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One�Pass Delaunay Filtering for
Homeomorphic �D Surface Reconstruction

TR�����

Nina Amenta� Sunghee Choiy

April ��� ����

Abstract

We give a simple algorithm for surface reconstruction from a set

of point samples in R�� using only one three�dimensional Voronoi dia�

gram computation� We also give a fairly simple proof that the recon�

struction is topologically correct when the input is a su�ciently dense

sample from a smooth surface�

� Introduction

We give an algorithm for �tting a surface triangulation to a set S of point
samples in three dimensional space� We assume no additional information
besides the three�dimensional coordinates of the points� Practical variants of
this problem� in which more information might be given� arise in computer
graphics� reverse engineering� medical imaging and computer vision�

Like many previous algorithms� our approach is to select some subset of the
Delaunay triangles of S as the surface triangulation� This is a natural idea�
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since Delaunay triangles connect points which are �close� in a scale�invariant�
combinatorial sense� There have been a number of proposals for ��ltering�
three�dimensional Delaunay triangles to produce a surface ��	���
	���	�

We de�ne two necessary criteria which a Delaunay triangle must meet in
order to belong to a correct surface triangulation� if we assume that the input
point set S is a dense enough sample from a smooth surface F � Adopting
the de�nition used in a number of recent papers ���	��
	���	����	� we consider
a sample to be �dense enough� when the distance from any point on F to
the nearest sample is proportional to the distance to the medial axis� with a
small enough constant of proportionality� The medial axis of a surface F is
de�ned as the closure of the set of points in R� with more than one nearest
point on F � Unlike uniform sampling� this de�nition requires the sampling
to be dense near small surface features �where the medial axis is close to
the surface but possibly sparse far away from any feature �where the medial
axis is also far away� We consider F to be �smooth� when it is a twice
di�erentiable closed manifold without boundary� Note that this implies that
S is �nite�

We call triangles meeting our two criteria surface triangles� The �rst criterion
is that the normal of a surface triangle must be close to the surface normals
�of the original smooth surface F  at its vertices� The second is that a surface
triangle must be small� with respect to the distance to the medial axis at its
vertices� Of course� given S alone and no other information about F � we
cannot test these properties directly� We prove that� under the assumption
that S is a dense enough sample from a smooth surface F � we can test the
two criteria using the �D Voronoi diagram of S�

We then explore the conditions under which a set T of surface triangles
forms a manifold homeomorphic to F � one such condition is certainly that T
must be a piecewise�linear manifold� We show that the function � � T � F
mapping each point on T to the nearest point of F induces a homeomorphism
under the additional reasonable condition that the angle between the normals
of any two adjacent triangles of T is acute �so that T is �smooth�� We show
that the set of surface triangles always contains such a smooth piecewise�
linear manifold T �

Finally� we sketch a simple algorithm for selecting T from the Delaunay
triangulation of a su�ciently dense sample S� First� we �lter the Delaunay






triangles using our two criteria� and then we select T from the remaining
triangles� We call the resulting triangulated manifold the short crust of S�
since all of its triangles are small�

� Previous work

The �rst author� with Marshall Bern and in part with David Eppstein and
Manolis Kamvysellis� have considered this problem in a series of papers
��	���	��
	� These papers describe a �ltering algorithm for which the resulting
set of triangles� the crust of S� is guaranteed to form a manifold close to the
original surface F � The short crust algorithm of this paper uses several basic
lemmas from ��	� This paper improves on the crust algorithm in two ways�
First� the proof of correctness is considerably simpler than that o�ered for
the crust algorithm ��	� Second� the algorithm itself is simpler and faster�
since it eliminates a second�pass Delaunay triangulation step�

The idea of selecting a surface reconstruction from the �D Delaunay trian�
gulation is a venerable one� Boissonnat proposed two such algorithms in an
early paper ��	� which introduced the key idea of �nding triangles with large
empty circumsphere�

Edelsbrunner and M�ucke ��
	 proposed the use of ��shapes for selecting
Delaunay triangles to form a surface reconstruction� This idea is clearly
provably correct when the sampling is uniformly dense� but not in any non�
uniform model such as ours� While in many practical reconstruction prob�
lems the sampling is nearly uniform� none the less in practice �nding an
appropriate value of � is notoriously di�cult�

In computer graphics� a di�erent approach to the problem has predominated�
Both Hoppe et al ���	 and Curless and Levoy ��	 used algorithms which
reconstruct the surface as the zero�set of a distance function de�ned by the
input point set� These methods are approximating rather than interpolating�
and so far do not have well�de�ned sampling requirements or performance
guarantees� They are� however� very fast and robust and are well�accepted
in practice�

There has a been a lot of closely related work on reconstructing curves in the
plane using Delaunay triangulation� much of it recent� See ���	� ���	� ���	�
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��	� ��	� ��	� ���	� and ���	� Many of these algorithms come with theoretical
guarantees�

� Good triangles and dense enough sampling

In two dimensions� it is clear that the �right answer� to the reconstruction
problem is a piecewise�linear curve connecting points that are adjacent along
the original curve from which the samples were taken� It is not immediately
obvious how to generalize this idea to three dimensions� We use a de�nition
of the �correct� set of triangles� used by Chew ��	 and by Edelsbrunner and
Shah ���	� which we shall call the set of surface Delaunay triangles� Consider
the three�dimensional Voronoi diagram of S� and its intersection with F � The
Voronoi diagram forms a partition of F into regions� this decomposition is
the restricted Voronoi diagram of S in F � The surface Delaunay triangles are
the triangles dual to the restricted Voronoi diagram� Equivalently�

De�nition� A surface Delaunay triangle is a Delaunay triangle of S dual
to an edge of the three�dimension Voronoi diagram of S intersecting F �

This de�nition makes sense even when an edge of the Voronoi diagram in�
tersects F in multiple points �although in that case the surface Delaunay
triangles may not form a piecewise�linear manifold� Of course� we cannot
identify the surface Delaunay triangles from S alone� since the de�nition de�
pends on F as well� A point set S might be a dense enough sample from
two di�erent surfaces F and F �� and the set of surface Delaunay triangles
with respect to F might di�er from the set of surface Delaunay triangles with
respect to F ��

We now de�ne a �dense enough� sample� We make this de�nition with
respect to a Local Feature Size function LFS � R� � R� the de�nition of
which again depends on the surface F �

De�nition� For a point x � R�� LFS�x is the Euclidean distance from x
to the nearest point on the medial axis of F �

The following lemma shows that the LFS function is Lipschitz�

Lemma � �Amenta and Bern ���� For any two points p and q on F �
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jLFS�p� LFS�qj � d�p� q�

Intuitively� LFS will be small where two parts of the surface pass close
together� since they will be separated by the medial axis� The medial axis
is also close to the surface where the curvature is high� so LFS depends
on curvature as well� The following lemma is a Lipschitz condition on the
surface normal with respect to LFS�

Lemma � �Amenta and Bern ���� For any two points p and q on F with
d�p� q � �minfLFS�p� LFS�qg� for any � � ���� the angle between the
normals to F at p and q is at most ����� ���

We now de�ne the sampling requirement�

De�nition� A sample S � F is an r�sample if the distance from any point
x � F to the nearest sample point s � S is at most r LFS�x�

We will see later that S is dense enough for our purposes when r � ��� We
know from the following theorem that a correct output exists for the same
value of r�

Theorem � �Amenta and Bern ���� If S is an r�sample of F for r � ���
then the surface Delaunay triangles form a polyhedron homeomorphic to F �

We will be careful to choose �ltering criteria which are met by all surface
Delaunay triangles� so that the set of triangles which pass the �lter is guar�
anteed to include such a polyhedron�

� Triangles �at on the surface

In our search for �ltering criteria� we consider only properties of the surface
Delaunay triangles which can be inferred from S and its Voronoi diagram�
without any additional knowledge of F � One such property is that the surface
Delaunay triangles are nearly �at on the surface�

Lemma 	 �Amenta and Bern ���� Let t be a surface Delaunay triangle
and s a vertex of t with angle at least ���� and choose r � ���� �a� The angle
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between the normal to t and the normal to F at s is at most arcsin
p
�r

��r
� �b�

The angle between the normal to t and the normal to F at any other vertex
of t is at most 
r���� �r � arcsin

p
�r

��r
�

Although we do not know any of the surface normals� we can approximate
the normals at points in S from the Voronoi diagram of S� Informally� the
idea is that when S is su�ciently dense� every Voronoi region is long and
skinny and roughly perpendicular to the surface� The way we quantify this
is to say that� given a sample s and a point v in its Voronoi region� the angle
between the vector from s to v and the surface normal at s has to be small
�linear in r when v is far away from s �as a function of LFS�

Lemma 
 �Amenta and Bern ���� Let s be a sample point from an r�
sample S� Let v be any point in V or�s such that d�v� s � �LFS�s for
� � r

��r
� Let � nv be the angle at s between the vector 	v to v and the surface

normal 	n at s� Then � nv � arcsin r
����r�

� arcsin r
��r

�

Conversely� if the angle is large� then point v has to be close to s� Speci�cally�
if � nv � arcsin r

����r�
� arcsin r

��r
� then d�v� s � �LFS�s� Rearranging

things� we get�

Corollary � For any v such that � nv � � � r
��r

� we have d�v� s �
�LFS�s with

� �
r

��� r sin��� arcsin r

��r


Lemma � tells us that if we can �nd a point v in the Voronoi region which
is su�ciently far away from s� 	v will be a good approximation of 	n� In fact
the farthest point in the Voronoi region is always su�ciently far away for
this purpose� Consider extending a line segment perpendicularly in both
directions from the surface at s� until it hits the medial axis in two points
m�� m� �if it goes o� to in�nity� we consider that a medial axis point at
in�nity� These medial axis points are the centers of balls tangent to the
surface at s with interiors empty of points of F � The points m�� m� are at
least as close to s as to any other point on F � including of course all other
points in S� and so must be contained in the Voronoi region of s� And since
m�� m� are medial axis points� they are both at distance at least LFS�s
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from s� The farthest vertex p of the Voronoi region of s must then be at least
that far away as well� We call p the pole of s ��

De�nition� If s does not lie on the convex hull of S� let the pole p be the
vertex of Vor�s farthest from s� and let 	p be the vector from s to p� If s
lies on the boundary of the convex hull of S� let 	p be the direction of any ray
extending from s to in�nity within the Voronoi region of s�

One way to choose 	p when s is on the convex hull is to average the outward�
facing normals of the adjacent convex hull facets

Observation � Let � np be the angle between 	n and 	p� Since d�s� p �
LFS�s� Corollary � implies that � np � 
 arcsin r

��r
�

In summary� the normals of surface Delaunay triangles are close to the surface
normals at their vertices� and those surface normals are in turn close to the
vectors from the vertices to their poles� We therefore select triangles with
normals close to the vectors to the poles�

Criterion � Let s be the vertex of triangle t with largest angle� and let 	t
be the normal vector to t� The angle � tp between 	t and 	p may be at most

 arcsin r

��r
� arcsin

p
�r

��r
�

Proceeding from Observation �� we make the following observation about
Criterion ��

Observation  The angle � tn for a triangle meeting Criterion � is O�r�

in particular� � tn � � arcsin r
��r

� arcsin
p
�r

��r
�

The angle between the normals given in Criterion � is reasonable� for in�
stance� when r � ��� angle � tn � ��� radians�

�In the crust papers 	�
�	�
 the two poles of s are de�ned to be the two farthest Voronoi
vertices on either side of the surface� One pole su�ces� however� for estimating the surface
normal�

�



� Small triangles

The other property of surface Delaunay triangles which we will use in the
�ltering process is that they are small with respect to LFS�

Lemma � The radius of the circumcircle of a surface Delaunay triangle t is
at most � LFS�s� where s is any vertex of t� and � � r���� r�

Proof� Let v be the surface Voronoi vertex dual to t� The distance from v
to s is at most rLFS�v� which� by Lemma �� is at most r���� rLFS�s�
�

Again� since we don�t know F � we want to infer that a triangle has this
property by examining the Voronoi region of a vertex s� One�s �rst thought
might be to use the fact that d�s� p � LFS�s� where p is the pole of a
sample s� Unfortunately this is just an upper bound� and it is quite possible
that d�s� p is much greater than LFS�s� for instance when s is a point on
the convex hull� Overestimating LFS�s of course would lead to accepting
too many triangles as surface triangles�

We use� instead� an idea suggested by Tamal Dey ���	 and used in two dimen�
sional curve reconstruction by Dey� Mehlhorn and Ramos ���	� We require
a triangle t to have an empty circumsphere B whose radius does not exceed
that of the circumcircle of t by more than a small multiplicative factor� hence�
t lies in a plane nearly bisecting B� We prove that any triangle which meets
both this criterion and Criterion � must be small with respect to the LFS
function at each vertex s�

Criterion � Triangle t has a point v on its dual Voronoi edge such that the
radius of the circumcircle of t is at least cos�arcsin r

����r�
� arcsin

p
�r

��r
 times

the radius of the circumsphere centered at v�

Lemma �� Every surface Delaunay triangle meets Criterion 	�

Proof� We show that the property holds for the circumsphere centered at
the surface Voronoi vertex v dual to t� Let s be the vertex of t of largest
angle� The distance from s to v is at most r

��r
LFS�s� Since v is a point

on the surface� it must lie outside the two balls of radius LFS�s tangent
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Figure �� Proof of Lemma ���

to the surface at s �since the tangent balls centered at the mi are empty of
surface points have radius at least LFS�s� Assuming that v is pessimally
positioned �see Figure � at the intersection of one of these large tangent
balls with the ball of radius r

��r
LFS�s around s� the angle � nv between

the surface normal 	n and the vector 	v from s to v must be at least ��
 �
arcsin� r

����r�
� The angle � nt is at most arcsin

p
�r

��r
by Lemma �� Thus�

� tv � ��
� �arcsin r

����r�
� arcsin

p
�r

��r
� The lemma follows since the radius

of the circumcircle of t is sin�� tv times the radius of the circumcircle at v�
�

It is possible for a triangle which is quite large with respect to the LFS
function at all of its vertices to meet Criterion 
� But any triangle which
also meets Criterion � must be small�

Theorem �� The circumcircle of any triangle that meets Criteria � and 	
is at most �LFS�s� where s is the vertex of t of largest angle� and � � O�r�

Proof� We let v be the center of the smallest circumsphere of t� We bound
the distance from v to s� and hence the circumradius of t� using the bounds
on the angles between the vectors 	n� the surface normal at s� 	v� the vector
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from s to v� 	t� the normal to t� and 	p� the vector from s to its pole p� Note
that � nv � � tv � � nt� and � nt � � np � � pt�

We �rst show that � nv must be large � ��
�O�r� For any triangle meeting
Criterion 
�

� tv � ��
� �arcsin
r


��� r
� arcsin

p
�r

�� r
	

For any triangle meeting Criterion ��

� pt � 
 arcsin
r

�� r
� arcsin

p
�r

��� r

Observation � is that
� np � 
 arcsin

r

�� r

We put these together to �nd that

� nv � ��
� �arcsin
r


��� r
� 
 arcsin

p
�r

�� r
� � arcsin

r

�� r
	

Now we show that the distance d�s� v must be small� using Corollary � with
� � � nv� so that that d�s� v � �LFS�s with

� �
r

��� r cos�arcsin r

����r�
� 
 arcsin

p
�r

��r
� � arcsin r

��r


Finally� the radius of the circumcircle of t might actually be somewhat
smaller� d�v� s cos���
� � tv�
�

The constants in this theorem are again quite reasonable� for instance when
r � ��� we get � � �
�� ��

We de�ne a surface triangle to be one which meets Criterea � and 
� Note
that all surface Delaunay triangles are surface triangles� We can infer from
the preceeding theorem that all surface triangles are indeed close to the
surface� as follows�

�Crust triangles were not be shown to be this small� and can in fact be quite large in
at regions�
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Corollary �� Every point on any surface triangle is within O�rLFS�s of
some sample s�

� Mapping Surface Triangles to the Surface

In the next section� we will show a homeomorphism between F and any
piecewise�linear surface T made up of surface triangles� We de�ne the home�
omorphism explicitly� using a function� We initially de�ne a map � on all of
R�� and then use its restriction to T �

De�nition� Let � � R� � F map each point q � R� to the closest point of
F �

Lemma �� The restriction of � to T is a well de�ned and continuous func�
tion � � T � F �

Proof� The discontinuities of � as a map on R� are exactly the points of the
medial axis� If some point q had more than one closest point on the surface�
q would be a point of the medial axis� but every point q � T is within
O�rLFS�s of a triangle vertex s � F � and hence can be nowhere near the
medial axis� Similarly� � is continuous except at the medial axis of F � and
hence� since T is continuous and avoids the medial axis� � is continuous on
T �
�

Observe that the segment connecting p to ��p is normal to F at ��p�

The fundtion � de�nes a homoemorphism between T and F if it is continuous�
one�to�one and onto� Our approach will be �rst to show that � is well�behaved
on the samples themselves� and then show that this good behavior continues
in the interior of each triangle of T � We begin with the following geometric
lemma�

Lemma �	 Let s be a sample and let m be the center of a medial ball B
tangent to the surface at s� No surface triangle intersects the interior of the
segment �s�m�
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Figure 
� Proof of Lemma ���

Proof� In order to intersect segment �s�m� a surface triangle t would have
to intersect B� and so would the smallest Delaunay ball D of t� Since the
vertices of t lie on F and hence not in the interior of B� the intersection of
t and B must lie in the closed cap of B bounded by the plane H containing
the intersection of the boundaries of B and D� We will show that H avoids
the interior of �s�m�

Since D is Delaunay� s cannot lie in the interior of D� H can only inter�
sect the interior of �s�m� then� if D contains m �see Figure 
� But this
is impossible because m is a point of the medial axis� so that the radius of
D would be at least ��
 LFS�s� for any vertex s� of t� contradicting� by
Theorem ��� the assertion that t is a surface triangle�
�

Since any point q such that ��q � s lies on such an open segment �s�m� we
have the following�

Corollary �
 The function � is one�to�one from T to every sample s�

In the following section� we will show that � is indeed one�to�one on all of
T � One more geometric preliminary� We already know that the normal of a
surface triangle t is close to the surface normals at its vertices �Observation
�� To complete the proof of homeomorphism� we need to show something
a little stronger� that the triangle normal agrees with the surface normal at
��q for every q � t�
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Lemma �� Let q be a point on triangle t � T � The angle between the surface
normal 	nq at ��q and the triangle normal 	t measures at most O�r radians�

Proof� The circumcircle of t is small� the distance from q to the vertex s of
t with largest angle is � LFS�s� with � � O�r� by Theorem ��� Choosing
r � �� gives � � �
�� � ���� Substituting � into Lemma 
 gives the result�
�

� Homeomorphism

In this section� we show that building a manifold out of surface triangles is
su�cient for reconstruction� Let T be a piecewise�linear manifold made up of
surface triangles� Since all surface triangles are small� T is everywhere close
to F � Under an additional mild assumption on T � we show that � induces a
homeomorphism between T and F �

De�nition� A pair of triangles ti� t� � T are adjacent if they share at least
one common vertex�

Assumption� Two adjacent triangles meet at their common vertex at an
angle of greater than ��
�

This assumption excludes manifolds which contain sharp folds and� for in�
stance� �at tunnels�

Our proof proceeds in three short steps� We show that � induces a home�
omorphism on each triangle� then on each pair of adjacent triangles� and
�nally on T as a whole�

Lemma �� Let U be a region contained within one triangle t � T � The
function � de�nes a homeomorphism between U and ��U � F �

Proof� We know that � is well�de�ned and continuous on U � so it only re�
mains to show that it is one�to�one� For a point q � t� the vector 	nq from ��q
to q is perpendicular to the surface at ��q� since F is smooth the direction
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of 	nq is unique and well de�ned� If there was some y � t with ��y � ��q�
then q� ��q and y would all be colinear and t itself would have to contain
the line segment between q and y� contradicting Lemma ��� which says that
the normal 	t of t is nearly parallel to 	nq�
�

Lemma � Let U be a region contained in adjacent triangles of T � The
function � de�nes a homeomorphism between U and ��U � F �

Proof� Let q and y be any two points in U � and let v be the common vertex
of the triangles containing U � Lemma �� implies that if ��q � ��y we can
assume that q and y lie in the two distinct triangles tq and ty� Let 	n be the
surface normal at ��q � ��y� Since the ray supported by 	n passes through
both tq and ty� and the angles � tqn� � tyn � O�r �Lemma ��� then tq and
ty must meet at v at an acute angle� This would contradict the Assumption�
which is that tq and ty meet at v at an obtuse angle� Hence there are no two
points in U such that ��q � ��y�
�

Finally� in the following theorem� we bring out the topological guns�

Theorem �� The mapping � de�nes a homeomorphism from the triangula�
tion T to the surface F �

Proof� Let F � � F be ��T � We �rst show that �T� � is a covering space of
F �� �We relay on the treatment of covering spaces in Massey ���	� Chapter ��
Informally� �T� � is a covering space for F � if function � maps T smoothly
onto F �� with no folds or other singularities� Showing that �T� � is a covering
space is weaker than showing that � de�nes a homeomorphism� since� for
instance� it does not preclude several connected components of T mapping
onto the same component of F �� or more interesting behaviour� such as a
torus under the map wrapping twice around another torus to form a double
covering�

Formally� the �T� � is a covering space of F � if� for every x � F �� there is
a path�connected elemenary neighborhood Vx around x such that each path�
connected component of ����Vx is mapped homeomorphically onto Vx by
��

��
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Figure �� Proof of Theorem ���

To construct such an elemenary neighborhood� note that the set of points
j����xj corresponding to a point x � F � is non�zero and �nite� since � is one�
to�one on each triangle of T and there are only a �nite number of triangles�
For each point q � ����x� we choose an open neighborhood Uq of around
q� homeomorphic to a disk and small enough so that Uq is contained only in
triangles that contain q�

We claim that �maps each Uq homeomorphically onto ��Uq� This is because
� is continuous� it is onto ��Uq by de�nition� and� since any two points x
and y in Uq are in adjacent triangles� it is one�to�one by Lemma ���

Now consider the intersection U ��x � �q�����x���Uq� the intersection of the
maps of each of the Uq� U

��x is the intersection of a �nite number of open
neighborhoods� each containing x� so we can �nd an open disk Vx around
x� Vx is path connected� and each component of ����Vx is a subset of some
Uq and hence is mapped homeomorphically onto Vx by �� Thus �T� � is a
covering space for F ��

We now show that � de�nes a homeomorphism between T and F �� Since T is
onto F � by de�nition� we need only show that � is one�to�one� Consider one
connected component G of F �� A theorem of algebraic topology �see Massey
���	� Chapter � Lemma ��� says that when �T� � is a covering space of F ��
the sets ����x for all x � G have the same cardinality� We now use Corollary
��� that � is one�to�one at every sample� Since each connected component of
F contains some samples� it must be the case that � is everywhere one�to�one�
and T and F � are homeomorphic�

Finally� we show that F � � F � F � is closed and compact since T is closed
and compact� So F � cannot include part of a connected component of F � and
F � must consists of a subset of the connected components of F � Since ev�
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ery connected component of F contains a sample s �actually many samples�
and ��s � s� all components of F belong to F �� F � � F � and T and F are
homeomorphic�
�

� Algorithm

Finally� we sketch a simple algorithm for selecting a piecewise�linear surface
which meets Assumption �� � We note� however� that this is not a practical
algorithm� it can fail catastrophically when the input point set is not a dense
enough sample from a smooth surface� We include it here only to complete
the theoretical proof that we can produce a correct reconstruction given a
su�ciently good sample� In practice� other heuristics should be used�

Let T � be the set of surface triangles� T � includes the surface Delaunay
triangles� but might well be a superset� since S might be an r�sample for two
di�erent surfaces F and F �� each inducing a di�erent set of surface Delaunay
triangles� both of which are guaranteed to be in T ��

To ensure that our output surface T will obey the Assumption that all di�
hedral angles are obtuse� we greedily remove all triangles adjacent to sharp
edges� De�ne a sharp edge to be one which has a dihedral angle greater than
���
 between a successive pair of incident triangles in the cyclic order around
the edge� In other words� a sharp edge has all of its adjacent triangles within
a small wedge� We consider an edge bounding only one triangle to have a di�
hedral of 
�� so such an edge is necessarily sharp� �Notice that if we greedily
remove sharp edges from a set of triangles which does not contain a closed
manifold� we might end up removing every triangle� this is the catastrophic
failure mode�

Let T �� be the set of triangles remaining after every triangle adjacent to a
sharp edge has been removed� Since T �� has no sharp edge� every edge on the
outside of T �� has two neighbors� so the outside of T �� is a piecewise�linear
manifold� We let T be the outside surface of T ��� we can �nd T � for example�

�This algorithm is essentially the same as the �manifold extraction� step of the crust
algorithm�
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by depth��rst search on the outer triangles of every connectected component
of T ���

Lemma 
� below guarantees that T �� still includes the surface Delaunay
triangles� and hence that every sample s is still contained in some triangle in
T ��� Since no surface triangle intersects the line segment from s to its outside
medial axis point� �Lemma �� every sample appears on the outside of T ���
So T includes every sample s�

It therefore remains only to prove Lemma 
�� We begin with a simple
technical lemma� which says that any line which meets F in two points close
together must be nearly parallel to the surface�

Lemma �� A line intersecting F in two points x� x�� such that d�x� x� �
O�rLFS�x� must meet the surface normal at x at an angle of at least
��
�O�r�

Proof Sketch� The point x� must lie outside the two tangent balls of radius
LFS�x at x� and must be near x�
�

Now we prove the lemma�

Lemma �� No surface Delaunay triangle has a sharp edge�

Proof Sketch� Let t and t� be adjacent surface Delaunay triangles� and let
e be their shared edge� If t and t� meet at e in an angle of at least ��
� then
e cannot be a sharp edge� even with respect to other triangles adjacent to e�

Since t and t� are surface Delaunay triangles� they have circumspheres B
and B�� respectively� centered at points v� v� of F � The boundaries of B and
B� intersect in a circle C contained in a plane H� with H containing e� H
separates t and t�� since the third vertex of each triangle must lie on the
boundary of its circumsphere� and B � B� on one side of H� while on the
other B� � B�

Both circumspheres pass through C� so their centers lie on a line perpendicu�
lar to H� Since they are the circumcenters of surface Delaunay triangles� the
two centers are both within O�rLFS�s of s �using the sampling assumption
and Lemma �� Hence d�v� v� � O�rLFS�v� and the surface normal at v
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is within O�r radians of the surface normal at s� So the line l between v and
v� must be nearly perpendicular to the surface normal 	n at s � the angle � ln
is ��
� O�r �using Lemma 
� and Lemma 
� Hence the angle between
H and 	n is at most O�r� Since t and t� are �at to the surface at s� and they
lie on opposite sides of H� the angle between them cannot be sharp�
�

	 Conclusions and future work

We have given improved �ltering criteria for selecting triangles from a Delau�
nay triangulation of a dense enough sample from a smooth surface to form a
piecewise�linear reconstruction of the surface� We have also given a reason�
ably simple proof that such a reconstruction is indeed homeomorphic to the
original surface�

In practice� the input point set S usually fails to be su�ciently dense near
sharp edges and corners� and often it samples a surface F which is a manifold
with boundary rather than a closed manifold� Our experience with the crust
algorithm leads us to believe that the �ltering criterea given here should
be fairly robust in these situations� The actual reconstruction algorithm�
unfortunately� while technically correct� relays strongly on the assumption
that F is a closed manifold� We hope in the future to provide reconstruction
algorithms that are more robust and practical with the help of the simpler
theoretical framework given here�

Other important goals in this area are to correctly reconstruct surfaces with
sharp edges and corners� and to develop reconstruction algorithms that grace�
fully handle noise and incremental reconstruction algorithms that can avoid
examining all of the input data�
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