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Existence and Uniqueness of Semiparametric

Projections

Ivana Komunjer and Giuseppe Ragusa ∗

University of California, San Diego and University of California, Irvine

Abstract: In this paper we propose primitive conditions under which a projec-

tion of a conditional density onto a set de�ned by conditional moment restric-

tions exists and is unique. Moreover, we provide an analytic expression of the

obtained projection. Our �rst result is to show the existence when the moment

function is bounded. The result is as we would expect from the analogous results

obtained in the unconditional case. Our second result relaxes the boundedness

assumption and replaces it with a correct speci�cation condition. Showing that

the correct speci�cation of the moment function is su�cient for the projection

to exist is entirely new and not yet seen in the literature.
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1. Introduction

Consider the problem of inferring a function p from a prior guess q, both elements of a

space P , when the only available information is that p belongs to some subset Q of P .

This problem is central in applications in statistics, probability theory, information

theory, machine learning, physical chemistry, and other scienti�c �elds. A familiar

example is when p and q are probability distributions in P , while Q is some known

convex subset of that space. A general approach to the inference problem for p is to

search for an element p∗ in Q which minimizes a distance to q. When unique, the so-

lution p∗ is called the projection of q onto the set Q. Of course, the form of p∗ depends

on the choice of the distance. By far the most employed is the Kullback-Leibler diver-

gence (Kullback and Leibler, 1951) also referred to as: I-divergence, Kullback-Leibler

distance, cross entropy, relative entropy, or information discrimination, depending on

the �eld.

This paper is concerned with the problems of existence and characterization of

p∗ when P is the space of all conditional probability distributions, and the subset of

interest Q is implicitly de�ned by a set of conditional moment restrictions. The appli-

cations of projections onto sets de�ned by moment restrictions are pervasive in many

scienti�c �elds. In statistics and econometrics they include: semiparametric e�cient

estimation (Tripathi and Kitamura, 2003; Kitamura et al., 2004), analysis of mis-

speci�ed models (Sawa, 1978; White, 1982, 1994; Vuong, 1989; Chor-Yiu and White,

1996; Otsu et al., 2008), asset pricing estimation (Kitamura and Stutzer, 2002), opti-

mal testing (Kitamura, 2001), methods of Bayesian prior determinations (Bernardo,

1979, 2005), as well as Bayesian inference in semiparametric models (Zellner, 1996,

2002, 2003; Zellner and Tobias, 2001; Kim, 2002). An extensive review of applications

in other �elds is given in Buck and Macaulay (1991).
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Projecting a conditional distribution q onto a set Q involves a constrained opti-

mization problem with in�nite-dimensional variables. Hence, proving that a projection

exists requires a demonstration that the optimization problem has a well de�ned solu-

tion. The literature o�ers several results dealing with the unconditional case, that is,

the case in which P and Q are collections of unconditional probability distributions.

A classical reference for the Kullback-Leibler distance is Csiszár (1975). For general

distances indexed by convex functions see Liese (1975), Borwein and Lewis (1993),

Csiszár (1995), and citations therein.

Establishing general existence results for projections is a non-trivial exercise. Bor-

wein and Lewis (1991) exhibit simple examples of optimization problems in which

the optimal value p∗ is not attained. Showing that an optimal feasible p∗ exists can

be very di�cult to justify depending on the probability space P and the distance

employed. Proposed demonstrations entail many mathematical subtleties that are of-

ten overlooked in applications. A mathematical note by Borwein and Limber (1996)

highlights often encountered errors.

Broadly speaking, known existence results require that set Q be closed. If Q is a set

of probability distributions that satisfy some moment conditions, then the closedness

of Q is typically obtained by assuming that the moment functions are bounded. The

boundedness of moment functions is in turn obtained by assuming that the random

variables under consideration have compact support (see, e.g., Borwein and Lewis,

1993).1 In the case where the moment restrictions that de�ne Q are unconditional,

Csiszár (1995) gives a proof of existence that requires all the exponential moments of

the underlying random variables to exist and be �nite.

1Recently, in the context of Generalized Empirical Likelihood estimation, Otsu et al. (2008) use

boundedness conditions to ensure existence (see their Corollary 3.3).
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The main contribution of this paper is twofold. First, we extend known existence

results to setups in which the projection set Q is de�ned by conditional moment

restrictions. Second, we weaken the boundedness requirements on the moment func-

tions de�ning the projection set Q. Such requirements are typically employed by the

literature dealing with the unconditional case.

Our proof of existence exploits special features of the projection problem usually

encountered in a semiparametric setting in which the moment functions are parame-

terized by a �nite dimensional parameter θ. Here, the projection set Q(θ) is a collec-

tion of conditional probability distributions that satisfy the moment restriction when

the parameter is set to θ. When there exists a value θ0 of θ such that the true condi-

tional distribution belongs to Q(θ0), the moment condition is correctly speci�ed. Our

main result is to show that under correct speci�cation�and additional relatively mild

assumptions�there exists a convex subset of Θ containing θ0 such that for every θ in

this subset the projection is guaranteed to exist.

We next discuss the form of the projection under the same set of assumptions. It

is worth pointing out that while we assume the existence of a θ0 that satis�es the

conditional moment restriction, we do not assume that this θ0 is unique. In other

words, our existence result holds for conditional moment models whether or not they

are identi�ed, provided they remain correctly speci�ed.

The conditional distribution projections that we characterize have some useful sta-

tistical properties. For instance, projections are a constructive way of obtaining the

least favorable parametric submodels introduced by Stein (1956). In the context of ef-

�cient estimation, Komunjer and Vuong (2009) show that the least favorable distribu-

tions naturally lead to the semiparametric e�ciency bounds based on the conditional

moment restrictions. Another interesting feature of semiparametric projections is ob-
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tained under the Kullback-Leibler distance. Then, the projection problem corresponds

to a population counterpart of the smoothed empirical likelihood (EL) estimator for

semiparametric models de�ned by conditional moment restrictions (Tripathi and Ki-

tamura, 2003; Kitamura et al., 2004).

The paper is organized as follows. In Section 2 we present our setup and recall some

well known concepts of convex analysis. The same section de�nes the projections on

spaces of conditional probability densities. In Section 3, we focus on projections sets

de�ned by conditional moment restrictions. The same section contains our main result

which shows that the projection exists, and derives its analytic form. All our proofs

are relegated to an Appendix.

2. Setup

2.1. Preliminaries

Let (Ω,F , P ) be a probability space and suppose that G is a sub-σ-�eld of F . Further,

let (E, E) be a measurable space in which E is a complete separable metric space and

E is the σ-algebra of Borel sets. Then, given an F -measurable random element X :

Ω→ E we shall be interested in the regular conditional measure of X given G, which

we denote µ. That µ is a regular conditional measure means that µ : Ω × E → R+

satis�es: (i) for each B ∈ E , ω 7→ µ(ω,B) is a version of P (X(ω) ∈ B|G), and (ii) for

a.e. ω, B 7→ µ(ω,B) is a probability measure on (E, E). In particular, such measure

exists for the spaces (Rn,B(Rn)) (n ∈ N) and (R∞,B(R∞)) (see, e.g., Corollary on

p.230 in Shiryaev, 1996). For simplicity, we shall focus on the case E = Rn.

We further assume that for a.e. ω, µ(ω, ·) is absolutely continuous (with respect to

Lebesgue measure). So by Radon-Nikodym theorem there exists f : Ω × Rn → R+
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such that for a.e. ω we have:

µ(ω,B) =

∫
B

f(ω, x)dx (1)

i.e. f is a regular conditional density of X given G. In what follows, we shall assume:

Assumption A1. For a.e. ω ∈ Ω, the function x 7→ f(ω, x) is continuous on Rn.

Under Assumption A1, the conditional density f is a Carathéodory function, and

thus has the virtue of being jointly measurable, i.e. (G ⊗ B(Rn),B(R))-measurable

(see, e.g., Lemma 4.51 in Aliprantis and Border, 2007). In particular, this implies by

Tonelli's Theorem (see, e.g., Theorem 11.28 in Aliprantis and Border, 2007) that f is

jointly integrable with respect to the product measure P × λ (λ being the Lebesgue

measure on Rn) and that:∫
fd(P × λ) =

∫
Rn

∫
Ω

f(ω, x)dP (ω)dx =

∫
Ω

∫
Rn

f(ω, x)dxdP (ω) = 1 (2)

where the last equality follows from (1).

Now, let L1(F ⊗ B(Rn)) be the space of (equivalence classes of) functions g : Ω×

Rn → R that are (F⊗B(Rn),B(R))-measurable and P×λ-integrable, i.e.
∫
|g|d(P×λ)

exists and is �nite. We say that two elements g1 and g2 of L1(F ⊗ B(Rn)) belong to

the same equivalence class�property which we denote g1 = g2 a.s.�if for a.e. ω we

have g1(ω, x) = g2(ω, x) for every x ∈ Rn. For any g ∈ L1(F ⊗ B(Rn)), the L1-norm

of g is de�ned by:

‖g‖1 ≡
∫
|g|d(P × λ) =

∫
Rn

∫
Ω

|g(ω, x)|dP (ω)dx

The L1(F ⊗ B(Rn)) space equipped with the L1-norm ‖ · ‖1 is a Banach space,

and the set of functions h ∈ L1(F ⊗ B(Rn)) that are (G ⊗ B(Rn),B(R))-measurable

forms a closed subspace of L1(F ⊗B(Rn)) that we denote L1(G ⊗ B(Rn)). When the
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conditioning is done with respect to a sub-σ-�eld generated by a subvector of X, then

the above L1-norm induces the metric of � integrated L1-distance� used in Tang and

Ghosal (2007). In particular, we shall be interested in those elements of L1(G⊗B(Rn))

that are nonnegative valued, so we let P ≡ {g ∈ L1(G ⊗ B(Rn)) : g(Ω× Rn) ⊆ R+}.

It follows from the property in Equation (2) that the conditional density f belongs

to P .

2.2. Distances, divergences and projections on P

A distance D on the set P is any nonnegative valued function de�ned on P × P

such that D(g1, g2) = 0 if and only if g1 = g2 with probability one. In this paper,

we further restrict the class of distances D and focus on the φ-divergences Dφ. The

class of φ-divergences among probability distributions was �rst introduced by Ali and

Silvey (1966) and Csiszár (1967); we now recall their de�nition.

Let K denote the class of all functions φ : [0,+∞] → [0,+∞] with the following

properties:

Assumption A2. (i) φ ∈ C4((0,+∞)); (ii) φ is strictly convex on (0,+∞); (iii)

φ(1) = φ′(1) = 0, φ′′(1) = 1; (iv) limu→+∞ φ
′(u) = +∞; (v) limu→0 φ

′(u) = −∞.

In order to guarantee that φ is continuous on [0,+∞] we let φ(0) = limu→0 φ(u)

and φ(+∞) = limu→+∞ φ(u). Further, to deal with zero and in�nity, we adopt the un-

derstanding that φ′(0) = limu→0 φ
′(u), 0 ·φ

(
0
0

)
= 0, and 0 ·φ

(
v
0

)
= v limu→+∞ φ

′(u) =

+∞ when v > 0.

Given a function φ ∈ K, a φ-divergence between g1 and g2 in P , denoted Dφ(g1, g2),
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is then formally de�ned as:

Dφ(g1, g2) ≡
∫
g2φ

(
g1

g2

)
d(P × λ)

=

∫
Rn

∫
Ω

g2(ω, x)φ

(
g1(ω, x)

g2(ω, x)

)
dP (ω)dx (3)

Notice that the φ-divergence between g1 and g2 can also be expressed in terms of

the corresponding conditional measures, ν1(ω,B) =
∫
B
g1(ω, x)dx and ν2(ω,B) =∫

B
g2(ω, x)dx, by de�ning Dφ(ν1, ν2) ≡

∫
φ(dν1/dν2)dν2. This formulation is used by

Kitamura and Stutzer (1997) and Kitamura (2001), for example. When one considers

only measures ν1 � ν2, the two de�nitions are equivalent and Dφ(ν1, ν2) = Dφ(g1, g2).

The class of φ-divergences Dφ generally includes many distances used in statis-

tics, such as the Kullback-Leibler distance (I-divergence) obtained when φ(u) =

u ln(u) − u + 1 (see, e.g., Kullback and Khairat, 1966; Csiszár, 1975), and the χ2

distance for which φ(u) = (u − 1)2. In the econometric literature, an application of

the Kullback-Leibler distance can be found in Kitamura and Stutzer (1997)'s Ex-

ponential Tilting estimator. Note that the requirement A2(iv) rules out the reverse

I-divergence, φ(u) = − lnu + u − 1, and the Hellinger distance, φ(u) = (
√
u − 1)2,

since for both cases limu→+∞ φ
′(u) < +∞. The remaining assumptions A2(i)-(iii) are

fairly standard. When combined with the continuity and convexity properties of φ,

Assumptions A2(iv,v) guarantee that the map φ′ is onto [−∞,+∞]. This property of

φ′ shall be particulary important when calculating the Legendre transform (or convex

conjugate) of φ.

Before proceeding, we recall some useful concepts from convex analysis; for a de-

tailed discussion, see, e.g., Rockafellar (1970) and Hiriart-Urruty and Lemarechal

(1993). The convex conjugate (or Legendre-Fenchel transform) of φ is a real map-

ping φ∗ : R → [−∞,+∞] which to every υ ∈ R associates φ∗(υ) ≡ supx∈R[υx −
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φ(x)]. Under Assumption A2, φ is di�erentiable on R and its derivative φ′ such that

φ′([0,+∞]) = [−∞,+∞], so the Legendre conjugate of φ equals:

φ∗(υ) = υ(φ′)−1(υ)− φ
(
(φ′)−1(υ)

)
.

The following lemma establishes several useful properties of φ∗.

Lemma 1. Under Assumption A2, we have: (i) φ∗ ∈ C2(R), (ii) φ∗ is strictly convex

on R, (iii) φ∗ > 0 on (0,+∞), (iv) φ∗
′
> 0 on R, (v) φ∗′(υ) = (φ′)−1(υ) for any

υ ∈ R, (vi) φ∗′′(υ) = [φ′′((φ′)−1(υ))]−1 for any υ ∈ R.

We are now ready to introduce the concept of projection of a conditional density.

With the φ-divergence given in Equation (3), the Dφ-projection of f onto a subset Q

of P is de�ned as follows:

De�nition 1. The Dφ-projection of f onto a set Q ⊆ P is (when it exists) a g∗ ∈ Q

satisfying: Dφ(g∗, f) = Dφ(Q, f), where Dφ(Q, f) ≡ infg∈QDφ(g, f).

The next section discusses conditions under which the Dφ-projection of f is guar-

anteed to exist.

3. Projection Existence and Characterization

3.1. Projection Set

In most statistical and econometric applications, the projection set Q is de�ned by

a set of either unconditional or conditional moment restrictions. While the uncondi-

tional problem has been extensively studied in the literature, little is known about the

conditional one. Here we focus on sets Q de�ned by conditional moment restrictions.

Let Θ ⊆ Rk (k ∈ N, k < ∞) and consider some known moment function a :

Ω × Rn × Θ → Rm (m ∈ N, m < ∞) parameterized by θ ∈ Θ. We further assume
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that for every θ ∈ Θ, a(·, ·, θ) is (G ⊗ B(Rn),B(Rm))-measurable and such that for

a.e. ω the conditional expectation

E[a(X, θ)|G] ≡
∫

Rn

a(ω, x, θ)f(ω, x)dx (4)

exists and is �nite. Note that the number of restrictions m can be greater than one.

We now focus on Dφ-projecting f onto a set of conditional densities that satisfy

with probability one the conditional moment restrictions E[a(X, θ)|G] = 0 for a given

value of θ. The projection set Q is then parameterized by θ and we denote it Q(θ).

The set Q(θ) can be characterized as follows:

Q(θ) ≡
{
g ∈ P :

∫
Rn

a(ω, x, θ)g(ω, x)dx = 0 and

∫
Rn

g(ω, x)dx = 1, for a.e. ω

}
.

From a statistical point of view, the set Q(θ) is a component of a semiparametric

model QΘ de�ned as a collection of all densities in Q(θ) obtained by letting θ vary

in Θ. More formally, we have QΘ ≡
⋃
θ∈ΘQ(θ).

In what follows we establish the existence of the Dφ-projection of f onto Q(θ) under

alternative assumptions on the moment function a.

3.2. Bounded Case

When the projection set Q(θ) is non-empty, one way to establish the existence of the

Dφ-projection is to verify that Q(θ) is compact in the topology induced by ‖ · ‖1. For

this, we �rst establish the lower semi-continuity of the distance Dφ(·, f).

Lemma 2. Under Assumption A2, Dφ(·, f) is lower semi-continuous on P.

The lower semi-continuity of Dφ(·, f) on P allows us to establish the existence

of the Dφ-projection of f onto Q(θ) ⊆ P when Q(θ) satis�es a simple topological
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condition�that of compactness. Indeed, when Q(θ) is compact, we can apply a well-

known result that a real-valued lower semi-continuous function on as compact space

attains a minimum value (see, e.g., Theorem 2.40 in Aliprantis and Border, 2007).

However, establishing the compactness of Q(θ) is generally non trivial. Often Q(θ)

only satis�es a weaker topological condition�that of being closed under ‖ · ‖1. A

su�cient condition for Q(θ) to be closed is given in the following:

Assumption A3. For every θ ∈ Θ, there exists a positive constant M(θ) such that

for every x ∈ Rn and a.e. ω, |a(ω, x, θ)| 6 M(θ) <∞.

Under our assumptions on φ (in particular, under the assumption limu→+∞ φ
′(u) =

+∞) the closedness of Q(θ) is su�cient to guarantee that a Dφ-projection of f onto

Q(θ) exists. The proof of the following theorem adapts the arguments used by Liese

(1975) to models with conditional moment restrictions.

Theorem 1. Let Assumptions A1-A3 hold. Then, for every θ ∈ Θ, a Dφ-projection

of f onto Q(θ) exists.

In most statistical and econometric applications, Assumption A3 is too strong and

it is often ruled out by the nature of the model itself. For instance, simple models

with conditional mean restrictions on random variables that have full support lead

to unbounded moment functions. Of course, depending on the particular application,

it may possible to replace Assumption A3 with an alternative su�cient condition for

Q(θ) to be closed.

3.3. Unbounded Case

When the moment function a in (4) is not necessarily bounded, it is not a trivial

exercise to establish that a projection exists and to then characterize it. Known results
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dealing with the projection in the unconditional settings (Teboulle and Vajda, 1993;

Csiszár, 1995) cannot be extended to the conditional setting considered here.

Our approach to establishing the existence of the projection is based on the fol-

lowing intuitive argument. If f satis�es the conditional moment restriction for some

θ0 ∈ Θ, i.e. if
∫

Rn a(ω, x, θ0)f(ω, x)dx = 0 a.s., then, clearly, f ∈ Q(θ0). In addition,

with probability one we have Dφ(f, f) = 0. Hence, when θ = θ0 the Dφ-projection of

f onto Q(θ) exists and is unique: it is f itself. Provided we can invoke the Implicit

Function Theorem, it should then hold that for small deviations of θ around θ0 the

projection of f onto Q(θ) continues to exist. We now provide a more formal treatment

of this argument.

We start by assuming that the moment function a and the conditional density f

have the following property:

Assumption A4. There exists θ0 ∈ Θ such that for a.e. ω, we have E[a(X, θ0)|G] = 0.

Assumption A4 states that the statistical model QΘ =
⋃
θ∈ΘQ(θ) de�ned by the

conditional moment restrictions based on the moment function a is correctly speci�ed,

i.e. f ∈ QΘ. Note that A4 does not impose the value θ0 to be unique. In other words,

the statistical model QΘ need not be identi�ed, and we can have θ1 ∈ Θ\{θ0} such

that both f ∈ Q(θ0) and f ∈ Q(θ1) hold. It is worth pointing out that we do not

even require θ0 to be locally identi�ed, i.e. the moment function a is allowed to be

such that E[a(X, θ)|G] remains zero on connected open subsets of Θ.

In what follows, we restrict our attention to cases in which a is continuously di�er-

entiable with respect to θ.

Assumption A5. For every x ∈ Rn and a.e. ω, the mapping θ 7→ a(ω, x, θ) is in

C1(Θ,Rm).
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For mappings that satisfy Assumption A5 we let Dθa ∈ L(Rk,Rm) denote the

partial derivative of the moment function a with respect to θ.

We �rst restrict the behavior of the Legendre conjugate φ∗ and its derivative

φ∗
′
by imposing several local integrability conditions. In what follows, U(θ0, ε) ≡

B((θ′0, 0, 0
′)′, ε) is an open ball in Rk+m+1, centered at (θ′0, 0, 0

′)′ ∈ Θ×Rm+1 and with

radius ε > 0.

Assumption A6. There exists U(θ0, ε1) ⊂ Θ×Rm+1 such that for every (θ′, η, λ′)′ ∈

U(θ0, ε1) and a.e. ω we have:

(i)
∫

Rn φ
∗(η + λ′a(ω, x, θ))f(ω, x)dx <∞

(ii)
∫

Rn φ
∗′(η + λ′a(ω, x, θ))f(ω, x)dx <∞

(iii)
∫

Rn |φ∗
′
(η + λ′a(ω, x, θ))|f(ω, x)dx <∞

Assumption A6 e�ectively imposes restrictions on the true conditional density f .

We now give an interpretation of A6(i,ii) in the case of the Kullback-Leibler distance

(I-divergence) obtained when φ(u) = u lnu − u + 1. The Legendre conjugate of φ

then equals φ∗(υ) = exp υ − 1, so the properties in A6(i,ii) hold under a conditional

version of a weak Cramér condition : for every θ in a neighborhood of θ0 and every λ

close to 0 ∈ Rm, we have
∫

Rm exp
(
λ′a(ω, x, θ))f(ω, x)dx < ∞ with probability one.

The Cramér condition restricts the generating function for the conditional moments

of f�when θ is close to θ0�to be �nite on a neighborhood of zero, at which the

restriction is obviously satis�ed.

The following conditions ensure that one can di�erentiate under the integral sign:

Assumption A7. There exists U(θ0, ε2) ⊂ Θ× Rm+1 such that for a.e. ω we have:

(i)
∫

Rn supφ∗
′′(
η + λ′a(ω, x, θ)

)(
1 + |a(ω, x, θ)|2

)
f(ω, x)dx <∞

(ii)
∫

Rn supφ∗
′′(
η + λ′a(ω, x, θ)

)
‖Dθa(ω, x, θ)′λa(ω, x, θ)′‖f(ω, x)dx <∞
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(iii)
∫

Rn supφ∗
′′(
η + λ′a(ω, x, θ)

)
|Dθa(ω, x, θ)′λ|f(ω, x)dx <∞

(iv)
∫

Rn supφ∗
′(
η + λ′a(ω, x, θ)

)
‖Dθa(ω, x, θ)‖f(ω, x)dx <∞

where sup stands for sup(θ′,η,λ′)′∈U(θ0,ε2).

Assumption A7 is used to ensure that Lebesgue Dominated Convergence Theorem

applies, i.e. that we can interchange the order of integration and di�erentiation in the

�rst order conditions that characterize the projection g∗ in De�nition 1. In order to

apply the Implicit Function Theorem to those conditions obtained when θ = θ0, we

require the following assumption:

Assumption A8. For a.e. ω,
∫

Rn a(ω, x, θ0)a(ω, x, θ0)′f(ω, x)dx is invertible.

Note that Assumption A8 does not say anything about the properties of Dθa(x, θ0)

which are important in establishing that θ0 is locally identi�ed. The main reason

why only the invertibility of E[a(X, θ0)a(X, θ0)′|G] is needed is because our proof

establishes local existence of a mapping θ 7→ (η(θ), λ(θ)) around the point θ0 at which

(η(θ0), λ(θ0)′)′ = 0 ∈ Rm+1, and where η ∈ R and λ ∈ Rm are the Lagrange multipliers

de�ned in Theorem 2 below. As a such, we only need the matrix of derivatives with

respect to η and λ to be invertible (see Step 3 in the proof of Theorem 2).

We are now ready to state the main result of this section. Similar to previously,

B(θ0, ε) is an open ball in Rk, centered at θ0 ∈ Θ and with radius ε > 0.

Theorem 2. Let Assumptions A1-A8 hold. Then there exists B(θ0, ε) ⊂ Θ such that

for every θ ∈ B(θ0, ε), a Dφ-projection of f onto Qθ exists. Moreover, the projection

denoted g∗ is P a.s. unique and given by:

g∗(ω, x, θ) ≡ φ∗
′(
η(ω, θ) + λ(ω, θ)′a(ω, x, θ)

)
f(ω, x) (5)

for every x ∈ Rn and a.e. ω, with (η(ω, θ), λ(ω, θ)) ≡ arg inf(η,λ′)′∈Rm+1

∫
φ∗
(
η +

λ′a(ω, x, θ)
)
f(ω, x)dx− η.
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We �rst comment on the strength of the assumptions used in Theorem 2. Similar

to us, Csiszár (1995) gives a proof of the existence of the Dφ-projection that does

not make the boundedness assumptions on the moment function a. In particular,

Corollary to Theorem 3 in Csiszár (1995) is based on a moment condition on the

convex conjugate φ∗ of φ. Under the Kullback-Leibler distance (I-divergence), this

condition translates into a strong Cramér condition, whereby �strong� we mean that

the �niteness of the generating function for the conditional moments of a(X, θ) (when

θ is close to θ0) needs to hold for all λ ∈ Rm. This condition is obviously stronger

than our �weak� version imposed in Assumption A6, which only needs to hold for λ

in some neighborhood of 0 ∈ Rm.

Theorem 2 establishes two important results. First, it shows that the Dφ-projection

of f onto Q(θ) exists and is a.s. P unique. As pointed out previously, this result

exploits the existence of the Dφ-projection when θ = θ0 and extends it by means

of the Implicit Function Theorem. It is worth noting that the proof of Theorem 2

establishes in a direct way that there exists g∗ in Q(θ) with density given in Equation

(5). An early suggestion of such direct approach can be found in Csiszár (1975) (see

a discussion on p.156 in Csiszár, 1975, for the unconditional case).

The second key result of Theorem 2 is to derive the analytic expression of g∗. The

density of the Dφ-projection obtained in Equation (5) reveals an interesting property:

it is parameterized by two random �nite dimensional Lagrange multipliers η and λ,

both of which are G-measurable and depend on θ. In other words, projecting onto the

semiparametric set Q(θ) reduces the problem to the one in which the density g∗ can

be written as a product of two terms: a �rst one φ∗
′
(η(ω, θ) + λ(ω, θ)′a(ω, x, θ)) that

is �nitely parameterized by θ, and a second one that is the true density f(ω, x) which

does not depend on θ.
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A number of interesting properties can be derived from the expression of the Dφ-

projected density g∗ obtained in Theorem 2. First, we can note that for a.e. ω, we

have: η(ω, θ0) = 0 ∈ R and λ(ω, θ0) = 0 ∈ Rm. We are now interested in the values

that successive derivatives of g∗ with respect to the parameter θ (when they exist)

take at a true value θ0. Under the same set of conditions as in Theorem 2, we have

the following result:

Corollary 3. Assume the conditions of Theorem 2 hold. Then, for a.e. ω, η(ω, ·) and

λ(ω, ·) are continuously di�erentiable on B(θ0, ε), and we have: Dθη(ω, θ0) = 0, and

Dθλ(ω, θ0) = E
[
Dθa(X, θ0)

∣∣G]{E[a(X, θ0)a(X, θ0)′|G
]}−1

.

In particular, Corollary 3 implies that the projected densities g∗ in Theorem 2 are

continuously di�erentiable with respect to θ.
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Appendix A: Proofs

Proof of Lemma 1. First, note that from the expression of the Legendre conjugate,

φ∗ is continuous and di�erentiable on R. In addition, the derivative of φ∗ is given by:

φ∗
′
(υ) = (φ′)−1(υ), for any υ ∈ R.

Given the strict convexity of φ in Assumption A2(ii), φ′ is continuous and strictly

increasing on (0,+∞) with φ′(0) = −∞ from A2(v), and φ′(+∞) = +∞ from A2(iv);

so its inverse φ∗
′
is continuous and strictly increasing on R. Hence, φ∗ is strictly convex.

Since limυ→−∞ φ
∗′(υ) = 0, we have φ∗

′
> 0 in R. Moreover, from A2(iii) φ∗(0) = 0

which combined with the previous property gives φ∗ > 0 on (0,+∞). Finally, A2(ii)

implies φ′′ > 0 on (0,+∞) so φ∗
′
is continuously di�erentiable on R with derivative:

φ∗
′′
(υ) =

1

φ′′((φ′)−1(υ))
.

This completes the proof of Lemma 1.

Proof of Lemma 2. The lower semi-continuity can be formulated as a property of a se-

quence {Dφ(gi, f)} when {gi} is a sequence in P . It su�ces to prove that lim infiDφ(gi, f) >

Dφ(g, f) whenever limi→∞ ‖gi − g‖1 = 0; then by Lemma 2.41 in Aliprantis and Bor-

der (2007), Dφ(·, f) is lower semicontinuous. So let gi → g in L1-norm. The function

φ is continuous on [0,+∞] hence it is lower semicontinuous. Moreover, it is bounded

below by 0, so Theorem 3.13 in Aliprantis and Border (2007) applies and there exists

a sequence of Lipschitz continuous functions {φk} such that as k →∞, φk(u) ↑ φ(u)

for all u ∈ [0,+∞]. That φk are Lipschitz continuous means that there exists some

real number c such that for every (u, v) ∈ [0,+∞]2, we have |φk(u)−φk(v)| 6 c|u−v|.

Now, for any (ω, x) ∈ Ω× Rn let

u ≡ gi(ω, x)

f(ω, x)
and v ≡ g(ω, x)

f(ω, x)
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Then we have∣∣∣∣φk (gi(ω, x)

f(ω, x)

)
f(ω, x)− φk

(
g(ω, x)

f(ω, x)

)
f(ω, x)

∣∣∣∣ 6 c|gi(ω, x)− g(ω, x)|

so by using the triangle inequality

|Dφk
(gi, f)−Dφk

(g, f)|

6
∫

Ω

∫
Rn

∣∣∣∣φi(gi(ω, x)

f(ω, x)

)
f(ω, x)− φi

(
g(ω, x)

f(ω, x)

)
f(ω, x)

∣∣∣∣ dP (ω)dx

6 c‖gi − g‖1

Hence for every k ∈ N,

Dφk
(gi, f)→ Dφk

(g, f) as i→∞ (6)

Using a reasoning similar to that above shows that for every i ∈ N,

Dφk
(gi, f) 6 Dφ(gi, f) (7)

The remainder of the proof is similar to that of Theorem 15.5 in Aliprantis and Border

(2007). From Equations (6) and (7) we see that Dφk
(g, f) 6 lim infiDφ(gi, f) for every

k. Hence,

Dφ(g, f) = lim
k→∞
Dφk

(g, f) 6 lim inf
i
Dφ(gi, f)

which establishes the lower semicontinuity of Dφ(·, f).

Proof of Theorem 1. We proceed in two steps.

STEP 1: We �rst show that under Assumption A3, the projection set Q(θ) is closed

under ‖ · ‖1. For this, �x θ ∈ Θ, let {qi} be any convergent sequence in Q(θ), and

denote by q̄ its limit, limi→∞ ‖qi− q̄‖1 = 0. We now show that then q̄ ∈ Q(θ), i.e. the
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set Q(θ) is closed. We have:∫
Ω

∣∣∣∣∫
Rn

a(ω, x, θ)q̄(ω, x)dx

∣∣∣∣ dP (ω) 6
∫

Ω

∣∣∣∣∫
Rn

a(ω, x, θ)[q̄(ω, x)− qi(ω, x)]dx

∣∣∣∣ dP (ω)

+

∫
Ω

∣∣∣∣∫
Rn

a(ω, x, θ)qi(ω, x)dx

∣∣∣∣ dP (ω)

=

∫
Ω

∣∣∣∣∫
Rn

a(ω, x, θ)[q̄(ω, x)− qi(ω, x)]dx

∣∣∣∣ dP (ω)

6
∫

Ω

∫
Rn

|a(ω, x, θ)| · |q̄(ω, x)− qi(ω, x)|dxdP (ω)

6 M(θ)‖qi − q̄‖1

where the �rst equality uses qi ∈ Q(θ), and the last inequality follows by Assumption

A3. Taking the limit of the above as i→∞ it then follows that∫
Ω

∣∣∣∣∫
Rn

a(ω, x, θ)q̄(ω, x)dx

∣∣∣∣ dP (ω) = 0

and since the quantity inside the �rst integral is everywhere non-negative, the above

implies that for a.e. ω, ∫
Rn

a(ω, x, θ)q̄(ω, x)dx = 0

Hence, q̄ ∈ Q(θ).

STEP 2: With θ �xed as in Step 1, assume that infq∈Q(θ)Dφ(q, f) = d < +∞, for if

infq∈Q(θ)Dφ(q, f) = +∞ there is nothing to prove as any q ∈ Q(θ) is a Dφ-projection.

It su�ces to show that there exists q∗ ∈ Q(θ) such that Dφ(q∗, f) = d. For this, let

Qd(θ) =
{
q ∈ Q(θ) : Dφ(q, f) 6 2d

}
.

The set Qd(θ) is a convex and non-empty subset of the Banach space L1(G ⊗B(Rn)).

We start by showing that Qd(θ) is weakly sequentially compact in L1(G ⊗ B(Rn)).

For this, note that every q ∈ Qd(θ) has the same support as f , since otherwise we
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would have Dφ(q, f) = +∞. Then,

lim
b→∞

∫
{q>b}

qd(P × λ) 6 lim
c→∞

∫
{q/f>c}

qd(P × λ)

where c ≡ b/ess sup f , and ess sup f ≡ inf{a ∈ R :
∫
{f(ω,x)>a} d(P × λ) = 0} which

is �nite because f ∈ L1(G ⊗ B(Rn)). Now, note that Assumption A2(ii) implies that

whenever c > 1 and for any x > c we have (x−1)φ′(x) > φ(x)−φ(1), so φ(x)−xφ′(x) <

−φ′(x) 6 0 where the second inequality combines Assumptions A2(ii) and (iii). Hence,

the mapping x 7→ x/φ(x) is decreasing on [c,+∞] and limc→∞ c/φ(c) = 0. This

together with nonnegativity of φ implies that, uniformly for all q ∈ Qd(θ),

lim
c→∞

∫
{q/f>c}

qd(P × λ) = lim
c→∞

∫
{q/f>c}

q/f

φ(q/f)
φ(q/f)fd(P × λ)

6 lim
c→∞

c

φ(c)
sup

q∈Qd(θ)

∫
φ(q/f)fd(P × λ) = 0,

that is, the family of densities in Qd(θ) is uniformly integrable. Thus, since a set is

weakly compact if and only if its elements are uniformly integrable, the set Qd(θ) is

weakly sequentially compact in L1(G ⊗ B(Rn)) (see, e.g., Doob, 1984).

Let {qi} be a sequence in Qd(θ) for which

lim
i→∞

∫
φ(qi/f)fd(P × λ) = inf

q∈Qd(θ)
Dφ(q, f) = d.

Weak sequential compactness of Qd(θ) implies that there exists a subsequence qik

tending weakly to some q∗ ∈ L1(G ⊗ B(Rn)). Then, lower semicontinuity of Dφ(·, f)

established in Lemma 2 leads to∫
φ(q∗/f)fd(P × λ) 6 lim

k→∞

∫
φ(qik/f)fd(P × λ) = d,

i.e. Dφ(q∗, f) = d 6 2d and so q∗ ∈ Qd(θ). Since Qd(θ) ⊆ Q(θ) and from Step 1 Q(θ)

is closed, the limit q∗ of the subsequence must be in Q(θ).
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Proof of Theorem 2 and Corollary 3. The proof is done in �ve steps.

Step 1: For every (θ′, η, λ′)′ ∈ Θ× R1+m let:

I(ω, θ, η, λ) ≡
∫

Rn

φ∗
(
η + λ′a(ω, x, θ)

)
f(ω, x)dx− η

Fix θ0 ∈ Θ. We start by showing that that for a.e. ω we have: inf(η,λ′)′∈Rm+1 I(ω, θ0, η, λ)

is attained, (η(ω, θ0), λ(ω, θ0)′)′ = 0 ∈ Rm+1 is optimal, and I(ω, θ0, η(ω, θ0), λ(ω, θ0)) <

∞. For this, we use the strict convexity of φ∗ (from Lemma 1(ii)) which implies that

for any υ ∈ R, φ∗(υ) − φ∗(0) > υφ∗
′
(0). From Lemma 1(v) and Assumption A2(iii)

we know that φ∗
′
(0) = 1 and φ∗(0) = 0, so for any (η, λ′)′ ∈ Rm+1 and a.e. ω we have:

I(ω, θ0, η, λ) > λ′E
[
a(X, θ0)

∣∣G] = 0. So for any (η, λ′)′ ∈ Rm+1 and a.e. ω it holds that

I(ω, θ0, η, λ) > I(ω, θ0, η(ω, θ0), λ(ω, θ0)) = 0, which shows that (η(ω, θ0), λ(ω, θ0)′)′ =

0 ∈ Rm+1 is optimal and that inf(η,λ′)′∈Rm+1 I(ω, θ0, η, λ) is attained. Moreover, un-

der Assumption A6(i) we have that for a.e. ω, I(ω, θ0, η, λ) < ∞ for any (η, λ′)′ ∈

Rm+1 ∩ Uθ0,ε1 which is open. (Recall that U(θ0, ε1) is an open ball in Θ×Rm+1 with

radius ε1 > 0 and centered at (θ′0, 0, 0
′)′ ∈ Θ × Rm+1.) Hence, (η(ω, θ0), λ(ω, θ0)′)′

is an interior optimum, and we have for a.e. ω, DηI(ω, θ0, η(ω, θ0), λ(ω, θ0)) = 0 and

DλI(ω, θ0, η(ω, θ0), λ(ω, θ0)) = 0, whereDηI(ω, θ, η, λ)′ ∈ L(R,R) andDλI(ω, θ, η, λ)′ ∈

L(Rm,R) denote the partial derivatives of I with respect to η and λ, respectively.

Step 2: We now use the results of Step 1 to derive the set of �rst order conditions

satis�ed by (η(ω, θ0), λ(ω, θ0)′)′. For this, we use Lebesgue Dominated Convergence

Theorem to be able to take the limit into the expectation in:

DηI(ω, θ̄, η(ω, θ0), λ(ω, θ0)) =

lim
h→0

∫
Rn

φ∗
(
η(ω, θ0) + h+ λ(ω, θ0)′a(ω, x, θ0)

)
− φ∗

(
η(ω, θ0) + λ(ω, θ0)′a(ω, x, θ0)

)
h

f(ω, x)dx− 1

Under Assumption A2, Lemma 1 applies and φ∗ is in C2(R,R) so by mean value
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theorem and for a.e. ω:

φ∗
(
η(ω, θ0) + h+ λ(ω, θ0)′a(ω, x, θ0)

)
− φ∗

(
η(ω, θ0) + λ(ω, θ0)′a(ω, x, θ0)

)
h

=

φ∗′
(
η(ω, θ0) + ḣ+ λ(ω, θ0)′a(ω, x, θ0)

)
with ḣ ∈ (min{0, h},max{0, h}). Given that φ∗′ is positive and strictly increasing on

R (see Lemma 1(iv)), we have for a.e. ω:

0 < φ∗′
(
η(ω, θ0)+ḣ+λ(ω, θ0)′a(ω, x, θ0)

)
6 φ∗′

(
η(ω, θ0)+max{0, h}+λ(ω, θ0)′a(ω, x, θ0)

)
.

Now, for h ∈ R such that (θ′0, η(ω, θ0) + h, λ(ω, θ0)′)′ = (θ′0, h, 0
′)′ ∈ U(θ0, ε1), the

upper bound above is integrable with respect to f(ω, x); we can therefore exchange

limit and expectation to get that for a.e. ω:

DηI(ω, θ0, η(ω, θ0), λ(ω, θ0)) =

∫
Rn

φ∗
′(
η(ω, θ0) + λ(ω, θ0)′a(ω, x, θ0)

)
f(ω, x)dx− 1

The same reasoning shows that for any (θ′, η, h, λ′)′ ∈ Θ×Rm+2 such that (θ′, η, λ′)′ ∈

U(θ0, ε1) and (θ′, η + h, λ′)′ ∈ U(θ0, ε1), we have for a.e. ω:

lim
h→0

∫
Rn

φ∗′
(
η + h+ λ′a(ω, x, θ)

)
f(ω, x)dx =

∫
Rn

φ∗′
(
η + λ′a(ω, x, θ)

)
f(ω, x)dx

so that η 7→
∫

Rn φ
∗′(η + λ′a(ω, x, θ)

)
f(ω, x)dx is continuous on R ∩ U(θ0, ε1).

Similarly, �x any 1 6 j 6 m and consider the partial derivative of I(ω, θ0, η, λ)

with respect to λj, when evaluated at (η(ω, θ0), λ(ω, θ0)). We have for a.e. ω:

φ∗
(
η(ω, θ0) + λ(ω, θ0)′a(ω, x, θ0) + haj(ω, x, θ0)

)
− φ∗

(
η(ω, θ0) + λ(ω, θ0)′a(ω, x, θ0)

)
h

= φ∗′
(
η(ω, θ0) + λ(ω, θ0)′a(ω, x, θ0) + ḣaj(ω, x, θ0)

)
aj(ω, x, θ0),

where aj denotes the jth component of a, and ḣ ∈ (min{0, h},max{0, h}). Now, using

again the convexity of φ∗ we have for a.e. ω:∣∣∣φ∗′(η(ω, θ0) + λ(ω, θ0)′a(ω, x, θ0) + ḣaj(ω, x, θ0)
)
aj(ω, x, θ0)

∣∣∣ 6 ∣∣aj(ω, x, θ0)
∣∣×

max
{
φ∗′
(
η(ω, θ0) + λ(ω, θ0)′a(ω, x, θ0)

)
, φ∗′

(
η(ω, θ0) + λ(ω, θ0)′a(ω, x, θ0) + haj(ω, x, θ0)

)}
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Both terms of the right hand side of the above inequality are integrable with respect

to f , so using again Lebesgue's Dominated Convergence theorem, we get for a.e. ω:

Dλj
I(ω, θ0, η(ω, θ0), λ(ω, θ0)) =

∫
Rn

φ∗
′(
η(ω, θ0)+λ(ω, θ0)′a(ω, x, θ0)

)
aj(ω, x, θ0)f(ω, x)dx

Same reasoning as previously shows that, moreover, for any (θ′, η, λ′)′ ∈ U(θ0, ε1)

and a.e. ω we have λj 7→
∫

Rn φ
∗′(η + λ′a(ω, x, θ0)

)
aj(ω, x, θ0)f(ω, x)dx continuous on

R ∩ U(θ0, ε1).

In particular, the �rst order conditions satis�ed by (η(ω, θ0), λ(ω, θ0)) can then be

written for a.e. ω as:

0 =

∫
Rm

φ∗
′(
η(ω, θ0) + λ(ω, θ0)′a(ω, x, θ0)

)
f(ω, x)dx− 1

0 =

∫
Rm

φ∗
′(
η(ω, θ0) + λ(ω, θ0)′a(ω, x, θ0)

)
a(ω, x, θ0)f(ω, x)dx (8)

Step 3: We now invoke the Implicit Function Theorem around the �rst order condi-

tion satis�ed by the Lagrange multipliers (η(ω, θ0), λ(ω, θ0)) to extend the results to

a neighborhood of θ0. For this, let τ ≡ (η, λ′)′ ∈ Rm+1 and τ0 ≡ 0 ∈ Rm+1. For any

(θ, τ) ∈ Θ× Rm+1 and a.e. ω consider then:

F̃ (ω, θ, τ) ≡
∫

Rn

F (ω, x, θ, τ)f(ω, x)dx,

where for any x ∈ Rn we de�ne:

F (ω, x, θ, τ) ≡

 φ∗
′(
η + λ′a(ω, x, θ)

)
− 1

φ∗
′(
η + λ′a(ω, x, θ)

)
a(ω, x, θ)

 .

Note that under A6, Step 2 shows that for a.e. ω the mapping τ 7→ F̃ (ω, θ, τ) is

continuous on Rm+1 ∩U(θ0, ε1). Continuity of θ 7→ F̃ (ω, θ, τ) on Θ∩U(θ0, ε1) for a.e.

ω follows from continuity of φ∗ (Lemma 1(i)) and a(ω, x, ·) (Assumption A5), and

from Assumption A6(ii,iii) by using the same reasoning as in Step 2.
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We now establish that for a.e. ω, the mapping (θ, τ) 7→ F̃ (ω, θ, τ) is also contin-

uously di�erentiable in a neighborhood of (τ0, θ0). Under Assumptions A2 and A5,

the mapping (θ, τ) 7→ F (ω, x, θ, τ) is continuously di�erentiable on Θ × Rm+1. Let

then DτF (ω, x, θ, τ)′ ∈ L(Rm+1,Rm+1) and DθF (ω, x, θ, τ)′ ∈ L(Rk,Rm+1) denote

the derivatives of F with respect to τ and θ, respectively. Writing a for a(ω, x, θ) we

have for every x ∈ Rn and a.e. ω:

DτF (ω, x, θ, τ) = φ∗
′′
(η + λ′a)

1 a′

a aa′


DθF (ω, x, θ, τ) =

(
φ∗

′′
(η + λ′a)Dθaλ φ∗

′′
(η + λ′a)Dθaλa

′ + φ∗
′
(η + λ′a)Dθa

)
where Dθa

′ ∈ L(Rk,Rm) denotes a partial derivative of a(ω, x, θ) with respect to θ.

Using the fact that φ∗ is convex, we then have for every x ∈ Rn and a.e. ω:

‖DτF (ω, x, θ, τ)‖ = φ∗
′′
(η + λ′a)

(
1 + |a|2

)
,

and

‖DθF (ω, x, θ, τ)‖ 6 φ∗
′′
(η + λ′a)|Dθaλ|+ φ∗

′′
(η + λ′a)‖Dθaλa

′‖+ φ∗
′
(η + λ′a)‖Dθa‖.

Given the continuity of a(ω, x, ·), φ∗′, and φ∗′′, and the moment assumptions in A7,

both ‖DτF (ω, x, θ, τ)‖ and ‖DθF (ω, x, θ, τ)‖ are bounded on U(θ0, ε1) ∩ U(θ0, ε2) by

quantities that are integrable with respect to f . So by Lebesgue Dominated Conver-

gence Theorem we can exchange limits and integration to get that for a.e. ω:

Dτ F̃ (ω, θ, τ)

=

 ∫Rn φ
∗′′(η + λ′a)f(ω, x)dx

∫
Rn φ

∗′′(η + λ′a)af(ω, x)dx′∫
Rn φ

∗′′(η + λ′a)af(ω, x)dx
∫

Rn φ
∗′′(η + λ′a)aa′f(ω, x)dx
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and

DθF̃ (ω, θ, τ)

=
(∫

Rn φ
∗′′(η + λ′a)Dθaλf(ω, x)dx

∫
Rn φ

∗′′(η + λ′a)Dθaλa
′ + φ∗

′
(η + λ′a)Dθaf(ω, x)dx

)
for all (θ, τ) ∈ U(θ0, ε1) ∩ U(θ0, ε2). Same assumptions su�ce to show that for a.e.

ω the mapping (θ, τ) 7→ Dτ F̃ (ω, θ, τ) and (θ, τ) 7→ DθF̃ (ω, θ, τ) are continuous on

U(θ0, ε1)∩U(θ0, ε2), following a reasoning similar to that in the Step 2. In particular,

under Assumption A4 we have for a.e. ω:

Dτ F̃ (ω, θ0, τ0) =

1 0

0
∫

Rn a(ω, x, θ0)a(ω, x, θ0)′f(ω, x)dx


DθF̃ (ω, θ0, τ0) =

(
0
∫

Rn Dθa(ω, x, θ0)f(ω, x)dx
)

Finally, we invoke the Implicit Function Theorem for (θ, τ) in a neighborhood of

(θ0, τ0), which by Equation (8) are known to solve F̃ (ω, θ0, τ0) = 0 for a.e. ω. Under

Assumption A8, Dτ F̃ (ω, θ0, τ0) is invertible for a.e. ω. Then the Implicit Function

Theorem (e.g. Theorem 9.28 in Rudin (1976)) applies and there exists B(θ0, ε) in

which to any θ ∈ B(θ0, ε) ⊂ Θ there corresponds a unique τ = τ(ω, θ) such that for

a.e. ω:

(θ, τ) ∈ U(θ0, ε1) ∩ U(θ0, ε2) and F̃ (ω, θ, τ(ω, θ)) = 0

Note that since we are interested in solving for τ as a function of θ in F̃ (ω, θ, τ) = 0, we

only need the partial derivative of F̃ with respect to τ to be invertible. No restrictions

are placed on the partial derivatives of F̃ with respect to θ.

Step 4: For every θ ∈ B(θ0, ε), every x ∈ Rn and a.e. ω let then:

g∗(ω, x, θ) = φ∗
′(
η(ω, θ) + λ(ω, θ)′a(ω, x, θ)

)
f(ω, x) (9)
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where (η(ω, θ), λ(ω, θ)′)′ = τ(ω, θ) and τ(ω, θ) was de�ned in Step 3. We now show

that g∗(ω, x, θ) de�ned in Equation (9) is in Q(θ). Then, we show that it is optimal.

We have for a.e. ω, F̃ (ω, θ, τ(ω, θ)) = 0 which using the de�nition of F̃ gives for a.e.

ω:

0 =

∫
Rn

g∗(ω, x, θ)dx− 1

0 =

∫
Rn

a(ω, x, θ)g∗(ω, x, θ)dx

so g ∈ Q(θ). We now show that g is indeed optimal. Let πθ be any other probability

density belonging to Q(θ). As consequence of Assumption A2, we have that for all

(υ, u) ∈ R2 (see Hiriart-Urruty and Lemarechal (1993)):

φ∗(υ) = υ(φ′)−1(υ)− φ
(
(φ′)−1(υ)

)
> υu− φ(u).

When evaluated at u ≡ πθ(ω, x)/f(ω, x) and υ ≡ η(ω, θ)+λ(ω, θ)′a(ω, x, θ), the above

inequality becomes for a.e. ω:

(
η(ω, θ) + λ(ω, θ)′a(ω, x, θ)

)
φ∗

′(
η(ω, θ) + λ(ω, θ)′a(ω, x, θ)

)
f(ω, x)

− φ
(
φ∗

′(
η(ω, θ) + λ(ω, θ)′a(ω, x, θ)

))
f(ω, x)

> πθ(ω, x)
(
η(ω, θ) + λ(ω, θ)′a(ω, x, θ)

)
− φ
(πθ(ω, x)

f(ω, x)

)
f(ω, x)

where we have used the fact that (φ′)−1 = φ∗
′
shown in Lemma 1(v). Integrating over

Ω× Rn, using Equation (8) and feasibility of the probability density πθ then gives:

Dφ(g∗, f) =

∫
Ω

∫
Rm

φ
(
φ∗

′(
η(ω, θ) + λ(ω, θ)′a(ω, x, θ)

))
f(ω, x)dxdP (ω)

6
∫

Ω

∫
Rn

φ
(πθ(ω, x)

f(ω, x)

)
f(ω, x)dxdP (ω) = Dφ(πθ, f),

so g∗ is optimal.
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Step 5: In addition, the mapping θ 7→ τ(ω, θ) is continuously di�erentiable on

B(θ0, ε) and when θ = θ0 we have:

Dθτ(ω, θ0) = DθF̃ (ω, θ0, τ(ω, θ0))
[
Dτ F̃ (ω, θ0, τ(ω, θ0))

]−1
, for a.e. ω

In particular, for a.e. ω we have:

Dτ F̃ (ω, θ0, τ(ω, θ0)) =

1 0

0 E
[
a(X, θ0)a(X, θ0)′|G

]


DθF̃ (ω, θ0, τ(ω, θ0)) =
(

0 E[Dθa(X, θ0)|G
])

which shows that

Dθτ(ω, θ0) =

 0

E[Dθa(X, θ0)|G
]{
E
[
a(X, θ0)a(X, θ0)′|G

]}−1

 with probability 1.

This completes the proof of Theorem 2 and its Corollary 3.
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