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 39 

Warm intervals within the Pliocene Epoch (5.33 to 2.58 million years ago) were 40 

characterised by global temperatures comparable to those predicted for the end of this 41 

century1 and atmospheric CO2 concentrations similar to today2,3,4. Estimates for global 42 

sea level highstands during these times5 imply possible retreat of the East Antarctic Ice 43 

Sheet, but ice-proximal evidence from the Antarctic margin is scarce. Here we present 44 
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new data from Pliocene marine sediments recovered offshore of Adélie Land, East 45 

Antarctica, that reveal dynamic behaviour of the East Antarctic Ice Sheet in the vicinity 46 

of the low-lying Wilkes Subglacial Basin during times of past climatic warmth. 47 

Sedimentary sequences deposited between 5.3 and 3.3 million years ago indicate 48 

increases in Southern Ocean surface water productivity, associated with elevated 49 

circum-Antarctic temperatures. The geochemical provenance of detrital material 50 

deposited during these warm intervals suggests active erosion of continental bedrock 51 

from within the Wilkes Subglacial Basin, an area today buried beneath the East 52 

Antarctic Ice Sheet. We interpret this erosion to be associated with retreat of the ice 53 

sheet margin several hundreds of kilometres inland. Our new data show that the East 54 

Antarctic Ice Sheet was sensitive to climatic warmth during the Pliocene, with 55 

implications for its future stability in a warmer world. 56 

 57 

Recent satellite observations reveal that the Greenland and West Antarctic ice sheets 58 

are losing mass in response to climatic warming8. Basal melting of ice shelves by warmer 59 

ocean temperatures is proposed as one of the key mechanisms facilitating mass loss of the 60 

marine-based West Antarctic Ice Sheet9. While thinning of ice shelves and acceleration of 61 

glaciers has been described for some areas of the East Antarctic margin9, the mass balance of 62 

the predominantly land-based East Antarctic Ice Sheet is less clear10. Its vulnerability to 63 

warmer-than-present temperatures may be particularly significant in low-lying regions, such 64 

as the Wilkes Subglacial Basin (Fig. 1).  65 

This hypothesis can be tested by studying intervals from geological records deposited 66 

under similar environmental conditions to those predicted for the near future. Warm intervals 67 

within the Pliocene Epoch are such analogues, with mean annual global temperatures 68 

between 2 and 3°C higher than today1 and atmospheric CO2 concentrations between 350 and 69 

450ppm, 25 to 60% higher than pre-industrial values2,3,4. Estimates for eustatic sea level 70 

highstands during these times, reconstructed from benthic foraminiferal oxygen isotopes5 and 71 

paleoshoreline reconstructions11, are variable but indicate 22 ± 10 meters of sea level rise, 72 

although estimates derived from paleoshoreline reconstructions may need corrections for 73 

glacio-isostatic adjustments12. Complete melting of Greenland and West Antarctica’s ice 74 

sheets could account for around 12 meters13 of eustatic sea level rise, indicating that most 75 

estimates for Pliocene sea level require a contribution from the East Antarctic Ice Sheet. 76 

While ice sheet modelling suggests that low-lying areas of the East Antarctic continent may 77 
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be candidates for Pliocene ice sheet loss6,7, direct evidence from ice-proximal records on 78 

locations of ice margin retreat are limited14-16. 79 

To improve our understanding of the response of the East Antarctica Ice Sheet to past 80 

warm climates, Integrated Ocean Drilling Program Site U1361 (64°24.5°S 143°53.1°E; 81 

3465m water depth) was drilled during Expedition 318 into a submarine levee bank, 310 82 

kilometres offshore of the Adélie Land margin, East Antarctica (Fig. 1). Approximately 50 83 

meters of continuous Pliocene marine sediments, within the resolution of current 84 

biostratigraphic and magnetostratigraphic data17, were recovered. Available physical 85 

property18, sedimentology18, and paleomagnetic and micropaleontology data17 are here 86 

combined with new opal (%) data, bulk geochemistry data, and radiogenic isotope data from 87 

analyses of detrital sediments.  88 

The Pliocene study section at IODP Site U1361 spans an interval between 5.3 and 3.3 89 

million years ago and contains a sedimentary sequence alternating between eight diatom-rich 90 

silty clay layers, and eight diatom-poor clay layers with silt laminations (Fig. 2). Diatom-rich 91 

sediments have higher diatom valve and bulk-sediment biogenic opal concentrations and 92 

distinctively lower signals in natural gamma radiation (Fig. 2), indicating lower clay content. 93 

The diatom-rich units are also characterised by higher Ba/Al ratios (Fig. 2), pointing to 94 

multiple extended periods of increased biological productivity related to less sea ice, and 95 

warmer spring and summer sea surface temperatures. This inference is supported by diatom 96 

and silicoflagellate assemblage and TEX86 paleothermometry data from marine and land-97 

based records from the Antarctic Peninsula margin19, the Kerguelen Plateau20, Prydz 98 

Bay15,19,21 and the Ross Sea22. These reconstructions identify elevated mean annual Pliocene 99 

sea surface temperatures15,19-21 , spring and summer sea surface temperatures between 2 to 100 

6°C above modern levels22, and prolonged warm intervals spanning up to 200,000 years in 101 

duration, superimposed on a baseline of warmer-than-present temperatures.  102 

In order to constrain the effects of prolonged warming on the dynamics of the East 103 

Antarctic Ice Sheet, we produced a Pliocene record of continental erosion patterns based on 104 

detrital marine sediment provenance (<63µm grain-size fraction) from IODP Site U1361. We 105 

used the radiogenic isotope compositions of neodymium (143Nd/144Nd, expressed as εNd, 106 

which describes the deviation of measured 143Nd/144Nd ratios from the Chondritic Uniform 107 

Reservoir in parts per 10,000) and strontium (87Sr/86Sr), both of which vary in continental 108 

rocks based on the age and lithology of geological terranes. In IODP Site U1361 sediments, 109 

both ratios show significant variations throughout the studied Pliocene interval, with εNd 110 

values ranging from -5.9 to -14.7, and Sr isotopic compositions from 0.712 to 0.738 (Fig. 2). 111 
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Notably, both ratios co-vary in a distinct pattern that parallels lithological units, physical 112 

properties and bulk sediment geochemistry (Fig. 2), with a more radiogenic Nd isotopic 113 

composition and a less radiogenic Sr isotopic composition characteristic of sediments 114 

deposited during periods of Pliocene warmth (εNd: -5.9 to -9.5; 87Sr/86Sr: 0.712 to 0.719) (Fig. 115 

2-3).  116 

East Antarctic continental geological terranes in the vicinity of IODP Site U1361 117 

encompass a diverse range of lithologies and ages: (i) Archean to Proterozoic basement along 118 

the adjacent Adélie Land coast, (ii) Lower Paleozoic bedrock in the vicinity of the nearby 119 

Ninnis and Mertz Glacier’s, along the Oates Land coast, in Northern and Southern Victoria 120 

Land, and in the Transantarctic Mountains, (iii) Jurassic to Cretaceous volcanic rocks (the 121 

Ferrar Large Igneous Province [FLIP] and associated sedimentary rocks of the Beacon 122 

Supergroup) along the George V Land coast, in Northern and Southern Victoria Land, and in 123 

the Transantarctic Mountains, and (iv) more distal Cenozoic volcanics of the McMurdo 124 

Volcanic Group. Each of these terranes can be characterised in Nd-Sr isotope space (Fig. 3). 125 

The provenance signatures of the two Pliocene sedimentary types at IODP Site U1361 (i.e. 126 

diatom-rich and diatom-poor) can be best explained by a mixture of FLIP bedrock (εNd: -3.5 127 

to -6.9; 87Sr/86Sr: 0.709 to 0.719), and Early Palaeozoic bedrock (εNd: -11.2 to -19.8; 87Sr/86Sr: 128 

0.714 to 0.753; Fig. 1) (Fig. 3; see Supplementary Section 1 for further details on local 129 

geology and potential end-members). Diatom-poor sediments have a provenance signature 130 

that matches Lower Palaeozoic bedrock, most likely sourced from granitic bedrock exposures 131 

in the hinterland of the nearby Ninnis Glacier (Fig. 1). In contrast, the provenance fingerprint 132 

of sediments deposited during warm Pliocene intervals (i.e. diatom-rich units) reveal that they 133 

are predominantly composed of FLIP material. This FLIP provenance fingerprint is not found 134 

in Holocene deposits at IODP Site U1361 or in sediments in its vicinity, and appears to be 135 

unique to diatom-rich Pliocene marine sediments over the past 5.3 million years (Fig. 3 and 136 

Supplementary Section 1).   137 

We suggest that the most likely source of eroded FLIP material is the Wilkes 138 

Subglacial Basin, which requires Pliocene retreat of the East Antarctic Ice Sheet. 139 

Aeromagnetic data collected over the Wilkes Subglacial Basin between ~70°S and 74°S23 140 

reveal anomalies that resemble exposed FLIP bedrock in Southern Victoria Land, indicating 141 

the presence of abundant intrusive sills, as well as two large several kilometre deep graben-142 

like sub-basins23 (Fig. 1). Recent subglacial topographic data compilations22 furthermore 143 

demonstrate that these sub-basins are directly connected to the Southern Ocean below sea 144 
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level, and aerogeophysical data suggests that the Central Basin contains unconsolidated 145 

sediments inferred to be FLIP in origin23 (Fig. 1).  146 

We propose that enhanced erosion of FLIP material in the Central Basin was achieved 147 

by multiple retreats of the ice margin. Ice sheet modelling and modern observations suggest 148 

that sub-surface melting at the ice edge in response to warm ocean temperatures drives retreat 149 

in areas where grounding lines lie below sea level9, such as the mouth of the Wilkes 150 

Subglacial Basin24 (Supplementary Section 1). Warm Pliocene ocean waters would have 151 

facilitated retreat into the Central Basin, contemporaneous with ice shelf collapse and ice 152 

margin retreat in other circum-Antarctic locations, such as in the Prydz Bay area15,16,24, and 153 

the Ross Sea25. 154 

Zones of maximum glacial erosion are typically associated with the margins of an ice 155 

sheet26,27, suggesting that the retreated Pliocene ice margin was situated on FLIP bedrock 156 

within the Central Basin. Existing ice sheet models imply that between ~3m28 (line A, Fig. 1) 157 

and ~16m7 (line C, Fig. 1) of Pliocene glacio-eustatic sea level rise could be derived from 158 

retreat of the East Antarctic Ice Sheet. While the smallest estimate (3m) is unlikely to 159 

accurately represent the response of the ice margin to the warmest range of Pliocene climate 160 

conditions27, larger estimates (10 to 16m)6,7 are influenced by initial ice sheet configurations 161 

used within climate modelling frameworks. Our new data, as well as maximum modelled 162 

erosion for the northern part of the Wilkes Subglacial Basin27 are in agreement with retreat of 163 

the ice margin several hundred kilometres inland. Such retreat could have contributed 164 

between 3 and 10m of global sea level rise from the East Antarctic Ice Sheet, providing a new 165 

and crucial target for future ice sheet modelling. Irrespective of the extent of ice retreat, our 166 

data document a dynamic response of the East Antarctic Ice Sheet to varying Pliocene 167 

climatic conditions, revealing that low-lying areas of Antarctica’s ice sheets are vulnerable to 168 

change under warmer than modern conditions, with important implications for the future 169 

behaviour and sensitivity of the East Antarctic Ice Sheet. 170 

 171 

Supplementary Information is linked to the online version of the paper at xxxxx 172 
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Figure 1. Regional map of study area, including geology of outcrops and inferred 318 

subglacial geology.  Coloured shading represents the simplified geographical extent of four 319 

geological terranes differentiated according to their neodymium isotopic characteristics 320 

(expressed as εNd) (see Supplementary Section 1 for detailed geological context). Areas above 321 

sea level are shown as pale grey with grey outlines, and ice shelves are shown in white24. 322 

Outline of the Central Basin (CB) denotes its location within the Wilkes Subglacial Basin23. 323 

Red lines denote the spatial extent of modelled maximum East Antarctic Ice Sheet retreat for 324 

the Pliocene: Line A - 3m28, line B - 10m6, line C - 16m7. The inset map illustrates the 325 

westward flowing Antarctic coastal current (arrows). EAIS: East Antarctic Ice Sheet; WAIS: 326 

West Antarctic Ice Sheet. 327 

Figure 2. Pliocene records from IODP Site U1361 in comparison to other circum-328 

Antarctic and global records. From left to right: (a) Paleomagnetic chron boundaries based 329 

on inclination measurements17 (red data points); grey shading indicates intervals with no data; 330 

(b) lithostratigraphy18; (c-f) new records of natural gamma radiation, Ba/Al, opal wt.% and 331 

Nd and Sr isotopic compositions; pink shading: high productivity intervals based on Ba/Al; 332 

vertical black stippled lines: Holocene Nd and Sr isotopic compositions (core-tops); (g) 333 

global benthic oxygen isotope stack (LR04)29; (h) circum-Antarctic indicators for warm 334 

temperatures; pink: Pliocene high-productivity intervals at IODP Site U1361; dark blue: 335 

diatom and silicoflagellate assemblages from the Kerguelen Plateau20 and Prydz Bay19; light 336 

blue: silicoflagellate assemblages from Prydz Bay21; lilac: diatomite deposits from ANDRILL 337 

cores in the Ross Sea25; (i): paleomagnetic timescale30.  338 

 339 

Figure 3. Neodymium and strontium isotopic composition of Pliocene detrital sediments 340 

from IODP Site U1361 and East Antarctic geological terranes proximal to the study 341 

area. Fields for the isotopic composition of various terranes are based on literature values 342 

(see Supplementary Section 1). Data corresponding to the Adélie Land Craton primarily plot 343 

outside of the neodymium and strontium isotopic space shown (εNd: -20 to -28; 87Sr/86Sr: 344 

0.750 to 0.780). 345 
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