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Introduction
The genomic revolution ushered in an era of discovery and characterization
of enzymes from novel organisms that fueled engineering of microbes to
produce  commodity  and  high-value  compounds.  Over  the  past  decade
advances  in  synthetic  biology  tools  in  recent  years  contributed  to
significant  progress  in  metabolic  engineering  efforts  to  produce  both
natural and non-natural biofuels and bioproducts  [1,2] resulting in several
bioproducts being brought to market  [3*,4]. These successes represent a
burgeoning bioeconomy, however, significant resources and time are still
necessary to progress a system from proof-of-concept to market. In most
cases,  production  of  biofuels  and  bioproducts  at  economically-feasible
titers,  rates,  and  yields  (TRY)  rely  on  a  systemic  understanding  of  the
metabolism  of  the  organism  and  a  suite  of  synthetic  biology  tools  to
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engineer them. Yet, examples of metabolic engineering efforts powered by
a deep, systems-level knowledge of an organism and a toolbox filled with a
diverse set of synthetic biology tools remain  scattered. In order to fully
utilize  this  potential,  methods  that  examine  biological  systems  in  a
comprehensive, systematic and high-throughput manner are essential [3*].
Recent success in metabolic engineering and synthetic biology efforts has
coincided  with  the  development  of  systems  biology  and  analytical
approaches that have kept pace and scaled with technology development.
Here, we review a selection of systems biology methods and their potential
use in synthetic biology approaches for developing microbial biotechnology
platforms. 

Recent developments in systems and synthetic biology
Increasingly,  a  diverse  set  of  host  organisms,  beyond  Saccharomyces
cerevisiae and Escherichia coli, are the focus of biomanufacturing  research
(Table 1). Development of genome editing tools, such as CRISPR-Cas9, make
it possible to engineer organisms that historically have been intractable to
metabolic engineering  [5] despite having characteristics that are attractive
to biomanufacturing applications. Complementing these tools are methods to
transfer  DNA  into  cells  of  undomesticated  organisms  based  on  the
integrative  and  conjugative  element  from  Bacillus  subtilis (ICEBs1)  [6],
expression  systems  for  cross-species  genetic  circuits  [7–9],  and  modular
design  principles  for  metabolic  pathways  [10].  Likewise,  a  parts-based
synthetic  biology  strategy  for  constructing  mutant  libraries  enabled  the
genome-wide mutant fitness screening of 32 diverse bacteria across dozens
of growth conditions  [11,12**]. These synthetic biology developments give
researchers new control of the organisms they want to engineer with respect
to tunability, orthogonality and composability of the parts they use.

Similarly, there has been significant recent progress in systems biology tools.
DNA affinity purification sequencing (DAP-Seq or DAP-chip) enables low-cost
and high-throughput profiling genome-wide DNA-binding motifs of individual
transcription factors (TFs) [13,14] to facilitate characterization of regulatory
architecture  of  transcriptional  networks  [15,16].  Likewise,  high-throughput
proteomic analysis capable of analyzing hundreds of samples per day [17],
tools to shorten method development time  [18], and automated proteomic
sample  preparation  procedures  [19] make  these  types  of  experiments
routine.  As microorganisms uptake and secrete metabolites from and into
their  environment,  exometabolomics  analysis,  supported  by  various  high-
throughput  analytical  methodologies,  provides  a  rich  and  valuable
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phenotypic  data,  and  gains  popularity  in  bioprocessing  and  biofuel
development  [20,21]. Additionally, systems biology approaches contributed
to better understanding of metabolism and increased the quality of genome-
scale metabolic model (GSM) in various organisms [22]. More development
of systems biology tools and strategies for metabolic engineering efforts in
model and non-model microorganisms could be found in recent reviews and
the  references  cited  therein  [3*,23,24].  Applied  in  the  context  of
biomanufacturing,  these  tools  and  workflows  reduce  the  time  and  effort
required to complete an iteration of a DBTL cycle, speeding progress toward
economic biofuels and bioproducts.

Integration  of  synthetic
and  systems  biology  to
improve
biomanufacturing
research
Rewiring  cellular  metabolism  to
produce  valuable  chemicals  and
materials  at  economically
competitive  level  benefits  from
an  integrated  approach,  where
tools and strategies of synthetic,
systems  and  computational
biology  are  used  to  inform
changes to cellular metabolism to
optimize  TRY  of  the  desired
product  (Figure  1).  The  recent
breakthroughs  in  omics
technologies  enable  in-depth
studies  of  cellular  metabolic
networks  and  regulation  (Table
1).  The  data-driven  systems
biology  approach  provides
valuable  insights  that  lead
researchers identifying metabolic
pathway  bottlenecks  and

conducting  fine-tuned changes  to  meet  industrial  TRY  requirements.  One
common bottleneck is the toxicity to the

Figure 1. Overview of Systems, Synthetic and 
Computational biology methods that allow the 
use of microbial hosts for the production of 
biofuels and bioproducts. Several selected 
approaches in each category are shown.
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host organism of the final product or some of the intermediates present and/
or generated during conversion. George et al. [25*] took an integrated multi-
omics approach to understand the response of E. coli to the accumulation of
isopentenyl  pyrophosphate  (IPP),  a  toxic  intermediate,  in  isoprenoid-
producing strains. Poudel  et al. applied integrated omics analysis to reveal
metabolic  adaptations  of  Clostridium thermocellum’s  specific  response  to
cytotoxic  compounds  derived from hydrolysis  of  hemicellulose  and lignin,
which  provided  systems  biological  information  to  potentially  improve  C.
thermocellum’s industrial efficacy  [26]. Likewise, Ohtake  et al.  [27] took a
metabolomic-driven approach to identify limitations in 1-butanol production
in  E. coli. The metabolomic analysis revealed an accumulation of butanoyl-
CoA suggesting that aldehyde-alcohol dehydrogenase (Adhe2) was the cause
of the bottleneck. Based on this knowledge they rationally engineered E. coli
to remove the imbalance and increased the 1-butanol titer to 18.3 g/L [27].
Characterization of the effect of membrane viscosity on cellular respiratory
metabolism was probed by an integrated systemic engineering approach to
manipulate lipid  composition  in  E.  coli and  S.  cerevisiae [28].  Systematic
engineering  of  industrial  brewing  yeast  cell  metabolism  based  on
metabolomic and proteomic data was used to optimize the amount of hops
flavors  for  beer  [29],  and  in  Corynebacterium  glutamicum to  develop  a
robust production system for the biogasoline target, isopentenol [30]. Lim et
al.  [31**] isolated Vibrio sp. dhg, a fast-growing bacterium, that is naturally
capable  of  simultaneously  assimilating  mannitol  and  alginate,  the  most
prominent sugars in brown macroalgae. Through genome analysis and the
development  of  a  synthetic  biology  toolbox  for  this  strain  the  team
engineered it to produce ethanol from these sugars at 25.7 g/L, 1.1 g/L/h and
64% of the theoretical maximum yield. 

Carbon-13 metabolic flux analysis (13C-MFA) is another approach that helps
trace the relative contributions of different metabolic routes. 13C-MFA-guided
cofactor engineering,  metabolomic analysis,  and gene expression profiling
were applied to direct E. coli strain development resulting in increased acetol
titer from 0.91 g/L to 2.81 g/L [32]. Data from 13C-MFA was used to identify a
newly  discovered  fructokinase  enzyme  (FruA)  in  sucrose  metabolism  of
Basfia  succiniciproducens [33].  By  knocking  out  the  fruA gene,  B.
succiniciproducens produced 71 g/L of succinate with a yield of 2.5 mol/mol
from  sucrose  under  fed-batch  conditions.  13C-MFA  can  also  be  used  to
identify  engineering  targets  that  are  unintuitive  to  most  researchers.  For
example,  13C-MFA was used to identify energy limitation in a strain of fatty
acid  producing  E.  coli.  The  limitation  was  removed  by   expression  of
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Vitreoscilla hemoglobin (VHb) a membrane protein facilitating O2 transport
to promote cell respiration [34].

While  these  studies  supplied  information  for  rational  engineering
approaches, construction of a strain more tolerant to various stresses often
requires non-rational engineering approaches. Adaptive laboratory evolution
(ALE)  coupled  with  systems  biology  analyses  is  an  inverse  engineering
strategy for obtaining desirable host traits and characterizing the underlying
molecular mechanisms of these traits.  It  has been applied successfully to
gain novel insights into molecular mechanisms used by E. coli to overcome
the metabolic burden or elevated cytotoxicity due to the deletion of major
metabolic  genes  [35,36].  Laboratory evolution  can also help identify  non-
intuitive gene deletion candidates to develop host organisms such as a cydC
mutant in  E. coli that not only conferred increased tolerance to inhibitory
residual reagents in the carbon source, but also restored production of the
bio-jetfuel target to optimal levels [37].

Metabolizing  different  nutrition  sources  are  desirable  features  of  cell
factories  to  efficiently  utilize  lignocellulosic  biomass.  Quantitative
metabolomics analysis identified pyruvate kinase as a major bottleneck of
arabinose  metabolism  suppression  by  glucose  in  C.  glutamicum,  which
directed  rational  engineering  of  manipulating  only  two  genes  to  achieve
simultaneous utilization of D-glucose and L-arabinose at the same rate [38].
A systems biology analysis of  Rhodococcus opacus PD630 provided insight
into  lignocellulose  hydrolysate  utilization  and  subsequent  evolved  strains
showed improved growth rate on phenol  [39]. Multi-omic analysis  P. putida
cultured  with glucose and benzoate simultaneously provided evidence that
metabolic segregation represented an efficient strategy in P. putida to meet
biosynthetic flux  [40**].  Similarly,  this approach was applied to study the
molecular  mechanisms  that  influence  and  regulate  lipogenesis  in  the
oleaginous  yeast  Rhodosporidium  toruloides [41] and  Yarrowia  lipolytica
[42], and identify bottlenecks in the bioconversion of glycerol into acetol in E.
coli [32]. The non-targeted ALE approach is also a useful tool to engineer
carbon  source  assimilation  pathways  and  bypass  catabolite  repression
regulatory systems [43*].

There are now several examples for improving biomanufacturing research
using systems and synthetic biology via semi- or fully-automated metabolic
engineering  Design-Build-Test-Learn  (DBTL)  pipelines.  For  instance,
Carbonell  et  al.  [44**] developed  an  automated  pipeline  that  uses  a
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retrobiosynthesis  tool,  RetroPath  [45],  to  propose  pathway  selection  and
derives  common  design  rules  from  machine  learning  (ML)  techniques.
Another computational retrobiosynthesis tool, BNICE.ch, was used to assess
more than 3.6 million biosynthetic pathways from central carbon metabolites
of  E. coli to methyl ethyl ketone  [46]. A Method for Metabolite Annotation
and  Gene  Integration  (MAGI)  [47] is  another  workflow  that  integrates
metabolomics  data  with  genomic  predictions  to  improve  biological
interpretations  made by both.  Discovery  of  novel  enzymes is  enabled by
global  mutant  fitness  data  generated  from  RB-Tn-Seq  experiments  [48].
Likewise,  literature evidence of  more than one DBTL cycle utilizing omics
data to inform subsequent designs in the field of biomanufacturing research
is still rare [44**,49*,50]. Opgenorth  et al.  [49*] used their first DBTL cycle
data to train machine learning algorithms that suggested protein profiles for
the second DBTL cycle. It led to a 21% increase in dodecanol titer in cycle
two. 

Computational  approaches  to  systems  biology  data
analysis
Integrative  multi-omics  analyses  attempt  to  draw  connections  between
disparate omics data sources, either with or without biological knowledge.
Yet,  extracting  actionable  information  from  omics  datasets  is  quite
challenging. Consequently, there has been significant effort directed into the
development of computational tools that integrate different omics datasets
acquired during the Test step of a typical engineering DBTL cycle to assist
with  the  Learning  step  [51].  Several  toolboxes  exist  to  integrate
transcriptomics, proteomics, fluxomics and metabolomics data. Tn-Core [52]
is a recent example that can automate integration of Tn-Seq data in addition
to RNA-seq data to generate context specific models  that may provide a
“systems-level”  view  for  metabolic  engineering  purposes.  Traditionally,
statistical methods have been used to evaluate the significance of different
design parameters (promoters and plasmid copy numbers) on product titers
[44**]. Principal component analysis (PCA) was recently utilized to evaluate
different  engineered  strains  for  metabolites  that  contribute  to  acetol
production  using metabolomics  datasets  [32] that  helped identify  NADPH
regeneration as the bottleneck for efficient acetol biosynthesis. PCA has also
been used on extracellular  metabolomics  datasets to identify  metabolites
that are the main drivers of variation in IPP production engineered strains
[25*]. 
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Machine learning approaches

Machine learning has the capability to extract patterns from high throughput
biological data and shows great potential in systems metabolic engineering
[53]. It  has been used to propose pathway selection  [44**,54] as well  as
build kinetic models using proteomic and metabolomic time-series data from
isopentenol-producing  and  limonene-producing  E.  coli  strains  [55].  These
models qualitatively predict pathway dynamics and outperformed a classical
Michaelis-Menten kinetic model. Artificial Neural Networks (ANN) are another
tool used for integration of omics datasets independently or as a component
of  a  ML  workflow.  Recently,  improvement  in  β‐carotene  production  was
assessed in  S. cerevisiae through the use of an ANN model in conjunction
with a YeastFab Assembly strategy (MiYA) [56]. Variable expression levels of
three heterologous β‐carotene genes and product titers were used to train
an ANN model.  This  model was then used to predict  the optimal  level  of
expression for  these enzymes in  the next iteration of  strain construction.
After two cycles of ANN training and evaluation, it was found that 7 out of 10
top predicted engineered strains had improved product titers compared to
the highest‐producing strain of the initial library. This workflow was extended
to improve violacein production (five enzyme pathway) that led to successful
prediction of a strain that showed a 2.42-fold titer improvement in violacein
production  among  3125  possible  promoter  combinatorial  designs.  Going
forward, ML algorithms need high-quality experimental data, larger training
data sets, more pathway independent data, and more libraries to improve
their prediction power.

Biology-informed approaches

Genome-scale  metabolic  models  (GSM)  and  constraint-based  modeling
(CBM)  methods  [57*] assist  in  integrating  disparate  omics  data  onto  the
metabolic  map  of  the  host  and  improve  phenotype  predictions.  Yet,
constructing GSMs requires comprehensive networks of enzymatic reactions
and  metabolism  of  the  host  organism.  Recently  omics  data  has  been
integrated with a GSM for E. coli to identify key factors for bioproduction and
prediction of cell factory performance [58*]. GSMs are also important inputs
to computational strain optimization methods (CSOM) (e.g., Optknock  [59],
constrained minimal cut sets (cMCS) [60]) that are used to identify genetic
knockouts, over/under expression of genes for strain optimization efforts [2].
A multi-omics integrative analysis based on GSM of A. niger was performed
to  understand  the  mechanisms  supporting  a  high  yield  of  glucoamylase
production  and  global  metabolic  regulation  under  oxygen  limitation,  an
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industrially  relevant  scenario  [61].  Recently  a  workflow  to  improve  the
accuracy  of  predictions  of  large  scale  kinetic  models  in  metabolic
engineering  studies  was  proposed  [62].  Likewise,  a  kinetic  model  of
metabolism  at  a  genome  scale  containing  457  model  reactions,  337
metabolites and 295 substrate-level regulatory interactions was developed
and applied to multiple mutant strains [63]. Omics data of optimally grown E.
coli  was  integrated  into  a  stoichiometric  model  and  used  to  construct
populations  of  non-linear  large-scale  kinetic  models  consistent  with  the
physiology of the E. coli  aerobic metabolism [62]. Genome-scale  13C-MFA is
computationally  expensive  method  that  requires  knowledge  of  all  of  the
carbon  transitions  in  the  network.  Two-scale  13C-MFA  (2S-13C-MFA)  is  an
alternative that overcomes the problem associated with genome scale  13C-
MFA by constraining fluxes in the genome-scale model simultaneously using
two resolution scales: for core reactions, both stoichiometric and 13C labeling
constraints  are used,  whereas,  for  non-core  reactions,  only  stoichiometric
constraints are used [64].

Concluding remarks

To date, most of the successes we see in the biomanufacturing space are the
result  of  an  Edisonian  ‘trial-and-error’  approach  which  are  rarely
generalizable  across  products  or  microbial  platforms.  Current  designs
continue to rely on historical knowledge to design pathways and engineer
microbial hosts in an artisanal manner. However, the studies outlined in this
review indicate that the increasing availability of high-throughput synthetic
biology  methods,  coupled  with  lowering  costs  of  systems  biology
experiments to inform computational biology enable predictive approaches
to aid our biofuel and bioproduct research and development. Further, there is
an emerging need for open source (e.g. Python based) frameworks such as
IMPACT  (Integrated  Microbial  Physiology:  Analysis,  Characterization  and
Translation) for bioengineers working with big biological data to interpret,
model,  and visualize data  [65]. Using such pipelines, metabolic  engineers
can opt for such scalable data integration and analysis workflows, alleviating
a bottleneck limiting the throughput of  bioengineering research.  As these
efforts mature, they can be extended to improve automation and real-time
learning capabilities of global biofoundries [66,67] in academic, research and
commercial  institutions  in  the  biomanufacturing  research  and  application
space.
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Figure and Table Captions

Table 1. Selected examples of tools to integrate systems biology data for
biomanufacturing research

Figure  1.  Overview  of  Systems,  Synthetic  and  Computational  biology
methods that allow the use of microbial hosts for the production of biofuels
and bioproducts. Several selected approaches in each category are shown. 
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