ← A;
3 M ← {};
4 foreach Ck ∈ S do
5 if A′[Ck] = True then
6 foreach Ch ∈ S do
7 if Ik ∩Oh 6= ∅ then
8 M ←M ∪ {Ch};
9 else if θ connects variables in Ik and Oh then

10 M ←M ∪ {Ch};
11 end

12 end

13 end

14 end
15 foreach Ci ∈M do
16 A′[Ci]← True;
17 end
18 return A′;

19 end

Algorithm 4: Marks a contract as non-abstractable if it is connected to a non-
abstractable contract. Each time the function is called, the size of the non-abstractable
set grows until all contracts are non-abstractable.

Figure 5.3 (a) is obtained by composition of contracts from the library in Figure 5.1. The
arrows denote connections. We assume that the property contract Cp is mapped only to
variables aB and cD. We then call the RCPL algorithm using Cp, Cs in Figure 5.3 (a), and
L′ from Example 3. At the first execution of BuildAbstraction, all contracts can be
potentially abstracted. However, there are only two possible matches between portions of the
architecture in Figure 5.1 and the refinement relations in R′. In particular, the composite
contract B ⊗ A2 can be abstracted as D1, an instance of D, while A1 ⊗D can be abstracted
as C. However, B ⊗ A2 does not satisfy the last condition for the abstractionCondition to
hold in line 6 of Algorithm 3. In fact, replacing B ⊗ A2 with D1 would cause the loss of a
variable (bB) that should be shared with A, hence an incorrect abstraction. Conversely, the
substitution of A1⊗D with C is legal and the resulting contract composition, Cabstr, is shown
in Figure 5.3 (b). If Cabstr � Cp, the algorithm would terminate by executing an instance of
the RCP on a more compact representation of the system contract. Otherwise, if Cabstr � Cp,
PropagateNoAbstraction would mark D with a no-abstraction annotation. At this
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Figure 5.3: Representation of a composite contract obtained from the library in Figure 5.1
(a) and its abstraction (b).

point, no contract aggregation can be further abstracted, and the algorithm terminates by
solving an instance of the RCP on the original composition.

5.4 Application Example: the EPS Case Study

The proposed algorithm was implemented in Python and applied on the verification of
a controller for the EPS case study defined in Chapter 4. To solve the LTL satisfiability
problems, we used NuSMV [18]. All tests were performed on a 2.3-GHz Intel Core i7 machine
with 8 GB of RAM.

(a) (b)

(d)
(e)

(c)

Input vars(2):
failures
Output vars(4):
contactor
status
communication

Input vars(4):
failures
Output vars(8):
contactors
status
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status
communication

Input vars(2):
failures
Output vars(4):
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status
communication

Input vars(3):
failures
Output vars(5):
contactors
status
communication

Figure 5.4: Subsets of components of the EPS plant and number of variables associated with
the related contracts, including communications variables and variables related to the health
status of plant components (e.g. buses, contactors).
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Each contract in our library specifies a “local” controller for a portion of the EPS
plant, i.e., a subset of its components, derived from the specifications in Section 4.3. In
addition to sensing (input) and actuation (output) variables, here contracts include a set
of communication variables to propagate information on error conditions and component
health status. Figure 5.4 shows some of the EPS subsystems supported by our library. A
contract for the subsystem in Figure 5.4.a) specifies that the contactor should be opened and
the failure variable asserted if the generator fails; otherwise the contactor must be closed.
For the subsystem in Figure 5.4.c), the same requirement as for Figure 5.4.a) will hold, with
the addition that both generators should never be connected at the same time to avoid
paralleling AC sources. For the subsystem in Figure 5.4.e), we require that the contactor on
one side should be closed upon reception of a failure signal from a component connected to
the opposite side. The contract for the subset in Figure 5.4.b) specifies that the load should
be isolated in case of failures in one of the interconnected portions of the plant, or in the
rectifier unit. Finally, the subsystem in Figure 5.4.d) is associated to a contract similar to the
one in Figure 5.4.e), while handling one additional bus and only two interconnection branches.
For each portion of the plant, the library can provide multiple contracts to specify different
sets of behaviors. Moreover, we provide contracts that specify abstractions of controllers
for specific portions of the plant. For example, a contract may represent the behavior of
the controller associated to an idealized generator, such as the component A1 in Table 4.2,
which abstracts both the sub-systems in Figure 5.4.a) and 5.4.c). Overall, the library includes
17 contracts and 9 refinement assertions. The verification of the refinement assertion using
NuSMV required 1.55 s.

A controller for the EPS has been assembled out of 5 different contracts from the library,
associated to the subsystems shown in Figure 5.4. The composite contract has a total of
46 variables. On the other hand, the most compact abstraction of the design based on the
available library had only 12 variables. On this design, we checked the following properties
expressed as LTL A/G contracts (cf. Table 4.1 for details):

• Cp1, ..., Cp4: If generator G ∈ {GL, AL, AR, GR} fails, the closest contactor c ∈ {c1, ...,
c4} must be opened;

• Cp5: If generators GL and GR are healthy, contactors c5 and c6 must be opened;

• Cp6: Contactors c2 and c3 cannot be both closed at the same time;

• Cp7, ..., Cp10: If at least one generator is healthy, AC loads cannot be unpowered
(variations of specification S7 of Table 4.1);

• Cp11: If all generators are healthy, bus B5 must not be powered (variation of specification
S6 of Table 4.1);

• Cp12, Cp13: If at least one generator is healthy, c11 and c12 cannot stay opened for more
than three clock cycles.
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This set of property contracts has been verified using both the RCPL and the RCP algorithms.
The total execution time was 123.1 s for RCPL, and 638.82 s for RCP. Figure 5.5 shows
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Figure 5.5: Execution time of RCPL and RCP algorithms for the EPS case study for the
verification of the set of 13 property contracts

the execution times required by each verification task. For more than half of the properties
(Cp1, Cp2, Cp3, Cp4, Cp5, Cp6, Cp11), RCPL allows to obtain a performance improvement of two
orders of magnitude, by using an abstraction of the controller with only 12 variables. For Cp7
and Cp8 RCPL shows a performance improvement of one order of magnitude, while for the
other properties, the execution times are comparable to the one obtained with plain RCP.
Cp10 produced the worst execution time, using an abstraction with 37 variables. Figure 5.6
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Figure 5.6: LTL formula size ratio of the abstract EPS contract w.r.t. the non-abstract
version

shows the difference in terms of formula sizes, computed as the ratio between the non-abstract
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EPS contract size and the one of its maximal abstraction obtained at the first iteration of
the BuildAbstraction algorithm. Formulas in abstract contracts are indeed smaller than
the original ones, which provides an explanation of the performance improvement obtained
using RCPL.

To test the scalability of the algorithm, the same properties have been checked on an
extended plant architecture, including one more generator, 7 contactors, 2 rectifier units, 2
AC loads, 2 DC loads and one bus. The contract specifying a controller for the new plant
includes 66 variables. Verification of the whole property set was performed in 1724.43 s
with RCPL and 8371.01 s with RCP. Also in this example, an execution time two orders of
magnitude smaller for RCPL has been observed. In the best case, the generated abstract
contract included only 16 variables.

5.5 Conclusion

We addressed the problem of performing scalable refinement checks for contract-based design.
We presented an algorithm that leverages a pre-characterized library of contracts enriched with
refinement assertions to break the main verification task into a set of smaller tasks. We applied
the proposed algorithm to verify controllers for aircraft electrical power systems, with up to
two orders of magnitude improvement with respect to a standard implementation based only
on LTL satisfiability solving. A full-fledged theoretical study of its complexity is challenging,
since its runtime is highly dependent on the characteristics of the library, in addition to
the structure of the system and the property under consideration. A characterization of
the role of the library via domain-related benchmarks will be object of future work. We
here anticipate that the benefits of having a richer library in terms of refinement assertions
will largely repay the overhead of building it. In fact, we recall that the library verification
process must be performed only once, outside of the main verification flow. Moreover, the
proposed algorithm already offers a way of automatically proving new refinement relations
that can be effectively used to further populate the original library so as to enrich it for
future verification tasks.
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Chapter 6

Constrained Synthesis from Libraries
of Generic Components

In general, synthesis from libraries of components is the problem of building a network of
components from a given library, such that the network realizes a given specification. This is
an undecidable problem. It becomes decidable if we impose a bound on the number of chosen
components. However, the bounded problem remains computationally hard and brute-force
approaches do not scale.

In this chapter, we study methods for solving the problem of bounded synthesis from
libraries of generic components. By saying generic, we mean that we do not assume any
specific formalism describing the components, only requiring to be able to connect them
together (composition) and comparing them (refinement). Our solution is based on the
Oracle-Guided Inductive Synthesis (OGIS) paradigm. Although our synthesis algorithm
does not assume a specific formalism a priori, we present a parallel implementation which,
concretely, instantiates components defined as LTL A/G contracts. We show the potential of
our approach and evaluate our implementation by applying it to two industrial-relevant case
studies.

The rest of the chapter is organized as follows. We introduce the problem and discuss the
motivation for this work in Section 6.1, while in Section 6.2 we define the synthesis problem
we tackle and analyze its complexity, introducing a running example to explain in detail the
problem encoding and the approach we adopt. We propose a solution for a concrete version
of the problem in Section 6.3 and discuss implementation aspects in Section 6.4, including
the description of the parallel variant of our algorithm. In Section 6.5 we present the case
studies and empirical results. and we draw conclusions in Section 6.6.

6.1 Introduction

Synthesis from component libraries is the process of synthesizing a new component by
composing elements chosen from a library. This type of synthesis is able to capture the
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complexity of CPS by restricting possible synthesis outcomes to a set of well-tested, already
available components.

However, the general problem of synthesis from component libraries, where the components
are state machines, is undecidable [54]. In this chapter, we focus on a decidable variant of
the problem, where an explicit bound on the number of components in a solution is provided.
Our goal is to find a composition of components which satisfies a specification, when no
assumption on the formalism used to describe those components is made, besides requiring the
ability to connect components to allow them working together (composition), and comparing
them (refinement).

Although no particular formalism is assumed a priori, we cast a concrete version of this
problem using LTL A/G contracts as the underlying specification of components. We then
show how it is possible to solve this problem by presenting two variants of an algorithm,
a sequential and a parallel one, based on the Oracle-Guided Inductive Synthesis (OGIS)
paradigm [49]. To reduce the solution search space, this algorithm leverages designer hints,
types, and other constraints over components, possibly precomputed and stored in the libraries
as additional composition rules. To the best of our knowledge, this is the first time that a
concurrent synthesis algorithm is proposed for this problem, thanks to the decoupling of a
solution topology from its semantic evaluation.

Developing a synthesis algorithm which is agnostic of the formalism of the component
specifications is a crucial characteristic of the methods discussed in this chapter. Often, in
fact, OGIS approaches rely on sets of input values to describe counterexamples. This allows
to effectively guide the synthesis process, but it sacrifices flexibility as the input format
needs to be fixed, and it requires an oracle able to return a valid input as a counterexample.
Additionally, it is a problem in cases in which the input space is infinite, or when each input
has infinite size, as in the case of LTL. Here, we focus on the definition of a general synthesis
strategy that relies on an oracle which is only required to answer yes or no to a candidate
solution. In this case, the counterexample we look at is the candidate composition itself,
when it has been declared incorrect by the oracle. Later, in Chapters 7 and 8, we will relax
this constraint and present techniques that take full advantage of component formalisms,
albeit requiring a more capable oracle.

The implementation of the algorithms discussed in this chapter resulted in a tool called
pyco, able to exploit multiprocessor computer architectures to speed up synthesis. We
evaluate pyco by synthesizing two industrial-relevant designs: first, the controller of a
Brushless DC Electric Motor (BLDC), including both architectural and software aspects, and
then, the controller for an aircraft Electrical Power distribution System (EPS), introduced in
Chapter 4. This last problem, in particular, has already been studied using contracts [41, 61].
In these papers, however, contracts have been used mostly for verification and to describe
requirements, without playing any role in the controller synthesis process itself, performed
using standard reactive synthesis techniques. Here, contracts collected in the component
library represent controllers for a number of EPS subsystems. Our synthesis algorithm, for
the first time, operates directly on those contracts to compose a controller that satisfies all
the requirements.
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The contributions of this work, both theoretical and methodological, can be then summa-
rized as: (i) definition and analysis of the problem of constrained synthesis from component
libraries (CSCL); (ii) design and implementation of an algorithm to solve the CSCL problem,
leveraging precomputed, library-specific composition rules; and (iii) its application to two
industrial-relevant case studies, i.e., synthesis of a controller for a brushless DC electric motor
and an aircraft EPS.

6.2 Constrained Synthesis from Component Libraries

(CSCL)

In our framework, a component G ∈ G, where G is the domain representing the space of all
possible components, is a tuple G = (IG, OG, δG, σG, RG). IG is the set of input ports, OG

is the set of output ports, and δG is the component specification, expressed using a specific
notation (e.g., an A/G contract, or an LTL formula). Variables in δG correspond to ports
in IG and OG. IG, OG, and δG are all defined over a common set of symbols, or alphabet,
ΣIO. The function σG : IG ∪OG → T maps ports of G to elements in T , where T is a typeset.
A typeset is a poset consisting of a set of symbols (types) ordered by the subtype relation1.
For a, b ∈ T , the notation a ≤ b means that b is a subtype of a. Finally, RG is a set of logic
constraints over ports of G. We require that any two component specifications, say δ1 and
δ2, can be composed as δ = δ1 ‖ δ2. We also indicate refinement of δ2 by δ1 as δ1 v δ2

2.
From Chapter 3, however, we borrow the renaming mechanisms. Thus δ′ = δθ indicates the
component specification δ where the variables have been renamed according to θ.

A component library, reminiscent of a contract library defined in Section 3.3, is a tuple
L = (Z, T,RZ , f). Here, Z = {G1, . . . , Gn} is a finite set of components. Components in Z
are required to have unique ports (and variables), meaning that they are not shared with
other components. RZ is a set of logic constraints that encode connection rules over ports of
components in Z and types in T . Constraints in RG and RZ characterize a certain library,
and are used by the library designer to provide domain-specific insights that can be used to
speed up the synthesis process. The cost function f : ℘(G)→ R, where ℘(G) is the powerset
of G, maps sets of components from the domain G to real numbers, i.e., the cost of the
component.

The use of a cost function associated with the library derives from Platform-Based Design
principles, that is, components not only need to satisfy a specification, but they can also
expose non-functional characteristics which need to be optimized during instantiation. These
non-functional characteristics of components are captured in our framework using f . Here, f
is defined with the library, as different problem domains have different notions of cost.

1Without loss of generality, here we can consider the poset T being organized as a tree. This is enough to
obtain a simple type system with single inheritance, where all the types share the same root type (⊥). The
choice of T , however, does not have an impact on the general formulation of our framework.

2We use the symbols ‖,v to describe the composition and refinement of generic components, distinguishing
them from the contract composition and refinement, indicated with the symbols ⊗,�.
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Component connections are defined not only by constraints in RZ and RGs, but they also
need to be sound according to some general composition rules. For instance, we will never
allow two components to control the same output ports. These general composition rules
between components, described later in Section 6.2.2, are collected in a set called Q. These
rules are constraints that need to be applied no matter what a specific library defines.

We consider the system specification, or property, S = (IS, OS, δS, σS, RS), that needs to
be synthesized, as a component itself. In this way (through constraints in RS) a user of the
synthesizer is also able to provide design hints that are specific to the problem instance, such
as detailed input/output interface (in terms of ports and their types) as well as additional
constraints over those ports.

To simplify our discussion, for a library L = (Z, T,RZ , f), we will use the following set as
a shortcut to address all the ports of all components in it:

Plib =

|Z|⋃
i=1

IG1 ∪OG1 (6.1)

Similarly, to indicate all the ports in L and the ports in the system specification S, we use:

Plib∪S = Plib ∪ IS ∪OS (6.2)

The composition of two components G1 = (I1, O1, δ1, σ1, R1) and G2 = (I2, O2, δ2, σ2, R2)
is a new component G1 ‖ G2 = ((I1∪I2)\(O1∪O2), O1∪O2, δ1 ‖ δ2, σ1∪σ2, R1∪R2), assuming
that composition is also defined for δ1 and δ2. This means that ports that are shared between
input and output sets of the components, i.e., they are connected, are considered outputs in
the resulting composition. For instance, when input a is connected to output b, the resulting
composite component only contains output b (input a “disappears” since it is going to be
controlled by b). We also assume that there is no conflict between σ1 and σ2, meaning that
ports with the same name need to have the same type according to both σ1 and σ2:

∀p ∈ I1 ∪O1 : p ∈ I2 ∪O2 ⇒ σ1(p) = σ2(p)

We say that a component G1 refines a component G2, written G1 v G2, if and only if

I1 ⊆ I2, O2 ⊆ O1, and δ1 v δ2 (6.3)

where we assume that the formalism used to express component specifications δ1 and δ2

includes the notion of refinement. For instance, if δ1 and δ2 are logic formulas, δ1 v δ2 is
equivalent to the implication δ1 → δ2. Intuitively, if G1 refines G2, then δ2 will always hold if
δ1 holds, i.e., G1 can be safely used in place of G2.

As in the case for connection of component specifications, we lift the definitions of
interconnection through θ to apply to generic components, too. That is, renaming a component
G = (IG, OG, δG, σG, RG) according to a certain θ will yield Gθ = (IGθ , OGθ , δGθ = ρθ ⇒ δG,
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σGθ , RGθ), where

Iθ = (I ∪
{
y if ∃y : (x, y) ∈ θ

∣∣x ∈ I}) \Oθ

Oθ = O ∪
{
x if ∃y : (x, y) ∈ θ

∣∣x ∈ I} ∪ { y if ∃y : (x, y) ∈ θ
∣∣x ∈ O}

ρθ =
∧

x,y∈Iθ∪Oθ,(x,y)∈θ

x ≡ y

and where δGθ = ρθ ⇒ δG is the component specification reflecting the renaming implied by
ρθ within the context of the concrete formalism of δG, and σGθ , RGθ are updated accordingly.
For instance, by renaming a component G = (∅, {a, b}, δG, ∅, ∅), where δG is a LTL formula,
according to θ = {(a, b)} we get Gθ = (∅, {a, b},�(a = b)→ δG, ∅, ∅). In Chapter 3, instead,
we describe the details of the interconnection when the component specifications are A/G
contracts. Given two components G1, G2, we say that G1 is equivalent to G2 if and only if
there exists an interconnect, or renaming, θ′, such that G1θ

′ v G2θ
′ and G2θ v G1θ.

Hence, we can express logic constraints in RZ , RG, and RS, and model interactions
between components (e.g., when the output of a component is the input of another one) in
terms of properties of an interconnect θ, which will be used to define connections among
components in the library. We will write θx,y to indicate that a certain connection is logically
implied by the interconnect, i.e., ρθ ⇒ x ≡ y. On the other hand, we might want to indicate
that a certain renaming is not implied by θ. Thus, we write ¬θx,y to indicate that ρθ 6⇒ x ≡ y.

Note that using θ to define connections between components can, potentially, yield
inconsistent renaming of variables and thus inconsistent compositions of components. Consider,
for instance, three ports p, q, t and a function θ such that θq,p, θt,p, and ¬θq,t. Clearly, no such
renaming could be applied because the first two connections imply q ≡ t. In Section 6.2.2,
we describe how to properly constrain θ to avoid such situations.

Example 4 (Component Connection). Let

G1 = (I1, O1, δ1, σ1, R1) = ({a1, b1}, {c1}, c1 = a1 + b1, {a1, b1, c1} → {⊥}, ∅)
G2 = (I2, O2, δ2, σ2, R2) = ({a2}, {b2}, b2 = 2 · a2, {a2, b2} → {⊥}, ∅)

be two components and θ a renaming function specifying a single connection θb1,b2 (thus
we have also ¬θa1,b2 ,¬θc1,b2 ,¬θa1,a2, etc.). Let us also assume that component specifications
can be composed by taking their conjunction. Then, the composition (G1 ‖ G2)θ yields a
component

(G1 ‖ G2)θ =({a1, a2}, {c1, b1, b2},
b1 = b2 ∧ b2 = 2 · a2 ∧ c1 = a1 + b1, {a1, a2, b2, b1, c1} → {⊥}, ∅)

Example 5 (Running example: synthesize the modulo operation). We introduce here a
simple example to help the reader familiarize with the concepts introduced so far. Our objective
is to synthesize the modulo operation starting from a library of simpler arithmetic operations.
For simplicity, we assume only strictly positive integer inputs.
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Let us define our library to be Lop = (Zop, {⊥}, ∅, f(G) = 0), where we have only one
type (⊥) for all the ports and no additional constraints over ports and types. Zop =
{add, sub,mult, div} is a set containing addition, subtraction, multiplication and integer
division, and f(G) = 0 is a constant function.

Every component has two inputs and one output, and its specification is the associated
arithmetic operation. We assume no additional constraints over ports also at component level.
Thus we have:

add = ({aa, ba}, {ca}, ca = aa + ba, {aa, ba, ca} → {⊥}, ∅)
sub = ({as, bs}, {cs}, cs = as − bs, {as, bs, cs} → {⊥}, ∅)
mult = ({am, bm}, {cm}, cm = am · bm, {am, bm, cm} → {⊥}, ∅)
div = ({ad, bd}, {cd}, cd = bad/bdc, {ad, bd, cd} → {⊥}, ∅)

To successfully find a solution, we need to make sure the operations of composition
and refinement are defined for elements in Lop. Here, the composition of two component
specifications is the classical function composition, while the refinement relation can simply
be the equivalence between functions.

The specification is the component Smod = ({x, y}, {z}, z = mod(x, y), {x, y, z} → {⊥}, ∅).
We know that the modulo operation can be computed as mod(x, y) = x−bx/yc·y. A composition
of elements in Zop that implements Smod is shown in Figure 6.1: sub(x,mult(div(x, y), y)),
with connections θbs,cm, θam,cd, θx,as, θx,ad, θy,bd, θy,bm, θz,cs.

Figure 6.1: Modulo operation composition from elements in Lop.

In the following sections, we will define a set of rules to automatically obtain candidate
solutions which are topologically sound (e.g., adding the connection θz,cm should be illegal
because the output z is already connected, or controlled, by the port cs), and semantically
correct (e.g., having θz,cm instead of θz,cs would yield a composition which does not implement
the modulo operation, although topologically sound).

6.2.1 A combinatorial analysis of CSCL

The problem of composing a finite number of elements from a library is hard. In this
section, we quantify its combinatorial complexity by analyzing two simpler cases first and
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then putting the results together for the general case. As in the previous section, we
consider a library L = (Z, T,RZ , RT , f), with finite Z = {G1, . . . , Gn}, and a specification
S = (IS, OS, δS, σS, RS). Since we are interested in the worst-case scenario, in this case we
assume RZ = RT = RS = RG1 = · · · = RGn = ∅, and T = {⊥} (a typeset containing only
the root type).

First, we examine the case in which we already have a set of m components H =
{G′1, . . . , G′m}, where no additional variable renamings need to be specified, and we want to
find a single component Gz ∈ Z such that δz ‖ δ′1 ‖ · · · ‖ δ′m v δS. Assuming n is the number
of components in Z, we have n possibilities to try. Extending this example to include c ≤ n
unknown components is straightforward. In this case, there are n!

c!(n−c)! possible solutions,
assuming that the order of components does not matter.

On the other hand, we have a scenario in which we still have m components H =
{G′1, . . . , G′m}, but connections among them are missing. We want to connect the components
to each other, according to a certain function θ, such that (δ′1 ‖ · · · ‖ δ′m)θ v δS. The
complexity of this problem depends on the total number of ports. Assuming p is the number

of ports of a component, then there are 2
mp(mp−1)

2 possible solutions.3

Combining together the previous two examples yields the worst case for the CSCL scenario,
in which we want to find both components and their connections to satisfy S. Assuming every
component in our library Z has at most p ports, and a finite N as the maximum number of

components in a possible solution, one can see how in this case there are ΣN
c=1

n!
c!(n−c)!2

cp(cp−1)
2

possible solutions.

6.2.2 Synthesis Constraints

The analysis in Section 6.2.1 shows that the CSCL problem grows quickly with the number of
components and ports in the library. The role of the library-specific constraints is to mitigate
such complexity. We require RZ to contain at least the constraints defined in the following
paragraphs4:

• Connections must be consistent, according to the following properties which encode the
semantics of θ. Equation 6.4 tells us that if for three ports p, q, w we have θp,q and θq,w,
then it must be also θp,w:

∀p, q, w ∈ Plib∪S : θp,q ∧ θq,w ⇒ θp,w (6.4)

Equation 6.5 represents the fact that, logically, if p is connected to q, then q is also
connected to p:

∀p, q ∈ Plib∪S : θp,q ⇒ θq,p (6.5)

3Recall that the maximum number of edges in a graph of n nodes is n(n−1)
2 . Then, 2

n(n−1)
2 is the number

of all the subsets of those connections.
4Here we borrow the notation typical of first-order logic formulas, although all the formulas refer to a

finite number of elements.



CHAPTER 6. CONSTRAINED SYNTHESIS FROM LIBRARIES OF GENERIC
COMPONENTS 54

Equation 6.6 simply states that a port is always connected to itself:

∀p ∈ Plib∪S : θp,p (6.6)

• Two output ports of two different components in the library cannot be connected to
each other:

∀G,G′ ∈ Z : ∀p, q ∈ OG ∪OG′ : (p 6= q)⇒ ¬θp,q (6.7)

• Components representing a candidate solution are collected in the set H ⊆ Z, with
maximum size N . Inputs of a component in H must be connected either to inputs of S
or outputs of other components in H:

∀G ∈ H : ∀p ∈ IG : (∃s ∈ IS : θp,s) ∨ (∃G′ ∈ H : ∃q ∈ OG′ : θp,q) (6.8)

Example 6. Equation 6.7 prevents the connection between multiple outputs of com-
ponents in H. With respect to Ex. 5, this means enforcing ¬θca,cs, ¬θca,cm, ¬θca,cd,
¬θcs,cm, ¬θcs,cd, and ¬θcm,cd. Equation 6.8, instead, makes sure that no inputs of the
components in H are left unconnected. For instance, the composition in Figure 6.2
violates Equation 6.8, because as is not connected to any other port.

X

Figure 6.2: Illegal composition of elements in Lop (as disconnected).

• No distinct ports of S can be connected to each other. In this case, such constraint is
not too restrictive. If needed, in fact, one can relax this constraint by explicitly adding
a component in the library implementing the identity function:

∀s, r ∈ IS ∪OS : s 6= r ⇒ ¬θs,r (6.9)

• Inputs of the specification S cannot be connected to component outputs, because
otherwise in the resulting composition those inputs will be treated as outputs (as seen
in Section 6.2):

∀s ∈ IS : ∀G ∈ Z : ∀p ∈ OG : ¬θs,p (6.10)
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• Every input of the specification S has to be connected at least to an input of a component
in H (Equation 6.11), while every output of S has to be connected at least to an output
of a component in H (Equation 6.12):

∀s ∈ IS : ∃G ∈ H : ∃p ∈ IG : θs,p (6.11)

∀s ∈ OS : ∃G ∈ H : ∃p ∈ OG : θs,p (6.12)

Example 7. Equation 6.11 and Equation 6.12 ensure that there is a full mapping of
specification ports into components ports. For instance, the composition in Figure 6.3
violates Equation 6.12 because there is an output of the specification, z, which is not
connected to any component outputs.

X

Figure 6.3: Illegal composition of elements in Lop (z disconnected).

• Only ports with compatible types can be connected to each other, according to the
subtype relation defined in Section 6.2 and considering contravariant inputs and outputs.
This means that, given two ports p and q connected to each other, if p is an output
and q is an input, then σ(p) ≤ σ(q), and vice versa (similarly, in principle, to what is
described by de Alfaro and Henzinger in [1]):

∀G,G′ ∈ Z : ∀p ∈ IG, q ∈ OG′ : σG(p) 6≤ σG′(p)⇒ ¬θp,q (6.13)

6.2.2.1 Problem Definition

The following definitions formally introduce the problem of Constrained Synthesis from
Component Libraries (CSCL). Our goal is to describe the problem in a way that is as general
as possible. We achieve this by:

1. only requiring components to be defined using a formalism that provides the operations
of composition and refinement. Contracts, logic formulas, and finite state machines to
name a few, all satisfy this condition.
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2. requiring the library of components to satisfy at least the constraints presented in
Equations 6.4 to 6.13, allowing the designer, however, to add as many constraints as
necessary, according to the problem domain.

Definition 8 (CSCL problem). Let S = (IS, OS, δS, σS, RS) be a system specification, and
L = (Z, T,RZ , f) a library of components where RZ contains at least the constraints described
in Equations 6.4 to 6.13. Let also the operations of composition (‖) and refinement (v) be
defined for components in L. The problem of Constrained Synthesis from Component Libraries
consists of finding a finite set of components H = {G1, . . . , GN | Gi = (Ii, Oi, δi, σi, RGi) ∈ Z}
and a interconnect θ such that the cost function f is minimized according to:

minimize
{G1, . . . , GN}

f({G1, . . . , GN}) (6.14a)

subject to all synthesis constraints in RZ, RS, RGi , (6.14b)

(δ1 ‖ · · · ‖ δN)θ v δS (6.14c)

In case the function f is a constant, then the CSCL problem can be simplified as follows.

Definition 9 (Simplified CSCL problem). Let S = (IS, OS, δS, σS, RS) be a system specifica-
tion, and L = (Z, T,RZ , f) a library of components where RZ contains at least the constraints
described in Equations 6.4 to 6.13, and f is a constant. Let also the operations of composition
(‖) and refinement (v) be defined for components in L. The simplified CSCL problem consists
of finding a finite set of components H = {G1, . . . , GN | Gi = (Ii, Oi, δi, σi, RGi) ∈ Z} and a
interconnect θ such that:

all synthesis constraints in RZ, RS, RGi hold (6.15a)

(δ1 ‖ · · · ‖ δN)θ v δS (6.15b)

6.3 Solving a concrete instance of the CSCL problem

The CSCL problem in Def. 8 (and 9) is very general, and the most effective approach to
solving it depends on the structure of the library. For instance, a continuous cost function f
will require optimization techniques which are very different from a cost function which is
purely discrete, or which depends on the formalism used to describe component specifications.

In this section we discuss a solution based on the following assumptions:

• f can be solved using discrete optimization techniques;

• f does not depend on the formalism used to describe the specification of components.
This means that, for a component G, f(G) can be evaluated without considering δG.
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This choice allows us to effectively decouple the topological aspects of a candidate solution of
the CSCL problem in Def. 8, i.e., Equation 6.14a and 6.14b, from its semantic evaluation,
i.e., Equation 6.14c.

Under these assumptions, we propose a solution based on the OGIS paradigm, in which
synthesis is carried out by an iterative algorithm. In each iteration two major steps are
performed:

STEP 1 A discrete optimization problem is solved to retrieve a candidate solution, that is,
a set of components, and their connections, which minimizes the objective function and
satisfies all the synthesis constraints. With respect to Def. 8, this first step takes care
of Equation 6.14a and 6.14b, and provides the function θ used to solve Equation 6.14c.
This step, in general, can be solved by a constraint solver. With respect to Example
5, for instance, this step corresponds to the generation of possible solution candidates
such as sub(x,mult(div(x, y), y)), or add(x,mult(div(x, y), y)).

STEP 2 Equation 6.14c is checked by interrogating a tool, which we call verifier, able
to understand component specifications. The verifier determines whether the can-
didate composition, after proper interconnection of components, refines the global
specification δS. In Example 5, the verifier is the tool able to determine, indeed, that
sub(x,mult(div(x, y), y)) implements the modulo operation.

The choice of the verifier used in the second step depends on the formalism used to specify
components. For instance, a model checker could be chosen as verifier in case components
are specified as state machines and the global specification is an LTL formula or, in case of
ordinary differential equations, a numerical solver. Later in this chapter, both the system
specification and the components will be described using LTL A/G contracts.

We call counterexample a candidate composition (i.e., a set of components and their
connections) which has been proven wrong by the verifier. A counterexample is used to
inductively learn new constraints for the solver. In general, the performance of an OGIS-based
algorithm depends on how well the information provided by the oracle helps prune the
search space, leveraging as much as possible the information that can be inferred from the
components specifications and execution traces, if the verifier provides them. In this work,
however, we only assume the verifier is able to check the validity of candidates, returning
a yes/no answer. Our solution leverages component equivalence, introduced in Section 6.2.
We can do so by using the refinement operation that we assume in Definitions 8 and 9, thus
preserving the generality of the approach.

We can indicate equivalent components using the function

E : G→ 2G‖Θ (6.16)

which takes a component as input and returns a set of pairs, consisting of a component and
an interconnect. Given a component G in a library L, E(G) returns a set containing all the



CHAPTER 6. CONSTRAINED SYNTHESIS FROM LIBRARIES OF GENERIC
COMPONENTS 58

pairs (G′, θ′) such that G is equivalent G′ according to θ′. Formally,

E(G) =

(G′, θ′)

∣∣∣∣∣∣
G′ ∈ Z and
Gθ′ v G′θ′ and
G′θ′ v Gθ′

 (6.17)

In general, E is fixed for a given library and can easily be precomputed and accessed during
synthesis, without significant performance overhead.

6.3.1 The CSCL algorithm

As mentioned earlier in this section, the assumption that makes the application of our
algorithm possible is that the cost function f does not depend on the formalism used
to describe the specifications of components, and that f can be minimized using discrete
optimization techniques. In this way, there is a clear separation between the satisfaction of the
synthesis constraints, including the minimization of the cost function, and the evaluation of
the refinement relation between the system specification and the composition of components.

A number of constraint solvers are able, indeed, to minimize objective functions while
satisfying logic constraints, such as Z3 [60]. The simpler formulation of the CSCL problems
in Def. 9, on the other hand, doesn’t require the function f to be minimized and can be
solved by using a constraint solver without optimization capabilities.

In our synthesis strategy, illustrated in Algorithm 5, the task of pruning the search space
is carried out in a twofold manner. First, the constraint solver only needs to search over a
number of potential candidates which is drastically limited by the synthesis constraints. Such
constraints include those encoded in the library through the constraints in RZ , RG1 , . . . , RGN ,
and RS.

Second, each time a counterexample is observed (see the block starting at Line 9) it is
used to match all the elements of the library equivalent to those in the counterexample,
according to the component equivalent sets described in Equation 6.17, and Algorithm 6.
This allows us to rule out a number of possible candidate instances exponential in the number
of components contained in the rejected candidate. For instance, if the counterexample is a
composition of 4 components, and for each one there are 2 other components in Z with the
same specification, then adding constraints from that single counterexample will discard 34

erroneous candidate instances.
The output of the CSCL algorithm is a finite set of components, H, and their connections,

expressed as an interconnect θ. To ensure termination, the algorithm requires a bound on
the number of components used in a candidate solution. The choice of such bound depends
on the details of the problem being solved. Here, we let the user decide what is the most
appropriate bound through the input parameter N .

The complexity of the CSCL algorithm depends on the structure of the library and the
solution maximum size. According to our analysis in Section 6.2.1, for a fixed library, the
worst case time complexity will be exponential in the maximum number of components in
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1 function CSCL:
Input: specification S = (IS, OS, δS, σS, RS), library of components

L = (Z, T,RZ , f), maximum number of components in the solution N
Output: set of components H = {G1, . . . , Gn}, H ⊆ Z and n ≤ N , connection

function θ such that (δ1 ‖ · · · ‖ δn)θ v δS and f is minimized, or False if no
solution is found

2 Initialize constraint solver and verifier, instantiating the synthesis constraints for problem
instance and setting N as the maximum number of components in a candidate
solution.;

3 (STEP1) while get candidate solution (H ′ = {G1, . . . , Gn}, θ′), with n ≤ N , from
constraint solver such that f is minimized and all the synthesis constraint hold do

4 Build composition (G1 ‖ · · · ‖ Gn)θ′;
5 (STEP2) if verifier checks that (δ1 ‖ · · · ‖ δn)θ′ v δS holds then
6 H ← H ′;
7 θ ← θ′;
8 return (H, θ);

9 else
10 R← RejectCandidate(H ′, θ′); // infer equivalent erroneous

candidates, see Algorithm 6

11 foreach (Ht, θt) ∈ R do
12 add constraint (H, θ) 6= (Ht, θt) to constraint solver;
13 end

14 end

15 end
16 return False;

17 end

Algorithm 5: CSCL algorithm. (STEP 1) and (STEP 2) are labels. The algorithm
interfaces with a constraint solver (preferably with optimization capabilities) to execute
(STEP 1), and with a verifier, e.g., a model checker, to execute (STEP 2).
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1 function RejectCandidate:
Input: set of contracts H = {G1, . . . , Gn}, interconnect θ
Output: set containing interconnects R

2 R← {};
3 forall (G′1, θ

′
1) ∈ E(G1), (G′2, θ

′
2) ∈ E(G2), · · · , (G′n, θ′n) ∈ E(Gn) do

4 H ′ ← {G′1, · · · , G′n};
5 initialize new interconnect θ′;
6 foreach (p, q) ∈ θ do
7 Gi ← component in H such that p ∈ Ii ∪Oi;
8 Gj ← component in H such that q ∈ Ij ∪Oj;

9 add (θ̄′i(p), θ̄
′
j(q))) to θ′; // for θ̄ see Section 3.2.1.6

10 end
11 add (H ′, θ′) to R;

12 end
13 return R;

14 end

Algorithm 6: RejectCandidate algorithm. The returned set R collects all the
possible candidates equivalent to (H, θ).

a solution, N , multiplied by the complexity of the call to the verifier. In practice, though,
the techniques discussed above are able to limit the search space in a considerable manner,
yielding acceptable synthesis times in many cases.

6.3.2 An efficient representation for the synthesis constraints

The encoding of the synthesis constraints presented in Section 6.2.2 is not particularly efficient.
For instance, one can see how Equation 6.4 represents a formula which grows cubically in the
number of ports of all components in the library. Such encoding would cause the internal
representation of the synthesis constraints in the constraint solver to grow unnecessarily large,
resulting in poor performance. In this section, we present an encoding that exploits a more
efficient representation of component connections.

Given library L = (Z, T,RZ , f) and system specification S = (IS, OS, δS, σS, RS), we
assign an index to all the output ports in the library and also to all the input ports of the
specification S, and indicate with I the set containing such indices. Conversely, we associate
an integer variable to every input port in the library, as well as to every output port of
S. We call these variables connection variables and group them in the set M. Connection
variables, as the name suggests, are used to specify connections between ports, and they are
assigned by the constraint solver in the first step of the CSCL algorithm. We use the function
I : Plib∪S → I ∪ {−1} to retrieve the index of a given port, or −1 if the index is not defined
for the port. Similarly, we use the function M : Plib∪S →M ∪ {∅} to retrieve the connection
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variable of a given port, or ∅ if the connection variable is not defined for that port (e.g., input
ports of S). Thus we have a way to map ports to indices, which allows us to eliminate the
expensive explicit representation of function θ. For instance, the new encoding will represent
the assertion θp,q for an input port p and output port q with the assignmentM(p) = I(q). If
p is not connected to any port, then M(p) = −1. We only allow inputs from the library to
be connected to outputs in the library or inputs of the specification S:

∀G ∈ Z : ∀p ∈ IG :

(M(p) = −1) ∨ [∃G′ ∈ Z : ∃q ∈ OG′ :M(p) = I(q)] ∨ [∃s ∈ IS :M(p) = I(s)]
(6.18)

We also impose that outputs of the specification S can only be mapped to outputs from the
library:

∀s ∈ OS : (M(s) = −1) ∨ (∃G ∈ Z : ∃p ∈ OG :M(s) = I(p)) (6.19)

The following theorem states that using the encoding presented in this section, with
Equations 6.19 and 6.18, yields a solution space which is at least as large as the one obtained
representing θ using Equations 6.4 to 6.13. Our goal is to show that if a solution exists within
the constraint in Equations 6.4 to 6.13, then it will exist also using the encoding introduced
here.

Theorem 6.3.1. Let C1 be the set of connections among components in Z ∪ {S} that can
be defined by the function θ according to Equations 6.4 to 6.13. Let also C2 be the set of
connections that can be defined by the connection variables in V and indices in I, constrained
by Equations 6.18 and 6.19. Then C1 ⊆ C2.

Proof. We start considering only connections between ports in Plib. Given an input port p
and an output port q, a connection θp,q in C1 (and by Equation 6.5 also θq,p) can be trivially
be represented in C2 by the assignment M(p) = I(q). If both p and q are outputs, then by
Equation 6.7 their connection cannot be in C1. If both p and q are inputs and θp,q is in C1,
then by Equation 6.8 p and q have to be connected to another output in the library or to
an input of S. In either case, assume w be such port, where θp,w and θq,w are also in C1.
Then M(p) = I(w) and M(q) = I(w) represent the equivalent connections in C2, including
indirectly θp,q (because they have a reference to the same index). Consider now also ports
of the specification S. Since, in C1, we do not allow any two ports of S being connected to
each other (Equation 6.9), we have only the case in which there is a connection θs,p between
ports s ∈ IS ∪ OS and p ∈ Plib. If s is an input, then p has to be an input too (because of
Equation 6.10), and we can represent θs,p as M(p) = I(s) in C2. If s is an output, then p
can be either a component input or output. If p is an output, then θs,p can be represented
as M(s) = I(p). If p is an input, then by Equation 6.12 there must be another component
output q such that θs,q. By Equation 6.4, then it must be also θp,q. Therefore we can map
these three connections in C2 with M(s) = I(q) and M(p) = I(q) (where θs,q is implicit
because s and p refer to the same index). This shows that all the connections in C1 have an
equivalent in C2, hence C1 ⊆ C2.
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Thanks to Theorem 6.3.1, we are ensured that the encoding presented here (under
Equations 6.18 and 6.19) preserves the solution space defined by Equations 6.4 to 6.13.
All the results in Section 6.5 are obtained after reformulating the synthesis constraints in
Equations 6.4 to 6.13 using the encoding described in this section.

6.4 Implementing the CSCL algorithm

In this and the following sections, we describe the implementation of a parallel variant of the
CSCL algorithm and evaluate its capabilities and performance. We used the Satisfiability
Modulo Theories (SMT) solver Z3[60, 9] to find candidates satisfying the synthesis constraints
and minimize the cost function f , and we chose to represent our library as a set of LTL
A/G contracts. This choice is also motivated by the fact that composition and refinement
operations are well defined in the contract algebra. Moreover, additional concepts such as
compatibility and consistency can be leveraged to derive, before the actual synthesis process,
library constraints on components composability (in the form of incompatible sets of ports
stored through constraints in RZ). Lastly, but not less important, several tools are available
to deal with LTL specifications. In our experiments, the verifier chosen to compute refinement
checks is NuXMV [16].

An efficient implementation of the CSCL algorithm has been developed using the encoding
described in Section 6.3.2. Additionally, we decided to modify the CSCL algorithm to exploit
multiprocessor architectures and further speed up synthesis. Algorithm 5, first computes a
candidate solution and then it asks the verifier to validate or discard that candidate. The
verifier execution is, in general, a time-consuming operation, i.e., verifying the validity of an
LTL formula is a PSPACE-complete problem [68, 80]. We can observe, however, that it is
possible (and convenient) to interrogate several verifier instances at the same time, providing
them with different candidates. Here, we modify CSCL algorithm following this intuition, i.e.,
rejecting a candidate as soon as it is given to the verifier, and providing the ability to retrieve
an old candidate in case one of the many verifier instances gives a positive answer. Algorithm 7
illustrates the parallel version of the CSCL algorithm. The Parallel CSCL algorithm is
equivalent to the CSCL algorithm, as the two algorithms perform the same operations, with
the difference that the Parallel CSCL generates candidates continuously, stopping only
when a certain verifier instance indicates a successful candidate. The implementation of
Parallel CSCL resulted in a tool we call pyco5.

To evaluate a candidate solution in H, pyco considers three possible cost functions,
defined as follows:

• Minimize the number of components in H:

f(H) = |H|
5https://github.com/ianno/pyco/releases/tag/SCP2018

https://github.com/ianno/pyco/releases/tag/SCP2018
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1 function Parallel CSCL:
Input: specification S = (IS, OS, δS, σS, RS), library of components

L = (Z, T,RZ , f), maximum number of components in the solution N .
Output: set of components H = {G1, . . . , Gn}, H ⊆ Z and n ≤ N , connection

function θ such that (δ1 ‖ · · · ‖ δn)θ v δS and f in minimized, or False if no
solution is found.

2 initialize constraint solver and verifier, instantiating synthesis constraints for problem
instance and setting N as the maximum number of components in a candidate
solution;

3 while get candidate solution (H ′ = {G1, . . . , Gn}, θ′) from constraint solver such
that f is minimized and all the synthesis constraints hold do

4 build composition (G1 ‖ · · · ‖ Gn)θ′;
5 spawn a new verifier instance (process) to verify (δ1 ‖ · · · ‖ δn)θ′ v δS;
6 if any verifier instance has signaled success then
7 retrieve instance candidate (H ′, θ′);
8 H ← H ′;
9 θ ← θ′;

10 return (H, θ);

11 else
12 R← RejectCandidate(H ′, θ′); // infer equivalent erroneous

candidates, see Algorithm 6

13 foreach (Ht, θt) ∈ R do
14 add constraint (H, θ) 6= (Ht, θt) to constraint solver;
15 end

16 end

17 end
18 wait for all the remaining running verifier instances to terminate;
19 if any verifier instance has signaled success then
20 retrieve instance candidate (H ′, θ′);
21 H ← H ′;
22 θ ← θ′;
23 return (H, θ);

24 end
25 return False;

26 end

Algorithm 7: Parallel CSCL algorithm.
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• Minimize the number of ports used in the solution:

f(H) =
∑

h∈H
|Ih|+ |Oh|

• Minimize a user-defined cost, based on the cost c of each component in the library:

f(H) =
∑

h∈H
ch

6.5 Case studies

This section contains two examples which illustrate the capability of the tool we developed,
and, in general, of the CSCL algorithm. The goal of the first example is to design the control
logic of a Brushless DC electric Motor (BLDC) Driver. The specification describes the
waveform of the current used to control the electromagnets of the motor, and the task of
the synthesizer is to figure out what components are necessary and how to connect them to
ensure its proper operation. The second example, more challenging, requires the synthesizer
to provide the control logic for the controller of an aircraft Electrical Power System (EPS),
described in Chapter 4, where the specification describes some strict safety requirements that
need to be always satisfied.

In our experiments, given a certain specification, we observed that synthesis time behaves
like a heavy-tailed random distribution, making it hard to provide an accurate estimation of
its mean value. We justify this behavior by observing that SMT solvers, such as Z3, have
intrinsically non-deterministic performance. Thus, the search space is explored in a slightly
different manner each time an experiment is executed. To characterize the mean, we decided
to run each experiment 100 times, as we observed that this number is a good compromise
between total computation time and quality of the sample space, and then bootstrapped our
data to compute the 95% confidence interval of the mean synthesis time.

We ran all the experiments on a 3.3 GHz Intel Xeon machine, with 32GB of RAM,
limiting the maximum number of parallel processes to 8. In some cases, however, we ran
some experiments using the single process CSCL algorithm in Table 5.

6.5.1 The Brushless DC electric Motor Design (BLDC)

Typical DC electric motors have permanent magnets which are fixed (stator), containing a
spinning armature (rotor). The armature contains an electromagnet that, when powered,
attracts some magnets in the stator and repels others, causing a partial rotation of the
rotor. To keep the rotation going, it is necessary to periodically invert the polarity of the
electromagnet. This task is executed by some metal brushes on the rotor that, making contact
with the electrodes on the stator, flip the polarity of the electromagnet as they rotate. This
design is simple but presents a number of limitations, such as the physical wear of brushes
and low performance.
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Brushless DC electric motors, as the name suggests, overcome those limitations by not
having rotating brushes. In these motors, often the electromagnets are located on the
stator while magnets are on the rotor, and the change in polarity is handled by a computer
through high-power transistors [36]. BLDC motors are more precise, efficient, and have better
performance than regular DC motors. They are more complex, however, as they require
more electronic components to work properly. Although BLDC motors can be one, two, or
three-phase, most of them are usually the latter type.

One of the simplest motor drivers for three-phase BLDC motors is the so-called half
bridge configuration. Half bridges have this name because they only support the positive
polarization of the electromagnets (instead of both negative and positive), generating only
half of the maximum torque. Figure 6.4 shows the typical half bridge driver configuration,
while Figure 6.5 illustrates the current waveforms required for the proper operation of the
motor.
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Figure 6.4: Common BLDC half bridge motor driver topology. Variables ea, eb, and ec
represent the Electromotive Force (EMF) for the three phases of the motor [36].

The motor driver needs to properly open and close the half-bridge switches (i.e., transis-
tors), reading the current position of the rotor provided by a Hall effect sensor placed in its
proximity. Once the rotor reaches a commutation point, the sensor sends an impulse to the
driver, which takes care of actuating the switches.

The goal of this example is to synthesize an architecture of components which is able to
drive a simple BLDC motor6. In doing so, we want to show how our tool is able to infer
a number of necessary components, correctly satisfying the specification both semantically
(i.e., the A/G contract of the composition refines the A/G contract of the specification), and
topologically (i.e., all the port types match). In this example, all the variables used in A/G
contracts are Boolean. Table 6.1 illustrates the specification used for this case study.

The specification describes the interface of the motor driver, including one input and
three outputs, at a logic level, without taking into account other physical constraints. The
input, i, communicates to the driver whether the motor has reached a commutation point.
The three outputs are signals which drive the current of the three phases of the motor. Given

6This example has been developed with Richard Lin and Rohit Ramesh.



CHAPTER 6. CONSTRAINED SYNTHESIS FROM LIBRARIES OF GENERIC
COMPONENTS 66

Ph
as

e 
A

Ph
as

e 
B

Ph
as

e 
C

To
rq

ue

Current

EMF

C A B C
θ

Figure 6.5: Waveforms for the half bridge driver. Input current from the driver induces
torque through one of the three phases of the motor at a time [36]. To ensure the proper
forward rotation of the rotor, inputs from the driver need to be sent in a specific order.

Input Ports i (IOPin3V)

Output Ports o1, o2, o3 (IOPin12V)
Assumptions ¬i ∧�3i ∧�3¬i

Guarantees

o1 ∧ ¬o2 ∧ ¬o3 ∧
�[(o1 ∧ ¬i ∧#i)→ (#¬o1 ∧#o2 ∧#¬o3)]∧
�[(o2 ∧ ¬i ∧#i)→ (#¬o1 ∧#¬o2 ∧#o3)]∧
�[(o3 ∧ ¬i ∧#i)→ (#o1 ∧#¬o2 ∧#¬o3)]

RS Distinct(o1, o2, o3)

Table 6.1: Specification for the BLDC synthesis problem. The interface has one input, which
is a 3V pin from the Hall effect sensor (its type is IOPin3 ), and three outputs as 12V pins to
drive the electromagnets of the motor. The specification assumes that the input is initially
negative and, once started, it will keep commuting. The guarantee is that only one output
line will be active at each commutation point in a round-robin fashion. The specification also
requires distinct outputs, meaning that they cannot be controlled by the same port.

the input, the specification only requires that, when a commutation point is detected, only
one driver signal is sent to the motor. The task of the synthesizer is to choose components
from the library of 18 components, described in Table 6.2, and properly connect them to
satisfy the specification.

Most of the components in the library only expose their interface, without specifying any
logic. For instance, the component Power-12V is a power generator which only provides
ports for ground and voltage. The MCU component, on the other hand, already has the
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Component Input Ports Output Ports Assumptions Guarantees

Power-5V - -
gnd
vout

(GND)
(Voltage5V)

true true

DCDC-3V
gnd
vin

(GND)
(Voltage12V)

vout (Voltage3V) true true

DCDC-5V
gnd
vin

(GND)
(Voltage12V)

vout (Voltage5V) true true

Power-12V - -
gnd
vout

(GND)
(Voltage12V)

true true

MCU
gnd
vin
i

(GND)
(Voltage3V)

(IOPin3V)

o1

o2

o3

(IOPin3V)
(IOPin3V)
(IOPin3V)

true

o1 ∧ ¬o2 ∧ ¬o3 ∧
�[ (o1 ∧ ¬i ∧#i) → (#¬o1 ∧#o2 ∧#¬o3)]∧
�[(o1 ∧ ¬i ∧#¬i)→ (#o1 ∧#¬o2 ∧#¬o3)]∧
�[ (o2 ∧ ¬i ∧#i) → (#¬o1 ∧#¬o2 ∧#o3)]∧
�[(o2 ∧ ¬i ∧#¬i)→ (#¬o1 ∧#o2 ∧#¬o3)]∧
�[ (o3 ∧ ¬i ∧#i) → (#o1 ∧#¬o2 ∧#¬o3)]∧
�[(o3 ∧ ¬i ∧#¬i)→ (#¬o1 ∧#¬o2 ∧#o3)]

Half-Bridge
gnd
vin
i

(GND)
(Voltage3V)

(IOPin3V)
o (IOPin12V) true �(i = o)

RT ∅ RZ ∅

Table 6.2: Structure of the BLDC library, which contains three separate instances of each
component. Some components are architectural, meaning that they provide a typed interface
but their A/G contract is always satisfied, and some are logic, providing both a typed interface
and a non-trivial A/G contract (such as the MCU).

control logic required to satisfy the specification. Their port types, however, mismatch. The
outputs of MCU, indeed, have type IOPin3V, while the specification requires outputs with
type IOPin12V. Thus, Equation6.13 prevents their direct connection. It is responsibility of
the synthesizer to figure out the right connections to propagate the control logic to ports of
the right type.

We asked the synthesizer to find a solution using a constant cost function, minimizing the
number of components in the solution, and minimizing the total number of ports. Additionally,
we also ran a series of experiments using the single process CSCL algorithm in Algorithm 5,
with a constant cost function. For each case, we ran 100 experiments summarized in Figure 6.6.

Interestingly, the overall fastest set of experiments was the one in which we minimized the
number of components. Conversely, minimizing the number of ports led to the slowest synthesis
times. Although the performance of constraints solvers is, in general, non-deterministic,
we can explain these results by observing that the MCU component, although necessary
to satisfy the specification, is the one with most ports. To minimize the number of ports
used, the synthesizer tries avoiding it, without success, leading to a longer synthesis time.
All the experiments resulted in correct designs, where the typical configuration was the set
of components {Power-12V, DCDC-3V, MCU, Half-Bridge, Half-Bridge1, Half-Bridge2},
correctly connected. Figure 6.7 illustrates the typical solution for this case study. In the
figure, the arrows between ports represent the function θ, defining port connections. An
arrow between two ports, say a and b, means θ(a, b) = 1.



CHAPTER 6. CONSTRAINED SYNTHESIS FROM LIBRARIES OF GENERIC
COMPONENTS 68

134.43	(115.44,	156.99)

66.24	(56.24,	78.81)

29.98	(26.47,	34.35)

12.03	(11.44,	12.69)

0

20

40

60

80

100

120

140

160

180

single	process constant ports comps

Se
co
nd

s

Figure 6.6: Summary of the results for the BLDC experiments. We synthesized a controller
using the single process CSCL algorithm first, with a constant cost function. Then, we used
the Parallel CSCL algorithm with a constant cost function, minimizing the number of
components, and minimizing the number of ports. For each category, we ran 100 experiments.
Each point represents the mean synthesis time, while the bars represent its 95% confidence
interval, also indicated within parentheses.

Composition Assumptions: true & true & true & true & true & true | ! (! true | G o1_0_0_63 = o1_9_0_23 &
(! true | (o1_0_0_63 & ! o2_0_0_63 & ! i1_12_0_22 & G (o1_0_0_63 & ! i1_0_0_84 &

X i1_0_0_84 -> X ! o1_0_0_63 & X o2_0_0_63 & X ! i1_12_0_22) & G (o1_0_0_63 & !
i1_0_0_84 & X ! i1_0_0_84 -> X o1_0_0_63 & X ! o2_0_0_63 & X ! i1_12_0_22) & G

(o2_0_0_63 & ! i1_0_0_84 & X i1_0_0_84 -> X ! o1_0_0_63 & X ! o2_0_0_63 & X
i1_12_0_22) & G (o2_0_0_63 & ! i1_0_0_84 & X ! i1_0_0_84 -> X ! o1_0_0_63 & X
o2_0_0_63 & X ! i1_12_0_22) & G (i1_12_0_22 & ! i1_0_0_84 & X i1_0_0_84 -> X

o1_0_0_63 & X ! o2_0_0_63 & X ! i1_12_0_22) & G (i1_12_0_22 & ! i1_0_0_84 & X !
i1_0_0_84 -> X ! o1_0_0_63 & X ! o2_0_0_63 & X i1_12_0_22))) & (! true | true) &

(! true | true) & (! true | G i1_12_0_22 = o1_9_0_22) & (! true | G o2_0_0_63 =
o1_9_0_21)) 

Composition Guarantees: ! true | G o1_0_0_63 = o1_9_0_23 & (! true | (o1_0_0_63 & ! o2_0_0_63 & !
i1_12_0_22 & G (o1_0_0_63 & ! i1_0_0_84 & X i1_0_0_84 -> X ! o1_0_0_63 & X

o2_0_0_63 & X ! i1_12_0_22) & G (o1_0_0_63 & ! i1_0_0_84 & X ! i1_0_0_84 -> X
o1_0_0_63 & X ! o2_0_0_63 & X ! i1_12_0_22) & G (o2_0_0_63 & ! i1_0_0_84 & X
i1_0_0_84 -> X ! o1_0_0_63 & X ! o2_0_0_63 & X i1_12_0_22) & G (o2_0_0_63 & !
i1_0_0_84 & X ! i1_0_0_84 -> X ! o1_0_0_63 & X o2_0_0_63 & X ! i1_12_0_22) & G
(i1_12_0_22 & ! i1_0_0_84 & X i1_0_0_84 -> X o1_0_0_63 & X ! o2_0_0_63 & X !

i1_12_0_22) & G (i1_12_0_22 & ! i1_0_0_84 & X ! i1_0_0_84 -> X ! o1_0_0_63 & X !
o2_0_0_63 & X i1_12_0_22))) & (! true | true) & (! true | true) & (! true | G

i1_12_0_22 = o1_9_0_22) & (! true | G o2_0_0_63 = o1_9_0_21)
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Figure 6.7: Graphical representation of a synthesized design. Names on arrows represent port
renamings induced by the function θ, returned by the synthesis process.

6.5.2 The Aircraft Electrical Power System (EPS)

In this section, we present the result of the synthesis of a control unit, called Bus Power
Control Unit (BPCU), for the EPS case study discussed in Chapter 4. Our goal is to synthesize
the logic of the BCPU from a set of subsystem controllers, described by a library of A/G
contracts. The function of the controller is to react to changes in system conditions or failures
and reroute power by actuating the contactors, ensuring that essential buses are adequately
powered. The component library is the one described in Table 4.2.

We ran two series of experiments, one using a library containing 20 components, and one
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with 40 components. In both cases, the goal was to synthesize the BPCU according to the
specifications in Table 4.1. For each series, we asked the synthesizer to find a solution first
using the single process CSCL in Algorithm 5 with a constant cost function, and then using
the parallel version in Algorithm 7 with a constant cost function minimizing the number of
components used, and minimizing the number of ports in the solution. With both libraries,
trying to minimize the number of components in the solution led to very long synthesis times,
beyond the timeout that we set at 200 seconds.

This is, indeed, one of the main risks in trying to synthesize a composition minimizing
a cost function; depending on the distribution of the solutions in the search space, the
synthesizer might spend a lot of time exploring a set of candidates with low cost, but far
from any useful solution.

Figure 6.8 shows the observed results, in terms of execution time, for the remaining
cases. Interestingly, in the case of minimization of the number of ports, the synthesizer
was able to find a solution generally faster than in the case of a constant cost function. In
each graph, the dot represents the average synthesis time for one of the specification subsets
{S1}, {S1, S2}, . . . , {S1, . . . , S9}. For each of these subsets, we ran 100 experiments reporting
their mean values, together with their 95% confidence intervals, in Table 6.3. As expected,
one can immediately see how the parallel approach to synthesis is indeed more efficient than
the single process one, with up to 50% performance improvement.

Single Process 20 Constant Cost 20 Minimize Ports 20 Single Process 40 Constant Cost 40 Minimize Ports 40
{S1} 67.43 (58.49, 76.95) 34.69 (30.85, 38.44) 10.69 (10.42, 10.98) 55.92 (46.44, 67.97) 28.13 (24.25, 34.40) 31.17 (30.07, 32.42)
{S1, S2} 113.12 (99.99, 127.91) 62.71 (54.84, 73.55) 15.48 (14.88, 16.16) 81.18 (67.07, 98.20) 48.29 (41.30, 57.93) 40.90 (38.94, 43.45)
{S1, . . . , S3} 112.86 (99.69, 128.07) 61.93 (54.26, 72.62) 17.21 (16.59, 17.87) 84.67 (69.63, 104.13) 58.18 (49.58, 68.20) 47.87 (45.38, 50.70)
{S1, . . . , S4} 92.21 (81.43, 104.75) 49.10 (43.31, 57.24) 17.94 (17.25, 18.84) 81.94 (68.54, 97.43) 49.78 (43.45, 57.83) 50.90 (49.12, 52.75)
{S1, . . . , S5} 89.31 (75.28, 110.72) 41.31 (36.40, 48.44) 16.55 (16.08, 17.10) 76.27 (63.28, 91.91) 43.58 (37.62, 51.67) 53.20 (51.35, 55.76)
{S1, . . . , S6} 116.42 (103.59, 129.76) 60.96 (54.48, 69.29) 18.91 (18.41, 19.44) 101.86 (82.91, 124.56) 50.64 (43.50, 60.69) 63.30 (61.23, 65.68)
{S1, . . . , S7} 124.48 (110.38, 139.84) 66.87 (59.03, 78.11) 20.86 (20.19, 21.69) 90.70 (73.34, 112.62) 69.78 (59.88, 81.82) 66.28 (64.24, 68.75)
{S1, . . . , S8} 115.44 (103.73, 129.81) 64.71 (57.64, 74.75) 22.72 (21.98, 23.70) 96.10 (77.74, 119.08) 56.19 (48.33, 66.11) 71.20 (69.16, 73.59)
{S1, . . . , S9} 100.54 (87.27, 118.88) 42.83 (38.78, 47.58) 22.26 (21.78, 22.79) 80.91 (67.39, 97.48) 64.09 (55.57, 74.49) 75.61 (73.78, 77.51)

Table 6.3: Summary of the EPS experiments. For each specification subset (one for each
row), we report the mean value and its 95% confidence interval. All values are expressed in
seconds. Experiments named ”Constant Cost” and ”Minimize Ports” are run using parallel
processes.

For reference, a typical solution satisfying all 9 specifications with the minimal number of
connected ports included 5 components, {I1, D1, L1, G1, D2}, for a total of 19 ports connected
accordingly. Figure 6.9 represents the connections among the components according to the
renaming function θ.

In a separate experiment, using the library with 40 elements, pyco was able to explore the
whole search space invoking the verifier 108176 times. This corresponded to more than 400M
rejected candidates, which did not require an explicit check thanks to the inductive learning
process described in Section 6.3. The verifier found a solution satisfying the specifications
386 times, corresponding to roughly 1.5M equivalent ones in the search space.

Figure 6.10 shows, instead, the effect of designer hints and library-specific constraints
on synthesis time. Here synthesis is performed on smaller and simplified instances of the
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(f) Parallel execution, minimize ports, 40 elements.

Figure 6.8: BPCU synthesis times in the various experiments. In each graph, each point has
been computed running 100 experiments. The central point represents the mean, while bars
represent the 95% confidence interval for the mean. The horizontal axis refers to the subset
of specifications considered in each experiment.

EPS problem, including 2, 4, 6, 10 and 16 ports, and using a library with 20 elements. The
graph (in logarithmic scale), shows how these constraints are critical in decreasing the overall
problem complexity. In case of the instance with 16 ports, the CSCL algorithm variant
without types and additional constraints was not able to synthesize a solution within our
1000 seconds timeout.
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Synthesis time: 4.65 seconds

 Composition Assumptions: ! fail2_20_0_0 & ! fail1_21_0_0 & (! fail1_15_0_0 & G (fail1_15_0_0 -> X
fail1_15_0_0)) & (! fail1_21_0_0 & ! fail2_20_0_0) & (! fail1_15_0_0 & !

fail2_15_0_0 & ! fail3_3_0_0 & ! fail4_3_0_0 & G (fail1_15_0_0 -> X
fail1_15_0_0) & G (fail2_15_0_0 -> X fail2_15_0_0) & G (fail3_3_0_0 -> X

fail3_3_0_0) & G (fail4_3_0_0 -> X fail4_3_0_0)) & (! fail4_3_0_0 & G
(fail4_3_0_0 -> X fail4_3_0_0)) | ! (! (! fail2_20_0_0 & ! fail1_21_0_0) | (G (!

fail2_20_0_0 & ! fail1_21_0_0 -> ! c1_10_0_0 & ! c2_12_0_0) & G (fail2_20_0_0 |
fail1_21_0_0 -> c1_10_0_0 & c2_12_0_0)) & (! (! fail1_15_0_0 & G (fail1_15_0_0

-> X fail1_15_0_0)) | (G (fail1_15_0_0 -> ! c_2_0_0) & G (! fail1_15_0_0 ->
c_2_0_0))) & (! (! fail1_21_0_0 & ! fail2_20_0_0) | G c_11_0_0) & (! (!

fail1_15_0_0 & ! fail2_15_0_0 & ! fail3_3_0_0 & ! fail4_3_0_0 & G (fail1_15_0_0
-> X fail1_15_0_0) & G (fail2_15_0_0 -> X fail2_15_0_0) & G (fail3_3_0_0 -> X

fail3_3_0_0) & G (fail4_3_0_0 -> X fail4_3_0_0)) | (G (fail2_15_0_0 -> !
c2_4_0_0) & G (fail3_3_0_0 -> ! c3_0_0_0) & G ! (c2_4_0_0 & c3_0_0_0) & G (!

fail1_15_0_0 & ! fail4_3_0_0 -> ! c1_4_0_0 & ! c2_4_0_0 & ! c3_0_0_0 & !
c4_0_0_0) & G (! fail1_15_0_0 & ! fail3_3_0_0 & fail4_3_0_0 -> ! c1_4_0_0 & !

c2_4_0_0 & c3_0_0_0 & c4_0_0_0) & G (fail1_15_0_0 & ! fail2_15_0_0 & !
fail4_3_0_0 -> c1_4_0_0 & c2_4_0_0 & ! c3_0_0_0 & ! c4_0_0_0) & G (!

fail1_15_0_0 & ! fail2_15_0_0 & fail3_3_0_0 & fail4_3_0_0 -> ! c1_4_0_0 &
c2_4_0_0 & ! c3_0_0_0 & c4_0_0_0) & G (fail1_15_0_0 & fail2_15_0_0 & !

fail3_3_0_0 & ! fail4_3_0_0 -> c1_4_0_0 & ! c2_4_0_0 & c3_0_0_0 & ! c4_0_0_0) &
G (fail2_15_0_0 & fail3_3_0_0 & (fail1_15_0_0 | fail4_3_0_0) -> c1_4_0_0 & !

c2_4_0_0 & ! c3_0_0_0 & c4_0_0_0))) & (! (! fail4_3_0_0 & G (fail4_3_0_0 -> X
fail4_3_0_0)) | (G (fail4_3_0_0 -> ! c_2_0_2) & G (! fail4_3_0_0 -> c_2_0_2)))) 

Composition Guarantees: ! (! fail2_20_0_0 & ! fail1_21_0_0) | (G (! fail2_20_0_0 & ! fail1_21_0_0 -> !
c1_10_0_0 & ! c2_12_0_0) & G (fail2_20_0_0 | fail1_21_0_0 -> c1_10_0_0 &
c2_12_0_0)) & (! (! fail1_15_0_0 & G (fail1_15_0_0 -> X fail1_15_0_0)) | (G

(fail1_15_0_0 -> ! c_2_0_0) & G (! fail1_15_0_0 -> c_2_0_0))) & (! (!
fail1_21_0_0 & ! fail2_20_0_0) | G c_11_0_0) & (! (! fail1_15_0_0 & !
fail2_15_0_0 & ! fail3_3_0_0 & ! fail4_3_0_0 & G (fail1_15_0_0 -> X

fail1_15_0_0) & G (fail2_15_0_0 -> X fail2_15_0_0) & G (fail3_3_0_0 -> X
fail3_3_0_0) & G (fail4_3_0_0 -> X fail4_3_0_0)) | (G (fail2_15_0_0 -> !

c2_4_0_0) & G (fail3_3_0_0 -> ! c3_0_0_0) & G ! (c2_4_0_0 & c3_0_0_0) & G (!
fail1_15_0_0 & ! fail4_3_0_0 -> ! c1_4_0_0 & ! c2_4_0_0 & ! c3_0_0_0 & !

c4_0_0_0) & G (! fail1_15_0_0 & ! fail3_3_0_0 & fail4_3_0_0 -> ! c1_4_0_0 & !
c2_4_0_0 & c3_0_0_0 & c4_0_0_0) & G (fail1_15_0_0 & ! fail2_15_0_0 & !

fail4_3_0_0 -> c1_4_0_0 & c2_4_0_0 & ! c3_0_0_0 & ! c4_0_0_0) & G (!
fail1_15_0_0 & ! fail2_15_0_0 & fail3_3_0_0 & fail4_3_0_0 -> ! c1_4_0_0 &
c2_4_0_0 & ! c3_0_0_0 & c4_0_0_0) & G (fail1_15_0_0 & fail2_15_0_0 & !

fail3_3_0_0 & ! fail4_3_0_0 -> c1_4_0_0 & ! c2_4_0_0 & c3_0_0_0 & ! c4_0_0_0) &
G (fail2_15_0_0 & fail3_3_0_0 & (fail1_15_0_0 | fail4_3_0_0) -> c1_4_0_0 & !

c2_4_0_0 & ! c3_0_0_0 & c4_0_0_0))) & (! (! fail4_3_0_0 & G (fail4_3_0_0 -> X
fail4_3_0_0)) | (G (fail4_3_0_0 -> ! c_2_0_2) & G (! fail4_3_0_0 -> c_2_0_2)))
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Figure 6.9: Graphical representation of a synthesized design satisfying all 9 specifications
with minimal number of connected ports. Names on arrows represent port renamings induced
by the function θ, returned by the synthesis process.

6.6 Conclusion

In this chapter, we studied the problem of constrained synthesis from component libraries.
After defining the general theoretical framework, and assessing the complexity of the domain,
we have proposed a problem formulation in terms of generic components subject to a cost
function and a number of synthesis constraints. These constraints include types on component
ports, suggestions from the designer, and composition rules which can also be precomputed
and stored in the library.

We presented two variants of an algorithm based on OGIS, a sequential and a parallel one,
and evaluated its implementation with LTL A/G contracts on industrial-relevant case studies.
Analyzing the case studies, we believe that the potential of our approach has emerged clearly,
although some criticalities, such as the heavy impact that the choice of cost function can
have on synthesis times, are still challenging.

Future extensions of this work include the study of algorithms to decompose complex
specifications into smaller instances (to increase performance by dealing with smaller synthesis
problems), the application of the synthesis technique described here to component libraries
defined over multi-aspect specifications (e.g., behavioral, security-related, real-time), and the
analysis of erroneous designs and infeasible specifications in order to provide feedback to the
designer on how to fix her library and obtain the intended result.

In the next chapters, instead, we will analyze the same problem of constrained synthesis
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Figure 6.10: Impact of types and user provided hints on synthesis time for simplified instances
of the EPS example. Each bar of the histogram represents the median value from 10
experiments. The graph is in logarithmic scale. In the case without types and 16 ports, most
of the times the synthesizer has not been able to find a solution within the time limit of 1000
seconds.

from component libraries relaxing the requirement of the verifier only providing a yes/no
answer. Additionally, we will focus exclusively on LTL A.G contracts, while here we considered
only generic components, and show how we can leverage their properties to make synthesis
more efficient.
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Chapter 7

Synthesis from Libraries of LTL A/G
Contracts

In this chapter, we focus on a very similar problem of Chapter 6, i.e., we want to synthesize
a composition of elements from a library that satisfies a certain specification. In the other
chapter, however, we assumed the components were generic and that our verifier was only
able to answer yes or no when asked whether a candidate solution was indeed the correct one.
Here, instead, we frame the problem in terms of LTL A/G Contracts, and we explicitly use a
model checker to validate candidates solutions. We propose a CEGIS-based approach which
leverages the infinite-length counterexamples generated by the model checker, represented
compactly as state machines, to guide the synthesis process. Compared to Chapter 6, this
synthesis strategy is more efficient as it requires fewer calls to the verifier, although it requires
more work to generate candidate solutions. We evaluate our algorithm by thy synthesizing a
controller in three case studies.

The rest of the chapter is organized as follows. After short introduction in Section 7.1, in
Section 7.2 we present the synthesis problem that we address in this chapter. We propose a
solution for a simplified version of the problem in Section 7.3. In Section 7.4 we focus on
performance issues, describing, then, our approach to the full problem in Section 7.5. We
discuss the detail of our CEGIS algorithm in Section 7.6. In Section 7.7 we applying the
synthesis technique to several case studies, and we conclude in Section 7.8.

7.1 Introduction

In Chapter 6, we focused on the problem of synthesis from libraries of components when no
assumptions on the formalism used to describe components are made, and assuming minimal
additional information from the verifier. The only requirements we considered were being
able of composing components, and, given two different components, being able to determine
if one is the refinement of the other, i.e., it can be seen as an implementation of the latter.
Hence, we only required the verifier to provide a yes/no answer.
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As discussed, that synthesis approach relies on the generation of many candidate solutions
which can be independently verified. Specifically, the size of each verification problem only
depends on the specification itself and the candidate solution, and it does not grow with the
number of tested candidates. In our experiments, we used LTL A/G contracts to describe
components as a particular instance of the framework, and discussed other possible types
of component specifications. Performance is acceptable when the library specifies a large
number of constraints, limiting the total number of possible candidates. When the size of the
library increases, however, scalability remains an issue.

In this chapter, instead, we look at a similar problem, focusing solely on LTL A/G
contracts and the ability of a model checker of returning counterexample traces. Thus, here
we talk about libraries of contracts. This choice allows us to leverage properties that are
unique to LTL and A/G contracts, without limiting ourselves to only observing the Boolean
outcome of the refinement checking process. Hence, we can access more detailed information
provided by the underlying model checker, i.e., counterexamples representing input sequences,
and use them to improve synthesis’ efficiency.

Compared to traditional CEGIS approaches [81, 34, 49], however, in this case, we need
to tackle several additional technical challenges. For instance, using LTL, our inputs and
outputs are infinite temporal sequences. What is the best way to represent them? How to
ensure termination of the algorithms, given that the input space is infinite? We will answer
these questions later in the next sections.

7.2 Constrained Synthesis from LTL A/G Contracts

Libraries (LTL-CSCL)

The problem we want to solve is a variation the one in Definition 9:

Definition 10 (LTL-CSCL problem). Let S = (IS, OS, ϕS, ψS) be a well-defined LTL A/G
contract expressing a system specification, and L = (Z,R) a library of well-defined LTL
A/G contracts, where we assume that R includes also constraints over variables in S. The
LTL-CSCL problem, then, consists of finding a finite set of contracts H = {C1, . . . , CN | Ci =
(Ii, Oi, ϕi, ψi) ∈ Z}, and an interconnect θ ⊆ R such that

(C1 ⊗ · · · ⊗ CN)θ � S (7.1)

where well-defined is intended as in Definition 2. With respect to the problem in
Definition 9, here we leverage definitions and notations that are proper of our contract
framework, but the ultimate goal is substantially the same, i.e., synthesis of a composition of
elements from a library such that the specification is satisfied. Here, also, we assume that R
implies all the library-specific constraints, representing the superset containing all the legal
connections for L.
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7.3 Solving a Simplified Version of the LTL-CSCL

Problem

We will develop the solution to the problem in two phases. Here, in the first phase, we build a
strategy based on the assumption that H = Z. Our focus, initially, is only on how to build θ.
Later, in the second phase, we will relax the assumption and show how to solve the problem
for a generic H ⊆ Z.

Our solution follows the CEGIS paradigm, under the assumption that we will be able to
obtain counterexamples over the system variables from the verifier.

As in Chapter 6, we will indicate all the ports in the library as Plib, defined in Equation 6.1,
and all the ports in the library and the specification as Plib∪S, defined in Equation 6.2.

7.3.1 LTL-CSCL as a CEGIS instance

To encode possible connections between contracts, we use the approach introduced in Sec-
tion 6.3.2, although here all the definitions are applied here to contracts rather than generic
components. Thus, each port in Plib∪S has an associated index and connection variable,
defined according the functions I and M, respectively. For a certain θ, for instance, we can
assert the connection (x, y) ∈ θ as M(x) = I(y). If the connections implied by M represent
the right interconnect for a library L and specification S, we write M |=L S, otherwise we
write M 6|=L S. From the assignments defined through M, one can immediately derive
the implied interconnect θ. Note, however, that the connections we can represent with M,
however, are fewer than those we can express with θ (for instance, we cannot connect two
outputs of contracts in the library). Thus, given aM, we indicate its derived interconnect as
θM. Given a library L = (Z,R), we can express all the legal connections among contracts,
according to R, in relation to their index using the following LTL formulas.

φML =
∧

C=(I,O,ϕ,ψ)∈Z

∧
p∈I

 ∨
(p,q)∈R

[M(p) = I(q)]→ �(p = q)

 (7.2)

φMS =
∧
s∈OS

∨
(s,q)∈R

{[M(s) = I(q)]→ �(s = q)} (7.3)

Equation 7.2 encodes the fact that an input variable can be connected to any other port
as allowed by R, meaning that the evaluation of the two variables will always match. For
each connection variable assignment, we explicitly indicate the behavior we want to observe
over the library ports. For instance, if we map the connection variable of a port x to the
index of y, that is,M(x) = I(y), then we also expect the formula �(x = y) to hold, meaning
that x and y are connected and they have to expose the same behavior. Forcing all the input
ports to be connected is not, in general, a restrictive assumption. In fact, if a candidate
solution works when one of its ports is unconnected, it means that that solution refines the
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specification no matter the value assigned to that particular port. Fixing the input to the
port to be the same as some other port in the design will consist of having a smaller set
of possible inputs to that port, thus it will not compromise the outcome in evaluating the
solution.

Equation 7.3 encodes the connections of the output ports of the specification, and it is
very similar to Equation 7.2. We refer to the conjunction of the two formulas simply as

φM = φML ∧ φMS (7.4)

Equation 7.4 requires that each input variable in the library, and output of the specification,
has a valid connection, i.e., its connection variable has an index assigned through M.

As, in this phase, a solution includes all the contracts in the library, we also find useful
defining a contract representing the composition of all contracts in the library:

CL = (IL, OL, ϕL, ψL) =
⊗
{Ci | Ci ∈ Z} (7.5)

The contract CL, while convenient to represent the whole library as a single composition,
does not tell us anything on the connections among its constituent contracts. Our goal is to
find a renaming M according to:

∃M : φM ⇒ (CL � S) (7.6)

meaning that the connections are defined according to R and CL refines S.
Considering the constraint implied by Equation 7.2—no input port of contracts in the

library can be unconnected—together with Equation 7.3, which requires all the specification
outputs to be mapped to contracts in the library, we have that Equations 3.22a and 3.22b
(part of the refinement conditions) will always be satisfied. Equation 7.6, then, can be written
as M:

∃M : φM → (ϕS → ϕCL) ∧ (ψCL∧ → ψS) is valid (7.7)

To be valid, the formula must hold true for all the possible executions; we can indicate this
condition explicitly as

∃M : ∀σ : σ |= [φM → (ϕS → ϕCL) ∧ (ψCL∧ → ψS)] (7.8)

where σ indicates a behavior, i.e., a trace, over variables in Plib∪S.
Equation 7.8, which represents in a concise form the problem described in Definition 10,

is typical of CEGIS problems, i.e. in the ∃∀ form. As in [48], a solution is articulated in two
steps. The first one tries to find a solution that works for all the known counterexamples
(solving the ∃ part). The second step verifies whether the candidate solution works for all
the possible inputs, generating a new counterexample in case it doesn’t (solving the ∀ part).
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1 function General LTL-CSCL:
Input: library contract CL = (IL, OL, ϕL, ψL), constraint formula φM, specification

contract S = (IS, OS, ϕS, ψS)
Output: set of connections representing θ, or False

2 E ← {True}; // Counterexample set

3 while True do
4 model ← checkSAT(φsyn(CL, S, φM, E));
5 if model is unsat then
6 return False;
7 end
8 θM ← extractCandidate(model);
9 model ← checkValid(φver(CL, S, θM));

10 if model is valid then
11 return c;
12 end
13 add counterexample from model to E ;

14 end

15 end

Algorithm 8: General description of the implementation of the CEGIS paradigm for
the LTL-CSCL problem. Although it captures the essence of our solution, this algorithm
will be revisited in the next sections.

7.3.2 Implementation of the CEGIS Paradigm for the LTL-CSCL
problem

Algorithm 8 illustrates the high-level implementation of the CEGIS paradigm for the LTL-
CSCL problem. The approach we follow is composed of two main steps, i.e., synthesis and
verification. First, in line 4, we check for the satisfiability of a synthesis constraint, i.e.,
φsyn, which we will derive from Equation 7.8 and the list of counterexamples seen until that
point. This operation returns a model, from which we can extract a candidate set of port
connections θM (line 8), or unsat if no candidate is found. Then, in line 9, the candidate
set c is used to derive a different constraint, φver. If φver is valid, then c represents the
correct set of assignments to be encoded as θ. Otherwise, the checkValid routine returns
a trace that describes a counterexample for the validity check, which is added the list of
counterexamples E . The process terminates when a good candidate is found, or if there
is no candidate solution. checkSAT and checkValid are implemented according to the
procedure described in Section 3.5.

Although describing the essence of our approach to solve the LTL-CSCL problem,
Algorithm 8 is still not complete. For instance, we have no guarantee that the synthesis loop
will ever terminate, and the best representation of the sequences σ of Equation 7.8 derived
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from the counterexamples is still undefined. Additionally, we still have to fully describe the
constraints φsyn and φver. In the next sections, we will discuss these issues and provide the
missing details of our solution.

7.3.3 Handling Infinite Input Sequences

The first problem we need to address is to guarantee that Algorithm 8 terminates. In [81], when
the CEGIS approach was first described, the proposed algorithm was guaranteed to terminate
because the input space was finite. Thus in the worst case, for m input variables, eventually
the list of counterexamples would contain all the 2m possible combinations, rendering the
synthesis process valid. In our case, however, inputs are infinite sequences over a certain set
of input variables, meaning that we need a different way to ensure termination.

We solve the problem by keeping track of all the candidate solutions which did not work,
together with the counterexamples generated in the verification step. Let W = {θ0, · · · , θk},
where θi represents an interconnect such that CLθi 6� S. Then, we can express a constraint
which enumerates all the wrong candidates and prevents them to appear again as:

φW = ¬
∨
θi∈W

∧
(x,y)∈θi

(�(x = y)) (7.9)

To prevent the generation of old candidates, then, will need to consider Equation 7.9 when
defining the synthesis constraint φsyn. The addition of φW to φsyn ensures the termination of
the algorithm as the number of possible candidates is finite, albeit very large.

The other problem that arises from having infinite sequences as counterexamples is finding
a suitable way to represent them. In Equation 7.8, in fact, σ refers to sequences but there is
no additional information on how the sequences are represented.

We decided to represent each behavior σ as the output of an ad-hoc state machine. This
state machine, then, can be added to the model checking problem that verifies the validity
of φsyn. In general, as explained in Section 3.5, we can represent the validity check for
an LTL formula as a language containment problem. Thus, on the one hand, we have an
unconstrained state machine, F , that is able to generate any trace L(F ) = T ; on the other
hand, we have the LTL formula we want to check. For instance, to check the validity or
satifiability of a formula ∀σ : σ |= φ, or simply φ, we need to model check:

T ⊆ L(φ) for validity (7.10a)

T ⊆ L(¬φ) for satisfiability (7.10b)

Equations 7.10 helps us understand how to relate traces and LTL formulas, and can
be checked by a model checker. In Section 3.5.2, we discuss how all counterexamples
generated by a model checker (NuXMV in our case) are either finite or lazo-shaped. For
such counterexamples, we can always find a corresponding finite state machine that is able to
produce the specific sequence they describe.
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1 function TraceGenerator:
Input: counterexample trace c, set of variables V
Output: state machine M generating trace c

2 S : list; // list of states

3 T : list; // list of transitions

4 D : hashtable; // map of variable evaluations for each state

5 n ← numberOfStates(c);
6 l ← loopIndex(c); // l ∈ {−1} ∪ {1, · · · , n}. −1 means no loop

7 i ← 1;

8 S ← add initial state i;
9 D[i] ← evaluateTraceAt(V,c,i);

10 for i ∈ {1, · · · , n} do
11 S ← add state i;
12 D[i] ← evaluateTraceAt(V,c,i);
13 T ← add transition from state i −1 to i;
14 if i = n then
15 if l = −1 then // we add a generic state with no evaluation

16 S ← add state i+ 1;
17 T ← add transition from state i to i+ 1;
18 T ← add transition from state i+ 1 to i+ 1;

19 else // there is a loop, we go back to that state

20 T ← add transition from state i to i+ 1;
21 end

22 end

23 end
24 return M = (S,D, T )

25 end

Algorithm 9: Constructs a finite state machine able to generate the same sequence
of symbols described by a counterexample trace, as described in Section 3.5.2. The
resulting state machine can then immediately be encoded as an SMV module.
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Algorithm 9 describes how to build a state machine generating a certain counterexample
σ. We assume we have available some basic primitives, i.e., (i) numberOfStates, which
returns the total number of states of a certain counterexample, (ii)loopIndex, which
indicates the location of the loop in the sequence, or returns −1 if no loop is present, and (iii)
evaluateTraceAt, which returns the evaluation of a certain set of variables at a given
step of the counterexample. Once a state machine is obtained, its description as a module for
the model checker is straightforward. In the case of NuXMV, models are expressed in the
SMV language [56].

At this point, we have all the elements to derive an initial version of the two formulas
φsyn and φver introduced in Algorithm 8. As we will revisit these formulas later, we refer to
them here as φ′syn and φ′ver. In φ′syn, we want to find one assignment forM which satisfies all
the counterexamples seen until a certain iteration. While in Equation 7.8 we are interested
in the validity of the formula, here we are only looking for one satisfiable assignment. We
expect that the pre-conditions are met, i.e., φM, that we do not include discarded candidates
(φW), and that the contract obligations are satisfied, meaning, as explained in Section 3.2.1.5,
that we expect the correct behavior of the contract under correct assumptions. Thus, φ′syn
becomes:

φ′syn = ∃M : ∀σi ∈ E : {σi |= [φM ∧ φW ∧ (ϕS ∧ ψS) ∧ (ϕCL ∧ ψCL)]}[x/xi]x∈Plib∪S (7.11)

where E is the set containing the observed counterexamples introduced in Algorithm 8, and
[x/xi]x∈Plib∪S indicates the syntactical renaming of the variables in Plib∪S with fresh variables
in the enclosed formulas and trace. The equation above can be solved for satisfiability by
model checking that:∧

σi∈E

{L(Fσi) ⊆ L(¬[φM ∧ φW ∧ (ϕS ∧ ψS) ∧ (ϕCL ∧ ψCL)])}[x/xi]x∈Plib∪S (7.12)

where Fσi is a state machine generated from σi according to Algorithm 9. Note that, in
this case, only the variables in Plib∪S are renamed. The connection variables and indices
represented by M and I within φM (cf. Equation 7.2) are not renamed across the multiple
terms.

It is critical to understand the importance of using contracts obligations here instead of
the usual refinement implications. If we had used those, i.e., (ϕS → ϕCL)∧ (ψCL → ψS), then
the formula could be satisfied, for instance, simply by falsifying ψCL , meaning that the library
contracts did not behave according to their guarantees, or by falsifying ϕS, independently of
the actual choice of connections M.

For φ′ver, instead, we are interested in proving that the candidate θM, derived by the
assignments ofM in φ′syn, is the correct one in all the scenarios. Hence, now we are interested
in proving the formula valid. In this case, the formula only needs to verify that refinement
always holds:

φ′ver = CLθM � S = (ϕS → ϕCLθM) ∧ (ψCLθM → ψS) (7.13)
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Although, at this point, we can say that using φ′syn and φ′ver as synthesis and verification
constraints in Algorithm 8 will yield a correct result, there are still some issues that can
affect the overall performance of the synthesis process. In the next sections, we will discuss
them and show how to improve the algorithm.

7.4 Performance Considerations

Consider a library with n contracts with p input and output ports, which can accept and
generate any behavior over those ports, i.e., their assumption and guarantee are always true:
ϕi = ψi = True.

Let S be a generic specification such that ϕS 6= ψS 6= True, also with p input and
output ports, and try to observe how the CEGIS Algorithm 8 would work in such case,
with φ′syn and φ′ver as defined in the previous section. First, in line 4, the algorithm tries
to satisfy Equation 7.11, finding a candidate connection θM. Any of the n contracts is able
to generate a sequence satisfying φ′syn, as they can generate any trace. When verifying
Equation 7.13, in line 9, the model checker shows that indeed that candidate is not correct, as
the candidate solution can also generate traces such that ψCLθc 6→ ψS. checkValid returns
a counterexample on the inputs of S showing that the refinement does not hold. This could
be any trace. Then, the cycle repeats, keeping track of the bad candidate θM through ϕW .
Once again, any connection θ′M 6= θM could satisfy S for that specific counterexample, and
so on.

It is easy to see that, for this library, counterexamples are not really helping in solving
the problem. The algorithm will eventually terminate, after having tried all the possible

2
np(np−1)

2 candidates. It will do so incredibly slowly, as for each counterexample the formula
in Equation 7.12 grows, making the satisfiability problem more and more complex.

This is, of course, an extreme scenario but it highlights why having nondeterministic
contracts in the library is, in general, not desirable.

Algorithm 10 shows a procedure that can detect whether a contract C is nondeterministic,
meaning that, for a certain sequence over its input ports which satisfies its assumption,
at least two distinct sequences over its output ports satisfy its guarantee. It does so by
creating a copy C ′ of C, and verifying whether they can generate different output sequences
given the same inputs. The algorithm is sound and complete. Indeed, if model checking
the formula in Line 4 of the algorithm shows that it is not valid, then a counterexample
will be generated, too. In the resulting trace, then, the left-hand side of the formula will
be true (hence identical inputs), but the right-hand side won’t hold, showing two different
output sequences. If no counterexample can be found, then C is deterministic by definition.
Reversing our reasoning, if C is deterministic, then model checking the formula in Line 4
of the algorithm will necessarily show that the formula is valid (no counterexample can be
found). If C is non-deterministic, then there exists at least a trace in which the inputs are
the same, but the outputs are not. This trace is, by definition, a counterexample, hence it
will also be returned by the model checker. This algorithm does not affect the formulation of
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1 function IsDeterministic:
Input: contract C = (I, O, ϕ, ψ)
Output: True if C is deterministic, False otherwise

2 C ′ → copy of C for interconnect θ; // as defined in Section 3.2.1.6

3 ρI →
∧
i∈I �(i = θ̄(i)); // for θ̄ see Equation 3.17

4 ρO →
∧
o∈O�(o = θ̄(o));

5 m = checkValid((ϕ ∧ ψ) ∧ (ϕ′ ∧ ψ′) ∧ ρI → ρO);
6 if m is valid then
7 return True
8 else
9 return False

10 end

11 end

Algorithm 10: Algorithm to check if a contract C is deterministic. It does so by
verifying that, when given the same input sequence, under the expected assumption
and guarantee, C and its copy C ′ will always return the same output. θ̄ is a function
returning the variable associated to the function parameter according to θ.

our synthesis algorithm, but can be used while defining the contract library to make sure all
the contracts have deterministic behaviors.

7.4.1 Nondeterminism, Cycles, and Depth

Avoiding nondeterministic contracts, however, it’s not enough to guarantee the absence of
nondeterministic behaviors when connecting contracts. Consider, for instance, the following
example.

Example 8 (Simple Cycle). Let C = ({a}, {b},True,�(b = a)) be a contract which simply
relays whatever input is given to it, and θ = {(a, b)} be an interconnect which implies a
connection between input and output of C. Cθ, then, is a nondeterministic contract as its
guarantee will be satisfied no matter the value of the output port b.

Example 8 shows that cycles can be problematic, as they could be a source of nondeter-
ministic behaviors during the synthesis process. This is not going to affect the final result,
but it can have a substantial impact on the overall performance.

Additionally, Example 1 shows that creating a cycle can yield an inconsistent contract.
Formally, an inconsistent composition could be a refinement of a specification because
its guarantee is empty. Allowing cycles means that each solution should be checked for
consistency, which could be a prohibitive task as it requires verifying realizability of the
contract’s formulas (cf. Section 3.1.4).
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Therefore, we explicitly avoid cycles in the contract compositions. To enforce this
constraint, we consider an additional set of variables, one for each contract in the library
called location variables. We indicated them as

VL = {lC | C ∈ Z} (7.14)

We do not directly assign any value to variables in VL, but require the value of a contract’s
location variable to be greater than the location variables of the contracts that feed it its
inputs:

φLL =
∧

C1=(I1,O1,ϕ1,ψ1)∈Z

∧
p∈I1

∧
C2=(I2,O2,ϕ2,ψ2)∈Z

∧
q∈O2

[M(p) = I(q)→ (lC1 > lC2)] (7.15)

and greater than zero if mapped to the specification inputs:

φLS =
∧

C1=(I1,O1,ϕ1,ψ1)∈Z

∧
p∈I1

∧
q∈OS

[M(p) = I(q)→ (lC1 > 0)] (7.16)

Then, we indicate as φL the conjunction of Equations 7.15 and 7.16:

φL = φLL ∧ φLS (7.17)

The addition of location variables for contracts in the library does not affect too much the
overall size of the synthesis formulas, as the number of such variables is much smaller than
the variables encoded through M, which represents all the ports in the library. Additionally,
we can use the location variables to limit the maximum depth of a solution by imposing an
upper bound to the variables in VL:

φD(d) =
∧
v∈VL

v ≤ d (7.18)

where d is the desired depth. Moreover, given a maximum desired depth d, we can explore
the solution space in incremental steps from depth 1 to d. This guarantees that, when a
solution is found, it will also have minimal depth.

Later, we will discuss how to integrate the additional constraints described in this section
with the synthesis technique introduced with Algorithm 8.

7.5 Addressing the Full LTL-CSCL Problem

In this section, we will relax the assumption H = Z that we made in Section 7.3, thus
allowing solutions where only a subset of the library is used, H ⊆ Z. In general, having
too many contracts in a candidate solution could be problematic as, even if they are not
connected to any other contract, they might introduce additional assumptions which will
prevent the refinement between the specification and the composition to hold. Consider, for
instance, the following example, where we try to find a composition satisfying a specification
under the assumption H = Z.
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Example 9 (Assumptions Too Restrictive). Let S = ({x}, {y},True,3y) be a contract repre-
senting a specification. Let also L = (Z,R) be a library where Z contains only two contracts,
C1 = (∅, {b},True,3b) and C2 = ({a}, ∅,�¬a,True), where R allows any connections. Note
that C2 does nothing, as it has no output ports.

One can easily see that, indeed, S can be refined by C1 by mapping y to b. According to
the assumption H = Z, however, we need to include also C2 in the resulting composition.
Thus, if a is mapped to x, then the composition becomes

(C1 ⊗ C2)θ = ({x}, {a, y, b},�(a = x ∧ b = y)→ (3b→ �¬a),�(a = x ∧ b = y) ∧3b)

and the refinement with S holds if and only if the following are both valid:

True → [�(a = x ∧ b = y)→ (3b→ �¬a)]

[�(a = x ∧ b = y) ∧3b]→ 3y

The first formula, however, is not valid, thus the refinement does not hold.
If a is connected to b, instead, then the composition (where the ports have been renamed

according to the new connection) is

(C1 ⊗ C2)θ = (∅, {a, y, b},�(a = b ∧ b = y)→ (3b→ �¬a),�(a = b ∧ b = y) ∧3b)

and the refinement with S is verified if and only if the following are both valid:

True → [�(a = b ∧ b = y)→ (3b→ �¬a)]

[�(a = b ∧ b = y) ∧3b]→ 3y

The refinement, again, does not hold as the first formula is not valid.
Although unconnected inputs are not allowed in our approach, even leaving the variable a

unconnected would result in a non-valid refinement formula, as one can immediately check.
Hence, under the assumption H = Z, no composition refining S can be found.

Example 9 shows why, sometimes, requiring a solution to a synthesis problem to include
all the contracts in the library is not a good idea. One approach could be the one discussed
in Chapter 6, where a constraint solver is used to pre-select sets of components which are
then tested for refinement. Used in this chapter’s context, however, that approach would not
yield any additional benefit, as it would result in a synthesis algorithm that is no better than
Algorithm 5, which tests many candidate solutions only once.

Another solution, which we prefer in this case, is to give the ability to the synthesis engine,
i.e., the model checker, to select which contracts to include in a solution within the main
synthesis loop. We do so by using the contract location variables introduced in Equation 7.14,
i.e., if any of such variables is set to 0, then it means that its associated contract does not
participate in the final composition. Thus, we can selectively ignore its assumption and
guarantee by parameterizing it according to its location variable:

C(lC) = (I, O, (lC > 0)→ ϕ, (lC > 0)→ ψ) (7.19)
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The parameterized contract will then be identical to C if lC > 0, or it will be trivial
(ϕ = ψ = True). In this way, the solver will not be forced to satisfy assumptions and
guarantees of unused contracts. We indicate the composition of all the parameterized library
contracts (cf. Equation 7.5) as

CL(VL) = (IL, OL, ϕL(VL), ψL(VL)) =
⊗
{Ci(lCi) | Ci ∈ Z} (7.20)

Additionally, we require that if a contract is not used, it cannot feed any other contract:

φC =
∧

[C1=(I1,O1,ϕ1,ψ1)∈Z]

∧
[p∈I1]

∧
[C2=(I2,O2,ϕ2,ψ2)∈Z]

∧
[q∈O2]

[lC2 = 0→M(p) 6= I(q)] (7.21)

We enforce this additional constraint because, otherwise, we would allow nondeterministic
inputs which are not desirable, as discussed in Section 7.4.1.

7.6 Putting It All Together: Revisited LTL-CSCL

In this section, we revisit the initial synthesis and verification constraints, φ′syn and φ′ver,
introduced in Equations 7.11 and 7.13, to include all the improvements discussed in Sections 7.4
and 7.5. We start from the synthesis constraint, which now becomes:

φsyn(CL, S, φM, E ,W , d) = ∃M,VL : ∀σi ∈ E :

{σi |= φM ∧ φW ∧ φL ∧ φD(d) ∧ φC ∧ (ϕS ∧ ψS) ∧ (ϕCL(VL) ∧ ψCL(VL))}[x/xi]x∈Plib∪S
(7.22)

where σi represents the sequence generated by the ad-hoc state machine built according to
Algorithm 9. The formula above can be checked for satisfiability by solving a problem similar
to the one in Equation 7.12. It is worth noticing how, this time, we are also looking for an
assignment of the variables in VL, which parameterize the library contract CL. The addition
of all the extra terms, here, is not a problem. A candidate M satisfying Equation 7.22, if
correct, will also satisfy Equation 7.8, which represents our synthesis goal.

The verification constraint, instead, does not change but it requires us to consider only
the contracts used in the candidate solution rather than the whole library, according to the
candidate set H inferred by the assignments to the variables VL in φsyn. We indicate the
candidate composition as CH = (IH , OH , ϕH , ψH) =

⊗
{Ci | Ci ∈ H}, and the verification

constraint includes it as:

φver(CH , S, θM) = φ′ver(CH , S, θM) = (ϕS → ϕCHθM) ∧ (ψCHθM → ψS) (7.23)

where θM is the interconnect inferred from M.
We can now provide a detailed representation of the LTL-CSCL algorithm, described in

Algorithm 11, which takes into account the newly added constraints and the incremental
depth strategy.
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1 function Full LTL-CSCL:
Input: library contract CL = (IL, OL, ϕL, ψL), constraint formula φM, specification

contract S = (IS, OS, ϕS, ψS), maximum solution depth D
Output: set of contracts H ∈ Z and set of connections representing θ, or False

2 d = 1;
3 E ← {T }; // Counterexample set

4 W ← {}; // Old candidates

5 while d ≤ D do
6 while True do
7 model ← checkSAT(φsyn(CL, S, φM, E ,W , d));
8 if model is unsat then
9 d = d+ 1;

10 end
11 (H, θ)← extractCandidate(model);
12 W ←W ∪ {(H, θ)};
13 model ← checkValid(φver(CH , S, θ));
14 if model is valid then
15 return (H, θ);
16 end
17 σ ← extractCounterexample(model);
18 Fσ ← TraceGenerator(σ);
19 E ← E ∪{Fσ};
20 end

21 end
22 return False;

23 end

Algorithm 11: Description of the algorithm solving the LTL-CSCL problem including
all the performance considerations discussed in Section 7.4.

7.7 Evaluation

In this section we discuss the evaluation of Algorithm 11 in three different scenarios. The first
two are the already seen aircraft electrical power system (cf. Chapter 4) and brushless electric
motor (cf. Section 6.5.1) synthesis problems. The third problem is inspired by the field of
embedded design, and it is about the synthesis of the architecture of a Serial Peripheral
Interface (SPI) controller for an Analog-to-Digital converter (ADC).

We implemented the algorithm in Python, as an extension of the tool Pyco introduced in
Section 6.4. We rely on the NuXMV model checker to compute the validity and satisfiability
of formulas, and to execute the state machines generating the counterexample traces. All the
tests were executed on a 3.3 GHz Intel Xeon machine, with 32GB of RAM.
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7.7.1 The BLDC problem

In this section we discuss the results of the Full LTL-CSCL synthesis algorithm applied
to the BLDC example introduced in Section 6.5.1. Before proceeding, however, we need to
introduce a revisited version of the contract library that we used earlier.

Contract Input Ports Output Ports Assumptions Guarantees

Power-5V - -
gnd
vout

(GND)
(Voltage5V)

true �(¬gnd ∧ vout)

DCDC-3V
gnd
vin

(GND)
(Voltage12V)

vout (Voltage3V) true �(vout)

DCDC-5V
gnd
vin

(GND)
(Voltage12V)

vout (Voltage5V) true �(vout)

Power-12V - -
gnd
vout

(GND)
(Voltage12V)

true �(¬gnd ∧ vout)

MCU
gnd
vin
i

(GND)
(Voltage3V)

(IOPin3V)

o1

o2

o3

(IOPin3V)
(IOPin3V)
(IOPin3V)

true

o1 ∧ ¬o2 ∧ ¬o3 ∧
�[ (o1 ∧ ¬i ∧#i) → (#¬o1 ∧#o2 ∧#¬o3) ]∧
�[(o1 ∧ ¬i ∧#¬i)→ (#o1 ∧#¬o2 ∧#¬o3) ]∧
�[ (o1 ∧ i ∧#¬i) → (#o1 ∧#¬o2 ∧#¬o3) ]∧
�[ (o2 ∧ ¬i ∧#i) → (#¬o1 ∧#¬o2 ∧#o3) ]∧
�[(o2 ∧ ¬i ∧#¬i)→ (#¬o1 ∧#o2 ∧#¬o3) ]∧
�[ (o2 ∧ i ∧#¬i) → (#¬o1 ∧#o2 ∧#¬o3) ]∧
�[ (o3 ∧ ¬i ∧#i) → (#o1 ∧#¬o2 ∧#¬o3) ]∧
�[(o3 ∧ ¬i ∧#¬i)→ (#¬o1 ∧#¬o2 ∧#o3) ]∧
�[ (o3 ∧ i ∧#¬i) → (#¬o1 ∧#¬o2 ∧#o3) ]∧
�{ (i↔ #i) → [ (#o1 ↔ o1)∧

(#o2 ↔ o2) ∧ (#o3 ↔ o3)]}

Half-Bridge
gnd
vin
i

(GND)
(Voltage3V)

(IOPin3V)
o (IOPin12V) true �(i↔ o)

Table 7.1: Structure of the BLDC library, which contains three separate instances of each
component. This library is a revisited version of the one in Table 6.2, which now includes
only deterministic contracts.

The library in Table 6.2, in fact, contains contracts that are nondeterministic, which
in this case can lead to performance issues, as discussed in Section 7.4.1. The contract
representing the microcontroller, MCU, is a problematic one. For instance, the contract does
not specify what to do in case the input i is true for more than one cycle. Table 7.1 describe
the updated library, which contains now only deterministic contracts. The identification of
the nondeterministic contract and the validation of the updated library was performed using
Algorithm 10.

Figure 7.1 shows the synthesis times, for libraries derived from Table 7.1 with 16, 24,
and 32 contracts. Each point represents the bootstrap mean of an initial sample size of 80
experiments, while the bars indicate the 95% bootstrap confidence interval for the mean.
In these experiments, the solver was able to find a solution almost immediately—most of
the times it took only two iterations to find a good solution. This can explain how having
a larger library, in this case, does not translate in exponential performance degradation
(which, however, is expected for larger libraries). Synthesis using the nondeterministic library
generated comparable results, although with much higher variance. For instance, for a certain
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Figure 7.1: Summary of the results for the BLDC experiments. We synthesized a controller
using three libraries including 16, 24, and 32 contracts respectively, for the same specification.
For each category, we ran 80 experiments, and then bootstrapped the samples. Each point
represents the bootstrap mean for the synthesis time, while the bars represent its 95%
confidence interval, also indicated within parentheses.

library, it would not be uncommon to see some experiments taking more than five times the
synthesis time of others. Resulting compositions were similar to the one in Figure 6.7

7.7.2 The EPS problem

Here we summarize the results of applying the Full LTL-CSCL algorithm to the EPS case
study (introduced in Chapter 4 and discussed further in Section 6.5.2). As for the BLDC
case, also in this case a contract was found to be nondeterministic. To ensure determinism, in
these experiments we replaced contract A1 of Table 4.2 with another instance of contract B1.
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Figure 7.2: Summary of the EPS experiments. We synthesized a controller using two different
libraries, one with 20 and the other with 40 contracts, defined in Table 4.2. For each category,
we ran 80 experiments and then bootstrapped the sample. Each point represents the bootstrap
mean synthesis time, while the bars represent its 95% bootstrap confidence interval.
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Library 20 Library 40
{S1} 11.82 (11.66, 11.99) 16.57 (16.35, 16.77)
{S1, S2} 13.76 (13.49, 14.02) 18.14 (17.65, 18.68)
{S1, . . . , S3} 15.26 (14.93, 15.65) 22.47 (21.55, 23.48)
{S1, . . . , S4} 17.32 (16.81, 17.92) 26.13 (25.22, 27.15)
{S1, . . . , S5} 17.41 (16.89, 17.99) 26.45 (25.46, 27.52)
{S1, . . . , S6} 19.12 (18.54, 19.74) 30.01 (28.69, 31.5)
{S1, . . . , S7} 20.7 (20.09, 21.39) 30.36 (29.19, 31.64)
{S1, . . . , S8} 20.7 (20.15, 21.3) 29.87 (28.84, 31.05)
{S1, . . . , S9} 21.45 (20.8, 22.25) 30.25 (29.21, 31.31)

Table 7.2: Summary of the EPS experiments, for libraries with 20 and 40 contracts. For
each specification subset (one for each row), we report the bootstrap mean value and its 95%
confidence interval (in parentheses). All values are expressed in seconds.

We ran each experiment 80 times and then bootstrapped the samples to obtain mean and
95% bootstrap confidence interval. Figure 7.2 summarizes the results, which are reported
in detail in Table 7.2. If compared to the results reported in Section 6.5.2 (cf. Table 6.3),
we can observe that the approach presented here is roughly twice as fast, if compared to
the constant cost case. Interestingly, while for the experiments in Section 6.5.2 we reported
an experiment generating more than 100000 verification queries, here no experiment took
more than 8 iterations to converge to a solution. Figure 6.9 illustrates a typical composition
resulting from the synthesis procedure.

7.7.3 The SPI Analog-to-Digital Converter problem

An Analog-to-Digital Converter (ADC) is an electronic device that is able to read an analog
voltage and returns a digital value proportional to the input voltage. ADCs are extremely
useful in the design of cyber-physical systems, as they provide systems with the ability to “read”
information that is generated by interacting with the physical worlds. For instance, consider
a simple system that needs to detect when the environment in which it operates is dark.
An immediate implementation could include a microcontroller (MCU) and a photoresistor,
which is a sensor able to convert light to electrical potential. The MCU, however, is a digital
component and needs an ADC to interpret the output of the sensor.

The communication between the MCU and the ADC, usually, happens through a serial
digital signal. A typical protocol used in this type of communication is called Serial Peripheral
Interface (SPI) (see, for instance, [47]). The SPI protocol implements the master-slave
architecture, where the two parties communicate through four signals, as illustrates in
Figure 7.3.

In this section, we study a scenario which is affine to the technologies we just introduced1.
The specification models a subsystem for an embedded device, and requires reading from
an analog source and returning its corresponding digital value using a bus, i.e., in a parallel

1This example has been developed with Íñigo Íncer Romeo.
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Figure 7.3: Synthesis times with and without specification decomposition. The horizontal
axis indicates a subset of the guarantees in Table 4.1, while the vertical one, in logarithmic
scale, the synthesis time.

fashion. Here, the specification does not implement the SPI protocol. It asserts a signal, r
for a single clock cycle, and expects the digital value to be produced on the bus after some
time. Table 7.3 provides the details about the contract representing the specification.

Input Ports
a
r

(Analog:Int)
(Req:Bool)

Output Ports
rdy
b0, . . . , bn

(Ready:Bool)
(ADCbit:Bool)

Assumptions ¬r ∧�(r → #¬r ∧ · · · ∧#n+2¬r) ∧�(0 ≤ a < 2n)

Guarantees
�(r→#¬rdy ∧ · · · ∧#n+1¬rdy ∧#n+2rdy) ∧
�{r→[(#n+2b0 ↔ #2( a

20
− 2 · a

21
= 1)) ∧ · · · ∧ (#n+2bn ↔ #2( a

2n−1 − 2 · a
2n

= 1))]}

Table 7.3: Specification for the SPI-ADC synthesis problem parameterized for n (in the
experiments, n ∈ {2, 3, 4, 5}). The contract reads an analog input, represented as an integer
variable, and a request line. After n+2 clock cycles, it needs to assert a ready signal. Moreover,
it needs to compute the i-th bit of the analog input for each output bit bi, representing the
state of the analog signal two cycles after the request line was asserted. The fractions represent
integer division, where the expression a

2i
− 2 · a

2i+1 computes the i-th bit of a. Port types
indicate the type label, used to describe each port, and their domain (integer or Boolean).

The analog input is represented by an integer variable. To satisfy the specification, an
implementation needs to match the input value to its digital binary version. The specification
requires also a “ready” signal, rdy, to be generated upon completion of the task.

Table 7.4 shows, instead, the elements that populate the contract library. The set of
contracts is very simple. The main component is the ADC, which implements an SPI-like
protocol. It requires its c input to be asserted for several clock cycles, while it samples from
its analog interface and generates corresponding digital values on its serial output, m. Being
serial, it means that the analog value will not be converted at once, but each bit will be
computed sequentially The rest of the library contains very simple digital elements, such
as inverters, which reverse their Boolean input value, counters, which count up to a certain
integer value, comparators, which return true if their input match their parameter, triggers,
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Contract Input Ports Output Ports Assume Guarantee

ADC(n)
c
a

(Select:Bool)
(Analog:Int)

m (MISO:Bool) ¬c

¬m ∧#¬m ∧
�(¬c→ ¬m ∧#¬m) ∧
�{(¬c ∧#c ∧#2c)→

[#2m↔ #( a
20
− 2 · a

21
= 1)]} ∧

· · ·
�{(¬c ∧#c ∧ · · · ∧#n+1c)→

[#n+1m↔ #( a
2n−1 − 2 · a

2n
= 1)]} ∧

�[(¬c ∧#c ∧ · · · ∧#n+1c)→ (#n+2¬m)]∧
�[(c ∧#c ∧ · · · ∧#n+1c)→ (#n+2¬m)]

Inverter i (Control:Bool) o (Control:Bool) true �(o↔ ¬i)

Counter(k) r (Control:Bool)
v
p

(Counter:Int)
(Param:Int)

true

(c = 0) ∧
�(p = k) ∧
�[r → #(v = 0)] ∧
�[(v ≤ p) ∧ ¬r → (#(v) = v + 1)]∧
�[(v = p) ∧ ¬r → (#(v) = p)]

Comparator(k) v (Counter:Bool)
e
p

(Control:Int)
(Param:Int)

true
�(p = k) ∧
�[(v = p)↔ e]

Trigger(k) r (Control:Bool)
t
c
p

(Control:Bool)
(Counter:Int)

(Param:Int)
true

(c = 0) ∧
�(p = k) ∧
�[(c = p)↔ t] ∧
�[r → #(c = 0)] ∧
�[(c ≤ p) ∧ ¬r → (#(c) = c+ 1)]∧
�[(c = p) ∧ ¬r → (#(c) = p)]

FlipFlop
d
e

(Data:Bool)
(Control:Int)

q (Data:Bool) true
¬q ∧

�[e→ (d↔ #q)] ∧
�[¬e→ (q ↔ #q)]

Table 7.4: Structure of the ADC-SPI library. The ADC component is used, in the experiments,
with n ∈ {2, 3, 4, 5}. Some components are parameterized, if in their output ports there are
ports of type “Param”. All the parameters k are bounded such that 0 ≤ k ≤ 10. Port types
indicate the type label, used to describe each port, and their domain (integer or Boolean).
The library imposes constraints on possible connections based on the port domains.

which return a Boolean signal after a certain number of clock cycles, and flip-flops, which
store their Boolean input value when their “write” line is asserted.

The goal of this experiment is to synthesize the control logic around the ADC, meaning
that a correct solution will need to figure out a way to memorize intermediate values and
return the binary representation of the input only when all the bits have been correctly
computed. This case study is particularly interesting because its complexity grows also in the
temporal dimension. For different specifications, in fact, we have that having more output
ports implies that the ADC will need to work over more clock cycles, meaning that the
underlying model checker will need to do more work to verify candidates.

Figure 7.4 shows the synthesis times for the specification for n ∈ {2, 3, 4, 5}, executed
with libraries containing an ADC parameterized with the same n, for library with size of
11, 11, 16, 17 contracts, respectively. Note, however, that most of the elements in the library
are parametric, with a parameter 0 ≤ k ≤ 10, meaning that each of those contracts encoded
a larger search space. We can observe how the synthesizer is able to find solutions in a
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Figure 7.4: Summary of the results for the ADC-SPI experiments, for specifications with
parameter n ∈ {2, 3, 4, 5} and library size of 11, 11, 16, 17 contracts, respectively. Each library
had the appropriate ADC according to n. The other contracts, including the parametric ones,
were replicated as needed. For n >= 5, synthesis time was longer than our timeout of 500
seconds, but it is reported for completeness. The graph is in logarithmic scale.

reasonable time (less than 500 seconds) for n < 5. Figure 7.5 illustrates a typical solution for
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Figure 7.5: Typical synthesized composition for the ADC-SPI problem, in case of the
specification and ADC with 3 bit resolution (n = 3).

n = 3.

7.8 Conclusion

In this chapter, we studied an approach to synthesis from libraries of LTL A/G contracts
based on the CEGIS paradigm. Differently than the solution discussed in Chapter 6, here we
use counterexamples generated by a verifier, i.e., a model checker, representing traces over the
specification and system variables, to propose a more efficient solution. In this case, indeed,
the number of queries to the verifier is reduced by several orders of magnitude, although the
complexity of each query increases, too.
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The algorithm we presented includes a number of optimizations that are aimed at
improving performance, including considerations on why to avoid dependency cycles and
nondeterministic contracts. We applied our synthesis algorithm to three case studies, showing
its effectiveness. In Chapter 8, we will build on top of the results discussed here to show how
to further improve performance, by decomposing the system specification.
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Chapter 8

Specification Decomposition for
Synthesis from Libraries of LTL A/G
Contracts

In the previous chapters, we introduced techniques to perform synthesis of compositions of
LTL A/G contracts (and components in general) that satisfy a certain specification. Synthesis
tasks are feasible in many cases, but they are computationally intensive, especially for complex
specifications. In this chapter, we describe an efficient technique to partition a specification,
i.e., an LTL-based A/G contract, in a number of simpler sub-specifications which can be
satisfied independently. Once all these smaller problems are solved, it is possible to safely
merge their solutions to satisfy the original specification.

The rest of the chapter is organized as follows. In Section 8.2, we reference the theoretical
elements to support our work, and provide a formal analysis of our approach in Section 8.3.
Then, in Section 8.5, we describe in detail our decomposition algorithm. In Section 8.6,
we evaluate the performance of our method by applying it to an industrial case study, i.e.,
the design of the control software for an Aircraft Electrical Power System (EPS), and draw
conclusions in Section 8.7.

8.1 Introduction

Given a specification described by an A/G contract, it is possible to satisfy it by composing
a number of simpler contracts, where the theory of contracts provides the mathematical
tools required to validate the design. When contracts are automatically chosen from a
library of predefined designs, we talk about Constrained Synthesis from Contract Libraries
(CSCL), Although synthesis tools and algorithms have come a long way, CSCL remains a
computationally hard problem.

In this chapter, we present a way to increase the scalability of synthesis from libraries
of LTL A/G contracts. Given a specification, also described by an LTL A/G contract, we
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show how to efficiently partition the synthesis problem into several simpler sub-problems,
which can be solved independently. We do so by analyzing counterexamples generated by a
model-checker when asked to verify the validity of a properly crafted formula. The result is
an algorithm able to generate a set of sub-specifications which are as “small” as possible,
only requiring a number of operations quadratic in the number of variables of the original
contract.

This chapter builds on top of the concepts, problems, and solutions discussed in Chapter 7.

8.2 Preliminaries

In this chapter, we will refer to LTL A/G contracts and libraries as introduced in Chapter 3
and discussed further in Chapter 7, e.g., an LTL A/G contract is indicated as C = (I, O, ϕ, ψ),
and a library is a pair L = (Z,R).

As usual, we consider the system specification S = (IS, OS, ϕS, ψS) that needs to be
synthesized, as a LTL A/G contract.

The problem we want to solve is the same problem of synthesis from libraries of LTL A/G
contracts introduced in Definition 10. In this chapter, we present a technique to improve
the scalability of the synthesis process, which is reduced to a series of simpler tasks. In Sec-
tion 8.4.1, we will formally describe such simpler synthesis tasks as a variation of the problem
in Definition 10, that can still be solved, however, using the same techniques elaborated
in Chapter 7. In this chapter, we leverage the property of independent implementability
of contracts, which derives from the notions of refinement and composition. For instance,
let C,C1, C2 be contracts such that C1 ⊗ C2 � C. Let also C ′1, C

′
2 be contracts such that

C ′1 � C1, and C ′2 � C2. Then, we have that C ′1 ⊗ C ′2 � C holds, too.

8.3 Decomposing Contracts

Given a system specification expressed as a LTL A/G contract, our objective is to decompose it
in several sub-specifications (or projections), to simplify the synthesis problem in Definition 10.
In this section, we show how to formally describe these projections and how it is possible to
treat them independently while guaranteeing the satisfaction of the original specification. Thus,
given a contract C = (I, O, ϕ, ψ), we want to find a composition of contracts C ′ = C ′1⊗· · ·⊗C ′n
such that

C ′1 ⊗ · · · ⊗ C ′n � C (8.1)

Note that, compared to the problem addressed in Chapters 6 and 7, here each contract C ′i does
not need to come from a library, but it will become itself the specification for another synthesis
task. The independent implementability property of contracts, introduced in Section 3.2.1.4,
guarantees that refining the single contracts on the left-hand side of Equation 8.1 will yield a
valid refinement for C.
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Ideally C ′i will need to be simpler to synthesize than the original contract C. The
complexity of synthesis, as we have discussed in Chapter 6, ultimately depends on the number
of connections that the synthesizer needs to establish. Hence, the synthesis problem for each
C ′i will need to be defined in a way that reduces the total number of connections that need
to be found.

Another desirable property of such decomposition is that it will need to maintain intact
the solution space. That is, any solution that could be found by synthesizing C, it should be
also be found by synthesizing each C ′i. Thus, we would like contracts C ′is to be as “loose”
as possible, meaning that their guarantees should be as weakest, and their assumptions the
strongest, while still holding the refinement in Equation 8.1. Finally, the decomposition
process should always be successful, meaning that, in the worst case, we should obtain a
single contract such that C ′1 � C.

In the next sections, we will introduce the notion of projection for LTL A/G contracts and
we will show how it can be used to define and solve the problem of contract decomposition.

8.3.1 Projection for LTL A/G Contracts

According to the discussion in the previous section, each contract resulting by the decomposi-
tion of a specification C should be simpler to synthesize than C. We discussed how this boils
down to reducing the number of unknown connections that a synthesizer needs to solve. We
call each C ′i of Equation 8.1 a projection. We do so to explicit our intent to have each C ′i
define only some properties of the specification C, which is then fully realized only when all
the projections are composed together.

Defining a projection for an A/G contract C, intuitively, means describing a new contract
over a subset of its variables. The new assumption and guarantee will need, then, be defined
only over those variables exposing, at the same time, all the behaviors that could be observed
in C by looking at the subset of variables. Unfortunately, Wolper [84] proves that LTL
formulas are not, in general, closed under projection. Therefore, for LTL A/G contracts, we
cannot define the projection operation by simply taking the projection of their assumption
and guarantee formulas. We provide a definition of projection for LTL A/G contracts that
doesn’t involve projecting LTL formulas, but it is able to partition only output variables
of a certain contract. It is, however, sufficient for us to define the problem of contract
decomposition, discussed in Section 8.3, and to provide a solution for it. The reasons behind
the choice of defining the projection only over output variables will be clarified later.

Definition 11 (Projection of LTL A/G Contracts). Given an LTL A/G contract C =
(I, O, ϕ, ψ) and a subset of its output variables V ⊆ O, its projection with respect to V is a
contract

ΠV (C) = CcθV (8.2)
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where Cc is a copy of C with fresh variables as in Definition 4, and θV specifies the following
connections:

∀p ∈ I :(Cc.x, x) ∈ θV (8.3)

∀p ∈ O :p ∈ V ⇔ (Cc.x, x) ∈ θV (8.4)

Thus, ΠV (C) shares with C all input variables and the variables in V , while all the other
output variables are left unconnected.

Given a projection ΠV (C), we call it valid if and only if

ΠV (C)⊗ ΠV̄ (C) � C (8.5)

where V̄ = {p | p ∈ O \ V } contains all the output variables of C which are not in V . That
is, ΠV̄ (C) complements ΠV (C) with respect to the output ports of C.

Example 10 (Not all projections are valid). Consider the contract

C = (∅, {a, b}, ϕ = True, ψ = �(a ∨ b))

and the set X = {a}. The projection associated with X is

ΠX(C) = (∅, {a, a0, b0},True,�(a = a0) ∧�(a0 ∨ b0))1

while its complement is

ΠX̄(C) = (∅, {b, a1, b1},True,�(b = b1) ∧�(a1 ∨ b1))

To verify the validity of the projection, we need to verify that ΠX(C)⊗ ΠX̄(C) � C holds.
Let us start by verifying that the guarantees of the composition are more constrained than

ϕG:
�(a = a0) ∧�(a0 ∨ b0) ∧�(b = b1) ∧�(a1 ∨ b1)⇒ �(a ∨ b)

The equation above is not always true. Consider, for instance, the case in which, at time 0,
a = a0 = False, b0 = True, a1 = True, and b = b1 = False. Thus, the projection ΠX(C) is
not valid. If, instead, the guarantee were ψ = �(a ∧ b), the set X = {a} would yield a valid
projection.

The notion of valid projection can also be used to justify the reason behind the decision
of limiting the partition of variables to the set of output variables. Let us assume that the set
V in Definition 11 could include also input ports, i.e., a contract C and its projection ΠV (C)
shared both inputs and output variables in V . For all the input variables not included in
V , similarly to what happens in Example 10, there would be some variables of ΠV (C) not
mapped into C. Conversely, ΠV̄ (C) would have all the input variables in V not mapped into
C. Thus, their composition C ′ = ΠV (C) ⊗ ΠV̄ (C) would have 2 · |I| input variables. The

1The new guarantee is computed according to the contract connection discussed in Section 3.2.1.6.
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refinement C ′ � C would then be problematic for two reasons, one merely formal and one
substantial.

First, according to the definition of refinement in Section 3.2.1.4, for the refinement to
hold, C ′ cannot have more input variables than C. C ′, however, would have twice the input
variables of C. Although problematic, this issue could be resolved by adding |I| new dummy
variables to C, mapping them onto the unconnected variables of C ′. The other problem,
however, is substantial. Indeed, for each new input port, C ′ defines some constraints according
to its assumption, derived from ΠV (C) and ΠV̄ (C). Even if C had the missing variables,
it would not have any assumption asserted over them, i.e., any behavior would be allowed.
Thus, in verifying refinement, Equation 3.22c would not be satisfied as ϕ would allow more
behaviors than ϕ′, at least for any non-trivial assumption, i.e., different than ϕ = True.

Using the notion of projection for a LTL A/G contract we just introduced, we are now
ready to formally introduce the problem we want to solve. Later, we will discuss how
this problem and its solution address all the considerations we made at the beginning of
Section 8.3.

Definition 12 (Contract Decomposition Problem (CD)). Let C = (I, O, ϕ, ψ) be a LTL A/G
contract, and let ΠV (C) indicate the projection of C over a set of output variables V ⊆ O.
The CD problem consists in partitioning O into n sets of variables V1, . . . , Vn, with n ≥ 1,
such that

ΠV1(C)⊗ ΠV2(C)⊗ · · · ⊗ ΠVn(C) � C (8.6)

8.4 Solving the Contract Decomposition Problem

The first thing to do to solve the CD problem is to understand how to partition the set of
output ports of a certain contract C to guarantee that Equation 8.6 is satisfied.

To get there, however, we need first to introduce a few concepts. We will start defining
the notion of independent variables for an LTL formula.

Definition 13 (Independent Variables). Let ϕ be an LTL formula over a set of variables
Σ, and Σ = Q ∪ P , with Q ∩ P = ∅. Let also σ indicate a sequence of evaluations of the
variables in Σ, where σP refers to the same sequence only over evaluations of variables in
the set P . We say that variables in V ⊆ P are independent in P for ϕ if and only if, for
each sequence σ that falsifies ϕ, then ϕ can also be falsified only by the sequence σQ∪V of
evaluations of variables in Q ∪ V or the sequence σQ∪V̄ of evaluations of variables in Q ∪ V̄ ,
where V̄ = P \ V :

∀σ : σ 6|= ϕ⇒ σQ∪V 6|= ϕ ∨ σQ∪V̄ 6|= ϕ (8.7)

Independent variables are useful because they allow identifying partitions of variables
which can indicate the failure of a larger formula. They will be used as the foundational
concept to identify valid contract projections.
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Example 11. Let ϕ = �(a ∨ b), where Σ = P = {a, b}, and Q = ∅. Then V = {a} does
not contain independent variables2. Consider, for instance, the finite sequence σ = [(a =
False, b = False)]. σ falsifies ϕ, but σV = [(a = False)] does not, because the evaluation of b
is unknown. On the other hand, for ϕ′ = �(a ∧ b) and V = {a}, a is independent. Note that,
trivially, variables in V ′ = {a, b} are also independent.

The following theorem is very useful as it defines the link between valid projections and
independent variables for a certain formula, which is at the core of the algorithms that we
will describe in Section 8.5.

Theorem 8.4.1. Let C = (I, O, ϕ, ψ) be a compatible and consistent LTL A/G contract, and
consider a subset of its output variables V ⊆ O. Let also ϕ be defined only over variables in
I. If variables in V are independent in O for ψ, then the projection ΠV (C) is valid.

Proof. Consider a contract C = (I, O, ϕ, ψ) and a subset of variables V ⊆ O, where V contains
independent variables. To verify the validity of the projection ΠV (C), then ΠV (C)⊗ΠV̄ (C) �
C must hold. This means verifying that:

1. ϕ→ ϕV ∧ ϕV̄ ∨ ¬(ψV ∧ ψV̄ )

2. ψV ∧ ψV̄ → ψ

We start from point 2). C is consistent, hence I-receptive, i.e., its guarantee cannot be
falsified only by a sequence of evaluations of its input variables. Let σG be a sequence of
evaluations of the variables of C that falsifies ψ. Then, because V contains independent
variables, the same sequence projected over I ∪ V and I ∪ V̄ will also falsify ψ. Thus, ψV
or ψV̄ will also be false as they share the variables in I ∪ V and I ∪ V̄ with ψ, respectively.
Hence, the implication in point 2) will always be true, as every time the right-hand side is
false, so is the left-hand side.

For point 1), let σA be a sequence of evaluations of variables in C that falsifies the
formula on the right-hand side of the implication, ϕV ∧ ϕV̄ ∨ ¬(ψV ∧ ψV̄ ), which represent
the assumption of the composition ΠV (C)⊗ ΠV̄ (C). This means that σA falsifies also the
stronger formula ϕV ∧ϕV̄ . As C, ΠV (C), and ΠV̄ (C) all share the same set of input variables
I, and ϕ is defined only over those variables, any σA that falsifies ϕV ∧ ϕV̄ will also falsify ϕ.
Hence, 1) is always true, too. This proves the theorem.

8.4.1 Using Projections for Synthesis

At this point, we know how to find valid projections for a contract. In this section, we
describe how such projections can be used to simplify the problem of synthesis from contract
libraries.

2If the context is clear, as in this case, we will just say that variables in V are independent.
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We still have to make sure that given some projections of a contract C, we can indeed
compose them together such that their composition is a refinement of C, as indicated in
Equation 8.6. The following theorem clarifies this point.

Theorem 8.4.2. Let ΠV1(C), . . . ,ΠVn(C) be valid projections of a contract C = (I, O, ϕ, ψ),
which is compatible, consistent, and ϕ is defined only over variables in I. If V1, . . . , Vn all
contain variables independent in O for ψ, and V1 ∪ · · · ∪ Vn = O, then

ΠV1(C)⊗ · · · ⊗ ΠVn(C) � C (8.8)

Proof. By the definition of valid projection in Equation 8.5, we know that for each projection
ΠVi(C) of a contract (I, O, ϕ, ψ), the refinement ΠVi(C)⊗ΠV̄i(C) � C holds, where Vi∪V̄i = O
by construction. To prove Equation 8.8 we need to verify that:

1. ϕ→ ϕV1 ∧ · · · ∧ ϕVn ∨ ¬(ψV1 ∧ · · · ∧ ψV n)

2. ψV1 ∧ · · · ∧ ψVn → ψ

The proof, at this point, is similar to the proof of Theorem 8.4.1. We start from point 2).
For σG being a sequence of evaluations of variables of C which falsifies ψ, we know that
there must exist a Vx ⊆ O with independent variables such that the guarantee ψV x of the
projection ΠV x(C) is false, too. Without loss of generality, let us assume that Vx is also
minimal, i.e., there not exists a proper subset of Vx which also contains independent variables.
Since {V1, . . . , Vn} all contain independent variables and V1 ∪ · · · ∪ Vn = O, then there exists
a Vi ∈ {V1, . . . , Vn} such that Vx ⊆ Vi. Thus ψVi will be falsified by σG, and so will be also
the whole left-hand side of the implication at point 2). This proves that point 2) always
holds. The proof of point 1) is exactly the same as the one of point 1) in Theorem 8.4.1.
Hence, the theorem is proved.

Theorem 8.4.2 explains how we can partition a contract C using n valid projections,
ΠV1(C), . . . ,ΠVn(C). This is a good news because now we can synthesize a composition
of contracts that refines C from a library L, if such composition exists, by independently
synthesizing compositions for the projections ΠV1(C), . . . ,ΠVn(C). That is, if there exist
compositions such that

CVi
1 ⊗ · · · ⊗ CVi

mi
� ΠVi(C), 1 ≤ i ≤ n

for some m1, . . . ,mn, then by the independent development property in [10], the following
holds:

CV 1
1 ⊗· · · ⊗ CV 1

m1

⊗
CV 2

1 ⊗· · · ⊗ CV 2
m2

⊗
...
⊗

CV n
1 ⊗· · · ⊗ CV n

mn


�

ΠV 1(C)
⊗

ΠV 2(C)
⊗
...
⊗

ΠV n(C)


� C (8.9)
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However, we are not done yet. Each projection ΠVi(C), in fact, has even more variables
than C (the copies of variables of C plus those added through the interconnect θ), although
now we are only interested in the subset Vi. For the other variables, in fact, we know that
there will be another composition taking care of them. Thus, we need a way to limit synthesis
only to Vi. We solve this issue by defining a variant of the CSCL problem in Definition 10.

Definition 14 (Problem of Partial Synthesis from LTL A/G Contract Libraries (PCSCL)).
Let the LTL A/G contract S = (IS, OS, ϕS, ψS) be a system specification, V be a subset of
independent variables V ⊆ OS, and define V̄ = OS \ V . Let also ΠV̄ (S) be the projection
of S over V̄ , and L = (Z,R) be a library where R specifies that no further connection
is required for variables of S in V̄ and variables of ΠV̄ (S). Then, find a set of contracts
H = {C1, . . . , Cm} ⊆ Z, and an interconnect θ ⊆ R such that the following holds:

(C1 ⊗ · · · ⊗ Cm)θ ⊗ ΠV̄ (S) � S (8.10)

To solve this synthesis problem, the synthesizer is forced to use ΠV̄ (S) as a placeholder
connected to ports in V̄ , therefore it avoids wasting time in satisfying constraints for ports
that are not in V . Overall, when instantiated for n subsets of independent variables V1, . . . , Vn,
this results in n smaller synthesis problems which can be run independently, i.e., concurrently,
using techniques such as the one proposed in Chapter 7.

Once we have found a solution for all the projections, Equation 8.9 guarantees that
putting all the pieces back together will result in a proper refinement of our original system
specification.

By only synthesizing the variables in V , moreover, we are also guaranteed that with this
decomposition approach we are not reducing the solution space of the full synthesis problem.
That is, the projection ΠV (C) ⊗ ΠV̄ (C) refines C, but it only restricts its guarantee over
variables that are not mapped to C. Indeed, by definition of independent variables, each
falsifying trace σ will falsify ΠV (C) either over V or over V̄ . If σ falsifies ΠV (C) over variables
in V , then, by construction, it will also falsify C. Hence, the solution space over V is the
same for both C and ΠV (C).

8.5 An Efficient Decomposition Algorithm

In this section we discuss an efficient algorithm to decompose a contract C = (I, O, ϕ, ψ)
following the concepts discussed in the previous sections. One obvious possibility would be to
exhaustively check whether ΠVi(C)⊗ΠV̄i(C) � C holds for all the possible Vi ∈ ℘(O), where
℘(O) is the powerset of O. This is not very efficient, as it requires checking Equation 8.5 at
least 2|O| times. We propose a better solution which only needs a quadratic number of checks.

The intuition is to start from sets Vi that contain single output variables of C, and to use
a model-checker to suggest how to increase the size of each Vi until it contains independent
variables. We do so by analyzing the counterexamples obtained verifying some ad hoc
formulas.
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1 function DecomposeContract:
Input: Contract C = (I, O, ϕ, ψ)
Output: Set of valid contract projections

2 clusters← {};
3 for p ∈ O do
4 V ← {p};
5 passed ← False;
6 repeat
7 V̄ ← O \ V ;
8 passed, trace ← checkValid(ΠV (C)⊗ ΠV̄ (C) � C);
9 if not passed then

10 D ← ParseTrace(trace);
11 V ← V ∪D;

12 end

13 until passed;
14 clusters ← clusters ∪V ;

15 end
16 clusters ← MergeClusters(clusters);
17 return {ΠV (C) | V ∈ clusters }
18 end

Algorithm 12: Contract Decomposition algorithm. It takes a contract C as input, and
returns a set of n projections such that ΠV1(C)⊗ · · · ⊗ ΠVn(C) � C.

Algorithm 12 describes the main decomposition algorithm. For each output variable p
(Line 3), we start with a set V containing only p (Line 4). After creating the candidate
projections ΠV (C) and ΠV̄ (C), the algorithm verifies that ΠV (C)⊗ ΠV̄ (C) � C in Line 8
(by model checking the refinement formulas). If ΠV (C)⊗ ΠV̄ (C) � C holds, then passed will
be true, meaning that ΠV (C) is a valid projection, and we can move on to the next iteration
(Line 14). If, however, ΠV (C)⊗ ΠV̄ (C) � C can be falsified, the model-checker will generate
a counterexample that proves why the refinement does not hold. We can then analyze the
counterexample to identify which variables were responsible for the failure, i.e., behaved
differently in the two projections, to add them to V (Lines 10 and 11), and repeat the process
until ΠV (C)⊗ΠV̄ (C) � C is valid. Finally, the last step of DecomposeContract, Line 16,
guarantees that the set V1, . . . , Vn is a partition of O, as required by Definition 12. The
algorithm always terminates, as in the worst case we have that V = O, thus ΠV (C) = C and
V̄ = ∅, which always verifies ΠV (C) ⊗ ΠV̄ (C) � C. It does so invoking the model-checker
(through the function checkValid, which solves a PSPACE-complete problem, although
very small if compared to the CSCL synthesis framework) at most n2 times, where n is the
number of output ports of C.
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8.5.1 Algorithm DecomposeContract is sound

In this section, we show that Algorithm DecomposeContract is sound, meaning that the
contract projections that it returns are always valid. To do so, we need to show that at
the end each V contains independent variables. We always start from a set V containing a
single variable. In the main iteration, for each candidate V , the function checkValid in
DecomposeContract, Line 8, returns true if ΠV (C)⊗ ΠV̄ (C) � C is true, which means
that the projection over V is valid. We say so because, otherwise, the model-checker would
have found a trace in which C is false, but ΠV (C)⊗ΠV̄ (C) is not, according to Definition 13.
If the refinement does not hold, then it means that the variables in V are not independent,
i.e., V is too small. Therefore, the variables in V depend on (at least) a variable in V̄ . The
model-checker provides a counterexample that shows which variables caused the refinement
to fail, i.e., they behave differently between the two projections. Among these variables, some
must be dependent on variables on V , because, otherwise, the refinement would hold. By
parsing the counterexample trace we can recognize such variables and add it to V . This
process stops when ΠV (C)⊗ ΠV̄ (C) � C is true, which means, as we have seen above, that
V contains independent variables. In the worst case, the process stops when V = O, which
will always result in a valid projection. The algorithm is therefore sound.

We cannot claim that the algorithm is complete, meaning that if there exists a partition
V1, . . . , Vn such that ΠV1(C)⊗ · · · ⊗ ΠVn(C) � C, with n > 1, we cannot guarantee that the
algorithm will find it. The reason is that analyzing the counterexample we cannot be sure
that some variables that are different between the two contracts are indeed part of the cause
of the failed refinement check. In practice, however, we observed that the model checker
we used, NuXMV, tends to show counterexamples in which only the variables effectively
responsible for the refinement to fail are different between the two projections.

8.6 Evaluation

We implemented the proposed algorithm in a modified version of pyco, the tool described in
Chapter 7. All the experiments were run on a 3.3 GHz Intel Xeon machine, with 32GB of
RAM, limiting the maximum number of parallel processes to 8.

8.6.1 The EPS problem

The first problem we used to test our synthesis with decomposition approach was the EPS
problem described in Chapter 4. As discussed also in previous chapters,

our goal is to synthesize the logic of the BCPU from a set of subsystem controllers,
described by the library of 20 LTL A/G contracts illustrated in Table 4.2. The system
specification, instead, is represented in Table 4.1.

We ran 9 synthesis tasks with increasing complexity (each task was an incremental subset
of the guarantees of Table 4.1), for two libraries with 20 and 40 contracts. Figure 8.1
illustrates the results we obtained. A typical solution satisfying all the specifications consisted
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Figure 8.1: Summary of the EPS experiments. We synthesized a controller using two different
libraries, one with 20 and the other with 40 contracts, defined in Table 4.2. For each category,
we ran 30 experiments and then bootstrapped the sample. Each point represents the bootstrap
mean synthesis time, while the bars represent its 95% bootstrap confidence interval.

of 6 components, similar to the composition in Figure 6.9. When decomposing the full
specification, the decomposition algorithm generated 7 sets of independent variables: V1 =
{C1}, V2 = {C4}, V3 = {C2, C3, C5, C6}, V4 = {C7}, V5 = {C8}, V6 = {C9} and V7 = {C10}.

When compared to the results in Section 7.7.2, the synthesis approach described in this
chapter did present a comparable performance. This is not surprising, at least for this example,
because the technique discussed in Section 7.7.2 is already very efficient in terms of number
of queries to the underlying model checker. In this case, however, we need to consider that
the decomposition algorithm is executed before synthesis before each experiment, without
impacting significantly on the overall synthesis performance.

8.6.2 The SPI-ADC problem

A second problem is the SPI-ADC example introduced in Section 7.7.3. Here, our goal is
to generate an SPI-like controller for an ADC. This problem is more challenging than the
previous one, as synthesis was unfeasible already for a specification requiring 5-bit resolution
from the ADC. In this section, we compare those results to the ones obtained by synthesizing
the same controllers using the decomposition technique discussed earlier.

Figure 8.2 summarize the results of our experiments, which represent the typical perfor-
mance for each configuration. The benefit of decomposing the specification can be observed
immediately. In this case, in fact, we were able to synthesize specifications requiring up
to 8-bit resolution, in considerably less time. Figure 8.3 shows the typical solution for a
specification requiring an ADC with 8 bit resolution. As one can observe, the synthesizer
correctly inferred the parameters for several components (e.g., the triggers), to make sure
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Figure 8.2: Summary of the results for the ADC-SPI experiments, for specifications with
parameter n ∈ {2, 3, 4, 5, 6, 8} and library size of 11 contracts, respectively. Each library had
the appropriate ADC according to n. The other contracts, including the parametric ones,
were replicated as needed. The graph is in logarithmic scale.

that the rest of the signals had the correct timing.

8.7 Conclusion

In this chapter, we presented a technique to increase the scalability of synthesis from
component libraries for components that are described by LTL A/G contracts. We defined
the notions of contract decomposition and projection, and described an efficient algorithm
to perform such decomposition. We tested this decomposition approach to the synthesis
problems analyzed in Chapter 7. While the performance is comparable for smaller synthesis
tasks, our decomposition strategy allows designers to manage complexity and synthesize
designs also when they are not feasible with other techniques.
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Chapter 9

Conclusions

The work described in this dissertation is centered on two fundamental aspects of system
design, which are the problem of verifying the correctness of user-provided designs, and the
problem of synthesizing a design by composing components available in a library. In both
cases, we focused on specifications and components described as LTL A/G contracts.

We started by introducing the A/G contract framework that we used as the underlying
formalism for the rest of the work, showing how assumptions and guarantees can be represented
using LTL formulas. In particular, we described the explicit definition of connections between
contracts, which is used to characterize compositions in both the verification and synthesis
problems. We also discussed a technique to check contract refinement by framing the problem
as a model checking task, and showed how to use off-the-shelf tools, such as the NuXMV
model checker, to execute such task.

We addressed the problem of improving the refinement checking performance by using
pre-computed contract relations stored in the contract library. In this case, the library
contains both regular contracts and several subsystems realized as a composition of the
former, specifying explicitly the refinement relations between the two. This information
is used to speed up the verification of refinement between a system specification and a
composition of library contracts, provided by the user, describing the system. The verification
engine, then, iteratively builds abstractions by leveraging the relations in the library and tries
to verify refinement, at each step, on one of those simplified designs. Proving the refinement
using a system abstraction is more efficient, as it allows to derive smaller model checking
problems. We evaluated this approach by verifying properties on a design for an aircraft EPS
controller.

Then, we focused on the problem of synthesis of contract compositions that need to
satisfy a system specification, providing several solutions based on the OGIS paradigm. In
OGIS, a solution is identified through a collaboration between a synthesizer, which provides
candidates, and a verifier, which checks whether those candidates are correct. First, we
described a synthesis technique based on the assumption that the only output of the verifier
is a yes/no answer on the correctness of a candidate. This assumption allowed us to define
a strategy that is more general, and can work also with formalisms other than LTL A/G
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contracts. Then, we removed the restriction on the information available after the verification
step, assuming that a verifier would be able to return richer counterexamples, i.e., traces over
the system and specification variables, showing why a candidate is not correct. The second
synthesis strategy we presented uses these counterexamples to build partial models of the
environment to drive the synthesis process. The resulting algorithm is more efficient than the
previous one in terms of number of calls to the verifier, although the process of generating
candidates is more onerous.

We improved further the synthesis performance by introducing a technique to decompose
a synthesis problem, for an LTL A/G contract representing a system specification, into several
smaller, independent tasks. We did so by defining a projection operation for contracts that
can be used to identify groups of independent variables. Each synthesis tasks, then, can focus
on solving the problem for that smaller set of variables, where there is a formal guarantee,
under some assumptions, that composing back all the partial solutions refines the original
specification. Moreover, the search space is guaranteed to be the same, meaning that any
solution that can be found with a centralized synthesis approach can be also found solving
the decomposed specification.

We evaluated all the synthesis techniques on several case studies, including the EPS
problem. The experiments on the case studies provided valuable insights on the synthesis
performance, and showed the capabilities of our approach.

Future Directions We believe that the techniques proposed in this dissertation will play
a central role in the realization of more general platform-based design methodologies and
tools handling LTL specifications. We identify several future directions based on our results.

The synthesis technique described in Chapter 7 is efficient, but we don’t have, yet, a way
to specify sophisticated heuristics to help the synthesizer converge faster. In Chapter 6 we
introduce cost functions, but they are limited to costs proportional to the number of ports
and components in a solution. We would like, instead, to specify cost functions that can
understand better the quality of a solution, rather than just its size. This could be done
in several ways. One would be applying the human-in-the-loop strategy, where a designer
input on a partial design is used to define better search strategies. On the other hand, we
can develop techniques to automatically infer the quality of a partial solution. The notion
of quotient for contracts [46], for instance, can be used to represent “what is missing” in a
certain composition to satisfy the specification. Additionally, a recent work [45] introduces a
metric for LTL that characterizes a formula based on the number of traces that satisfy it. This
metric can be leveraged, together with quotient, to devise algorithms able to build a solution
including components according to their likelihood of satisfying part of the specification.

Another interesting extension of the work described in Chapter 7 is the definition of
hierarchical synthesis techniques based on CEGIS. In this case, a library would be organized
similarly to the libraries in Chapter 5, which include refinement relations between the
contained contracts and their composition. The synthesis algorithm, then, would try to build
a design in an orderly fashion, starting from the hierarchical level including the most abstract
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contracts and iteratively going all the way down to the most concrete ones.
The notion of specification decomposition described in Chapter 8 is promising, as it allows

the synthesis of bigger designs, faster, and with smaller contract libraries. The algorithm to
identify sets of independent variables that we introduced, however, is sound but not complete.
Additional work could help develop a new version of the algorithm that is both sound and
complete. Furthermore, the effectiveness of our decomposition technique depends on the
number of independent variables in each projection. One way to maximize the decomposability
of a contract would be to introduce a pre-processing step in which the contract is refined into
another one that has smaller sets of independent variables. This could translate in a tool
able to suggest to a designer how to “tweak” a certain specification to maximize synthesis
performance.
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